PLASMODIUM VACCINES, ANTIGENS, COMPOSITIONS, AND METHODS

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U S Provisional Application 61/100,744, filed September 28, 2008, the entire disclosure of which is hereby incorporated by reference in its entirety

Background of the Invention

[0001] Malaria is a vector-borne infectious disease caused by protozoan parasites of the genus Plasmodium It is widespread in tropical and subtropical regions, including parts of the Americas, Asia, and Africa Each year, there are approximately 515 million cases of malaria, killing between one and three million people, the majoπty of whom are young children in Sub-Saharan Africa (Snow et al , 2005, Nature, 434 214-7, incorporated herein by reference) Malaπa is commonly associated with poverty, but is also a cause of poverty and a major hindrance to economic development

[0002] Plasmodium parasites are transmitted by female Anopheles mosquitoes Symptoms include one or more of light headedness, shortness of breath, tachycardia, fever, chills, nausea, flu-like illness, coma, and death No vaccine is currently available for malaπa Existing preventative therapies must be taken continuously to reduce the πsk of infection, but these prophylactic treatments are often too expensive for most people living in endemic areas Malaria infections are often treated through the use of antimalarial drugs, such as quinine or artemisimn denvatives, although drug resistance is increasingly common

Summary of the Invention

[0003] The present disclosure provides compositions and methods of making compositions that induce or enhance an immune response against Plasmodium sexual-stage antigens, for example, Pfs25, Pfs28, Pfs48/45, Pfs230, HAP2, GCSl homologues, and gametocyte surface antigens Such compositions are useful for the reduction of transmission of Plasmodium infections The compositions can include an isolated fusion protein compπsing a thermostable protein and a Plasmodium polypeptide, wherein the Plasmodium polypeptide can be a Pfs25, Pfs28, Pfs48/45, or Pfs230 polypeptide or immunogenic portion thereof, and wherein the fusion protein, when administered to a subject, induces or enhances an immune response against the Plasmodium polypeptide In some embodiments, the thermostable protein can be a lichenase polypeptide The lichenase polypeptide can be a modified lichenase B polypeptide The modified lichenase B polypeptide can be a polypeptide having the amino acid sequence of SEQ ID NO 40 or a modified lichenase B polypeptide having at least 90%, at least 95%, at least 98% sequence identity SEQ ID NO 40

[0004] In some embodiments, the Plasmodium polypeptide can be a Pfs25 polypeptide The Pfs25 polypeptide can have the ammo acid sequence of SEQ ID NO 42 or can have at least 95%, at least 98%, at least 99% sequence identity to SEQ ID NO 42 In some embodiments, the Plasmodium polypeptide can be a Pfs28 polypeptide The Pfs28 polypeptide can have the amino acid sequence of SEQ ID NO 55 or can have at least 95%, at least 98%, at least 99% sequence identity to SEQ ID NO 55 In some embodiments, the Plasmodium polypeptide can be a Pfs48/45 polypeptide The Pfs48/45 polypeptide can have the ammo acid sequence of SEQ ID NO 62 or can have at least 95%, at least 98%, at least 99% sequence identity to SEQ ID NO 62 In some embodiments, the Plasmodium polypeptide can be a Pfs230 polypeptide The Pfs230 polypeptide can have the amino acid sequence of SEQ ID NO 95 or can have at least 95%, at least 98%, at least 99% sequence identity to SEQ ID NO 95

[0005] hi some embodiments, the fusion protein can have an ammo acid sequence selected from the group consisting of SEQ ID NOs 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, and 254, or can be a polypeptide having sequence identity of at least 90%, at least 95%, at least 99% to an amino acid sequence selected from the group consisting of SEQ ID NOs 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, and 254

[0006] Also disclosed are nucleic acids comprising the sequences encoding the fusion proteins Such a nucleic acid can encode the ammo acid sequence of a polypeptide selected from the group consisting of SEQ ID NOs 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, and 254, or a polypeptide having sequence identity of at least 90%, at least 95%, at least 99% to an amino acid sequence selected from the group consisting of SEQ ID NOs 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, and 254 Also disclosed are expression vectors composing the nucleic acids The expression vectors can further comprising a leader sequence The expression vector can be an Agrobacteπal plasmid, a plant viral vector or a plant viral vector cloned into an Agrobacteπal plasmid Also disclosed are host cells comprising the expression vectors The host cell can be a plant cell and may comprise a plant Also disclosed are methods of producing the fusion proteins and Plasmodium Pfs25, Pfs28, Pfs48/45, or Pfs230 polypeptides, the method compnsing providing a nucleic acid construct compnsing a nucleic acid encoding the fusion protein, introducing the nucleic acid construct into a plant cell, and maintaining the cell under conditions permitting expression of the fusion protein

[0007] Also disclosed are methods of methods of making compositions that induce or enhance an immune response against Plasmodium sexual-stage antigens, for example, Pfs25, Pfs28, Pfs48/45, Pfs230, HAP2, GCSl homologues, and gametocyte surface antigens, in plants These include methods of making a composition that induces or enhances an immune response against a Plasmodium Pfs25, Pfs28, Pfs48/45, or Pfs230 polypeptide In one embodiment, the method compπses producing the fusion protein as descπbed above in a plant, isolating the fusion protein, and combining the isolated fusion protein with a pharmaceutically acceptable earner In one embodiment, the method compnses producing the Plasmodium polypeptide Pfs25, Pfs28, Pfs48/45, or Pfs230 in a plant, isolating the polypeptide, and combining the polypeptide with a pharmaceutically acceptable earner The Plasmodium polypeptide can be a Pfs25 polypeptide, the Pfs25 polypeptide can have the amino acid sequence of SEQ ID NO 42 or can be polypeptide having at least 90% sequence identity to SEQ ID NO 42 The Plasmodium polypeptide can be a PFs28 polypeptide, the Pfs28 polypeptide can have the amino acid sequence of SEQ ID NO 55 or can be polypeptide having at least 90% sequence identity to SEQ ID NO 55 The Plasmodium polypeptide can be a Pfs48/45 polypeptide, the Pfs48/45 polypeptide can have the ammo acid sequence of SEQ ID NO 62 or can be polypeptide having at least 90% sequence identity to SEQ ID NO 62 The Plasmodium polypeptide can be a Pfs230 polypeptide, the Pfs230 polypeptide can have the ammo acid sequence of SEQ ID NO 95 or can be polypeptide having at least 90% sequence identity to SEQ ID NO 95 The plant can transiently express the polypeptide or fusion protein, the transient expression can be from an Agrobactenal plasmid, a plant viral vector, or a plant viral vector cloned into an Agrobacteπal plasmid In some embodiments, the plant can be transgenic for the polypeptide or fusion protein The plant may be from a genus selected from the group consisting ofBrassica, Nicotiana, Petunia, Lycopersicon, Solarium, Capsium, Daucus, Apium, Lactuca, Sinapis or Arabidopsis, for example Nicotiana benthamiana, Brassica cannata, Brassica juncea, Brassica napus, Brassica nigra, Brassica oleraceae, Brassica tournifortu, Sinapis alba and Raphanus sahvus Plants that may be used include alfalfa, radish, mustard, mung bean, broccoli, watercress, soybean, wheat, sunflower, cabbage, clover, petunia, tomato, potato, tobacco, spinach, and lentil hi some embodiments the plant can be a sprouted seedling Also provided are plant cells produced by the foregoing methods and plant containing such a plant cells [0008] hi some embodiments, plant-produced Plasmodium polypeptides are purified from plant matenals hi some embodiments, plant-produced Plasmodium polypeptides are not purified from plant matenals

[0009] Also disclosed are pharmaceutical compositions comprising the fusion proteins of any one of claims 1 to 32 and a pharmaceutically acceptable earner or excipient Such compositions can further include an adjuvant The adjuvant can be selected from the group consisting of alum, QmI A, QS21, aluminum hydroxide, aluminum phosphate, mineral oil, MF59, Malp2, incomplete Freund's adjuvant, complete Freund's adjuvant, alhydrogel, 3 De- O-acylated monophosphoryl lipid A (3D-MPL), lipid A, Bortadella pertussis, Mycobactenum tuberculosis, Merck Adjuvant 65, squalene, virosomes, SBAS2, SBASl, AS03 and unmethylated CpG sequences

[0010] Also provided are a methods of inducing or enhancing an immune response against an Plasmodium polypeptide in a subject, the method compnsmg admimstenng a therapeutically effective amount of a Plasmodium polypeptide or composition thereof prepared according to the foregoing methods The peptide or composition thereof may be administered orally, mtranasally, subcutaneously, intravenously, mtrapentoneally, or intramuscularly Also provided are a methods of inducing or enhancing an immune response against a Plasmodium polypeptide in a subject, by feeding a plant, or an edible portion thereof, or plant cell produced by the above-descnbed to a subject In these methods, the subject may be an animal, such as a human, a non-human pπmate, a bird, or a rodent [0011] Also disclosed are methods of reducing transmission of Plasmodium infection hi one embodiment, the method compnses reducing transmission of Plasmodium to a subject in a population at nsk for Plasmodium infection, compnsmg admimstenng to one or more subjects in the population an effective amount of a Plasmodium polypeptide or composition thereof prepared according to the foregoing methods In one embodiment, the method composes method of reducing transmission of Plasmodium from a subject, the method composing admimsteong to the subject an effective amount of a Plasmodium polypeptide or composition thereof prepared according to the foregoing methods In these methods, the subject may be an animal, such as a human, a non-human pπmate, a bird, or a rodent

Definitions

[0012] Amino acid As used herein, term "ammo acid," in its broadest sense, refers to any compound and/or substance that can be incorporated into a polypeptide chain In some embodiments, an ammo acid has the general structure HiN-C(H)(R)-COOH In some embodiments, an ammo acid is a naturally-occurring ammo acid In some embodiments, an ammo acid is a synthetic ammo acid, in some embodiments, an ammo acid is a D-ammo acid, m some embodiments, an amino acid is an L-ammo acid "Standard ammo acid" refers to any of the twenty standard L-ammo acids commonly found in naturally occurring peptides "Nonstandard ammo acid" refers to any amino acid, other than the standard ammo acids, regardless of whether it is prepared synthetically or obtained from a natural source As used herein, "synthetic ammo acid" encompasses chemically modified amino acids, including but not limited to salts, ammo acid deovatives (such as amides), and/or substitutions Ammo acids, including carboxy- and/or ammo-termmal amino acids in peptides, can be modified by methylation, amidation, acetylation, and/or substitution with other chemical groups that can change the peptide's circulating half-life without adversely affecting their activity Amino acids may participate in a disulfide bond The term "amino acid" is used interchangeably with "ammo acid residue," and may refer to a free ammo acid and/or to an ammo acid residue of a peptide It will be apparent from the context in which the term is used whether it refers to a free amino acid or a residue of a peptide

[0013] Animal As used herein, the term "animal" refers to any member of the ammal kingdom In some embodiments, "animal" refers to humans, at any stage of development In some embodiments, "animal" refers to non-human animals, at any stage of development In certain embodiments, the non-human animal is a mammal (e g , a rodent, a mouse, a rat, a rabbit, a monkey, a dog, a cat, a sheep, cattle, a pomate, and/or a pig) In some embodiments, animals include, but are not limited to, mammals, birds, reptiles, amphibians, fish, insects, and/or worms In some embodiments, an ammal may be a transgenic ammal, genetically-engineered ammal, and/or a clone [0014] Antibody As used herein, the term "antibody" refers to any immunoglobulin, whether natural or wholly or partially synthetically produced All deπvatives thereof which maintain specific binding ability are also included in the term The term also covers any protein having a binding domain which is homologous or largely homologous to an immunoglobulin binding domain Such proteins may be denved from natural sources, or partly or wholly synthetically produced An antibody may be monoclonal or polyclonal An antibody may be a member of any immunoglobulin class, including any of the human classes IgG, IgM, IgA, IgD, and IgE As used herein, the terms "antibody fragment" or "characteristic portion of an antibody" are used interchangeably and refer to any denvative of an antibody which is less than full-length In general, an antibody fragment retains at least a significant portion of the full-length antibody's specific binding ability Examples of antibody fragments include, but are not limited to, Fab, Fab', F(ab')2, scFv, Fv, dsFv diabody, and Fd fragments An antibody fragment may be produced by any means For example, an antibody fragment may be enzymatically or chemically produced by fragmentation of an mtact antibody and/or it may be recombinantly produced from a gene encoding the partial antibody sequence Alternatively or additionally, an antibody fragment may be wholly or partially synthetically produced An antibody fragment may optionally comprise a single chain antibody fragment Alternatively or additionally, an antibody fragment may compnse multiple chains which are linked together, for example, by disulfide linkages An antibody fragment may optionally comprise a multimolecular complex A functional antibody fragment typically composes at least about 50 ammo acids and more typically compπses at least about 200 ammo acids

[0015] Approximately As used herein, the term "approximately" or "about," as applied to one or more values of interest, refers to a value that is similar to a stated reference value In certain embodiments, the term "approximately" or "about" refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less m either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value)

[0016] Characteristic portion As used herein, the phrase a "characteristic portion" of a protein or polypeptide is one that contains a continuous stretch of ammo acids, or a collection of continuous stretches of amino acids, that together are characteristic of a protein or polypeptide Each such continuous stretch generally will contain at least two ammo acids Furthermore, those of ordinary skill m the art will appreciate that typically at least 5, at least 10, at least 15, at least 20 or more amino acids are required to be characteπstic of a protein

In general, a characteπstic portion is one that, in addition to the sequence identity specified above, shares at least one functional characteπstic with the relevant intact protein

[0017] Characteristic sequence A "characteristic sequence" is a sequence that is found in all members of a family of polypeptides or nucleic acids, and therefore can be used by those of ordinary skill in the art to define members of the family

[0018] Combination therapy The term "combination therapy," as used herein, refers to those situations in which two or more different pharmaceutical agents are administered m overlapping regimens so that the subject is simultaneously exposed to both agents

[0019] Dosing regimen A "dosmg regimen," as used herein, refers to a set of unit doses

(typically more than one) that are administered individually separated by penods of time

The recommended set of doses (ι e , amounts, timing, route of administration, etc ) for a particular pharmaceutical agent constitutes its dosmg regimen

[0020] Expression As used herein, "expression" of a nucleic acid sequence refers to one or more of the following events (1) production of an RNA template from a DNA sequence

(e g , by transcπption), (2) processing of an RNA transcπpt (e g , by splicing, editing, and/or

3' end formation), (3) translation of an RNA into a polypeptide or protein, (4) post- translational modification of a polypeptide or protein

[0021] Gene As used herein, the term "gene" has its meaning as understood m the art It will be appreciated by those of ordinary skill in the art that the term "gene" may include gene regulatory sequences (e g , promoters, enhancers, etc ) and/or intron sequences It will further be appreciated that definitions of gene include references to nucleic acids that do not encode proteins but rather encode functional RNA molecules such as tRNAs For the purpose of clanty we note that, as used in the present application, the term "gene" generally refers to a portion of a nucleic acid that encodes a protein, the term may optionally encompass regulatory sequences, as will be clear from context to those of ordinary skill in the art This definition is not intended to exclude application of the term "gene" to non-protem- coding expression units but rather to claπfy that, in most cases, the term as used in this document refers to a protem-coding nucleic acid

[0022] Gene product As used herein, the term "gene product" or "expression product" generally refers to an RNA transcribed from the gene (pre-and7or post-processing) or a polypeptide (pre- and/or post-modification) encoded by an RNA transcπbed from the gene

[0023] Homology As used herein, the term "homology" refers to the overall relatedness between polymeric molecules, e g between nucleic acid molecules (e g DNA molecules and/or RNA molecules) and/or between polypeptide molecules In some embodiments, polymeric molecules are considered to be "homologous" to one another if their sequences are at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical In some embodiments, polymeric molecules are considered to be "homologous" to one another if their sequences are at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% similar

[0024] Identity As used herein, the term "identity" refers to the overall relatedness between polymeric molecules, e g between nucleic acid molecules (e g DNA molecules and/or RNA molecules) and/or between polypeptide molecules Calculation of the percent identity of two nucleic acid sequences, for example, can be performed by aligning the two sequences for optimal comparison purposes (e g , gaps can be introduced in one or both of a first and a second nucleic acid sequences for optimal alignment and non-identical sequences can be disregarded for comparison purposes) In certain embodiments, the length of a sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or 100% of the length of the reference sequence The nucleotides at corresponding nucleotide positions are then compared When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which needs to be introduced for optimal alignment of the two sequences The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm For example, the percent identity between two nucleotide sequences can be determined using the algorithm of Meyers and Miller (CABIOS, 1989, 4 11-17), which has been incorporated into the ALIGN program (version 2 0) using a PAM 120 weight residue table, a gap length penalty of 12 and a gap penalty of 4 The percent identity between two nucleotide sequences can, alternatively, be determined using the GAP program in the GCG software package using an NWSgapdna CMP matπx As used herein, the term "overall identity" refers to identity over a long stretch of sequence In some embodiments, overall identity refers to identity over at least 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 400, 500, or more ammo acids and/or nucleotides In some embodiments, overall identity refers to identity over the complete length of a given sequence

[0025] Isolated As used herein, the term "isolated" refers to a substance and/or entity that has been (1) separated from at least some of the components with which it was associated when initially produced (whether in nature and/or in an experimental setting), and/or (2) produced, prepared, and/or manufactured by the hand of man Isolated substances and/or entities may be separated from at least about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 98%, about 99%, or 100% of the other components with which they were initially associated In some embodiments, isolated agents are more than about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, substantially 100%, or 100% pure As used herein, a substance is "pure" if it is substantially free of other components As used herein, the term "isolated cell" refers to a cell not contained in a multi-cellular organism

[0026] Lichenase polypeptide As used herein, the term "hchenase polypeptide" refers to a polypeptide showing at least 50% overall sequence identity with one or more hchenase polypeptides listed in Table 1 In some embodiments, a hchenase polypeptide shows at least 60%, at least 70%, at least 80%, at least 85%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity with a listed hchenase polypeptide In some embodiments, a lichenase polypeptide further shares at least one characteristic sequence element with the listed hchenase polypeptides

[0027] Nucleic acid As used herein, the term "nucleic acid," in its broadest sense, refers to any compound and/or substance that is or can be incorporated into an oligonucleotide chain In some embodiments, a nucleic acid is a compound and/or substance that is or can be incorporated into an oligonucleotide chain via a phosphodiester linkage In some embodiments, "nucleic acid" refers to individual nucleic acid residues (e g nucleotides and/or nucleosides) In some embodiments, "nucleic acid" refers to an oligonucleotide chain compπsing individual nucleic acid residues As used herein, the terms "oligonucleotide" and "polynucleotide" can be used interchangeably In some embodiments, "nucleic acid" encompasses RNA as well as single and/or double-stranded DNA and/or cDNA Furthermore, the terms "nucleic acid," "DNA," "RNA," and/or similar terms include nucleic acid analogs, i e analogs having other than a phosphodiester backbone For example, the so- called "peptide nucleic acids," which are known in the art and have peptide bonds instead of phosphodiester bonds in the backbone, are considered within the scope of the present invention The term "nucleotide sequence encoding an ammo acid sequence" includes all nucleotide sequences that are degenerate versions of each other and/or encode the same ammo acid sequence Nucleotide sequences that encode proteins and/or RNA may include introns Nucleic acids can be purified from natural sources, produced using recombinant expression systems and optionally purified, chemically synthesized, etc Where appropriate, e g , m the case of chemically synthesized molecules, nucleic acids can compπse nucleoside analogs such as analogs having chemically modified bases or sugars, backbone modifications, etc A nucleic acid sequence is presented in the 5' to 3' direction unless otherwise indicated The term "nucleic acid segment" is used herein to refer to a nucleic acid sequence that is a portion of a longer nucleic acid sequence In many embodiments, a nucleic acid segment comprises at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, or more than 10 residues In some embodiments, a nucleic acid is or compπses natural nucleosides (e g adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosme, and deoxycytidine), nucleoside analogs (e g , 2- ammoadenosme, 2-thiothymidine, mosme, pyrrolo-pyπmidine, 3-methyl adenosine, 5- methylcytidine, C-5 propynyl-cytidine, C-5 propynyl-undine, 2-aminoadenosine, C5- bromoundine, C5-fluorouπdme, C5-iodouπdme, C5-propynyl-uπdme, C5-proρynyl-cytidine, C5-methylcytidme, 2-aminoadenosme, 7-deazaadenosme, 7-deazaguanosme, 8- oxoadenosme, 8-oxoguanosine, O(6)-methylguanme, and 2-thiocytidme), chemically modified bases, biologically modified bases (e g , methylated bases), intercalated bases, modified sugars (e g , 2'-fluoronbose, πbose, 2'-deoxyπbose, arabmose, and hexose), and/or modified phosphate groups (e g , phosphorothioates and 5'-iV-phosphorarmdite linkages) In some embodiments, the present invention may be specifically directed to "unmodified nucleic acids," meaning nucleic acids (e g polynucleotides and residues, including nucleotides and/or nucleosides) that have not been chemically modified in order to facilitate or achieve delivery [0028] Operably linked As used herein, the term "operably linked" refers to a relationship between two nucleic acid sequences wherein the expression of one of the nucleic acid sequences is controlled by, regulated by, modulated by, etc , the other nucleic acid sequence For example, the transcription of a nucleic acid sequence is directed by an operably linked promoter sequence, post-transcπptional processing of a nucleic acid is directed by an operably linked processing sequence, the translation of a nucleic acid sequence is directed by an operably linked translational regulatory sequence, the transport or localization of a nucleic acid or polypeptide is directed by an operably linked transport or localization sequence, and the post-translational processing of a polypeptide is directed by an operably linked processing sequence A nucleic acid sequence that is operably linked to a second nucleic acid sequence may be covalently linked, either directly or indirectly, to such a sequence, although any effective three-dimensional association is acceptable [0029] Pfs25 polypeptide As used herein, the term "Pfs25 polypeptide" refers to a polypeptide showing at least 50% overall sequence identity with one or more Pfs25 polypeptides listed in Figure 1 In some embodiments, a Pfs25polypeρtide shows at least 60%, at least 70%, at least 80%, at least 85%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity with a listed Pfs25polypeptide In some embodiments, a Pfs25 polypeptide further shares at least one characteristic sequence element with the listed Pfs25 polypeptides The ammo acid sequence encoding a representative Pfs25 polypeptide is shown in Figure 24 (SEQ ID No 41, Genbank number AAF63684 1) Other representative forms of Pfs25 have an ammo acid sequence that has 1, 2, 3, 4, 5, 10 or more amino acid changes compared to the ammo acid sequence of Genbank number AAF63684 1) Other amino acid sequences that have been identified for Pfs25 include for example, without limitation, AAD55785 1 , AAD39544 1

|0030] Pfs28 polypeptide As used herein, the term "Pfs28 polypeptide" refers to a polypeptide showing at least 50% overall sequence identity with one or more Pfs28 polypeptides listed in Figure 1 In some embodiments, a Pfs28 polypeptide shows at least 60%, at least 70%, at least 80%, at least 85%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity with a listed Pfs28 polypeptide In some embodiments, a Pfs28 polypeptide further shares at least one characteristic sequence element with the listed Pfs28 polypeptides The ammo acid sequence encoding a representative Pfs28 polypeptide is shown m Figure 24 (SEQ ID No 55, Genbank number AAT00624 1) Other representative forms of Pfs25 have an ammo acid sequence that has 1, 2, 3, 4, 5, 10 or more amino acid changes compared to the ammo acid sequence of Genbank number AAT00624 1) [0031] Pfs48/45 polypeptide As used herein, the term "Pfs48/45 polypeptide" refers to a polypeptide showing at least 50% overall sequence identity with one or more Pfs48/45 polypeptides listed in Figure 1 In some embodiments, a Pfs48/45 polypeptide shows at least 60%, at least 70%, at least 80%, at least 85%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity with a listed Pfs48/45 polypeptide In some embodiments, a Pfs48/45 polypeptide further shares at least one characteπstic sequence element with the listed Pfs48/45 polypeptides The ammo acid sequence encoding a representative Pfs48/45 polypeptide is shown in Figure 24 (SEQ ID No 62, Genbank number PF 13_0247) Other representative forms of Pfs48/45 have an ammo acid sequence that has 1 , 2, 3, 4, 5, 10 or more amino acid changes compared to the amino acid sequence of Genbank number PF 13_0247)

[0032] Pfs230 polypeptide As used herein, the term "Pfs230 polypeptide" refers to a polypeptide showing at least 50% overall sequence identity with one or more Pfs230 polypeptides listed in Figure 1 In some embodiments, a Pfs230 polypeptide shows at least 60%, at least 70%, at least 80%, at least 85%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity with a listed Pfs230 polypeptide In some embodiments, a Pfs230 polypeptide further shares at least one characteristic sequence element with the listed Pfs230 polypeptides The ammo acid sequence encoding a representative Pfs230 polypeptide is shown in Figure 24 (SEQ ID No 95, Genbank number AAA29724) Other representative forms of Pfs230 have an ammo acid sequence that has 1, 2, 3, 4, 5, 10 or more amino acid changes compared to the amino acid sequence of Genbank number AAA29724) [0033] Pharmaceutical agent As used herein, the phrase "pharmaceutical agent" refers to any agent that, when administered to a subject, has a therapeutic effect and/or elicits a desired biological and/or pharmacological effect

[0034] Pharmaceutically acceptable carrier or excψient As used herein, the term "pharmaceutically acceptable earner or excipient" means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating mateπal or formulation auxiliary of any type [0035] Plasmodium polypeptide As used herein, the term "Plasmodium polypeptide" or "Plasmodium antigen polypeptide" refers to a polypeptide showing at least 50% overall sequence identity with one or more Pfs25, Pfs28, Pfs48/45, and/or Pfs230 polypeptides listed in Figure 1 In some embodiments, a Plasmodium polypeptide shows at least 60%, at least 70%, at least 80%, at least 85%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity with a listed Pfs25, Pfs28, Pfs48/45, and/or Pfs230 polypeptide In some embodiments, & Plasmodium polypeptide further shares at least one characteristic sequence element with the listed Pfs25, Pfs28, Pfs48/45, and/or Pfs230 polypeptides In some embodiments, a Plasmodium polypeptide is not a Pfs25, Pfs28, Pfs48/45, and/or Pfs230 polypeptide, but instead, is a different polypeptide naturally produced by one or more species of the Plasmodium genus

[0036] Portion As used herein, the phrase a "portion" or "fragment" of a substance, in the broadest sense, is one that shares some degree of sequence and/or structural identity and/or at least one functional characteπstic with the relevant intact substance For example, a "portion" of a protein or polypeptide is one that contains a continuous stretch of ammo acids, or a collection of continuous stretches of ammo acids, that together are characteristic of a protein or polypeptide In some embodiments, each such continuous stretch generally will contain at least 2, at least 5, at least 10, at least 15, at least 20 or more amino acids In general, a portion is one that, in addition to the sequence identity specified above, shares at least one functional characteristic with the relevant intact protein In some embodiments, the portion may be biologically active

[0037] Protein As used herein, the term "protein" refers to a polypeptide (ι e , a stπng of at least two amino acids linked to one another by peptide bonds) Proteins may include moieties other than ammo acids (e g , may be glycoproteins, proteoglycans, etc ) and/or may be otherwise processed or modified Those of ordinary skill in the art will appreciate that a "protein" can be a complete polypeptide chain as produced by a cell (with or without a signal sequence), or can be a characteristic portion thereof Those of ordinary skill will appreciate that a protein can sometimes include more than one polypeptide chain, for example linked by one or more disulfide bonds or associated by other means Polypeptides may contain L- amino acids, D-amino acids, or both and may contain any of a variety of ammo acid modifications or analogs known in the art Useful modifications include, e g , terminal acetylation, amidation, etc In some embodiments, proteins may compπse natural ammo acids, non-natural ammo acids, synthetic ammo acids, and combinations thereof The term "peptide" is generally used to refer to a polypeptide having a length of less than about 100 amino acids

[0038] Similarity As used herein, the term "similarity" refers to the overall relatedness between polymeric molecules, e g between nucleic acid molecules (e g DNA molecules and/or RNA molecules) and/or between polypeptide molecules Calculation of percent similarity of polymeric molecules to one another can be performed in the same manner as a calculation of percent identity, except that calculation of percent similarity takes into account conservative substitutions as is understood in the art

