Optimized Igf-1r Antibodies And Methods Of Using The Same

OPTIMIZED IGF-1 R ANTIBODIES AND METHODS OF USING THE SAME

[01] This application claims benefit under 35 U. S. C. §119(e) to U.S. Provisional Patent Application No. 60/888,744, filed February 7, 2007.

FIELD OF THE INVENTION [02] The present invention relates to optimized proteins that target IGF-1 R, and their application, particularly for therapeutic purposes.

BACKGROUND [03] IGF proteins. [04] The insulin-like growth factor (IGF) components of mammalian cells help bring about various processes such as cellular growth, proliferation, differentiation, migration and survival against apoptosis. The main components include the ligands, IGF-I and IGF-II, which stimulate the cellular processes by binding to a receptor. IGF-I and IGF-II have both structural and sequence similarity to insulin. Other components include the receptors, the type-1 IGF receptor (IGF-1 R), the type-2 receptor (IGF-2R) and the insulin receptor (IR). The type-1 receptor, IGF-1 R, binds to both IGF-I and IGF-II, but not to insulin (Denley et al. 2005 Cytokine & Growth Factor Reviews 16:421-439). The insulin receptor (IR) is found mainly in two forms, a shorter form lacking exon 11 (IR-A) and a longer form comprising exon 11 (IR-B). Both IR-A and IR-B bind to IGF-I and IGF-II in addition to insulin. [05] IGF-1 R and IR are transmembrane tyrosine kinase receptors. Originally, they are produced as precursors that are proteolytically cleaved to produce two polypeptide chains, alpha, a, and beta, β. The ~135kD alpha subunits are extracellular and the ~95kD beta subunits are transmembrane. Each alpha-beta pair dimerizes with another alpha-beta pair forming an a2l β2 complex. The alpha chains bind to the ligand andthe beta chains comprise the tyrosine kinase domains, which transduce the ligand signal. The extracellular regions are glycosylated and covalently attach through disulfide bonds. The type 2 receptor, IGF-2R, is structurally distinct from IGF-1 R and IR, although it binds IGF-I and IGF-II. [06] With the structural similarity of IGF-1 R and IR, hybrid receptors may form that comprise one αβ _pair from IGF-1 R and one aβ pair from IR. The IR subunits in the hybrid receptor may or may not have IR exon 11 , creating two forms of the hybrid receptor, hybrid-A and hybrid-B. The hybrid-A and hybrid-B receptors bind IGF-I, IGF-II and insulin, with the exception that hybrid-B does not bind insulin (Denley et al. 2005 Cytokine & Growth Factor Reviews 16:421- 439).

[07] Various proteins also bind IGF and affect the IGF system in vitro and in vivo. These proteins include the IGF binding proteins (IGF-BP) such as IGFBP-1 , IGFBP-2, IGFBP-3, IGFBP-4, IGFBP-5 and IGFBP-6 (Denley 2005 Cytokine & Growth Factor Reviews 16:421-439). [08] Stimulation of IGF-1R and hybrid receptors by IGF-I and IGF-II causes the activation of various signaling pathways including the IRS-1/PI3-Kinase/Akt and the Shc/Ras/ERK1/2 pathways. [09] IGF-1 R expressing cells.

[10] IGF-1 R is expressed in various cell types including, among others, human diploid fibroblasts, epithelial cells, smooth muscle cells, T lymphocytes, neural cells, myeloid cells, chondrocytes, osteoblasts and bone marrow stem cells. For a review of the wide variety of cell types for which IGF-l/IGF-1 receptor interaction mediates cell proliferation, see Goldring et al., Eukar. Gene Express., 1 :31-326 (1991).

[11] IGF-1 R expression may be found in most tissues and in a large variety of cells. There is considerable evidence for a role for IGF-I and/or IGF-1 R in the maintenance of tumor cells in vitro and in vivo. IGF-1 R levels are elevated in tumors of the lung (Kaiser et al., J. Cancer Res. Clin Oncol. 119: 665-668, 1993; Moody et al., Life Sciences 52: 1161-1173, 1993; Macauley et al., Cancer Res., 50: 2511-2517, 1990), breast (Pollak et al., Cancer Lett. 38. 223-230, 1987; Foekens et al., Cancer Res. 49: 7002-7009, 1989; Cullen et al., Cancer Res. 49: 7002-7009, 1990; Arteaga et al., J. Clin. Invest. 84: 1418-1423, 1989), prostate, and colon (Remaole- Bennet et al., J. Clin. Endocrinol. Metab. 75: 609-616, 1992; Guo et al., Gastroenterol. 102: 1101 -1108, 1992). Deregulated expression of IGF-I in prostate epithelium leads to neoplasia in transpenic mice (DiGiovanni et al., Proc. Natl. Acad. Sci. USA 97: 3455-60, 2000). In addition, IGF-I appears to be an autocrine stimulator of human gliomas (Sandberg-Nordqvist et al., Cancer Res. 53: 2475-2478, 1993), while IGF-I stimulated the growth of fibrosarcomas that overexpressed IGF-1 R (Butler et al., Cancer Res. 58: 3021-27, 1998). Further, individuals with "high normal" levels of IGF-I have an increased risk of common cancers compared to individuals with IGF- 1 levels in the "low normal" range (Rosen et al., Trends Endocrinol. Metab.10: 136-41 , 1999). For a review of the role IGF l/IGF-1 receptor interaction plays in the growth of a variety of human tumors, see Macaulay, Br. J. Cancer, 65: 311-320, 1992.

[12] IGF-1 R has been shown in various hematologic cancers, including multiple myeloma, lymphoma, and leukemia as well as solid tumor cells including breast, prostate, lung, colon, thyroid, renal, adrenal, retinoblastoma, and sarcoma (Mitsiades et al. 2004 Cancer Cell 5:221- 230).

[13] IGF-1 R expression has been shown in various cancer cell lines, including PC3, CAK1 1 , T29, A431, LnCAP, COLO205, BxPC3, A549, CAKI2 and MCF-7 (US11/12353 filed Dec 16th, 2004). Murine monoclonal antibodies directed against IGF-1 R inhibit the proliferation of numerous cell lines in culture and the growth of tumor cells in vivo (Arteaga C. et al., Cancer Res., 49:6237- 6241 , 1989; Li et al., Biochem. Biophys. Res. Com., 196:92-98, 1993; Zia F et al., J. Cell. Biol., 24:269-275, 1996; Scotlandi K et al., Cancer Res., 58:4127-4131 , 1998). Provided herein are novel antibodies that have been optimized against IGF-1 R and methods of using them.

SUMMARY OF THE INVENTION

[14] In one aspect, the present invention is directed to an antibody that binds IGF-1 R. Said antibody may comprise at least one modification in the constant region relative to a parent antibody. In one embodiment, the antibody of the invention binds with altered affinity to an Fc receptor or alters effector function as compared to the parent antibody. In one embodiment, the Fc receptor is Fc/Rlla.

