Release 5.9.0: Saved Query Alerts, Query Details, Collection Sizes and more!

Saved Query Alerts.

Receive a notification email when new data is added for your saved queries.

Query Details Improvements.

View details of your joined query when navigating between cited/citing panes.

Collection Limit Increase.

Create collections of up to 50,000 Patents or Scholarly Works.

(12)United States Patent(10)Patent No.: US 8,137,967 B2
 Seidel et al. (45) Date of Patent:Mar.  20, 2012

(54)In-vitro fertilization systems with spermatozoa separated into X-chromosome and Y-chromosome bearing populations 
(75)Inventors: George E. Seidel,  LaPorte, CO (US); 
  Kehuan Lu,  Nanning (CN); 
  Tae Kwang Suh,  Fort Collins, CO (US) 
(73)Assignee:XY, LLC,  Navasota, TX (US), Type: US Company 
(*)Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 840 days. 
(21)Appl. No.: 11/508,133 
(22)Filed: Aug.  21, 2006 
(65)Prior Publication Data 
 US 2006/0281176 A1 Dec.  14, 2006 
 Related U.S. Patent Documents 
(63) .
Continuation of application No. 10/433,191, now Pat. No. 7,094,527 .
(60)Provisional application No. 60/253,787, filed on Nov.  29, 2000.
 Provisional application No. 60/253,785, filed on Nov.  29, 2000.
(51)Int. Cl. C12N 005/02 (20060101)
(52)U.S. Cl. 435/373; 435/363; 435/325; 435/2
(58)Field of Search  435/2, 325, 373, 363

(56)References Cited
 3,005,756  A  10/1961    VanDemark et al.     
 3,499,435  A  3/1970    Rockwell et al.     
 3,547,526  A  12/1970    Devereux     
 3,644,128  A  2/1972    Lipner     
 3,661,460  A  5/1972    Elking et al.     
 3,687,806  A  8/1972    Van den Bovenkamp     
 3,710,933  A  1/1973    Fulwyler et al.     
 3,738,759  A  6/1973    Dittrich et al.     
 3,756,459  A  9/1973    Bannister     
 3,761,187  A  9/1973    Dittrich et al.     
 3,761,941  A  9/1973    Robertson     
 3,788,744  A  1/1974    Friedman et al.     
 3,791,384  A  2/1974    Richter et al.     
 3,791,517  A  2/1974    Friedman     
 3,810,010  A  5/1974    Thom     
 3,816,249  A  6/1974    Bhattacharya     
 3,826,364  A  7/1974    Bonner et al.     
 3,829,216  A  8/1974    Persidsky     
 3,833,796  A  9/1974    Fetner et al.     
 3,877,430  A  4/1975    Wieder     
 3,893,766  A  7/1975    Hogg     
 3,894,529  A  7/1975    Shrimpton     
 3,906,929  A  9/1975    Augspurger     
 3,909,744  A  9/1975    Wisner et al.     
 3,944,917  A  3/1976    Hogg et al.     
 3,947,093  A  3/1976    Goshima et al.     
 3,960,449  A  6/1976    Carleton et al.     
 3,963,606  A  6/1976    Hogg     
 3,973,003  A  8/1976    Colas     
 3,973,196  A  8/1976    Hogg     
 RE29,141  E  2/1977    Hogg     
 4,006,360  A  2/1977    Mueller     
 4,007,087  A  2/1977    Ericsson     
 4,009,260  A  2/1977    Ericsson     
 4,014,611  A  3/1977    Simpson et al.     
 4,056,324  A  11/1977    Gohde     
 4,058,732  A  11/1977    Wieder     
 4,067,965  A  1/1978    Bhattacharya     
 4,070,617  A  1/1978    Kachel et al.     
 4,083,957  A  4/1978    Lang     
 4,085,205  A  4/1978    Hancock     
 4,092,229  A  5/1978    Bhattacharya     
 4,110,604  A  8/1978    Haynes et al.     
 4,148,718  A  4/1979    Fulwyler     
 4,155,831  A  5/1979    Bhattacharya     
 4,162,282  A  7/1979    Fulwyler et al.     
 4,175,662  A  11/1979    Zold     
 4,178,936  A  12/1979    Newcomb     
 4,179,218  A  12/1979    Erdmann et al.     
 4,189,236  A  2/1980    Hogg et al.     
 4,191,749  A  3/1980    Bryant     
 4,200,802  A  4/1980    Salzman et al.     
 4,225,229  A  9/1980    Gohde     
 4,225,405  A  9/1980    Lawson     
 4,230,558  A  10/1980    Fulwyler     
 4,251,733  A  2/1981    Hirlman, Jr.     
 4,255,021  A  3/1981    Brunsden     
 4,263,508  A  4/1981    Leary et al.     
 4,267,268  A  5/1981    Nelson, Jr.     
 4,274,408  A  6/1981    Nimrod     
 4,274,740  A  6/1981    Eidenschink et al.     
 4,276,139  A  6/1981    Lawson     
 4,302,166  A  11/1981    Fulwyler et al.     
 4,317,520  A  3/1982    Lombardo et al.     
 4,318,480  A  3/1982    Lombardo et al.     
 4,318,481  A  3/1982    Lombardo et al.     
 4,318,482  A  3/1982    Barry et al.     
 4,325,483  A  4/1982    Lombardo et al.     
 4,327,177  A  4/1982    Shrimpton     
 4,339,434  A  7/1982    Ericsson     
 4,341,471  A  7/1982    Hogg et al.     
 4,348,107  A  9/1982    Leif     
 4,350,410  A  9/1982    Minott     
 4,352,558  A  10/1982    Eisert     
 4,361,400  A  11/1982    Gray et al.     
 4,362,246  A  12/1982    Adair     
 4,367,043  A  1/1983    Sweet et al.     
 4,395,397  A  7/1983    Shapiro     
 4,395,676  A  7/1983    Hollinger et al.     
 4,400,764  A  8/1983    Kenyon     
 4,408,877  A  10/1983    Lindmo et al.     
 4,422,761  A  12/1983    Frommer     
 4,448,767  A  5/1984    Bryant     
 4,474,875  A  10/1984    Shrimpton     
 4,487,320  A  12/1984    Auer     
 4,492,436  A  1/1985    Bergmann     
 4,498,766  A  2/1985    Unterleitner     
 4,501,366  A  2/1985    Thompson     
 4,511,661  A  4/1985    Goldberg     
 4,515,274  A  5/1985    Hollinger et al.     
 4,523,809  A  6/1985    Toboada et al.     
 4,538,733  A  9/1985    Hoffman     
 4,545,677  A  10/1985    Chupp     
 4,559,309  A  12/1985    Evenson     
 4,573,796  A  3/1986    Martin     
 4,585,736  A  4/1986    Dolbeare et al.     
 4,598,408  A  7/1986    O'Keefe     
 4,600,302  A  7/1986    Sage, Jr.     
 4,605,558  A  8/1986    Shrimpton     
 4,609,286  A  9/1986    Sage, Jr.     
 4,629,687  A  12/1986    Schindler et al.     
 4,631,483  A  12/1986    Proni et al.     
 4,637,691  A  1/1987    Uehara et al.     
 RE32,350  E  2/1987    Bhattacharya     
 4,654,025  A  3/1987    Cassou et al.     
 4,659,185  A  4/1987    Aughton     
 4,660,971  A  4/1987    Sage et al.     
 4,661,913  A  4/1987    Wu et al.     
 4,662,742  A  5/1987    Chupp     
 4,673,288  A  6/1987    Thomas et al.     
 4,673,289  A  6/1987    Gaucher     
 4,680,258  A  7/1987    Hammerling et al.     
 4,683,195  A  7/1987    Mullis et al.     
 4,683,202  A  7/1987    Mullis     
 4,691,829  A  9/1987    Auer     
 4,698,142  A  10/1987    Muroi et al.     
 4,702,598  A  10/1987    Böhmer     
 4,704,891  A  11/1987    Recktenwald et al.     
 4,710,635  A  12/1987    Chupp     
 4,714,680  A  12/1987    Civin     
 4,737,025  A  4/1988    Steen     
 4,744,090  A  5/1988    Freiberg     
 4,749,458  A  6/1988    Muroi et al.     
 4,752,131  A  6/1988    Eisenlauer et al.     
 4,756,427  A  7/1988    Gohde et al.     
 4,758,729  A  7/1988    Monnin     
 4,764,013  A  8/1988    Johnston     
 4,765,737  A  8/1988    Harris et al.     
 4,770,992  A  9/1988    den Engh et al.     
 4,778,593  A  10/1988    Yamashita et al.     
 4,780,406  A  10/1988    Dolbeare et al.     
 4,780,451  A  10/1988    Donaldson     
 4,786,165  A  11/1988    Yamamoto et al.     
 4,790,653  A  12/1988    North, Jr.     
 4,794,086  A  12/1988    Kasper et al.     
 4,796,788  A  1/1989    Bond     
 4,818,103  A  4/1989    Thomas et al.     
 4,831,385  A  5/1989    Archer et al.     
 4,836,038  A  6/1989    Baldwyn     
 4,845,025  A  7/1989    Lary et al.     
 4,846,785  A  7/1989    Cassou     
 4,867,908  A  9/1989    Recktenwald et al.     
 4,871,249  A  10/1989    Watson     
 4,876,458  A  10/1989    Takeda et al.     
 4,877,965  A  10/1989    Dandliker et al.     
 4,887,721  A  12/1989    Martin et al.     
 4,915,501  A  4/1990    Steen     
 4,936,465  A  6/1990    Zold     
 4,942,305  A  7/1990    Sommer     
 4,954,715  A  9/1990    Zold     
 4,957,363  A  9/1990    Takeda et al.     
 4,959,354  A  9/1990    Barbetti     
 4,965,204  A  10/1990    Civin     
 4,979,093  A  12/1990    Laine et al.     
 4,980,277  A  12/1990    Junnila     
 4,981,580  A  1/1991    Auer     
 4,983,038  A  1/1991    Ohki et al.     
 4,987,539  A  1/1991    Moore et al.     
 4,988,619  A  1/1991    Pinkel     
 4,989,977  A  2/1991    North, Jr.     
 4,999,283  A  3/1991    Zavos et al.     
 5,005,981  A  4/1991    Schulte et al.     
 5,007,732  A  4/1991    Ohki et al.     
 5,017,497  A  5/1991    De Grooth et al.     
 5,021,244  A*6/1991    Spaulding 530/388.2
 5,030,002  A  7/1991    North, Jr.     
 5,034,613  A  7/1991    Denk et al.     
 5,040,890  A  8/1991    North, Jr.     
 5,043,591  A  8/1991    Ludlow et al.     
 5,055,393  A  10/1991    Kwoh et al.     
 5,057,413  A  10/1991    Terstappen et al.     
 5,072,382  A  12/1991    Kamentsky     
 5,076,472  A  12/1991    Gross et al.     
 5,079,959  A  1/1992    Miyake et al.     
 5,084,004  A*1/1992    Ranoux 600/34
 5,087,295  A  2/1992    Gross et al.     
 5,088,816  A  2/1992    Tomioka et al.     
 5,089,714  A  2/1992    Ludlow et al.     
 5,098,657  A  3/1992    Blackford et al.     
 5,101,978  A  4/1992    Marcus     
 5,116,125  A  5/1992    Rigler     
 5,127,729  A  7/1992    Oetliker et al.     
 5,132,548  A  7/1992    Borden et al.     
 5,135,759  A  8/1992    Johnson     
 5,138,181  A  8/1992    Lefevre et al.     
 5,142,140  A  8/1992    Yamazaki et al.     
 5,142,462  A  8/1992    Kashima     
 5,144,224  A  9/1992    Larsen     
 5,150,313  A  9/1992    van den Engh et al.     
 5,158,889  A  10/1992    Hirako et al.     
 5,159,397  A  10/1992    Kosaka et al.     
 5,159,403  A  10/1992    Kosaka     
 5,162,306  A  11/1992    Donaldson     
 5,167,926  A  12/1992    Kimura et al.     
 5,180,065  A  1/1993    Touge et al.     
 5,182,617  A  1/1993    Yoneyama et al.     
 5,195,979  A  3/1993    Schinkel et al.     
 5,199,576  A  4/1993    Corio et al.     
 5,204,884  A  4/1993    Leary et al.     
 5,215,376  A  6/1993    Schulte et al.     
 5,219,729  A  6/1993    Hodgen     
 5,247,339  A  9/1993    Ogino     
 5,259,593  A  11/1993    Orme et al.     
 5,260,764  A  11/1993    Fukuda et al.     
 5,274,240  A  12/1993    Mathies et al.     
 5,275,787  A  1/1994    Yuguchi et al.     
 5,298,967  A  3/1994    Wells     
 5,315,122  A  5/1994    Pinsky et al.     
 5,316,540  A  5/1994    McMannis et al.     
 5,317,162  A  5/1994    Pinsky et al.     
 5,346,990  A  9/1994    Spaulding     
 RE34,782  E  11/1994    Dandliker et al.     
 5,359,907  A  11/1994    Baker et al.     
 5,366,888  A  11/1994    Fry et al.     
 5,367,474  A  11/1994    Auer et al.     
 5,370,842  A  12/1994    Miyazaki et al.     
 5,371,585  A  12/1994    Morgan et al.     
 5,395,588  A  3/1995    North, Jr. et al.     
 5,400,179  A  3/1995    Ito     
 5,412,466  A  5/1995    Ogino     
 5,437,987  A  8/1995    Ten et al.     
 5,439,362  A  8/1995    Spaulding     
 5,444,527  A  8/1995    Kosaka     
 5,447,841  A  9/1995    Grey et al.     
 5,447,842  A  9/1995    Simons     
 5,452,054  A  9/1995    Dewa et al.     
 5,457,526  A  10/1995    Kosaka     
 5,461,145  A  10/1995    Kudo et al.     
 5,464,581  A  11/1995    Van den Engh     
 5,466,572  A  11/1995    Sasaki et al.     
 5,467,189  A  11/1995    Kreikebaum et al.     
 5,469,375  A  11/1995    Kosaka     
 5,471,294  A  11/1995    Ogino     
 5,471,299  A  11/1995    Kaye et al.     
 5,475,487  A  12/1995    Mariella, Jr. et al.     
 5,480,774  A  1/1996    Hew et al.     
 5,480,775  A  1/1996    Ito et al.     
 5,483,469  A  1/1996    Van den Engh et al.     
 5,488,469  A  1/1996    Yamamoto et al.     
 5,492,534  A  2/1996    Atheyde     
 5,494,795  A  2/1996    Guerry et al.     
 5,495,719  A  3/1996    Gray, Jr.     
 5,496,272  A  3/1996    Chung et al.     
 5,503,994  A  4/1996    Shear et al.     
 5,514,537  A  5/1996    Chandler     
 5,523,573  A  6/1996    Hanninen et al.     
 5,532,155  A  7/1996    Ranoux     
 5,547,849  A  8/1996    Baer et al.     
 5,548,395  A  8/1996    Kosaka     
 5,548,661  A  8/1996    Price et al.     
 5,550,058  A  8/1996    Corio et al.     
 5,556,764  A  9/1996    Sizto et al.     
 5,558,998  A  9/1996    Hammond et al.     
 5,559,032  A  9/1996    Pomeroy et al.     
 5,563,059  A*10/1996    Alak et al. 800/21
 5,578,449  A  11/1996    Frasch et al.     
 5,579,159  A  11/1996    Ito     
 5,584,982  A  12/1996    Dovichi et al.     
 5,589,457  A  12/1996    Wiltbank     
 5,596,401  A  1/1997    Kusuzawa     
 5,601,234  A  2/1997    Larue     
 5,601,235  A  2/1997    Booker et al.     
 5,601,533  A  2/1997    Hancke et al.     
 5,602,039  A  2/1997    Van den Engh     
 5,602,349  A  2/1997    Van den Engh     
 5,608,519  A  3/1997    Grouley et al.     
 5,620,842  A  4/1997    Davis et al.     
 5,622,820  A  4/1997    Rossi     
 5,627,037  A  5/1997    Ward et al.     
 5,633,503  A  5/1997    Kosaka     
 5,641,457  A  6/1997    Vardanega     
 5,643,796  A  7/1997    den Engh et al.     
 5,650,847  A  7/1997    Maltsev et al.     
 5,658,751  A  8/1997    Yue et al.     
 5,660,997  A  8/1997    Spaulding     
 5,663,048  A  9/1997    Winkfein et al.     
 5,665,315  A  9/1997    Robert et al.     
 5,672,880  A  9/1997    Kain     
 5,674,743  A  10/1997    Ulmer     
 5,675,401  A  10/1997    Wangler et al.     
 5,682,038  A  10/1997    Hoffman     
 5,684,575  A  11/1997    Steen     
 5,687,727  A  11/1997    Kraus et al.     
 5,690,815  A  11/1997    Krasnoff et al.     
 5,690,895  A  11/1997    Matsumoto et al.     
 5,691,133  A  11/1997    Critser et al.     
 5,693,534  A  12/1997    Alak et al.     
 5,696,157  A  12/1997    Wang et al.     
 5,699,152  A  12/1997    Fedor et al.     
 5,700,692  A  12/1997    Sweet     
 5,701,012  A  12/1997    Ho     
 5,707,808  A  1/1998    Roslaniec et al.     
 5,708,868  A  1/1998    Ishikawa     
 5,712,807  A  1/1998    Bangham     
 5,719,666  A  2/1998    Fukuda et al.     
 5,719,667  A  2/1998    Miers     
 5,726,009  A  3/1998    Connors et al.     
 5,726,364  A  3/1998    Van den Engh     
 5,726,751  A  3/1998    Altendorf et al.     
 5,730,941  A  3/1998    Lefevre et al.     
 5,736,330  A  4/1998    Fulton     
 5,739,902  A  4/1998    Gjelsnes et al.     
 5,745,308  A  4/1998    Spangenberg     
 5,747,349  A  5/1998    den Engh et al.     
 5,759,767  A  6/1998    Lakowicz et al.     
 5,777,732  A  7/1998    Hanninen et al.     
 5,780,230  A  7/1998    Li et al.     
 5,786,560  A  7/1998    Tatah et al.     
 5,790,692  A  8/1998    Price et al.     
 5,793,485  A  8/1998    Gourley     
 5,796,112  A  8/1998    Ichie     
 5,798,276  A  8/1998    Haugland et al.     
 5,799,830  A  9/1998    Carroll et al.     
 5,804,436  A  9/1998    Okun et al.     
 5,815,262  A  9/1998    Schrof et al.     
 5,819,948  A  10/1998    Van den Engh     
 5,824,269  A  10/1998    Kosaka et al.     
 5,831,723  A  11/1998    Kubota et al.     
 5,835,262  A  11/1998    Iketaki et al.     
 5,840,504  A  11/1998    Blecher     
 5,844,685  A  12/1998    Gontin     
 5,846,737  A  12/1998    Kang     
 5,866,344  A  2/1999    Georgiou     
 5,868,767  A  2/1999    Farley et al.     
 5,872,627  A  2/1999    Miers     
 5,873,254  A  2/1999    Arav     
 5,874,266  A  2/1999    Paisson     
 5,876,942  A  3/1999    Cheng et al.     
 5,880,457  A  3/1999    Tomiyama et al.     
 5,880,474  A  3/1999    Norton et al.     
 5,883,378  A  3/1999    Irish et al.     
 5,888,730  A  3/1999    Gray et al.     
 5,891,734  A  4/1999    Gill et al.     
 5,893,843  A  4/1999    Rodrigues Claro     
 5,895,764  A  4/1999    Sklar et al.     
 5,895,922  A  4/1999    Ho     
 5,899,848  A  5/1999    Haubrich     
 5,909,278  A  6/1999    Deka et al.     
 5,912,257  A  6/1999    Prasad et al.     
 5,916,144  A  6/1999    Prather et al.     
 5,916,449  A  6/1999    Ellwart et al.     
 5,917,733  A  6/1999    Bangham     
 5,919,360  A  7/1999    Contaxis, III et al.     
 5,919,621  A  7/1999    Brown     
 5,934,885  A  8/1999    Farrell et al.     
 5,962,238  A  10/1999    Sizto et al.     
 5,972,710  A  10/1999    Weigl et al.     
 5,973,842  A  10/1999    Spangenberg     
 5,985,216  A  11/1999    Rens et al.     
 5,985,538  A  11/1999    Stachecju     
 5,990,479  A  11/1999    Weiss et al.     
 5,991,028  A  11/1999    Cabib et al.     
 5,998,140  A  12/1999    Dervan et al.     
 5,998,212  A  12/1999    Corio et al.     
 6,002,471  A  12/1999    Quake     
 6,003,678  A  12/1999    Van den Engh     
 6,042,025  A  3/2000    Crampton et al.     
 6,042,249  A  3/2000    Spangenberg     
 6,050,935  A  4/2000    Ranoux et al.     
 6,071,689  A  6/2000    Seidel et al.     
 6,079,836  A  6/2000    Burr et al.     
 6,086,574  A  7/2000    Carroll et al.     
 6,087,352  A  7/2000    Trout     
 6,090,947  A  7/2000    Dervan et al.     
 6,097,485  A  8/2000    Lievan     
 6,111,398  A  8/2000    Graham     
 6,117,068  A  9/2000    Gourley et al.     
 6,119,465  A  9/2000    Mullens et al.     
 6,120,735  A  9/2000    Zborowski et al.     
 6,128,133  A  10/2000    Bergmann     
 6,130,034  A  10/2000    Aitken     
 6,132,961  A  10/2000    Gray et al.     
 6,133,044  A  10/2000    Van den Engh     
 6,133,995  A  10/2000    Kubota     
 6,139,800  A  10/2000    Chandler     
 6,140,121  A  10/2000    Ellington et al.     
 6,143,535  A  11/2000    Paisson     
 6,143,901  A  11/2000    Dervan     
 6,146,837  A  11/2000    van de Winkel     
 6,149,867  A  11/2000    Seidel et al.     
 6,153,373  A*11/2000    Benjamin et al. 435/2
 6,154,276  A  11/2000    Mariella, Jr.     
 6,175,409  B1  1/2001    Nielsen et al.     
 6,177,277  B1  1/2001    Soini     
 6,193,647  B1  2/2001    Beebe et al.     
 6,201,628  B1  3/2001    Basiji et al.     
 6,207,392  B1  3/2001    Weiss et al.     
 6,208,411  B1  3/2001    Vaez-Iravani     
 6,211,477  B1  4/2001    Cardott et al.     
 6,214,560  B1  4/2001    Yguerabide et al.     
 6,221,654  B1  4/2001    Quake et al.     
 6,221,671  B1  4/2001    Groner et al.     
 6,238,920  B1  5/2001    Nagai et al.     
 6,247,323  B1  6/2001    Maeda     
 6,248,590  B1  6/2001    Malachowski     
 6,256,096  B1  7/2001    Johnson     
 6,263,745  B1  7/2001    Buchanan et al.     
 6,283,920  B1  9/2001    Eberle et al.     
 6,296,810  B1  10/2001    Ulmer     
 6,309,815  B1  10/2001    Tash et al.     
 6,316,234  B1  11/2001    Bova     
 6,317,511  B1  11/2001    Horiuchi     
 6,322,901  B1  11/2001    Bawendi et al.     
 6,323,632  B1  11/2001    Husher et al.     
 6,326,144  B1  12/2001    Bawendi et al.     
 6,328,071  B1  12/2001    Austin     
 6,329,158  B1  12/2001    Hoffman et al.     
 6,332,540  B1  12/2001    Paul et al.     
 6,357,307  B2  3/2002    Buchanan et al.     
 6,368,786  B1  4/2002    Saint-Ramon et al.     
 6,372,422  B1  4/2002    Seidel et al.     
 6,372,506  B1  4/2002    Norton     
 6,384,951  B1  5/2002    Basiji et al.     
 6,395,305  B1  5/2002    Buhr et al.     
 6,400,453  B1  6/2002    Hansen     
 6,411,835  B1  6/2002    Modell et al.     
 6,411,904  B1  6/2002    Chandler     
 6,416,190  B1  7/2002    Grier et al.     
 6,423,505  B1  7/2002    Davis     
 6,423,551  B1  7/2002    Weiss et al.     
 6,432,630  B1  8/2002    Blankenstein     
 6,432,638  B2  8/2002    Dervan et al.     
 6,452,372  B1  9/2002    Husher et al.     
 6,454,945  B1  9/2002    Weigl et al.     
 6,456,055  B2  9/2002    Shinabe et al.     
 6,463,314  B1  10/2002    Haruna     
 6,465,169  B2  10/2002    Walderich et al.     
 6,473,176  B2  10/2002    Basiji et al.     
 6,482,652  B2  11/2002    Furlong et al.     
 6,489,092  B1  12/2002    Benjamin et al.     
 6,495,333  B1  12/2002    Willmann et al.     
 6,495,366  B1  12/2002    Briggs     
 6,503,698  B1  1/2003    Dobrinsky et al.     
 6,511,853  B1  1/2003    Kopf-Sill et al.     
 6,514,722  B2  2/2003    Paisson et al.     
 6,524,860  B1  2/2003    Seidel et al.     
 6,528,802  B1  3/2003    Koenig et al.     
 6,534,308  B1  3/2003    Palsson et al.     
 6,537,829  B1  3/2003    Zarling et al.     
 6,540,895  B1  4/2003    Spence et al.     
 6,563,583  B2  5/2003    Ortyn et al.     
 6,576,291  B2  6/2003    Bawendi et al.     
 6,577,387  B2  6/2003    Ross, III et al.     
 6,580,504  B1  6/2003    Ortyn et al.     
 6,587,203  B2  7/2003    Colon     
 6,589,792  B1  7/2003    Malachowski     
 6,590,911  B1  7/2003    Spinelli et al.     
 6,596,143  B1  7/2003    Wang et al.     
 6,596,499  B2  7/2003    Jalink     
 6,604,435  B2  8/2003    Buchanan et al.     
 6,613,525  B2  9/2003    Nelson et al.     
 6,617,107  B1  9/2003    Dean     
 6,618,143  B2  9/2003    Roche et al.     
 6,618,679  B2  9/2003    Loehrlein et al.     
 6,641,708  B1  11/2003    Becker et al.     
 6,642,018  B1  11/2003    Koller et al.     
 6,658,357  B2  12/2003    Chandler     
 6,664,550  B2  12/2003    Rader et al.     
 6,667,830  B1  12/2003    Iketaki et al.     
 6,671,044  B2  12/2003    Ortyn et al.     
 6,673,095  B2  1/2004    Nordquist     
 6,674,525  B2  1/2004    Bardell et al.     
 6,698,627  B2  3/2004    Garcia et al.     
 6,700,130  B2  3/2004    Fritz     
 6,703,621  B2  3/2004    Wolleschensky     
 6,704,313  B1  3/2004    De Resende et al.     
 6,706,163  B2  3/2004    Seul et al.     
 6,707,555  B1  3/2004    Kusuzawa et al.     
 6,713,019  B2  3/2004    Ozasa et al.     
 6,729,369  B2  5/2004    Neas et al.     
 6,746,873  B1  6/2004    Buchanan et al.     
 6,752,298  B2  6/2004    Garcia et al.     
 6,753,161  B2  6/2004    Koller et al.     
 6,761,286  B2  7/2004    Py et al.     
 6,761,288  B2  7/2004    Garcia     
 6,767,706  B2  7/2004    Quake     
 6,780,377  B2  8/2004    Hall et al.     
 6,782,768  B2  8/2004    Buchanan et al.     
 6,789,706  B2  9/2004    Abergel et al.     
 6,789,750  B1  9/2004    Heldt     
 6,793,387  B1  9/2004    Neas et al.     
 6,813,017  B1  11/2004    Hoffman et al.     
 6,819,411  B1  11/2004    Sharpe et al.     
 6,849,394  B2  2/2005    Rozenboom et al.     
 6,849,423  B2  2/2005    Mutz et al.     
 6,861,265  B1  3/2005    Van den Engh     
 6,941,005  B2  9/2005    Lary et al.     
 7,015,310  B2  3/2006    Remington et al.     
 7,105,355  B2  9/2006    Kurabayashi et al.     
 7,208,265  B1  4/2007    Schenk     
 7,221,453  B2  5/2007    Sharpe et al.     
 2001//0006416  A1  7/2001    Johnson     
 2002//0047697  A1  4/2002    Husher et al.     
 2002//0058332  A1  5/2002    Quake et al.     
 2002//0064809  A1  5/2002    Mutz et al.     
 2002//0096123  A1  7/2002    Whittier et al.     
 2002//0113965  A1  8/2002    Roche et al.     
 2002//0115055  A1  8/2002    Matta     
 2002//0119558  A1  8/2002    Seidel et al.     
 2002//0131957  A1  9/2002    Gavin     
 2002//0141902  A1  10/2002    Ozasa et al.     
 2002//0171827  A1  11/2002    Van den Engh     
 2002//0182590  A1  12/2002    Strange et al.     
 2002//0186375  A1  12/2002    Asbury et al.     
 2002//0186874  A1  12/2002    Price et al.     
 2002//0198928  A1  12/2002    Bukshpan et al.     
 2003//0002027  A1  1/2003    Fritz     
 2003//0048433  A1  3/2003    Desjonqueres     
 2003//0059764  A1  3/2003    Ravkin et al.     
 2003//0059945  A1  3/2003    Dzekunov et al.     
 2003//0078703  A1  4/2003    Potts et al.     
 2003//0096405  A1  5/2003    Takayama et al.     
 2003//0098421  A1  5/2003    Ho     
 2003//0113765  A1  6/2003    Dempcy et al.     
 2003//0119050  A1  6/2003    Shai     
 2003//0119206  A1  6/2003    Shai     
 2003//0129091  A1  7/2003    Seidel et al.     
 2003//0157475  A1  8/2003    Schenk     
 2003//0165812  A1  9/2003    Takayama et al.     
 2003//0175917  A1  9/2003    Cumming     
 2003//0175980  A1  9/2003    Hayenga et al.     
 2003//0190681  A1  10/2003    Shai     
 2003//0207461  A1  11/2003    Bell et al.     
 2003//0209059  A1  11/2003    Kawano     
 2004//0005582  A1  1/2004    Shipwast     
 2004//0031071  A1  2/2004    Morris et al.     
 2004//0034879  A1  2/2004    Rothstein et al.     
 2004//0049801  A1  3/2004    Seidel     
 2004//0053243  A1  3/2004    Evans     
 2004//0055030  A1  3/2004    Maxwell et al.     
 2004//0061070  A1  4/2004    Hansen     
 2004//0061853  A1  4/2004    Blasenheim     
 2004//0062685  A1  4/2004    Norton et al.     
 2004//0072278  A1  4/2004    Chou et al.     
 2004//0107150  A1  6/2004    Neas et al.     
 2004//0132001  A1  7/2004    Seidel et al.     
 2005//0003472  A1  1/2005    Anzar et al.     
 2005//0011582  A1  1/2005    Haug     
 2005//0064383  A1  3/2005    Bashkin et al.     
 2005//0112541  A1  5/2005    Durack     
 2005//0214733  A1  9/2005    Graham     
 2005//0244805  A1  11/2005    Ludwig et al.     
 2005//0282245  A1  12/2005    Ludwig et al.     
 2006//0118167  A1  6/2006    Neas et al.     
 2006//0147894  A1  7/2006    Sowter     
 2006//0203226  A1  9/2006    Roche et al.     
 2006//0263829  A1  11/2006    Evans et al.     
 2006//0281176  A1  12/2006    Seidel et al.     
 2007//0026378  A1  2/2007    Schenk     
 2007//0026379  A1  2/2007    Seidel et al.     
 2007//0042342  A1  2/2007    Seidel et al.     
 2007//0092860  A1  4/2007    Schenk     
 2007//0099171  A1  5/2007    Schenk     
 2007//0099260  A1  5/2007    Seidel et al.     
 2007//0117086  A1  5/2007    Evans et al.     
 2007//0123461  A1  5/2007    Josephson     
 2007//0248976  A1  10/2007    Harding     