[0039] Subject As used herein, the term "subject" or "patient" refers to any organism to which compositions in accordance with the invention may be administered, e g , for expeπmental, diagnostic, prophylactic, and/or therapeutic purposes Typical subjects include animals (e g , mammals such as mice, rats, rabbits, non-human pπmates, and humans, insects, worms, etc )

[0040] Substantially As used herein, the term "substantially" refers to the qualitative condition of exhibiting total or near-total extent or degree of a characteristic or property of interest One of ordinary skill in the biological arts will understand that biological and chemical phenomena rarely, if ever, go to completion and/or proceed to completeness or achieve or avoid an absolute result The term "substantially" is therefore used herein to capture the potential lack of completeness inherent in many biological and chemical phenomena

[0041] Suffering from An individual who is "suffering from" a disease, disorder, and/or condition has been diagnosed with or displays one or more symptoms of the disease, disorder, and/or condition

[0042] Susceptible to An individual who is "susceptible to" a disease, disorder, and/or condition has not been diagnosed with the disease, disorder, and/or condition In some embodiments, an individual who is susceptible to a disease, disorder, and/or condition may not exhibit symptoms of the disease, disorder, and/or condition In some embodiments, an individual who is susceptible to a disease, disorder, and/or condition will develop the disease, disorder, and/or condition In some embodiments, an individual who is susceptible to a disease, disorder, and/or condition will not develop the disease, disorder, and/or condition In some embodiments, an individual who is susceptible to a disease, disorder, and/or condition is an individual having higher πsk (typically based on genetic predisposition, environmental factors, personal history, or combinations thereof) of developing a particular disease or disorder, or symptoms thereof, than is observed in the general population [0043] Therapeutically effective amount The term "therapeutically effective amount" of a pharmaceutical agent or combination of agents is intended to refer to an amount of agent(s) which confers a therapeutic effect on the treated subject, at a reasonable benefit/risk ratio applicable to any medical treatment In some embodiments, a therapeutically effective amount is an amount that is sufficient, when admimstered to a subject suffering from or susceptible to a disease, disorder, and/or condition, to treat, diagnose, prevent, and/or delay the onset of the symptom(s) of the disease, disorder, and/or condition The therapeutic effect may be objective (ι e , measurable by some test or marker) or subjective (; e , subject gives an indication of or feels an effect) A therapeutically effective amount is commonly admimstered in a dosing regimen that may compπse multiple unit doses For any particular pharmaceutical agent, a therapeutically effective amount (and/or an appropriate unit dose within an effective dosing regimen) may vary, for example, depending on route of administration, on combination with other pharmaceutical agents Also, the specific therapeutically effective amount (and/or unit dose) for any particular subject may depend upon a variety of factors including the disorder being treated and the seventy of the disorder, the activity of the specific pharmaceutical agent employed, the specific composition employed, the age, body weight, general health, sex and diet of the subject, the time of administration, route of administration, and/or rate of excretion or metabolism of the specific pharmaceutical agent employed, the duration of the treatment, and like factors as is well known in the medical arts

[0044] Therapeutic agent As used herein, the phrase "therapeutic agent" refers to any agent that, when administered to a subject, has a therapeutic effect and/or elicits a desired biological and/or pharmacological effect

[0045] Treatment As used herein, the term "treatment" (also "treat" or "treating") refers to any administration of a biologically active agent that partially or completely alleviates, ameliorates, relives, inhibits, delays onset of, prevents, reduces seventy of and/or reduces incidence of one or more symptoms or features of a particular disease, disorder, and/or condition Such treatment may be of a subject who does not exhibit signs of the relevant disease, disorder and/or condition and/or of a subject who exhibits only early signs of the disease, disorder, and/or condition Alternatively or additionally, such treatment may be of a subject who exhibits one or more established signs of the relevant disease, disorder and/or condition

[0046] Unit dose The term "unit dose," as used herein, refers to a discrete administration of a pharmaceutical agent, typically in the context of a dosing regimen

[0047] Vector As used herein, "vector" refers to a nucleic acid molecule which can transport another nucleic acid to which it has been linked hi some embodiments, vectors can achieve extra-chromosomal replication and/or expression of nucleic acids to which they are linked in a host cell such as a eukaryotic and/or prokaryotic cell Vectors capable of directing the expression of operatively linked genes are referred to herein as "expression vectors "

Brief Description of the Drawings

[0048] Figure 1 Exemplary Pfs25, Pfs28, Pfs48/45, andPfs230 sequences from

Plasmodium species Amino acids in bold indicate the location of a signal peptide Amino acids that are underlined indicate the presence of hchenase, 6χHis tags, and KDEL sequences Amino acids in plain font indicate Pfs25, Pfs28, Pfs48/45, and Pfs230 sequences

Amino acids that are bold and underlined indicate transmembrane domains and/or gpi anchors in native proteins

[0049] Figures 2-12 Expression, characterization and purification of peptide fusions to

AlMVCP

[0050] Figure 13 is a graphical representation of the Binary Launch Vector pGR-D4 [0051] Figure 14 is a graphical representation of the modified hchenase gene used to generate the constructs

[0052] Figure 15 shows examples of protein production for selected malaria antigens

[0053] Figure 16 Engineering, expression and solubility profiles of Pfs25 and Pfs28 targets

[0054] Figure 17 is a table summarizing the results of IFA, SIFA and SMFA assays for

Pfs25 constructs

[0055] Figure 18 table summarizing the results of IFA, SIFA and SMFA assays for Pfs28 constructs

[0056] Figure 19 Engineering, expression and solubility profiles of Pfs48 targets

[0057] Figure 20 is a table summarizing the results of IFA, SIFA and SMFA assays for

Pfs48/45 constructs

[0058] Figure 21 Engineering, expression and solubility profiles of Pfs230 targets

[0059] Figure 22 is a table summarizing the results of IFA, SIFA and SMFA assays for

Pfs230 constructs

[0060] Figure 23A depicts the results of an isotype analysis of the IgG response elicited by Pfs230A in the presence ofAlhydrogel Figure 23B depicts the results of an isotype analysis of the IgG response elicited by Pfs230A in the presence of QmI A adjuvant

[0061] Figure 24 provides exemplary Pfs25, Pfs28, Pfs48/45, and Pfs230 fusion protein sequences from Plasmodium species

[0062] Figure 25 provides exemplary Pfs25, Pfs28, Pfs48/45, and Pfs230 fusion protein constructs from Plasmodium species

Detailed Description of Certain Embodiments of the Invention

Plasmodium and Plasmodium Therapies

[0063] Malaria, a common infectious diseases and enormous public health problem, is caused by protozoan parasites of the genus Plasmodium Four Plasmodium species can infect humans Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malanae The most seπous forms of the disease are caused by Plasmodium falciparum and

Plasmodium vivax As used herein, the term "malaria parasite" is used to refer to one, two, three, or four of these Plasmodium species

[0064] Malaπa parasites are transmitted by female Anopheles mosquitoes Malaria parasites multiply within red blood cells, causing symptoms that include symptoms of anemia (e g , light headedness, shortness of breath, tachycardia, etc ), as well as other general symptoms such as fever, chills, nausea, flu-like illness, and in severe cases, coma and death Malaria transmission can be reduced by preventing mosquito bites with mosquito nets and insect repellents, or by mosquito control measures such as spraying insecticides inside houses and draining standing water where mosquitoes lay their eggs

[0065] No vaccine is currently available for malaria Existing preventative therapies must be taken continuously to reduce the nsk of infection These prophylactic treatments are often too expensive for most people living in endemic areas Malaria infections are treated through the use of antimalarial drugs, such as quinine or artemisinin deπvatives, although drug resistance is increasingly common

[0066] Provided herein are mateπals and methods for inducing or enhancing an immune response against antigens expressed at the sexual stage of the Plasmodium life cycle More specifically, polypeptides and methods of making such polypeptides are provided Immunity against the sexual stages of the parasite offers an effective way to reduce or stop malaria transmission A transmission blocking vaccine (TBV) specifically targeting the sexual development of the parasite in the mosquito vector may elicit the production of antibodies which can effectively block transmission of the parasite from invertebrate mosquito vector to vertebrate host Transmission of malaria depends upon the presence of infectious male and female gametocytes in the peripheral blood of infected persons and successful ingestion of these gametocytes by Anopheles mosquitoes Soon after ingestion, exflagellation occurs withm the mosquito midgut, and emergent male gametes fertilize female gametes, resulting in the formation of zygotes The zygotes undergo post-fertilization transformation into motile ookinetes which traverse the midgut epithelium and develop into oocysts resulting in the production of infective sporozoites Finally, the sporozoites are released into the hemocoel, invade the salivary glands and are transmitted to vertebrate hosts during subsequent blood feeding

[0067] The targets of transmission blocking antibodies can include pre- fertilization antigens (Pfs230 and Pfs48/45) expressed in the circulating gametocytes and post-fertilization antigens (Pfs25 and Pfs28) expressed dunng mosquito stage ookinete development Unlike Pfs25 and Pfs28, pre-fertihzation antigens are also targets of the natural immune response and thus immunity induced by a vaccine based on any of these antigens will have the added benefit of natural boostmg of immunity Because transmission blocking antibodies target antigens expressed by the parasite m the mosquito vector, they are expected to be effective m reducing transmission of parasites to the next host Transmission blocking antibodies are useful for reducing transmission of Plasmodium m a population, e g , a group of one, two, three, four, five or more subjects The subjects can reside in the same limited geographical area, for example, a household or a community

Plasmodium Antigens

[0068] In general, Plasmodium antigens can include any immunogenic polypeptide that elicits an immune response against Plasmodium parasites According to the present invention, immunogenic polypeptides of interest can be provided as independent polypeptides, as fusion proteins, as modified polypeptides (e g , containing additional pendant groups such as carbohydrate groups, methyl groups, alkyl groups [such as methyl groups, ethyl groups, etc ], phosphate groups, lipid groups, amide groups, formyl groups, biotinyl groups, heme groups, hydroxyl groups, iodo groups, isoprenyl groups, myπstoyl groups, flavin groups, palmitoyl groups, sulfate group, polyethylene glycol, etc ) hi some embodiments, Plasmodium antigen polypeptides for use m accordance with the present invention have an amino acid sequence that is or includes a sequence identical to that of a Plasmodium polypeptide found m nature, in some embodiments Plasmodium antigen polypeptides have an amino acid sequence that is or includes a sequence identical to a characteristic portion (e g , an immunogenic portion) of a Plasmodium polypeptide found in nature

[0069] In certain embodiments, full length proteins are utilized as Plasmodium antigen polypeptides m vaccine compositions in accordance with the invention hi some embodiments one or more immunogenic portions of Plasmodium polypeptides are used In certain embodiments, two or three or more immunogenic portions are utilized, as one or more separate polypeptides or linked together in one or more fusion polypeptides [0070] Plasmodium antigen polypeptides for use in accordance with the present invention may include full-length Plasmodium polypeptides, fusions thereof, and/or immunogenic portions thereof Where portions of Plasmodium proteins are utilized, whether alone or in fusion proteins, such portions retain immunological activity (e g , cross-reactivity with anti- Plasmodium antibodies) The present invention encompasses the recognition that Pfs25 polypeptides, Pfs28 polypeptides, Pfs48/45 polypeptides, and/or Pfs230 polypeptides are antigens of interest in generating vaccines

[0071] Thus, the invention provides plant cells and plants expressing a heterologous protein (e g , a Plasmodium antigen polypeptide, such as a Plasmodium protein or immunogenic portion thereof, or a fusion protein comprising a Plasmodium protein or immunogenic portion thereof) A heterologous protein in accordance with the invention can comprise any Plasmodium antigen polypeptide of interest, including, but not limited to Pfs25 polypeptides, Pfs28 polypeptides, Pfs48/45 polypeptides, and Pfs230 polypeptides, portions thereof, immunogenic portions thereof, fusions thereof, and/or combinations thereof [0072] Ammo acid sequences of a variety of different Plasmodium Pfs25 polypeptides, Pfs28 polypeptides, Pfs48/45 polypeptides, and/or Pfs230 polypeptides (e g , from different species and/or strains) are known in the art and are available in public databases such as GenBank Exemplary full length protein sequences for Pfs25 polypeptides, Pfs28 polypeptides, Pfs48/45 polypeptides, and Pfs230 polypeptides of multiple Plasmodium species and/or strains are provided m Figure 1

[0073] In certain embodiments, full length Pfs25 is utilized in vaccine compositions in accordance with the invention In some embodiments one or more domains of Pfs25 can be used In certain embodiments, two or three or more domains can be utilized, as one or more separate polypeptides or linked together in one or more fusion polypeptides Sequences of exemplary Pfs25 polypeptides are presented in Figure 1

[0074] In certain embodiments, full length Pfs28 antigen is utilized in vaccine antigens in accordance with the invention In some embodiments, a domain of Pfs28 can be used In certain embodiments two or three or more domains can be used as antigens in accordance with the invention Certain exemplary embodiments provide a Plasmodium antigen polypeptide comprising full length Pfs28, lacking a transmembrane anchor peptide sequence Sequences of exemplary Pfs28 polypeptides are presented m Figure 1 [0075] In certain embodiments, full length Pfs48/45 antigen is utilized m vaccine antigens in accordance with the invention In some embodiments, a domain of Pfs48/45 can be used In certain embodiments two or three or more domains can be used as antigens in accordance with the invention Certain exemplary embodiments provide a Plasmodium antigen polypeptide comprising full length Pfs48/45, lacking a transmembrane anchor peptide sequence Sequences of exemplary Pfs48/45 polypeptides are presented in Figure 1 [0076] In certain embodiments, full length Pfs230 antigen is utilized in vaccine antigens in accordance with the invention In some embodiments, a domain of Pfs230 is used In certain embodiments two or three or more domains are provided in antigens in accordance with the invention Certain exemplary embodiments provide a Plasmodium antigen polypeptide compπsing full length Pfs230 Sequences of exemplary Pfs230 polypeptides are presented m Figure 1 [0077] Also provided are fusion proteins Fusions can include a modified lichenase B sequence of SEQ ID NO 40 Examples of fusion proteins are shown in Figure 24, amino acid sequences corresponding to Plasmodium polypeptides or portions thereof are underlined A fusion protein can be a polypeptide having an amino acid sequence of any one of SEQ ID NOs 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, and 254 In some embodiments a fusion protein can be a polypeptide having at least 90%, at least 95%, at least 98%, at least 99% sequence identity to an ammo acid sequence of any one of SEQ ID NOs 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, and 254 [0078] In some embodiments, a fusion protein construct can include additional sequences, for example, a leader sequences and/or a His/KDEL tag Examples of fusion protein constructs comprising leader sequences (italics) and His/KDEL tags are shown in Table 24 and can include polypeptides having the ammo acid sequence of SEQ ID NO's 44, 46, 48, 50, 52, 54, 57, 59, 61, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147 and 149

[0079] In addition, the Exemplification presents several additional Plasmodium polypeptide sequences that can be used in accordance with the present invention [0080] While sequences of exemplary Plasmodium antigen polypeptides are provided herein, it will be appreciated that any sequence having immunogenic characteristics of Pfs25 polypeptides, Pfs28 polypeptides, Pfs48/45 polypeptides, and/or Pfs230 polypeptides may be employed In some embodiments, a Plasmodium antigen polypeptide for use in accordance with the present invention has an amino acid sequence which is about 60% identical, about 70% identical, about 80% identical, about 85% identical, about 90% identical, about 91% identical, about 92% identical, about 93% identical, about 94% identical, about 95% identical, about 96% identical, about 97% identical, about 98% identical, about 99% identical, or 100% identical to a sequence selected from any of the sequences set forth m Figure 1 In some embodiments, such a Plasmodium antigen polypeptide retains immunogenic activity

[0081] In some embodiments, a Plasmodium antigen polypeptide for use in accordance with the present invention has an amino acid sequence which compπses about 50 to about 700 contiguous ammo acids of a sequence selected from any of the sequences set forth in Figure 1 In some embodiments, a Plasmodium antigen polypeptide has an ammo acid sequence which is about 60% identical, about 70% identical, about 80% identical, about 85% identical, about 90% identical, about 91% identical, about 92% identical, about 93% identical, about 94% identical, about 95% identical, about 96% identical, about 97% identical, about 98% identical, about 99% identical, or 100% identical to a contiguous stretch of about 100 amino acids of a sequence selected from any of the sequences set forth m Figure 1

[0082] In some embodiments, a Plasmodium antigen polypeptide for use in accordance with the present invention has an ammo acid sequence which composes about 150, about 200, about 250, about 300, about 350, about 400, about 450, about 500, about 550, or more contiguous ammo acids of a sequence selected from any of the sequences set forth in Figure 1 In some embodiments, a Plasmodium antigen polypeptide has an ammo acid sequence which is about 60% identical, about 70% identical, about 80% identical, about 85% identical, about 90% identical, about 91% identical, about 92% identical, about 93% identical, about 94% identical, about 95% identical, about 96% identical, about 97% identical, about 98% identical, about 99% identical, or 100% identical to a contiguous stretch of about 150, 200, 250, 300, 350, or more amino acids of a sequence selected from any of the sequences set forth in Figure 1

[0083] For example, sequences having sufficient identity to Plasmodium antigen polypeptide(s) which retain immunogenic characteπstics are capable of binding with antibodies which react with one or more antigens provided herein Immunogenic characteπstics often include three dimensional presentation of relevant amino acids or side groups One skilled in the art can readily identify sequences with modest differences in sequence (e g , with difference in boundaries and/or some sequence alternatives, that, nonetheless preserve immunogemc characteπstics)

[0084] In some embodiments, particular portions and/or domains of any of the exemplary sequences set forth in Figure 1 may be omitted from a Plasmodium polypeptide For example, Pfs25, Pfs28, and Pfs48/45 polypeptides typically contain a transmembrane anchor sequence Pfs25, Pfs28, and Pfs48/45 polypeptides in which the transmembrane anchor sequence has been omitted are contemplated by the invention

[0085] As exemplary antigens, we have utilized particular sequences from Plasmodium parasites of particular species as descπbed in detail herein Various species of Plasmodium parasites exist and continue to be identified as new subtypes emerge It will be understood by one skilled in the art that the methods and compositions provided herein may be adapted to utilize sequences of additional speceis Such variation is contemplated and encompassed within the methods and compositions provided herein

Plasmodium Polypeptide Fusions with Thermostable Proteins

[0086] In certain aspects, provided are Plasmodium antigen polypeptide(s) comprising fusion polypeptides which comprise a Plasmodium protein (or a portion or variant thereof) operably linked to a thermostable protein Inventive fusion polypeptides can be produced in any available expression system known in the art hi certain embodiments, inventive fusion proteins are produced in a plant or portion thereof (e g , plant, plant cell, root, sprout, etc ) [0087] Enzymes or other proteins which are not found naturally in humans or animal cells are particularly appropnate for use m fusion polypeptides of the present invention Thermostable proteins that, when fused, confer thermostability to a fusion product are useful Thermostability allows produced protein to maintain conformation, and maintain produced protein at room temperature This feature facilitates easy, time efficient and cost effective recovery of a fusion polypeptide A representative family of thermostable enzymes useful in accordance with the invention is the glucanohydrolase family These enzymes specifically cleave 1,4-β glucosidic bonds that are adjacent to 1,3-β linkages in mixed linked polysacchaπdes (Hahn et al , 1994 Proc Natl Acad Sci , USA, 91 10417, incorporated herein by reference) Such enzymes are found in cereals, such as oat and barley, and are also found in a number of fungal and bacteπal species, including C thermocellum (Goldenkova et al , 2002, MoI Biol 36 698, incorporated herein by reference) Thus, desirable thermostable proteins for use in fusion polypeptides of the present invention include glycosidase enzymes Exemplary thermostable glycosidase proteins include those represented by GenBank accession numbers selected from those set forth in Table 1, the contents of each of which are incorporated herein by reference by entire incorporation of the GenBank accession information for each referenced number Exemplary thermostable enzymes of use m fusion proteins in accordance with the invention include Clostridium thermocellum P29716, Brevibacillus brevis P37073, and Rhodthermus mannus P45798, each of which are incorporated herein by reference to their GenBank accession numbers Representative fusion proteins utilize modified thermostable enzyme isolated from Clostridium thermocellum, however, any thermostable protein may be similarly utilized m accordance with the present invention Exemplary thermostable glycosidase proteins are listed m Table 1 Table 1: Thermostable Glycosidase Proteins

P45702 Xylanase 5'MPTNLFFNAHHSPVGAFASFTLGFPGKSGGLDLELARPPR P45703 Geobacillus QNVLIGVESLHESGLYHVLPFLETAEEDESKRYDIENPDPNP P40943 stearotherm QKPNILIPFAKEEIQREFHVATDTWKAGDLTFTIYSPVKAVP -ophilus NPETADEEELKLALVPAVIVEMTIDNTNGTRARRAFFGFEGT

DPYTSMRRIDDTCPQLRGVGQGRILSΓVSKDEGVRSALHFSM

EDILTAQLEENWTFGLGKVGALIVDVPAGEKKTYQFAVCFY

RGGYVTAGMDASYFYTRFFQNIEEVGLYALEQAEVLKEQSF

RSNKLIEKEWLSDDQTFMMAHAIRSYYGNTQLLEHEGKPIW

WNEGEYRMMNTFDLTVDQLFFELKLNPWTVKNVLDLYVE

RYSYEDRVRFPGEETEYPSGISFTHDMGVANTFSRPHYSSYE

LYGISGCFSHMTHEQLVNWVLCAAVYIEQTKDWAWRDKR

LAILEQCLESMVRRDHPDPEQRNGVMGLDSTRTMGGAEITT

YDSLDVSLGQARNNLYLAGKCWAAYVALEKLFRDVGKEE

LAALAGEQAEKCAATIVSHVTDDGYIPAIMGEGNDSKIIPAIE

GLVFPYFTNCHEALDENGRFGAYIQALRNHLQYVLREGICL

FPDGGWKISSTSNNSWLSKIYLCQFIARHILGWEWDEQGKR

ADAAHVAWLTHPTLSIWSWSDQIIAGEITGSKYYPRGVTSIL

WLEEGE 3' (SEQ ID NO: 29)

5 'MCSSIPSLREVFANDFRIGAAVNPVTLEAQQSLLIRHVNSL

TAENHMKFEHLQPEEGRFTFDIAIKSSTSPFSSHGVRGHTLV

WHNQTPSWVFQDSQGHFVGRDVLLERMKSHISTVVQRYKG

KVYCWDVINEAVADEGSEWLRSSTWRQIIGDDFIQQAFLYA

HEADPEALLFYNDYNECFPEKREKIYTLVKSLRDKGIPIHGIG

MQAHWSLNRPTLDEIRAAIERYASLGVILHITELDISMFEFDD

HRKDLAAPTNEMVERQAERYEQIFSLFKEYRDVIQNVTFWG

IADDHTWLDHFPVQGRKNWPLLFDEQHNPKPAFWRWNI

3' (SEQ ID NO: 30) 5'MRNWRKPLTIGLALTLLLPMGMTATSAKNADSYAKKPH

ISALNAPQLDQRYKNEFTIGAAVEPYQLQNEKDVQMLKRHF

NSIVAENVMKPISIQPEEGKFNFEQADRIVKFAKANGMDIRF

HTLVWHSQVPQWFFLDKEGKPMVNETDPVKREQNKQLLL

KRLETHIKTIVERYKDDIKYWD WNEWGDDGKLRNSPWY

QIAGIDYIKVAFQAARKYGGDNIKLYMNDYNTEVEPKRTAL

YNLVKQLKEEGVPIDGIGHQSHIQIGWPSEAEIEKTINMFAAL

GLDNQITELDVSMYGWPPRAYPTYDAIPKQKPLDQAARYD

RLFKLYEKLSDKISNVTFWGIADNHTWLDSRADVYΎDANG

NVWDPNAPYAK VEKGKGKD APFVFGPDYKVKP A YWAIID

HK 3' (SEQ ID NO: 31)

[0088] While sequences of exemplary thermostable polypeptides are provided herein, it will be appreciated that any sequence exhibiting thermostability may be employed In some embodiments, a thermostable polypeptide for use in accordance with the present invention has an amino acid sequence which is about 60% identical, about 70% identical, about 80% identical, about 85% identical, about 90% identical, about 91% identical, about 92% identical, about 93% identical, about 94% identical, about 95% identical, about 96% identical, about 97% identical, about 98% identical, about 99% identical, or 100% identical to a sequence selected from the group consisting of SEQ ID NOs 1-40 hi some embodiments, such a thermostable polypeptide retains thermostability

[0089] In some embodiments, a thermostable polypeptide has an amino acid sequence which comprises about 100 contiguous ammo acids of a sequence selected from the group consisting of SEQ ID NOs 1 -40 In some embodiments, a thermostable polypeptide has an amino acid sequence which is about 60% identical, about 70% identical, about 80% identical, about 85% identical, about 90% identical, about 91% identical, about 92% identical, about 93% identical, about 94% identical, about 95% identical, about 96% identical, about 97% identical, about 98% identical, about 99% identical, or 100% identical to a contiguous stretch of about 100 ammo acids of a sequence selected from the group consisting of SEQ ID NOs 1-40

[0090] In some embodiments, a thermostable polypeptide has an amino acid sequence which compπses about 150, about 200, about 250, about 300, about 350, about 400, about 450, about 500, about 550, about 600, about 650, about 700, or more contiguous amino acids of a sequence selected from the group consisting of SEQ ID NOs 1 -40 In some embodiments, a thermostable polypeptide has an amino acid sequence which is about 60% identical, about 70% identical, about 80% identical, about 85% identical, about 90% identical, about 91% identical, about 92% identical, about 93% identical, about 94% identical, about 95% identical, about 96% identical, about 97% identical, about 98% identical, about 99% identical, or 100% identical to a contiguous stretch of about 150, 200, 250, 300, 350, or more amino acids of a sequence selected from the group consisting of SEQ ID NO 1-40

[0091] When designing fusion proteins and polypeptides in accordance with the invention, it is desirable, of course, to preserve immunogenicity of the antigen Still further, it is desirable m certain aspects to provide constructs which provide thermostability of a fusion protein This feature facilitates easy, time efficient and cost effective recovery of a target antigen In certain aspects, antigen fusion partners may be selected which provide additional advantages, including enhancement of immunogenicity, potential to incorporate multiple vaccine determinants, yet lack pπor immunogenic exposure to vaccination subjects Further beneficial qualities of fusion peptides of interest include proteins which provide ease of manipulation for incorporation of one or more antigens, as well as proteins which have potential to confer ease of production, purification, and/or formulation for vaccine preparations One of ordinary skill in the art will appreciate that three dimensional presentation can affect each of these beneficial characteristics Preservation of immunity or preferential qualities therefore may affect, for example, choice of fusion partner and/or choice of fusion location (e g , N-termmus, C-termimis, internal, combinations thereof) Alternatively or additionally, preferences may affects length of segment selected for fusion, whether it be length of antigen, or length of fusion partner selected

[0092] The present inventors have demonstrated successful fusion of a variety of antigens with a thermostable protein For example, the present inventors have used the thermostable earner molecule Li cB, also referred to as hchenase, for production of fusion proteins Li cB is 1,3-1,4-β glucanase (LicB) from Clostridium thermocellum (GenBank accession X63355 [gi 40697])

MKNRVISLLMASLLLVLSVIVAPFYBCAEAATWNTPFVAVFSNFDSSQWEKADWAN

GSVFNCVWKPSQVTFSNGKMILTLDREYGGSYPYKSGEYRTKSFFGYGYYEVRMKA

AKNVGIVSSFFTYTGPSDNNPWDEIDIEFLGKDTTKVQFNWYKNGVGGNEYLHNLG

FDASQDFHTYGFEWRPDYIDFYVDGKKVYRGTRNIPVTPGKIMMNLWPGIGVDEWL

GRYDGRTPLQAEYEYVKYYPNGVPQDNPTPTPTIAPSTPTNPNLPLKGDVNGDGHVN

SSDYSLFKRYLLRVIDRFPVGDQSVAD VNRDGRUJSTDLTMLKRYLIRAIPSL (SEQ ID NO 39) LicB belongs to a family of globular proteins Based on the three dimensional structure of LicB, its N- and C-termmi are situated close to each other on the surface, in close proximity to the active domain LicB also has a loop structure exposed on the surface that is located far from the active domain We have generated constructs such that the loop structure and N- and C-termini of protein can be used as insertion sites for Plasmodium antigen polypeptides Plasmodium antigen polypeptides can be expressed as N- or C-termmal fusions or as inserts into the surface loop Importantly, LicB maintains its enzymatic activity at low pH and at high temperature (up to 75 0C) Thus, use of LicB as a earner molecule contπbutes advantages, including likely enhancement of target specific lmmunogemcity, potential to incorporate multiple vaccme determinants, and straightforward formulation of vaccines that may be delivered nasally, orally or parenterally Furthermore, production of LicB fusions in plants should reduce the nsk of contamination with animal or human pathogens See examples provided herein