[15] In certain aspects, the modification is an amino acid. The modification can be at a position selected from the group consisting of 221 , 222, 223, 224, 225, 227, 228, 230, 231 , 232, 233, 234, 235, 236, 237, 238, 239, 240, 241 , 243, 244, 245, 246, 247, 249, 255, 258, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271 , 272, 273, 274, 275, 276, 278, 280, 281 , 282, 283, 284, 285, 286, 288, 290, 291 , 292, 293, 294, 295, 296, 297, 298, 299, 300, 301 , 302, 303, 304, 305, 313, 317, 318, 320, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331 , 332, 333, 334, 335, 336, and 337, wherein numbering is according to the EU index. The amino acid modification can be a substitution selected from the group consisting of 221 K, 221 Y, 222E, 222Y, 223E, 223K, 224E, 224Y, 225E, 225K, 225W, 227E, 227G, 227K, 227Y, 228E, 228G, 228K, 228Y, 230A, 230E, 230G, 230Y, 231 E, 231G, 231 K, 231 P, 231 Y, 232E, 232G, 232K, 232Y, 233A, 233D, 233F, 233G, 233H, 2331, 233K, 233L, 233M, 233N, 233Q, 233R, 233S, 233T, 233V, 233W, 233Y, 234A, 234D, 234E, 234F, 234G, 234H, 2341, 234K, 234M, 234N, 234P, 234Q, 234R, 234S, 234T, 234V, 234W, 234Y, 235A, 235D, 235E, 235F, 235G, 235H, 2351, 235K, 235M, 235N, 235P, 235Q, 235R, 235S, 235T, 235V, 235W, 235Y, 236A, 236D, 236E, 236F, 236H, 2361, 236K, 236L, 236M, 236N, 236P, 236Q, 236R, 236S, 236T, 236V, 236W, 236Y, 237D, 237E, 237F, 237H, 2371, 237K, 237L, 237M, 237N, 237P, 237Q, 237R, 237S, 237T, 237V, 237W, 237Y, 238D, 238E, 238F, 238G, 238H, 2381, 238K, 238L, 238M, 238N, 238Q, 238R, 238S, 238T, 238V, 238W, 238Y, 239D, 239E, 239F, 239G, 239H, 2391, 239K, 239L, 239M, 239N, 239P, 239Q, 239R, 239T, 239V, 239W, 239Y, 240A, 2401, 240M, 240T, 241 D, 241 E, 241 L, 241 R, 241 S, 241 W, 241 Y, 243E, 243H, 243L, 243Q, 243R, 243W, 243Y, 244H, 245A, 246D, 246E, 246H, 246Y, 247G, 247V, 249H, 249Q, 249Y, 255E, 255Y, 258H, 258S, 258Y, 260D, 260E, 260H, 260Y, 262A, 262E, 262F, 262I, 262T, 263A, 263I, 263M, 263T, 264A, 264D, 264E, 264F, 264G, 264H, 264I, 264K, 264L, 264M, 264N, 264P, 264Q, 264R, 264S, 264T, 264W, 264Y, 265F, 265G, 265H, 2651, 265K, 265L, 265M, 265N, 265P, 265Q, 265R, 265S, 265T, 265V, 265W, 265Y, 266A, 2661, 266M, 266T, 267D, 267E, 267F, 267H, 2671, 267K, 267L, 267M, 267N, 267P, 267Q, 267R, 267T, 267V, 267W, 267Y, 268D, 268E, 268F, 268G, 2681, 268K, 268L, 268M, 268P, 268Q, 268R, 268T, 268V, 268W, 269F, 269G, 269H, 2691, 269K, 269L, 269M, 269N, 269P, 269R, 269S, 269T, 269V, 269W, 269Y, 270F, 270G, 270H, 2701, 270L, 270M, 270P, 270Q, 270R, 270S, 270T, 270W, 270Y, 271A, 271D, 271E, 271F, 271G, 271H, 2711, 271K, 271L, 271M, 271N, 271Q, 271R, 271S, 271T, 271V, 271W, 271Y, 272D, 272F, 272G, 272H, 272I, 272K, 272L, 272M, 272P, 272R, 272S, 272T, 272V, 272W, 272Y, 273I, 274D, 274E, 274F, 274G, 274H, 274I, 274L, 274M, 274N, 274P, 274R, 274T, 274V, 274W, 274Y, 275L, 275W, 276D, 276E, 276F, 276G, 276H, 276I, 276L, 276M, 276P, 276R, 276S, 276T, 276V, 276W, 276Y, 278D, 278E, 278G, 278H, 278I, 278K, 278L, 278M, 278N, 278P, 278Q, 278R, 278S, 278T, 278V, 278W, 280G, 280K, 280L, 280P, 280W, 281D, 281E, 281K, 281N, 281P, 281Q, 281Y, 282E, 282G, 282K, 282P, 282Y, 283G, 283H, 283K, 283L, 283P, 283R, 283Y, 284D, 284E, 284L, 284N, 284Q, 284T, 284Y, 285D, 285E, 285K, 285Q, 285W, 285Y, 286E, 286G, 286P, 286Y, 288D, 288E, 288Y, 290D, 290H, 290L, 290N, 290W, 291D, 291E, 291G, 291H, 2911, 291Q, 291T, 292D, 292E, 292T, 292Y, 293F, 293G, 293H, 293I, 293L, 293M, 293N, 293P, 293R, 293S, 293T, 293V, 293W, 293Y, 294F, 294G, 294H, 294I, 294K, 294L, 294M, 294P, 294R, 294S, 294T, 294V, 294W, 294Y, 295D, 295E, 295F, 295G, 295H, 295I, 295M, 295N, 295P, 295R, 295S, 295T, 295V, 295W, 295Y, 296A, 296D, 296E, 296G, 296H, 296I, 296K, 296L, 296M, 296N, 296Q, 296R, 296S, 296T, 296V, 297D, 297E, 297F, 297G, 297H, 297I, 297K, 297L, 297M, 297P, 297Q, 297R, 297S, 297T, 297V, 297W, 297Y, 298A, 298D, 298E, 298F, 298H, 298I, 298K, 298M, 298N, 298Q, 298R, 298T, 298W, 298Y, 299A, 299D, 299E, 299F, 299G, 299H, 299I, 299K, 299L, 299M, 299N, 299P, 299Q, 299R, 299S, 299V, 299W, 299Y, 300A, 300D, 300E, 300G, 300H, 300K, 300M, 300N, 300P, 300Q, 300R, 300S, 300T, 300V, 300W, 301D, 301E, 301H, 301Y, 302I, 303D, 303E, 303Y, 304D, 304H, 304L, 304N, 304T, 305E, 305T, 305Y, 313F, 317E, 317Q, 318H, 318L, 318Q, 318R, 318Y, 320D, 320F, 320G, 320H, 320I, 320L, 320N, 320P, 320S, 320T, 320V, 320W, 320Y, 322D, 322F, 322G, 322H, 322I, 322P, 322S, 322T, 322V, 322W, 322Y, 323I, 324D, 324F, 324G, 324H, 324I, 324L, 324M, 324P, 324R, 324T, 324V, 324W, 324Y, 325A, 325D, 325E, 325F, 325G, 325H, 325I, 325K, 325L, 325M, 325P, 325Q, 325R,

325S, 325T, 325V, 325W, 325Y, 326E, 3261, 326L, 326P, 326T, 327D, 327E, 327F, 327H, 3271, 327K, 327L, 327M, 327N, 327P, 327R, 327S, 327T, 327V, 327W, 327Y, 328A, 328D, 328E, 328F, 328G, 328H, 3281, 328K, 328M, 328N, 328P, 328Q, 328R, 328S, 328T, 328V, 328W, 328Y, 329D, 329E, 329F, 329G, 329H, 3291, 329K, 329L, 329M, 329N, 329Q, 329R, 329S, 329T, 329V, 329W, 329Y, 330E, 330F, 330G, 330H, 3301, 330L, 330M, 330N, 330P, 330R, 330S, 330T, 330V, 330W, 330Y, 331 D, 331 F, 331 H, 3311, 331 L, 331 M, 331 Q, 331 R, 331T, 331V, 331W, 331Y, 332A, 332D, 332E, 332F, 332H, 332K, 332L, 332M, 332N, 332P, 332Q, 332R, 332S, 332T, 332V, 332W, 332Y, 333A, 333F, 333H, 333I, 333L, 333M, 333P, 333T, 333Y, 334A, 334F, 334I, 334L, 334P, 334T, 335D, 335F, 335G, 335H, 335I, 335L, 335M, 335N, 335P, 335R, 335S, 335V, 335W, 335Y, 336E, 336K, 336Y, 337E, 337H, and 337N, wherein numbering is according to the EU index.