       BR       9704313                         6/1999      
       CA       1029833                         4/1978      
       CA       1 250 808                         3/1989      
       CA       2113957       A1                1/1994      
       CN       100998524                         7/2007      
       DE       69028526                         2/1997      
       DE       195 49 015       C1                4/1997      
       DE       198 82 943.3                         2/2001      
       EP       0025296       A2                3/1981      
       EP       0 046 345       A2                2/1982      
       EP       0 068 404       B1                1/1983      
       EP       0071538       A1                2/1983      
       EP       0 026 770       B1                3/1983      
       EP       0 029 662       B1                2/1984      
       EP       0 025 296       B1                5/1985      
       EP       0140616                         5/1985      
       EP       0 158 147       A2                10/1985      
       EP       0160201       A2                11/1985      
       EP       0189702       A1                8/1986      
       EP       0 229 814       B1                7/1987      
       EP       0 246 604       A2                11/1987      
       EP       0288029       B1                4/1988      
       EP       0276166       A2                7/1988      
       EP       0 289 677       A2                11/1988      
       EP       0 316 173       A1                5/1989      
       EP       0 317 809       A2                5/1989      
       EP       A-0 366794                         5/1990      
       EP       0 409 293       A2                1/1991      
       EP       0461618                         12/1991      
       EP       0 463 562       A1                1/1992      
       EP       0468100       A1                1/1992      
       EP       0474 187       A2                3/1992      
       EP       0 316 172       B1                7/1992      
       EP       0 316 171       B1                9/1992      
       EP       0570102       A1                3/1993      
       EP       0538786       A                4/1993      
       EP       0 279 000       B1                7/1993      
       EP       0 553 951       A1                8/1993      
       EP       0 288 029       B1                1/1994      
       EP       0 381 694       B1                6/1994      
       EP       0 361 504       B1                7/1994      
       EP       606847       A2                7/1994      
       EP       0 289 200       B2                8/1994      
       EP       0 555 212       B1                10/1994      
       EP       0 361 503       B1                11/1994      
       EP       0 696 731       A2                2/1996      
       EP       0 705 978       A2                4/1996      
       EP       0 711 991       A1                5/1996      
       EP       0 471 758       B1                9/1996      
       EP       0 736 765       A1                10/1996      
       EP       0 545 284       B1                2/1997      
       EP       0 360 487       B1                7/1997      
       EP       0 412 431       B1                10/1997      
       EP       0 526 131       B1                1/1998      
       EP       A-0 478155                         1/1998      
       EP       0 822 404       A3                2/1998      
       EP       0 822 401       A2                4/1998      
       EP       0781985       A3                7/1998      
       EP       0 556 748       B1                10/1998      
       EP       0 430 402       B1                1/1999      
       EP       0 529 666       B1                4/2000      
       EP       0 994 342       A3                4/2000      
       EP       0 752 133       B1                6/2000      
       EP       1 018 644       A2                7/2000      
       EP       1 118 268       A1                7/2001      
       EP       1 147 774       A1                10/2001      
       EP       0 534 033       B1                11/2001      
       EP       0 925 494       B1                12/2001      
       EP       0 748 316       B1                5/2002      
       EP       0 662 124       B1                6/2002      
       EP       1 245 944       A3                10/2002      
       EP       1 249 502       A2                10/2002      
       EP       1250897       A1                10/2002      
       EP       1 380 304       A2                1/2004      
       EP       1403633       A3                4/2004      
       EP       1 100 400       B1                5/2004      
       EP       1 257 168       B1                2/2005      
       FR       2574656       A1                6/1986      
       FR       A-2 635453                         2/1990      
       FR       2 647 668       A                12/1990      
       FR       2699678       A1                6/1994      
       GB       1471019       A1                4/1977      
       GB       2 121 976       A                1/1984      
       GB       2 122 369       A                1/1984      
       GB       2 125 181       A                2/1984      
       GB       2 136 561       A                9/1984      
       GB       2 137 352       A                10/1984      
       GB       2145112                         2/1985      
       GB       2 144 542       A                3/1985      
       GB       2 153 521       A                8/1985      
       GB       2 243 681       A                11/1991      
       GB       2 360 360       A                9/2001      
       JP       61139747       A                6/1986      
       JP       61159135       A                7/1986      
       JP       2024535                         1/1990      
       JP       4126064       A                4/1992      
       JP       4126065       A                4/1992      
       JP       4126066       A                4/1992      
       JP       4126079       A                4/1992      
       JP       4126080       A                4/1992      
       JP       4126081       A                4/1992      
       MN       03109426                         12/2005      
       SU       1056008                         11/1983      
       SU       1260778       A1                9/1986      
       WO       WO 84/01265       A1                4/1984      
       WO       WO 85/04014       A1                9/1985      
       WO       WO 88/07198                         9/1988      
       WO       WO 89/04470       A1                5/1989      
       WO       WO 89/04471       A1                5/1989      
       WO       WO 90/13315       A1                11/1990      
       WO       91/05236                         4/1991      
       WO       WO 92/08120       A1                5/1992      
       WO       WO 92/17288       A1                10/1992      
       WO       WO 93/10803                         6/1993      
       WO       9317322       A1                9/1993      
       WO       WO 94/22001       A1                9/1994      
       WO       WO 96/04542       A1                2/1996      
       WO       WO 96/12171       A2                4/1996      
       WO       WO 96/12172                         4/1996      
       WO       WO 96/12173       A1                4/1996      
       WO       WO 96/31764                         10/1996      
       WO       WO 96/33806       A1                10/1996      
       WO       WO 97/29354       A1                8/1997      
       WO       WO 97/30338       A1                8/1997      
       WO       WO 97/35189       A1                9/1997      
       WO       WO 97/43620       A1                11/1997      
       WO       WO 89/04472       A1                5/1998      
       WO       WO 98/34094                         8/1998      
       WO       WO 98/48259                         10/1998      
       WO       WO 98/57152       A1                12/1998      
       WO       WO 99/05504       A2                2/1999      
       WO       WO 99/33956       A1                7/1999      
       WO       WO 99/38883       A1                8/1999      
       WO       WO 99/42810       A1                8/1999      
       WO       WO 99/44035                         9/1999      
       WO       WO 99/44037       A1                9/1999      
       WO       WO 99/47906       A1                9/1999      
       WO       WO 99/60397       A1                11/1999      
       WO       WO 99/57955                         11/1999      
       WO       WO 99/61888       A2                12/1999      
       WO       WO 00/06193       A1                2/2000      
       WO       WO 00/12204                         3/2000      
       WO       WO 00/36396                         6/2000      
       WO       WO 00/49387                         8/2000      
       WO       WO 00/54026       A1                9/2000      
       WO       WO 00/56444                         9/2000      
       WO       WO 00/70080                         11/2000      
       WO       WO 01/02836       A1                1/2001      
       WO       0129538                         4/2001      
       WO       WO 01/28700       A1                4/2001      
       WO       WO 01/37655       A1                5/2001      
       WO       WO 01/40765       A2                6/2001      
       WO       WO 01/40765       A3                6/2001      
       WO       WO 01/42757       A2                6/2001      
       WO       WO 01/51612       A1                7/2001      
       WO       WO 01/61313       A2                8/2001      
       WO       WO 01/68110                         9/2001      
       WO       WO 01/68226       A2                9/2001      
       WO       WO 01/71348       A1                9/2001      
       WO       WO 01/75161       A2                10/2001      
       WO       WO 01/75176                         10/2001      
       WO       02041906       A2                11/2001      
       WO       WO 01/85913       A2                11/2001      
       WO       WO 01/85913       A3                11/2001      
       WO       WO 01/90295       A1                11/2001      
       WO       WO 01/95815       A1                12/2001      
       WO       WO 02/01189       A1                1/2002      
       WO       WO 02/04666       A2                1/2002      
       WO       WO 02/19594                         3/2002      
       WO       WO 02/19943       A1                3/2002      
       WO       WO 02/20850       A2                3/2002      
       WO       WO 02/21102       A2                3/2002      
       WO       WO 02/23163       A1                3/2002      
       WO       WO 02/25269       A2                3/2002      
       WO       WO 02/26114       A2                4/2002      
       WO       WO 02/28311       A1                4/2002      
       WO       WO 02/29106       A2                4/2002      
       WO       WO 02/41906       A2                5/2002      
       WO       WO 02/43486       A1                6/2002      
       WO       WO 02/43574       A3                6/2002      
       WO       WO 02/44319       A2                6/2002      
       WO       WO 02/052244       A2                7/2002      
       WO       WO 02/054044       A2                7/2002      
       WO       WO 02/057775       A1                7/2002      
       WO       03020877       A2                8/2002      
       WO       WO 02/060880       A1                8/2002      
       WO       WO 02/077637       A1                10/2002      
       WO       WO 02/092161       A1                11/2002      
       WO       WO 02/092247       A1                11/2002      
       WO       WO 03/008102       A1                1/2003      
       WO       WO 03/008937       A2                1/2003      
       WO       WO 03/012403       A1                2/2003      
       WO       WO 03/016875       A2                2/2003      
       WO       WO 03/056330       A2                7/2003      
       WO       WO 03/056335       A2                7/2003      
       WO       WO 03/072765       A1                9/2003      
       WO       WO 03/078065       A1                9/2003      
       WO       WO 03/078972       A1                9/2003      
       WO       WO 04/001401                         12/2003      
       WO       WO 20/04/006916       A1                1/2004      
       WO       WO 20/04/009237       A2                1/2004      
       WO       WO 20/04/009237       A3                1/2004      
       WO       WO 20/04/012837       A2                2/2004      
       WO       WO 20/04/012837       A3                2/2004      
       WO       WO 20/04/017041       A2                2/2004      
       WO       WO 20/04/017041       A3                2/2004      
       WO       WO 20/04/024227       A2                3/2004      
       WO       WO 20/04/024227       A3                3/2004      
       WO       WO 20/04/046712       A2                6/2004      
       WO       WO 20/04/059282       A2                7/2004      
       WO       WO 20/04/003697       A2                10/2004      
       WO       WO 20/04/087177       A1                10/2004      
       WO       WO 20/04/088283       A2                10/2004      
       WO       WO 20/04/104178       A2                12/2004      
       WO       WO 20/04/104178       A3                12/2004      
       WO       WO 20/05/094852       A2                10/2005      
       WO       WO 20/05/095590       A2                10/2005      
       WO       WO 20/05/095960       A1                10/2005      
       WO       2006012597       A2                2/2006      
       WO       WO 20/06/015056       A2                2/2006      
       WO       2006060770       A2                8/2006      
       WO       2007/016090       A2                2/2007      