[0093] Fusion proteins in accordance with the invention comprising Plasmodium antigen polypeptides may be produced in any of a vaπety of expression systems, including both in vitro and in vivo systems One skilled in the art will readily appreciate that optimization of nucleic acid sequences for a particular expression system is often desirable For example, an exemplary optimized sequence for expression of Plasmodium antigen-LicB fusions in plants is provided, and is shown m SEQ ID NO 40

5 'MGFVLFSOLPSFLL VSTLLLFL VISHSCRAQNGGSYP YKSGEYRTKSFFGYGYYE VRMKAAKNVGIVSSFFTYTGPSDNNPWDEIDIEFLGKDTTKVQFNWYKNGVGGNEY LHNLGFDASQDFHTYGFEWRPDYIDFYVDGKKVYRGTRNIPVTPGKIMMNLWPGIG VDEWLGRYDGRTPLQAEYEYVKYYPNGrskl WNTPFVAVFSNFDSSQWEKADWAN GSλΦNCVWKTSOVTFSNGKMILTLDREYvdffifflHHHKDEZ; 3 ' (SEQ ID NO 40) Note that in SEQ ID NO 40, the bold/underlined portion corresponds to the signal sequence, the italicized/underlined portion corresponds to the 6X His tag and endoplasmic reticulum retention sequence, and the two portions in lowercase letters correspond to restriction sites

[0094] Thus, any relevant nucleic acid encoding Plasmodium antigen polypeptide(s), fusion protem(s), and immunogenic portions thereof m accordance with the invention is intended to be encompassed within nucleic acid constructs in accordance with the invention [0095] For production m plant systems, transgenic plants expressing Plasmodium antigen(s) (e g , Plasmodium polypeptide(s), fusion(s) thereof, and/or immunogenic portion(s) thereof) may be utilized Alternatively or additionally, transgenic plants may be produced using methods well known in the art to generate stable production crops Additionally, plants utilizing transient expression systems may be utilized for production of Plasmodium antigen polypeptide(s) When utilizing plant expression systems, whether transgenic or transient expression m plants is utilized, any of nuclear expression, chloroplast expression, mitochondπal expression, or viral expression may be taken advantage of according to the applicability of the system to antigen desired Furthermore, additional expression systems for production of antigens and fusion proteins in accordance with the present invention may be utilized For example, mammalian expression systems (e g , mammalian cell lines [e g , CHO, etc ]), bacteπal expression systems (e g , E coli), insect expression systems (e g , baculovirus), yeast expression systems, and in vitro expression systems (e g , reticulate lysates) may be used for expression of antigens and fusion proteins m accordance with the invention

Production of Plasmodium Antigens

[0096] In accordance with the present invention, Plasmodium antigens (including Plasmodium polypeptide(s), fusions thereof, and/or immunogenic portions thereof) may be produced in any desirable system, production is not limited to plant systems Vector constructs and expression systems are well known in the art and may be adapted to incorporate use of Plasmodium antigen polypeptides provided herein For example, Plasmodium antigen polypeptides can be produced in known expression systems, including mammalian cell systems, transgenic animals, microbial expression systems, insect cell systems, and plant systems, including transgenic and transient plant systems Particularly where Plasmodium antigen polypeptides are produced as fusion proteins, it may be desirable to produce such fusion proteins m non-plant systems

[0097] In some embodiments, Plasmodium antigen polypeptides are desirably produced in plant systems Plants are relatively easy to manipulate genetically, and have several advantages over alternative sources such as human fluids, animal cell lines, recombinant microorganisms and transgenic animals Plants have sophisticated post-translational modification machinery for proteins that is similar to that of mammals (although it should be noted that there are some differences m glycosylation patterns between plants and mammals) This enables production of bioactive reagents in plant tissues Also, plants can economically produce very large amounts of biomass without requinng sophisticated facilities Moreover, plants are not subject to contamination with animal pathogens Like liposomes and microcapsules, plant cells are expected to provide protection for passage of antigen to the gastrointestinal tract [0098] Plants may be utilized for production of heterologous proteins via use of various production systems One such system includes use of transgemc/genetically-modifϊed plants where a gene encoding target product is permanently incorporated into the genome of the plant Transgenic systems may generate crop production systems A variety of foreign proteins, including many of mammalian origin and many vaccine candidate antigens, have been expressed in transgenic plants and shown to have functional activity (Tacket et al , 2000, J Infect Dis , 182 302, and Thanavala et al , 2005, Proc Natl Acad Sa , USA, 102 3378, both of which are incorporated herein by reference) Additionally, administration of unprocessed transgenic plants expressing hepatitis B major surface antigen to non- lmmumzed human volunteers resulted in production of immune response (Kapusta et al , 1999, FASEB J , 13 1796, incorporated herein by reference)

[0099] One system for expressing polypeptides in plants utilizes plant viral vectors engineered to express foreign sequences (e g , transient expression) This approach allows for use of healthy non-transgemc plants as rapid production systems Thus, genetically engineered plants and plants infected with recombinant plant viruses can serve as "green factories" to rapidly generate and produce specific proteins of interest Plant viruses have certain advantages that make them attractive as expression vectors for foreign protein production Several members of plant RNA viruses have been well characterized, and infectious cDNA clones are available to facilitate genetic manipulation Once infectious viral genetic material enters a susceptible host cell, it replicates to high levels and spreads rapidly throughout the entire plant There are several approaches to producing target polypeptides using plant viral expression vectors, including incorporation of target polypeptides into viral genomes One approach involves engineering coat proteins of viruses that infect bacteπa, animals or plants to function as earner molecules for antigenic peptides Such earner proteins have the potential to assemble and form recombinant virus-like particles displaying desired antigenic epitopes on their surface This approach allows for time-efficient production of vaccine candidates, since the particulate nature of a vaccine candidate facilitates easy and cost-effective recovery from plant tissue Additional advantages include enhanced target-specific lmmunogemcity, the potential to incorporate multiple vaccine determinants, and ease of formulation into vaccines that can be delivered nasally, orally or parenterally As an example, spinach leaves containing recombinant plant viral particles carrying epitopes of virus fused to coat protein have generated immune response upon administration (Modelska et al , 1998, Proc Natl Acad Sa , USA, 95 2481, and Yusibov et al , 2002, Vaccine, 19/20 3155, both of which are incorporated herein by reference) Plant Expression Systems

[00100] The teachings of the present invention are applicable to a wide variety of different plants In general, any plants that are amendable to expression of introduced constructs as descπbed herein are useful in accordance with the present invention In many embodiments, it will be desirable to use young plants in order to improve the speed of protein/polypeptide production As indicated here, in many embodiments, sprouted seedlings are utilized As is known in the art, most sprouts are quick growing, edible plants produced from storage seeds However, those of ordinary skill in the art will appreciate that the term "sprouted seedling" has been used herein in a more general context, to refer to young plants whether or not of a variety typically classified as "sprouts " Any plant that is grown long enough to have sufficient green biomass to allow introduction and/or expression of an expression construct as provided for herein (recognizing that the relevant time may vary depending on the mode of delivery and/or expression of the expression construct) can be considered a "sprouted seedling" herein

[00101] In many embodiments, edible plants are utilized (; e , plants that are edible by - not toxic to - the subject to whom the protein or polypeptide is to be administered) [00102] Any plant susceptible to incorporation and/or maintenance of heterologous nucleic acid and capable of producing heterologous protein may be utilized in accordance with the present invention In general, it will often be desirable to utilize plants that are amenable to growth under defined conditions, for example in a greenhouse and/or in aqueous systems It may be desirable to select plants that are not typically consumed by human bemgs or domesticated ammals and/or are not typically part of the human food chain, so that they may be grown outside without concern that expressed polynucleotide may be undesirably ingested In some embodiments, however, it will be desirable to employ edible plants In particular embodiments, it will be desirable to utilize plants that accumulate expressed polypeptides in edible portions of a plant

[00103] Often, certain desirable plant characteristics will be determined by the particular polynucleotide to be expressed To give but a few examples, when a polynucleotide encodes a protein to be produced in high yield (as will often be the case, for example, when antigen proteins are to be expressed), it will often be desirable to select plants with relatively high biomass (e g , tobacco, which has additional advantages that it is highly susceptible to viral infection, has a short growth peπod, and is not in the human food chain) Where a polynucleotide encodes antigen protein whose full activity requires (or is inhibited by) a particular post-translational modification, the ability (or inability) of certain plant species to accomplish relevant modification (e g , a particular glycosylation) may direct selection For example, plants are capable of accomplishing certain post-translational modifications (e g , glycosylation), however, plants will not generate sialyation patterns which are found in mammalian post-translational modification Thus, plant production of antigen may result in production of a different entity than the identical protein sequence produced in alternative systems

[00104] In certain embodiments, crop plants, or crop-related plants are utilized In certain specific embodiments, edible plants are utilized

[00105] Plants for use in accordance with the present invention include Angiosperms, Bryophytes (e g , Hepaticae, Musci, etc ), Pteπdophytes (e g , ferns, horsetails, lycopods), Gymnosperms (e g , conifers, cycase, Ginko, Gnetales), and Algae (e g , Chlorophyceae, Phaeophyceae, Rhodophyceae, Myxophyceae, Xanthophyceae, and Euglenophyceae) Exemplary plants are members of the family Leguminosae (Fabaceae, e g , pea, alfalfa, soybean), Gramineae (Poaceae, e g , corn, wheat, nee), Solanaceae, particularly of the genus Lycopersicon (e g , tomato), Solarium (e g , potato, eggplant), Capsium (e g , pepper), or Nicotiana (e g , tobacco), Umbelhferae, particularly of the genus Daucus (e g , carrot), Apium (e g , celery), or Rutaceae (e g , oranges), Compositae, particularly of the genus Lactuca (e g , lettuce), Brassicaceae (Cruciferae), particularly of the genus Brassica or Sinapis In certain aspects, plants in accordance with the invention maybe species of Brassica or Arabidopsis Some exemplary Brassicaceae family members include Brassica campestns, B cannata, B juncea, B napus, B nigra, B oleraceae, B tournifortu, Sinapis alba, and Raphanus sativus Some suitable plants that are amendable to transformation and are edible as sprouted seedlings include alfalfa, mung bean, radish, wheat, mustard, spinach, carrot, beet, onion, garlic, celery, rhubarb, a leafy plant such as cabbage or lettuce, watercress or cress, herbs such as parsley, mint, or clovers, cauliflower, broccoli, soybean, lentils, edible flowers such as sunflower etc

[00106] A wide variety of plant species may be suitable in the practice of the present invention A variety of different bean and other species including, for example, adzuki bean, alfalfa, barley, broccoli, bill jump pea, buckwheat, cabbage, cauliflower, clover, collard greens, fenugreek, flax, garbanzo bean, green pea, Japanese spinach, kale, kamut, kohlrabi, marrowfat pea, mung bean, mustard greens, pinto bean, radish, red clover, soy bean, speckled pea, sunflower, tobacco, turnip, yellow trapper pea, and others may be amenable to the production of heterologous proteins from viral vectors launched from an agrobactenal construct (e g , introduced by agromfiltration) In some embodiments, bill jump pea, green pea, marrowfat pea, speckled pea, and/or yellow trapper pea are particularly useful in accordance with this aspect of the invention In certain embodiments, therefore, the present invention provides production of proteins or polypeptides (e g , antigens) in one or more of these plants using an agrobacteπal vector that launches a viral construct (ι e , an RNA with characteristics of a plant virus) encoding the relevant protein or polypeptide of interest In some embodiments, the RNA has characteristics of (and/or includes sequences of) AlMV In some embodiments, the RNA has characteristics of (and/or includes sequences of) TMV [00107] It will be appreciated that, in one aspect, the present invention provides young plants (e g , sprouted seedlings) that express a target protein or polypeptide of interest In some embodiments, the young plants were grown from transgenic seeds, the present invention also provides seeds which can be generated and/or utilized for the methods described herein Seeds transgenic for any gene of interest can be sprouted and optionally induced for production of a protein or polypeptide of interest For example, seeds capable of expressing any gene of interest can be sprouted and induced through i) virus infection, 11) agromfiltration, or in) bacteπa that contain virus genome Seeds capable of expressing a transgene for any Pfs polypeptide can be sprouted and induced for production of full-length molecule through i) virus infection, n) agromfiltration, or m) inoculation with bacteπa that contain virus genome Seeds from healthy non-transgemc plants can be sprouted and used for producing target sequences through i) virus infection, n) agromfiltration, or in) inoculation with bacteπa that contain a virus genome

[00108] In some embodiments, the young plants were grown from seeds that were not transgenic Typically, such young plants will harbor viral sequences that direct expression of the protein or polypeptide of interest In some embodiments, the plants may also harbor agrobacteπal sequences, optionally including sequences that "launched" the viral sequences

Introducing Vectors Into Plants

[00109] In general, vectors may be delivered to plants according to known techniques For example, vectors themselves may be directly applied to plants (e g , via abrasive inoculations, mechanized spray inoculations, vacuum infiltration, particle bombardment, or electroporation) Alternatively or additionally, viπons may be prepared (e g , from already infected plants), and may be applied to other plants according to known techniques [00110] A wide variety of viruses are known that infect various plant species, and can be employed for polynucleotide expression according to the present invention (see, for example, in The Classification and Nomenclature of Viruses, "Sixth Report of the International Committee on Taxonomy of Viruses" (Ed Murphy et al ), Springer Verlag New York, 1995, Grierson et al , Plant Molecular Biology, Blackie, London, pp 126-146, 1984, Gluzman er al , Communications in Molecular Biology Viral Vectors, Cold Spring Harbor Laboratory, Cold Spπng Harbor, NY, pp 172-189, 1988, and Mathew, Plant Viruses Online, all of which are incorporated herein by reference) In certain embodiments, rather than delivering a single viral vector to a plant cell, multiple different vectors are delivered which, together, allow for replication (and, optionally cell-to-cell and/or long distance movement) of viral vector(s) Some or all of the proteins may be encoded by the genome of transgenic plants In certain aspects, descπbed in further detail herein, these systems include one or more viral vector components

[00111] Vector systems that include components of two heterologous plant viruses in order to achieve a system that readily infects a wide range of plant types and yet poses little or no πsk of infectious spread An exemplary system has been descπbed previously (see, e g , PCT Publication WO 00/25574 and U S Patent Publication 2005/0026291 , both of which are incorporated herein by reference) As noted herein, rn particular aspects of the present invention, viral vectors are applied to plants (e g , plant, portion of plant, sprout, etc ), for example, through infiltration or mechanical inoculation, spray, etc Where infection is to be accomplished by direct application of a viral genome to a plant, any available technique may be used to prepare the genome For example, many viruses that are usefully employed in accordance with the present invention have ssRNA genomes ssRNA may be prepared by transcnption of a DNA copy of the genome, or by replication of an RNA copy, either in vivo or in vitro Given the readily availability of easy-to-use in vitro transcnption systems (e g , SP6, T7, reticulocyte lysate, etc ), and also the convenience of maintaining a DNA copy of an RNA vector, it is expected that inventive ssRNA vectors will often be prepared by in vitro transcnption, particularly with T7 or SP6 polymerase

[00112] Lti certain embodiments, rather than introducing a single viral vector type into a plant, multiple different viral vectors are introduced Such vectors may, for example, trans- complement each other with respect to functions such as replication, cell-to-cell movement, and/or long distance movement Vectors may contain different polynucleotides encoding Plasmodium antigen polypeptide in accordance with the invention Selection for plant(s) or portions thereof that express multiple polypeptides encoding one or more Plasmodium antigen polypeptide(s) may be performed as descnbed above for single polynucleotides or polypeptides Plant Tissue Expression Systems

[00113] As discussed above, in accordance with the present invention, Plasmodium antigen polypeptides may be produced in any desirable system Vector constructs and expression systems are well known in the art and may be adapted to incorporate use of Plasmodium antigen polypeptides provided herein For example, transgenic plant production is known and generation of constructs and plant production maybe adapted according to known techniques in the art In some embodiments, transient expression systems m plants are desirable Two of these systems include production of clonal roots and clonal plant systems, and deπvatives thereof, as well as production of sprouted seedlings systems

Clonal Plants

[00114] Clonal roots maintain RNA viral expression vectors and stably produce target protein uniformly in an entire root over extended periods of time and multiple subcultures In contrast to plants, where a target gene is eliminated via recombination duπng cell-to-cell or long distance movement, in root cultures the integrity of a viral vector is maintained and levels of target protein produced over time are similar to those observed duπng initial screening Clonal roots allow for ease of production of heterologous protein material for oral formulation of antigen and vaccine compositions Methods and reagents for generating a vaπety of clonal entities deπved from plants which are useful for production of antigen (e g , antigen proteins in accordance with the invention) have been described previously and are known in the art (see, for example, PCT Publication WO 05/81905, incorporated herein by reference) Clonal entities include clonal root lines, clonal root cell lines, clonal plant cell lines, and clonal plants capable of production of antigen (e g , antigen proteins in accordance with the invention) The invention further provides methods and reagents for expression of antigen polynucleotide and polypeptide products in clonal cell lines deπved from vaπous plant tissues (e g , roots, leaves), and in whole plants deπved from single cells (clonal plants) Such methods are typically based on use of plant viral vectors of vaπous types [00115] For example, in one aspect, the invention provides methods of obtaining a clonal root line that expresses a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention compπsmg steps of (i) introducing a viral vector that compπses a polynucleotide encoding a Plasmodium antigen polypeptide m accordance with the invention into a plant or portion thereof, and (ii) generating one or more clonal root lines from a plant Clonal root lines may be generated, for example, by infecting a plant or plant portion (e g , a harvested piece of leaf) with an Agrobacterium (e g , A rhizogenes) that causes formation of hairy roots Clonal root lines can be screened in various ways to identify lines that maintain virus, lines that express a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention at high levels, etc The invention further provides clonal root lines, e g , clonal root lines produced according to inventive methods, and further encompasses methods of expressing polynucleotides and producing polypeptide(s) encoding Plasmodium antigen polypeptide(s) m accordance with the invention using clonal root lines

[00116] The invention further provides methods of generating a clonal root cell line that expresses a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention composing steps of (i) generating a clonal root line, cells of which contain a viral vector whose genome compπses a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention, (11) releasing individual cells from a clonal root line, and (m) maintaining cells under conditions suitable for root cell proliferation The invention provides clonal root cell lines and methods of expressing polynucleotides and producing polypeptides using clonal root cell lines

[00117] In one aspect, the invention provides methods of generating a clonal plant cell line that expresses a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention comprising steps of (i) generating a clonal root line, cells of which contain a viral vector whose genome compnses a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention, (n) releasing individual cells from a clonal root line, and (in) maintaining cells m culture under conditions appropπate for plant cell proliferation The invention further provides methods of generating a clonal plant cell line that expresses a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention comprising steps of (i) introducing a viral vector that compnses a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention into cells of a plant cell line maintained m culture, and (ii) enriching for cells that contain viral vector Enrichment may be performed, for example, by (i) removing a portion of cells from the culture, (ii) diluting removed cells so as to reduce cell concentration, (in) allowing diluted cells to proliferate, and (iv) screening for cells that contain viral vector Clonal plant cell lines may be used for production of a Plasmodium antigen polypeptide m accordance with the present invention

[00118] The invention includes a number of methods for generating clonal plants, cells of which contain a viral vector that comprises a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention For example, the invention provides methods of generating a clonal plant that expresses a polynucleotide encoding a Plasmodium antigen polypeptide m accordance with the invention comprising steps of (i) generating a clonal root line, cells of which contain a viral vector whose genome compπses a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention, (11) releasing individual cells from a clonal root line, and (111) maintaining released cells under conditions appropπate for formation of a plant The invention further provides methods of generating a clonal plant that expresses a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention comprising steps of (i) generating a clonal plant cell line, cells of which contain a viral vector whose genome compπses a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention, and (11) maintaining cells under conditions appropriate for formation of a plant In general, clonal plants according to the invention can express any polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention Such clonal plants can be used for production of an antigen polypeptide

[00119] As noted above, the present invention provides systems for expressing a polynucleotide or polynucleotide(s) encoding Plasmodium antigen polypeptide(s) m accordance with the invention in clonal root lines, clonal root cell lines, clonal plant cell lines (e g , cell lines derived from leaf, stem, etc ), and in clonal plants A polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention is introduced into an ancestral plant cell using a plant viral vector whose genome includes polynucleotide encoding a Plasmodium antigen polypeptide m accordance with the invention operably linked to (ι e , under control of) a promoter A clonal root line or clonal plant cell line is established from a cell containing virus according to any of several techniques further descπbed below The plant virus vector or portions thereof can be introduced mto a plant cell by infection, by inoculation with a viral transcπpt or infectious cDNA clone, by electroporation, by T-DNA mediated gene transfer, etc

[00120] The following sections descnbe methods for generating clonal root lines, clonal root cell lines, clonal plant cell lines, and clonal plants that express a polynucleotide encoding a Plasmodium antigen polypeptide m accordance with the invention are then descπbed A "root line" is distinguished from a "root cell line" in that a root line produces actual roothke structures or roots while a root cell line consists of root cells that do not form roothke structures Use of the term "line" is intended to indicate that cells of the line can proliferate and pass genetic information on to progeny cells Cells of a cell line typically proliferate in culture without being part of an organized structure such as those found in an intact plant Use of the term "root line" is intended to indicate that cells in the root structure can proliferate without being part of a complete plant It is noted that the term "plant cell" encompasses root cells However, to distinguish the inventive methods for generating root lines and root cell lines from those used to directly generate plant cell lines from non-root tissue (as opposed to generating clonal plant cell lines from clonal root lines or clonal plants deπved from clonal root lines), the terms "plant cell" and "plant cell line" as used herein generally refer to cells and cell lines that consist of non-root plant tissue Plant cells can be, for example, leaf, stem, shoot, flower part, etc It is noted that seeds can be deπved from clonal plants generated as derived herein Such seeds may contain viral vector as will plants obtained from such seeds Methods for obtaining seed stocks are well known in the art (see, for example, U S Patent Publication 2004/093643, incorporated herein by reference)

Clonal Root Lines

[00121] The present invention provides systems for generating a clonal root line in which a plant viral vector is used to direct expression of a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention One or more viral expression vector(s) including a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention operably linked to a promoter is introduced into a plant or a portion thereof according to any of a variety of known methods For example, plant leaves can be inoculated with viral transcripts Vectors themselves may be directly applied to plants (e g , via abrasive inoculations, mechanized spray inoculations, vacuum infiltration, particle bombardment, or electroporation) Alternatively or additionally, virions may be prepared (e g , from already infected plants), and may be applied to other plants according to known techniques [00122] Where infection is to be accomplished by direct application of a viral genome to a plant, any available technique may be used to prepare viral genome For example, many viruses that are usefully employed m accordance with the present invention have ssRNA genomes ssRNA may be prepared by transcπption of a DNA copy of the genome, or by replication of an RNA copy, either in vivo or in vitro Given the readily available, easy-to- use in vitro transcπption systems (e g , SP6, T7, reticulocyte lysate, etc ), and also the convenience of maintaining a DNA copy of an RNA vector, it is expected that inventive ssRNA vectors will often be prepared by in vitro transcπption, particularly with T7 or SP6 polymerase Infectious cDNA clones can be used Agrobacterially mediated gene transfer can be used to transfer viral nucleic acids such as viral vectors (either entire viral genomes or portions thereof) to plant cells using, e g , agromfiltration, according to methods known in the art

[00123] A plant or plant portion may then be then maintained (e g , cultured or grown) under conditions suitable for replication of viral transcript In certain embodiments, virus spreads beyond the initially inoculated cell, e g , locally from cell to cell and/or systemically from an initially inoculated leaf into additional leaves However, in some embodiments, virus does not spread Thus viral vector may contain genes encoding functional MP and/or CP, but may be lacking one or both of such genes In general, viral vector is introduced mto (infects) multiple cells in the plant or portion thereof

[00124] Following introduction of viral vector into a plant, leaves are harvested In general, leaves may be harvested at any time following introduction of a viral vector However, it may be desirable to maintain a plant for a period of time following introduction of a viral vector into the plant, e g , a peπod of time sufficient for viral replication and, optionally, spread of virus from the cells into which it was initially introduced A clonal root culture (or multiple cultures) is prepared, e g , by known methods further descπbed below [00125] In general, any available method may be used to prepare a clonal root culture from a plant or plant tissue mto which a viral vector has been introduced One such method employs genes that exist in certain bacterial plasmids These plasmids are found m various species of Agrobacterium that mfect and transfer DNA to a wide variety of organisms As a genus, Agrobacteria can transfer DNA to a large and diverse set of plant types including numerous dicot and monocot angiosperm species and gymnosperms (see, for example, Gelvin, 2003, Microbiol MoI Biol Rev , 67 16, and references therein, all of which are incorporated herein by reference) The molecular basis of genetic transformation of plant cells is transfer from bacterium and integration mto plant nuclear genome of a region of a large rumor-mducmg (Ti) or rhizogemc (Ri) plasmid that resides within various Agrobactenal species This region is referred to as the T-region when present m the plasmid and as T-DNA when excised from plasmid Generally, a single-stranded T-DNA molecule is transferred to a plant cell in naturally occurring Agrobactenal infection and is ultimately incorporated (in double-stranded form) mto the genome Systems based on Ti plasmids are widely used for introduction of foreign genetic material mto plants and for production of transgenic plants

[00126] Infection of plants with vaπous Agrobactenal species and transfer of T-DNA has a number of effects For example, A tumefaciens causes crown gall disease while A rhizogenes causes development of hairy roots at the site of infection, a condition known as "hairy root disease " Each root aπses from a single genetically transformed cell Thus root cells in roots are clonal, and each root represents a clonal population of cells Roots produced by A rhizogenes infection are characterized by a high growth rate and genetic stability (Gm et al , 2000, Biotech Adv , 18 1, and references therein, all of which are incorporated herein by reference) In addition, such roots are able to regenerate genetically stable plants (Gm 2000, supra)

[00127] In general, the present invention encompasses use of any strain of Agrobactena, particularly any A rhizogenes strain, that is capable of inducing formation of roots from plant cells As mentioned above, a portion of the Ri plasmid (Ri T-DNA) is responsible for causing hairy root disease While transfer of this portion of the Ri plasmid to plant cells can conveniently be accomplished by infection with Agrobactena harboring the Ri plasmid, the invention encompasses use of alternative methods of introducing the relevant region into a plant cell Such methods include any available method of introducing genetic mateπal into plant cells including, but not limited to, biohstics, electroporation, PEG-mediated DNA uptake, Ti -based vectors, etc The relevant portions of Ri T-DNA can be introduced into plant cells by use of a viral vector Ri genes can be included in the same vector that contains a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention or in a different viral vector, which can be the same or a different type to that of the vector that contains a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention It is noted that the entire Ri T-DNA may not be required for production of hairy roots, and the invention encompasses use of portions of Ri T-DNA, provided that such portions contain sufficient genetic mateπal to induce root formation, as known in the art Additional genetic mateπal, e g , genes present within the Ri plasmid but not within T-DNA, may be transferred to a plant cell m accordance with the invention, particularly genes whose expression products facilitate integration of T-DNA into the plant cell DNA

[00128] In order to prepare a clonal root line in accordance with certain embodiments, harvested leaf portions are contacted with A rhizogenes under conditions suitable for infection and transformation Leaf portions are maintained in culture to allow development of hairy roots Each root is clonal, i e , cells m the root are deπved from a single ancestral cell into which Ri T-DNA was transferred In accordance with the invention, a portion of such ancestral cells will contain a viral vector Thus cells in a root deπved from such an ancestral cell may contain viral vector since it will be replicated and will be transmitted duπng cell division Thus a high proportion (e g at least 50%, at least 75%, at least 80%, at least 90%, at least 95%), all (100%), or substantially all (at least 98%) of cells will contain viral vector It is noted that since viral vector is inherited by daughter cells withm the clonal root, movement of viral vector withm the root is not necessary to maintain viral vector throughout the root Individual clonal hairy roots may be removed from the leaf portion and further cultured Such roots are also referred to herein as root lines Isolated clonal roots continue to grow following isolation