[16] In further aspects, the amino acid modification can be at a position selected from the group consisting of 221 , 222, 223, 224, 225, 227, 228, 230, 231 , 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 243, 245, 246, 247, 249, 255, 258, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 278, 280, 281 , 282, 283, 284, 285, 286, 288, 290, 291 , 292, 293, 294, 295, 296, 297, 298, 299, 300, 301 , 302, 303, 304, 305, 313, 317, 318, 320, 322, 324, 325, 326, 327, 328, 329, 330, 331 , 332, 333, 334, 335, 336, and 337. In additional aspects, the substitution can be selected from the group consisting of 221 K, 222Y, 223E, 223K, 224E, 224Y, 225E, 225W, 227E, 227G, 227K, 227Y, 228E, 228G, 228K, 228Y, 230A, 230E, 230G, 230Y, 231 E, 231 G, 231 K, 231 P, 231 Y, 232E, 232G, 232K, 232Y, 233A, 233F, 233H, 233I, 233K, 233L, 233M, 233N, 233Q, 233R, 233S, 233T, 233V, 233W, 233Y, 234D, 234E, 234F, 234G, 234H, 234I, 234K, 234M, 234N, 234P, 234Q, 234R, 234S, 234T, 234W, 234Y, 235D, 235F, 235G, 235H, 235I, 235K, 235M, 235N, 235Q, 235R, 235S, 235T, 235V, 235W, 235Y, 236D, 236E, 236F, 236H, 236I, 236K, 236L, 236M, 236N, 236P, 236Q, 236R, 236S, 236T, 236V, 236W, 236Y, 237D, 237E, 237F, 237H, 237I, 237K, 237L, 237M, 237N, 237P, 237Q, 237R, 237S, 237T, 237V, 237W, 237Y, 238D, 238E, 238F, 238G, 238H, 238I, 238K, 238L, 238M, 238N, 238Q, 238R, 238S, 238T, 238V, 238W, 238Y, 239D, 239E, 239F, 239G, 239H, 239I, 239K, 239L, 239M, 239N, 239P, 239Q, 239R, 239T, 239V, 239W, 239Y, 240M, 240T, 241 D, 241 E, 241R, 241S, 241W, 241Y, 243E, 243H, 243Q, 243R, 243W, 243Y, 245A, 246D, 246H, 246Y, 247G, 247V, 249H, 249Q, 249Y, 255E, 255Y, 258H, 258S, 258Y, 260D, 260E, 260H, 260Y, 262A, 262E, 262F, 262I, 262T, 263A, 263I, 263M, 263T, 264D, 264E, 264F, 264G, 264H, 264I, 264K, 264L, 264M, 264N, 264P, 264Q, 264R, 264S, 264T, 264W, 264Y, 265F, 265G, 265H, 265I, 265K, 265L, 265M, 265P, 265Q, 265R, 265S, 265T, 265V, 265W, 265Y, 266A, 266I, 266M, 266T, 267D, 267E, 267F, 267H, 267I, 267K, 267L, 267M, 267N, 267P, 267Q, 267R, 267V, 267W, 267Y, 268F, 268G, 268I, 268M, 268P, 268T, 268V, 268W, 269F, 269G, 269H, 269I, 269L, 269M, 269N, 269P, 269R, 269S, 269T, 269V, 269W, 269Y, 270F, 270G, 270H, 270I, 270L, 270M, 270P, 270Q, 270R, 270S, 270T, 270W, 270Y, 271 A, 271 D, 271 E, 271 F, 271 G, 271 H, 2711, 271 K, 271 L, 271 M, 271 N, 271 Q, 271 R, 271 S, 271 T, 271V, 271 W, 271Y, 272F, 272G, 272H, 272I, 272K, 272L, 272M, 272P, 272R, 272S, 272T, 272V, 272W, 272Y, 274D, 274E, 274F, 274G, 274H, 2741, 274L, 274M, 274P, 274R, 274T, 274V, 274W, 274Y, 275W, 276D, 276E, 276F, 276G, 276H, 2761, 276L, 276M, 276P, 276R, 276S, 276T, 276V, 276W, 278D, 278E, 278G, 278H, 2781, 278K, 278L, 278M, 278N, 278P, 278Q, 278R, 278S, 278T, 278V, 278W, 280G, 280P, 280W, 281E, 281K, 281N, 281P, 281Y, 282G, 282P, 282Y, 283G, 283H, 283K, 283L, 283P, 283R, 283Y, 284L, 284N, 284Q, 284T, 284Y, 285K, 285Q, 285W, 285Y, 286G, 286P, 286Y, 288Y, 290H, 290L, 290W, 291D, 291E, 291G, 291H, 2911, 291Q, 291T, 292D, 292E, 292T, 292Y, 293F, 293G, 293H, 2931, 293L, 293M, 293N, 293P, 293R, 293S, 293T, 293W, 293Y, 294F, 294G, 294H, 2941, 294K, 294L, 294M, 294P, 294R, 294S, 294T, 294V, 294W, 294Y, 295D, 295F, 295G, 295H, 2951, 295M, 295N, 295P, 295R, 295S, 295T, 295V, 295W, 295Y, 296A, 296D, 296E, 296G, 2961, 296K, 296L, 296M, 296N, 296Q, 296R, 296S, 296T, 296V, 297D, 297E, 297F, 297G, 297H, 2971, 297K, 297L, 297M, 297P, 297R, 297S, 297T, 297V, 297W, 297Y, 298E, 298F, 298H, 2981, 298K, 298M, 298Q, 298R, 298W, 298Y, 299A, 299D, 299E, 299F, 299G, 299H, 2991, 299K, 299L, 299M, 299N, 299P, 299Q, 299R, 299S, 299V, 299W, 299Y, 300A, 300D, 300E, 300G, 300H, 300K, 300M, 300N, 300P, 300Q, 300R, 300S, 300T, 300V, 300W, 301D, 301E, 301Y, 302I, 303D, 303E, 303Y, 304H, 304L, 304N, 304T, 305E, 305T, 305Y, 313F, 317E, 317Q, 318H, 318L, 318Q, 318R, 318Y, 320D, 320F, 320G, 320H, 320I, 320L, 320N, 320P, 320S, 320T, 320V, 320W, 320Y, 322D, 322F, 322G, 322H, 3221, 322P, 322S, 322T, 322V, 322W, 322Y, 324D, 324F, 324G, 324H, 3241, 324L, 324M, 324P, 324R, 324T, 324V, 324W, 324Y, 325A, 325D, 325E, 325F, 325G, 325H, 3251, 325K, 325L, 325M, 325P, 325Q, 325R, 325S, 325T, 325V, 325W, 325Y, 326L, 326P, 326T, 327D, 327E, 327F, 327H, 3271, 327K, 327L, 327M, 327P, 327R, 327V, 327W, 327Y, 328A, 328D, 328E, 328F, 328G, 328H, 328K, 328M, 328N, 328P, 328Q, 328R, 328S, 328T, 328V, 328W, 328Y, 329D, 329E, 329F, 329G, 329H, 3291, 329K, 329L, 329M, 329N, 329Q, 329R, 329S, 329T, 329V, 329W, 329Y, 330E, 330F, 330H, 3301, 330L, 330M, 330N, 330P, 330W, 330Y, 331D, 331F, 331H, 3311, 331L, 331M, 331Q, 331R, 331T, 331V, 331W, 331Y, 332A, 332F, 332H, 332L, 332M, 332N, 332P, 332Q, 332S, 332T, 332V, 332W, 332Y, 333F, 333H, 333I, 333L, 333M, 333P, 333T, 333Y, 334F, 334P, 334T, 335D, 335F, 335G, 335H, 335I, 335L, 335M, 335P, 335R, 335S, 335V, 335W, 335Y, 336E, 336K, 336Y, 337H, and 337N.