  Menezo et al., Fertility and Sterility, vol. 42, No. 5, Nov. 1984, p. 750-755. *
  de Graaf, S.P. et al., Birth of offspring of pre-determined sex after artificial insemination of frozen-thawed, sex-sorted and re-frozen-thawed ram spermatozoa, Theriogenology, 67 (2007) 391-398.
  O'Brien, J.K. et al., Development fo sperm sexing and associated assisted reproductive technology for sex preselection of captive bottlenose dolphins, Reproduction Fertility and Development, 2006, 18, 319-329.
  Zhang, M, et al., In vitro fertilization with flow-sorted buffalo sperm, Reproduction Fertility and Development, 2005, 18(2), 283-284.
  Schenk, J.L. et al., Insemination of cow elk with sexed frozen semen, 2003 Theriogenology 59, 514.
  BD Biosciences Brochure, BD FACSCalibur Flow Cytometer, the Automated, Multicolor Flow Cytometry System, 2006.
  Johnson, L. A. et al., Cryopreservation of flow cytometrically sorted boar sperm: effects on in vivo embryo developmen; J. Anim Sci. vol. 78, Suppl 1/J. Dairy Sci., vol. 83, Suppl 1, 2000.
  Lindsey, A., et al., “Hysteroscopic Insemination of Fresh and Frozen Unsexed and Sexed Equine Spermatozoa”, pp. 152-153, Proc. 5th Int. Symp. Equine Embryo Transfer, p. 13, 2000.
  Presicce, G.A., et al., First established pregnancies in mediterranean italian buffaloes (Bubalus bubalis) following deposition of sexed spermatozoa near the utero tubal junction, Reproduction in Domestic Animals, vol. 40, No. 1, Feb. 2005 , pp. 73-75(3).
  Dielemann, S.J., Superovulation in cattle: from understanding the biological mechanisms to genomics of the oocyte; 23rd Annual Meeting A.E.T.E.—Alghero; Sep. 2007.
  Hasler, J. F., Factors influencing the success of embryo transfer in cattle; 23rd World Buiatrics Congress, Quebec, Canada Jul. 2004.
  Mapletoft, R.J., et al.Superovulation in perspective, Bioniche Animal Health Dec. 2002.
  Bahr, al., Considerations of volume, mass, DNA, and arrangement of mitochondria in the midpiece of bull spermatozoa, Experimental Cell Research 60 (1970) 338-340.
  Baumber, J., et al., “The Effect of Reactive Oxygen Species on Equine Sperm Motility, Viability, Acrosomal Integrity, Mitochondrial Membrane Potential, and Membrane Lipid Peroxidation”, 2000, Journal of Andrology, vol. 21 (6),pp. 895-902.
  BD LSR II Flow Cytometer, BD Biosciences Clontech Discovery labware Immunocytometry systems Pharmingen Jan. 28, 2004.
  Bermudez, al., The immediate effect of IR, laser radiation on rat, germ, cells, was studied by cytophotometric quantification, Scisearch 2001.
  Sequent Biotechnologies Inc., Welcome to the Sequent Biotechnologies Inc. website., Dec. 6, 2003.
  Sabuer K. et al.“Effects of Angiotensin II on the Acrosome Reaction in Equine Spermatozoa” Journal of Reproduction and Fertility vol. 120, 2002 p. 135-142.
  Brooks, D.E., Manipulation of Mammalian Gametes in Vitro, Biennial Report, Waite Agricultural Research Institute 1986-1989.
  Bruemmer, J.E. et al., “Effect of Pyruvate on the Function of Stallion Spermatozoa Stored for up to 48 Hours”, Journal of Animal Science 2002, vol. 80*1, pp. 12-18.
  Catt, S.L. et al., Hoechst staining and exposure to UV laser during flow cytometric sorting does not affect the frequency of detected endogenous DNA nicks in abnormal and normal human spermatozoa, Molecular Human Reproduction vol. 3 No. 9 pp. 821-825,(1997).
  Chaudhry, P., et al., Casein Kinase II activity and polyamine-stimulated protein phosphorylation of cytosolic and plasma membrane protiens in bovine sperm, Archives of Biochemistry and Biophyeics vol. 271, No. 1 pp. 98-106, May 15, 1989.
  Chen, Y. et al., Effects of sucrose, trehalose, hypotaurine, taurine, and blood serum on survival of frozen bull sperm, Cryobiology 30,423-431 (1993).
  Chapter 16 Semen processing, storage, thawing, and handling,˜cspark/teaching/chap16.html Sep. 23, 2002.
  Conover,J. et al., Pre-loading of mouse oocytes with DNA-specific fluorochrome (Hoechst 33342) permits rapid detection of sperm-oocyte fusion, Journals of Reproductive & Fertility Ltd. 82, 681-690 (1988).
  Cressman, B.E., MD. et al., Effect of sperm dose on pregnancy rate from intrauterine insemination: a retrospective analysis, Texas Medicine, 92:74-79 (1996).
  Crissman, H.A. et al., Use of DIO-C5-3 to improve hoechst 33342 uptake, resolution of DNA content, and survival of CHO cells, Experimental cell research 174: 338-396 (1988).
  Graves, C.N., et al., “Metabolism of Pyruvate by Epididymal-Like Bovine Spermatozoa”, 1964 Journal of Dairy Science vol. 47 (12), pp. 1407-1411.
  Certified Semen Services, CSS Minimum requirements for disease control of semen produced for AI, Sep. 22, 2003.
  Graves, C.N. et al., “Metabolic End-Products of Anaerobic Spermatozoan Metabolism”, 1966 Nature vol. 211, pp. 308-309.
  Culling, “Handbook of Histopathological and Histochemical Techniques, ”3rd Ed., Butterworths, pp. 192.
  De Grooth, B. et al., Simple delay monitor for droplet sorters, Cytometry 12:469-472 (1991).
  Lodge, J.R., et al., “Carbon Dioxide in Anaerobic Spermatozoan Metabolism” 1968, Journal of Dairy Science, vol. 51(1), pp. 96-103.
  Delgado,N. et al., Correlation between sperm membrane destabilization by heparin and aniline blue staining as membrane integrity index, Archives of Andrology40:147-152 (1998).
  Denniston, D.J. et al., “Effect of Antioxidants on the Motility and Viability of Cooled Stallion Spermatozoa”, Journal Reproduction Supplement 56, 2001, pp. 121-126.
  De Pauw M.C. et al. Sperm Binding to Epithelial Oviduct Explants in Bulls with Different Nonreturn Rates Investigated with a new In-Vitro Model Biology of Reproduction, 2002, vol. 67 p. 1073-1079.
  Donoghue, A. et al., Effects of water- and lipid-soluble antioxidants on turkey sperm viability, membrane integrity, and motility during liquid storage, Poultry Science 76:1440-1445 (1997).
  Durack, Gary; “Cell—Sorting Technology”, Emerging Tools for Single-cell Analysis, Chapter 1 pp. 1-359.
  Zucker, R. et al., Utility of light scatter in the Morphological analysis of sperm, Cytometry 13:39-47 (1992).
  Ericsson, S. et al., Interrelationships among fluorometric analyses of spermatozoal function, classical semen quality parameters and the fertility of frozen-thawed bovine spermatozoal, Theriogenology 39:1009-1024 (1993).
  Pursley, J.R. et al., Reproductive Management of Lactating Dairy Cows Using Synchronization of Ovulation; 1997 J. Dairy Sci 80:301-306.
  Bagnato, A., Genetic and Breeding; Phenotypic Evaluation of Fertility Traits and Their Association with Milk Production of Italian Friesian Cattle; 1994 J. Dairy Sci 77:874-882.
  Panskowski, J., A., et al. Use of Prostaglandin F2a as a Postpartum Reproductive Management Tool for Lactating Dairy Cows; 1995 J. Dairy Sci 78:1477-1488.
  Scipioni, R. L., et al., Short Communication: An Electronic Probe Versus Milk Protesterone as Aids for Reproductive Management of Small Dairy Herds; 1999 J. Dairy Sci 82:1742-1745.
  Fricke, P. M., Scanning the Fugure—Ultrasonography as a Reproductive Management Tool for Dairy Cattle; J. Dairy Sci 85:1918-1926.
  Grant, V. J., et al., Sex-Sorted Sperm and Fertility: An Alternative View; Biology of Reproduction 76, 184-188 (2007).
  Garner, D. L., Sex-Sorting Mamallian Sperm: Concept to Application in Aminals; Journal of Andrology, vol. 22, No. 4 Jul./Aug. 2001.
  Tubman, L.M. et al., Characteristics of calves produced with sperm sexed by flow cytometry/cell sorting; 2004 Amer. Society of Animal Sciences; 82:1029-1036.
  Weigel, K. A., Exploring the Role of Sexed Semen in Dairy Production Systems; J. Dairy Sci. 87: (E.Suppl.): E120-E130; 2004 American Dairy Science Assoc.
  Ferre, L., et al., In vitro-derived embryo production with sexed and unsexed semen from different bulls; Reproduction Fertility and Development, vol. 16, Part 1/2, p. 253, 2004.
  Dalton, J.C., et al., Effect of Time of Insemination on Number of Accessory Sperm, Fetilization Rate, and Embryo Quality in Nonlactating Dairy Cattle. J Dairy Sci. 84:2413-2418.
  Dransfield, M.B.G., et al., Timing of Inseminatio for Dairy Cows Identified in Estrus by a Radiotelemetric Etrus Detection System. 1998 J Dairy Sci. 81: 1874-1882.
  Maatje, K. et al. Predicting Optimal Time of Insemination in Cows that Show Visual Signs of Estrus by Estimating onset of Estrus with Pedometers.
  Nebel, R.L. et al. Timing of Artificial Insemination of Dairy Cows: Fixed Time Once Daily Versus Morning and Afternoon 1994 J Dairy Sci. 77:3185-3191.
  Pursley, J. Richard, et al. Effect of Time of Artificial Insemination on Pregnancy Rates, Calving Rates, Pregnancy Loss, and Gender Ratio After Synchronization of Ovulation in Lactating Dairy Cows. 1998 J Dairy Sci. 81: 2139-2144.
  Rozeboom, K. J. et al. Late Estrus or Metestrus Insemination After Estrual Inseminations Decreases Farrowing Rate and Litter Size in Swine J. Animal Sci. 1997. 75: 2323-2327.
  Peeler, I. D. et al. Pregnancy Rates After Times Al of Heifers Following Removal of Intravaginal Progesterone Inserts, J. Dair Sci., 87:2868-2873; 2004.
  Rath, D. Low Dose Insemination in the Sow—A Review, Reprod. Dom Anim. 37, 201-205 (2002)
  Lukaszewicz, M. et al. Attempts on freezing the Greylag (Anser anser L.) gander semen Animal Reproduction Science 80 (2004) 163-173.
  Foote, R. H. et al. Sperm Numbers Inseminated in Dairy Cattle and Nonreturn Rates Revisited 1997 J Dairy Science 80:3072-3076.
  Conley, H.H. et at. Intensification by Intrauterine Devices of Sperm Loss from the Sheep Uterus Biology of Reproduction 2, 401-407 (1970).
  Chrenek, Peter et al. Fertilizing Capacity of Transgenic and Non-Transgenic Rabbit Spermatozoa after Heterospermic Insemination Bull Vet. Inst. Pulawy 49, 307-310, 2005.
  Bakst, Murray R. Fate of Fluorescent Stained Sperm following Insemination: New Light on Ovicucal Sperm Transport and Storage in the Turkey.
  Johnson L.A., et al. use of boar spermatozoa for artificial insemination, II. Fertilization Capacity of fresh and frozen spermatozoa in gilts inseminated either at a fixed time or according to walsmeta readings, Journal of Animal Science, vol. 54 No. 1, 1982 pp. 126-131.
  Pursel, V. G., et al. Distribution and morphology of fresh and frozen-thawed sperm in the reproductive tract of gilts after artificial insemination; Biology of Reproduction 19, 69-76 (1978).
  Nikkei Biotech, Supplement, Latest Information of Biological Instruments and Reagents, 1988, pp. 93-94.
  D. Rath, “On the Status of Sex-Specific Sperm Sorting” Review lecture ET Conference 2002, Department of Animal Production and Animal Behaviour, Mariensee, Germany.
  Grossfeld, R., “Experiments to Improve the Quality of Sex-Sorted Fresh and Frozen Porcine Spermatozoa” PhD thesis of the Faculty of Agricultural Sciences, Georg-August University, Gottingen, May 2007.
  U.S. Appl. No. 11/092,509, Response to NonFinal OA dated Jul. 10, 2007.
  U.S. Appl. No. 11/092,509, Advisory Action dated Sep. 13, 2007 & Notice of Appeal w Pre-Appeal Conf Request dated Sep. 26, 2007.
  U.S. Appl. No. 11/092,509, Pre-Appeal Conf Decision dated Nov. 21, 2007.
  Lindsey, A. C., et al., Hysteroscopic insemination of mares with low numbers of nonsorted or flow sorted spermatozoa; Equine vet. J. (2002) 34(2) 128-132.
  Sharpe, Jonathan, Advances in flow cytometry for sperm sexing, Unpublished paper, 2008.
  Johnson, S.K., Possibilities with today's reproductive technologies. Available online at; Therio 64(2005) pp. 639-656.
  Brogliatti, G. et al., Pregnancy Rates and First Born Calves by Artificial Insemination using Sexed Semen in Argentina: Therio. Jan. 2, 2002, vol. 57, No. 1, p. 369.
  Palma, G. et al., Sperm Physiology: The Ability to Produce Embryos In Vitro using Semen from Bulls with a Low Non-Return Rate. Therio. p. 308.
  Gottlinger, Christopher et al., Cell-Cooling in Flow Cytometry by Peltier Elements. Cytometry 7:295-297 (1986).
  Abstracts: American Dairy Science Assoc., American Society of Animal Science, Jun. 22-26, 2003 Phoenix AZ. J.Anim Sci. vol. 81 Suppl.1/J. Dairy Sci. vol. 86, Suppl. 1.
  Garner, Duane L., et al, Effect of Semen Dilution on Bovine Sperm Viability as Determined by Dual-DNA Staining and Flow Cytometry. J. of Andrology, vol. 18, No. 3 May/Jun. 1997.
  Lindsey, A. L., et al., Hysteroscopic or rectally guided, deep-uterine insemination of mares with spermatozoa stored 18 h at either 5° C or 15° C prior to flow-cytometric sorting, Animal Reproduction Science, vol. 85, Issues 1-2, Jan. 2005, pp. 125-130.
  Schenk, J. L., et al., Pregnancy rates in heifers and cows with cryopreserved sexed sperm: Effects of sperm numbers per inseminate, sorting pressure, and sperm storage before sorting, Theriogenology (2008), doi:10.1016/j. theriogenolology. 2008:08:016.
  Suh, T.K., et al., High pressure flow cytometric sorting damages sperm, Theriogenology 64 (2005) 1035-1048.
  Upreti, G. C., et al., Studies on aromatic amino acid oxidase activity in ram spermatozoa: role of pyruvate as an antioxidant, Animal Reproduction Science 51 (1998) 275-287.
  Schafer, D. J., et al., Comparison of progestin-based protocols to synchronize estrus and ovulation before fixed-time artificial insemination in postpartum beef cows, Journal of Animal Science Mar. 30, 2007, pp. 1-21.
  Lamb, G. C., Synchronization of estrus and artificial insemination in replacement beef heifers using gonadotropin-releasing hormone, prostaglandin F2a and progesterone, Journal of Animal Science Nov. 1, 2006, vol. 84, pp. 3000-3009.
  Saladarriaga, J. P., Ovarian, hormonal, and reproductive events associated with synchronization of ovulation and timed appointment breeding in Bos indicus-influenced cattle using intravaginal progesterone, gonadotropin-releasing hormone, and prostaglandin F2a, Journal of Animal Science Jan. 2007, vol. 85, pp. 151-162.
  O'Brien, J. K. et al., Semen collection, characterization an preservation in a beluga (Delphinapterus leucas), 1st International workshop on Beluga whale research, husbandry and management in wild and captive environments Mar. 2007.
  O'Brien, J. K. et al., Development of sperm sexing and associated assisted reproductive technology for sex preselection of captive bottlenose dolphins (Tursiops truncatus), Reproduction, Fertility and Development 2008, 18, 319-329.
  Ericsson, et al. “Flow Cytometric Evaluation of Cryopreserved Bovine Spermatozoa Processed Using a New Antiobiotic Combination”, Theriogenology, 1990, vol. 33(6), pp. 1211-1220.
  Cho, et al. A microfluidic device for separating motile sperm from nomotile sprem via inter-streamline crossings.
  Ericsson, R. et al., Functional differences between sperm bearing the X- or Y-chromosome.
  Esteves, S. et al., Improvement in motion characteristics and acrosome status in cryopreserved human spermatozoa by swim-up processing before freezing, Human Reproduction vol. 15 No. 10 pp. 2173-2179 (2000).
  Evenson, al., Physiology and Management, Rapid determination on sperm cell concentration in bovine semen by flow cytometry, J Dairy Sci. 76: 86-94 (1993).
  Farrell et al., “Quantification of Bull Sperm Characteristics measured by Computer-Assisted Sperm Analysis (CASA) and the Relationship of Fertility”, Theriogenology, 1998, vol. 49 (4), pp. 871-879.
  Fitzgerald, D., Cell sorting: An enriching Experience, The Scientist Jul. 23, 2001.
  Foote,R., The history of artificial insemination: Selected notes and notables, American Society of Animal Science (2002).
  Foote, R., Functional differences between sperm bearing the X- or Y- chromosome.
  Fugger, E.F.,Clinical Experience with Flow Cytometric Separation of Human X and Y Chromosome Bearing Sperm; Theriogenlology 52: 1435-1440, 1999.
  Garner, D., Past, Present and future perspectives on sexing sperm, CSAS—Symposium SCSA: 67-78.
  Zhanga, al.,Development of bovine embryos after in vitro fertilization of oocytes with flow cytometrically sorted, stained and unsorted sperm from different bulls, Abstract: Theriogenology vol. 60 Issue 9,pp. 1657-1663, Dec. 2003.
  Johnson, L. et al., Sex preselection in mammals by DNA: A method for flow separation of X and Y Spermatozoa in humans.
  Johnson, L. et al., Recent advances in sex preselection of cattle: Flow cytometric sorting of X-&Y-chromosome bearing sperm based on DNA to produce progeny, Theriogenology 41:51-56 (1994).
  Ashwood-Smith, M., Debate Human sperm sex selection, Human Reproduction vol. 9 No. 5 pp. 757-759 ( 1994).
  Pinkel, al.,Flow cytometry of mammalian sperm progress in DNA and morphology measurement, The Journal of Histochemical and Cytochemistryvol.27 No. 1 pp. 353-358 (1979).
  Fugger, E. et al., Birth of normal daughters after MicroSort sperm separation and intrauterine insemination, in-vitro fertilization, or intracytoplasmic sperm injection, Mar. 19, 2003.
  Johnson, L. et al., Flow sorting of X and Y Chromosome-bearing Mammalian sperm: Activation and pronuclear development of sorted bull, boar, and ram sperm microinjected into hamster oocytes, Gamete Research 21:335-343 (1988).
  Salisbury, G.W., et al., Reversal by Metabolic Regulators of CO2-induced Inhibition of Mammalian Spermatozoa, 1959, Proc Soc Exp Biology Med, vol. 101 (1) pp. 187-189.
  Centola, al., Cryopreservation of human semen. Comparison of cryopreservatives, sources of variability, and prediction of post-thaw survival. PMID: 1601749 May-Jun. 1992.
  Bencic, D.C., et al., “Carbon Dioxide Reversibly Inhibits Sperm Motility and Fertilizing Ability in Steelhead (Oncorhynchus mykiss)” 2000, Fish Physiology and Biochemistry, vol. 23(4), pp. 275-281.
  Boatman, D.E. et al., “Bicarbonate Carbon Dioxide Regulation of Sperm Capacitation Hyperactivated Motility and Acrosome Reactions”, 1991, Biology of Reproduction vol. 44(5), pp. 806-813.
  Garcia, M.A. et al., “Development of a Buffer System for Dialysis of Bovine Spermatozoa Before Freezing III.Effect of Different Inorganic and Organic Salts on Fresh and Frozen-Thawed Semen”, 1989, Theriogenology, vol. 31(5),pp. 1039-1048.
  Courtens, J. et al., Numerical simulation for freezing and thawing mammalian spermatozoa. Evaluation of cell injuries at different depths in bags or straws during all steps of the technique.
  Eiman, al., Trehalose-enhanced fluidity of the goat sperm membrane and its protection during freezing, Biology of Reproduction 69: 1245-1250 (2003).
  Foote, al., Physiology and Management, Fertility of bull spermatozoa frozen in whole milk extender with trehalose, taurine, or blood serum, J. Dairy Sci. 76:1908-1913 (1993).
  Johnson, L. et al., Storage of bull semen, Animal Reproduction Science 62: 143-172 (2000).
  Johnson, L. et al.,Erratum to “Storage of bull semen”, Animal Reproduction Science 62: 143-172 (2000).
  McNutt, al., Electrophoretic gel analysis of Hoechst 33342 stained and flow cytometrically sorted bovine sperm membrane proteins, Reprod. Dom Anim.31: 703-709 (1996).
  Van der Werf, Julius, An overview of animal breeding programs; Animal Breeding Use of New Technologies (This is a Post Graduate Foundation Publication).
  Best, T. P. et al. “Nuclear Localization of Pyrrole-Imidazole Ployamide-Flourescein Conjugates in Cell Culture”, PNAS, 2003, vol. 100(21), pp. 12063-12068.
  Gygi, M.P., et al. “Use of Fluorescent Sequence-Specific Polyamides to Discriminate Human Chromosomes by Microscopy and Flow Cytometry”, Nuci Acids Res. 2002, vol. 30(13),pp. 2790-2799.
  Young, al., Prolonged feeding of low levels of zearalenone to young boars.
  BD Biosciences, BD AccuDrop Potion,, Sep. 2002.
  Agarwal, al., Filtration of spermatozoa through L4 membrane:a new method, Fertility and Sterility, vol. 6, No. 6, Dec. 1991.
  Anzar, al., Optimizing and Quantifing fusion of liposomes to mammalian sperm using resonance energy transfer and flow cytometric methods, Cytometry49:22-27 (2002).
  Anzar, al., Sperm Apoptosis in fresh and cryopreserved bull semen detected by flow cytometry and it's relationship with fertility, Biology of Reproduction 66: 354-360 (2002).
  Arav, al., New trends in gamete's cryopreservation, Molecular and Cellular Endocrinology 187:77-81 (2002).
  Arndt-Jovin et al., “Analysis and Sorting of Living Cells According to Deoxyribonucleic Acid Content”, Journal Histochem. and Cytochem., 1977, vol. 25(7), pp. 585-589.
  Arts, al.,Evidence for the existence of lipid-diffusion barriers in the equatorial segment of human spermatozoa, Boichem J.384:211-218 (1994).
  Garner, al., Spermatozoa and Seminal Plasma, Reproduction in farm animals 7th edition.
  Gadella B,et al., Dynamics in the membrain organization of the mammalian sperm cell and functionality in fertilization, Vet Quart. 21:142-146 (1999).
  Garner, al., Chromatin stability in sex-sorted sperm, VII International Congress of Andrology.
  Garner,D. et al., Morphological and ultrastrutural Characterization of mammalian spermatozoa processed for flow cytometric DNA analyses, Gamete Research 10:339-351 (1984).
  Garner, D., et al., Effect of hoechst 33342 staining and laser illumination on the viability of sex-sorted bovine sperm, Theriogenology, vol. 57 No. 1, 1-810 (2002).
  Garner, D. et al., Assessment of spermatozoal function using dual fluorescent staining and flow cytometric analyses, Biology of Reproduction 34:, 127-138 (1986).
  Gebhard D., Sorting Viability . . . one more time, Feb. 14, 2004.
  Givan,A., Flow Cytometry First Principles, (1992).
  Gledhill, al., Identifying and separating X- and Y- Chromosome-bearing mammalian sperm by flow cytometry, Lawrence Livermore National Laboratory, Feb. 8, 1984.
  Gledhill, al., Identifing X- and Y- chromosome- bearing sperm by DNA content:Retrospective perspectives and prospective opinions'.
  Gledhill, al., Flow microflurometric analysis of sperm DNA contemt: Effect of cell shape on the fluorescence distribution, J. Cell Physiol.87: 367-378.
  Gledhill, al., Flow cytometry and sorting of sperm and male germ cells, Flow Cytometry and sorting, second edition, pp. 531-551 (1990).
  Gordon et al., “Genetic Transformation of Mouse Embryos by Microinjection of Purified DNA”, Proc. Natil Acad. Sci., 1980, vol. 77 (12), pp. 7380-7384.
  Graham, al.,Analysis of sperm cell viability, Acrosomal integrity, and Mitocondrial function using flow cytometry, Biology of Reproduction 43: 55-64 (1990).
  Graham, al., Effect of some Zwitter Ion buffers on freezing and storage of spermatozoa I, Bull, J. Dairy Sci 55: 372-378 ( 1992).
  Grogan, W. et al., DNA Analysis and sorting of viable mouse testis cells, The Journal of Histochemistry and Cytochemistry, vol. 29 No. 6 pp. 738-746, (1981).
  Guthrie, et al., “Flow Cytometric Sperm Sorting: Effects of Varying laser Power on Embryo Development in Swine”, Mol. Reprod. And Develop., 2002,vol. 61 (1), pp. 87-92.
  Hacker-Klom, U.B., et al., Effect of doxorubicin and 4′-epi-doxorubicin on mouse spermatogenesis. Mutation Research International Journal on Mutagenesis vol. 159, pp. 39-46. 1986.
  Hargrove, T. et al., Special Techniques, Part B Cryopreservation, Chapter 11B.
  Hasler, J., Symposium: Reproductive Technology and Genetic improvementJ. Dairy Sci. 75:2857-2879 (1992).
  Held, al., Quasi- CW Solid-state lasers Expand their reach, Photonics Spectra, Dec. 2002.
  Hinkley, al., Rapid visual detection of sperm-egg fusion using the DNA-Specific Fluorochrome Hoechst 33342, Developmental Biology 118: 148-154 (1986).
  Januskauskas, al.,Assessment of sperm quality through Fluorometry and sperm chromatin structure assay in relation to field fertility of frozen-thawed semen from Swedish Al bulls, Theriogenology 55: 947-961 (2001).
  Janendran, al., Effect of glycerol and cryopreservation on oocyte penetration by human spermatozoa, PMID: 4025843, Jul. 6, 2006.
  Johnson, L., A flow cytometric/ sorting method for sexing mammalian sperm validated by DNA analysis and live births, Cytometry, p. 42 of supplement , Sep. 4, 1990.
  Johnson, L., Flow sorting of intact X & Y chromosome-bearingmammalian spermatozoa, The Journal of the Society for Analytical Cytology Cytometry, (1988).
  Zhang,M. et al., Development of bovine embryos after in vitro fertilzation of oocytes with a flow cytometrically sorted, stained and unsorted sperm from different bulls, Theriogenology 60: 1657-1663 (2003).
  Jones, al., Effect of Osmolality and Phosphate, “Tris”, “Tes”, “Mes”, nd “Herpes” Hydrogen ion buffers on the motility of bull spermatozoa stored at 37 or 5° C, Ausi J. Biol. Sci.25:1047-1055 (1972).
  Jones,R., Plasma membrane structures and remodelling during sperm maturation in the epididymis, Journal of Reproduction and Fertility (1998).
  Edited by Johnson, L., Boar Semen Preservation, Supplement to Reproduction in Domestic Animals (1991).
  Johnson, L., Separation of X and Y Chromosome-bearing mammalian sperm by DNA content cytometric analysis and sorting, US Department of Agriculture.
  Johnson, M.,The Macromolecular Organization of membranes and its bearing on events leading up to Fertilization, Journal of Reproduction and Fertility (1975).
  Johnson, L., Verified Sex Pre-Selection in Farm Animals.
  Johnson, L., Prograss towards achieving sex preselection in farm animals, USDA Agricultural Research Service, (1989).
  Kordwig, al., Uniform Lateral Orentation, caused by flow forces, of flat particles in flow-through systrms, The Journal of Histochemistry and Cytochemistry, vol. 25 No. 7 pp. 774-780 (1977).
  Keeler, al., Flow microfluorometric analysis of living spermatozoa stained with Hoechst 33342, J. Reprod.Fert. 68:205-212 (1983).
  Keij, al., High speed Photodamage cell sorting: An evaluation of the Zapper Prototype, Methods in cell Biology vol. 42, (1994).
  Kirchhoff, al., The Molecular biology of the sperm surface:Post-Testicular Membrane Remodelling, The Fate of the Male Germ Cell, (1997).
  Krueger, al.,Low dose Insemination in synchronized gilts, Theriogenology 52: 1363-1373 (1999).
  Landetie,J.,Induction and survival of micronuclei in rat spermatids. Comparison of two meiotic micronucleus techniques using cyclophosphamide, Mutation Research, 203:47-53 (1988).
  Laser Innovations-Applications, Feb. 2, 2004.
  Libbus, al.,Incidence of chromosome aberrations in mammalian sperm stained with Hoechst 33342 and UV-laser irradiated during flow sorting, Mutation Research, 182: 265-274 (1987).
  Loken, M., Separation of viable T and B lymphocytes using a cytochemical stain, Hoechst 33342, The Journal of Histochemistry and Cytochemistry,vol. 28, No. 1, pp. 36-39 (1980).
  Lucas, al., Orientation measurments of microsphere doublets and metaphase chromosomes in flow, Cytometry 7:575-581 (1986).
  Luttmer, al.,Examination of living and fixed gametes and early embryos stained with supravital fluorochromes (Hoechst 33342 and 3,3′-dihexyloxacarocyanine Iodide), Gamete Research 15:267-283 (1986).
  Masiki, al., Effect of bull seminal plasma on the membrane characteristics of boarepididymal spermatozoa.
  Maxwell, al.,Physiology of spermatozoa at high dilution rates:The influence of seminal plasma, Theriogenology 52: 1353-1362 (1999).
  Mazur, P., The role of Intracellular freezing in the death of cells cooled at supraoptimal rates, Cryobiology 14:251-272 (1977).
  McSweeney, al., Abstract: Insemination of lactating holstein cows with sexed frozen/thawed sperm,, Mar. 16, 2004.
  Medeiros,C. et al., Current status of sperm cryopreservation: Why isn't it better? Theriogenology 57: 327-344 (2002).
  Meistrich, M., Potential and limitations of physical methods for separation of sperm bearing an X- or Y- chromosome.
  Meistrich, al., “Cytogenetic” studies of spermatids of mice carrying Cattanach's translocation by flow cytometry, Chromosoma 74:141-151 (1979).
  Morrell, J. et al., Offspring from inseminations with mammalian sperm stained with Hoechst 33342, either with or without flow cytometry, Mutation Research 224:177-183 (1989).
  Morrell et al.,“Sexing of Sperm by Flow Cytometry”, The Veterinary Record, 1988, pp. 322-324.
  Morrier, al., Glycerol addition and conservation of fresh and crypreserved ram spermatozoa, Canadian Journal of AnimalScience, Sep. 2002
  Moruzzi, J., Selecting a mammalian species for the separationof X- and Y- chromosome-bearing spermatozoa, J. Reprod. Fert. 57:319-323 (1979).
  Murthi S. et al., Improved data acquisition system for digital flow cytometry, (2002).
  Studt, T., MEMS-based Cell Sorter Speeds Clinical Studies, R& D Magazine, Dec. 2003: pp. 36-37 as currently presented on and printed from http;// 2 pgs.
  Gwo-Bin, al., Multi-cell-line micro flow cytometers with buried SU-8/SOG Optical waveguides, Feb. 2002.
  Shapiro, H. M. et al., Multistation Multparameter Flow Cytometry: Some Influences of Instrumental Factors on System Performance, 1983,pp. 11-19,4,Allan R. Liss, Inc.
  OcanaQuero, al., Biological effects of helium-neon irradiation on acrosome reaction in bull, Scisearch Journal of Photochemistry and Photobiology, vol. 40 No. 3, pp. 294-298 (1997).
  Pangawkar, G. et al., Physical and biochemical characteristics of semen in relation to fertility of Holstein-Friesian bulls, Indian vet. Med.J. vol. 13: 21-26 (1989).