[00129] Root lines may be cultured on a large scale for production of antigen in accordance with the invention polypeptides as discussed further below It is noted that clonal root lines (and cell lines derived from clonal root lines) can generally be maintained in medium that does not include various compounds, e g , plant growth hormones such as auxins, cytokinins, etc , that are typically employed in culture of root and plant cells This feature greatly reduces expense associated with tissue culture, and the inventors expect that it will contribute significantly to economic feasibility of protein production using plants [00130] Any of a variety of methods may be used to select clonal roots that express a polynucleotide encoding Plasmodium antigen polypeptide(s) in accordance with the invention Western blots, ELISA assays, etc , can be used to detect an encoded polypeptide In the case of detectable markers such as GFP, alternative methods such as visual screens can be performed If a viral vector that contains a polynucleotide that encodes a selectable marker is used, an appropπate selection can be imposed (e g , leaf matenal and/or roots derived therefrom can be cultured in the presence of an appropπate antibiotic or nutritional condition and surviving roots identified and isolated) Certain viral vectors contain two or more polynucleotide(s) encoding Plasmodium antigen polypeptide(s) in accordance with the invention, e g , two or more polynucleotides encoding different polypeptides If one of these is a selectable or detectable marker, clonal roots that are selected or detected by selecting for or detecting expression of the marker will have a high probability of also expressing a second polynucleotide Screening for root lines that contain particular polynucleotides can also be performed using PCR and other nucleic acid detection methods

[00131] Alternatively or additionally, clonal root lines can be screened for presence of virus by inoculating host plants that will form local lesions as a result of virus infection (e g , hypersensitive host plants) For example, 5 mg of root tissue can be homogenized m 50 μl of phosphate buffer and used to inoculate a single leaf of a tobacco plant If virus is present m root cultures, withm two to three days characteristic lesions will appear on infected leaves This means that root lme contains recombinant virus that carries a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention If no local lesions are formed, there is no virus, and the root line is rejected as negative This method is highly time and cost efficient After initially screening for the presence of virus, roots that contain virus may be subjected to secondary screemng, e g , by Western blot or ELISA to select high expressers Additional screens, e g , screens for rapid growth, growth in particular media or under particular environmental conditions, etc , can be applied These screening methods may, in general, be applied in the development of any of clonal root lines, clonal root cell lines, clonal plant cell lines, and/or clonal plants descπbed herein

[00132] As will be evident to one of ordinary skill m the art, a variety of modifications may be made to the descπption of the inventive methods for generating clonal root lines that contain a viral vector Such modifications are within the scope of the invention For example, while it is generally desirable to introduce viral vector into an intact plant or portion thereof prior to introduction of Ri T-DNA genes, in certain embodiments, the Ri-DNA is introduced pnor to introducing viral vector In addition, it is possible to contact intact plants with A rhizogenes rather than harvesting leaf portions and then exposing them to bacterium [00133] Other methods of generating clonal root lines from single cells of a plant or portion thereof that harbor a viral vector can be used (; e , methods not using A rhizogenes or genetic material from the Ri plasmid) For example, treatment with certain plant hormones or combinations of plant hormones is known to result in generation of roots from plant tissue

Clonal Cell Lines Derived from Clonal Root Lines

[00134] As descπbed above, the invention provides methods for generating clonal root lines, wherein cells m root lines contain a viral vector As is well known in the art, a vaπety of different cell lines can be generated from roots For example, root cell lines can be generated from individual root cells obtained from a root using a vaπety of known methods Such root cell lines may be obtained from various different root cell types within the root In general, root material is harvested and dissociated (e g , physically and/or enzymatically digested) to release individual root cells, which are then further cultured Complete protoplast formation is generally not necessary If desired, root cells can be plated at very dilute cell concentrations, so as to obtain root cell lines from single root cells Root cell lines denved m this manner are clonal root cell lines containing viral vector Such root cell lines therefore exhibit stable expression of a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention Clonal plant cell lines can be obtained in a similar manner from clonal roots, e g , by cultuπng dissociated root cells in the presence of appropπate plant hormones Screens and successive rounds of enrichment can be used to identify cell lines that express a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention at high levels However, if the clonal root line from which the cell line is deπved already expresses at high levels, such additional screens may be unnecessary

[00135] As in the case of the clonal root lines, cells of a clonal root cell line are deπved from a single ancestral cell that contains viral vector and will, therefore, also contain viral vector since it will be replicated and will be transmitted duπng cell division Thus a high proportion (e g at least 50%, at least 75%, at least 80%, at least 90%, at least 95%), all (100%), or substantially all (at least 98%) of cells will contain viral vector It is noted that smce viral vector is inherited by daughter cells withm a clonal root cell line, movement of viral vector among cells is not necessary to maintain viral vector Clonal root cell lines can be used for production of a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention as descπbed below

Clonal Plant Cell Lines

[00136] The present invention provides methods for generating a clonal plant cell line in which a plant viral vector is used to direct expression of a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention According to the inventive method, one or more viral expression vector(s) including a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention operably linked to a promoter is introduced into cells of a plant cell line that is maintained m cell culture A number of plant cell lines from various plant types are known in the art, any of which can be used Newly denved cell lines can be generated according to known methods for use in practicing the invention A viral vector is introduced into cells of a plant cell line according to any of a number of methods For example, protoplasts can be made and viral transcripts then electroporated into cells Other methods of introducing a plant viral vector into cells of a plant cell line can be used

[00137] A method for generating clonal plant cell lines in accordance with the invention and a viral vector suitable for introduction into plant cells (e g , protoplasts) can be used as follows Following introduction of viral vector, a plant cell line may be maintained in tissue culture Duπng this time viral vector may replicate, and polynucleotide(s) encoding a Plasmodium antigen polypeptide(s) in accordance with the invention may be expressed Clonal plant cell lines are deπved from culture, e g , by a process of successive enrichment For example, samples may be removed from culture, optionally with dilution so that the concentration of cells is low, and plated in Petπ dishes in individual droplets Droplets are then maintained to allow cell division

[00138] It will be appreciated that droplets may contain a variable number of cells, depending on the initial density of the culture and the amount of dilution Cells can be diluted such that most droplets contain either 0 or 1 cell if it is desired to obtain clonal cell lines expressing a polynucleotide encoding a Plasmodium antigen polypeptide in accordance with the invention after only a single round of enrichment However, it can be more efficient to select a concentration such that multiple cells are present in each droplet and then screen droplets to identify those that contain expressing cells In general, any appropπate screening procedure can be employed For example, selection or detection of a detectable marker such as GFP can be used Western blots or ELISA assays can be used Individual droplets (100 μl) contain more than enough cells for performance of these assays Multiple rounds of enrichment are performed to isolate successively higher expressing cell lines Single clonal plant cell lines (; e , populations deπved from a single ancestral cell) can be generated by further limiting dilution using standard methods for single cell cloning However, it is not necessary to isolate individual clonal lines A population containing multiple clonal cell lines can be used for expression of a polynucleotide encoding one or more Plasmodium antigen polypeptide(s) in accordance with the invention

[00139] In general, certain considerations described above for generation of clonal root lines apply to the generation of clonal plant cell lines For example, a diversity of viral vectors containing one or more polynucleotide(s) encoding a Plasmodium antigen polypeptide(s) in accordance with the invention can be used as can combinations of multiple different vectors Similar screening methods can be used As in the case of clonal root lines and clonal root cell lines, cells of a clonal plant cell line are derived from a single ancestral cell that contains viral vector and will, therefore, also contain viral vector since it will be replicated and will be transmitted during cell division Thus a high proportion (e g at least 50%, at least 75%, at least 80%, at least 90%, at least 95%), all (100%), or substantially all (at least 98%) of cells will contain viral vector It is noted that since viral vector is inherited by daughter cells within a clonal plant cell line, movement of viral vector among cells is not necessary to maintain viral vector The clonal plant cell line can be used for production of a polypeptide encoding a Plasmodium antigen polypeptide in accordance with the invention as described below Clonal Plants

[00140] Clonal plants can be generated from clonal roots, clonal root cell lines, and/or clonal plant cell lines produced according to various methods described above Methods for the generation of plants from roots, root cell lines, and plant cell lines such as clonal root lines, clonal root cell lines, and clonal plant cell lines descnbed herein are well known in the art (see, e g , Peres et al , 2001, Plant Cell, Tissue, Organ Culture, 65 37, incorporated herein by reference, and standard reference works on plant molecular biology and biotechnology cited elsewhere herein) The invention therefore provides a method of generating a clonal plant comprising steps of (i) generating a clonal root line, clonal root cell line, or clonal plant cell line according to any of the inventive methods described above, and (n) generating a whole plant from a clonal root line, clonal root cell line, or clonal plant Clonal plants may be propagated and grown according to standard methods

[00141] As in the case of clonal root lines, clonal root cell lines, and clonal plant cell lines, cells of a clonal plant are deπved from a single ancestral cell that contains viral vector and will, therefore, also contain viral vector since it will be replicated and will be transmitted duπng cell division Thus a high proportion (e g at least 50%, at least 75%, at least 80%, at least 90%, at least 95%), all (100%), or substantially all (at least 98%) of cells will contain viral vector It is noted that since viral vector is inherited by daughter cells withm the clonal plant, movement of viral vector is not necessary to maintain viral vector

Sprouts and Sprouted Seedling Plant Expression Systems

[00142] According to the present invention, any of a variety of different systems can be used to express proteins or polypeptides in young plants (e g , sprouted seedlings) In some embodiments, transgenic cell lines or seeds are generated, which are then sprouted and grown for a period of time so that a protein or polypeptide included m the transgenic sequences is produced m young plant tissues (e g , in sprouted seedlings) Typical technologies for the production of transgenic plant cells and/or seeds include Agrobactenum tumefaciens mediated gene transfer and microprojectile bombardment or electroporation [00143] Systems and reagents for generating a variety of sprouts and sprouted seedlings which are useful for production of Plasmodium antigen polypeptide(s) according to the present invention have been descnbed previously and are known in the art (see, for example, PCT Publication WO 04/43886, incorporated herein by reference) The present invention further provides sprouted seedlings, which may be edible, as a biomass containing a Plasmodium antigen polypeptide In certain aspects, biomass is provided directly for consumption of antigen containing compositions In some aspects, biomass is processed pπor to consumption, for example, by homogenizing, crushing, drying, or extracting In certain aspects, Plasmodium antigen polypeptides are purified from biomass and formulated into a pharmaceutical composition

[00144] Additionally provided are methods for producing Plasmodium antigen polypeptide(s) in sprouted seedlings that can be consumed or harvested live (e g , sprouts, sprouted seedlings of the Brassica genus) In certain aspects, the present invention involves growing a seed to an edible sprouted seedling in a contained, regulatable environment (e g , indoors, in a container, etc ) A seed can be a genetically engineered seed that contains an expression cassette encoding a Plasmodium antigen polypeptide, which expression is dπven by an exogenously inducible promoter A variety of exogenously inducible promoters can be used that are inducible, for example, by light, heat, phytohormones, nutrients, etc [00145] In related embodiments, the present invention provides methods of producing Plasmodium antigen polypeptide(s) m sprouted seedlings by first generating a seed stock for a sprouted seedling by transforming plants with an expression cassette that encodes Plasmodium antigen polypeptide using an Agrobacterium transformation system, wherein expression of a Plasmodium antigen polypeptide is driven by an inducible promoter Transgenic seeds can be obtained from a transformed plant, grown in a contained, regulatable environment, and induced to express a Plasmodium antigen polypeptide [00146] In some embodiments methods are provided that involves infecting sprouted seedlings with a viral expression cassette encoding a Plasmodium antigen polypeptide, expression of which may be driven by any of a viral promoter or an inducible promoter Sprouted seedlings are grown for two to fourteen days in a contained, regulatable environment or at least until sufficient levels of Plasmodium antigen polypeptide have been obtained for consumption or harvesting

[00147] The present invention further provides systems for producing Plasmodium antigen polypeptide(s) in sprouted seedlings that include a housing unit with climate control and a sprouted seedling containing an expression cassette that encodes one or more Plasmodium antigen polypeptides, wherein expression is dπven by a constitutive or inducible promoter Systems can provide umque advantages over the outdoor environment or greenhouse, which cannot be controlled Thus, the present invention enables a grower to precisely time the induction of expression of Plasmodium antigen polypeptide It can greatly reduce time and cost of producing Plasmodium antigen polypeptide(s) [00148] In certain aspects, transiently transfected sprouts contain viral vector sequences encoding an inventive Plasmodium antigen polypeptide Seedlings are grown for a time peπod so as to allow for production of viral nucleic acid in sprouts, followed by a peπod of growth wherein multiple copies of virus are produced, thereby resulting in production of Plasmodium antigen polypeptide(s)

[00149] In certain aspects, genetically engineered seeds or embryos that contain a nucleic acid encoding Plasmodium antigen polypeptide(s) are grown to sprouted seedling stage in a contained, regulatable environment The contained, regulatable environment may be a housing unit or room in which seeds can be grown indoors All environmental factors of a contained, regulatable environment may be controlled Since sprouts do not require light to grow, and lighting can be expensive, genetically engineered seeds or embryos may be grown to sprouted seedling stage indoors in the absence of light

[00150] Other environmental factors that can be regulated in a contained, regulatable environment of the present invention include temperature, humidity, water, nutnents, gas (e g , O2 or CO2 content or air circulation), chemicals (small molecules such as sugars and sugar deπvatives or hormones such as such as phytohormones gibberellic or absisic acid, etc ) and the like

[00151] According to certain methods of the present invention, expression of a nucleic acid encoding a Plasmodium antigen polypeptide may be controlled by an exogenously inducible promoter Exogenously inducible promoters are caused to increase or decrease expression of a nucleic acid in response to an external, rather than an internal stimulus A number of environmental factors can act as inducers for expression of nucleic acids earned by expression cassettes of genetically engineered sprouts A promoter may be a heat- mducible promoter, such as a heat-shock promoter For example, using as heat-shock promoter, temperature of a contained environment may simply be raised to induce expression of a nucleic acid Other promoters include light inducible promoters Light-mducible promoters can be maintained as constitutive promoters if light in a contained regulatable environment is always on Alternatively or additionally, expression of a nucleic acid can be turned on at a particular time during development by simply turning on the light A promoter may be a chemically inducible promoter is used to induce expression of a nucleic acid According to these embodiments, a chemical could simply be misted or sprayed onto seed, embryo, or seedling to induce expression of nucleic acid Spraying and misting can be precisely controlled and directed onto target seed, embryo, or seedling to which it is intended The contained environment is devoid of wind or air currents, which could disperse chemical away from intended target, so that the chemical stays on the target for which it was intended [00152] According to the present invention, time of expression is induced can be selected to maximize expression of a Plasmodium antigen polypeptide in sprouted seedling by the time of harvest Inducing expression in an embryo at a particular stage of growth, for example, inducing expression in an embryo at a particular number of days after germination, may result in maximum synthesis of a Plasmodium antigen polypeptide at the time of harvest For example, inducing expression from the promoter 4 days after germination may result in more protein synthesis than inducing expression from the promoter after 3 days or after 5 days Those skilled in the art will appreciate that maximizing expression can be achieved by routine experimentation hi certain methods, sprouted seedlings are harvested at about 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, or 12 days after germination

[00153] In cases where the expression vector has a constitutive promoter instead of an inducible promoter, sprouted seedling may be harvested at a certain time after transformation of sprouted seedling For example, if a sprouted seedling were virally transformed at an early stage of development, for example, at embryo stage, sprouted seedlings may be harvested at a time when expression is at its maximum post-transformation, e g , at up to about 1 day, up to about 2 days, up to about 3 days, up to about 4 days, up to about 5 days, up to about 6 days, up to about 7 days, up to about 8 days, up to about 9 days, up to about 10 days, up to about 11 days, up to about 12 days, up to about 13 days, up to about 14 days, up to about 15 days, up to about 16 days, up to about 17 days, up to about 18 days, up to about 19 days, up to about 20 days, up to about 21 days, up to about 22 days, up to about 23 days, up to about 24 days, up to about 25 days, up to about 26 days, up to about 27 days, up to about 28 days, up to about 29 days, up to about 30 days post-transformation It could be that sprouts develop one, two, three or more months post-transformation, depending on germination of seed [00154] Generally, once expression of Plasmodium antigen polypeptide(s) begins, seeds, embryos, or sprouted seedlings are allowed to grow until sufficient levels of Plasmodium antigen polypeptide(s) are expressed In certain aspects, sufficient levels are levels that would provide a therapeutic benefit to a subject if harvested biomass were eaten raw Alternatively or additionally, sufficient levels are levels from which Plasmodium antigen polypeptide can be concentrated or purified from biomass and formulated into a pharmaceutical composition that provides a therapeutic benefit to a subject upon administration Typically, Plasmodium antigen polypeptide is not a protein expressed in sprouted seedling in nature At any rate, Plasmodium antigen polypeptide is typically expressed at concentrations above that which would be present in the sprouted seedling in nature

[00155] Once expression of Plasmodium antigen polypeptide is induced, growth is allowed to continue until sprouted seedling stage, at which time sprouted seedlings are harvested Sprouted seedlings can be harvested live Harvesting live sprouted seedlings has several advantages including minimal effort and breakage Sprouted seedlings of the present invention may be grown hydropomcally, making harvesting a simple matter of lifting a sprouted seedling from its hydropomc solution No soil is required for growth of sprouted seedlings in accordance with the invention, but may be provided if deemed necessary or desirable by the skilled artisan Because sprouts can be grown without soil, no cleansing of sprouted seedling mateπal is required at the time of harvest Being able to harvest the sprouted seedling directly from its hydropomc environment without washing or scrubbing minimizes breakage of harvested mateπal Breakage and wilting of plants induces apoptosis During apoptosis, certain proteolytic enzymes become active, which can degrade pharmaceutical protein expressed in the sprouted seedling, resulting in decreased therapeutic activity of the protein Apoptosis-induced proteolysis can significantly decrease yield of protein from mature plants Using methods of the present invention, apoptosis may be avoided when no harvesting takes place until the moment proteins are extracted from the plant

[00156] For example, live sprouts may be ground, crushed, or blended to produce a slurry of sprouted seedling biomass, in a buffer containing protease inhibitors Buffer may be maintained at about 40C In some aspects, sprouted seedling biomass is air-dπed, spray dried, frozen, or freeze-dned As in mature plants, some of these methods, such as air-drymg, may result in a loss of activity of pharmaceutical protein However, because sprouted seedlings are very small and have a large surface area to volume ratio, this is much less likely to occur Those skilled in the art will appreciate that many techniques for harvesting biomass that minimize proteolysis of expressed protein are available and could be applied to the present invention

[00157] In some embodiments, sprouted seedlings are edible In certain embodiments, sprouted seedlings expressing sufficient levels of Plasmodium antigen polypeptides are consumed upon harvesting (e g , immediately after harvest, within minimal peπod following harvest) so that absolutely no processing occurs before sprouted seedlings are consumed In this way, any harvest-induced proteolytic breakdown of Plasmodium antigen polypeptide before administration of Plasmodium antigen polypeptide to a subject in need of treatment is minimized For example, sprouted seedlings that are ready to be consumed can be delivered directly to a subject Alternatively or additionally, genetically engineered seeds or embryos are delivered to a subject in need of treatment and grown to sprouted seedling stage by a subject In one aspect, a supply of genetically engineered sprouted seedlings is provided to a subject, or to a doctor who will be treating subjects, so that a continual stock of sprouted seedlings expressing certain desirable Plasmodium antigen polypeptides may be cultivated This may be particularly valuable for populations in developing countries, where expensive pharmaceuticals are not affordable or deliverable The ease with which sprouted seedlings in accordance with the invention can be grown makes sprouted seedlings of the present invention particularly desirable for such developing populations

[00158] The regulatable nature of the contained environment imparts advantages to the present invention over growing plants in the outdoor environment In general, growing genetically engineered sprouted seedlings that express pharmaceutical proteins m plants provides a pharmaceutical product faster (because plants are harvested younger) and with less effort, risk, and regulatory considerations than growing genetically engineered plants The contained, regulatable environment used in the present invention reduces or eliminates πsk of cross-pollmatmg plants in nature

[00159] For example, a heat inducible promoter likely would not be used outdoors because outdoor temperature cannot be controlled The promoter would be turned on any time the outdoor temperature rose above a certain level Similarly, the promoter would be turned off every time the outdoor temperature dropped Such temperature shifts could occur in a single day, for example, turning expression on m the daytime and off at night A heat inducible promoter, such as those descπbed herein, would not even be practical for use in a greenhouse, which is susceptible to climatic shifts to almost the same degree as outdoors Growth of genetically engineered plants in a greenhouse is quite costly In contrast, in the present system, every variable can be controlled so that the maximum amount of expression can be achieved with every harvest

[00160] In certain embodiments, sprouted seedlings of the present invention are grown in trays that can be watered, sprayed, or misted at any time during development of sprouted seedling For example, a tray may be fitted with one or more wateπng, spraying, misting, and draining apparatus that can deliver and/or remove water, nutπents, chemicals etc at specific time and at precise quantities duπng development of the sprouted seedling For example, seeds require sufficient moisture to keep them damp Excess moisture drains through holes in trays into drains in the floor of the room Typically, drainage water is treated as appropnate for removal of harmful chemicals before discharge back into the environment

[00161] Another advantage of trays is that they can be contained within a very small space Since no light is required for sprouted seedlings to grow, trays containing seeds, embryos, or sprouted seedlings may be tightly stacked vertically on top of one another, providing a large quantity of biomass per unit floor space in a housing facility constructed specifically for these purposes In addition, stacks of trays can be arranged in honzontal rows within the housing unit Once seedlings have grown to a stage appropnate for harvest (about two to fourteen days) individual seedling trays are moved into a processing facility, either manually or by automatic means, such as a conveyor belt

[00162] The system of the present invention is unique in that it provides a sprouted seedling biomass, which is a source of a Plasmodium antigen polypeptide(s) Whether consumed directly or processed into the form of a pharmaceutical composition, because sprouted seedlings are grown in a contained, regulatable environment, sprouted seedling biomass and/or pharmaceutical composition deπved from biomass can be provided to a consumer at low cost In addition, the fact that the conditions for growth of sprouted seedlings can be controlled makes the quality and puπty of product consistent The contained, regulatable environment in accordance with the invention obviates many safety regulations of the EPA that can prevent scientists from growing genetically engineered agricultural products out of doors

Transformed Sprouts

[00163] A vaπety of methods can be used to transform plant cells and produce genetically engineered sprouted seedlings Two available methods for transformation of plants that require that transgenic plant cell lines be generated in vitro, followed by regeneration of cell lines into whole plants include Agrobacterium tumefaciens mediated gene transfer and microprojectile bombardment or electroporation In some embodiments, transient expression systems are utilized Typical technologies for producing transient expression of proteins or polypeptides in plant tissues utilize plant viruses Viral transformation provides more rapid and less costly methods of transforming embryos and sprouted seedlings that can be harvested without an expenmental or generational lag pπor to obtaining the desired product For any of these techniques, the skilled artisan would appreciate how to adjust and optimize transformation protocols that have traditionally been used for plants, seeds, embryos, or spouted seedlings

[00164] The present invention provides expression systems having advantages of viral expression systems (e g , rapid expression, high levels of production) and of Agrobactenum transformation (e g , controlled administration) In particular, as discussed in detail below, the present invention provides systems in which an agrobactenal construct (i e , a construct that replicates in Agrobactenum and therefore can be delivered to plant cells by delivery of Agrobactenum) includes a plant promoter that, after being introduced into a plant, directs expression of viral sequences (e g , including viral replication sequences) carrying a gene for a protein or polypeptide of interest This system allows controlled, high level transient expression of proteins or polypeptides m plants

[00165] A variety of different embodiments of expression systems, some of which produce transgenic plants and others of which provide for transient expression, are discussed in further detail individually below For any of these techniques, the skilled artisan reading the present specification would appreciate how to adjust and optimize protocols for expression of proteins or polypeptides in young plant tissues (e g , sprouted seedlings)

Agrobactenum Transformation

[00166] Agrobactenum is a representative genus of the gram-negative family Rhizobiaceae This species is responsible for plant tumors such as crown gall and hairy root disease In dedifferentiated plant tissue, which is characteristic of tumors, amino acid denvatives known as opmes are produced by the plant and catabohzed by the Agrobactenum The bacteπal genes responsible for expression of opmes are a convenient source of control elements for chimeric expression cassettes According to the present invention, an Agrobactenum transformation system may be used to generate young plants (e g , sprouted seedlings, including edible sprouted seedlings), which are merely harvested earlier than mature plants Agrobactenum transformation methods can easily be applied to regenerate sprouted seedlings expressing Plasmodium antigen polypeptides

[00167] In general, transforming plants with Agrobactenum involves transformation of plant cells grown in tissue culture by co-cultivation with an Agrobactenum tumefaciens carrying a plant/bacterial vector The vector contains a gene encoding a Plasmodium antigen polypeptide The Agrobactenum transfers vector to plant host cell and is then eliminated using antibiotic treatment Transformed plant cells expressing Plasmodium antigen polypeptide are selected, differentiated, and finally regenerated into complete plantlets (Hellens et al , 2000, Plant MoI Biol , 42 819, Pilon-Smits et al , l 999, Plant Physiolog , 119 123, Barfield et al , 1991, Plant Cell Reports, 10 308, and Riva et al , 1998, J Biotech , 1(3), all of which are incorporated by reference herein)

[00168] Agrobacterial expression vectors for use in the present invention include a gene (or expression cassette) encoding a Plasmodium antigen polypeptide designed for operation in plants, with companion sequences upstream and downstream of the expression cassette Companion sequences are generally of plasmid or viral ongm and provide necessary charactenstics to the vector to transfer DNA from bacteπa to the desired plant host [00169] The basic bacterial/plant vector construct may desirably provide a broad host range prokaryote replication origin, a prokaryote selectable marker Suitable prokaryotic selectable markers include resistance toward antibiotics such as ampicillin or tetracycline Other DNA sequences encoding additional functions that are well known in the art may be present in the vector

[00170] Agrobactenum T-DNA sequences are required for Agrobacterium mediated transfer of DNA to the plant chromosome The tumor-inducmg genes of T-DNA are typically removed duπng construction of an agrobacterial expression construct and are replaced with sequences encoding a Plasmodium antigen polypeptide T-DNA border sequences are retained because they initiate integration of the T-DNA region into the plant genome If expression of Plasmodium antigen polypeptide is not readily amenable to detection, the bacterial/plant vector construct may include a selectable marker gene suitable for determining if a plant cell has been transformed, e g , nptll kanamycm resistance gene On the same or different bactenal/plant vector (Ti plasmid) are Ti sequences Ti sequences include virulence genes, which encode a set of proteins responsible for excision, transfer and integration of T-DNA into the plant genome (Schell, 1987, Science, 237 1176-86, incorporated herein by reference) Other sequences suitable for permitting integration of heterologous sequence into the plant genome may include transposon sequences, and the like, for homologous recombination

[00171] On the same or different bactenal/plant vector (Ti plasmid) are Ti sequences Ti sequences include the virulence genes, which encode a set of proteins responsible for the excision, transfer and integration of the T-DNA into the plant genome (Schell, 1987, Science, 237 1176-83, incorporated herein by reference) Other sequences suitable for permitting integration of the heterologous sequence into the plant genome may also include transposon sequences, and the like, for homologous recombination [00172] Certain constructs will include an expression cassette encoding an antigen protein One, two, or more expression cassettes may be used in a given transformation The recombinant expression cassette contains, in addition to a Plasmodium antigen polypeptide encoding sequence, at least the following elements a promoter region, plant 5' untranslated sequences, initiation codon (depending upon whether or not an expressed gene has its own), and transcription and translation termination sequences In addition, transcription and translation terminators maybe included in expression cassettes or chimeric genes of the present invention Signal secretion sequences that allow processing and translocation of a protein, as appropπate, may be included m the expression cassette [00173] A variety of promoters, signal sequences, and transcription and translation terminators are descπbed, for example, in Lawton et al (1987, Plant MoI Biol , 9 315-24, incorporated herein by reference) or in U S Patent 5,888,789 (incorporated herein by reference) In addition, structural genes for antibiotic resistance are commonly utilized as a selection factor (Fraley et al , 1983, Proc Natl Acad Sci , USA, 80 4803-7, incorporated herein by reference) Unique restriction enzyme sites at the 5' and 3' ends of the cassette allow for easy insertion into a pre-existing vector

|00174] Other binary vector systems for Agrobactenum-medmted transformation, carrying at least one T-DNA border sequence are descπbed in PCT Publication WO 2000/020612 (incorporated herein by reference) Further discussion of Agrobacterium-mediated transformation is found in Gelvin (2003, Microbiol MoI Biol Rev , 67 16-37, and references therein, all of which are incorporated herein by reference) and Lorence and Verpoorte (2004, Methods MoI Biol , 267 329-50, incorporated herein by reference)