[17] In further aspects, the modification is at a position selected from the group consisting of 221 , 222, 223, 224, 225, 228, 230, 231, 232, 240, 244, 245, 247, 262, 263, 266, 271 , 273, 275, 281 , 284, 291 , 299, 302, 304, 313, 323, 325, 328, 332, 336, wherein the positional numbering is according to the EU index. In additional aspects, the modification is selected from the group consisting of 221 K, 221 Y, 222E, 222Y, 223E, 223K, 224E, 224Y, 225E, 225K, 225W, 228E, 228G, 228K, 228Y, 230A, 230E, 230G, 230Y, 231 E, 231 G, 231 K, 231 P, 231 Y, 232E, 232G, 232K, 232Y, 240A, 240I, 240M, 240T, 244H, 245A, 247G, 247V, 262A, 262E, 262F, 262I, 262T, 263A, 263I, 263M, 263T, 266A, 266I, 266M, 266T, 271 A, 271 D, 271 E, 271 F, 271 G, 271 H, 2711, 271 K, 271 L, 271 M, 271N, 271Q, 271 R, 271S, 271T, 271V, 271W, 271Y, 273I, 275L, 275W, 281 D, 281 E, 281 K, 281 N, 281 P, 281 Q, 281 Y, 284D, 284E, 284L, 284N, 284Q, 284T, 284Y, 291D, 291E, 291G, 291H, 2911, 291Q, 291T, 299A, 299D, 299E, 299F, 299G, 299H, 299I, 299K, 299L, 299M, 299N, 299P, 299Q, 299R, 299S, 299V, 299W, 299Y, 304D, 304H, 304L, 304N, 304T, 313F, 323I, 325A, 325D, 325E, 325F, 325G, 325H, 325I, 325K, 325L, 325M, 325P, 325Q, 325R, 325S, 325T, 325V, 325W, 325Y, 328A, 328D, 328E, 328F, 328G, 328H, 328I, 328K, 328M, 328N, 328P, 328Q, 328R, 328S, 328T, 328V, 328W, 328Y, 332A, 332D, 332E, 332F, 332H, 332K, 332L, 332M, 332N, 332P, 332Q, 332R, 332S, 332T, 332V, 332W, 332Y, 336E, 336K, and 336Y. [18] The antibody can further include a second amino acid modification at a position selected from the group consisting of 221 , 222, 223, 224, 225, 227, 228, 230, 231 , 232, 233, 234, 235, 236, 237, 238, 239, 240, 241 , 243, 244, 245, 246, 247, 249, 255, 258, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271 , 272, 273, 274, 275, 276, 278, 280, 281 , 282, 283, 284, 285, 286, 288, 290, 291 , 292, 293, 294, 295, 296, 297, 298, 299, 300, 301 , 302, 303, 304, 305, 313, 317, 318, 320, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331 , 332, 333, 334, 335, 336, and 337, wherein numbering is according to the EU index. The second amino acid modification can be a substitution selected from the group consisting of 221 K, 221 Y, 222E, 222Y, 223E, 223K, 224E, 224Y, 225E, 225K, 225W, 227E, 227G, 227K, 227Y, 228E, 228G, 228K, 228Y, 230A, 230E, 230G, 230Y, 231 E, 231 G, 231 K, 231 P, 231 Y, 232E, 232G, 232K, 232Y, 233A, 233D, 233F, 233G, 233H, 233I, 233K, 233L, 233M, 233N, 233Q, 233R, 233S, 233T, 233V, 233W, 233Y, 234A, 234D, 234E, 234F, 234G, 234H, 234I, 234K, 234M, 234N, 234P, 234Q, 234R, 234S, 234T, 234V, 234W, 234Y, 235A, 235D, 235E, 235F, 235G, 235H, 235I, 235K, 235M, 235N, 235P, 235Q, 235R, 235S, 235T, 235V, 235W, 235Y, 236A, 236D, 236E, 236F, 236H, 236I, 236K, 236L, 236M, 236N, 236P, 236Q, 236R, 236S, 236T, 236V, 236W, 236Y, 237D, 237E, 237F, 237H, 237I, 237K, 237L, 237M, 237N, 237P, 237Q, 237R, 237S, 237T, 237V, 237W, 237Y, 238D, 238E, 238F, 238G, 238H, 238I, 238K, 238L, 238M, 238N, 238Q, 238R, 238S, 238T, 238V, 238W, 238Y, 239D, 239E, 239F, 239G, 239H, 239I, 239K, 239L, 239M, 239N, 239P, 239Q, 239R, 239T, 239V, 239W, 239Y, 240A, 240I, 240M, 240T, 241 D, 241 E, 241 L, 241 R, 241S, 241W, 241 Y, 243E, 243H, 243L, 243Q, 243R, 243W, 243Y, 244H, 245A, 246D, 246E, 246H, 246Y, 247G, 247V, 249H, 249Q, 249Y, 255E, 255Y, 258H, 258S, 258Y, 260D, 260E, 260H, 260Y, 262A, 262E, 262F, 2621, 262T, 263A, 2631, 263M, 263T, 264A, 264D, 264E, 264F, 264G, 264H, 2641, 264K, 264L, 264M, 264N, 264P, 264Q, 264R, 264S, 264T, 264W, 264Y, 265F, 265G, 265H, 2651, 265K, 265L, 265M, 265N, 265P, 265Q, 265R, 265S, 265T, 265V, 265W, 265Y, 266A, 2661, 266M, 266T, 267D, 267E, 267F, 267H, 2671, 267K, 267L, 267M, 267N, 267P, 267Q, 267R, 267T, 267V, 267W, 267Y, 268D, 268E, 268F, 268G, 2681, 268K, 268L, 268M, 268P, 268Q, 268R, 268T, 268V, 268W, 269F, 269G, 269H, 2691, 269K, 269L, 269M, 269N, 269P, 269R, 269S, 269T, 269V, 269W, 269Y, 270F, 270G, 270H, 2701, 270L, 270M, 270P, 270Q, 270R, 270S, 270T, 270W, 270Y, 271 A, 271 D, 271 E, 271 F, 271 G, 271 H, 2711, 271K, 271 L, 271M, 271N, 271Q, 271R, 271S, 271T, 271V, 271W, 271Y, 272D, 272F, 272G, 272H, 272I, 272K, 272L, 272M, 272P, 272R, 272S, 272T, 272V, 272W, 272Y, 273I, 274D, 274E, 274F, 274G, 274H, 2741, 274L, 274M, 274N, 274P, 274R, 274T, 274V, 274W, 274Y, 275L, 275W, 276D, 276E, 276F, 276G, 276H, 2761, 276L, 276M, 276P, 276R, 276S, 276T, 276V, 276W, 276Y, 278D, 278E, 278G, 278H, 2781, 278K, 278L, 278M, 278N, 278P, 278Q, 278R, 278S, 278T, 278V, 278W, 280G, 280K, 280L, 280P, 280W, 281 D, 281 E, 281 K, 281N, 281P, 281Q, 281Y, 282E, 282G, 282K, 282P, 282Y, 283G, 283H, 283K, 283L, 283P, 283R, 283Y, 284D, 284E, 284L, 284N, 284Q, 284T, 284Y, 285D, 285E, 285K, 285Q, 285W, 285Y, 286E, 286G, 286P, 286Y, 288D, 288E, 288Y, 290D, 290H, 290L, 290N, 290W, 291 D, 291E, 291G, 291 H, 2911, 291Q, 291T, 292D, 292E, 292T, 292Y, 293F, 293G, 293H, 2931, 293L, 293M, 293N, 293P, 293R, 293S, 293T, 293V, 293W, 293Y, 294F, 294G, 294H, 2941, 294K, 294L, 294M, 294P, 294R, 294S, 294T, 294V, 294W, 294Y, 295D, 295E, 295F, 295G, 295H, 2951, 295M, 295N, 295P, 295R, 295S, 295T, 295V, 295W, 295Y, 296A, 296D, 296E, 296G, 296H, 2961, 296K, 296L, 296M, 296N, 296Q, 296R, 296S, 296T, 296V, 297D, 297E, 297F, 297G, 297H, 2971, 297K, 297L, 297M, 297P, 297Q, 297R, 297S, 297T, 297V, 297W, 297Y, 298A, 298D, 298E, 298F, 298H, 2981, 298K, 298M, 298N, 298Q, 298R, 298T, 298W, 298Y, 299A, 299D, 299E, 299F, 299G, 299H, 2991, 299K, 299L, 299M, 299N, 299P, 299Q, 299R, 299S, 299V, 299W, 299Y, 300A, 300D, 300E, 300G, 300H, 300K, 300M, 300N, 300P, 300Q, 300R, 300S, 300T, 300V, 300W, 301 D, 301 E, 301 H, 301 Y, 302I, 303D, 303E, 303Y, 304D, 304H, 304L, 304N, 304T, 305E, 305T, 305Y, 313F, 317E, 317Q, 318H, 318L, 318Q, 318R, 318Y, 320D, 320F, 320G, 320H, 3201, 320L, 320N, 320P, 320S, 320T, 320V, 320W, 320Y, 322D, 322F, 322G, 322H, 3221, 322P, 322S, 322T, 322V, 322W, 322Y, 3231, 324D, 324F, 324G, 324H, 3241, 324L, 324M, 324P, 324R, 324T, 324V, 324W, 324Y, 325A, 325D, 325E, 325F, 325G, 325H, 3251, 325K, 325L, 325M, 325P, 325Q, 325R, 325S, 325T, 325V, 325W, 325Y, 326E, 3261, 326L, 326P, 326T, 327D, 327E, 327F, 327H, 3271, 327K, 327L, 327M, 327N, 327P, 327R, 327S, 327T, 327V, 327W, 327Y, 328A, 328D, 328E, 328F, 328G, 328H, 3281, 328K, 328M, 328N, 328P, 328Q, 328R, 328S, 328T, 328V, 328W, 328Y, 329D, 329E, 329F, 329G, 329H, 3291, 329K, 329L, 329M, 329N, 329Q, 329R, 329S, 329T, 329V, 329W, 329Y, 330E, 330F, 330G, 330H, 3301, 330L, 330M, 330N, 330P, 330R, 330S, 330T, 330V, 330W, 330Y, 331D, 331F, 331 H, 3311, 331L, 331M, 331Q, 331 R, 331T, 331V, 331W, 331Y, 332A, 332D, 332E, 332F, 332H, 332K, 332L, 332M, 332N, 332P, 332Q, 332R, 332S, 332T, 332V, 332W, 332Y, 333A, 333F, 333H, 333I, 333L, 333M, 333P, 333T, 333Y, 334A, 334F, 3341, 334L, 334P, 334T, 335D, 335F, 335G, 335H, 3351, 335L, 335M, 335N, 335P, 335R, 335S, 335V, 335W, 335Y, 336E, 336K, 336Y, 337E, 337H, and 337N, wherein numbering is according to the EU index. [19] In further aspects, the amino acid modification is 332E. The second amino acid modification can be selected from the group consisting of: 236A, 239D, 332E, 268D, 268E, 330Y, and 330L. In certain embodiments, the second amino acid modification is 239D. [20] In other aspects, the modification is a glycoform modification that reduces the level of fucose relative to the parent antibody. In still other aspects, the invention is directed to a composition including plurality of glycosylated antibodies, wherein about 80-100% of the glycosylated antibodies in the composition comprise a mature core carbohydrate structure which lacks fucose.

[21] In a further embodiment, the antibody reduces binding to FcγRllb as compared to the parent anti-IGF-1 R antibody. [22] In another aspect, the invention is directed to an antibody that binds IGF-1 R, includes a heavy chain and/or a light chain, and has an increased affinity to the Fcpllla receptor as compared to the parent antibody. The heavy chain has a CDR1 comprising the amino acid sequence of SEQ ID NO: 14, a CDR2 comprising an amino acid sequence of SEQ ID NO: 15, and a CDR3 comprising an amino acid sequence of SEQ ID NO: 16. Further, the the heavy chain may have a constant region, e.g., IgGI , lgG2, lgG3, lgG4, IgE, IgA, IgM, IgD, hybrid, etc., comprising an amino acid modification described herein. As nonlimiting examples, the heavy chain may have a constant region comprising the amino acid sequence selected from the group consisting of SEQ ID NO:6 and SEQ ID NO:7. The light chain has a CDR1 comprising an amino acid sequence of SEQ ID NO: 11 , a CDR2 comprising the amino acid sequence of SEQ ID NO: 12, and a CDR3 comprising an amino acid sequence of SEQ ID NO: 13.