  Papa, S. et al., Chromatin organization in Isolated nuclei: Flow cytometric characterization employing forward and perpendicular light scatter, Cell Biochemistry and Function vol. 6: 31-38 (1988).
  Parks, J. et al., Lipids of plasma membrane and outer acrosomal membrane from bovine spermatozoa, Biology of Reproduction 37:1249-1258 (1987).
  Parks, J. Processing and handling bull semen for artificial insemination—Don't add insult to injury!, Department of Animal Science Cornell University.
  Partec, Taking flow cytometry to the next generation, Catalogue 2001-2002.
  Perez-Pe, al., Semen plasma proteins prevent cold shock membrane damage to ram spermatozoa, Theriogenology 56 (3) : 425-434, Aug. 1, 2001, PMID: 11516122 http.//
  Peter, A. et al., Fractionation of bovine spermatozoa for sex selection: A rapid immunomagnetic technique to remove spermatozoa that contain the H-Y antigen, Theriogenology 40:1177-1185 (1993).
  Petersen, Timothy W., et al, Stability of the Breakoff Point in a High-Speed Cell Sorter The Journal of the international society for Analytical Cytology, vol. 56A No. 2, Dec. 2003.
  Pinkel Dan, Flow Cytometry and Sorting Analytical Chemistry, Mar. 1982 vol. 54 No. 3.
  Pinkel Dan, Cytometric Analysis of Mammalian Sperm for Induced Morphologic and DNA Content Errors; Biological Dosimetry (Cytometric Approaches to Mammalian Systems) 1984.
  Pinkel, D. et al; Radiation-Induced DNA Content Variability in Mouse Sperm. Radiation Research an International Journal, vol. 95, No. 3, Sep. 1983.
  Piumi, F. et al., Specific cytogenetic labeling of bovine spermatozoa bearing X or Y chromosomes using florescent in situ hybridization (FISH), Genet, Sel. vol. 33: 89-98 (2001).
  Polge, C., Low-temperature storage of mammalian spermatozoa, Unit of Reproductive Physiology and Biochemistry, Cambridge.
  Edited by Bell-Prince, C. , NFCR Newsletter,, Jan. 6, 2004.
  Zahid, al., Changes in motion characteristics, plasma membrane integrity, and acrosome morphology during cryopreservation of buffalo spermatozoa, Journal of Andrology, vol. 22 No. 2, Mar.-Apr. 2001.
  Rees, William A., et al,Betaine Can Eliminate the Base Pair Composition Dependence of DNA Melting; Biochemistry 1993, 32, pp. 137-144.
  Rens, al.,An X-Y paint set and sperm FISH protocol that can be used for validation of cattle sperm separation procedures, Journals of Reproduction and Fertility, 121: 541-546 (2001).
  Reyes, al., Characterization of Secretory Proteins from cultured Cauda Epididymal Cells that significantly sustain bovine sperm motility, Molecular Reproduction and Development 63: 500-509 (2002).
  Rippel,N. et al., Transcervical insemination: Effects of variation in total sperm number/dose on fertility, 83rd Annual Fall Conference for Veterinarians, Oct. 2002.
  Rizzo, W. et al.,Liposome-mediated transfer of simian virus 40 DNA and minichromosome into mammalian cells, J. Gen. Virol 64:911-919 (1983).
  Ruch, F., Determination of DNA content by microfluorometry, Introduction to Quanitative Cytochemistry, pp. 281-294 (1966).
  Saacke, al., Semen Quality test and their relationship to fertility, 4th National Association of Animal Breeders, (1972).
  Salisbury, G.W.,et al.“Preservation of Bovine Spermatozoa in Yolk-Citrate Diluent and Field Results from its Use”, Journal of Dairy Science, 1941, vol. 24(11),pp. 905-910.
  Schroter, al., The glycocalyx of the sperm surface, Human Reproduction Update: vol. 5, No. 4, pp. 302-313 (1999).
  Schuster, T. et al., Isolation of motile spermatozoa from semen samples using microfluidics, Reproductive BioMedicine Online,vol. 7 No.1 75-81,, Apr. 16, 2003.
  Seidel, George E. Jr. “What about sexed semen?” Hoard's Dairyman, The National Dairy Farm Magazine, May 10, 2001.
  Sexing Technologies, Welcome to sexing Technologies, Dec. 11, 2003.
  Shapiro, Howard M. M.D.,Building Flow Cytometers Chapter 9. Practical Flow Cytometry, second edition, Property of Washington University Medical Library.
  Sharp, J. et al., Radially symmetric excitation and collection optics for flow cytometric sorting of aspherical cells, Cytometry, 29:363-370 (1997).
  Shapiro, H., Re: cheap laser idea??, Feb. 3, 2004.
  Smith, al., Characteristics of a Novel Deep Red/ Infrared Fluorescent Cell-Permeant DNA Probe, DRAQ5, in Intact human Cells Analyzed by Flow Cytometry, Confocal and Multiphoton Microscopy, Cytometry 40:280-291 (2000).
  Stanger, al., The Relationship between motility and the FITC-BSA binding Properties of Mouse epididymal spermatozoa, The Journal of Experimental Zoology 227: 323-327 (1983).
  Stanic,P. et al.,Comparison of protective media and freezing techniques for cryopreservation of human semen, , Jul. 11, 2000.
  Stewart,R., Georgia Beef Challenge, Livestock Newsletter Jan. -Feb. 2002.
  Takacs, al.,Flow Cytometric determination of the sperm cell number in diluted bull semen samples by DNA staining method, Acta Biochim.Biophys.Hung. vol. 22 No. 1, pp. 45-57 (1987).
  Thurston,L. et al., Identification of Amplified restriction fragment length polymorphism markers linked to genes controlling boar sperm viability following cryopreservation, Biology of Reproduction 66: 545-554 (2002).
  Tone, al., A method of vital staining of mouse eggs using Hoechst dye, Department of Developmential Biology (1986).
  Tubman, al., Abstract:Normality of calves resulting from sexed sperm, Mar. 16, 2004.
  Tucker, al., Sperm separation techniques:Comparison of gradient products, Proceedings 2ed International workshop for Embryologists: Troubleshooting activities in the ART lab. (2002).
  Van Dilla, al., Measurement of Mammalian Sperm Deoxyribonucleic acid by Flow Cytometry, The journal of Histochemistry and Cytochemistry vol. 25 No. 7 pp. 763-773 (1977).
  Vazquez, al., Nonsurgical Uterotubal Insemination in the Mare, Reproduction: Mare vol. 44 (1998).
  Vishwanath, al., Storage of bovine semen in liquid and frozen state, Animal Reproduction Science 62: 23-53 (2000).
  Washburn, S., Sex-Sorted Semen; Still several steps short of sensational, sci/extention/animal/news/april96/april1965.html Mar. 16, 2004.
  Welch, al., Sex preselection: Laboratory Validation of the sperm sex ratio of Flow sorted X- and Y- sperm by sort reanalysis for DNA, Theriogenology 52:1343-1352 (1999).
  Welch, al., Fluidic and optical modification to a facs IV for flow sorting of X&Y Chromosomes bearing sperm based on DNA, International Society for Analytical Cytology (1994).
  Wiltshire, al., A Novel Deep Red/ Low infrared fluorescent flow cytometric probe DRAQ5NO, for the Discrimination of intact nucleated cells in apoptotic cell populations, Cytometry 39: 217-223 (2000).
  Woelders, H. et al., Effects of Trehalose and Sucrose, Osmolality oh the freezing medium, and cooling Rate on Viability and intactness of bull sperm after freezing and thawing, Cryobiology 35: 93-105 (1997).
  Wolf, D., Lipid domains in sperm plasma membranes, Molecular Membrane Biology 12: 101-104 (1995).
  Wolf, al., Changes in sperm plasma membrane lipid diffusibility after hyperactivation during in vitro capacitation in the mouse, The Journal of Cell Biology, vol. 102: 1372-1377(1986).
  Wolf, al., Diffusion and regionalization in membranes of maturing ram spermatozoa,The Journal of Cell Biology, vol. 98:1678-1684 (1984).
  XY Files, Issue 1 Jun. 1999.
  X Y, Inc. , Sex selection Procedure, select.html, Feb. 21, 2003.
  XY Files, Issue 4 Aug. 2000.
  XY Files, Issue 2 Oct. 1999.
  XY Files, Issue 3 Mar. 2000.
  XY Files, Issue 5 Mar. 2001.
  XY Files, Issue 6 Mar. 2002.
  U.S. Appl. No. 11/092,313, OA mailed Oct. 6, 2006.
  U.S. Appl. No. 11/092,509, response to Restriction filed Jun. 21, 2006.
  U.S. Appl. No. 11/092,509, OA mailed Jul. 21, 2006.
  U.S. Appl. No. 11/092,338, Response to restriction filed Jan. 16, 2007.
  U.S. Appl. No. 11/092,509, Resonse to OA filed Dec. 21, 2006.
  U.S. Appl. No. 11/092,313, Response to OA filed Feb. 6, 2007.
  U.S. Appl. No. 11/092,313, Response to Restriction filed Sep. 11, 2006.
  Rath, D, et al., In Vitro Production of Sexed Embryos for Gender Preselection: High-speed sorting of X-Chromosome-Bearing Sperm to Produce Pigs After Embryo Transfer, J. Anim. Sci. 1999, 77:3346-3352.
  Auchtung, T.L., et al., Effects of Photoperiod During the Dry Period on Prolactin, Prolactin Receptor, and Milk Production of Dairy Cows; Journal of Dairy Sci. 88: 121-127; American Dairy Sci. Assoc., 2005. *
  Bailey, T. et al., Milk Production Evaluation in First Lactation Heifers; 1999 Virginia Cooperation Extension/Dairy Science Publication 404-285. *
  Belloin, J.C., Milk and Dairy products: prduction and processing costs Food and Agriculture Organization of United Nations Rome 1988 FAO; web page where found: *
  Kume, Shin-ichi; Dept of Animal Nutrition National Institute of Animal Industry Tsukuba 305, Japan The Dairy Industry $in Asia B. Japan; *
  Lopez, H. et al., Relationship Between Level of Milk Production and Multiple Ovulation in Lactating Dairy Cows Journal of Dairy Sci. 88:2783-2793; American Dairy Science Association, 2005. *
  Managing the Dairy Cow During the Dry Period; Dairy Cattle Production 341-450A; Macdonald Campus of McGill University/Faculty of Agricultural & Environmental Sciences/Department of Animal Science. *
  Milk Production and Biosynthesis University of Guelph/Dairy Science and Technology (1998) *
  Milk Production, Released Jul. 18, 2006, by the National Agricultural Statistics Service (NASS), Agri. Stats. Board, US Dept of Agri. *
  De Vries, A. Economic Value of Pregnancy in Dairy Cattle Journal of Dairy Sci. 89:3876-3885/American Dairy Sci. Assoc. 2006. *
  Garner, D.L. et al., Viability Assessment of Mammalian Sperm Using SYBR-14 and Propidium Lodide, 1996, Biology of Reporduction, vol. 53, pp. 276-284. *
  Salisbury, G.W. et al., Substrate-Free Epididymal-Like Bovine Spermatozoa, J Repord Fertil, 1963, vol. 6, pp. 351-359. *
  Wong, P.Y.D., et al. Potassium Movement During sodium-Induced Motility Initiation in the Rat Caudal Epididymal Spermatozoa; Biology of Reproduction 28, 206-212 (1983).
  Shirai, H., et al. Regulation of Sperm Motility in Starfish; Development, Growth, and Differentiation; 24, (5), 419-428 (1982).
  Padilla, A.W. et al. Extender and Centrifugation Effects on the Motility Patterns of Slow-Cooled Stallion Spermatozoa; J. Anim. Sci 1991, 69:3308-3313.
  Ohta H., et al., Acquisition and Loss of Potential for Motility Ofspermatozoa of the Japanese Eel Anguilla Japonica, National Research Institute of Aquaculture, UNJR Aquiculture; 28th Panel Proceedings (1999).
  Morisawa, M. The Process of the Initiation of Sperm Motility; Laboratory of Physiology, Ocean Research Institute, University of Tokyo (1986).
  McGrady, A.V., et al. Cholinergic Effects on Bull and Chimpanzee Sperm Motility; Biology of Reproduction 15, 248-253 (1976).
  Klinc, P. Dissertation—Improved Fertility of Flowcytometrically Sex Selected Bull Spermatozoa , School of Veterinary Medicine Hanover Germany, 2005.
  Jones, J.M. et al Acidification of Intracellular pH in Bovine Spermatozoa Suppresses Motility and Extends Viable Life, Journal of Andrology, vol. 21, No. 5, Sep./Oct. 616-624.
  Jenkins, A. D., et al. Concentrations of Seven Elements in the Intraluminal Fluids of the Rat Seminiferous Tubules, ReteTestis, and Epididymis; Biology of Reproduction 23, 981-987 (1980).
  Darszon, A., et al. Ion Channels in Sperm Physiology, Physiological Reviews, vol. 27, No. 2, Apr. 1999.
  Christen, R., et al. Metabolism of Sea Urchin Sperm, The Journal of Biological Chemistry, vol. 25, No. 9, Issue of May 10, pp.
  Babcock, D. F., et al. Potassium-dependent increases in cytosolic pH stimulate metabolism and motility of mammalian sperm, Proc. Natl. Acad. Sci. USA, vol. 80, pp. 1327-1331, Mar. 1983.
  Zilli, L., et al. Adenosine Triphosphate Concentration and β-D-Glucuron idase Activity as Indicators of Sea Bass Semen Quality; Biology of Reproduction 70,1679-1684 (2004) Published online before print Feb. 11, 2004.
  Hanania, E. G, et al. A novel Automated Method of Scanning Cytometry and Laser-Induced Necrosis Applied to Tumor Cell Purging, Blood. Nov. 15, 1999, vol. 94, No. 10, suppl 1 part 1.
  Purdy, P. H. et al., Effect of Adding Cholesterol to Bull Sperm Membranes on Sperm Capacitation, the Acrosome Reaction, and Fertility, Biology of Reproduction 71, 522-527 (2004).
  Purdy, P. H. et al., Effect of cholesterol-loaded cyclodextrin on the cryosurvival of bull sperm, Cryobiology 48 (2004) 36-45.
  Moce E., et al., Cholesterol-loaded cyclodextrins added to fresh bull ejaculates improve sperm cryosurvival, J. Anim. Sci, 2006, 84:826-833.
  Ereth, B.A., et al. Integration of Early Weaning and Sexed Semen into a Single-Calf Heifer System to Increase Value of Non-Replacement Heifers; Proceedings, Western Section, American Society of Animal Science, vol. 51,441-443, Jun. 2000.
  Ereth, B.A., et al. Integration of Early Weaning and Sexed Semen into a Single-Calf Heifer System to Increase Value of Non-Replacement Heifers; Abstract Only, Journal of Animal Science, vol. 78, Supplement 2, 2000.
  Bavister, B.D. et al., The effects of Sperm Extracts and Energy Sources on the Motility and Acromosome Reaction of hamster Spermatozoa in vitero; Biology of Reporduction 16, 228-237 (1997).
  Fattouh, El-S.M. et al., Effect of Caffine on the Post-Thaw Motility of Buffalo Spermatozoa; Theriogenology, Jul. 1991, vol. 36 No. 1.
  Koh-ichi Hamano, et al., Gender Preselection in Cattle with Intracytoplasmically injected, flow cytometrically sorted sperm heads, Biology of Reporduction 60, 1194-1197 (1990).
  Hollinshead, F.K. et al., Birth of lambs of pre-determined sex after in vitro production of embryos using frozen-thawed sex-sorted and re-frozen-thawed ram spermatozoa, Reproduction (Cambridge, England) May 2004, vol. 127, o. 5, pp. 557-568.
  U.S. Appl. No. 10/433,183, Office Action mailed Jan. 22, 2007.
  U.S. Appl. No. 11/092,509, Final OA dated Mar. 26, 2007.
  U.S. Appl. No. 10/812,351, Response to Restrictive OA filed Apr. 5, 2007.
  U.S. Appl. No. 11/092,313, OA mailed May 3, 2007.
  Seidel, G.E. Jr., et al., Methods of Ovum Recovery and Factors Affecting Fertilization of Superovulated Bovine Ova, Control of Reproduction in the Cow, Sneenan ed., 1978, pp. 268-280.
  Hawk, H. W. et al., Effect of Unilateral Cornual Insemination upon Fertilization Rate in Superovulating and Single-Ovulating Cattle, Journal of Animal Sciences, 1986 vol. 63, pp. 551-560.
  Andersson, M. et al., Pregnancy Rates in Lactating Holstein-Greisian Cows after Artificial Insemination with Sexed Sperm. Reprod. Dom. Anim 41, 95-97, 2006.
  Morton, K. M., et al., In vitro and in vivo survival of bisected sheep embryos derived from frozen-thawed unsorted, and frozen-thawed sex-sorted and refrozen-thawed ram spermatozoa; Theriogenology, 65 (2006) 1333-1345.
  Wilson, R. D., et al., In vitro production of bovine embryos using sex-sorted sperm, Theriogenology, 65 (2006) 1007-1015.
  Johnson, L.A., et al, 1996 Gender preselection in mammals. XX Beltsville Symposium in Agricultural Research Technolgy's Role in the Genetic Improvement of Farm Animals. pp. 151-164, Amer. Soc. Anim. Sci. IL, USA.
  Smorag, Z., et al., Cattle Sex Regulation by Separation of X and Y Spermatozoa—Preliminary Results of Field Experiment in Poland, Reproduction, Fertility and Development 17(2) 306-306; Jan. 1, 2005.
  Crichton, E., et al. (Abstract) Artificial Insemination of Lactating Holstein Cows with Sexed Sperm, Reproduction, Fertility and Development 18(2) 281-281, Dec. 14, 2005.
  Lindsey, A.C., et al. Hysteroscopic insemination of low numbers of flow sorted fresh and frozen/thawed stallion spermatozoa, Equine Vet J. Mar. 2002;34(2):106-7.
  Drobnis, E. Z, Cold shock damage is due to lipid phase transitions in cell membranes : a demonstration using sperm as a model, Journal of experimental zoology (J. exp. zool.) 1993, vol. 265, No. 4, pp. 432-437 (22 ref.).
  Hagele, W.C., et al., Effect of Separating Bull Semen into X and Y Chromosome-bearing Fractions on the Sex Ratio of Resulting Embryos; Cran J. Comp. Med, 1984: 48:294-298.
  U.S. Appl. No. 11/422,735, filed May 25, 2006 entitled Apparatus, Methods and Processes for Sorting Particles and for Providing Sex-Sorted Animal Sperm.
  Suh, T.K, et al., Pressure during flow sorting of bull sperm affects post-thaw motility characteristics; Theriogenology vol. 59, No. 1, Jan. 2003 p. 516.
  U.S. Appl. No. 10/433,191, filed May 29, 2006 entitled System for in-vitro Fertilization With Spermatozoa Separated Into X-chromosome and Y-chromosome Bearing Populations.
  Abdel-Ghaffar, A. E., et al., “Rabbit Semen Metabolism in Rabbit Production in Hot Climates” Baselga and Marai (eds); International Conference of Rabbit Production in Hot Climates 1994, p. 305-312.
  Akhtar, S., et al., “Prevalence of Five Stereotypes of Bluetongue Virus in a Rambouillet Sheep Flock in Pakistan”, Veterinary Record 136, p. 495. (1995).
  Aldrich, S. L., et al., “Parturition and Periparturient Reproductive and Metabolic Hormone Concentration in Prenatally Androgenized Beef Heifers”, J. Anim. Sci. 73:3712. (1995).
  Amann, R. P. et al., “Issues Affecting Commercialization of Sexed Sperm” Therio. 52:1441. (1999).
  Amann, R. P., et al. “Prospects for Sexing Mammalian Sperm,” Animal Reproduction Laboratory College of Veterinary Medicine and Biomedical Sciences, Colorado State University. (1982).
  Amann, R.P. “Fertilizing Potential Vitro of Semen from Young Beef Bulls Containing a High or Low Percentage of Sperm with a Proximal Droplet” Theriogenology 54: 1499-1515, 2000.
  Amann, Rupert P. “Cryopreservation of Sperm” 1999, Encyclopedia of Reproduction 1:733-783.
  American Meat and Science Association in Cooperation with National Livestock and Meat Board, “Research Guidelines for Cookery and Sensory Evaluation and Instrumental Tenderness Measurements for Fresh Meat”. (1995).
  Amoah, E. A. and Gelaye, S., “Biotechnological Advances in Goat Reproduction”, J. Anim. Sci. 75(2): 578-585. (1996).
  Anderson, V. K., et al., Intrauterine and tiefzervikale Insemination mit Gefriersperma bein Schat (Intrauterine and Deep Cervical Insemination With Frozen Semen in Sheep). Zuchthygiene 8:113-118. (1973).
  Arriola, J. and Foote, R.H.: “Glycerolation and Thawing Effects on Bull Spermatozoa frozen in Detergent-Treated Egg Yok and Whole Egg Extenders,” J Dairy Sci, 70:1664-1670 (1987).
  Asbury, Charles A. “Fluorescence Spectra of DNA Dyes Measured in a Flow Cytometer,” University of Washington Feb. 19, 1996.
  Bagley, C. P. “Nutritional Management of Replacement Beef Heifers: a Review” J. Anim. Science 71:3155-3163. (1993).
  Bailey, C. M. et al., “Nulliparous Versus Primiparous Crossbred Females for Beef”, J. Anim. Sci. 69:1403. (1991).
  Baker, R.D., et al., “Effect of Volume of Semen, Number of Sperm and Drugs on Transport of Sperm in Artificially Inseminated Gilts”, J. Anim. Sci. 27:88-93. (1968).
  Bakker Schut, Tom C. “A New Principle of Cell Sorting by Using Selective Electroportation in a Modified Flow Cytometry,” University of Twente, Mar. 10, 1990.
  Barnes, F. L. and Eyestone, W. H., “Early Cleavage and the Maternal Zygotic Transition in Bovine Embryos”, Therio. vol. 33, No. 1, pp. 141-149. (1990).
  Batellier, F. et al., “Advances in Cooled Semen Technology” Animal Reproduction Science 68 p. 181-190 (2001).
  Becker, S.E. and Johnson, A. L. “Effects of Gonadotropin-Releasing Hormone Infused in a Pulsatile or Continuous Fashion on Serum Gonadotropin Concentrations and Ovulation in the Mare”, J. Anim. Sci. 70:1208-1215. (1992).
  Bedford, S .J. and Hinrichs, K., “The Effect of Insemination Volume on Pregnancy Rates of Pony Mares”, Therio. 42:571-578. (1994).
  Behrman, S. J., et al., “Freeze Preservation of Human Sperm” American Journal of Obstetrics and Gynecology vol. 103 (5) p. 654-664 Mar. 1, 1969.
  Bellows, R. A., et al., “Cause and Effect Relationships Associated With Calving Difficulty and Calf Birth Weight”, J. Anim. Sci. 33:407. (1971).
  Berardinelli, J. G., et al., “Source of Progesterolle Prior to Puberty in Beef Heifers”. J. Anim. Sci. 49:1276. (1979).
  Berger, G. S. “Intratubal Insemination”, Fertil. Steril. 48:328-330, (1987).
  Bergfeld, E. G., et al., “Ovarian Follicular Development in Prepubertal Heifers is Influenced by Level of Dietary Energy Intake”, Bio. of Repro. 51:1051. (1994).
  Berry, B. W., et al., “Beef Carcass Maturity Indicators and Palatability Attributes”, J. Anim. Sci. 38:507 (1974).
  Beyhan, Z., et al., “Sexual Dimorphism in IVF Bovine Embryos Produced by Sperm Sorted by High Speed Flow Cytometry”, abstr. Therio. 49(1): 359 (1998).
  Beyhan, Z., Et Al., 1999 Sexual Dimorphism in IVM-IVF Bovine Embryos Produced from X and Y Chromosome-Bearing Spermatozoa Sorted by High Speed Flow Cytometry. Theriogenology. 52:35-48.
  Bigos, Martin “Nine Color Eleven Parameter Immunophenotyping Using Three Laser Flow Cytometry,” Stanford University Dec. 22, 1998.
  Bioxcell, Bovine Sperm Preservation, Advertisement Jun. 28, 2005.
  Bond, J., et al., “Growth and Carcass Traits of Open Beef Heifers Versus Beef Heifers That Have Calved”, Nutrition Reports International 34:621. 1986.
  Boucque, C. V., et al., “Beef-Production With Maiden and Once-Calved Heifers”, Livestock Prod. Sci. 7:121. 1980.
  Bourdon, R. M. and J. S. Brinks. “Simulated Efficiency of Range Beef—Production III. Culling Strategies and Nontraditional Management-Systems”, J. Anim. Sci. 65:963. 1987.
  Bracher, V. and Allen, W.R., “Videoendoscopic Examination of the Mare's Uterus: I. Findings in Normal Fertile Mares”, Equine Veterinary Journal, vol. 24, p. 274-278. 1992.
  Braselton, W. E. and McShan, W. H., “Purification and Properties of Follicle Stimulating and Luteinizing Hormones From Horse Pituitary Glands” Arch. Biochem. Biophys. 139:45-48. 1970.
  Braun, J. et al, “Effect of Different Protein Supplements on Motility and Plasma Membrane Integrity of Frozen- Thawed Stallion Spermatozoa”, Cryobiology (1995) 32:487-492.
  Brethour, J. R. and Jaeger, J. R., “The Single Calf Heifer System”, Kansas Agric. Sta. Rep of Progress 570. 1989.
  Brinsko, S.P. et al., “Artificial Insemination and Preservation of Semen.” Veterinary Clinics of North America:Equine Practice vol. 8 No. 1 Apr. 1992 p. 205-218.
  Bristol, F. “Breeding Behavior of a Stallion at Pasture With 20 Mares in Synchronized Oestrus” J. Reprod. Fertil. Suppl. 32:71. 1982.
  Brookes, A. J. and O'Byrne, M., “Use of Cow-Heifers in Beef Production” J. of the Royal Agricultural Society of England 126:30. 1965.
  Buchanan, B. R., et al, “Insemination of Mares with Low Numbers of Either Unsexed or Sexed Spermatozoa”, Therio. vol. 53, p. 1333-1344. 2000.
  Buchanan, B.R. “Pregnancy Rates in Mares Following a Single Insemination with a Low Number of Spermatozoa into the Tip of the Uterine Horn” Theriogenology p. 395.
  Burns, P. D. and Spitzer, J.C., “Influence of Biostimulation on Reproduction in Postpartum Beef-Cows”, J. Anim. Sci. 70:358. 1992.
  Burwash, L. D., et al., “Relationship of Duration of Estrus to Pregnancy Rate in Normally Cycling, Non Lactating Mares” J.A.V.M.A. 165:714-716. 1974.
  Byerley, D. J., et al., “Pregnancy Rates of Beef Heifers Bred Either on Puberal or Third Estrus”. J Anim. Sci. 65:645. 1987.
  Caslick, E. A., “The Vulva and the Vulvo-Vaginal Orifice and its Relation to Genital Health of the Thoroughbred Mare”, Cornell Veterinarian, vol. 27, p. 178-187. 1937.
  Catt, et al., “Assessment of Ram and Boar Spermatozoa During Cell-Sorting by Flow Cytometry”, Reproduction Dom Animal, vol. 32, pp. 251-258. 1997.
  Catt, S. L., et al., “Birth of a Male Lamb Derived from an in Vitro Matured Oocyte Fertilized by Intracytoplasmic Injection of a Single Presumptive Male Sperm”, Veterinary Record 139, p. 494-495. 1996.
  Cave-Penney, Tony, “Sexed Semen Offers Faster Genetic Gain”, Farming News, Livestock Supplement, Feb. 1997, p. 28.
  Celestron: Telescope Basics:; 4 pages.
  Chandler, J. E., “Videomicroscopic Comparison of Bull Sperm and Leukocyte Chromosome Areas as Related to Gender”, J Dairy Sci 73, p. 2129-2135. 1990.
  Chandler, J. E., et al, “Bovine Spermatozoal Head Size Variation and Evaluation of a Separation Technique Based on this Size”, Therio. 52, p. 1021-1034. 1999.
  Chen, S.H. “Effects of Oocyte Activation and Treatment of Spermatozoa on Embryonic Development Following Intracytoplasmic Sperm Injection in Cattle” Theriogenology 48: 1265-1273, 1997.
  Chen, Y. et al., Survival of Bull Spermatozoa Seeded and Frozen at Different Rates in Egg Yolk-Tris and Whole Milk Extenders, 1993 J Dairy Sci 76:1028-1034.
  Chin, W. W. and Boime, I. 1990. In Glycoprotein Hormones. Serona Symp. Norwell, MA. pp. 19-20.
  Choi, Y.H. “Developmental Cappacity of Equine Oocytes Matured and Cultured in Equine Trophoblast-Conditioned Media” Theriogenoogy 56: 320-339, 2001.
  Chung, Y. G., et al. “Artificial insemination of Superovulated Heifers With 600,000 Sexed Sperm”. J Anim. Sci. Suppl. 1. 836:215. 1998 abstr.
  Clement, F., et al., “Which Insemination Fertilizes When Several Successive Inseminations are Performed Before Ovulation” 7th Int. Symp. Eq. Repro. 151. 1998 abstr.
  Cran, D. G., et al, “Production of Lambs by Low Dose Intrauterine Insemination With Flow Cytometrically Sorted and Unsorted Semen”, Therio. p. 267. 1997.
  Cran, D. G., et al., “Sex Preselected in Cattle: A Field Trial”, Veterinary Record 136, 1995, p. 495-496.
  Cran, D. G., et al., “Production of Bovine Calves Following Separation of X- and Y-Chromosome Bearing Sperm and in Vitro Fertilization”. Vet. Rec. 132:40-41. 1993.
  Cran, D. G., et al., “The Predetermination of Embryonic Sex Using Flow Cytometrically Separated X and Y Spermatozoa” Human Reproduction Update 1996, vol. 2 (4) p. 355-363.
  Crowley, J. P. “The facts of Once-Bred Heifer Production” School of Agric., Univ. of Aberdeen, Scotland. 1973.
  Cui, K. et al, “X Larger than Y”, Nature 366, p. 177-118, 1993.
  Cui, K., “Size Differences Between Human X and Y Spermatozoa and Prefertilization Diagnosis”, Molecular Human Reproduction, vol. 3, No. 1, pp. 61-67. 1997.
  Curran, S. “Fetal Gender Determination” in Equine Diagnostic Ultrasonography 1st ed. Rantanen, N. W. and McKinnon A.O. (eds.) Williams and Williams, 1998, p. 165-169.
  da Silva, Coutinho M.A..“Effect of time of oocyte collection and site of insemination on oocyte transfer in mares.” Animal Reproduction and Biotechnology Laboratiory, Colorado State Uniuversity, Fort Collins Journal of Animal Science 2002. 80:1275-1279.
  DakoCytomation, “MoFlo® Sorters” one page, printed Jun. 26, 2003.
  Database up 1 BR9704313 (Alves, De Resende et al) Jun. 4, 1999.
  Day, B. N., et al. Birth of Piglets Preselected for Gender Following in Vitro Fertilization of in Vitro Matured Pig Oocytes by X and Y Bearing Spermatozoa Sorted by High Speed Flow Cytometry. Therio. 49(1): 360. 1998 abstr.
  de Leeuw, F.E. et al:“Effects of carious cryoprotective agents and membrane-stabilizing compounds on bull sperm emebrane integrity after cooling and freezing” Cryobiology US, Academic Press Inc 1993 pp. 32-44.
  Dean, P.N., et al. “Hydrodynamic Orientation of Spermatozoa Heads for Flow Cytometry”. Biophys. J. 23:7-13. 1978.
  Demick, D.S., et al. “Effect of Cooling, Storage, Glycerization and Spermatozoal Numbers on Equine Fertility” J. Anim. Sci. 43:633-637. 1976.
  DenDaas, J. H. G., et al. “The relationship between the number of spermatozoa inseminated and the reproductive efficiency of dairy bulls” J Dairy Sci. 81: 1714-1723. 1998.
  Denham, A. “In-vitro studies on Sandhill Range Forage as Related to Cattle Preference”, M.S. Thesis. Colorado State University. 1965.
  Denk, Winfried. “Two-Photon Molecular Excitation in Laser-Scanning Microscopy,” Handbook of Biological Confocal Microscopy. 1995.
  Deutscher, G. H. “Extending Interval From Seventeen to Nineteen Days in the Melengestrol Acetate-Prostaglandin Estrous Synchronization Program for Heifers”. The Professional Animal Scientist 16:164. 2000.
  Diagnostic Products Corporation, “Coat-A-Count” 1998.
  Dikeman, M. E. “Cattle Production Systems to Meet Future Consumer Demands” J. Anim. Sci. 59:1631, 1984.
  Dinnyes, A., et al., “Timing of the First Cleavage Post- Insemination Affects Cryosurvival of in Vitro-produced Bovine Blastocysts”, Molec. Reprod. Develop. 53, p. 318-324. 1999.
  Dippert, K.D. “Fertilization Rates in Superovulated and Spontaneously Ovulating Mares” Theriogenology 41: 1411-1423, 1994.
  Donaldson, L. E., “Effect of Insemination Regimen on Embryo Production in Superovulated Cows”, The Veterinary Record, Jul. 13, p. 35-37, 1985.
  Donoghue, A.M., et al. “Timing of Ovulation after Gonadotropin Induction and its Importance to Successful Intrauterine Insemination in the Tiger (Panthera tigris)” J. Reprod. Fertil. 107:53-58. 1996.