[00175] In certain embodiments, bacteπa other than Agrobacteria are used to introduce a nucleic acid sequence into a plant See, e g , Broothaerts et al (2005, Nature, 433 629-33, incorporated herein by reference)

[00176] Seeds are prepared from plants that have been infected with Agrobacteria (or other bacteπa) such that the desired heterologous gene encoding a protein or polypeptide of interest is introduced Such seeds are harvested, dπed, cleaned, and tested for viability and for the presence and expression of a desired gene product Once this has been determined, seed stock is typically stored under appropriate conditions of temperature, humidity, sanitation, and secunty to be used when necessary Whole plants may then be regenerated from cultured protoplasts, e g , as descnbed in Evans et al {Handbook of Plant Cell Cultures, VoI 1, MacMillan Publishing Co , New York, NY, 1983, incorporated herein by reference), and in Vasil (ed , Cell Culture and Somatic Cell Genetics of Plants, Acad Press, Orlando, FL, VoI I, 1984, and VoI III, 1986, incorporated herein by reference) In certain aspects, plants are regenerated only to sprouted seedling stage In some aspects, whole plants are regenerated to produce seed stocks and sprouted seedlings are generated from seeds of the seed stock

[00177] In certain embodiments, the plants are not regenerated into adult plants For example, in some embodiments, plants are regenerated only to the sprouted seedling stage In other embodiments, whole plants are regenerated to produce seed stocks and young plants (e g , sprouted seedlings) for use in accordance with the present invention are generated from the seeds of the seed stock

[00178] All plants from which protoplasts can be isolated and cultured to give whole, regenerated plants can be transformed by Agrobacteria according to the present invention so that whole plants are recovered that contain a transferred gene It is known that practically all plants can be regenerated from cultured cells or tissues, including, but not limited to, all major species of plants that produce edible sprouts Some suitable plants include alfalfa, mung bean, radish, wheat, mustard, spinach, carrot, beet, onion, garlic, celery, rhubarb, a leafy plant such as cabbage or lettuce, watercress or cress, herbs such as parsley, mint, or clovers, cauliflower, broccoli, soybean, lentils, edible flowers such as sunflower etc [00179] Means for regeneration of plants from transformed cells vary from one species of plants to the next However, those skilled in the art will appreciate that generally a suspension of transformed protoplants containing copies of a heterologous gene is first provided Callus tissue is formed and shoots may be induced from callus and subsequently rooted Alternatively or additionally, embryo formation can be induced from a protoplast suspension These embryos germinate as natural embryos to form plants Steeping seed in water or spraying seed with water to increase the moisture content of the seed to between 35% - 45% initiates germination For germination to proceed, seeds are typically maintained m air saturated with water under controlled temperature and airflow conditions The culture media will generally contain various ammo acids and hormones, such as auxm and cytokinins It is advantageous to add glutamic acid and proline to the medium, especially for such species as alfalfa Shoots and roots normally develop simultaneously Efficient regeneration will depend on the medium, the genotype, and the history of the culture If these three variables are controlled, then regeneration is fully reproducible and repeatable [00180] Mature plants, grown from the transformed plant cells, are selfed and non- segregating, homozygous transgenic plants are identified The mbred plant produces seeds containing inventive antigen-encodmg sequences Such seeds can be germinated and grown to sprouted seedling stage to produce Plasmodium antigen polypeptide(s) according to the present invention

[00181] In related embodiments, transgenic seeds (e g , carrying the transferred gene encoding a Plasmodium antigen polypeptide, typically integrated into the genome) may be formed into seed products and sold with instructions on how to grow young plants to the appropπate stage (e g , sprouted seedling stage) for harvesting and/or administration or harvesting into a formulation as described herein In some related embodiments, hybπds or novel varieties embodying desired traits may be developed from inbred plants in accordance with the invention

Direct Integration

[00182] Direct integration of DNA fragments into the genome of plant cells by microprojectile bombardment or electroporation may also be used to introduce expression constructs encoding Plasmodium antigen polypeptides into plant tissues in accordance with the present invention (see, e g , Kikkert, et al , 1999, Plant J Tiss Cult Assoc , 35 43, and Bates, 1994, MoI Biotech , 2 135, both of which are incorporated herein by reference) More particularly, vectors that express Plasmodium antigen polypeptide(s) of the present invention can be introduced into plant cells by a variety of techniques As descπbed above, vectors may include selectable markers for use m plant cells Vectors may include sequences that allow their selection and propagation in a secondary host, such as sequences containing an origin of replication and selectable marker Typically, secondary hosts include bacteria and yeast In some embodiments, a secondary host is bactena (e g , Escherichia coh, the origin of replication is a colEl-type origin of replication) and a selectable marker is a gene encoding ampicillm resistance Such sequences are well known in the art and are commercially available (e g , Clontech, Palo Alto, CA or Stratagene, La Jolla, CA) [00183] Vectors of the present invention may be modified to intermediate plant transformation plasmids that contain a region of homology to an Agrobacterium tumefaciens vector, a T-DNA border region from Agrobacterium tumefaciens, and chimeπc genes or expression cassettes descπbed above Further vectors may include a disarmed plant tumor inducing plasmid of Agrobacterium tumefaciens

[00184] According to some embodiments, direct transformation of vectors invention may involve micromjectmg vectors directly into plant cells by use of micropipettes to mechanically transfer recombinant DNA (see, e g , Crossway, 1985, MoI Gen Genet , 202 179, incorporated herein by reference) Genetic material may be transferred into a plant cell using polyethylene glycols (see, e g , Krens et al , 1982, Nature 296 72, incorporated herein by reference) Another method of introducing nucleic acids into plants via high velocity ballistic penetration by small particles with a nucleic acid either within the matrix of small beads or particles, or on the surface (see, e g , Klein et al , 1987, Nature 327 70, and Knudsen et al , Planta, 185 330, both of which are incorporated herein by reference) Yet another method of introduction is fusion of protoplasts with other entities, either mimcells, cells, lysosomes, or other fusible hpid-surfaced bodies (see, e g , Fraley et al , 1982, Proc Natl Acad Sci , USA, 19 1859, incorporated herein by reference) Vectors in accordance with the invention may be introduced into plant cells by electroporation (see, e g , Fromm et al 1985, Proc Natl Acad Sa , USA, 82 5824, incorporated herein by reference) According to this technique, plant protoplasts are electroporated in the presence of plasmids containing a gene construct Electrical impulses of high field strength reversibly permeabihze biomembranes allowing introduction of plasmids Electroporated plant protoplasts reform the cell wall divide and form plant callus, which can be regenerated to form sprouted seedlings in accordance with the invention Those skilled in the art will appreciate how to utilize these methods to transform plants cells that can be used to generate edible sprouted seedlings

Viral Transformation

[00185] Similar to conventional expression systems, plant viral vectors can be used to produce full-length proteins, including full length antigen According to the present invention, plant virus vectors may be used to mfect and produce antigen(s) in seeds, embryos, sprouted seedlings, etc In this regard infection includes any method of introducing a viral genome, or portion thereof, into a cell, including, but not limited to, the natural infectious process of a virus, abrasion, inoculation, etc The term includes introducing a genomic RNA transcript, or a cDNA copy thereof, into a cell The viral genome need not be a complete genome but will typically contain sufficient sequences to allow replication The genome may encode a viral rephcase and may contain any cis-actmg nucleic acid elements necessary for replication Expression of high levels of foreign genes encoding short peptides as well as large complex proteins (e g , by tobamoviral vectors) is descπbed (see, e g , McCormick et al , 1999, Proc Natl Acad Sci , USA, 96 703, Kumagai et al 2000, Gene, 245 169, and Verch et al , 1998, J Immunol Methods, 220 69, all of which are incorporated herein by reference) Thus, plant viral vectors have a demonstrated ability to express short peptides as well as large complex proteins [00186] In certain embodiments, young plants (e g , sprouts), which express Plasmodium antigen polypeptide, are generated utilizing a host/virus system Young plants produced by viral infection provide a source of transgenic protein that has already been demonstrated to be safe For example, sprouts are free of contamination with animal pathogens Unlike, for example, tobacco, proteins from an edible sprout could at least in theory be used in oral applications without purification, thus significantly reducing costs

[00187] In addition, a virus/young plant (e g , sprout) system offers a much simpler, less expensive route for scale-up and manufacturing, since the relevant genes (encoding the protein or polypeptide of interest) are introduced into the virus, which can be grown up to a commercial scale within a few days In contrast, transgenic plants can require up to 5-7 years before sufficient seeds or plant material is available for large-scale trials or commercialization

[00188] According to the present invention, plant RNA viruses have certain advantages, which make them attractive as vectors for foreign protein expression The molecular biology and pathology of a number of plant RNA viruses are well characterized and there is considerable knowledge of virus biology, genetics, and regulatory sequences Most plant RNA viruses have small genomes and infectious cDNA clones are available to facilitate genetic manipulation Once infectious virus material enters a susceptible host cell, it replicates to high levels and spreads rapidly throughout the entire sprouted seedling (one to ten days post inoculation, e g , 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, or more than 10 days post-moculation) Virus particles are easily and economically recovered from infected sprouted seedling tissue Viruses have a wide host range, enabling use of a single construct for infection of several susceptible species These characteπstics are readily transferable to sprouts

[00189] Foreign sequences can be expressed from plant RNA viruses, typically by replacing one of the viral genes with desired sequence, by inserting foreign sequences into the virus genome at an appropriate position, or by fusing foreign peptides to structural proteins of a virus Moreover, any of these approaches can be combined to express foreign sequences by trans-complementation of vital functions of a virus A number of different strategies exist as tools to express foreign sequences in virus-infected plants using tobacco mosaic virus (TMV), alfalfa mosaic virus (AlMV), and chimeras thereof [00190] The genome of AlMV is a representative of the Bromovindae family of viruses and consists of three genomic RNAs (RNAsl-3) and subgenomic RNA (RNA4) Genomic RNAsI and 2 encode virus replicase proteins Pl and 2, respectively Genomic RNA3 encodes cell-to-cell movement protein P3 and coat protein (CP) CP is translated from subgenomic RNA4, which is synthesized from genomic RNA3, and is required to start infection Studies have demonstrated the involvement of CP m multiple functions, including genome activation, replication, RNA stability, symptom formation, and RNA encapsulation (see e g , BoI et al , 1971, Virology, 46 73, Van Der Vossen et al , 1994, Virology 202 891, Yusibov et al , Virology, 208 405, Yusibov et al , 1998, Virology, 242 1, BoI et al , (Review, 100 refs ), 1999, J Gen Virol , 80 1089, De Graaff, 1995, Virology, 208 583, Jaspars et al , 191 A, Adv Virus Res , 19 37, Loesch-Fnes, 1985, Virology, 146 177, Neeleman et al , 1991, Virology, 181 687, Neeleman et al , 1993, Virology, 196 883, Van Der Kuyl et al , 1991, Virology, 183 731 , and Van Der Kuyl et al , 1991, Virology, 185 496, all of which are incorporated herein by reference)

[00191] Encapsidation of viral particles is typically required for long distance movement of virus from inoculated to un-moculated parts of seed, embryo, or sprouted seedling and for systemic infection According to the present invention, inoculation can occur at any stage of plant development In embryos and sprouts, spread of inoculated virus should be very rapid Viπons of AlMV are encapsidated by a unique CP (24 kD), forming more than one type of particle The size (30- to 60-nm in length and 18 run in diameter) and shape (spherical, ellipsoidal, or bacilliform) of the particle depends on the size of the encapsidated RNA Upon assembly, the N-terminus of AlMV CP is thought to be located on the surface of the virus particles and does not appear to interfere with virus assembly (BoI et al , 1971, Virology, 6 73, incorporated herein by reference) Additionally, ALMV CP with an additional 38-ammo acid peptide at its N-termmus forms particles in vitro and retains biological activity (Yusibov et al , 1995, J Gen Virol , 77 567, incorporated herein by reference)

[00192] AlMV has a wide host range, which includes a number of agriculturally valuable crop plants, including plant seeds, embryos, and sprouts Together, these characteristics make ALMV CP an excellent candidate as a earner molecule for polypeptides and AlMV an attractive candidate vector for expression of foreign polypeptide sequences in a plant at the sprout stage of development Moreover, upon expression from a heterologous vector such as TMV, AlMV CP encapsidates TMV genome without interfering with virus lnfectivity (Yusibov et al , 1997, Proc Natl Acad Sci USA, 94 5784, incorporated herein by reference) This allows use of TMV as a carrier virus for AlMV CP fused to foreign sequences [00193] TMV, the prototype of tobamoviruses, has a genome consisting of a single plus- sense RNA encapsidated with a 17 0 kD CP, which results m rod-shaped particles (300 nm in length) CP is the only structural protein of TMV and is required for encapsidation and long distance movement of virus in an infected host(Saito et al , 1990, Virology 176 329, incorporated herein by reference) 183 and 126 kD proteins are translated from genomic RNA and are required for virus replication (Ishikawa et al , 1986, Nucleic Acids Res , 14 8291 , incorporated herein by reference) 30 kD protein is the cell-to-cell movement protein of virus (Meshi et al , 1987, EMBO J , 6 2557) Movement and coat proteins are translated from subgenomic mRNAs (Hunter et al , 1976, Nature, 260 759, Bruemng et al , 1976, Virology, 71 498, and Beachy et al , 1976, Virology, 73 498, all of which are incorporated herein by reference)

[00194] Other methods that may be utilized to introduce a gene encoding a Plasmodium polypeptide into plant cells include transforming the flower of a plant Transformation of Arabidopsis thahana can be achieved by dipping plant flowers into a solution of Agrobacterium tumefaciens (Curtis et al , 2001, Transgenic Res , 10 363, and Qing et al , 2000, Molecular Breeding New Strategies in Plant Improvement 1 67, both of which are incorporated herein by reference) Transformed plants are formed in the population of seeds generated by "dipped" plants At a specific point during flower development, a pore exists in the ovary wall through which Agrobacterium tumefaciens gams access to the interior of the ovary Once inside the ovary, the Agrobacterium tumefaciens proliferates and transforms individual ovules (Desfeux et al , 2000, Plant Physiology, 123 895, incorporated herein by reference) Transformed ovules follow the typical pathway of seed formation within the ovary

Agrobactenum-Λfeiiiαted Transient Expression

[00195] As indicated herein, m many embodiments of the present invention, systems for rapid (e g , transient) expression of proteins or polypeptides in plants are desirable Among other things, the present invention provides a powerful system for achieving such rapid expression in plants (particularly in young plants, e g , sprouted seedlings) that utilizes an agrobacteπal construct to deliver a viral expression system encoding a Plasmodium polypeptide

[00196] Specifically, according to the present invention, a "launch vector" is prepared that contains agrobactenal sequences including replication sequences and also contains plant viral sequences (including self-replication sequences) that carry a gene encoding the protein or polypeptide of interest A launch vector is introduced into plant tissue, preferably by agroinfiltration, which allows substantially systemic delivery For transient transformation, non-mtegrated T-DNA copies of the launch vector remain transiently present in the nucleolus and are transcribed leading to the expression of the carrying genes (Kapila et al , 1997, Plant Science, 122 101-108, incorporated herein by reference) Agrobacterium-medmted transient expression, differently from viral vectors, cannot lead to the systemic spreading of the expression of the gene of interest One advantage of this system is the possibility to clone genes larger than 2 kb to generate constructs that would be impossible to obtain with viral vectors (Voinnet et al , 2003, Plant J , 33 949-56, incorporated herein by reference) Furthermore, using such technique, it is possible to transform the plant with more than one transgene, such that multimeπc proteins (e g , antibodies subunits of complexed proteins) can be expressed and assembled Furthermore, the possibility of co-expression of multiple transgenes by means of co-mfiltration with different Agrobactenum can be taken advantage of, either by separate infiltration or using mixed cultures

[00197] In certain embodiments, a launch vector includes sequences that allow for selection (or at least detection) in Agrobacteria and also for selection/detection in infiltrated tissues Furthermore, a launch vector typically includes sequences that are transcribed in the plant to yield viral RNA production, followed by generation of viral proteins Furthermore, production of viral proteins and viral RNA yields rapid production of multiple copies of RNA encoding the pharmaceutically active protein of interest Such production results in rapid protein production of the target of interest in a relatively short period of time Thus, a highly efficient system for protein production can be generated

[00198] The agroinfiltration technique utilizing viral expression vectors can be used to produce limited quantity of protein of interest in order to verify the expression levels before deciding if it is worth generating transgenic plants Alternatively or additionally, the agroinfiltration technique utilizing viral expression vectors is useful for rapid generation of plants capable of producing huge amounts of protein as a primary production platform Thus, this transient expression system can be used on industrial scale

[00199] Further provided are any of a variety of different Agrobactenal plasmids, binary plasmids, or derivatives thereof such as pBIV, pBI1221, pGreen, etc , which can be used in these and other aspects of the invention Numerous suitable vectors are known in the art and can be directed and/or modified according to methods known in the art, or those described herein so as to utilize in the methods descπbed provided herein [00200] An exemplary launch vector, pBID4, contains the 35S promoter of cauliflower mosaic virus (a DNA plant virus) that drives initial transcription of the recombinant viral genome following introduction into plants, and the nos terminator, the transcriptional terminator of Agrobacterium nopalme synthase The vector further contains sequences of the tobacco mosaic virus genome including genes for virus replication (126/183K) and cell-t-cell movement (MP) The vector further contains a gene encoding a polypeptide of interest, inserted into a unique cloning site within the tobacco mosaic virus genome sequences and under the transcriptional control of the coat protein subgenomic mRNA promoter Because this "target gene" (ι e , gene encoding a protein or polypeptide of interest) replaces coding sequences for the TMV coat protein, the resultant viral vector is naked self-rephcatmg RNA that is less subject to recombination than CP-contaimng vectors, and that cannot effectively spread and survive in the environment Left and right border sequences (LB and RB) delimit the region of the launch vector that is transferred into plant cells following infiltration of plants with recombinant Agrobacterium carrying the vector Upon introduction of agrobactena carrying this vector into plant tissue (typically by agromfiltration but alternatively by injection or other means), multiple single-stranded DNA (ssDNA) copies of sequence between LB and RB are generated and released in a matter of minutes These introduced sequences are then amplified by viral replication Translation of the target gene results in accumulation of large amounts of target protein or polypeptide in a short period of time

[00201] In some embodiments, Agrobactenum-mediated transient expression produces up to about 5 g or more of target protein per kg of plant tissue For example, in some embodiments, up to about 4 g, about 3 g, about 2 g, about 1 g, or about 0 5 g of target protein is produced per kg of plant tissue In some embodiments, at least about 20 mg to about 500 mg, or about 50 mg to about 500 mg of target protein, or about 50 mg to about 200 mg, or about 50 mg, about 60 mg, about 70 mg, about 80 mg, about 90 mg, about 100 mg, about 110 mg, about 120 mg, about 130 mg, about 140 mg, about 150 mg, about 160 mg, about 170 mg, about 180 mg, about 190 mg, about 200 mg, about 250 mg, about 300 mg, about 350 mg, about 400 mg, about 450 mg, about 500 mg, about 550 mg, about 600 mg, about 650 mg, about 700 mg, about 750 mg, about 800 mg, about 850 mg, about 900 mg, about 950 mg, about 1000 mg, about 1500 mg, about 1750 mg, about 2000 mg, about 2500 mg, about 3000 mg or more of protein per kg of plant tissue is produced

[00202] In some embodiments, these expression levels are achieved within about 6, about 5, about 4, about 3, or about 2 weeks from infiltration In some embodiments, these expression levels are achieved within about 10, about 9, about 8, about 7, about 6, about 5, about 4, about 3, about 2 days, or even about 1 day, from introduction of the expression construct Thus, the time from introduction (e g , infiltration) to harvest is typically less than about 2 weeks, about 10 days, about 1 week or less This allows production of protein withm about 8 weeks or less from the selection of amino acid sequence (even including time for "preliminary" expression studies) Also, each batch of protein can typically be produced withm about 8 weeks, about 6 weeks, about 5 weeks, or less Those of ordinary skill in the art will appreciate that these numbers may vary somewhat depending on the type of plant used Most sprouts, including peas, will fall withm the numbers given Nicotiana benthamiana, however, may be grown longer, particularly pπor to infiltration, as they are slower growing (from a much smaller seed) Other expected adjustments will be clear to those of ordinary skill in the art based on biology of the particular plants utilized [00203] The present inventors have used a launch vector system to produce a variety of target proteins and polypeptides in a variety of different young plants hi some embodiments, certain pea varieties including for example, marrowfat pea, bill jump pea, yellow trapper pea, speckled pea, and green pea are particularly useful m the practice of this aspect of the invention

[00204] The inventors have also found that various Nicotiana plants are particularly useful in the practice of this aspect of the invention, including m particular Nicotiana benthamiana It will be understood by those of ordinary skill in the art that Nicotiana plants are generally not considered to be "sprouts " Nonetheless, the present invention teaches that young Nicotiana plants (particularly young Nicotiana benthamiana plants) are useful in the practice of the invention In general, in some embodiments, Nicotiana benthamiana plants are grown for a time sufficient to allow development of an appropπate amount of biomass prior to infiltration (; e , to delivery of agrobacteπa contaimng the launch vector) Typically, the plants are grown for a peπod of more than about 3 weeks, more typically more than about 4 weeks, or between about 5 to about 6 weeks to accumulate biomass pnor to infiltration [00205] The present inventors have further surprisingly found that, although both TMV and AlMV sequences can prove effective in such launch vector constructs, m some embodiments, AlMV sequences can be efficient at ensuring production of delivered protein or polypeptides

[00206] Thus, m certain particular embodiments of the present invention, proteins or polypeptides of interest are produced in young pea plants or young Nicotania plants (e g , Nicotiana benthamiana) from a launch vector that directs production of AlMV sequences carrying the gene of interest

Expression Constructs

[00207] Many features of expression constructs useful in accordance with the present invention will be specific to the particular expression system used, as discussed above However, certain aspects that may be applicable across different expression systems are discussed in further detail here

[00208] To give but one example, m many embodiments of the present invention, it will be desirable that expression of the protein or polypeptide (or nucleic acid) of interest be inducible In many such embodiments, production of an RNA encoding the protein or polypeptide of interest (and/or production of an antisense RNA) is under the control of an inducible (e g exogenously inducible) promoter Exogenously inducible promoters are caused to increase or decrease expression of a transcript in response to an external, rather than an internal stimulus A number of environmental factors can act as such an external stimulus In certain embodiments, transcription is controlled by a heat-inducible promoter, such as a heat-shock promoter

[00209] Externally inducible promoters may be particularly useful in the context of controlled, regulatable growth settings For example, using a heat-shock promoter the temperature of a contained environment may simply be raised to induce expression of the relevant transcript In will be appreciated, of course, that a heat inducible promoter could never be used in the outdoors because the outdoor temperature cannot be controlled The promoter would be turned on any time the outdoor temperature rose above a certain level Similarly, the promoter would be turned off every time the outdoor temperature dropped Such temperature shifts could occur in a single day, for example, turning expression on in the daytime and off at night A heat inducible promoter, such as those descπbed herein, would likely not even be practical for use in a greenhouse, which is susceptible to climatic shifts to almost the same degree as the outdoors Growth of genetically engineered plants in a greenhouse is quite costly In contrast, in the present system, every vanable can be controlled so that the maximum amount of expression can be achieved with every harvest [00210] Other externally-mducible promoters than can be utilized in accordance with the present invention include light inducible promoters Light-mducible promoters can be maintained as constitutive promoters if the light in the contained regulatable environment is always on Alternatively, expression of the relevant transcript can be turned on at a particular time during development by simply turning on the light

[00211] In yet other embodiments, a chemically inducible promoter is used to induce expression of the relevant transcπpt According to these embodiments, the chemical could simply be misted or sprayed onto a seed, embryo, or young plant (e g , seedling) to induce expression of the relevant transcπpt Spraying and misting can be precisely controlled and directed onto a particular seed, embryo, or young plant (e g , seedling) as desired A contained environment is devoid of wind or air currents, which could disperse the chemical away from the intended recipient, so that the chemical stays on the recipient for which it was intended

[00212] In some embodiments, the Plasmodium polypeptides of the invention can be co- expressed with chaperone proteins to assist in the folding of the Plasmodium polypeptide Molecular chaperones are well known in the art and can include Plasmodium chaperones, for example, protein disulfide isomerase (PDI), peptidyl-prolyl cis-trans isomerase (PPI), DnaJ or Hsp 40 homologues (Pfj), DnaK or Hsp 70 homologues (BiP), and endoplasmm homologue or Grp94 (Hsp 90), or homologues from other species

Production and Isolation of Antigen

[00213] In general, standard methods known in the art may be used for culturmg or growing plants, plant cells, and/or plant tissues in accordance with the invention (e g , clonal plants, clonal plant cells, clonal roots, clonal root lines, sprouts, sprouted seedlings, plants, etc ) for production of antigen(s) A wide vaπety of culture media and bioreactors have been employed to culture hairy root cells, root cell lines, and plant cells (see, for example, Gm et al , 2000, Biotechnol Adv , 18 1, Rao et al , 2002, Biotechnol Adv , 20 101, and references in both of the foregoing, all of which are incorporated herein by reference) Clonal plants may be grown in any suitable manner

[00214] In a certain embodiments, Plasmodium antigen polypeptides in accordance with the invention may be produced by any known method In some embodiments, a Plasmodium antigen polypeptide is expressed in a plant or portion thereof Proteins are isolated and purified in accordance with conventional conditions and techniques known in the art These include methods such as extraction, precipitation, chromatography, affinity chromatography, electrophoresis, and the like The present invention involves purification and affordable scaling up of production of Plasmodium antigen polypeptide(s) using any of a variety of plant expression systems known in the art and provided herein, including viral plant expression systems descπbed herein

[00215] hi many embodiments of the present invention, it will be desirable to isolate Plasmodium antigen polypeptide(s) for vaccine products Where a protein in accordance with the invention is produced from plant tissue(s) or a portion thereof, e g , roots, root cells, plants, plant cells, that express them, methods descπbed in further detail herein, or any applicable methods known in the art may be used for any of partial or complete isolation from plant material Where it is desirable to isolate the expression product from some or all of plant cells or tissues that express it, any available purification techniques maybe employed. Those of ordinary skill in the art are familiar with a wide range of fractionation and separation procedures (see, for example, Scopes et al , Protein Purification Principles and Practice, 3 rd Ed , Janson et al , 1993, Protein Purification Principles High Resolution Methods, and Applications, Wiley- VCH, 1998, Spπnger-Verlag, NY, 1993, and Roe, Protein Purification Techniques, Oxford University Press, 2001, each of which is incorporated herein by reference) Often, it will be desirable to render the product more than about 50%, about 60%, about 70%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% pure See, e g , U S Patents 6,740,740 and 6,841,659 (both of which are incorporated herein by reference) for discussion of certain methods useful for purifying substances from plant tissues or fluids [00216] Those skilled in the art will appreciate that a method of obtaining desired Plasmodium antigen polypeptide(s) product(s) is by extraction Plant material (e g , roots, leaves, etc ) may be extracted to remove desired products from residual biomass, thereby increasing the concentration and puπty of product Plants may be extracted in a buffered solution For example, plant material may be transferred into an amount of ice-cold water at a ratio of one to one by weight that has been buffered with, e g , phosphate buffer Protease inhibitors can be added as required The plant mateπal can be disrupted by vigorous blending or grinding while suspended in buffer solution and extracted biomass removed by filtration or centπfugation The product earned in solution can be further purified by additional steps or converted to a dry powder by freeze-drying or precipitation Extraction can be earned out by pressing Plants or roots can be extracted by pressing in a press or by being crushed as they are passed through closely spaced rollers Fluids expressed from crushed plants or roots are collected and processed according to methods well known in the art Extraction by pressing allows release of products in a more concentrated form However, overall yield of product may be lower than if product were extracted in solution [00217] In some embodiments, polypeptides can be further purified by chromatographic methods including, but not limited to anion exchange chromatography (Q Column) or ultrafiltration Polypeptides that contain His-tags can be purified using nickel-exchange chromatography according to standard methods