[23] In further variations, the antibody includes a heavy and/or light chain, has an increased affinity to an Fc receptor, e.g., the Fc/llla receptor, as compared to the parent antibody, and a variable heavy chain sequence of SEQ ID NO:19, and/or a variable light chain sequence of SEQ ID NO:18. Further, the heavy chain may have a constant region sequence selected from the group consisting of SEQ ID NOs. :6 and 7. In another embodiment, the antibody comprises a heavy chain sequence selected from the group consisting of SEQ ID NOs:10, 21 , and 22. [24] In various additional aspects, the invention is directed to a nucleic acid sequence encoding any of the antibodies disclosed herein. [25] In further aspects, the invention is directed to a method of treating an IGF-1 R associated disease comprising administering an antibody as disclosed herein. In some embodiments, the disease is selected from the group consisting of leukemia, lymphoma and myeloma. In other embodiments, the disease is selected from the group consisting of thyroid cancer, renal cancer, adrenal cancer, retinoblastoma, sarcoma, breast cancer, prostate cancer, colon cancer, lung cancer, ovarian cancer, and pancreatic cancer. In certain variations, the disease is selected from non-Hodgkin's lymphomas (NHL), chronic lymphocytic leukemia (CLL), B-cell acute lymphoblastic leukemia/lymphoma (B-ALL), and mantle cell lymphoma (MCL). In certain aspects, the disease is an autoimmune disease, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE or lupus), multiple sclerosis, Sjogren's syndrome, and idiopathic thrombocytopenia purpura (ITP).

[26] In further aspects, the invention is directed to a method of treating a T-cell related disease by administering an antibody as disclosed herein. In certain variations, the disease is selected from T-cell acute lymphoblastic leukemia (T-ALL), anaplastic large cell lymphoma (ALCL), peripheral T-cell lymphoma (PTCL), and cutaneous T-cell lymphoma (CTCL). In other variations, the disease is an autoimmune disease, e.g., Crohn's disease, psoriasis, organ transplantation rejection, graft versus host disease (GVHD), and type 1 diabetes mellitus (T1DM).

[27] In further aspects, the invention is directed to a composition comprising an antibody described herein and an acceptable carrier. Also provided are methods of enhancing antibody dependent cell cytotoxicity toward a cell expressing IGF-1 R comprising contacting the cell with an antibody as disclosed herein. Additionally, methods of depleting a mammal of at least one cell expressing IGF-1 R comprising administering to the mammal an animal as disclosed herein are also provided. [28] In one aspect, the invention is directed toward an antibody that binds IGF-1 R, wherein said antibody comprises a means for optimizing effector function. In one embodiment, the means allows for antibody binding with increased affinity to the FcγRllla receptor as compared to the parent antibody. In another embodiment, the means is an amino acid modification. In some embodiments, the means is a positional means for optimizing effector function, e.g., modification of an amino acid at one or more of the following heavy chain constant region positions: 221 , 222, 223, 224, 225, 227, 228, 230, 231 , 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 243, 244, 245, 246, 247, 249, 255, 258, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 278, 280, 281, 282, 283, 284, 285, 286, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 313, 317, 318, 320, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331 , 332, 333, 334, 335, 336, and 337, wherein numbering is according to the EU index. In other embodiments, the means is a substitutional means for optimizing effector function, e.g., one or more of the following amino acid substitutions in the heavy chain constant region positions: 221 K, 221 Y, 222E, 222Y, 223E, 223K, 224E, 224Y, 225E, 225K, 225W, 227E, 227G, 227K, 227Y, 228E, 228G, 228K, 228Y, 230A, 230E, 230G, 230Y, 231 E, 231 G, 231 K, 231 P, 231 Y, 232E, 232G, 232K, 232Y, 233A, 233D, 233F, 233G, 233H, 233I, 233K, 233L, 233M, 233N, 233Q, 233R, 233S, 233T, 233V, 233W, 233Y, 234A, 234D, 234E, 234F, 234G, 234H, 234I, 234K, 234M, 234N, 234P, 234Q, 234R, 234S, 234T, 234V, 234W, 234Y, 235A, 235D, 235E, 235F, 235G, 235H, 235I, 235K, 235M, 235N, 235P, 235Q, 235R, 235S, 235T, 235V, 235W, 235Y, 236A, 236D, 236E, 236F, 236H, 236I, 236K, 236L, 236M, 236N, 236P, 236Q, 236R, 236S, 236T, 236V, 236W, 236Y, 237D, 237E, 237F, 237H, 237I, 237K, 237L, 237M, 237N, 237P, 237Q, 237R, 237S, 237T, 237V, 237W, 237Y, 238D, 238E, 238F, 238G, 238H, 238I, 238K, 238L, 238M, 238N, 238Q, 238R, 238S, 238T, 238V, 238W, 238Y, 239D, 239E, 239F, 239G, 239H, 239I, 239K, 239L, 239M, 239N, 239P, 239Q, 239R, 239T, 239V, 239W, 239Y, 240A, 240I, 240M, 240T, 241 D, 241 E, 241 L, 241 R, 241 S, 241 W, 241 Y, 243E, 243H, 243L, 243Q, 243R, 243W, 243Y, 244H, 245A, 246D, 246E, 246H, 246Y, 247G, 247V, 249H, 249Q, 249Y, 255E, 255Y, 258H, 258S, 258Y, 260D, 260E, 260H, 260Y, 262A, 262E, 262F, 262I, 262T, 263A, 263I, 263M, 263T, 264A, 264D, 264E, 264F, 264G, 264H, 264I, 264K, 264L, 264M, 264N, 264P, 264Q, 264R, 264S, 264T, 264W, 264Y, 265F, 265G, 265H, 265I, 265K, 265L, 265M, 265N, 265P, 265Q, 265R, 265S, 265T, 265V, 265W, 265Y, 266A, 266I, 266M, 266T, 267D, 267E, 267F, 267H, 267I, 267K, 267L, 267M, 267N, 267P, 267Q, 267R, 267T, 267V, 267W, 267Y, 268D, 268E, 268F, 268G, 268I, 268K, 268L, 268M, 268P, 268Q, 268R, 268T, 268V, 268W, 269F, 269G, 269H, 269I, 269K, 269L, 269M, 269N, 269P, 269R, 269S, 269T, 269V, 269W, 269Y, 270F, 270G, 270H, 2701 , 270L, 270M, 270P, 270Q, 270R, 270S, 270T, 270W, 270Y, 271 A, 271 D, 271 E, 271 F, 271 G, 271 H, 2711, 271K, 271L, 271 M, 271N, 271Q, 271 R, 271S, 271T, 271V, 271W, 271Y, 272D, 272F, 272G, 272H, 272I, 272K, 272L, 272M, 272P, 272R, 272S, 272T, 272V, 272W, 272Y, 273I, 274D, 274E, 274F, 274G, 274H, 274I, 274L, 274M, 274N, 274P, 274R, 274T, 274V, 274W, 274Y, 275L, 275W, 276D, 276E, 276F, 276G, 276H, 276I, 276L, 276M, 276P, 276R, 276S, 276T, 276V, 276W, 276Y, 278D, 278E, 278G, 278H, 278I, 278K, 278L, 278M, 278N, 278P, 278Q, 278R, 278S, 278T, 278V, 278W, 280G, 280K, 280L, 280P, 280W, 281 D, 281 E, 281 K, 281 N, 281 P, 281 Q, 281 Y, 282E, 282G, 282K, 282P, 282Y, 283G, 283H, 283K, 283L, 283P, 283R, 283Y, 284D, 284E, 284L, 284N, 284Q, 284T, 284Y, 285D, 285E, 285K, 285Q, 285W, 285Y, 286E, 286G, 286P, 286Y, 288D, 288E, 288Y, 290D, 290H, 290L, 290N, 290W, 291 D, 291 E, 291 G, 291 H, 2911, 291 Q, 291T, 292D, 292E, 292T, 292Y, 293F, 293G, 293H, 293I, 293L, 293M, 293N, 293P, 293R, 293S, 293T, 293V, 293W, 293Y, 294F, 294G, 294H, 2941, 294K, 294L, 294M, 294P, 294R, 294S, 294T, 294V, 294W, 294Y, 295D, 295E, 295F, 295G, 295H, 2951, 295M, 295N, 295P, 295R, 295S, 295T, 295V, 295W, 295Y, 296A, 296D, 296E, 296G, 296H, 2961, 296K, 296L, 296M, 296N, 296Q, 296R, 296S, 296T, 296V, 297D, 297E, 297F, 297G, 297H, 2971, 297K, 297L, 297M, 297P, 297Q, 297R, 297S, 297T, 297V, 297W, 297Y, 298A, 298D, 298E, 298F, 298H, 2981, 298K, 298M, 298N, 298Q, 298R, 298T, 298W, 298Y, 299A, 299D, 299E, 299F, 299G, 299H, 2991, 299K, 299L, 299M, 299N, 299P, 299Q, 299R, 299S, 299V, 299W, 299Y, 300A, 300D, 300E, 300G, 300H, 300K, 300M, 300N, 300P, 300Q, 300R, 300S, 300T, 300V, 300W, 301 D, 301 E, 301 H, 301 Y, 302I, 303D, 303E, 303Y, 304D, 304H, 304L, 304N, 304T, 305E, 305T, 305Y, 313F, 317E, 317Q, 318H, 318L, 318Q, 318R, 318Y, 320D, 320F, 320G, 320H, 3201, 320L, 320N, 320P, 320S, 320T, 320V, 320W, 320Y, 322D, 322F, 322G, 322H, 3221, 322P, 322S, 322T, 322V, 322W, 322Y, 3231, 324D, 324F, 324G, 324H, 3241, 324L, 324M, 324P, 324R, 324T, 324V, 324W, 324Y, 325A, 325D, 325E, 325F, 325G, 325H, 3251, 325K, 325L, 325M, 325P, 325Q, 325R, 325S, 325T, 325V, 325W, 325Y, 326E, 3261, 326L, 326P, 326T, 327D, 327E, 327F, 327H, 3271, 327K, 327L, 327M, 327N, 327P, 327R, 327S, 327T, 327V, 327W, 327Y, 328A, 328D, 328E, 328F, 328G, 328H, 3281, 328K, 328M, 328N, 328P, 328Q, 328R, 328S, 328T, 328V, 328W, 328Y, 329D, 329E, 329F, 329G, 329H, 3291, 329K, 329L, 329M, 329N, 329Q, 329R, 329S, 329T, 329V, 329W, 329Y, 330E, 330F, 330G, 330H, 3301, 330L, 330M, 330N, 330P, 330R, 330S, 330T, 330V, 330W, 330Y, 331D, 331F, 331H, 3311, 331 L, 331M, 331Q, 331R, 331T, 331V, 331W, 331Y, 332A, 332D, 332E, 332F, 332H, 332K, 332L, 332M, 332N, 332P, 332Q, 332R, 332S, 332T, 332V, 332W, 332Y, 333A, 333F, 333H, 3331, 333L, 333M, 333P, 333T, 333Y, 334A, 334F, 3341, 334L, 334P, 334T, 335D, 335F, 335G, 335H, 3351, 335L, 335M, 335N, 335P, 335R, 335S, 335V, 335W, 335Y, 336E, 336K, 336Y, 337E, 337H, and 337N, wherein numbering is according to the EU index.