  Douglas, R. H., “Review of Induction of Superovulation and Embryo Transfer in the Equine” Therio. 11:33-46. 1979.
  Douglas, R. H., et al. “Induction of Ovulation and Multiple Ovulation on Seasonally-Anovulatory Mares with Equine Pituitary Fractions.” Therio. 2(6): 133-142. 1974.
  Doyle, S. P., et al. “Artificial Insemination of Lactating Angus Cows with Sexed Semen”. Proc. Western Sect. Am. Soc. Anim. Sci. 50:203. 1999.
  Dresser D.W. et at. Analysis of DNAcontent ofLiving Spermatozoa Using Flow Cytometry Technique Journal of Reproduction and Fertility, 1993, vol. 98, pp. 357-365.
  Duchamp, G., et al. “Alternative Solutions to hCG Induction of Ovulation in the Mare” J. Reprod. Fertil. Suppl. 35:221-228. 1987.
  Evans, M. J. and Irvine, C. H. G. “Induction of Follicular Development, Maturation and Ovulation by Gonadotropin Releasing Hormone Administration to Acyclic Mares” Bio. Reprod. 16:452-462. 1977.
  Ferrell, C. L. Effects of Post-Weaning Rate of Gain on Onset of Puberty and Productive Performance of Heifers of Different Breeds. J. Anim. Sci. 55:1272. 1982.
  Ferrell, C. L. and T. G. Jenkins. “Energy-Utilization by Mature, Nonpregnant, Nonlactating Cows of Different Types” J. Anim. Sci. 58:234. 1984.
  Field, R. A., et al., “Bone-Ossification and Carcass Characteristics of Wethers Given Silastic Implants Containing Estradiol”, J. Anim. Sci. 68:3663-3668. 1990.
  Field, R. et al., “Growth, Carcass, and Tenderness Characteristics of Virgin, Spayed, and Single-Calf Heifers”, J. Anim. Sci. 74:2178. 1996.
  Fitzgerald, B. P., et al. “Effect of Constant Administration of a Gonadotropin-Releasing Hormone Agonist on Reproductive Activity in Mares: Preliminary Evidence on Suppression of Ovulation During the Breeding Season.” Am. J. Vet. Res. 54:1746-1751. 1993.
  Fluharty, F. L., et al., “Effects of Age at Weaning and Diet on Growth of Calves”,Ohio State University Dept. of Animal Scieneces. 1966 Ohio Agri. Res. And Den. Circular, 156:29 1966.
  Foote, et al. Motility and Fertility of Bull Sperm Frozen-Thawed Differently in Egg Yolk and Milk Extenders Containing Detergent, 1987 J Dairy Sci 70:2642-2647.
  Foote, R.H., “Buffers and Extenders: What Do They Do? Why Are They Important?” Proc of the NAAB Tech. Conf. On Artificial Insemination and Reproduction, 62-70 (1984).
  Foulkes, J. A., et al. “Artificial Insemination of Cattle Using Varying Numbers of Spermatozoa.” Vet. Rec. 101:205. 1977.
  Francon, M. and Yamamoto, T., “Un Noveau et tres simple dispositif interferentiel applicable as microscope” Optica Acta 9, p. 395-408.1962.
  Fugger, E. F. “Clinical Experience with Flow Cytometric Separation of Human X- and Y-Chromosome Bearing Sperm”, Therio. vol. 52, pp. 1435-1440.1999.
  Fuller, Robert R. “Characterizing Submicron Vesicles With Wavelenth-Resolved Fluorescence in Flow Cytometry,” University of Illinois, May 13, 1996.
  Fulwyler, M. J. “Electronic Separation of Biological Cells by Volume.” Science. 150:910. 1965.
  Fulwyler, M. J. “Hydrodynamic Orientation of Cells.” J of Histochem. and Cytochem. 25:781-783. 1977.
  Garner, D. L., et al. “Quantification of the X and Y Chromosome-Bearing Spermatozoa of Domestic Animals by Flow Cytometry.” Biol. Reprod. 28:312-321. 1983.
  Ginther, O. J., “Sexual Behavior Following Introduction of a Stallion into a Group of Mares” Therio. vol. 19 (6) Jun. 1983.
  Ginther, O. J., “Some Factors Which Alter Estrus Cycle in Mares.” J. Anim. Sci. 33:1158. 1971 abstr.
  Ginther, O. J., Reproductive Biology of the Mare. (2nd Ed.) Equiservices, Cross Plains, WI. 1992.
  Gledhill, B. L. “Gender Preselection: Historical, Technical and Ethical Perspective.” Semen Reprod. Endocrinol. 6:385-395. 1988.
  Gombe, S. and Hansel, W. “Plasma Luteinizing Hormone (LH) and Progesterone Levels in Heifers on Restricted Energy Intakes.” J. Anim. Sci. 37:728. 1973.
  Goppert-Mayer,“Uber Elementarakte mit zwei Quantensprungen Von Maria Copper—Mayer”.
  Gottlinger et al., “Operation of a Flow Cytometer”, Flow Cytometry and Cell Sorting, A. Radbruch (Ed.), 1992, pp. 7-23.
  Gourley, D. D. and Riese, R. L. “Laparoscopic Artificial Insemination in Sheep.” Vet. Clin. N. Amer: Food Anim. Prac. 6(3): 615-633 (1990).
  Graham, J. Analysis of Stallion semen and its Relation to Fertility. Abstract Complete article from Reproductive Technology vol. 12 # 1 Apr. 1996 now included in XYIDS000213.
  Graham, J.K. and Hammerstedt, R.H.: “Differential Effects of Butylated Hydroxytoluene Analogs on Bull Sperm Subjected to Cold-Induced Membrane Stress,” Cryobiology, 29:106-117 (1992).
  Graham, James K., “Effect of Cholesterol-Loaded Cyclodextrins in Semen Extenders”, Proceedings of the 19th Technical Conference on Artificial Insemination & Reproduction, 2003, pp. 91-95.
  Gravert, H. O., “Genetic Aspects of Early Calving.” In: J.C. Taylor (Ed.) The Early Calving of Heifers and Its Impact on Beef Production. 59 (1975).
  Gregory, K. E., et al., “Characterization of Biological Types of Cattle—Cycle III: II Growth Rate and Puberty in Females” J. Anim. Sci. 49:461 (1979).
  Grimes, I. F, and T. B. Turner. “Early Weaning of Fall Born Calves II. Post Weaning Performance of Early and Normal Weaned Calves”. I. Prod. Agric. 4:168 (1991).
  Grondahl, C., et al, “In Vitro Production of Equine Embryos”, Biology of Reproduction, Monograph Series I, p. 299-307 (1995).
  Guillou, F. and Combarnous, Y. “Purification of Equine Gonadotropins and Comparative Study of Their Acid-Dissociation and Receptor-Binding Specificity.” Biochemica Et Biophysica Acta 755:229-236 (1983).
  Gurnsey, M. P., and Johnson, L.A., “Recent Improvements in Efficiency of Flow Cytometric Sorting of X and Y-Chromosome Bering Sperm of Domestic Animals: a Review” New Zealand Society of Animal Protection, three pages (1998).
  Hall, J. B., et al., “Effect of Age and Pattern of Gain on Induction of Puberty with a Progestin in Beef Heifers.” J. Anim. Sci. 75:1606 (1997).
  Hamamatsu. “Technical Information, Optical Detector Selection: A Delicate Balancing Act”, web page,, printed on 4/15/00, 6 pages total.
  Hamano, K., et al., “Gender Preselection in Cattle with Intracytoplasmically Injected, Flow Cytometrically Sorted Sperm Heads”, Biology of Reproduction 60, p. 1194-1197 (1999).
  Hammerstedt, et al., “Cryopreservation of Mammalian Sperm: What We Ask Them to Survive,” Journal of Andrology, 11:1:73-88 (1990).
  Harrison, L.A., et al., “Comparison of HCG, Buserelin and Luprostiol for Induction of Ovulation in Cycling Mares.” Eq. Vet. Sci. 3:163-166 (1991).
  Harte, F. J. “System of Production of Beef From Once Calved Heifers.” In: J.C. Taylor (Ed.) The Early Calving of Heifers and its Impact on Beef Production. 123 (1975).
  Hawk, H. W., et al., “Fertilization Rates in Superovulating Cows After Deposition of Semen on the Infundibulum Near the Uterotubal Junction or After Insemination with High Numbers of Sperm”, XP-002103478, Therio. vol. 29, No. 5, p. 1131-1142 (1988).
  Hermesmeyer, G. N., et al. “Effects of Prenatal Androgenization and Implantation on the Performance and Carcass Composition of Lactating Heifers in the Single-Calf Heifer System.” The Professional Animal Scientist 15:173. 1999.
  Herweijer, Hans. “High-Speed Photodamage Cell Selection Uing Bromodeoxyuridine/Hoechst 33342 Photosensitized Cell Killing,” Sep. 23, 1987.
  Herzenberg, Leonard A. “Flourescence-activated Cell Sorting,” pp. 108-117.
  Hilton, G. G., et al., “An Evaluation of Current and Alternative Systems for Quality Grading Carcasses of Mature Slaughter Cows.” J. Anim. Sci. 76:2094. 1998.
  Ho, L., et al., “Influence of Gender, Breed and Age on Maturity Characteristics of Sheep.” J. Anim. Sci. 67:2460-2470. 1989.
  Hofferer, S., et al. “Induction of Ovulation and Superovulation in Mares Using Equine LH and FSH Separated by Hydrophobic Interaction Chromatography.” J. Reprod. Fertil. 98:597-602. 1993.
  Hohenboken, W. D. “Applications of sexed semen in cattle production.” Therio. 52:1421. 1999.
  Holtan, D. W., et al., “Estrus, Ovulation and Conception Following Synchronization With Progesterone, Prostaglandin F2a and Human Chorionic Gonadotropin in Pony Mares.” J. Anim. Sci. 44:431-437. 1977.
  Horan, Paul K. “Quantitative Single Cell Ana,lysis and Sorting, Rapid Analysis and sorting of cells is emerging as an important new technology in research and medicine.”
  Householder, D. D., et al. “Effect of Extender, Number of Spermatozoa and hCG on Equine Fertility.” J. Equine Vet. Sci. 1:9-13. 1981.
  Howard, J. G., et al., “Comparative Semen Cryopreservation in Ferrets (Mustela putorious furo) and Pregnancies After Laparoscopic Intrauterine Insemination With Frozen-Thawed Spermatozoa.” J. Reprod. Fertil. 92:109-118. 1991.
  Howard, J. G., et al., “Sensitivity to Exogenous Gonadotropins for Ovulation and Laparoscopic Artificial Insemination in the Cheetah and Clouded Leopard.” Biol. Reprod. 56:1059-1068. 1997.
  Hunter, R. H. F. “Transport and Storage of Spermatozoa in the Female Tract.” Proc 4th Int. Congress Anim. Repro. and A. I. 9:227-233. 1980.
  Hyland, J. H., et al., “Gonadotropin Releasing Hormone (GnRH) Delivered by Continuous Infusion Induces Fertile Estrus in Mares During Seasonal Acyclity” Proceedings of the Annual Convention of the American Association of Equine Practitioners (34th) 989, p. 181-190.
  IMV Technologies, Protocol of Bioxcell with Fresh Semen, 1 page, 2000.
  IMV Technologies, Protocol of Bioxcell with Frozen Semen, 2 pages, 2000.
  Irvine, C H. G. and Alexander, S. L. “GnRH” Chapter 4 in Equine Reproduction, McKinnon and Voss eds. Lea and Febiger. Philadelphia, London. p. 37. (1993).
  Iwazumi, Y., et al., “Superovulation Using CIDR in Holstein Cows” J. of Reprod. Dev. vol. 40 (3) 1994, pp. 259-266.
  Jafar, et al., “Sex Selection in Mammals: A Review”, Therio. vol. 46, p. 191-200. (1996).
  Jakubiczka, S. et al. “A Bovine Homologue of the Human TSPY Gene.” Genomics. 1993, vol. 17, No. 3, pp. 732-735.
  Jarriage, R. “Age of Cows at First Calving in France.” In: J.C. Taylor (Ed.) The Early Calving of Heifers and its Impact on Beef Production. 10. (1975).
  Jasko, D. J., et al., “Effect of Insemination Volume and Concentration of Spermatozoa on Embryo Recovery in Mares”, Therio. 37:1233-1239, (1992).
  Jasko, D. J., et al., “Pregnancy Rates Utilizing Fresh, Cooled and Frozen-Thawed Stallion Semen”, American Association of Equine Practitioners 38th Annual Convention Proceedings, 1992, p. 649-660.
  Johnson, A. L. “Pulsatile Administration of Gonadotropin Releasing Hormone Advances Ovulation in Cycling Mares”, Biol. Reprod. 35:1123-1130, (1986).
  Johnson, A. L., et al. “Use of Gonadotropin-Releasing Hormone (GnRH) Treatment to Induce Multiple Ovulations in the Anestrous Mare” Eq. Vet. Sci. 8:130-134, (1988).
  Johnson, L.A., “Flow Cytometric Determination of Spermatozoa Sex Ratio in Semen Purportedly Enriched for X or Y Bearing Spermatozoa”, Therio. 29:265 abstr.
  Johnson, L.A., “Gender Preselection in Domestic Animals Using Flow Cytometrically Sorted Sperm” J. Anim. Sci. (Suppl I) 70:8-18. (1992).
  Johnson, L.A., “The Safety of Sperm Selection by Flow Cytometry” Ham. Reprod. 9(5): 758. (1994).
  Johnson, L.A., “Advances in Gender Preselection in Swine” Journal of Reproduction and Fertility Supplement, vol. 52, p. 255-266 (1997).
  Johnson, L.A., “Gender Preselection in Humans? Flow Cytometric Separation of X and Y Spermatozoa for the Prevention of X-Linked Diseases” Human Reproduction vol. 8 No. 10, p. 1733-1739 (1993).
  Johnson, L.A., “Gender Preselection in Mammals: An Overview”, Deutsch. Tierarztl. Wschr, vol. 103, p. 288-291 (1996).
  Johnson, L.A., “Isolation of X- and Y-Bearing Spermatozoa for Sex Preselection.” Oxford Reviews of Reproductive Biology. Ed. H. H. Charlton. Oxford University Press. 303-326. (1994).
  Johnson, L.A., “Sex Preselection by Flow Cytometric Separation of X and Y Chromosome Bearing Spermatozoa Based on DNA Difference: a Review.” Reprod. Fertil. Dev. 7:893-903. (1995).
  Johnson, L.A., “Sex Preselection in Rabbits: Live Births from X and Y Sperm Separated by DNA and Cell Sorting”, Biology of Reproduction 41, pp. 199-203 (1989).
  Johnson, L.A., “Sex Preselection in Swine: Altered Sex Rations in Offspring Following Surgical Insemination of Flow Sorted X- and Y- Bearing Sperm”, Reproduction in Domestic Animals, vol. 26, pp. 309-314 (1991).
  Johnson, L.A., “Sex Preselection in Swine: Flow Cytometric Sorting of X- and Y- Chromosome Bearing Sperm to Produce Offspring”, Boar Semen Preservation IV, p. 107-114. (2000).
  Johnson, L.A., “Successful Gender Preselection in Farm Animals”, Agricultural Biotechnology, p. 439-452. (1998).
  Johnson, L.A., et al. “Sex Preselection: High-speed Flow Cytometric Sorting of X and Y Sperm for Maximum Efficiency”, Therio. vol. 52, p. 1323-1341 (1999).
  Johnson, L.A., et al., “Enhanced Flow Cytometric Sorting of Mammalian X and Y Sperm: High Speed sorting and Orienting Nozzle for Artificial Insemination”, Therio. 49(1): 361 (1988) abstr.
  Johnson, L.A., et al., “Flow Sorting of X and Y Chromosome-Bearing Spermatozoa into Two Populations”, Gamete Res. 16:203-212. (1987).
  Johnson, L.A., et al., “Improved Flow Sorting Resolution of X- and Y-Chromosome Bearing Viable Sperm Separation Using Dual Staining and Dead Cell Gating” Cytometry 17 (suppl 7): 83, (1994).
  Johnson, L.A., et al., “Flow Cytometry of X- and Y-Chromosome Bearing Sperm for DNA Using an Improved Preparation Method and Staining with Hoechst 33342.” Gamete Research 17: 203-212. (1987).
  Johnson, L.A., et al., “Modification of a Laser-Based Flow Cytometer for High-Resolution DNA Analysis of Mammalian Spermatozoa” Cytometry 7, pp. 268-273 (1986).
  Joseph, R. L. “Carcass composition and meat quality in once calved heifers.” In: J.C. Taylor (Ed.) The Early Calving of Heifers and its Impact on Beef Production. 143. (1975).
  Joseph, R. L. and J. P. Crowley. “Meat Quality of Once-Calved Heifers.” Irish J. of Agric. Research 10:281. (1971).
  Kachel, V., et al., “Uniform Lateral Orientation, Caused by Flow Forces, of Flat Particles in Flow-Through Systems”, The Journal of Histochemistry and Cytochemistry, vol. 25, No. 7, pp. 774-780. (1997).
  Kanayama, K., et al., “Pregnancy by Means of Tubal Insemination and Subsequent Spontaneous Pregnancy in Rabbits.” J. Int. Med. Res. 20:401-405. (1992).
  Karabinus, et al., “Effects of Egg Yolk-Citrate and Milk Extenders on Chromatin Structured Viability of Cryopreserved Bull Sperm”, Journal of Dairy Science, vol. 74, No. 11, p. 3836-3848. (1999).
  Keeling, P. “A Modeling Study of Once-Bred Heifer Beef Production.” Proceedings of the New Zealand Society of Animal Production. 51. (1991).
  Kilicarslan, M. R., et al., “Effect of GnRH and hCG on Ovulation and Pregnancy in Mares.” Vet. Rec. 139:119-120. (1996).
  Kinder, J. E., et al. “Endocrine Basis for Puberty in Heifers and Ewes.” J. Repro. and Fertility, p. 393. (1995).
  Kinder, J. E., et al., “Endocrine Regulation of Puberty in Cows and Ewes.” J. Repro. and Fertility, Suppl. 34:167. (1987).
  Kinoshita, Shuichi. “Spectroscopic Properties of Fluorescein in Living Lymphocytes,” Osaka Uinversity Aug. 7, 1986.
  Klindt, J. and J. D. Crouse. “Effect of Ovariectomy and Ovariectomy with Ovarian Autotransplantation on Feedlot Performance and Carcass Characteristics of Heifers.” J. Anim. Sci. 68:3481. (1990).
  Klosterman, E. W. and C. F. Parker. “Effect of Size, Breed and Sex Upon Feed Efficiency in Beef Cattle.” North Central Regional Research Publication 235, Ohio Agric. Research and Development Center 1090:3. (1976).
  Kniffen, D. M., et al., “Effects of Long-Term Estrogen Implants in Beef Heifers.” J. Anim. Sci. 77:2886. (1999).
  Kobata, Akira, “Structures and Functions of the Sugar Chains of Human Chorionic Gonadotropin”, in Glycoprotein Hormones Chin, W.W. and Boime, I., eds. Serono Symposia, Norwell, MA. p. 19-20. 1990.
  Koch, R. M., et al., “Characterization of Biological Types of Cattle -Cycle-II .3.” Carcass Composition, Quality and Palatability. J. Anim. Sci. 49:448. (1919).
  Kommisrud E., et al. “Comparison of Two Processing Systems for Bull Semen with Regard to Post-Thaw Motility and Nonreturn Rates.” Theriogenology, vol. 45, 1996, pp. 1515-1521.
  Lapin, D. R. and Ginther, O. J. “Induction of Ovulation and Multiple Ovulations in Seasonally Anovulatory and Ovulatory Mares with an Equine Pituitary Extract.” J. Anim. Sci. 44:834-842. (1977).
  Laster, D. B., “Factors Affecting Dystocia and Effects of Dystocia on Subsequent Reproduction in Beef-Cattle.” J. Anim. Sci. 36:695. (1973).
  Lawrenz, R. “Preliminary Results of Non-Surgical Intrauterine Insemination of Sheep With Thawed Frozen Semen.” J S Afr. Vet. Assoc. 56(2): 61-63. (1985).
  Levinson, G., et al., “DNA-based X-Enriched Sperm Separation as an Adjunct to Preimplantation Genetic Testing for the Preparation of X-linked Disease.” Mol. Human Reprod. 10:979-982. (1995).
  Lightwave Electronics, “Xcyte,”
  Lindsey, A. C., et al., “Low Dose Insemination of Mares Using Non-Sorted and Sex-Sorted Sperm” Animal Reproduction Science 68 p. 279-289 (2001).
  Lindsey, A., et al., “Hysteroscopic Insemination of Mares with Nonfrozen Low-dose Unsexed or Sex-sorted Spermatozoa”, pp. 1-15 currently unpublished.
  Linge, F. “Faltforsok med djupfrost sperma (Field Trials With Frozen Sperm).” Farskotsel. 52:12-13. (1972).
  Liu, Z, et al. “Survival of Bull Sperm Frozen at Different rates in Media Varying in Osmolarity.” Cryobiology, vol. 27, 1998, pp. 219-230.
  Lonergan, P., et al., “Effect of Time Interval from Insemination to First Cleavage on the Development of Bovine Embryos in Vitro and in Vivo”, Therio. p. 326 (1999).
  Long, C.R., et al., “In Vitro Production of Porcine Embryos From Semen Sorted for Sex With a High Speed Cell Sorter: Comparison of Two Fertilization Media.” Therio. 49(1): 363 (1998) abstr.
  Loy, R. G. and Hughes, J.P. “The Effects of Human Chorionic Gonadotropin on Ovulation, Length of Estrus, and Fertility in the Mare.” Cornell Vet. 56:41-50 (1965).
  Lu, K. H. et al., “In Vitro Fertilization of Bovine Oocytes with Flow-Cytometrically Sorted and Unsorted Sperm from Different Bulls” Therio. abstr.
  Lu, K. H., et al., “In Vitro Fertilization with Flow-Cytometrically-Sorted Bovine Sperm”, Therio 52, p. 1393-1405. (1999).
  Lynch, I. M., et al., “Influence of timing of gain on growth and reproductive performance of beef replacement heifers.” J. Anim. Sci. 75:1715. (1997).
  Macmillan, K. L. and Day, A.M., “Prostaglandin F2a: A Fertility Drug in Dairy Cattle?”, Animal Research Station, Private Bag, Hamilton, New Zealand, Therio. vol. 18, No. 3, p. 245-253 (1982).
  Manni, Jeff. “To-Photon Excitation Expands the Capabilities of Laser-Scanning Microscopy.”
  Manning, S.T., et al., “Development of Hysteroscopic Insemination of the Uterine Tube in the Mare”, Proceedings of the Annual Meeting of the Society for Theriogenology, 1998, p. 84-85.
  Martin, A. H., et al., “Characteristics of Youthful Beef Carcasses in Relation to Weight, Age and Sex. III. Meat Quality Attributes.” Canadian J. Anim. Sci. 51:305. (1971).
  Martin, L. C., et al., “Genetic-effects on Beef Heifer Puberty and Subsequent Reproduction.” J. Anim. Sci. 70:4006. (1992).
  Martinez, E. A., et al., “Successful Low-Dose Insemination by a Fiberoptic Endoscope Technique in the Sow”, Proceedings Annual Conference of the International Embryo Transfer Society, Netherlands, Therio. vol. 53 p. 201, Jan. 2000.
  Matsuda, Y. and Tobari, I. “Chromosomal Analysis in Mouse Eggs Fertilized in Vitro With Sperm Exposed to Ultraviolet Light (UV) and Methyl and Ethyl Methanesulfonate (MMS and EMS).” Mutat. Res. 198:131-144. (1988).
  Matulis, R. J., “Growth and carcass characteristics of cull cows after different times-on-feed.” J. Anim. Sci. 65:669. (1987).
  Mauleon, P. “Recent research related to the physiology of puberty.” In: J.C. Taylor (ed.) The Early Calving of Heifers and its Impact on Beef Production. (1975).
  Maxwell, W. and Johnson, L., “Chlortetracycline Analysis of Boar Spermatozoa After Incubation, Flow Cytometric Sorting, Cooling, or Cryopreservation”, Molecular Reproduction and Development 46, p. 408-418. (1997).
  Maxwell, W. M. C., et al., “Fertility of Superovulated Ewes After Intrauterine or Oviductal Insemination with Low Numbers of Fresh or Frozen-Thawed Spermatozoa.” Reprod. Fertil. Dev. 5:57-63. (1993).
  Maxwell, W. M. C., et al., “The Relationship Between Membrane Status and Fertility of Boar Spermatozoa After Flow Cytometric Sorting in the Presence or Absence of Seminal Plasma” Reprod. Fertil. Dev. vol. 10 p. 433-440 (1998).
  Maxwell, W. M. C., et al., “Viability and Membrane Integrity of Spermazota after Dilution and Flow Cytometric Sorting in the Presence or Absence of Seminal Plasma.” Reprod. Fertil. Dev. 8:1165-78. (1997).
  McCormick, R. J. “The Flexibility of the Collagen Compartment of Muscle.” Meat Sci. 36:79. (1994).
  McCue, P.M. “Superovulation” Vet. Clin. N. Amer. Eq. Prac. 12:1-11. (1996).
  McCue, P.M., et al., “Oviductal insemination in the mare.” 7th Internat. Symp. Eq. Reprod. 133 (1997) abstr.
  McDonald, L. E. “Hormones of the Pituitary Gland.” Veterinary Pharmacology and Therapeutics. 6th ed. Edited by N. H. Booth and L. E. McDonald. Ames, Iowa State Univ. Press. p. 590 (1988).
  McKenna, T. et al., “Nonretum Rates of Dairy Cattle Following Uterine Body or Cornual Insemination.” J. Dairy Sci. 73:1179-1783 (1990).
  McKinnon, A.O. and Voss, J. L. Equine Reproduction. Lea and Febiger. Philadelphia, London (1993).
  McKinnon, A.O., et al., “Predictable Ovulation in Mares Treated With an Implant of the GnRH Analogue Deslorelin.” Eq. Vet. J. 25:321-323. (1993).
  McKinnon, A.O., et al., “Repeated Use of a GnRH Analogue Deslorelin (Ovuplant) for Hastening Ovulation in the Transitional Mare.” Eq. Vet. J. 29:153-155. (1996).
  McLeod, John H., “The Axicon: A New type of Optical Element”, Journal of the Optical Society of America, vol. 44 No. 8, Aug. 1954, Eastman Kodak Company, Hawk-Eye Works, Rochester, New York.
  McNutt, T. L. et al., “Flow Cytometric Sorting of Sperm: Influence on Fertilization and Embryo/Fetal Development in the Rabbit”, Molecular Reproduction and Development, vol. 43, p. 261-267 (1996).
  Meilgaard, M., et al., “Sensor Evaluation Techniques.” CRC Press Inc., Boca Raton, FL. (1991).
  Meinert, C., et al., “Advancing the Time of Ovulation in the Mare With a Short-Term Implant Releasing the GnRH Analogue Deslorelin”, Equine Veterinary Journal, 25, p. 65-68 (1993).
  Melamed et al, “An Historical Review of the Development of Flow Cytometers and Sorters”, 1979, pp. 3-9.
  Mendes Jr., J.O.B. “Effect of heparin on cleavage rates and embryo production with four bovine sperm prepration protocols” Theriogenology 60 (2003) 331-340.
  Menke,E. A Volume Activated Cell Sorter Journal of Histo chemistry and Cyto Chemistry, 1977, vol. 25,No. 7, pp. 796-803.
  Merton, J., et al., “Effect of Flow Cytometrically Sorted Frozen/Thawed Semen on Success Rate of in Vitro Bovine Embryo Production”, Therio. 47, p. 295. (1997).
  Metezeau P. et al. Improvement of Flow Cytometry Analysis and Sorting of Bull Spermatozoa by Optical Monitoring of Cell Orientation as Evaluated by DAN Specific Probing Molecular Reproduction and Development, 1991,vol. 30 pp. 250-257.
  Meyers, P. J., et al., “Use of the GnRH Analogue, Deslorelin Acetate, in a Slow Release Implant to Accelerate Ovulation in Oestrous Mares.” Vet. Rec. 140:249-252. (1997).
  Michaels, C., “Beef A. I. Facilities That Work”, Proc. Fifth N.A.A.B Tech. Conf. A. I. Reprod. Columbia, MO. pp. 20-22.
  Michel, T. H., et al., “Efficacy of Human Chorionic Gonadotropin and Gonadotropin Releasing Hormone for Hastening Ovulation in Thoroughbred Mares.” Eq. Vet. J. 6:438-442. (1986).
  Miller, S. J. “Artificial Breeding Techniques in Sheep.” Morrow, D.A. (ed): Current Therapy in Therio 2. Philadelphia, WB Saunders. (1986).
  Mirskaja, L. M. and Petropavloskii, V.V. “The Reduction of Normal Duration of Heat in the Mare by the Administration of Prolan.” Probl. Zivotn. Anim. Breed. Abstr. 5:387. (1937).
  Moe, P. W., “Energetics of Body Tissue Mobilization.” J. of Dairy Sci. 54:548.
  Molinia, F. C., et al., “Successful Fertilization After Superovulation and Laparoscopic Intrauterine Insemination of the Brushtail Possum Trichosurus vulpecula, and Tammar Wallaby, Macropus eugenii.” J. Reprod. Fertil. 112:9-17. (1998).
  Moran, C., et al., “Puberty in Heifers—a Review.” Animal Reproduction Sci. 18:167. (1989).
  Moran, D. M. et al., “Determination of Temperature and Cooling Rate Which Induce Cold Shock in Stallion Spermatozoa”, Therio. vol. 38 p. 999-1012 (1992).
  Morcom, C. B. and Dukelow, W.R. “A Research Technique for the Oviductal Insemination of Pigs Using Laparoscopy.” Lab. Anim. Sci. p. 1030-l031. (1980).
  Morgan, J. B., et al., “National Beef Tenderness Survey.” J. Anim. Sci. 69: 3274. (1991).
  Morris, L. H., et al., “Hysteroscopic Insemination of Small Numbers of Spermatozoa at the Uterotubal Junction of Preovulatory Mares”, Journal of Reproduction and Fertility, vol. 118, pp. 95-100 (2000).
  Morris, S. T., et al., “Biological efficiency: How relevant is this concept to beef cows in a mixed livestock seasonal pasture supply context?” Proceedings of the New Zealand Society of Animal Production 54:333. (1994).
  Moseley, W. M., et al., “Relationship of Growth and Puberty in Beef Heifers Fed Monensin” J. Anim. Sci. vol. 55 No. 2 p. 357-62 (1982).
  Mount, D. E. “Fibrous and Non-fibrous Carbohydrate Supplementation to Ruminants Grazing Forage From Small Grain Crops.” M.S. Thesis. Abstr. Colorado State University. (2000).
  Muller, W. and Gautier, F. “Interactions of Heteroaromatic Compounds with Nucleic Acids.” Euro. J Biochem. 54:358. (1975).
  Mullis, K. B. and F. A. Faloona, “Specific Synthesis of DNA in Vitro Via a Polymerase-Catalyzed Chain Reaction” Methods in Enzymology vol. 155 p. 335-350 (1978).
  Munne, S. “Flow Cytometry Separation of X and Y Spermatozoa Could be Detrimental to Human Embryos”, Hum. Reprod. 9(5): 758 (1994).
  Myers, S. E., “Performance and Carcass Traits of Early-Weaned Steers Receiving Either a Pasture Growing Period or a Finishing Diet at Weaning.” J. Anim. Sci. 77:311. (1999).
  Myers, S. E., et al., “Comparison of Three Weaning Ages on Cow-Calf Performance and Steer Carcass Traits.” J. Anim. Sci. 77:323. (1999).
  Myers, S. E., et al., “Production Systems Comparing Early Weaning to Normal Weaning With or Without Creep Feeding for Beef Steers.” J. Anim. Sci. 77:300. (1999).
  Nix, J. P., et al., “Serum Testosterone Concentration, Efficiency of Estrus Detection and Libido Expression in Androgenized Beef Cows.” Therio. 49: 1195. (1998).
  Nowshari, et al., “Superovulation of Goats with Purified pFSH Supplemented with Defined Amounts of pLH”, Therio. vol. 43, p. 797-802 (1995).
  NRC. “Nutrient Requirements for Beef Cattle.” National Academy of Sci. National Research Council, Washington, DC. (1996).
  O'Brien, Justine K. et al., “Preliminary Developments of Sperm Sorting Technology in Non-human Primates”, Biology of Reproduction 2001(Su;;l. 1) 64:158.
  Olive, M.D., “Detection of Enterotoxigenic Escherichia coli after Polymerase Chain Reaction Amplification with a Tehrmostable DNA Polymerase”, J of Clinical Microbiology, Feb. 1989 p. 261-265.
  Olson, S.E. and Seidel, G. E. Jr., “Reduced Oxygen Tension and EDTA improve Bovine Zygote Development in a Chemically Defined Medium”, J. of Anim. Sci. 78, pp. 152-157. (2000).
  Owen, J. B. “The Maiden Female—A Means of Increasing Meat Production.” Proc. Symp. on the Use of Once Bred Heifers and Gilts. (1973).
  Ozhin F.V. et al. Artificial insemination of farm animals. Moscow, Izdatelstvo Selskokhozyaastvennoi Literatury, 1961, pp. 350-361 and pp. 380-393.
  Pace, M. M. and Sullivan, J. J. “Effect of Timing of Insemination, Numbers of Spermatozoa and Extender Components on Pregnancy Rates in Mares Inseminated with Frozen Stallion Semen.” J. Reprod. Fertil. Suppl. 23:115-121.
  Parrish, J. J., et al., “Capacitation of Bovine Sperm by Heparin”, Department of Meat and Animal Science, Biology of Reproduction 38, p. 1171-1180 (1988).
  Patterson, D. J., et al., “Estrus Synchronization with an Oral Progestogen Prior to Superovulation of Postpartum Beef Cows” Therio. 48, 1025-33 (1997).
  Peippo, J., et al., “Sex Diagnosis of Equine Preimplantation Embryos Using the Polymerase Chain Reaction”, Therio. vol. 44:619-627 (1995).
  Penfold, at., “Comparative Motility of X and Y Chromosome-Bearing Bovine Sperm Separated on the Basis of DNA Content”, Mol. Reprod. and Develop. 1998, vol. 50, pp. 323-327.
  Perry, E. J., “Historical Background” The Artificial Insemination of Farm Animals. 4th ed. E. J. Perry (ed.) New Brunswick, Rutgers University Press, pp. 3-12. (1968).
  Petersen, G. A., et al, “Cow and Calf Performance and Economic-Considerations of Early Weaning of Fall-Born Beef Claves”, J. Anim. Sci., 64:15, pp. 15-22. (1987).