[00218] In some embodiments, produced proteins or polypeptides are not isolated from plant tissue but rather are provided in the context of live plants (e g , sprouted seedlings) In some embodiments, where the plant is edible, plant tissue containing expressed protein or polypeptide is provided directly for consumption Thus, the present invention provides edible young plant biomass (e g , edible sprouted seedlings) containing expressed protein or polypeptide

[00219] Where edible plants (e g , sprouted seedlings) express sufficient levels of pharmaceutical proteins or polypeptides and are consumed live, in some embodiments absolutely no harvesting occurs before the sprouted seedlings are consumed In this way, it is guaranteed that there is no harvest-induced proteolytic breakdown of the pharmaceutical protein before administration of the pharmaceutical protein to a subject in need of treatment For example, young plants (e g , sprouted seedlings) that are ready to be consumed can be delivered directly to a subject Alternatively, genetically engineered seeds or embryos are delivered to a subject in need of treatment and grown to the sprouted seedling stage by the subject In some embodiments, a supply of genetically engineered sprouted seedlings is provided to a subject, or to a clinician who will be treating subjects, so that a continual stock of sprouted seedlings expressing certain desirable pharmaceutical proteins may be cultivated This may be particularly valuable for populations in developing countries, where expensive pharmaceuticals are not affordable or deliverable The ease with which the sprouted seedlings in accordance with the invention can be grown makes the sprouted seedlings of the present invention particularly desirable for such developing populations [00220] In some embodiments, plant biomass is processed prior to consumption or formulation, for example, by homogenizing, crushing, drying, or extracting In some embodiments, the expressed protein or polypeptide is isolated or purified from the biomass and formulated into a pharmaceutical composition

[00221] For example, live plants (e g , sprouts) may be ground, crushed, or blended to produce a slurry of biomass, m a buffer containing protease inhibitors Preferably the buffer is at about 40C In certain embodiments, the biomass is air-dπed, spray dπed, frozen, or freeze-dπed As in mature plants, some of these methods, such as air-drying, may result in a loss of activity of the pharmaceutical protein or polypeptide However, because plants (e g , sprouted seedlings) may be very small and typically have a large surface area to volume ratio, this is much less likely to occur Those skilled in the art will appreciate that many techniques for harvesting the biomass that minimize proteolysis of the pharmaceutical protein or polypeptide are available and could be applied to the present invention

Vaccines

[00222] The present invention provides vaccine compositions comprising a least one Plasmodium antigen polypeptide, fusion thereof, and/or immunogenic portion(s) thereof, which are intended to elicit a physiological effect upon administration to a subject A vaccine protein may have healing curative or palliative properties against a disorder or disease and can be administered to ameliorate relieve, alleviate, delay onset of, reverse or lessen symptoms or seventy of a disease or disorder A vaccine compπsing a Plasmodium antigen polypeptide may have prophylactic properties and can be used to prevent or delay the onset of a disease or to lessen the seventy of such disease, disorder, or pathological condition when it does emerge or to reduce or block the transmission of the disease to an uninfected subject A physiological effect elicited by treatment of a subject with antigen according to the present invention can include an effective immune response Ingestion by a mosquito of blood containing such antibodies can serve to block the sexual-stage development of Plasmodium m the mosquito and thereby block transmission of Plasmodium to another, uninfected subject such that infection by an organism is thwarted Considerations for administration of Plasmodium antigen polypeptides to a subject m need thereof are discussed in further detail in the section below entitled "Administration "

[00223] In general, active vaccination involves the exposure of a subject's immune system to one or more agents that are recognized as unwanted, undesired, and/or foreign and elicit an endogenous immune response Typically, such an immune response results in the activation of antigen-specific naive lymphocytes that then give nse to antibody-secreting B cells or antigen-specific effector and memory T cells or both This approach can result m long-lived immunity that may be boosted from time to time by renewed exposure to the same antigenic matenal

[00224] In some embodiments, a vaccine composition compnsmg at least one Plasmodium antigen polypeptide is a subunit vaccine Pn general, a subunit vaccine compnses punfied antigens rather than whole organisms Subunit vaccines are not infectious, so they can safely be given to immunosuppressed people, and they are less likely to induce unfavorable immune reactions and/or other adverse side effects One potential disadvantage of subunit vaccines are that the antigens may not retain their native conformation, so that antibodies produced against the subunit may not recognize the same protein on the pathogen surface, and isolated protein does not stimulate the immune system as well as a whole organism vaccine Therefore, in some situations, it may be necessary to administer subumt vaccines in higher doses than a whole-agent vaccme (e g , live attenuated vaccines, inactivated pathogen vaccines, etc ) in order to achieve the same therapeutic effect In contrast, whole-agent vaccines, such as vaccines that utilize live attenuated or inactivated pathogens, typically yield a vigorous immune response, but their use has limitations For example, live vaccine strains can sometimes cause infectious pathologies, especially when administered to immune- compromised recipients

[00225] In some embodiments, vaccines in accordance with the present invention compπsing one or more plant-produced Plasmodium antigen polypeptides (e g , Pfs25, Pfs28, Pfs48/45, and Pfs230 polypeptides, as descπbed herein) can be administered to a subject and can stimulate immune responses hi some embodiments, less than about 200 μg, less than about 150 μg, less than about 100 μg, less than about 90 μg, less than about 80 μg, less than about 70 μg, less than about 60 μg, less than about 50 μg, less than about 40 μg, less than about 35 μg, less than about 30 μg, less than about 25 μg, less than about 20 μg, less than about 15 μg, less than about 5 μg, less than about 4 μg, less than about 3 μg, less than about 2 μg, less than about 1 μg, less than about 0 1 μg, less than about 0 01 μg of plant-produced Plasmodium antigen polypeptide and/or immunogenic portion thereof can be used to stimulate an immune response and/or to prevent, delay the onset of, and/or provide protection against Plasmodium infection (e g , malaria)

[00226] In some embodiments, the present invention provides vaccines against Plasmodium parasites In some embodiments, vaccines compnse an antigen that has been at least partially purified from non-antigemc components For example, a vaccine may be a Plasmodium antigen polypeptide, fusion thereof, and/or immunogenic portion thereof that is expressed in a live organism (such as a plant, virus, bacteπum, yeast, mammalian cell, egg, etc ), but is at least partially purified from the non-antigen components of the live organism In some embodiments, a vaccine is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 98%, or at least 99% purified from the non-antigen components of the organism in which the antigen was expressed In some embodiments, a vaccine may be a Plasmodium antigen polypeptide, fusion thereof, and/or immunogenic portion thereof that is chemically-synthesized [00227] In some embodiments, a vaccine may be a Plasmodium antigen polypeptide, fusion thereof, and/or immunogenic portion thereof that is expressed in a live organism (such as a plant, virus, bactenum, yeast, mammalian cell, egg, etc ), but is not at least partially purified from the non-antigen components of the live organism For example, a vaccine may be a Plasmodium antigen polypeptide, fusion thereof, and/or immunogenic portion thereof that is expressed in a live organism that is administered directly to a subject in order to elicit an immune response In some embodiments, a vaccine may be a Plasmodium antigen polypeptide, fusion thereof, and/or immunogenic portion thereof that is expressed in a plant, as descnbed herein, wherein the plant material is administered directly to a subject m order to elicit an immune response

[00228] The present invention provides pharmaceutical Plasmodium antigen polypeptides, fusions thereof, and/or immunogenic portions thereof, active as vaccines for therapeutic and/or prophylactic treatment and transmission blocking of Plasmodium infection (e g , malaria) In certain embodiments, Plasmodium antigen polypeptides may be produced by plant(s) or portion thereof (e g , root, cell, sprout, cell line, plant, etc ) in accordance with the invention hi certain embodiments, provided Plasmodium antigen polypeptides are expressed in plants, plant cells, and/or plant tissues (e g , sprouts, sprouted seedlings, roots, root culture, clonal cells, clonal cell lines, clonal plants, etc ), and can be used directly from plant or partially purified or purified in preparation for pharmaceutical administration to a subject [00229] The present invention provides plants, plant cells, and plant tissues expressing Plasmodium antigen polypeptides that maintain pharmaceutical activity when administered to a subject in need thereof Exemplary subjects include vertebrates (e g , mammals such as humans) According to the present invention, subjects include veterinary subjects such as non-human pπmates, bovmes, ovines, canines, felines, rodents, birds, etc In certain aspects, an edible plant or portion thereof (e g , sprout, root) is admimstered orally to a subject m a therapeutically effective amount In some aspects one or more Plasmodium antigen polypeptides are provided in a pharmaceutical preparation, as descnbed herein [00230] Where it is desirable to formulate a Plasmodium vaccine composing plant mateπal, it will often be desirable to have utilized a plant that is not toxic to the relevant recipient (e g , & human or other animal) Relevant plant tissue (e g , cells, roots, leaves) may simply be harvested and processed according to techniques known in the art, with due consideration to maintaining activity of the expressed product In certain embodiments, it is desirable to have expressed Plasmodium antigen polypeptides in an edible plant (and, specifically in edible portions of the plant) so that the material can subsequently be eaten For instance, where vaccine antigen is active after oral delivery (when properly formulated), it may be desirable to produce antigen protem in an edible plant portion, and to formulate expressed Plasmodium antigen polypeptide for oral delivery together with some or all of the plant material with which the protein was expressed

[00231] Vaccine compositions in accordance with the invention compπse one or more Plasmodium antigen polypeptides In certain embodiments, exactly one Plasmodium antigen polypeptide is included in an administered vaccine composition In certain embodiments, at least two Plasmodium antigen polypeptides are included m an administered vaccine composition In some aspects, combination vaccines may include one thermostable fusion protein compnsing a Plasmodium antigen polypeptide, in some aspects, two or more thermostable fusion proteins composing Plasmodium antigen polypeptides are provided [00232] In some embodiments, vaccine compositions compnse exactly one Plasmodium polypeptide (e g , exactly one polypeptide selected from the group consisting of Pfs25, Pfs28, Pfs48/45, and Pfs230 polypeptides) In some embodiments, vaccine compositions compnse exactly two Plasmodium polypeptides (e g , exactly two polypeptides selected from the group consisting of Pfs25, Pfs28, Pfs48/45, and Pfs230 polypeptides) In some embodiments, vaccine compositions compπse exactly three Plasmodium polypeptides (e g , exactly three polypeptides selected from the group consisting of Pfs25, Pfs28, Pfs48/45, and Pfs230 polypeptides) In some embodiments, vaccine compositions compπse four or more (e g , 4, 5, 6, 1, 8, 9, 10, 15, or more) Plasmodium polypeptide (e g , four or more polypeptides selected from the group consisting of Pfs25, Pfs28, Pfs48/45, and Pfs230 polypeptides) [00233] In some embodiments, vaccine compositions compπse polytopes (ι e , tandem fusions of two or more amino acid sequences) of two or more Plasmodium antigen polypeptides and/or immunogenic portions thereof For example, m some embodiments, a polytope compπses exactly one Pfs25, Pfs28, Pfs48/45, and/or Pfs230 polypeptide In some embodiments, a polytope compπses exactly two Pfs25, Pfs28, Pfs48/45, and/or Pfs230 polypeptides In some embodiments, a polytope compπses exactly three Pfs25, Pfs28, Pfs48/45, and/or Pfs230 polypeptides In some embodiments, a polytope compπses four or more (e g , 4, 5, 6, 7, 8, 9, 10, 15, or more) Pfs25, Pfs28, Pfs48/45, and/or Pfs230 polypeptides

[00234] Where combination vaccines are utilized, it will be understood that any combination of Plasmodium antigen polypeptides may be used for such combinations Compositions may include multiple Plasmodium antigen polypeptides, including multiple antigens provided herein Furthermore, compositions may include one or more antigens provided herein with one or more additional antigens Combinations of Plasmodium antigen polypeptides include Plasmodium antigen polypeptides derived from one or more various subtypes or strains such that immunization confers immune response against more than one infection type Combinations of Plasmodium antigen polypeptides may include at least one, at least two, at least three, at least four or more antigens denved from different subtypes or strains In some combinations, at least two or at least three antigens from different subtypes are combined m one vaccine composition Furthermore, combination vaccines may utilize Plasmodium antigen polypeptides and antigen from one or more unique infectious agents

Additional Vaccine Components

[00235] Vaccine compositions in accordance with the invention may include additionally any suitable adjuvant to enhance the immunogenicity of the vaccine when administered to a subject For example, such adjuvant(s) may include, without limitation, saponins, such as extracts of Quillaja saponaπa (QS), including purified subtractions of food grade QS such as Quil A and QS21 , alum, metallic salt particles (e g , aluminum hydroxide, aluminum phosphate, etc ), mineral oil, MF59, Malp2, incomplete Freund's adjuvant, complete Freund's adjuvant, alhydrogel, 3 De-O-acylated monophosphoryl lipid A (3D-MPL), lipid A, Bortadella pertussis, Mycobacterium tuberculosis, Merck Adjuvant 65 (Merck and Company, me , Rahway, NJ), AS03, squalene, virosomes, oil-m-water emulsions (e g , SBAS2), liposome formulations {e g , SBASl), etc Further adjuvants include immunomodulatory oligonucleotides, for example unmethylated CpG sequences as disclosed m WO 96/02555 Combinations of different adjuvants, such as those mentioned hereinabove, are contemplated as providing an adjuvant which is a preferential stimulator of THl cell response For example, QS21 can be formulated together with 3D-MPL The ratio of QS21 3D-MPL will typically be in the order of 1 10 to 10 1 , 1 5 to 5 1 , and often substantially 1 1 The desired range for optimal synergy may be 2 5 1 to 1 1 3D-MPL QS21 Doses of purified QS extracts suitable for use in a human vaccine formulation are from 0 01 mg to 10 mg per kilogram of bodyweight

[00236] It should be noted that certain thermostable proteins (e g , lichenase) may themselves demonstrate immunoresponse potentiating activity, such that use of such protein whether in a fusion with a Plasmodium antigen polypeptide or separately may be considered use of an adjuvant Thus, inventive vaccine compositions may further comprise one or more adjuvants Certain vaccine compositions may comprise two or more adjuvants Furthermore, depending on formulation and routes of administration, certain adjuvants may be desired m particular formulations and/or combinations

[00237] In certain situations, it may be desirable to prolong the effect of an inventive vaccine by slowing the absorption of one or more components of the vaccine product (e g , protein) that is subcutaneously or intramuscularly injected This may be accomplished by use of a liquid suspension of crystalline or amorphous mateπal with poor water solubility The rate of absorption of product then depends upon its rate of dissolution, which in turn, may depend upon size and form Alternatively or additionally, delayed absorption of a parenterally administered product is accomplished by dissolving or suspending the product in an oil vehicle Injectable depot forms are made by forming microcapsule matrices of protein in biodegradable polymers such as polylactide-polyglycohde Depending upon the ratio of product to polymer and the nature of the particular polymer employed, rate of release can be controlled Examples of biodegradable polymers include poly(orthoesters) and poly(anhydπdes) Depot injectable formulations may be prepared by entrapping product in liposomes or microemulsions, which are compatible with body tissues Alternative polymeric delivery vehicles can be used for oral formulations For example, biodegradable, biocompatible polymers such as ethylene vmyl acetate, polyanhydπdes, polyglycolic acid, collagen, polyorthoesters, and polylactic acid, etc , can be used Antigen(s) or an immunogenic portions thereof may be formulated as microparticles, e g , m combination with a polymeric delivery vehicle

[00238] Enterally administered preparations of vaccine antigens may be introduced in solid, semi-solid, suspension or emulsion form and may be compounded with any pharmaceutically acceptable carriers, such as water, suspending agents, and emulsifying agents Antigens may be administered by means of pumps or sustamed-release forms, especially when administered as a preventive measure, so as to prevent the development of disease in a subject or to ameliorate or delay an already established disease Supplementary active compounds, e g , compounds independently active against the disease or clinical condition to be treated, or compounds that enhance activity of an inventive compound, can be incorporated into or administered with compositions Flavorants and coloπng agents can be used

[00239] Inventive vaccine products, optionally together with plant tissue, are particularly well suited for oral administration as pharmaceutical compositions Oral liquid formulations can be used and may be of particular utility for pediatric populations Harvested plant mateπal maybe processed in any of a variety of ways (e g , air drying, freeze drying, extraction etc ), depending on the properties of the desired therapeutic product and its desired form Such compositions as descπbed above may be ingested orally alone or ingested together with food or feed or a beverage Compositions for oral administration include plants, extractions of plants, and proteins purified from infected plants provided as dry powders, foodstuffs, aqueous or non-aqueous solvents, suspensions, or emulsions Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oil, fish oil, and injectable organic esters Aqueous earners include water, water-alcohol solutions, emulsions or suspensions, including salme and buffered medial parenteral vehicles including sodium chloride solution, Ringer's dextrose solution, dextrose plus sodium chloπde solution, Ringer's solution containing lactose or fixed oils Examples of dry powders include any plant biomass that has been dned, for example, freeze dried, air dried, or spray dπed For example, plants may be air dπed by placing them in a commercial air dryer at about 120 0F until biomass contains less than 5% moisture by weight The dπed plants may be stored for further processing as bulk solids or further processed by gπnding to a desired mesh sized powder Alternatively or additionally, freeze-drying may be used for products that are sensitive to air-drymg Products may be freeze dπed by placing them into a vacuum dπer and dned frozen under a vacuum until the biomass contains less than about 5% moisture by weight. Dned mateπal can be further processed as descπbed herein

[00240] Plant-denved matenal may be administered as or together with one or more herbal preparations Useful herbal preparations include liquid and solid herbal preparations Some examples of herbal preparations include tinctures, extracts (e g , aqueous extracts, alcohol extracts), decoctions, dned preparations (e g , air-dπed, spray dned, frozen, or freeze-dned), powders (e g , lyophihzed powder), and liquid Herbal preparations can be provided in any standard delivery vehicle, such as a capsule, tablet, suppository, liquid dosage, etc Those skilled in the art will appreciate the vaπous formulations and modalities of delivery of herbal preparations that may be applied to the present invention

[00241] Pharmaceutical formulations of the present invention may additionally compnse a pharmaceutically acceptable excipient, which, as used herein, includes any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubncants and the like, as suited to the particular dosage form desired Remington's The Science and Practice of Pharmacy, 21s' Edition, A R Gennaro, (Lippmcott, Williams & Wilkins, Baltimore, MD, 2006) discloses vanous excipients used in formulating pharmaceutical compositions and known techniques for the preparation thereof Except insofar as any conventional excipient medium is incompatible with a substance or its derivatives, such as by producing any undesirable biological effect or otherwise interacting m a deleterious manner with any other component(s) of the pharmaceutical composition, its use is contemplated to be within the scope of this invention

[00242] In some embodiments, the pharmaceutically acceptable excipient is at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% pure In some embodiments, the excipient is approved for use in humans and for veterinary use In some embodiments, the excipient is approved by United States Food and Drug Administration In some embodiments, the excipient is pharmaceutical grade In some embodiments, the excipient meets the standards of the United States Pharmacopoeia (USP), the European Pharmacopoeia (EP), the British Pharmacopoeia, and/or the International Pharmacopoeia [00243] Pharmaceutically acceptable excipients used in the manufacture of pharmaceutical compositions include, but are not limited to, inert diluents, dispersing and/or granulating agents, surface active agents and/or emulsifiers, disintegrating agents, binding agents, preservatives, buffeπng agents, lubricating agents, and/or oils Such excipients may optionally be included in the formulations Excipients such as cocoa butter and suppository waxes, coloπng agents, coating agents, sweetening, flavoring, and/or perfuming agents can be present in the composition, according to the judgment of the formulator [00244] Exemplary diluents include, but are not limited to, calcium carbonate, sodium carbonate, calcium phosphate, dicalcium phosphate, calcium sulfate, calcium hydrogen phosphate, sodium phosphate lactose, sucrose, cellulose, microcrystalline cellulose, kaolm, manmtol, sorbitol, inositol, sodium chloπde, dry starch, cornstarch, powdered sugar, etc , and/or combinations thereof

[00245] Exemplary granulating and/or dispersing agents include, but are not limited to, potato starch, corn starch, tapioca starch, sodium starch glycolate, clays, alginic acid, guar gum, citrus pulp, agar, bentomte, cellulose and wood products, natural sponge, cation- exchange resms, calcium carbonate, silicates, sodium carbonate, cross-linked polyvinylpyrrolidone) (crospovidone), sodium carboxymethyl starch (sodium starch glycolate), carboxymethyl cellulose, cross-linked sodium carboxymethyl cellulose (croscarmellose), methylcellulose, pregelatimzed starch (starch 1500), microcrystalline starch, water insoluble starch, calcium carboxymethyl cellulose, magnesium aluminum silicate (VEEGUM®), sodium lauryl sulfate, quaternary ammonium compounds, etc , and/or combinations thereof [00246] Exemplary surface active agents and/or emulsifiers include, but are not limited to, natural emulsifiers (e g , acacia, agar, alginic acid, sodium alginate, tragacanth, chondrux, cholesterol, xanthan, pectm, gelatin, egg yolk, casem, wool fat, cholesterol, wax, and lecithin), colloidal clays (e g , bentomte [aluminum silicate] and VEEGUM® [magnesium aluminum silicate]), long chain amino acid denvatives, high molecular weight alcohols (e g , stearyl alcohol, cetyl alcohol, oleyl alcohol, tπacetm monostearate, ethylene glycol distearate, glyceryl monostearate, and propylene glycol monostearate, polyvinyl alcohol), carbomers (e g , carboxy polymethylene, polyacrylic acid, acrylic acid polymer, and carboxyvmyl polymer), carrageenan, cellulosic denvatives (e g , carboxymethylcellulose sodium, powdered cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, methylcellulose), sorbitan fatty acid esters (e g , polyoxyethylene sorbitan monolaurate [TWEEN®20], polyoxyethylene sorbitan [TWEEN ®60], polyoxyethylene sorbitan monooleate [TWEEN ®80], sorbitan monopalmitate [SPAN®40], sorbitan monostearate [SPAN®60], sorbitan tπstearate [SPAN®65], glyceryl monooleate, sorbitan monooleate [SPAN ®80]), polyoxyethylene esters (e g , polyoxyethylene monostearate [MYRJ®45], polyoxyethylene hydrogenated castor oil, polyethoxylated castor oil, polyoxymethylene stearate, and SOLUTOL®), sucrose fatty acid esters, polyethylene glycol fatty acid esters (e g , CREMOPHOR®), polyoxyethylene ethers, (e g , polyoxyethylene lauryl ether [BRIJ®30]), poly(vinyl-pyrrolidone), diethylene glycol monolaurate, tπethanolamine oleate, sodium oleate, potassium oleate, ethyl oleate, oleic acid, ethyl laurate, sodium lauryl sulfate, PLURONIC®F 68, POLOXAMER®188, cetnmonium bromide, cetylpyndimum chloride, benzalkomum chloπde, docusate sodium, etc and/or combinations thereof

[00247] Exemplary binding agents include, but are not limited to, starch (e g , cornstarch, starch paste, etc ), gelatin, sugars (e g , sucrose, glucose, dextrose, dextrin, molasses, lactose, lactitol, mannitol, etc ), natural and synthetic gums (e g , acacia, sodium alginate, extract of Irish moss, panwar gum, ghatti gum, mucilage of isapol husks, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, microcrystallme cellulose, cellulose acetate, polyvinylpyrrolidone), magnesium aluminum silicate [VEEGUM®], larch arabogalactan, etc ), alginates, polyethylene oxide, polyethylene glycol, inorganic calcium salts, silicic acid, polymethacrylates, waxes, water, alcohol, etc , and combinations thereof [00248] Exemplary preservatives may include, but are not limited to, antioxidants, chelating agents, antimicrobial preservatives, antifungal preservatives, alcohol preservatives, acidic preservatives, and/or other preservatives Exemplary antioxidants include, but are not limited to, alpha tocopherol, ascorbic acid, acorbyl palmitate, butylated hydroxyamsole, butylated hydroxytoluene, monothioglycerol, potassium metabisulfite, propionic acid, propyl gallate, sodium ascorbate, sodium bisulfite, sodium metabisulfite, and/or sodium sulfite Exemplary chelating agents include ethylenediammetetraacetic acid (EDTA), citric acid monohydrate, disodmm edetate, dipotassium edetate, edetic acid, fumanc acid, malic acid, phosphoπc acid, sodium edetate, tartaric acid, and/or tπsodium edetate Exemplary antimicrobial preservatives include, but are not limited to, benzalkomum chloride, benzethomum chloride, benzyl alcohol, bronopol, cetπmide, cetylpyndimum chloride, chlorhexidme, chlorobutanol, chlorocresol, chloroxylenol, cresol, ethyl alcohol, glyceπn, hexetidine, imidurea, phenol, phenoxyethanol, phenylethyl alcohol, phenylmercuπc nitrate, propylene glycol, and/or thimerosal Exemplary antifungal preservatives include, but are not limited to, butyl paraben, methyl paraben, ethyl paraben, propyl paraben, benzoic acid, hydroxybenzoic acid, potassium benzoate, potassium sorbate, sodium benzoate, sodium propionate, and/or sorbic acid Exemplary alcohol preservatives include, but are not limited to, ethanol, polyethylene glycol, phenol, phenolic compounds, bisphenol, chlorobutanol, hydroxybenzoate, and/or phenylethyl alcohol Exemplary acidic preservatives include, but are not limited to, vitamin A, vitamin C, vitamin E, beta-carotene, citric acid, acetic acid, dehydroacetic acid, ascorbic acid, sorbic acid, and/or phytic acid Other preservatives include, but are not limited to, tocopherol, tocopherol acetate, deteroxime mesylate, cetπmide, butylated hydroxyamsol (BHA), butylated hydroxytoluened (BHT), ethylenediamine, sodium lauryl sulfate (SLS), sodium lauryl ether sulfate (SLES), sodium bisulfite, sodium metabisulfite, potassium sulfite, potassium metabisulfite, GLYDANT PLUS®, PHENONIP®, methylparaben, GERMALL®115, GERMABEN®II, NEOLONE, KATHON, and/or EUXYL*

[00249] Exemplary buffeπng agents include, but are not limited to, citrate buffer solutions, acetate buffer solutions, phosphate buffer solutions, ammonium chloride, calcium carbonate, calcium chloride, calcium citrate, calcium glubionate, calcium gluceptate, calcium gluconate, D-glucomc acid, calcium glycerophosphate, calcium lactate, propanoic acid, calcium levulmate, pentanoic acid, dibasic calcium phosphate, phosphoπc acid, tπbasic calcium phosphate, calcium hydroxide phosphate, potassium acetate, potassium chloπde, potassium gluconate, potassium mixtures, dibasic potassium phosphate, monobasic potassium phosphate, potassium phosphate mixtures, sodium acetate, sodium bicarbonate, sodium chloπde, sodium citrate, sodium lactate, dibasic sodium phosphate, monobasic sodium phosphate, sodium phosphate mixtures, tromethamme, magnesium hydroxide, aluminum hydroxide, alginic acid, pyrogen-free water, isotonic saline, Ringer's solution, ethyl alcohol, etc , and/or combinations thereof