[29] In other embodiments, the means for optimizing effector function is a positional means, e.g., modification of an amino acid at one or more of the following positions: 221 , 222, 223, 224, 225, 228, 230, 231, 232, 240, 244, 245, 247, 262, 263, 266, 271 , 273, 275, 281 , 284, 291 , 299, 302, 304, 313, 323, 325, 328, 332, 336, wherein the positional numbering is according to the EU index. In some embodiments, the means for optimizing effector function is a substitutional means, e.g., one or more of the following substitutions: 221 K, 221 Y, 222E, 222Y, 223E, 223K, 224E, 224Y, 225E, 225K, 225W, 228E, 228G, 228K, 228Y, 230A, 230E, 230G, 230Y, 231 E, 231 G, 231 K, 231 P, 231 Y, 232E, 232G, 232K, 232Y, 240A, 240I, 240M, 240T, 244H, 245A, 247G, 247V, 262A, 262E, 262F, 2621, 262T, 263A, 2631, 263M, 263T, 266A, 2661, 266M, 266T, 271A, 271 D, 271E, 271F, 271G, 271H, 2711, 271 K, 271L, 271 M, 271N, 271Q, 271R, 271S, 271T, 271V, 271W, 271Y, 273I, 275L, 275W, 281D, 281E, 281K, 281N, 281P, 281Q, 281Y, 284D, 284E, 284L, 284N, 284Q, 284T, 284Y, 291 D, 291 E, 291G, 291H, 2911, 291 Q, 291T, 299A, 299D, 299E, 299F, 299G, 299H, 299I, 299K, 299L, 299M, 299N, 299P, 299Q, 299R, 299S, 299V, 299W, 299Y, 304D, 304H, 304L, 304N, 304T, 313F, 323I, 325A, 325D, 325E, 325F, 325G, 325H, 325I, 325K, 325L, 325M, 325P, 325Q, 325R, 325S, 325T, 325V, 325W, 325Y, 328A, 328D, 328E, 328F, 328G, 328H, 328I, 328K, 328M, 328N, 328P, 328Q, 328R, 328S, 328T, 328V, 328W, 328Y, 332A, 332D, 332E, 332F, 332H, 332K, 332L, 332M, 332N, 332P, 332Q, 332R, 332S, 332T, 332V, 332W, 332Y, 336E, 336K, and 336Y. In other embodiments, the means for optimizing effector function includes a modification at a second amino acid, e.g., at a position selected from the group consisting of 221 , 222, 223, 224, 225, 227, 228, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241 , 243, 244, 245, 246, 247, 249, 255, 258, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271 , 272, 273, 274, 275, 276, 278, 280, 281 , 282, 283, 284, 285, 286, 288, 290, 291 , 292, 293, 294, 295, 296, 297, 298, 299, 300, 301 , 302, 303, 304, 305, 313, 317, 318, 320, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331 , 332, 333, 334, 335, 336, and 337, wherein numbering is according to the EU index. For example, the means for optimizing effector function may include a substitution at a second amino acid, e.g., one or more of the following substitutions: 221K, 221Y, 222E, 222Y, 223E, 223K, 224E, 224Y, 225E, 225K, 225W, 227E, 227G, 227K, 227Y, 228E, 228G, 228K, 228Y, 230A, 230E, 230G, 230Y, 231 E, 231 G, 231 K, 231 P, 231 Y, 232E, 232G, 232K, 232Y, 233A, 233D, 233F, 233G, 233H, 2331, 233K, 233L, 233M, 233N, 233Q, 233R, 233S, 233T, 233V, 233W, 233Y, 234A, 234D, 234E, 234F, 234G, 234H, 2341, 234K, 234M, 234N, 234P, 234Q, 234R, 234S, 234T, 234V, 234W, 234Y, 235A, 235D, 235E, 235F, 235G, 235H, 2351, 235K, 235M, 235N, 235P, 235Q, 235R, 235S, 235T, 235V, 235W, 235Y, 236A, 236D, 236E, 236F, 236H, 2361, 236K, 236L, 236M, 236N, 236P, 236Q, 236R, 236S, 236T, 236V, 236W, 236Y, 237D, 237E, 237F, 237H, 2371, 237K, 237L, 237M, 237N, 237P, 237Q, 237R, 237S, 237T, 237V, 237W, 237Y, 238D, 238E, 238F, 238G, 238H, 2381, 238K, 238L, 238M, 238N, 238Q, 238R, 238S, 238T, 238V, 238W, 238Y, 239D, 239E, 239F, 239G, 239H, 2391, 239K, 239L, 239M, 239N, 239P, 239Q, 239R, 239T, 239V, 239W, 239Y, 240A, 2401, 240M, 240T, 241 D, 241 E, 241 L, 241 R, 241 S, 241 W, 241 Y, 243E, 243H, 243L, 243Q, 243R, 243W, 243Y, 244H, 245A, 246D, 246E, 246H, 246Y, 247G, 247V, 249H, 249Q, 249Y, 255E, 255Y, 258H, 258S, 258Y, 260D, 260E, 260H, 260Y, 262A, 262E, 262F, 2621, 262T, 263A, 2631, 263M, 263T, 264A, 264D, 264E, 264F, 264G, 264H, 2641, 264K, 264L, 264M, 264N, 264P, 264Q, 264R, 264S, 264T, 264W, 264Y, 265F, 265G, 265H, 2651, 265K, 265L, 265M, 265N, 265P, 265Q, 265R, 265S, 265T, 265V, 265W, 265Y, 266A, 2661, 266M, 266T, 267D, 267E, 267F, 267H, 2671, 267K, 267L, 267M, 267N, 267P, 267Q, 267R, 267T, 267V, 267W, 267Y, 268D, 268E, 268F, 268G, 2681, 268K, 268L, 268M, 268P, 268Q, 268R, 268T, 268V, 268W, 269F, 269G, 269H, 2691, 269K, 269L, 269M, 269N, 269P, 269R, 269S, 269T, 269V, 269W, 269Y, 270F, 270G, 270H, 270I, 270L, 270M, 270P, 270Q, 270R, 270S, 270T, 270W, 270Y, 271 A, 271 D, 271 E, 271 F, 271G, 271H, 2711, 271 K, 271 L, 271 M, 271N, 271Q, 271R, 271S, 271T, 271V, 271W, 271Y, 272D, 272F, 272G, 272H, 272I, 272K, 272L, 272M, 272P, 272R, 272S, 272T, 272V, 272W, 272Y, 2731, 274D, 274E, 274F, 274G, 274H, 2741, 274L, 274M, 274N, 274P, 274R, 274T, 274V, 274W, 274Y, 275L, 275W, 276D, 276E, 276F, 276G, 276H, 2761, 276L, 276M, 276P, 276R, 276S, 276T, 276V, 276W, 276Y, 278D, 278E, 278G, 278H, 278I, 278K, 278L, 278M, 278N, 278P, 278Q, 278R, 278S, 278T, 278V, 278W, 280G, 280K, 280L, 280P, 280W, 281 D, 281E, 281 K, 281 N, 281 P, 281Q, 281 Y, 282E, 282G, 282K, 282P, 282Y, 283G, 283H, 283K, 283L, 283P, 283R, 283Y, 284D, 284E, 284L, 284N, 284Q, 284T, 284Y, 285D, 285E, 285K, 285Q, 285W, 285Y, 286E, 286G, 286P, 286Y, 288D, 288E, 288Y, 290D, 290H, 290L, 290N, 290W, 291 D, 291E, 291G, 291 H, 2911, 291Q, 291T, 292D, 292E, 292T, 292Y, 293F, 293G, 293H, 2931, 293L, 293M, 293N, 293P, 293R, 293S, 293T, 293V, 293W, 293Y, 294F, 294G, 294H, 2941, 294K, 294L, 294M, 294P, 294R, 294S, 294T, 294V, 294W, 294Y, 295D, 295E, 295F, 295G, 295H, 2951, 295M, 295N, 295P, 295R, 295S, 295T, 295V, 295W, 295Y, 296A, 296D, 296E, 296G, 296H, 2961, 296K, 296L, 296M, 296N, 296Q, 296R, 296S, 296T, 296V, 297D, 297E, 297F, 297G, 297H, 2971, 297K, 297L, 297M, 297P, 297Q, 297R, 297S, 297T, 297V, 297W, 297Y, 298A, 298D, 298E, 298F, 298H, 2981, 298K, 298M, 298N, 298Q, 298R, 298T, 298W, 298Y, 299A, 299D, 299E, 299F, 299G, 299H, 2991, 299K, 299L, 299M, 299N, 299P, 299Q, 299R, 299S, 299V, 299W, 299Y, 300A, 300D, 300E, 300G, 300H, 300K, 300M, 300N, 300P, 300Q, 300R, 300S, 300T, 300V, 300W, 301 D, 301 E, 301 H, 301 Y, 302I, 303D, 303E, 303Y, 304D, 304H, 304L, 304N, 304T, 305E, 305T, 305Y, 313F, 317E, 317Q, 318H, 318L, 318Q, 318R, 318Y, 320D, 320F, 320G, 320H, 3201, 320L, 320N, 320P, 320S, 320T, 320V, 320W, 320Y, 322D, 322F, 322G, 322H, 3221, 322P, 322S, 322T, 322V, 322W, 322Y, 3231, 324D, 324F, 324G, 324H, 3241, 324L, 324M, 324P, 324R, 324T, 324V, 324W, 324Y, 325A, 325D, 325E, 325F, 325G, 325H, 3251, 325K, 325L, 325M, 325P, 325Q, 325R, 325S, 325T, 325V, 325W, 325Y, 326E, 3261, 326L, 326P, 326T, 327D, 327E, 327F, 327H, 3271, 327K, 327L, 327M, 327N, 327P, 327R, 327S, 327T, 327V, 327W, 327Y, 328A, 328D, 328E, 328F, 328G, 328H, 3281, 328K, 328M, 328N, 328P, 328Q, 328R, 328S, 328T, 328V, 328W, 328Y, 329D, 329E, 329F, 329G, 329H, 3291, 329K, 329L, 329M, 329N, 329Q, 329R, 329S, 329T, 329V, 329W, 329Y, 330E, 330F, 330G, 330H, 3301, 330L, 330M, 330N, 330P, 330R, 330S, 330T, 330V, 330W, 330Y, 331 D, 331 F, 331 H, 3311, 331 L, 331 M, 331 Q, 331 R, 331T, 331V, 331W, 331Y, 332A, 332D, 332E, 332F, 332H, 332K, 332L, 332M, 332N, 332P, 332Q, 332R, 332S, 332T, 332V, 332W, 332Y, 333A, 333F, 333H, 333I, 333L, 333M, 333P, 333T, 333Y, 334A, 334F, 334I, 334L, 334P, 334T, 335D, 335F, 335G, 335H, 335I, 335L, 335M, 335N, 335P, 335R, 335S, 335V, 335W, 335Y, 336E, 336K, 336Y, 337E, 337H, and 337N, wherein numbering is according to the EU index.