  Petit, M. “Early Calving in Suckling Herds.” In: J.C. Taylor (ed.) The Early Calving of Heifers and its Impact on Beef Production. p. 157-176. (1975).
  Picket B.W., et al., “Livestock Production Science,” 1998.
  Pickett, B. W, et al., “Factors Influencing the Fertility of Stallion Spermatozoa in an A. I. Program.” Proc. 8th International Congress Anim. Reprod. A. I. Krakow, Poland. 4:1049-1052. (1976).
  Pickett, B. W., et al., “Effect of Seminal Extenders on Equine Fertility.” J. Anim. Sci. 40:1136-1143. (1975).
  Pickett, B. W., et al., “Influence of Seminal Additives and Packaging Systems on Fertility of Bovine Spermatozoa.” J. Anim. Sci. Suppl. II. 47:12. (1978).
  Pickett, B. W., et al., “Management of the Mare for Maximum Reproductive Efficiency.” CSU Anim. Repro. Lab. Bull. No. 06. Fort Collins CO. (1989).
  Pickett, B. W., et al., “Procedures for Preparation, Collection, Evaluation and Insemination of Stallion Semen.” CSU Exp. Sta. Artira. Reprod. Lab. Gen. Series Bull. 935. (1973).
  Pickett, B. W., et al., “Recent Developments in Artificial Insemination in Horses”, Livestock Production Science, 40, p. 31-36 (1994).
  Pickett, B. W., et al., “The Effect of Extenders, Spermatozoal Numbers and Rectal Palpation on Equine Fertility.” Proc. Fifth N.A.A.B Tech. Conf. A. I. Reprod. Columbia, MO. pp. 20-22. (1974).
  Pinkel et al., “Flow Chambers and Sample Handling”, Flow Cytometry: Instrumentation and Data Analysis, Van Dilla et al. (Eds.), 1985, pp. 77-128.
  Pinkel, D., et al, “Flow Cytometric Determination of the Proportions of X- and Y- Chromosome-Bearing Sperm in Samples of Purportedly Separated Bull Sperm”, J. of Anim. Sci., vol. 60, p. 1303-1307 (1998).
  Pinkel, D., et al., “High Resolution DNA Content Measurements of Mammalian Sperm”, Cytometry 3:1-9. (1982).
  Pinkel, D., et al., “Sex Preselection in Mammals? Separation of Sperm Bearing the Y and “O” Chromosomes in the Vole Microtus Oregoni”, Science vol. 218 p. 904 (1982).
  Piston, D.W. “Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy,” Journal of Microscopy, vol. 178, Nov. 29, 1994.
  Polge, E. J., “Historical Perspective of AI: Commercial Methods of Producing Sex Specific Semen, IVF Procedures”, Proceedings of the 16th Technical Conference on Artificial Insemination & Reproduction, Cambridge, England, pp. 7-11. (1996).
  Polge, et al, “Revival of Spermatozoa After Vitrification and Dehydration at Low Temperatures,” Nature, 164:666 (1994).
  Preza, C. et al, “Determination of Direction-Independent Optical Path-Length Distribution of Cells Using Rotational-Diversity Transmitted-Light Differential Interference Contrast (DIC) Images”, Presented at the Multidimensional Microscopy: Image Acquisition and Processing V, p. 1-11 (1998).
  Prokofiev M.I. Regoulyatsia Razmnozhenia Selskokhozyastvennykh Zhivotnykh, Leningrad, NAOUKA Publishing House, 1983, pp. 181-195.
  Province, C.A., et al., Cooling Rates, Storage, Temperatures and Fertility of Extended Equine Spermatozoa Therio. vol. 23 (6) p. 925-934, Jun. 1985.
  Pursel, et al, “Effect of Orvus ES Paste on Acrosome Morphology, Motility and Fertilizing Capacity of Frozen-Thawed Boar Sperm,” Journal of Animal Science, 47:1:198-202 (1978).
  Purvis, H. T. and J. C. Whittier. “Effects of Ionophore Feeding and Anthelmintic Administration on Age and Weight at Puberty in Spring-Born Beef Heifers.” J. Anim. Sci. 74:736-744. (1996).
  Randel, R. D. “Nutrition and Postpartum Rebreeding in Cattle.” J. Anim. Sci. 68:853. (1990).
  Rath, D., et al., “Low Dose Insemination Technique in the Pig”, Boar Semen Preservation IV, p. 115-118. (2000).
  Rath, D., et al., “Production of Piglets Preselected for Sex Following in Vitro Fertilization with X and Y Chromosome-Bearing Spermatozoa Sorted by Flow Cytometry”, Therio. 47, p. 795-800 (1997).
  Rathi, R. et al., “Evaluation of in Vitro Capacitation of Stallion Spermatoza”, Biology of Reproduction 2001,vol. 65, pp. 462-470.
  Recktenwald, Diether. “Cell Separation Methods and Applications,” New York 1997.
  Reiling, B.A., et al., “Effect of Prenatal Androgenization on Performance, Location, and Carcass and Sensory Traits on Heifers in Single Calf Heifer System”, J. Anim. Sci., 1995, 73: 986, p. 986-992.
  Reiling, B.A., et al., “Effects of Prenatal Androgenization and Lactation on Adipose Tissue Metabolism in Finishing Single-Calf Heifers” J. Anim. Sci. vol. 75 p. 1504-1512 (1997).
  Reiling, B.A., et al., “Effects of prenatal Androgenization, Melengestrol Acetate, and Synovex-H on Feedlot Performance, Carcass, and Sensory Traits of Once-Calved Heifers” J. Anim. Sci. vol. 74 p. 2043-51 (199).
  Rens, W., et al., “A Novel Nozzle for More Efficient Sperm Orientation to Improve Sorting Efficiency of X and Y Chromosome-Bearing Sperm”, Technical Notes, Cytometry 33, p. 476-481 (1998).
  Rens, W., et al., “Improved Flow Cytometric Sorting of X- and Y- Chromosome Bearing Sperm: Substantial Increase in Yield of Sexed Semen”, Molecular Reproduction and Development, p. 50-56(1999).
  Rieger, D., et al, “The Relationship Between the Time of First Cleavage of Fertilized Cattle Oocytes and Their Development to the Blastocyst Stage”, Therio. 1999, p. 190.
  Rigby, S. L., et al., “Pregnancy Rates in Mares Following Hysterscopic or Rectally-Guided Utero-Tubal insemination with Low Sperm Numbers” Abstracts/Animal Reproduction Science vol. 68 p. 331-333 (2001).
  Riggs, B.A. “Integration of Early Weaning and Use of Sexed Semen in a Single-Calf Heifer System to Increase Value of Non-Replacement Heifers” MS Thesis, Colorado State University, Spring 2000.
  Ritar, A. and Ball, A., “Fertility of Young Cashmere Goats After Laparoscopic Insemination.” J. Agr. Sci. 117: p. 271-273. (1991).
  Roberts, J. R., Veterinary Obstetrics and Genital Diseases. Ithaca, New York. p. 740-749. (1971).
  Romero-Arredondo, A. “ Effects of Bovine Folicular Fluid on Maturation of Bovine Oocytes” Theriogenology 41: 383-394, 1994.
  Romero-Arrendondo, A. “Effects of Follicular Fluid dring in Virto Maturation of Bovine Oocytes on in Vitro Fertilization and Early Embryonic Development” Biology of Reproduction 55, 1012-1016 1996.
  Romita, A. “Some Considerations on the Beef Situation in Italy.” In: J.C. Taylor (ed.) The Early Calving of Heifers and its Impact on Beef Production. 23. (1975).
  Roser, J. F., et al., “Reproductive Efficiency in Mares With Anti-hCG Antibodies.” Proc 9th Int. Congr. Anim. Repro. and A. I. 4:627 (1980) abstr.
  Roth, T. L., et al., “Effects of Equine Chorionic Gonadotropin, Human Chorionic Gonadotropin, and Laparoscopic Artificial Insemination on Embryo, Endocrine, and Luteal Characteristics in the Domestic Cat.” Bio. Reprod. 57:165-171 (1997).
  Roux, M., et al., “Early Calving Heifers Versus Maiden Heifers for Beef-Production from Dairy herds. I. The Effects of Genotype (Friesian and Carloads x Friesian) and Two Feeding Levels in the Rearing Period on Growth and Carcass Quality.” Livestock Prod. Sci. 16:1 (1987).
  Rowley, H. S., et al., “Effect of Insemination Volume on Embryo Recovery in Mares.” J. Equine Vet. Sci. 10:298-300 (1990).
  Roy, J. H., “Rearing Dairy-Herd Replacements.” Journal of the Society of Dairy Technology 31:73-79 (1978).
  Rutter, L. M., et al., “Effect of Abomasal Infusion of Propionate on the GnRH-Induced Luteinizing Hormone Release in Prepuberal Heifers.” J. Anim. Sci. 56:1167 (1983).
  Salamon, S., Artificial Insemination of Sheep, Chippendale, New South Whales. Publicity Press. p. 83-84 (1976).
  Salisbury, G. W. and VanDemark, N. L. “Physiology of Reproduction and Artificial Insemination of Cattle.” San Francisco: Freeman and Company. p. 442-551 (1978) ( 1961 & 1978 Combined) Chapters 16 and 17 are the complete article.
  Schenk, J. L. “Applying Semen Sexing Technology to the AI Industry”, Proceedings of the 18th Technical Conference on Artificial insemination & Reproduction, 2000.
  Schenk, J. L, et al., “Imminent Commercialization of Sexed Bovine Sperm”, Proceedings, The Range Beef Cow Symposium XVL, p. 89-96 (1999).
  Schenk, J. L., “Cryopreservation of Flow-Sorted Bovine Spermatozoa”, Therio. vol. 52, 1375-1391 (1999).
  Schiewe, M. C., et al., “Transferable Embryo Recovery Rates Following Different Insemination Schedules in Superovulated Beef Cattle” Therio. 28 (4) Oct. 1997, pp. 395-406.
  Schillo, K. K., et al, “Effects of Nutrition and Season on the Onset of Puberty in the Beef Heifer.” J. Anim. Sci. 70:3994 (1992).
  Schmid, R. L., et al, “Fertilization with Sexed Equine Spermatozoa Using Intracytoplasmic Sperm Injection and Oviductal Insemination”, 7th International Symposium on Equine Reproduction, pp. 139 (1998) abstr.
  Schnell, T. D., et al, “Performance, Carcass, and Palatability Traits for Cull Cows Fed High-Energy Concentrate Diets for 0, 14, 28, 42, or 56 days.” J. Anim. Sci. 75:1195. (1997).
  Schoonmaker, J. P., et al., “Effects of Age at Weaning and Implant Strategy on Growth of Steer Calves.” J. Anim. Sci. (Suppl. II) 76:71. (1998) abstr.
  Seidel, G. E. Jr. “Cryopreservation of Equine Embryos” Veterinary Cliniics of North America: Equine Practice vol. 12, No. 1, Apr. 1996.
  Seidel, G. E. Jr. “Sexing Bovine Sperm” The AABP Proceedings—vol. 34.
  Seidel, G. E. Jr. Sexing mammalian spermatozoa and embryos-state of the art Journal of Reproduction and Fertility Supp 54, 477-487 1999.
  Seidel, G. E. Jr. “Uterine Horn Insemination of Heifers With Very Low Numbers of Nonfrozen and Sexed Spermatozoa”, Atlantic Breeders Cooperative, Therio. 48: pp. 1255-1264, (1997).
  Seidel, G. E. Jr et al., “Current Status of Sexing Mammalian Spermatozoa,” Society for Reproduction and fertiity, pp. 733-743, 2002.
  Seidel, G. E. Jr., “Commercilizing Repreductive Biotechnology—The Approach used by XY, Inc.,” Theriogenology, p. 5, 1999.
  Seidel, G. E. Jr. et al., “Insemination of Heifers with Sexed Sperm”, Therio, vol. 52, pp. 1407-1421 (1999).
  Seidel, G. E. Jr., “Use of Sexed Bovine Sperm for in Vitro Fertilization and Superovulation”, Animal Reproduction and Biotech Lab, CSU, Proceedings of the 2000 CETA/ACTE Convention, Charlottetown, Prince Edward Island, Aug. 2000, pp. 22-24.
  Seidel, G. E. Jr., “Artificial Insemination With X-and Y-Bearing Bovine Sperm”, Animal Reproduction and Biotechnology Laboratory, Colorado State University, (1996).
  Seidel, G. E. Jr., “Status of Sexing Semen for Beef Cattle”, Texas A & M University 45th Annual Beef Cattle Short Course and Trade Show Proceedings, Aug. 9-11, p. III24-III27, (1999).
  Seidel, G. E. Jr., et al, “Insemination of Heifers With Very Low Numbers of Frozen Spermatozoa”, CSU, Atlantic Breeders Cooperative, Lancaster, PA, DUO Dairy, Loveland, CO, Jul. (1996).
  Seidel, G. E. Jr., et al, “Insemination of Holstein Heifers With Very Low Numbers of Unfrozen Spermatozoa”, CSU, Atlantic Breeders Cooperative, (1995).
  Seidel, G. E. Jr., et al, “Sexing Mammalian Sperm—Overview”, Therio. 52: 1267-1272, (1999).
  Seidel, G. E. Jr., et al., “Artificial Insemination of Heifers with Cooled, Unfrozen Sexed Semen”, Therio, vol. 49 pp. 365 (1998) abstr.
  Seidel, G. E. Jr., et al., “Insemination of Heifers with Sexed Frozen or Sexed Liquid Semen.” Therio. 51. (in press) (1999) abstr.
  Seidel, G. E. Jr., Economics of Selecting for Sex: The Most Important Genetic Trait, Theriogenology 59, (2003), pp. 585-598.
  Sell, R. S., et al., “Single-calf Heifer Profitability Compared to Other North Dakota Beef Production Systems.” Department of Ag. Eco., North Dakota State University, Ag. Econ. Rpt. 20.
  Senger, P. L., et al., “Influence of Cornual Insemination on Conception in Dairy Cattle.” J Anim. Sci. 66:3010-3016. (1988).
  Shabpareh, V. “ Methods for Collecting and Maturing Equine Oocytes in Vitro ” Theriogenology 40: 1161-1175, 1993.
  Shackelford, S. D., et al, “Effects of Slaughter Age on Meat Tenderness and USDA Carcass Maturity Scores of Beef Females.” J. Anim. Sci. 73:3304. (1995).
  Shapiro, Howard M. MD., PC. “Practical Flow Cytometry Third Edition,” New York 1994.
  Sharpe, J.C., et al., “A New Optical Configuration for Flow Cytometric Sorting of Aspherical Cells” Horticulture and Food Research Institute of New Zealand Ltd., Hamilton, New Zealand (PNS) Nov. 2, 1997, Abstract.
  Sharpe, Johnathan, Thesis; “An Introduction of Flow Cytometry”, Ch. 2-2.2, 1997.
  Sharpe, Johnathan, Thesis; “Gender Preselection-Principle Scientific Options,” Ch. 3.4-3.4.8, 1997.
  Sharpe, Johnathan, Thesis; “Sperm Sexing using Flow Cytometry,” Ch. 3.5-3.5.8, 1997.
  Sharpe, Johnathan, Thesis; “Sperm Sexing-Method of Johnson et al,” Ch. 3.6-4.3.4, 1997.
  Shelton, J. N. and Moore, N. W. “The Response of the Ewe to Pregnant Serum Mare Gonadotropin and to Horse Anterior Pituitary Extract.” J. Reprod. Fertil. 14:175-177. (1967).
  Shilova, A. V., et al., “The Use of Human Chorionic Gonadotropin for Ovulation Date Regulation in Mares.” VIIIth Int. Congress on Anim. Repro. and A. I. 204-208. (1976).
  Shorthose, W. R. and P. V. Harris. “Effect of Animal Age on the Tenderness of Selected Beef Muscles.” J. Food Sci. 55:1-. (1990).
  Silbermann, M., “Hormones and Cartilage. Cartilage: Development, Differentiation, and Growth.” pp. 327-368. Academic Press, Inc. (1983).
  Simon, M., “The Effect of Management Option on the Performance of Pregnant Feedlot Heifers.” M.S. Thesis. Kansas State University. (1983).
  Skogen-Hagenson, M. J. et al; “A High Efficiency Flow Cytometer,” The Journal of Histochemistry and Cytochemistry, vol. 25, No. 7, pp. 784-789, 1977, USA.
  Smith, G. C., et al, “USDA Maturity Indexes and Palatability of Beef Rib Steaks.” J. of Food Quality 11:1. (1988).
  Smith, G. C., et al., “Relationship of USDA Maturity Groups to Palatability of Cooked Beef.” J. of Food Sci. 47:1100. (1982).
  Smith, R. L., et al, Influence of Percent Egg Yolk during Cooling and Freezing on Survival of Bovine.
  Solsberry G.U., Van-Denmark N.L., Theory and practice of artificial cow insemination in USA, Moscow, KOLOS Publishing House, 1966, p. 346.
  Spectra Physics, The Solid State Laser Company, “Vangaurd 4 Watts of UV from a Quasi-CW, All Solid State Laser,” three pages, printed Nov. 14, 2002.
  Spectra-Physics Products, “Fcbar” two pages printed Nov. 14, 2002.
  Spectra-Physics, The Solid State Laser Company, Vanguard 2000-HMD 532,
  Spectra-Physics, The Solid State Laser Company, Vanguard 350-HMD 355,
  Squires, E. L, et al., “Effect of Dose of GnRH Analog on Ovulation in Mares.” Therio. 41:757-769. (1994).
  Squires, E. L, “Simultaneous Analysis of Multiple Sperm Attributes by Flow Cytometry”, Diagnostic Techniques and Assisted Reproductive Technology, The Veterinary Clinics of North America, Equine Practice, vol. 12, No. 1, p. 127-130 (1996).
  Squires, E. L., “Early Embryonic Loss” Equine Diagnostic Ultrasonography, first ed., Rantanen & McKinnon. Williams and Wilkins, Baltimore, Maryland, p. 157-163 (1998).
  Squires, E. L., et al, “Cooled and Frozen Stallion Semen”, Bulletin No. 9, Colorado State University, Ft. Collins, CO. (1999).
  Squires, E.L., “Procedures for Handling Frozen Equine Semen for Maximum Reproductive Efficiency”, pp. 1, 39-41, 81-89.
  Staigmiller, R.B. “Superovulation of Cattle with Equine Pituitary Extract and Porcine FSH” Theriogenology 37: 1091-1099 1992.
  Stap J. Et al Improving the Resolution of Cryopreserved X- and Y- Sperm During DNA Flow Cytometric Analysis with the Addition of Percoll to quench the Fluorescence of Dead Sperm: Academic Medical Center, University of Amsterdam (1998) Journal of Animal Science vol. 76 1998, pp. 1896-1902.
  Steel, N. L., “Cost Effectiveness of Utilizing Sexed-Semen in a Commercial Beef Cow Operation”, MS Thesis, Colorado State University, Summer 1998.
  Steinkamp: “Flow Cytometry” vol. 55, No. 9, Sep. 1984 pp. 1375-1400, New York Review of Scientific Instruments Abstract Only.
  Stellflug, J. N., “Plasma Estrogens in Periparturient Cow.” Therio 10:269. (1978).
  Stevenson, J. S., et al., “Detection of Estrus by Visual Observation and Radiotelemetry in Peripubertal, Estrus-Synchronized Beef Heifers.” J. Anim. Sci. 74:729. (1996).
  Story, C. E., et al., “Age of Calf at Weaning of Spring-Calving Beef Cows and the Effect on Cow and Calf Performance and Production Economics.” J. Anim. Sci. 78:1403. (2000).
  Stovel R.T. A Means for Orienting Flat Cells in flow systems Biophysical Journal, 1978,vol. 23,pp. 1-5.
  Sullivan, J. J., et al., “Duration of Estrus and Ovulation Time in Nonlactating Mares Given Human Chorionic Gonadotropin During Three Successive Estrous Periods.” J.A.V.M.A. 162:895-898. (1973).
  Sumner, A. T. and Robinson, J. A., “A Difference in Dry Mass Between the Heads of X and Y-Bearing Human Spermatozoa”, J Reprod Fertil. 48, p. 9-15 (1976).
  Swanson, E. W. “Future Research on Problems of Increasing Meat Production by Early Calving.” In: J.C. Taylor (ed.) The Early Calving of Heifers and its Impact on Beef Production. (1975).
  Swenson, S. L., et al., “PRRS Virus Infection in Boars: Isolation From Semen and Effect on Semen Quality” from the 1995 Research Investment Report, Iowa State University, Veterinary Clinical Sciences, Iowa State University.
  Taljaard, T. L., et al., “The Effect of the Laparoscopic Insemination Technique on the Oestrus Cycle of the Ewe.” J. South Afr. Vet. Assoc. 62(2): 60-61. (1991).
  Tatum, J. D., et al., “Carcass Characteristics, Time on Feed and Cooked Beef Palatability Attributes.” J. Anim. Sci. 50:833. (1980).
  Taylor, C. S., “Efficiency of Food Utilization in Traditional and Sex-Controlled Systems of Beef Production”, AFRC Animal Breeding Research Organization, West Mains Road, Edinburg EH9 3JQ, pp. 401-440.
  Tervit, H.R., et al., “Successful Culture in Vitro of Sheep and Cattle Ova”, Agricultural Research Council, Unit of Reprod. Physio. and Biochem., Univ of Cambridge, p. 493-497 (1972).
  Thun, Rico, et al., Comparison of Biociphos-Plus® and TRIS-Egg Yolk Extender for Cryopreservation of Bull Semen; Theriogenology Symposium, Dec. 1999, vol. 52, #8.
  Time-Bandwidth Products “GE—100—XHP”,, 2 pages, Jan. 2002.
  Unruh, J. A. “Effects of Endogenous and Exogenous Growth-Promoting Compounds on Carcass Composition, Meat Quality and Meat Nutritional-Value.” J. Anim. Sci. 62:1441. (1986).
  USDA “Official United States Standards for Grades of Carcass Beef.” Agric, Marketing Serv., USDA, Washington, DC. (1997).
  Van Dilla, Martin, “Overview of Flow Cytometry: Instrumentation and Data Analysis”, Flow Cytometry: Instrumentation and Data Analysis, Van Dilla et al. (Eds.), 1985, pp. 1-8.
  van Munster, E. B., “Geslachtsbepaling met interferometrie”, Derde prijs NtvN-prijsvraag voor pasgepromoveerden 65/4, (Sex Determination with Interferometry) p. 95-98 (1999).
  van Munster, E. B., et al, “Difference in Sperm Head Volume as a Theoretical Basis for Sorting X & Y-Bearing Spermatozoa: Potentials and Limitations”, Therio 52, pp. 1281-1293 (1999).
  van Munster, E. B., et al, “Difference in Volume of X- and Y-chromosome Bearing Bovine Sperm Heads Matches Difference in DNA Content” Cytometry vol. 35 p. 125-128 (1999).
  van Munster, E. B., et al, “Measurement-Based Evaluation of Optical Path Length Distributions Reconstructed From Simulated Differential Interference Contrast Images”, J of Microscopy 191, Pt. 2, p. 170-176 (1998).
  van Munster, E. B., et al, “Reconstruction of Optical Pathlength Distributions From Images Obtained by a Wide Field Differential Interference Contrast Microscope”, J of Microscopy 188, Pt. 2, p. 149-157 (1997).
  Vazquez, J. J. et al., “Nonsurgical Uterotubal Insemination in the Mare”, Proceedings of the 44th Annual Convention of the American Association of Equine Practitioners, vol. 44, pp. 68-69 (1998).
  Vazquez, J. M., et al., “A. I. in Swine; New Strategy for Deep Insemination with Low Number of Spermatozoa Using a Non-surgical Methodology”, 14th International Congress on Animal Reproduction, vol. 2, Stockholm, Jul. 2000, p. 289.
  Vazquez, J., et al., “Development of a Non-surgical Deep Intra Uterine Insemination Technique”, Boar Semen Preservation IV, IVth International Conference on Boar Semen Preservation, Maryland, pp. 262-263.
  Vazquez, J., et al., “Hyposmotic Swelling Test as Predictor of the Membrane Integrity in Boar Spermatozoa”, Boar Semen Preservation IV, IVth International Conference on Boar Semen Preservation, Maryland, pp. 263.
  Vazquez, J., et al., “Successful low dose insemination by a fiber optic Endoscope technique in the Sow”, Proceedings Annual Conference of the International Embryo Transfer Society, Netherlands, Theriogenology, vol. 53 Jan. 2000.
  Vidament, M., et al., “Equine Frozen Semen Freezability and Fertility Field Results.” Therio. 48:907. (1997).
  Vincent, B.C., et al, “Carcass Characteristics and Meat Quality of Once-Calved Heifers.” Canadian J. Anim. Sci. 71:311. (1991).
  Vogel, T., et al, “Organization and Expression of Bovine TSPY”, Mammalian Genome, vol. 8, pp. 491-496 (1997).
  Voss, J. L. and Pickett, B. W., “Reproductive Management of the Broodmare.” CSU Exp. Sta. Anim. Reprod. Lab. Gen. Series. Bull. 961. (1976).
  Voss, J. L., et al., “Effect of Number and Frequency of Inseminations on Fertility in Mares.” J. Reprod. Fertil. Suppl. 32:53-57. (1982).
  Voss, J. L., et al., Effect of Human Chorionic Gonadotropin on Duration of Estrous Cycle and Fertility of Normally Cycling, Nonlactating Mares. J.A.V.M.A. 165:704-706. (1974).
  Waggoner, A. W., et al., “Performance, Carcass, Cartilage Calcium, Sensory and Collagen Traits of Longissimus Muscles of Open Versus 30-month-old Heifers That Produced One Calf.” J. Anim. Sci. 68:2380. 1990.
  Watson, “Recent Developments and Concepts in the Cryopreservvation of Spermatozoa and the Assessment of Their Post-Thawing Function,” Reprod. Fertil. Dev. 7:871-891 (1995) Abstract.
  Welch G., et al., Fluidic and Optical Modifications to a FACS IV for Flow Sorting of X- and Y-Chromosome Bearing Sperm Based on DNA. Cytometry 17 (Suppl. 7): 74. (1994).
  Welch, G., et al., “Flow Cytometric Sperm Sorting and PCR to Confirm Separation of X- and Y-Chromosome Bearing Bovine Sperm”, Animal Biotechnology, 6, pp. 131-139 (1995).
  Wheeler, T. L., et al., “Effect of Marbling Degree on Beef Palatability in Bos-taurus and Bos-indicus cattle.” J. Anim. Sci. 72:3145. (1994).
  Wickersham, E. W. and L. H. Schultz. “Influence of Age at First Breeding on Growth, Reproduction, and Production of Well-Fed Holstein Heifers.” J. Dairy Sci. 46:544. (1963).
  Wilhelm, K.M. et al, “Effects of Phosphatidylserine and Cholesterol Liposomes on the Viability, Motility, and Acrosomal Integrity of Stallion Spermatozoa Prior to and after Cryopreservation”, Cryobiology 33:320, 1996.
  Wilson, C. G., et al., “Effects of Repeated hCG Injections on Reproductive Efficiency in Mares.” Eq. Vet. Sci. 4:301-308. (1990).
  Wilson, D. E. et al., “Mammal Species of the World”, Smithsonian Institution Press, 1993, 1206 pp.
  Wilson, M.S. “Non-surgical Intrauterine Artificial Insemination in Bitches Using Frozen Semen.” J. Reprod. Fertil. Suppl. 47:307-311. (1993).
  Windsor, D. P., et al, “Sex Predetermination by Separation of X and Y Chromosome-bearing Sperm: A Review”, Reproduction of Fertilization and Development 5, pp. 155-171, (1993).
  Wintzer Et al.:“Krankheiten des Pferdes Ein Leitfaden fur Studium und Praxiz,” 1982, nParey, Berlin Hamburg XP002281450.
  Woods, G. L. and Ginther, O. J. “Recent Studies Related to the Collection of Multiple Embryos in Mares.” Therio. 19:101-108. (1983).
  Woods, J., et al., “Effects of Time of Insemination Relative to Ovulation on Pregnancy Rate and Embryonic-Loss Rate in Mares.” Eq. Vet. J. 22(6): 410-415. (1990).
  Zhou, Hongwei, et al. “Research on and Development of Flow Cell Sorting Apparatuses,” Gazette of Biophysics, vol. 13, ed. 3, 1997.
  Hamamatsu, “Photomultiplier Tubes,” web page, Printed on Apr. 15, 2000 4.
  Hermesmeyer, G.N. ,et al. Effects of Lactation and Prenatal Androgenization on the Performance, Carcass Composition, and Longissimus muscle sensory characteristics of heifers in the single-calf heifer system. The Professional Animal Scientist 15: 14-23.
  Seidel, G. E. Jr., “Fertility of Bulls on the Edge of the Dose-Response Curve for Numbers of Sperm per Inseminate”; Proceedings of the 17th Technical comference on Artificial Insemination & Reproduction, 1998.
  Hollinshead, F.K. et al. “In vitro and in vivo assessment of functional capacity of flow cytometrically sorted ram spermatozoa after freezing and thawing.” Reprod. Fertil. and Develop. 2003. vol. 15, pp. 351-359.
  Hollinshead F. K. et al. “Production of lambs of predetermined sex after the insemination of ewes with low Numbers of frozen-thawed sorted X- or Y- Chromosome-bearing spermatozoa”, Reprod. Fertil. and Develop. 2002, vol. 14, pp. 503-508.
  Hollinshead F. K. et al. “Sex-Sorting and Re-cryopreservation of Frozen-Thawed Ram Sperm for in Vitro Embryo Production” Theriogenology , vol. 59. (2003) pp. 209.
  Dhali et al. Vitrification of Buffalo (Bubalus bubalis)Oocytes, Embryo Theriogenology vol. 53, pp. 1295-1303 (2000).
  Borini et al. Cryopreservation of Mature Oocytes: The use of a trypsin inhibitor enhances fertilization and obtained embryos rates, Fertil. Steril. (1997), vol. 68 (Suppl.).
  Hamamatsu Photonics K.K. Electronic Tube Center, Photomultiplier Tubes, Brochure Dec. 1997.
  Johnson, L. A., et al. The Beltsville Sperm Sexing Technology: High-speed sperm sorting gives improved sperm output for in Vitro fertiliation and AI, Journal of Animal Science,vol. 77, Suppl 2/J, Dairy Sci. vol. 82, Suppl. Feb. 1999 pp. 213-220.
  Peters D., The LLNL high-speed sorter: Design features,operational characteristics, and bioloical utility, Cyometry, 6:290-301 (1985).
  Rens W., et al Slit-scan flow cytometry for consistent high resdolution DNA analysis of X- and Y- chromosome bearing sperm, Cytometry 25:191-199 (1996).
  van Munster, E. B. Interferometry in flor to sort unstained X- and Y-Chromosome-Bearing Bull Spermatozoa, Cytometry 47:192-199 (2002).
  Scmid, R. L., et al. Effects of follicular fluid or progesterone on in vitro maturation of equine oocytes before intracytoplasmic sperm injection with non-sorted and sex-sorted spermatozoa, Journal of Reproduction and Fertility 56:519-525, 2000.
  Brink, Z et al. A reliable procedure for superovulating cattle to obtain zygotes and early emryos for microinjection, Theriogenology vol. 41, p. 168, (1994).
  Spectra-Physics, The Solid State Laser Company, Vanguard 350-HMD 355, User's Manual, Dec. 2002.
  Photon, Inc. Light MeasuringSolutions, NanoScan for High-powered beam Applications, 2005.
  Fluorescense Lifetime Systems,, Jan. 28, 2005 pp. 2.
  NCI ETI Branch, Flow CytometryCore Laboratory,, pp. 5, May 11, 2004.
  NCI ETI Branch, Flow CytometryCore Laboratory,, pp. 14, May 11, 2004.
  Saacke,R.G., Can Spermatozoa with abnormal heads gain access to the ovum in artificially inseminated super- and single-ovulating cattle?, Theriogenology 50:117-128. 1998.
  Hawk, H.W., Gamete Transport in the Superovulated Cow. Theriogenology: Jan. 1998 vol. 29 No. 1 pp. 125-142.
  Blecher, S.R., et al. A new approach to immunological sexing of sperm, Theriogenology, 59, pp. 1309-1321, 1999 vol.
  Wheeler, M. B., et al. Application of sexed semen technology to in vitro embryo production in cattle, Theriogenology, vol. 65 (2006) 219-227.
  Garverick, H. A., et al. mRNA and protein expression of P450 aromatase (AROM) and estrigen recepters (ER) α and β during early development of bovine fetal ovaries; The society for the study of reproduction 38th annual meeting Jul. 24-27, 2005; Abstract only.
  Bodmer, M., et al., Fertility in heifers and cows after low does insemination with sex-sorted and non-sorted sperm under field conditions; Theriogenology, vol. 64, (2005) 1647-1655.
  Schenk J. L., et al. Embryo production from superovulated cattle following insemination of sexed sperm, Theriogenology, 65 (2006) 299-307.
  Garner, D. L., Flow cytometric sexing of mammalian sperm, Theriogenology, 65 (2006) 943-957.
  Habermann F. A., et al., Validation of sperm sexing in the cattle (Bos taurus) by dual colour flourescence in situ hybridization; J Anim Breed Genet. Apr. 2005; 122 Suppl 1:22-7 (Abstract only).
  Johnson, L. A., Sexing mammalian sperm for production of offspring: the state-of-the-art; Animal Reproduction Science; 60-61 (2000) pp. 93-107.
  Parallel Canada Patent Application No. 2468774; Office action dated Aug. 11, 2009.
  Parallel Chilean application No. 3016-01, Office Action dated Jan. 6, 2010, 4 pages.
  Abeydeera et al. Birth of Piglets Preselected for Gender Following in Vitro Fertilization on in Vitro Matured Pig Oocytes by X and Y Chromosome Dearing Spermatozoa Sorted by High Speed Flow Cytometry. Theriogenology 50: 981-988, 1998.
     * cited by examiner
     Primary Examiner —Ruth Davis
     Art Unit — 1651
     Exemplary claim number — 1
(74)Attorney, Agent, or Firm — Craig R. Miles; CR Miles, P.C.