[00250] Exemplary lubricating agents include, but are not limited to, magnesium stearate, calcium stearate, steanc acid, silica, talc, malt, glyceryl behanate, hydrogenated vegetable oils, polyethylene glycol, sodium benzoate, sodium acetate, sodium chloπde, leucine, magnesium lauryl sulfate, sodium lauryl sulfate, etc , and combinations thereof [00251] Exemplary oils include, but are not limited to, almond, apricot kernel, avocado, babassu, bergamot, black current seed, borage, cade, camomile, canola, caraway, carnauba, castor, cinnamon, cocoa butter, coconut, cod liver, coffee, corn, cotton seed, emu, eucalyptus, evening primrose, fish, flaxseed, geraniol, gourd, grape seed, hazel nut, hyssop, isopropyl mynstate, jojoba, kukui nut, lavandm, lavender, lemon, litsea cubeba, macadamia nut, mallow, mango seed, meadowfoam seed, mink, nutmeg, olive, orange, orange roughy, palm, palm kernel, peach kernel, peanut, poppy seed, pumpkin seed, rapeseed, nee bran, rosemary, safflower, sandalwood, sasquana, savoury, sea buckthorn, sesame, shea butter, silicone, soybean, sunflower, tea tree, thistle, tsubaki, vetiver, walnut, and wheat germ oils Exemplary oils include, but are not limited to, butyl stearate, caprylic tπglyceπde, capπc tπglyceπde, cyclomethicone, diethyl sebacate, dimethicone 360, isopropyl mynstate, mineral oil, octyldodecanol, oleyl alcohol, silicone oil, and/or combinations thereof [00252] Liquid dosage forms for oral and parenteral administration include, but are not limited to, pharmaceutically acceptable emulsions, rmcroemulsions, solutions, suspensions, syrups, and/or elixirs In addition to active ingredients, liquid dosage forms may compnse inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof Besides inert diluents, oral compositions can include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavonng, and/or perfuming agents In certain embodiments for parenteral administration, compositions are mixed with solubihzing agents such a CREMOPHOR®, alcohols, oils, modified oils, glycols, polysorbates, cyclodextnns, polymers, and/or combinations thereof [00253] Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing agents, wetting agents, and/or suspending agents Stenle injectable preparations may be stenle injectable solutions, suspensions, and/or emulsions in nontoxic parenterally acceptable diluents and/or solvents, for example, as a solution in 1 ,3-butanediol Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U S P , and isotonic sodium chloπde solution Steπle, fixed oils are conventionally employed as a solvent or suspending medium For this purpose any bland fixed oil can be employed including synthetic mono- or diglyceπdes Fatty acids such as oleic acid can be used in the preparation ofinjectables

[00254] Injectable formulations can be sterilized, for example, by filtration through a bactenal-retaming filter, and/or by incorporating sterilizing agents in the form of stenle solid compositions which can be dissolved or dispersed in steπle water or other stenle injectable medium prior to use

[00255] Compositions for rectal or vaginal administration are typically suppositones which can be prepared by mixing compositions with suitable non-irπtating excipients such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active ingredient

[00256] Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules In such solid dosage forms, the active ingredient is mixed with at least one inert, pharmaceutically acceptable excipient such as sodium citrate or dicalcium phosphate and/or fillers or extenders (e g , starches, lactose, sucrose, glucose, mannitol, and silicic acid), binders (e g , carboxymethylcellulose, alginates, gelatin, polyvmylpyrrolidinone, sucrose, and acacia), humectants (e g , glycerol), disintegrating agents (e g , agar, calcium carbonate, potato starch, tapioca starch, algimc acid, certain silicates, and sodium carbonate), solution retarding agents (e g , paraffin), absorption accelerators (e g , quaternary ammonium compounds), wetting agents (e g , cetyl alcohol and glycerol monostearate), absorbents (e g , kaolin and bentomte clay), and lubricants (e g , talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate), and mixtures thereof In the case of capsules, tablets and pills, the dosage form may compose buffeπng agents [00257] Solid compositions of a similar type may be employed as fillers in soft and hard- filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteπc coatings and other coatings well known in the pharmaceutical formulating art They may optionally compnse opacifying agents and can be of a composition that they release the active mgredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner Examples of embedding compositions which can be used include polymeric substances and waxes Solid compositions of a similar type may be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like

[00258] Vaccine products, optionally together with plant tissue, are particularly well suited for oral administration as pharmaceutical compositions Oral liquid formulations can be used and may be of particular utility for pediatric populations Harvested plant mateπal may be processed in any of a variety of ways (e g , air drying, freeze drying, extraction etc ), depending on the properties of the desired therapeutic product and its desired form Such compositions as descπbed above may be ingested orally alone or ingested together with food or feed or a beverage Compositions for oral administration include plants, extractions of plants, and proteins purified from infected plants provided as dry powders, foodstuffs, aqueous or non-aqueous solvents, suspensions, or emulsions Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oil, fish oil, and injectable organic esters Aqueous earners include water, water-alcohol solutions, emulsions or suspensions, including saline and buffered medial parenteral vehicles including sodium chloride solution, Ringer's dextrose solution, dextrose plus sodium chloπde solution, Ringer's solution containing lactose or fixed oils Examples of dry powders include any plant biomass that has been dπed, for example, freeze dπed, air dπed, or spray dried For example, plants may be air dπed by placing them in a commercial air dryer at about 12O0F until biomass contains less than 5% moisture by weight Dπed plants may be stored for further processing as bulk solids or further processed by gnnding to a desired mesh sized powder Alternatively or additionally, freeze-drymg may be used for products that are sensitive to air-drymg Products may be freeze dπed by placing them into a vacuum drier and dned frozen under a vacuum until the biomass contains less than about 5% moisture by weight Dned matenal can be further processed as descπbed herein

[00259] Plant-deπved matenal may be administered as or together with one or more herbal preparations Useful herbal preparations include liquid and solid herbal preparations Some examples of herbal preparations include tinctures, extracts (e. g , aqueous extracts, alcohol extracts), decoctions, dned preparations (e g , air-dned, spray dned, frozen, or freeze-dπed), powders (e g , lyophihzed powder), and liquid Herbal preparations can be provided in any standard delivery vehicle, such as a capsule, tablet, suppository, liquid dosage, etc Those skilled in the art will appreciate the various formulations and modalities of delivery of herbal preparations that may be applied to the present invention

[00260] In some methods, a plant or portion thereof expressing a Plasmodium antigen polypeptide according to the present invention, or biomass thereof, is administered orally as medicinal food Such edible compositions are typically consumed by eating raw, if in a solid form, or by drinking, if in liquid form The plant mateπal can be directly ingested without a pπor processing step or after minimal culinary preparation For example, a vaccine antigen may be expressed in a sprout which can be eaten directly For instance, vaccine antigens expressed in an alfalfa sprout, mung bean sprout, or spinach or lettuce leaf sprout, etc In some embodiments, plant biomass may be processed and the mateπal recovered after the processing step is ingested

[00261] Processing methods useful m accordance with the present invention are methods commonly used in the food or feed industry Final products of such methods typically include a substantial amount of an expressed antigen and can be conveniently eaten or drank The final product may be mixed with other food or feed forms, such as salts, earners, favor enhancers, antibiotics, and the like, and consumed in solid, semi-solid, suspension, emulsion, or liquid form Such methods can include a conservation step, such as, e g , pasteurization, cooking, or addition of conservation and preservation agents Any plant may be used and processed in the present invention to produce edible or drinkable plant matter The amount of Plasmodium antigen polypeptide in a plant-denved preparation may be tested by methods standard in the art, e g , gel electrophoresis, ELISA, or western blot analysis, using a probe or antibody specific for product This determination may be used to standardize the amount of vaccine antigen protein ingested For example, the amount of vaccine antigen may be determined and regulated, for example, by mixing batches of product having different levels of product so that the quantity of mateπal to be drunk or eaten to ingest a single dose can be standardized A contained, regulatable environment in accordance with the invention, however, should minimize the need to carry out such standardization procedures [00262] A vaccine protein produced m a plant cell or tissue and eaten by a subject may be preferably absorbed by the digestive system One advantage of the ingestion of plant tissue that has been only minimally processed is to provide encapsulation or sequestration of the protein in cells of the plant Thus, product may receive at least some protection from digestion in the upper digestive tract before reaching the gut or intestine and a higher proportion of active product would be available for uptake [00263] Dosage forms for topical and/or transdermal administration of a compound m accordance with this invention may include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants and/or patches Generally, the active ingredient is admixed under sterile conditions with a pharmaceutically acceptable excipient and/or any needed preservatives and/or buffers as may be required Additionally, the present invention contemplates the use of transdermal patches, which often have the added advantage of providing controlled delivery of a compound to the body Such dosage forms may be prepared, for example, by dissolving and/or dispensing the compound in the proper medium Alternatively or additionally, the rate may be controlled by either providing a rate controlling membrane and/or by dispersing the compound in a polymer matπx and/or gel [00264] Suitable devices for use in delivering intradermal pharmaceutical compositions descπbed herein include short needle devices such as those descπbed in U S Patents 4,886,499, 5,190,521, 5,328,483, 5,527,288, 4,270,537, 5,015,235, 5,141,496, and 5,417,662 Intradermal compositions may be administered by devices which limit the effective penetration length of a needle into the skm, such as those descπbed in PCT publication WO 99/34850 and functional equivalents thereof Jet injection devices which deliver liquid vaccines to the dermis via a liquid jet injector and/or via a needle which pierces the stratum corneum and produces a jet which reaches the dermis are suitable Jet injection devices are descnbed, for example, in U S Patents 5,480,381, 5,599,302, 5,334,144, 5,993,412, 5,649,912, 5,569,189, 5,704,911, 5,383,851, 5,893,397, 5,466,220, 5,339,163, 5,312,335, 5,503,627, 5,064,413, 5,520,639, 4,596,556, 4,790,824, 4,941,880, 4,940,460, and PCT publications WO 97/37705 and WO 97/13537 Ballistic powder/particle delivery devices which use compressed gas to accelerate vaccine in powder form through the outer layers of the skm to the dermis are suitable Alternatively or additionally, conventional syringes may be used in the classical mantoux method of intradermal administration [00265] Formulations suitable for topical administration include, but are not limited to, liquid and/or semi liquid preparations such as liniments, lotions, oil in water and/or water m oil emulsions such as creams, ointments and/or pastes, and/or solutions and/or suspensions Topically admimstrable formulations may, for example, compπse from about 1% to about 10% (w/w) active ingredient, although the concentration of the active ingredient may be as high as the solubility limit of the active ingredient in the solvent Formulations for topical administration may further compπse one or more of the additional ingredients descπbed herein [00266] A pharmaceutical composition in accordance with the invention may be prepared, packaged, and/or sold m a formulation suitable for pulmonary administration via the buccal cavity Such a formulation may compπse dry particles which comprise the active ingredient and which have a diameter m the range from about 0 5 nm to about 7 nm or from about 1 run to about 6 nm Such compositions are conveniently in the form of dry powders for administration using a device compnsing a dry powder reservoir to which a stream of propellant may be directed to disperse the powder and/or using a self propelling solvent/powder dispensing container such as a device compnsing the active ingredient dissolved and/or suspended in a low-boilmg propellant in a sealed container Such powders compπse particles wherein at least 98% of the particles by weight have a diameter greater than 0 5 nm and at least 95% of the particles by number have a diameter less than 7 nm Alternatively, at least 95% of the particles by weight have a diameter greater than 1 nm and at least 90% of the particles by number have a diameter less than 6 nm Dry powder compositions may include a solid fine powder diluent such as sugar and are conveniently provided in a unit dose form

[00267] Low boiling propellants generally include liquid propellants having a boiling point of below 65 0F at atmosphenc pressure Generally the propellant may constitute 50% to 99 9% (w/w) of the composition, and the active ingredient may constitute 0 1% to 20% (w/w) of the composition The propellant may further compnse additional ingredients such as a liquid non-iomc and/or solid anionic surfactant and/or a solid diluent (which may have a particle size of the same order as particles compnsing the active ingredient) [00268] Pharmaceutical compositions in accordance with the invention formulated for pulmonary delivery may provide the active ingredient in the form of droplets of a solution and/or suspension Such formulations may be prepared, packaged, and/or sold as aqueous and/or dilute alcoholic solutions and/or suspensions, optionally stenle, compnsing the active ingredient, and may conveniently be administered using any nebuhzation and/or atomization device Such formulations may further compnse one or more additional ingredients including, but not limited to, a flavonng agent such as sacchann sodium, a volatile oil, a buffenng agent, a surface-active agent, and/or a preservative such as methylhydroxybenzoate The droplets provided by this route of administration may have an average diameter in the range from about 0 1 ran to about 200 nm

[00269] Formulations descnbed herein as bemg useful for pulmonary delivery are useful for intranasal delivery of a pharmaceutical composition Another formulation suitable for intranasal administration is a coarse powder comprising the active ingredient and having an average particle from about 02 μm to 500 μm Such a formulation is administered in the manner in which snuff is taken, i e , by rapid inhalation through the nasal passage from a container of the powder held close to the nose

[00270] Formulations suitable for nasal administration may, for example, comprise from about as little as 0 1% (w/w) and as much as 100% (w/w) of the active ingredient, and may compnse one or more of the additional ingredients descπbed herein A pharmaceutical composition in accordance with the invention may be prepared, packaged, and/or sold in a formulation suitable for buccal administration Such formulations may, for example, be in the form of tablets and/or lozenges made using conventional methods, and may, for example, 0 1% to 20% (w/w) active ingredient, the balance comprising an orally dissolvable and/or degradable composition and, optionally, one or more of the additional ingredients descπbed herein Alternately, formulations suitable for buccal administration may compnse a powder and/or an aerosolized and/or atomized solution and/or suspension compnsing the active ingredient Such powdered, aerosolized, and/or aerosolized formulations, when dispersed, may have an average particle and/or droplet size in the range from about 0 1 nm to about 200 nm, and may further compnse one or more of the additional ingredients descnbed herein [00271] A pharmaceutical composition in accordance with the invention may be prepared, packaged, and/or sold in a formulation suitable for ophthalmic administration Such formulations may, for example, be in the form of eye drops including, for example, a 0 1/1 0% (w/w) solution and/or suspension of the active ingredient in an aqueous or oily liquid excipient Such drops may further compnse buffenng agents, salts, and/or one or more other of the additional ingredients descnbed herein Other opthalmically-admimstrable formulations which are useful include those which compnse the active ingredient in microcrystallme form and/or m a liposomal preparation Ear drops and/or eye drops are contemplated as being within the scope of this invention

[00272] In certain situations, it may be desirable to prolong the effect of a vaccine by slowing the absorption of one or more components of the vaccine product (e g , protein) that is subcutaneously or intramuscularly injected This may be accomplished by use of a liquid suspension of crystalline or amorphous matenal with poor water solubility The rate of absorption of product then depends upon its rate of dissolution, which in turn, may depend upon size and form Alternatively or additionally, delayed absorption of a parenterally administered product is accomplished by dissolving or suspending the product in an oil vehicle Injectable depot forms are made by forming microcapsule matnces of protein in biodegradable polymers such as polylactide-polyglycohde Depending upon the ratio of product to polymer and the nature of the particular polymer employed, rate of release can be controlled Examples of biodegradable polymers include poly(orthoesters) and poly(anhydndes) Depot injectable formulations may be prepared by entrapping product in liposomes or microemulsions, which are compatible with body tissues Alternative polymeric delivery vehicles can be used for oral formulations For example, biodegradable, biocompatible polymers such as ethylene vinyl acetate, polyanhydπdes, polyglycolic acid, collagen, polyorthoesters, and polylactic acid, etc , can be used Antigen(s) or an immunogenic portions thereof may be formulated as microparticles, e g , in combination with a polymeric delivery vehicle

[00273] General considerations m the formulation and/or manufacture of pharmaceutical agents may be found, for example, in Remington The Science and Practice of Pharmacy 21s' ed , Lippincott Williams & Wilkms, 2005

Administration

[00274] Among other things, present invention provides vaccines In some embodiments, vaccines m accordance with the present invention may be administered to a subject m order to stimulate an immune response and/or confer protectivity In some embodiments, vaccines are administered at doses comprising about 200 μg, about 150 μg, about 100 μg, about 90 μg, about 80 μg, about 70 μg, about 60 μg, about 50 μg, about 40 μg, about 35 μg, about 30 μg, about 25 μg, about 20 μg, about 15 μg, about 5 μg, about 4 μg, about 3 μg, about 2 μg, about 1 μg, about 0 1 μg, about 0 01 μg, of plant-produced Plasmodium antigen polypeptide, fusion thereof, and/or immunogenic portion thereof to a subject m need thereof In some embodiments, the plant-produced Plasmodium antigen polypeptide, fusion thereof, and/or immunogenic portion thereof has been at least partially purified from non-antigemc components, as descπbed herein In some embodiments, the plant-produced Plasmodium antigen polypeptide, fusion thereof, and/or immunogenic portion thereof has not been at least partially purified from non-antigemc components, as described herein Suitable vaccine compositions for administration to a subject are descπbed in further detail in the section above, entitled "Vaccines "

[00275] Plasmodium antigen polypeptides, fusions thereof, and/or immunogenic portions thereof in accordance with the invention and/or pharmaceutical compositions thereof (e g , vaccines) may be administered using any amount and any route of administration effective for treatment [00276] The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the seventy of the infection, the particular composition, its mode of administration, its mode of activity, and the like Plasmodium antigen polypeptides are typically formulated in dosage unit form for ease of administration and uniformity of dosage It will be understood, however, that the total daily usage of the compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment The specific therapeutically effective dose level for any particular subject or organism will depend upon a variety of factors including the disorder being treated and the seventy of the disorder, the activity of the specific Plasmodium antigen polypeptide employed, the specific pharmaceutical composition administered, the half-life of the composition after administration, the age, body weight, general health, sex, and diet of the subject, the time of administration, route of administration, and rate of excretion of the specific compound employed, the duration of the treatment, drugs used in combination or coincidental with the specific compound employed, and like factors, well known m the medical arts

[00277] Pharmaceutical compositions of the present invention (e g , vaccines) may be administered by any route In some embodiments, pharmaceutical compositions of the present invention are administered by a vanety of routes, including oral (PO), intravenous (IV), intramuscular (IM), mtra-artenal, intramedullary, intrathecal, subcutaneous (SQ), lntraventncular, transdermal, interdermal, intradermal, rectal (PR), vaginal, intrapentoneal (IP), mtragastnc (IG), topical (e g , by powders, ointments, creams, gels, lotions, and/or drops), mucosal, intranasal, buccal, enteral, vitreal, sublingual, by intratracheal instillation, bronchial instillation, and/or inhalation, as an oral spray, nasal spray, and/or aerosol, and/or through a portal vein catheter In general, the most appropnate route of administration will depend upon a vanety of factors including the nature of the agent being administered (e g , its stability in the environment of the gastrointestinal tract), the condition of the subject (e g , whether the subject is able to tolerate a particular mode of administration), etc [00278] In some embodiments, vaccines in accordance with the invention are delivered by multiple routes of administration (e g , by subcutaneous injection and by intranasal inhalation) For vaccines involving two or more doses, different doses may be administered via different routes

[00279] In some embodiments, vaccines in accordance with the invention are delivered by subcutaneous injection In some embodiments, vaccines m accordance with the invention are administered by intramuscular and/or intravenous injection In some embodiments, vaccines in accordance with the invention are delivered by intranasal inhalation [00280] In some embodiments, vaccines m accordance with the invention are delivered by oral and/or mucosal routes Oral and/or mucosal delivery has the potential to prevent infection of mucosal tissues, the primary gateway of infection for many pathogens Oral and/or mucosal delivery can prime systemic immune response There has been considerable progress in the development of heterologous expression systems for oral administration of antigens that stimulate the mucosal-immune system and can pπme systemic immunity Previous efforts at delivery of oral vaccine however, have demonstrated a requirement for considerable quantities of antigen in achieving efficacy Thus, economical production of large quantities of target antigens is a prerequisite for creation of effective oral vaccines Development of plants expressing antigens, including thermostable antigens, represents a more realistic approach to such difficulties

[00281] In certain embodiments, a Plasmodium antigen polypeptide expressed in a plant or portion thereof is administered to a subject orally by direct administration of a plant to a subject In some aspects a vaccine protein expressed in a plant or portion thereof is extracted and/or purified, and used for the preparation of a pharmaceutical composition It may be desirable to formulate such isolated products for their intended use (e g , as a pharmaceutical agent, vaccine composition, etc ) In some embodiments, it will be desirable to formulate products together with some or all of plant tissues that express them

[00282] In certain embodiments, a Plasmodium antigen polypeptide expressed in a plant or portion thereof is administered to a subject orally by direct administration of a plant to a subject In some aspects a vaccine protein expressed in a plant or portion thereof is extracted and/or purified, and used for preparation of a pharmaceutical composition It may be desirable to formulate such isolated products for their intended use (e g , as a pharmaceutical agent, vaccine composition, etc ) In some embodiments, it will be desirable to formulate products together with some or all of plant tissues that express them [00283] A vaccine protein produced m a plant cell or tissue and eaten by a subject may be preferably absorbed by the digestive system One advantage of the ingestion of plant tissue that has been only minimally processed is to provide encapsulation or sequestration of the protein in cells of the plant Thus, product may receive at least some protection from digestion in the upper digestive tract before reaching the gut or intestine and a higher proportion of active product would be available for uptake [00284] Where it is desirable to formulate product together with plant material, it will often be desirable to have utilized a plant that is not toxic to the relevant recipient (e g , a human or other animal) Relevant plant tissue (e g , cells, roots, leaves) may simply be harvested and processed according to techniques known in the art, with due consideration to maintaining activity of the expressed product In certain embodiments, it is desirable to have expressed Plasmodium antigen polypeptide in an edible plant (and, specifically in edible portions of the plant) so that the matenal can subsequently be eaten For instance, where vaccine antigen is active after oral delivery (when properly formulated), it may be desirable to produce antigen protein in an edible plant portion, and to formulate expressed Plasmodium antigen polypeptide for oral delivery together with some or all of the plant material with which a protein was expressed

[00285] In certain embodiments, Plasmodium antigen polypeptides in accordance with the present invention and/or pharmaceutical compositions thereof (e g , vaccines) in accordance with the invention may be administered at dosage levels sufficient to deliver from about 0 001 mg/kg to about 100 mg/kg, from about 0 01 mg/kg to about 50 mg/kg, from about 0 1 mg/kg to about 40 mg/kg, from about 0 5 mg/kg to about 30 mg/kg, from about 0 01 mg/kg to about 10 mg/kg, from about 0 1 mg/kg to about 10 mg/kg, or from about 1 mg/kg to about 25 mg/kg of subject body weight per day to obtain the desired therapeutic effect The desired dosage may be delivered more than three times per day, three times per day, two times per day, once per day, every other day, every third day, every week, every two weeks, every three weeks, every four weeks, every two months, every six months, or every twelve months hi certain embodiments, the desired dosage may be delivered using multiple administrations (e g , two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations)

[00286] Compositions are administered in such amounts and for such time as is necessary to achieve the desired result hi certain embodiments, a "therapeutically effective amount" of a pharmaceutical composition is that amount effective for treating, attenuating, or preventing a disease in a subject Thus, the "amount effective to treat, attenuate, or prevent disease," as used herein, refers to a nontoxic but sufficient amount of the pharmaceutical composition to treat, attenuate, or prevent disease in any subject For example, the "therapeutically effective amount" can be an amount to treat, attenuate, or prevent infection (e g , Plasmodium infection), etc

[00287] It will be appreciated that Plasmodium antigen polypeptides in accordance with the present invention and/or pharmaceutical compositions thereof can be employed in combination therapies The particular combination of therapies (e g , therapeutics or procedures) to employ in a combination regimen will take into account compatibility of the desired therapeutics and/or procedures and the desired therapeutic effect to be achieved It will be appreciated that the therapies employed may achieve a desired effect for the same purpose (for example, Plasmodium antigen polypeptides useful for treating, preventing, and/or delaying the onset of Plasmodium infection may be administered concurrently with another agent useful for treating, preventing, and/or delaying the onset of Plasmodium infection), or they may achieve different effects (e g , control of any adverse effects) The invention encompasses the delivery of pharmaceutical compositions in combination with agents that may improve their bioavailability, reduce and/or modify their metabolism, inhibit their excretion, and/or modify their distribution within the body

[00288] Pharmaceutical compositions in accordance with the present invention may be administered either alone or in combination with one or more other therapeutic agents By "in combination with," it is not intended to imply that the agents must be admimstered at the same time and/or formulated for delivery together, although these methods of delivery are withm the scope of the invention Compositions can be administered concurrently with, pnor to, or subsequent to, one or more other desired therapeutics or medical procedures In will be appreciated that therapeutically active agents utilized in combination may be administered together in a single composition or administered separately in different compositions In general, each agent will be admimstered at a dose and/or on a time schedule determined for that agent

[00289] In general, it is expected that agents utilized in combination with be utilized at levels that do not exceed the levels at which they are utilized individually In some embodiments, the levels utilized in combination will be lower than those utilized individually

[00290] In certain embodiments, vaccine compositions comprising at least one Plasmodium antigen polypeptide are administered in combination with other Plasmodium vaccines In certain embodiments, vaccine compositions comprising at least one Plasmodium antigen polypeptide are administered in combination with other Plasmodium therapeutics In certain embodiments, vaccine compositions compπsmg at least one Plasmodium antigen polypeptide are admimstered m combination with one or more alkaloids (e g , quinine, quimmax, qumidine, cmchoine, cmchomdme, mefloquine, halofantπne, etc ), chloroquine, amodiaqume, mvaqume, sulfa drugs, pyrimethamine, sulphadoxine, proguaml, atovaquone, primaquine, artemesinm, artemesmm derivatives (e g , artemether, artesunate, arteether, dihydroartemisinin, etc ), antibiotics (e g , doxycyclme, clindamycin, etc ), malarone, dapsone, and/or combinations thereof

Kits

[00291] In one aspect, the present invention provides a pharmaceutical pack or kit including Plasmodium polypeptides according to the present invention In certain embodiments, pharmaceutical packs or kits include plants, plant cells, and/or plant tissues producing a Plasmodium polypeptide according to the present invention, or preparations, extracts, or pharmaceutical compositions containing vaccine m one or more containers filled with optionally one or more additional ingredients of pharmaceutical compositions in accordance with the invention In some embodiments, pharmaceutical packs or kits include pharmaceutical compositions comprising purified Plasmodium polypeptides according to the present invention, m one or more containers optionally filled with one or more additional ingredients of pharmaceutical compositions in accordance with the invention In certain embodiments, the pharmaceutical pack or kit includes an additional approved therapeutic agent (e g , Plasmodium polypeptide, Plasmodium vaccine, Plasmodium therapeutic) for use as a combination therapy Optionally associated with such contamer(s) can be a notice in the form prescnbed by a governmental agency regulating the manufacture, use or sale of pharmaceutical products, which notice reflects approval by the agency of manufacture, use, or sale for human administration

[00292] Kits are provided that include therapeutic and/or prophylactic reagents As but one non-limitmg example, a Plasmodium vaccine can be provided (e g , as an oral, injectable, and/or intranasal formulation) and administered as therapy Pharmaceutical doses or instructions therefor may be provided in the kit for administration to an individual suffeπng from or at risk for Plasmodium parasite infection

[00293] Provided herein are vaccine compositions comprising a plant-produced Plasmodium polypeptide antigen, and a pharmaceutically acceptable excipient, wherein the vaccme composition elicits an immune response upon administration to a subject In some embodiments, the plant-produced Plasmodium polypeptide antigen is a Pfs25, Pfs28, Pfs48/45, or Pfs230 polypeptide In some embodiments, the plant-produced Plasmodium polypeptide antigen has a sequence as set forth m any one of the polypeptides presented in Figure 1 The plant-produced Plasmodium polypeptide antigen can be purified from plant materials The plant-produced Plasmodium polypeptide antigen can be about 70% pure, about 80% pure, about 90% pure, about 95% pure, about 99% pure In some embodiments, the plant-produced Plasmodium polypeptide antigen is not purified from plant materials and can be administered to a subject as a whole plant or plant extract [00294] In some embodiments, the vaccine composition further compπses at least one vaccine adjuvant The adjuvant can be selected from the group consisting of alum, QmI A, QS21, aluminum hydroxide, aluminum phosphate, mineral oil, MF59, Malp2, incomplete Freund's adjuvant, complete Freund's adjuvant, alhydrogel, 3 De-O-acylated monophosphoryl lipid A (3 D-MPL), lipid A, Bortadella pertussis, Mycobacteπum tuberculosis, Merck Adjuvant 65, squalene, virosomes, SBAS2, SBASl, and unmethylated CpG sequences

[00295] [00303] In some embodiments, the Plasmodium polypeptide antigen can be produced in a transgenic plant or a plant transiently expressing the antigen The antigen can expressed in the plant from a launch vector

[00296] Also provided are methods for inducing a protective immune response against Plasmodium infection in a subject compπsing administering to a subject an effective amount of a vaccine composition The composition can admimstered orally, mtranasally, subcutaneously, intravenously, mtrapeπtoneally, or intramuscularly The composition can be administered orally via feeding plant cells to the subject The subject can be human, in some embodiments, subject is a bird, a pig, or a horse