[30] In another embodiment, the means for optimizing effector function is the amino acid modification is 332E. In some embodiments, the means for optimizing effector function is the amino acid modification is 332E and one or more of the following amino acid modifications: 236A, 239D, 332E, 268D, 268E, 330Y, and 330L, e.g., 239D.

[31] In other embodiments, an antibody of the invention has a reduced level of fucose relative to the parent antibody. For example, a composition of the invention may comprise a plurality of glycosylated antibodies, wherein about 80-100% of the glycosylated antibodies have a reduced level of fucose. [32] In other embodiments, an antibody of the inventioncomprises a means to reduce binding to FcγRllb as compared to said parent anti-IGF-1 R antibody.

BRIEF DESCRIPTION OF THE DRAWINGS

[33] The following drawings further illustrate aspects of the invention, and are not meant to constrain the present invention to any particular application or theory of operation. [34] Figure 1. Figure 1a provides sequences of the natural antibody constant regions, including the kappa constant light chain (SEQ ID NO:1), and the gamma constant heavy chains for IgGI , lgG2, lgG3, and lgG4 (SEQ ID NOs:2-5, respectively). Also provided is the sequence of a Hybrid IgG constant chain (SEQ ID NO:6), and a Hybrid IgG constant chain comprising the substitutions 239D and I332E (SEQ ID NO:7). Figure 1b provides the sequences of the light and heavy chains of chimeric 9E11 antibody (SEQ ID NO:8 and SEQ ID NO:9, respectively), wherein the variable regions of said light and heavy chains of chimeric 9E11 comprise sequences of the variable regions of wildtype 9E11 antibody and the constant regions of said light and heavy chains comprise sequences of light and heavy chains of human antibody, (e.g., SEQ ID NO:1 and SEQ ID NO:2, respectively). Also shown in Figure 1 b is SEQ ID NO:10, a sequence for an optimized and chimeric heavy chain of 9E11 (i.e., a heavy chain sequence comprising a heavy chain variable sequence of wildtype 9E11 and a heavy chain constant sequence of SEQ ID NO:7). In Figure 1 b are also sequences for the heavy chain CDRs of murine antibody 7C2 (SEQ ID NOs:11-13), the light chain CDRs of 7C2 (SEQ ID NOs:14-16), the light chain variable region of 7C2 (SEQ ID NO: 17), the entire light chain of chimeric 7C2 as SEQ ID NO:18 (e.g., a light chain comprising SEQ ID NO:17 and SEQ ID NO:1), the heavy chain variable region of 7C2 (SEQ ID NO:19), the entire heavy chain of chimeric 7C2 as SEQ ID NO:20 (e.g., a heavy chain comprising SEQ ID NO:19 and SEQ ID:2), and two optimized heavy chains of 7C2 (SEQ ID NOs:21 and 22). Set forth as SEQ ID NO:21 is an optimized chimeric 7C2 heavy chain (e.g., a heavy chain having a sequence of SEQ ID NO:20 with comprising an Fc modification as described herein, e.g., S239D/I332E). Set forth as SEQ ID NO:22 is an optimized chimeric 7C2 heavy chain comprising a variable region sequence of SEQ ID NO: 17 and a constant region sequence of SEQ ID NO:7. [35] Figure 2. The common haplotypes of the gamma chain of human IgGI and lgG2 with the positions and the relevant amino acid substitutions are shown respectively in Figure 2a and Figure 2b.

[36] Figure 3. Alignment of the amino acid sequences of the human IgG immunoglobulins IgGI , lgG2, lgG3, and lgG4. Figure 3a provides the sequences of the CH1 (Cγ1) and hinge domains, and Figure 3b provides the sequences of the CH2 (Cγ2) and CH3 (Cγ3) domains. Positions are numbered according to the EU index of the IgGI sequence, and differences between IgGI and the other immunoglobulins lgG2, lgG3, and lgG4 are shown in gray. Allotypic polymorphisms exist at a number of positions, and thus slight differences between the presented sequences and sequences in the prior art may exist. The possible beginnings of the Fc region are labeled, defined herein as either EU position 226 or 230. [37] Figure 4. Embodiments of receptor binding profiles that include increases to, reductions to, or no effect on the binding to various receptors, where such changes may be beneficial in certain contexts are shown in Figure 4.