An IVF system for successfully utilizing spermatozoa separated into X-chromosome bearing and into Y-chromosome bearing population for insemination. The IVF system includes fertilization medium that can shorten the time from insemination to cleavage and a portable incubator for the transportation of maturing oocytes and inseminated oocytes comprising a straw (19) and an incubation element (20) that can be sealed with a cap (22).
12 Claims, 4 Drawing Sheets, and 4 Figures

[0001] This application is a continuation of application Ser. No. 10/433,191, filed May 29, 2003, issuing Aug. 22, 2006 as U.S. Pat. No. 7,094,527, which is the National Stage of International Application No. PCT/US01/45237, filed Nov. 29, 2001, which claims the benefit of under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 60/253,787, filed Nov. 29, 2000 and U.S. Provisional Patent Application No. 60/253,785, filed Nov. 29, 2000, each hereby incorporated by reference herein.


[0002] Devices, compositions, and methods that improve the quality of embryos generated using in-vitro fertilization (IVF) with spermatozoa separated into X-chromosome bearing and Y-chromosome bearing populations.


[0003] An attractive feature of IVF is that many fewer spermatozoa can be required for insemination than for artificial insemination. However, IVF using spermatozoa separated into X-chromosome bearing and Y-chromosome bearing populations (separated spermatozoa) can necessitate modifications to conventional IVF techniques. This may be due in part to the pre-capacitation of such spermatozoa.
[0004] In most cases, the percentages of oocytes (oocyte, ootid, or ova, or plurality of same as appropriate to the application) fertilized with separated and unseparated spermatozoa are similar, and events during the first cell cycle are timed similarly for separated and unseparated spermatozoa. However, with conventional procedures, blastocyst production with separated spermatozoa can be 70%-90% of controls with spermatozoa that have not been separated. For example, development to blastocysts has been shown to be 17% with bovine oocytes inseminated with separated spermatozoa, compared with >25% which might be expected with IVF using unseparated spermatozoa as described in the journal article entitled “In Vitro Fertilization With Flow-Cytometerically-Sorted Bovine Sperm” Theriogenology 52: 1393-1405 (1999), hereby incorporated by reference.
[0005] Several factors may contribute to these results. One factor may be that staining of sperm with Hoechst 33342 appears to cause a decline in motility of spermatozoa. Another factor, may be the physical forces the spermatozoa are subject to during the separation process. As but one example, in flow cytometric separation of spermatozoa, spermatozoa exit the flow cytometer at nearly 100 km/h before impacting on the surface of the collection medium. During transit through the flow cytometer spermatozoa can be subjected to laser light at an intensity of over 100 mW. While the transit time may only be 1-2 μsec, this may affect the spermatozoal DNA, and thus, also effect subsequent embryonic development. The process of separating sperm with flow cytometry can also result in a highly diluted sample, 600,000 spermatozoa/mL or less, and subsequent centrifugation steps are necessary to provide concentrated spermatozoa suitable for insemination.
[0006] Another problem with utilizing separated spermatozoa in IVF techniques may be that the facility in which the spermatozoa are separated may be in a different location than where the male mammal from which the spermatozoa are collected is located, which may be different from where the female mammal from which the oocytes are collected is located, which may be a different location from where the in-vitro fertilization is to occur, and which may be a different location from where the female mammal into which the in-vitro cultured embryos are to be transferred. Conventionally, separated sperm may be cryopreserved and transported frozen to the facility at which the IVF techniques are administered. Maturing oocytes are conventionally transported to the facility at which the IVF techniques are administered in portable incubation systems. The maturing oocytes are then inseminated with previously frozen-thawed sperm cells. To avoid cryopreservation of sperm cells or as a convenience to the various facilities involved it may be beneficial to transport maturing oocytes directly to the facility separating the spermatozoa so that separated sperm cells can be added to the oocytes without cryopreservation. However, conventional IVF and in vitro culture of the resulting zygotes typically comprises a separate set of apparatus and procedures making it inconvenient, difficult, or impossible to inseminate and culture oocytes in the same facility in which spermatozoa are separated.
[0007] Even though X-chromosome bearing spermatozoa and Y-chromosome bearing spermatozoa have been differentiated by and separated based upon the difference in emitted fluorescence for many years, and even though separated spermatozoa have been used for some time with IVF techniques, and even though there is large commercial market for embryos produced with IVF techniques and separated spermatozoa, the above-mentioned problems have yet to be resolved.
[0008] As to the problems with conventional techniques of IVF using separated spermatozoa, and specifically separated spermatozoa, stained spermatozoa, or spermatozoa that are from previously frozen sperm, and with conventional strategies involving the transportation of separated sperm and maturing oocytes, the invention addresses each in a practical manner.