[00297] Also provided are methods for producing a Plasmodium antigen polypeptide comprising preparing a nucleic acid construct encoding a Plasmodium antigen polypeptide, introducing the nucleic acid of step a into a plant cell, and incubating the plant cell under conditions favorable for expression of the Plasmodium antigen polypeptide, thereby producing the Plasmodium antigen polypeptide The expression of the antigen protein can be under control of a viral promoter, the nucleic acid construct can further compπse vector nucleic acid sequence The vector can be a binary vector and the nucleic acid construct can further compπse sequences encoding viral proteins The plant cell can be selected from the group consisting of alfalfa, radish, mustard, mung bean, broccoli, watercress, soybean, wheat sunflower, cabbage, clover, petunia, tomato, potato, nicotine, spinach, and lentil cell The plant cell is of a genus selected from the Brassica genus, the Nicotiana genus, and the Petunia genus The Plasmodium antigen polypeptide can be produced in sprouted seedlings Some embodiments further compπse recoveπng partially punfied or punfied Plasmodium antigen polypeptide which is produced

[00298] Also provided are isolated nucleic acid constructs compπsing nucleic acid sequence encoding a Plasmodium antigen polypeptide, wherein the plant-produced

I Plasmodium polypeptide antigen has a sequence as set forth in any one of the polypeptides presented in Figure 1 The isolated nucleic acid construct can further compπse vector nucleic acid sequences and viral promoter nucleic acid sequence The vector can be a binary vector and can further comprise nucleic acid sequences encoding viral proteins [00299] Also provided are host cells composing the nucleic acid constructs The host cell can be a plant cell The plant cell can be selected from the group consisting of alfalfa, radish, mustard, mung bean, broccoli, watercress, soybean, wheat sunflower, cabbage, clover, petunia, tomato, potato, nicotine, spinach, and lentil The plant cell can be a genus selected from the Brassica genus, the Nicotiana genus, and the Petunia genus [00300] The representative examples that follow are intended to help illustrate the invention, and are not intended to, nor should they be construed to, limit the scope of the invention Indeed, various modifications of the invention and many further embodiments thereof, m addition to those shown and described herein, will become apparent to those skilled m the art from the full contents of this document, including the examples which follow and the references to the scientific and patent literature cited herein The following examples contain information, exemplification and guidance, which can be adapted to the practice of this invention in its vaπous embodiments and the equivalents thereof

Exemplification

Example 1 Recombinant Pfs25, Pfs28, Pfs48/45, and Pfs230 antigens from Plasmodium falciparum

[00301] Recombinant Pfs25, Pfs28, Pfs48/45, and Pfs230 antigens from Plasmodium falciparum were produced in plants Plasmodium antigens were cloned into the "launch vector" system (see, e g , Musiychuk et al , 2007, Plasmodium and Other Respiratory Viruses, 1 19-25, and PCT Publication WO 07/095304, both of which are incorporated herein by reference), specifically into vector pGR-D4A4

[00302] Launch vectors were then introduced into Agrobactenum and vacuum infiltrated into Nicotiana benthamiana Antigens were allowed to express and accumulate in the plant biomass for a period of time (e g , 3-7 days pπor to harvesting)

[00303] Recombinant antigens were purified from the plant biomass (Figure 7), essentially as follows Plant cells were lysed in 50 iriM NaPi, pH 8 0, 0 5 M NaCl, and 20 mM imidazole Triton was added to a final concentration of 0 5% and incubated for 20 minutes at 4 0C Extracts were spun for 30 minutes at 78,000 x g at 4 0C or for 40 minutes at 4 αC at 48,000 x g Supernatant was filtered through Miracloth prior to loading on Ni-NTA columns In some instances, an optional additional clarification was performed, utilizing TFF (tangential flow filtration) microfiltration step (0 1 μm - 0 2 μm pore size) Cleared extracts were loaded onto a Ni-NTA column (pre-equihbrated with lysis buffer), and the columns were washed thoroughly with Buffer A (50 mM NaPi, pH 7 5, 0 5 M NaCl, 20 mM imidazole, and 0 5% Tπton) followed by a wash with Buffer Al (same as Buffer A without the Tπton) Proteins were eluted with imidazole Eluted proteins were optionally further purified using anion exchange chromatography (Q Column) or ultrafiltration [00304] Figures 8 and 9 present exemplary expression data for chimeric virus particles [00305] Figures 10-12 descπbe purification of chimeric virus particles [00306]

Example 2 Materials and Methods

[00307] Recombinant Pfs constructs Pfs polypeptides Pfs25, Pfs28, Pfs48/45 and Pfs230 or portions thereof were inserted into the binary launch vector, pGR-D4 shown in Figure 13 and as described in Examplel Some Pfs polypeptides or portions thereof were expressed as fusion proteins to the modified lichenase of SEQ ID NO 40 The Pfs polypetides were introduced into the lichenase gene such that the fusion was at the N-termimis, C-termmus or an internal loop region of the lichenase ammo acid sequence A graphical representation of the relevant cloning sites and nomenclature is shown in Figure 14

[00308] Over 70 different constructs were generated, either as full-length sequences, full- length sequences fused to lichenase or protions of Pfs sequences fused to lichenase Some constructs also included mutations in one or more glycosylation sites The number of constucts generated for each gene included 14 constructs for Pfs25, 6 constructs for Pfs28, 25 constructs for Pfs48/45, and 22 constructs for Pfs230

[00309] Immunization of Mice with Pfs antigens Groups of eight-week old Balb/c mice, six mice per group, were immunized with Pfs antigens subcutaneously on days 0 and 28 with 50 ug of antigen per dose Animals m control groups received PBS All immunizations were performed with the addition of 10 μg of QmI A (Accurate Chemical, Westbury, NY) Serum samples were collected poor to each immunization and four weeks after the second dose Specific antibody titers were measured by ELISA

[00310] Dry Immunofluorescence Assay (IFA) and Suspension Immunofluorescence Assay (SIFA) For the IFA, parasites were dried on to slides and probed with sera collected from mice that had been immunized with recombinant Pfs polypeptides For the SIFA, parasites and sera were incubated together in solutions and then dned on to slides for analysis Fluorescent secondary antibodies were used for detection for both assays [00311] For analysis of Pfs25, Pfs48/45 and Pfs230, the IFA and SIFA were done with parasites 3 hours after activation Mature gametocytes (day 14 culture) were activated with fetal calf serum in vitro for 3 hours One portion of the activated culture was put on IFA slides, dried and stored at -80C until use The other portion of the activated culture was divided in tubes (about 105 parasites / tube) and incubated directly with the sera from immunized mice (SIFA) After 30 minutes, the parasites were washed and incubated with ALEXA anti -mouse conjugate Pfs25 was detectable about 2-3 hours after activation on the surface of round macrogametes/zygotes For Pfs28 reactivity, the mature gametocytes were fed to the mosquitoes as below and the next day the parasites were removed from the midgut and incubated directly with the sera from immunized mice (SIFA) After 30 minutes incubation, the parasites were washed and incubated with ALEXA anti-mouse conjugate [00312] All sera from mice immunized with Pfs28 (and also Pfs25) were positive with the parasites 24 hours after activation m the mosquito midgut

[00313] Standard Membrane Feeding Assay The transmission-blocking efficacy of antibodies from immumzed animals was tested in a standard membrane-feedmg assay (SMFA) essentially as descnbed in "Evaluation of the standard membrane feeding assay (SMFA) for the determination of malana transmission-reducing activity using empirical data", van der KoIk M, De Vlas SJ, Saul A, van de Vegte-Bolmer M, Eling WM, Sauerwem RW , et al , Parasitology 2005 Jan,130(Pt 1) 13-22 (Erratum in Parasitology 2005 Oct,131(Pt 4) 578 [Sauerwem, W corrected to Sauerwem, RW]) and "Measurement by membrane feeding of reduction in Plasmodium falciparum transmission induced by endemic sera", Lensen A, van Druten J, Bolmer M, van Gemert G, Eling W, Sauerwem R , Trans R Soc Trop Med Hyg 1996 Jan-Feb,90(l) 20-2, which are herein incorporated by reference Briefly, laboratory-reared Anopheles stephensi mosquitoes were allowed to take a blood meal from membrane-covered devices that contained serum from the above-immunized mice combined with complement and red blood cell suspensions infected with P falciparum gametocytes After one week the number of infected mosquitoes, as well as the number of developed oocysts per mosquito was determined Transmission reducing activity (TRA) was calculated by comparing oocyst numbers in mosquitoes that were fed with test versus control sera SMFA was conducted using samples collected at day zero (pre-immune) and day 40 (12 days after the third dose)

1 [00314] Example 3 Protein production of Malarial Antigens

[00315] Recombinant Pfs antigens were produced in plants and purified as descnbed according to Example 1 and analyzed by SDS polyacrylamide gel electrophoresis

Coomassie blue stained gels for 25MF1E, 25MF2E, 28F2E, 48F1E, 230D2M-2E, 230D4M-

2E, 230D4M-2E are shown in Figure 15

[00316] Example 4 Analysis ofPfs25 constructs

[00317] The expression levels and solubility profiles for sixteen different plant-produced

Pfs25 and Pfs28 antigens are shown in Figure 16 All samples were soluble The expression levels ranged from 290 mg/kg of plant biomass to about 2666 mg/kg of plant biomass

[00318] Selected antigens from Figure 16 were used to immunize mice as described in

Example 2 Sera were collected and tested in IFA, SIFA and SMFA assays The results of these assays are shown m the table in Figure 17 All sera were that were tested in the IFA and SIFA showed specific parasite binding Sera from mice immunized with Pfs25 constucts

(25F2E, 25MF1E, 25MF2E, 25MF3E, 25-2-25-3 and 25-2-25M-3) significantly reduced the final oocyst counts m the SMFA as compared to sera from PBS control injected animals

[00319] Example 5 Analysis of Pfs28 constructs

[00320] Selected antigens from Figure 16 were used to immunize mice as described in

Example 2 Sera were collected and tested m IFA, SIFA and SMFA assays The results of these assays are shown in the table in Figure 18 Sera from mice immunized with Pfs28 constucts 28-2-25-3 and 28-2-25M-3 showed specific parasite binding in the IFA and SIFA

[00321] Example 6 Analysis ofPfs48/45 constructs

[00322] The expression levels and solubility profiles for eleven different plant-produced

Pfs48/45 antigens are shown in Figure 19 All samples were either soluble or partially soluble The expression levels ranged from 265 mg/kg of plant biomass to about 1212 mg/kg of plant biomass

[00323] Selected Pfs48/45 antigens were used to immunize mice as descnbed in Example

2 Sera were collected and tested in IFA, SIFA and SMFA assays The results of these assays are shown in the table in Figure 20 AU sera from mice immunized with Pfs48/45 constucts, except for 48F3E, 48D2-2E, 48D2M-2E and 48D1-2E173, showed showed weak but specific parasite binding in the IFA, sera from mice immunized with Pfs48/45 constucts

48F1E, 48MF3E, 48D1M-2E, 48D1-2E173, 48D1-1E173 showed specific parasite binding in the IFA and parasite binding in the SIFA, Sera from mice immunized with Pfs48/45 constucts 48F2E, 48D1-2E, 48D2-2E reduced the final oocyst counts in the SMFA as compared to sera from PBS control injected animals

I [00324] Example 7 Analysis ofPfs230 constructs

[00325] The expression levels and solubility profiles for four different plant-produced

Pfs230 antigens are shown in Figure 21 All samples were soluble The expression levels ranged from 163 mg/kg of plant biomass to about 848 mg/kg of plant biomass

[00326] Pfs230 antigens were used to immunize mice as descπbed in Example 2 Sera were collected and tested in IFA, SIFA and SMFA assays The results of these assays are shown in the table in Figure 22 Sera from mice immunized with the Pfs230 constucts, 230A showed specific parasite binding in the IFA and SIFA Sera from mice immunized with

230D4M-3E reduced the final oocyst counts m the SMFA as compared to sera from PBS control injected animals, sera from mice immunized with 230A showed a partial reduction

[00327] Example 8 Effect ofAlhydrogel on immunogemcity ofPfs230

[00328] The effect of Alhydrogel on immunogemcity of Pfs230A was assayed essentially according to the methods descπbed in Example 2 Serum samples were collected prior to each injection and assayed for Pfs23A specific IgG isotypes The results of this expeπment are shown m Figure 23 A and 23B As indicatβd,in the presence of both Alhydrogel (Figure

23A) and QmI A (Figure 23B) the predominant IgG isotype was IgGl Quil A induced more

IgG2a and IgG2b antibodies than did Alhydrogel, but not enough to induce complement fixation and parasite reduction

[00329]

Equivalents and Scope

[00330] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention, descπbed herein The scope of the present invention is not intended to be limited to the above Descπption, but rather is as set forth in the appended claims

[00331] Those skilled in the art will recognize, or be able to ascertain using no more than routine expenmentation, many equivalents to the specific embodiments of the invention descnbed herein The scope of the present invention is not intended to be limited to the above Descπption, but rather is as set forth m the appended claims

[00332] In the claims articles such as "a," "an," and "the" may mean one or more than one unless indicated to the contrary or otherwise evident from the context Claims or descπptions that include "or" between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the

I context The invention includes embodiments in which exactly one member of the group is present m, employed in, or otherwise relevant to a given product or process The invention includes embodiments in which more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process Furthermore, it is to be understood that the invention encompasses all variations, combinations, and permutations in which one or more limitations, elements, clauses, descπptive terms, etc , from one or more of the listed claims is introduced into another claim For example, any claim that is dependent on another claim can be modified to include one or more limitations found in any other claim that is dependent on the same base claim Furthermore, where the claims recite a composition, it is to be understood that methods of using the composition for any of the purposes disclosed herein are included, and methods of making the composition according to any of the methods of making disclosed herein or other methods known in the art are included, unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would aπse

[00333] Where elements are presented as lists, e g , in Markush group format, it is to be understood that each subgroup of the elements is also disclosed, and any element(s) can be removed from the group It should it be understood that, in general, where the invention, or aspects of the invention, is/are referred to as composing particular elements, features, etc , certain embodiments of the invention or aspects of the invention consist, or consist essentially of, such elements, features, etc For purposes of simplicity those embodiments have not been specifically set forth in haec verba herein It is noted that the term "comprising" is intended to be open and permits the inclusion of additional elements or steps [00334] Where ranges are given, endpomts are included Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or subrange within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise

[00335] As used m the specification and the appended claims, the singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise [00336] In addition, it is to be understood that any particular embodiment of the present invention that falls within the pπor art may be explicitly excluded from any one or more of the claims Since such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein Any

] particular embodiment of the compositions of the invention (e g , any Plasmodium species, strain, etc , any Plasmodium polypeptide antigen, any expression system, any plant production system, any method of administration, etc ) can be excluded from any one or more claims, for any reason, whether or not related to the existence of prior art [00337] All references cited herein are incorporated by reference A number of embodiments of the invention have been descnbed Nevertheless, it will be understood that vanous modifications may be made without departing from the spirit and scope of the invention Accordingly, other embodiments are withm the scope of the following claims

What is claimed is

1 An isolated fusion protein composing a thermostable protein and a Plasmodium polypeptide, wherein the Plasmodium polypeptide is a Pfs25, Pfs28, Pfs48/45, or Pfs230 polypeptide or immunogenic portion thereof, and wherein the fusion protein, when administered to a subject, induces or enhances an immune response against the Plasmodium polypeptide

2 The fusion protein of claim 1 , wherein the thermostable protein is a lichenase polypeptide

3 The fusion protein of claim 2, wherein the lichenase polypeptide is a modified lichenase B polypeptide having at least 90% sequence identity SEQ ID NO 40

4 The fusion protein of claim 3, wherein the lichenase B polypeptide has a sequence identity of at least 95% to SEQ ID NO 40

5 The fusion piotein of claim 3, wherein the lichenase B polypeptide has a sequence identity of at least 98% to SEQ ID NO 40

6 The fusion protein of claim 3, wherein the lichenase B polypeptide has a sequence identity of at least 99% to SEQ ID NO 40

7 The fusion protein of claim 3, wherein the lichenase polypeptide has the ammo acid sequence of SEQ ID NO 40

8 The fusion protein of any one of claims 1 to 7, wherein the Plasmodium polypeptide is a Pfs25 polypeptide wherein the Pfs25 polypeptide has at least 90% sequence identity to SEQ ID NO 42

9 The fusion protein of claim 8, wherein the Plasmodium polypeptide has a sequence identity of at least 95% to SEQ ID NO 42

10 The fusion protein of claim 8, wherein the Plasmodium polypeptide has a sequence identity of at least 98% to SEQ ID NO 42

1 11 The fusion protein of claim 8, wherein the Plasmodium polypeptide has a sequence identity of at least 99% to SEQ ID NO 42

12 The fusion protein of claim 8, wherein the Pfs25 polypeptide has the amino acid sequence of SEQ ID NO 42

13 The fusion protein of any one of claims 1 to 7, wherein the Plasmodium polypeptide is a Pfs28 polypeptide having at least 90% sequence identity to SEQ ID NO 55

14 The fusion protein of claim 13, wherein the Plasmodium polypeptide has a sequence identity of at least 95% to SEQ ID NO 55

15 The fusion protein of claim 13, wherein the Plasmodium polypeptide has a sequence identity of at least 98% to SEQ ID NO 55

16 The fusion protein of claim 13, wherein the Plasmodium polypeptide has a sequence identity of at least 99% to SEQ ID NO 55

17 The fusion protein of claim 13, wherein the Pfs28 polypeptide has the amino acid sequence of SEQ ID NO 55

18 The fusion protein of any one of claims 1 to 7, wherein the Plasmodium polypeptide is a Pfs48/45 polypeptide wherein the Pfs48/65 polypeptide is a polypeptide having at least 90% sequence identity to SEQ ID NO 62

19 The fusion protein of claim 18, wherein the Plasmodium polypeptide has a sequence identity of at least 95% to SEQ ID NO 62

20 The fusion protein of claim 18, wherein the Plasmodium polypeptide has a sequence identity of at least 98% to SEQ ID NO 62

21 The fusion protein of claim 18, wherein the Plasmodium polypeptide has a sequence identity of at least 99% to SEQ ID NO 62 22 The fusion protein of claim 18, wherein the Pfs48/45 polypeptide has the amino acid sequence of SEQ ID NO 62

23 The fusion protein of any one of claims 1 to 7, wherein the Plasmodium polypeptide is a Pfs230 polypeptide wherein the Pfs230 polypetide has at least 90% sequence identity to SEQ ID NO 95

24 The fusion protein of claim 23, wherein the Plasmodium polypeptide has a sequence identity of at least 95% to SEQ ID NO 95

25 The fusion protein of claim 23, wherein the Plasmodium polypeptide has a sequence identity of at least 98% to SEQ ID NO 95

26 The fusion protein of claim 23, wherein the Plasmodium polypeptide has a sequence identity of at least 99% to SEQ ID NO 95

27 The fusion protein of claim 23, wherein the Pfs230 polypeptide has the ammo acid sequence of SEQ ID NO 95

28 A fusion protein comprising a polypeptide having sequence identity of at least 90% to an ammo acid sequence selected from the group consisting of SEQ ID NOs 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, and 254

29 The fusion protein of claim 28, wherein the fusion protein has a sequence identity of at least 95% to an ammo acid sequence selected from the group consisting of SEQ ID NOs 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, and 254 30 The fusion protein of claim 28, wherein the fusion protein has a sequence identity of at least 98% to an ammo acid sequence selected from the group consisting of SEQ K) NOs 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, and 254

31 The fusion protein of claim 28, wherein the fusion protein has a sequence identity of at least 99% to an ammo acid sequence selected from the group consisting of SEQ ID NOs 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, and 254

32 The fusion protein of claim 28, wherein the fusion protein has the ammo acid sequence selected from the group consisting of SEQ ID NOs 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, and 254

33 A nucleic acid comprising a sequence encoding the fusion protein of any one of claims 1- 32

34 An expression vector comprising the nucleic acid of claim 33

35 The expression vector of claim 34, further compπsing a leader sequence

36 The expression vector of claims 34 or 35, wherein the expression vector is an Agrobactenal plasmid, a plant viral vector or a plant viral vector cloned into an Agrobactenal plasmid

37 A host cell comprising the expression vector of any one of claims 34-36

38 The host cell of claim 37, wherein the host cell is a plant cell

39 A plant comprising the plant cell of claim 38 40 A pharmaceutical composition comprising the fusion protein of any one of claims 1 to 32 and a pharmaceutically acceptable earner or excipient

41 A method of inducing or enhancing an immune response against a Plasmodium polypeptide in a subject, wherein the Plasmodium polypeptide is a Pfs25, Pfs28, Pfs48/45, or Pfs230 polypeptide, the method composing administering to the subject an effective amount of the pharmaceutical composition of claim 40

42 A method of producing the fusion protein of any one of claims 1 to 32, the method comprising

(a) providing a nucleic acid construct comprising a nucleic acid encoding the fusion protein,

(b) introducing the nucleic acid construct into a plant cell, and

(c) maintaining the cell under conditions permitting expression of the fusion protein

43 A method of making a composition that induces or enhances an immune response against a Plasmodium polypeptide, wherein the Plasmodium polypeptide is a Pfs25, Pfs28, Pfs48/45, or Pfs230 polypeptide, the method comprising a) producing the fusion protein of any of claims 1-32 in a plant, b) isolating the fusion protein, and c) combining the fusion protein of step (b) with a pharmaceutically acceptable earner

44 A method of making a composition that induces or enhances an immune response against a Plasmodium polypeptide, wherein the Plasmodium polypeptide is a Pfs25, Pfs28, Pfs48/45, or Pfs230 polypeptide or immunogenic portion thereof, the method compnsing a) producing the Plasmodium polypeptide in a plant, b) isolating the polypeptide, and c) combimng the polypeptide with a pharmaceutically acceptable earner

45 The method of claim 44, wherein the Plasmodium polypeptide is a Pfs25 polypeptide, wherein the Pfs25 polypeptide is a polypeptide having at least 90% sequence identity to SEQ ID NO 42 46 The method of claim 45, wherein the Pfs25 polypeptide has the amino acid sequence of SEQ ID NO 42

47 The method of claim 44, wherein the Plasmodium polypeptide is a Pfs28 polypeptide wherein the Pfs28 polypeptide is a polypeptide having at least 90% sequence identity to SEQ ID NO 55

48 The method of claim 47, wherein the Pfs28 polypeptide has the amino acid sequence of SEQ ID NO 55

49 The method of claim 44, wherein the Plasmodium polypeptide is a Pfs48/45 polypeptide wherein the Pfs48/45 polypeptide is a polypeptide having at least 90% sequence identity to SEQ ID NO 62

50 The method of claim 49, wherein the Pfs48/45 polypeptide has the ammo acid sequence of SEQ ID NO 62

51 The method of claim 44, wherein the Plasmodium polypeptide is a Pfs230 polypeptide wherein the Pfs230 polypeptide is a polypeptide having at least 90% sequence identity to SEQ ID NO 95

52 The method of claim 51, wherein the Pfs230 polypeptide has the ammo acid sequence of SEQ ID NO 95

53 The method of any one of claims 42-52, wherein the plant transiently expresses the polypeptide or fusion protein

54 The method of claim 53, wherein the transient expression is from an Agrobacteπal plasmid, a plant viral vector, or a plant viral vector is cloned into an Agrobacterial plasmid

55 The method of any one of claims 42-52, wherein the plant is transgenic for the polypeptide 56 The method of any one of claims 43-55, further composing combining the composition with at least one adjuvant

57 The method of claim 56, wherein the adjuvant is selected from the group consisting of alum, Quil A, QS21, aluminum hydroxide, aluminum phosphate, mineral oil, MF59, Malp2, incomplete Freund's adjuvant, complete Freund's adjuvant, alhydrogel, 3 De-O-acylated monophosphoryl lipid A (3 D-MPL), lipid A, Bortadella pertussis, Mycobacterium tuberculosis, Merck Adjuvant 65, squalene, virosomes, SBAS2, SBASl, AS03 and unmethylated CpG sequences

58 A method of producing a Plasmodium polypeptide, wherein the Plasmodium polypeptide is a Pfs25, Pfs28, Pfs48/45, or Pfs230 polypeptide or immunogenic portion thereof, the method comprising

(a) providing a nucleic acid construct comprising a nucleic acid encoding the Plasmodium polypeptide,

(b) introducing the nucleic acid into a plant cell, and

(c) maintaining the cell under conditions permitting expression of the fusion protein

59 The method of claim 58, wherein the Plasmodium polypeptide is a Pfs25 polypetide, wherein the Pfs25 polypeptide is a polypeptide having at least 90% sequence identity to SEQ ID NO 42

60 The method of claim 59, wherein the Pfs25 polypeptide has the amino acid sequence of SEQ ID NO 42

61 The method of claim 58, wherein the Plasmodium polypeptide is a Pfs28 polypetide wherein the Pfs28 polypeptide is a polypeptide having at least 90% sequence identity to SEQ ID NO 55

62 The method of claim 61 , wherein the Pfs28 polypeptide has the ammo acid sequence of SEQ ID NO 55 63 The method of claim 58, wherein the Plasmodium polypeptide is a Pfs48/45 polypetide wherein the Pfs48/45 polypeptide is a polypeptide having at least 90% sequence identity to SEQ ID NO 62

64 The method of claim 63, wherein the Pfs48/45 polypeptide has the amino acid sequence of SEQ ID NO 62

65 The method of claim 58, wherein the Plasmodium polypeptide is a Pfs230 polypetide wherein the Pfs230 polypeptide is a polypeptide having at least 90% sequence identity to SEQ ED NO 95

66 The method of claim 65, wherein the Pfs230 polypeptide has the amino acid sequence of SEQ ID NO 95

67 The method of any one of claims 38, 39 or 42-66, wherein the plant is from a genus selected from the group consisting of Brassica, Nicotiana, Petunia, Lycopersicon, Solarium, Capsium, Daucus, Apium, Lactuca, Sinapis or Arabidopsis

68 The method of any one of claims 38, 39 or 42-66, wherein the plant is from a species selected from the group consisting of Nicotiana benthamiana, Brassica carinata, Brassica juncea, Brassica napus, Brassica nigra, Brassica oleraceae, Brassica tourmfortii, Smapis alba, and Raphanus sativus

69 The method of any one of claims 38, 39 or 42-66, wherein the plant is selected from the group consisting of alfalfa, radish, mustard, mung bean, broccoli, watercress, soybean, wheat, sunflower, cabbage, clover, petunia, tomato, potato, tobacco, spinach, and lentil

70 The method of any one of claims 38, 39 or 42-66, wherein the plant is a sprouted seedling

71 The method of claim any one of claims 43-70, wherein step (a) is performed by the method of claim 58

72 A plant cell produced by the method of any one of claims 58-71 73 A plant comprising the plant cell of claim 72

74 A method of inducing or enhancing an immune response agamst a Plasmodium polypeptide in a subject, the method comprising administering a plant or plant cell produced by the method of any one of claims 42, 58-73 to a subject

75 A method of inducing or enhancing an immune response against a Plasmodium polypeptide in a subject, the method comprising administering to the subject a therapeutically effective amount of the composition produced by the method of any one of claims 43-55

76 The method of claim 41 or claim 75, wherein the composition is administered orally, lntranasally, subcutaneously, intravenously, intrapeπtoneally, or intramuscularly

77 The method of any one of claims 41, 74-76, wherein the subject is human

78 The method of any one of claims 41, 74-76, wherein the subject is a non-human pnmate, a bird or a rodent

79 A method of protecting a population of subjects from Plasmodium infection, the method compnsing administering to a subject an effective amount of the composition of claim 40

80 A method of reducing transmission of Plasmodium m a population of subjects, the method comprising administering to one or more subjects an effective amount of the composition of claim 40

81 A method of reducing transmission of Plasmodium to a subject in a population at πsk for Plasmodium infection, the method compnsmg administering to one or more subjects in the population an effective amount of the composition of claim 40

82 A method of reducing transmission of Plasmodium from a subject, the method comprising administering to the subject an effective amount of the composition of claim 40

83 The method of any one of claims 79-82, wherein the subject is human 84 The method of any one of claims 79-82, wherein the subject is a non-human primate, a bird or a rodent.

Sign in to the Lens

Release 5.10.0: Improved patent search performance, saved query alerts, increased user privacy and more!

Improved Search Performance

Upgraded patent search index servers to improve search performance.

Saved Query Alerts.

Improvements to in saved query alerts emails and better formatting of links.

Increased User Privacy.

Removed Google Maps dependency in a Patents Family page.