[0009] Accordingly, one of the broad objects of particular embodiments of the invention can be to provide devices, compositions and methods that provide transportation of inseminated oocytes, promotes cleavage of fertilized oocytes and improves the quality of embryos generated with techniques utilizing spermatozoa separated into X-chromosome bearing and Y-chromosome bearing populations.
[0010] Another broad object of particular embodiments of the invention can be to provide devices, compositions, and methods that promote cleavage and improve quality of embryos generated using IVF with spermatozoa that are derived from previously frozen sperm.
[0011] Another broad object of particular embodiments of the invention can be to provide devices, compositions, and methods that promote cleavage and improve quality of embryos generated using IVF with spermatozoa that have previously been stained with a DNA binding fluorochrome.
[0012] Another broad object of particular embodiments of the invention can be to provide medium for embryonic culturing that can contain non-essential amino acids.
[0013] Another broad object of the invention can be to provide apparatus and methods for transporting maturing oocytes and fertilized oocytes for the convenience of the end user(s) or to avoid cryopreservation of the spermatozoa used to fertilize oocytes.
[0014] Naturally further objects of the invention are disclosed throughout other areas of specification.


[0015] FIG. 1 shows an embodiment of the invention in which spermatozoa from fresh or previously frozen-thawed sperm are stained.
[0016] FIG. 2 shows an embodiment of the invention for separating stained spermatozoa in to X-chromosome bearing and Y-chromosome bearing populations.
[0017] FIG. 3 shows another view of an embodiment of the invention for separating stained spermatozoa in to X-chromosome bearing and Y-chromosome bearing populations.
[0018] FIG. 4 shows an embodiment of a portable incubation system in which oocytes can be fertilized.


[0019] The invention involves devices, methods, and compositions for the in-vitro insemination and fertilization of oocytes (oocyte, ootid, or ova, or plurality of same as appropriate to the application) and the culture of embryos resulting from such techniques.
[0020] Embodiments of the invention can include fresh spermatozoa, or spermatozoa from frozen-thawed sperm of numerous species of mammals. The invention should be understood not to be limited to the species of mammals cited by the specific examples within this patent application. Embodiments of the invention, for example, may include fresh spermatozoa or spermatozoa from frozen-thawed sperm of animals having commercial value for meat or dairy production such as swine, bovids, ovids, equids, buffalo, or the like (naturally the mammals used for meat or dairy production may vary from culture to culture). It may also include fresh spermatozoa or spermatozoa from frozen-thawed sperm from individuals having rare or uncommon attribute(s), such as morphological characteristics including weight, size, or conformation, or other desired characteristics such as speed, agility, intellect, or the like. It may include frozen-thawed sperm from deceased donors, or fresh or frozen-thawed spermatozoa from rare or exotic mammals, such as zoological specimens or endangered species. Embodiments of the invention may also include fresh or frozen-thawed spermatozoa collected from primates, including but not limited to, chimpanzees, gorillas, or the like, and may also include fresh or frozen-thawed spermatozoa from marine mammals, such as whales or porpoises.
[0021] Now referring primarily to FIG. 1, in some embodiments of the invention, Hoechst 33342 stain (1) can be added to bovine spermatozoa contained in frozen-thawed sperm (2) to establish a concentration of 224 μM. The incubation time of the spermatozoa contained in the frozen-thawed sperm (2) with the stain (1) can be about 190 minutes. In anther embodiment of the invention, the stain (1) can be added to the bovine sperm (2) to establish a concentration of 2240 μM and then incubated for about 60 minutes. Frozen-thawed sperm treated in either manner can improve the resolution of X-chromosome bearing from Y-chromosome bearing spermatozoa. Understandably, from application to application (such as frozen-thawed sperm from different species) the amount of incubation time and the specific concentration of stain can be adjusted to optimize the resolution of the X-chromosome bearing from Y-chromosome bearing spermatozoa.
[0022] With respect to the cleavage rates of inseminated oocyte(s), the increase in stain concentration up to at least 10× does not appear to have a depressive effect on either cleavage or embryonic development. Higher stain concentrations may actually be beneficial with respect to certain applications because the length of incubation time may be decreased improving percent cleavage. From application to application length of incubation time can be adjusted to optimize cleavage results or embryonic development, as desired.
[0023] Now referring primarily to FIGS. 2 and 3, a flow cytometer embodiment of the invention is shown which includes a sperm cell source (3) which acts to establish or supply stained spermatozoa or other type of stained cells to be analyzed by the flow cytometer. The sperm cells are deposited within a nozzle (4) in a manner such that the cells are surrounded by a sheath fluid (5). The sheath fluid (5) is usually supplied by some sheath fluid source (6) so that as the cell source (3) supplies sperm cells, the sheath fluid (5) is concurrently fed through the nozzle (4). In this manner it can be easily understood how the sheath fluid (5) forms a sheath fluid environment for the cells. Since the various fluids are provided to the flow cytometer at some pressure, they flow out of the nozzle (4) and exit at the nozzle orifice (7). By providing some type of oscillator (8) which may be very precisely controlled through an oscillator control (9), pressure waves may be established within the nozzle (4) and transmitted to the fluids exiting the nozzle (4) at nozzle orifice (7). Since the oscillator (9) thus acts upon the sheath fluid (5), the stream (10) exiting the nozzle orifice (7) eventually and regularly forms drops (11). Because the sperm cells are surrounded by a sheath fluid environment, the drops (11) may contain within them individually isolated (generally) cells or other items.
[0024] Since the drops (11) generally contain isolated sperm cells, the flow cytometer can distinguish and separate droplets based upon whether or not the appropriate sperm cell is contained within the drop. This is accomplished through a cell sensing system (12). The cell sensing system involves at least some type of sensor (14) which responds to the cells contained within each drop (11) as described by U.S. Pat. No. 5,135,759, hereby incorporated by reference. As the Johnson patent explains for spermatozoa or sperm cells, although the staining and separation inventions can be understood to be used with a variety of frozen-thawed cells, the cell sensing system (12) may cause an action depending upon the relative presence or relative absence of the bound fluorochrome which may be excited by some stimulant such as the laser exciter (13). While each type of sperm cell can be stained by the stain or fluorochrome, as described above, the differing length of the X-chromosome and the Y-chromosome causes different amounts of stain to be bound. Thus, by sensing the degree of fluorescence emitted by the fluorochrome upon excitation it is possible to discriminate between X-bearing spermatozoa and Y-bearing spermatozoa by their differing fluoresence emission levels.
[0025] In order to achieve separation and isolation of the appropriate sperm cells, the signals received by sensor (14) are fed to some type of sorter discrimination system (15) which very rapidly makes a differentiation decision and can differentially charge each drop (11) based upon whether it has decided that the desired sperm cell does or does not exist within that drop (11). In this manner the separation or discrimination system (15) acts to permit the electrostatic deflection plates (16) to deflect drops (11) based on whether or not they contain the appropriate sperm cell. As a result, the flow cytometer acts to sort the sperm cells by causing them to land in one or more collectors (17). Thus by sensing some property of the sperm cells the flow cytometer can discriminate between sperm cells based on a particular characteristic and place them in the appropriate collector (17). In the system presently used to sort spermatozoa, the X-bearing spermatozoa droplets are charged positively and thus deflect in one direction, the Y-bearing spermatozoa droplets are charged negatively and thus deflect the other way, and the wasted stream (that is unsortable cells) is uncharged and thus is collected in an undeflected stream into a suction tube or the like.
[0026] Now referring primarily to FIG. 3, the process can be even further understood. As shown in that figure, the nozzle (4) emits a stream (10) which because of the oscillator (8) (not shown in FIG. 3) forms drops (11). Since the cell source (3) (not shown in FIG. 3) may supply sperm cells (1) which have been stained according the invention, the magnitude of the fluorescent emission stimulated by the laser exciter (13) is differentially determined by sensor (14) so that the existence or nonexistence of a charge on each drop (11) as it separates from stream (10) can be controlled by the flow cytometer. This control results in positively charged, negatively charged, and uncharged drops based upon the encapsulated sperm cell. As shown in FIG. 3, certain drops are shown as deflected drops (18). These deflected drops (18) are those containing sperm cells (2) differentiated by bearing an X-chromosome or a Y-chromosome. Separated sperm are then deposited in the appropriate collector (17) for later use. See also, International Patent Application PCT/US98/27909, hereby incorporated by reference.
[0027] While the above description focuses on the separation of spermatozoa with flow cytometry, separation of X-chromosome bearing spermatozoa and Y-chromosome bearing spermatozoa based upon the difference in measurable fluorescent emission may also include numerous other technologies such as liquid chromatography, gel electrophoresis, and other technologies that similarly excite the amount of bound fluorochrome to differentiate between X chromosome bearing spermatozoa and the Y chromosome bearing spermatozoa.
[0028] Embodiments of the invention can also comprise collecting oocytes from a female mammal. With respect to certain embodiments of the invention, oocytes can be aspirated from the ovaries of the desired female mammal or can be obtained from slaughterhouse ovaries. The oocytes can be matured in TCM199 supplemented with about 10% fetal calf serum plus hormones (15 ng FSH, 1 μg LH, 1 μg E2/ml) for 22-24 h at 39° C., in about 5% CO2 in air.
[0029] Ten to 15 oocytes can be transferred to a 50 μl drop of fertilization medium containing non-essential amino acids, such as tyrode albumin lactaate pyruvate (TALP) supplemented with non-essential amino acids derived from Eagles Medium, and which can further contain 0.6% bovine serum albumin, 20 μg heparin/mL and 5 mM caffeine. Alternately, oocytes can be fertilized in other medium containing non-essential amino acids such as the chemically defined medium described in the journal article entitled “Lowered Oxygen Tension and EDTA Improve Bovine Zygote Development In Chemically Defined Medium”, J. Anim. Sci. (1999), or the SOF medium described in the journal article “Successful Culture In-vitro of Sheep and Cattle Ova”, J. Reprod. Fertil. 30:493-497 (1972), each journal article hereby incorporated by reference.
[0030] After separating or sorting, sperm cells can be washed by centrifugation for about 10 min at 400 g in collection medium (typically Hepes-tyrode albumin lactate pyruvate medium supplemented with 2.0% bovine serum albumin) followed by suspension in the fertilization medium. Thawed, sorted sperm can be prepared by being centrifuged for 20 minutes at 700 g through a Percoll gradient (90%: 45%) for separation of live and dead sperm. The sperm pellet can then be washed with fertilization medium by centrifugation at 400 g for 10 minutes. Sperm can then be added to to the fertilization medium to give a concentration of 1-2 million/mL.
[00001] [TABLE-US-00001]
  Cleavage Stage of Oocytes Inseminated with Separated
  Sperm in Four Different Fertilization Media.
        % 2-cell   % 8-cell
  Media   No. oocytes   % cleavage   at 24 h   at 72 h
  Fert-TALP   168   76 6a   66
  Fert-TALP + neaa   176   7126b   67
  CDM   167   8975c   70
  SOF   145   8649d   69
a,b,c,dMeans with different superscripts differ (P < .05).
[0032] Now referring primarily to Table 1, as can be understood, oocytes inseminated with separated spermatozoa in fertilization medium containing non-essential amino acids according to the invention exhibit an increased rate of early development through at least the two cell stage.
[00002] [TABLE-US-00002]
  Embryonic Development and Blastocyst Quality
  Resulting From Fertilization in Four Different
  Fertilization Media (averaged over two culture media)
    % blastocysts/   % Grade 1
    oocyte   blastocysts/total
  Media   No. oocytes   Total   D7   blastocysts
  Fert-TALP   326   20   1752a,c
  Fert-TALP-aa   221   20   1768b  
  CDM   332   22   1861b,c
  SOF   321   21   1764b,c
a,b,cPercentages without common superscripts differ (P < .05)
dGrade 1 indicates blastocysts with a distinct inner cell mass suitable for embryo transfer.
[0034] Now referring primarily to Table 2, some embodiments of the invention in which oocytes are fertilized with sorted spermatozoa in fertilization medium containing supplemented non-essential amino acids can exhibit an enhanced quality of embryos. In embodiments of the invention in which oocytes were fertilized in tyrode albumin lactaate pyruvate (TALP) supplemented with non-essential amino acids derived from Eagles Medium, and further containing 0.6% bovine serum albumin, 20 μg heparin/mL and 5 mM caffeine there was a difference (P<0.05) in quality of embryos as compared to TALP without non-essential amino acids.
[0035] Presumptive zygotes can be removed from culture and placed in chemically-defined medium (CDM-1) as discussed in the Journal Animal Science, 78, 152-157 (2000), hereby incorporated by reference, for 6-7 hours after insemination and cultured for 65-66 hours. Embryos that cleaved were further cultured 96 hours in CDM-2 (further containing MEM essential and non-essential amino acids and 2.0 mM fructose) containing 0.12 IU insulin/mL. Blastocysts were morphologically graded according to the size of inner cell mass and stained with Giemsa to determine cell numbers on day 7 after insemination.
[0036] Now referring primarily to FIG. 4, the invention further involves a portable incubation system. Certain embodiments of the invention can comprise a straw (19) having an interior volume between about 0.1 mL and about 0.5 mL into which fertilization medium, and oocytes collected from a female mammal, can be transferred. While the straw (19) could be made of any material compatible with the fertilization medium and the collected oocytes, specific embodiments of the straw (19) can be made of plastic, such as or similar to an artificial insemination straw. The ends of plastic straws can be heat sealed after the fertilization medium and the oocytes are transferred inside.
[0037] The invention can further comprise an incubation element (20) configured to encapsulate the straw (19) or a plurality of straws inserted within. In some embodiments of the invention the incubation element (20) can be a glass tube having a single sealable aperture element. The aperture element (21) can be sealed with a cap (22), and in some embodiments the cap (22) and the tube can have spiral threads (23) that can be rotationally mated to close the incubation element (20).
[0038] After transfer of a straw (19) or a plurality of straws to the interior volume of the incubation element (20), incubation conditions can be established within. Typical incubation conditions within the interior volume of the incubation element can comprise an atmosphere of five percent carbon dioxide in air and a temperature of about 39° C. (37° C. to 41° C.). Once incubation conditions are established within the incubation element, the incubation element (20) can be sealed and the oocytes can then be transported within the incubation element (20).
[0039] In some embodiments of the invention, oocytes can be transported to a sperm cell separation facility where the incubation element (20) is unsealed, the straw (19) is unsealed and a plurality of sperm cells (15) from a population separated on the basis of bearing an X-chromosome or bearing a Y-chromosome can be transferred into the straw (19) containing the oocytes. With respect to some embodiments of the invention a concentration of separated sperm cells (15) can be established of between about 1 million to about 2 million/mL of the fertilization medium. The straw (19) containing the oocytes and spermatozoa in fertilization medium can then be resealed and transferred back into the incubation element (20). The incubation conditions can be re-established and the incubation element sealed. The incubation element (20) containing a straw or plurality of straws (19) can then be transported. During transport the oocytes can become fertilized. Upon arrival zygotes can be transferred from the straw for further culture.
[0040] With respect to certain embodiments of the invention, oocytes can first be inseminated with separated or unseparated spermatozoa in conventional 50 μl drops and loaded into a 0.25 mL straw or straws (19) within two hours after insemination. Straws (19) can be heat sealed and put into the incubation element (20). The open incubation element containing straws with inseminated oocytes can be equilabrated with 5% carbon dioxide in air at about 39° C. for at least one hour and then tightly capped and cultured under the same conditions for between about 18-20 hours.
[0041] Again referring primarily to Table 2, fewer oocytes (P<0.05) fertilized in Fert-TALP developed to the 2-cell stage by 24 hours than in any other media. Notably, the vast majority of oocytes (75%) fertilized in CDM medium cleaved to 2-cell stabe by this time. By 72 hours post-insemination, there was no difference between any of the media, possibly due to the long 8-cell stage cell cycle.
[0042] There was no difference between any of the media on rate of development to blastocysts. However, there was a significant difference in quality of embryos between Fert-TALP and Fert-TALP+non-essential amino acids.
[0043] Progression of early bovine embryonic development using separated sperm are similar to studies with in-vivo or in-vitro cleavage of oocytes fertilized with unseparated spermatozoa. In the cow the first in-vivo cleavage occurs at 24-28 hours following ovulation, and the first in-vitro cleavage tages place at 24-48 hours after insemination.
[0044] Earlier cleavage occurred with oocytes fertilized in CDM, SOF, and Fert-TALP+aa medium than in conventional Fert-TALP medium. This can be because CDM, SOF, and Fert-TALP+non-essential amino acids, all contain non-essential amino acids, which may play a role in how quickly spermatozoa penetrate oocytes, of in the length of the first cell cycle.
[0045] As can be easily understood from the foregoing, the basic concepts of the present invention may be embodied in a variety of ways. It involves the staining of spermatozoa, whether fresh spermatozoa or frozen-thawed spermatozoa, separation and isolation techniques which may be used with such stained spermatozoa, as well as devices to accomplish the staining, separation, isolation of such stained spermatozoa into X-chromosome bearing and Y-chromosome bearing populations, and the transporting of maturing oocytes and fertilized oocytes. In this patent application, the staining and separating techniques used with spermatozoa are disclosed as part of the results shown to be achieved by the various devices described and as steps which are inherent to utilization. They are simply the natural result of utilizing the devices as intended and described. In addition, while some devices are disclosed, it should be understood that these not only accomplish certain methods but also can be varied in a number of ways. Importantly, as to all of the foregoing, all of these facets should be understood to be encompassed by this disclosure.
[0046] The discussion included in this patent application is intended to serve as a basic description. The reader should be aware that the specific discussion may not explicitly describe all embodiments possible; many alternatives are implicit. It also may not fully explain the generic nature of the invention and may not explicitly show how each feature or element can actually be representative of a broader function or of a great variety of alternative or equivalent elements. Again, these are implicitly included in this disclosure. Where the invention is described in functionally-oriented terminology, each aspect of the function is accomplished by a device, subroutine, or program. Apparatus claims may not only be included for the devices described, but also method or process claims may be included to address the functions the invention and each element performs. Neither the description nor the terminology is intended to limit the scope of the claims which now be included.
[0047] Further, each of the various elements of the invention and claims may also be achieved in a variety of manners. This disclosure should be understood to encompass each such variation, be it a variation of an embodiment of any apparatus embodiment, a method or process embodiment, or even merely a variation of any element of these. Particularly, it should be understood that as the disclosure relates to elements of the invention, the words for each element may be expressed by equivalent apparatus terms or method terms—even if only the function or result is the same. Such equivalent, broader, or even more generic terms should be considered to be encompassed in the description of each element or action. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled. As but one example, it should be understood that all actions may be expressed as a means for taking that action or as an element which causes that action. Similarly, each physical element disclosed should be understood to encompass a disclosure of the action which that physical element facilitates. Regarding this last aspect, as but one example, the disclosure of a “sorter” should be understood to encompass disclosure of the act of “sorting”—whether explicitly discussed or not—and, conversely, were there only disclosure of the act of “sorting”, such a disclosure should be understood to encompass disclosure of a “sorter” and even a “means for sorting”. Such changes and alternative terms are to be understood to be explicitly included in the description.
[0048] Additionally, the various combinations and permutations of all elements or applications can be created and presented. All can be done to optimize the design or performance in a specific application.
[0049] Any acts of law, statutes, regulations, or rules mentioned in this application for patent: or patents, publications, or other references mentioned in this application or any parent application for patent are hereby incorporated by reference. Specifically, U.S. application Ser. No. 10/433,191, filed May 29, 2003, International Application No. PCT/US01/45237, filed Nov. 29, 2001, U.S. Provisional Patent Application No. 60/253,787, filed Nov. 29, 2000 and U.S. Provisional Patent Application No. 60/253,785, filed Nov. 29, 2000, are hereby incorporated by reference including any figures or attachments.
[0050] In addition, as to each term used it should be understood that unless its utilization in this application is inconsistent with such interpretation, common dictionary definitions should be understood as incorporated for each term and all definitions, alternative terms, and synonyms such as contained in the Random House Webster's Unabridged Dictionary, second edition are hereby incorporated by reference. Finally, all references listed in an Information Disclosure Statement or other information statement filed with this application or in any parent applications are hereby appended and hereby incorporated by reference, however, as to each of the above, to the extent that such information or statements incorporated by reference might be considered inconsistent with the patenting of this/these invention(s) such statements are expressly not to be considered as made by the applicant(s).
[0051] In addition, unless the context requires otherwise, it should be understood that the term “comprise” or variations such as “comprises” or “comprising”, are intended to imply the inclusion of a stated element or step or group of elements or steps but not the exclusion of any other element or step or group of elements or steps. Such terms should be interpreted in their most expansive form so as to afford the applicant the broadest coverage legally permissible in countries such as Australia and the like.
[0052] Thus, the applicant(s) should be understood to have support to claim at least: i) each of the staining, separation, isolation, insemination, or fertilization procedures as herein disclosed and described, ii) the related methods disclosed and described, iii) similar, equivalent, and even implicit variations of each of these devices and methods, iv) those alternative designs which accomplish each of the functions shown as are disclosed and described, v) those alternative designs and methods which accomplish each of the functions shown as are implicit to accomplish that which is disclosed and described, vi) each feature, component, and step shown as separate and independent inventions, vii) the applications enhanced by the various systems or components disclosed, viii) the resulting products produced by such systems or components, ix) methods and apparatuses substantially as described hereinbefore and with reference to any of the accompanying examples, and x) the various combinations and permutations of each of the elements disclosed.
[0053] The claims set forth in this specification or in a parent specification are hereby incorporated by reference as part of this description of the invention, and the applicant expressly reserves the right to use all of or a portion of such incorporated content of such claims as additional description to support any of or all of the claims or any element or component thereof, and the applicant further expressly reserves the right to move any portion of or all of the incorporated content of such claims or any element or component thereof from the description into the claims or vice-versa as necessary to define the subject matter for which protection is sought by this application or by any subsequent continuation, division, or continuation-in-part application thereof, or to obtain any benefit of, reduction in fees pursuant to, or to comply with the patent laws, rules, or regulations of any country or treaty, and such content incorporated by reference shall survive during the entire pendency of this application including any subsequent continuation, division, or continuation-in-part application thereof or any reissue or extension thereon.


1. A method of in vitro fertilization of oocytes, comprising the steps of:
a) obtaining oocytes of a non-human mammal;
b) obtaining sperm cells of said non-human mammal separated into an X-chromosome bearing population or a Y-chromosome bearing population;
c) combining said oocytes of said non-human mammal in a fertilization medium supplemented with an amount of non-essential amino acids with said sperm cells of either said X-chromosome bearing population or said Y-chromosome bearing population;
d) establishing said plurality of oocytes with said sperm cells of said X-chromosome bearing population or said Y-chromosome bearing population in incubation conditions within an incubation element; and
e) fertilizing at least one of said oocytes of said non-human mammal with said sperm cells of said X-chromosome bearing population or said Y-chromosome bearing populations, said amount of non-essential amino acids sufficient to achieve an increased rate of development of the resulting at least one embryo.
2. The method of in vitro fertilization of oocytes of claim 1, wherein said oocytes fertilized with said sperm cells of said X-chromosome bearing population or said Y-chromosome bearing population in said fertilization medium containing non-essential amino acids achieves an increased rate of development through at least the two cell stage.
3. The method of in vitro fertilization of oocytes of claim 2, further comprising the step of entraining about 10 of said oocytes to about 15 of said oocytes in about 50 microliters of said fertilization medium.
4. The method of in vitro fertilization of oocytes of claim 3, wherein said fertilization medium is selected from the group consisting of: a chemically defined medium, SOF, Tyrode's medium supplemented with Eagles Medium, Tyrode's medium supplemented with 0.6 percent bovine serum albumin, 20 μg heparin per milliliter, and a concentration of 5 milli-molar caffeine, and combinations thereof.
5. The method of in vitro fertilization of oocytes of claim 1, wherein said incubation conditions comprise an atmosphere of 5 percent carbon dioxide in air at a temperature between about 37 degrees Centigrade and about 41 degrees Centigrade for a duration of about 18 hours to about 20 hours.
6. The method of in vitro fertilization of oocytes of claim 1, further comprising the step of establishing a concentration of said sperm cells of said X-chromosome bearing population or said Y-chromosome bearing population in said fertilization medium of about 1 million to about 2 million per milliliter of said fertilization medium.
7. The method of in vitro fertilization of oocytes of claim 1, further comprising the step of transferring said oocytes and said sperm cells into a straw.
8. The method of in vitro fertilization of oocytes of claim 7, wherein said straw has heat sealable aperture elements.
9. The method of in vitro fertilization of oocytes of claim 8, wherein said straw has an interior volume of about 0.25 milliliters.
10. The method of in vitro fertilization of oocytes of claim 7, wherein said incubation element has sealable aperture elements.
11. The method of in vitro fertilization of oocytes of claim 10, wherein said incubation element comprises a glass tube.
12. The method of in vitro fertilization of oocytes of claim 11, wherein said non-human mammal is selected from the group consisting of primates, bovids, ovids, equids, swine, and dolphins.

Sign in to the Lens