[38] Figure 5. Provided in Figure 5 are amino acid and DNA sequences of IGF-1 R (SEQ ID NOs:23 and 24, respectively). [39] Figure 6. Shown in Figure 6 are MCF7 ceil-based ADCC assays using chimeric 9E11 antibody (e.g., an antibody comprising a heavy chain having a sequence of SEQ ID NO: 9; 9E11 IgGI WT), chimeric 7C2 antibody (e.g., an antibody comprising a heavy chain having a sequence of SEQ ID NO:20; 7C2 IgGI WT), optimized 9E11 antibody (e.g., an antibody comprising a heavy chain having a sequence eof SEQ ID NO:10) and optimized 7C2 antibody (e.g., an antibody comprising a heavy chain having a sequence of SEQ ID NO:22). Also shown is the dose-dependence of ADCC on antibody concentration for the indicated antibodies, normalized to the minimum and maximum fluorescence signal for each particular curve, provided by the baselines at low and high antibody concentrations, respectively. [40] Figure 7. Growth inhibition of IGF-1 R expressing cell lines with an optimized anti-IGF-1 R antibody derived from 7C2 (e.g., an optimized 7C2 antibody (e.g., an antibody comprising a heavy chain having a sequence of SEQ ID NO:22)) or a chimeric anti-IGF-1 R antibody derived from 7C2 (e.g., a chimeric 7C2 antibody (e.g., an antibody comprising a heavy chain having a sequence of SEQ ID NO:20) is shown in Figure 7. DETAILED DESCRIPTION OF THE INVENTION

[41] Antibodies as therapeutics to treat cancers.

[42] Monoclonal antibodies are a class of therapeutic proteins that may be used to treat solid tumors. A number of favorable properties of antibodies, including but not limited to specificity for target, ability to mediate immune effector mechanisms, and long half-life in serum, make antibodies powerful therapeutics. The present invention describes antibodies against the tumor antigen IGF-1 R.

[43] Fc optimization of antibodies may provide improved clinical performance [44] The clinical success of antibodies directed against IGF-1 R will depend heavily on their potential mechanism(s) of action. There are a number of possible mechanisms by which antibodies mediate cellular effects, including anti-proliferation via blockage of needed growth pathways, intracellular signaling leading to apoptosis, enhanced down regulation and/or turnover of receptors, complement-dependent cytotoxicity (CDC), antibody-dependent cell- mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP) and promotion of an adaptive immune response (Cragg et al., 1999, Curr Opin Immunol 11:541-547; Glennie et al., 2000, Immunol Today 21 :403-410, both incorporated entirely by reference). Antibody efficacy may be due to a combination of these mechanisms, and their relative importance in clinical therapy for oncology appears to be cancer dependent. [45] The importance of FcγR-mediated effector functions for the activity of some antibodies has been demonstrated in mice (Clynes et al. , 1998, Proc Natl Acad Sci U SA 95:652-656; Clynes et al., 2000, Nat Med 6:443-446, both incorporated entirely by reference), and from observed correlations between clinical efficacy in humans and their allotype of high (V158) or low (F158) affinity polymorphic forms of FcγRllla (Cartron et al., 2002, Blood 99:754-758; Weng & Levy, 2003, Journal of Clinical Oncology, 21 :3940-3947, both incorporated entirely by reference). Together these data suggest that an antibody that is optimized for binding to certain FcγRs may better mediate effector functions, and thereby destroy target cells more effectively in patients. Thus a promising means for enhancing the anti-tumor potency of antibodies is via enhancement of their ability to mediate cytotoxic effector functions such as ADCC, ADCP, and CDC. Additionally, antibodies can mediate anti-tumor mechanism via growth inhibitory or apoptotic signaling that may occur when an antibody binds to its target on tumor cells. Such signaling may be potentiated when antibodies are presented to tumor cells bound to immune cells via FcγR. Therefore increased affinity of antibodies to FcγRs may result in enhanced antiproliferative effects. [46] Some success has been achieved at modifying antibodies with selectively enhanced binding to FcγRs to provide enhanced effector function. Antibody engineering for optimized effector function has been achieved using amino acid modifications (see for example USSN 10/672,280 and USSN 11/124,620 and references cited therein, all incorporated entirely by reference), and engineered glycoforms (see for example Umaήa et al., 1999, Nat Biotechnol 17:176-180; Shinkawa et al., 2003, J Biol Chem 278:3466-3473, Yamane-Ohnuki et al., 2004, Biotechnology and Bioengineering 87(5):614-621 , all incorporated entirely by reference).

[47] Unfortunately, it is not known a priori which mechanisms of action may be optimal for a given target antigen. Furthermore, it is not known which antibodies may be capable of mediating a given mechanism of action against a target cell. In some cases a lack of antibody activity, either Fv-mediated or Fc-mediated, may be due to the targeting of an epitope on the target antigen that is poor for mediating such activity. In other cases, the targeted epitope may be amenable to a desired Fv-mediated or Fc-mediated activity, yet the affinity (affinity of the Fv region for antigen or affinity of the Fc region for Fc receptors) may be insufficient. Towards addressing this problem, the present invention describes modifications to anti-IGF-1R antibodies that provide optimized Fv- and Fc- mediated activities. A broad array of applications of these optimized antibodies are contemplated.

[48] The present invention is directed to antibodies and methods of using the same. In certain aspects, the antibodies include a variant Fc region. The present invention is further directed to methods of using the antibodies in various disease indications. [49] In order that the invention may be more completely understood, several definitions are set forth below. Such definitions are meant to encompass grammatical equivalents.

[50] By "ADCC" or "antibody dependent cell-mediated cytotoxicity" as used herein is meant the cell-mediated reaction wherein nonspecific cytotoxic cells that express FcγRs recognize bound antibody on a target cell and subsequently cause lysis of the target cell. [51] By "ADCP" or antibody dependent cell-mediated phagocytosis as used herein is meant the cell-mediated reaction wherein nonspecific cytotoxic cells that express FcγRs recognize bound antibody on a target cell and subsequently cause phagocytosis of the target cell. [52] By "amino acid" and "amino acid identity" as used herein is meant one of the 20 naturally occurring amino acids or any non-natural analogues that may be present at a specific, defined position. Thus "amino acid" as used herein is both naturally occurring and synthetic amino acids. For example, homophenylalanine, citrulline and noreleucine are considered amino acids for the purposes of the invention. "Amino acid" also includes imino acid residues such as proline and hydroxyproline. The side chain may be in either the (R) or the (S) configuration. In a embodiment, the amino acids are in the (S) or L-configuration. If non-naturally occurring side chains are used, non-amino acid substituents may be used, for example to prevent or retard in vivo degradation.

[53] By "antibody" herein is meant a protein consisting of one or more polypeptides substantially encoded by all or part of the recognized immunoglobulin genes. The recognized immunoglobulin genes, for example in humans, include the kappa (K), lambda (λ), and heavy chain genetic loci, which together comprise the myriad variable region genes, and the constant region genes mu (υ), delta (δ), gamma (γ), sigma (σ), and alpha (α) which encode the IgM, IgD, IgG (IgGI, lgG2, lgG3, and lgG4), IgE, and IgA (IgAI and lgA2) isotypes respectively. Antibody herein is meant to include full length antibodies and antibody fragments, and may refer to a natural antibody from any organism, an engineered antibody, or an antibody generated recombinantly for experimental, therapeutic, or other purposes. [54] Target cell types.

[55] By "IGF-1R" as used herein is meant the protein encoded by the gene designated IGF-1 R or similar proteins thereto. IGF-1 R may be from any species including but not limited to human, non-human primates, rats, mice, and rabbits, with humans being the most preferred. A protein sequence of human IGF-1 R retrieved from record NP_000866 of the NCBI protein database (www.ncbi.nlm.nih.gov) is provided in Figure 5. An mRNA sequence of human IGF- 1R retrieved from record NM_000875 of the NCBI protein database (www.ncbi.nlm.nih.gov) is also provided in Figure 5. The use of IGF-1 R herein is meant to encompass all known or as yet undiscovered alleles and polymorphic forms of IGF-1 R. [56] By "CDC" or "complement dependent cytotoxicity" as used herein is meant the reaction wherein one or more complement protein components recognize bound antibody on a target cell and subsequently cause lysis of the target cell.

[57] By "constant region" of an antibody as defined herein is meant the region of the antibody that is encoded by one of the light or heavy chain immunoglobulin constant region genes. By "constant light chain" or "light chain constant region" as used herein is meant the region of an antibody encoded by the kappa (CK) or lambda (Cλ) light chains. The constant light chain typically comprises a single domain, and as defined herein refers to positions 108-214 of CK or Cλ, wherein numbering is according to the EU index. By "constant heavy chain" or "heavy chain constant region" as used herein is meant the region of an antibody encoded by the mu, delta, gamma, alpha, or epsilon genes to define the antibody's isotype as IgM, IgD, IgG, IgA, or IgE, respectively. For full length IgG antibodies, the constant heavy chain, as defined herein, refers to the N-terminus of the CH1 domain to the C-terminus of the CH3 domain, thus comprising positions 118-447, wherein numbering is according to the EU index. [58] By "effector function" as used herein is meant a biochemical event that results from the interaction of an antibody Fc region with an Fc receptor or ligand. Effector functions include FcγR-mediated effector functions such as ADCC and ADCP, and complement-mediated effector functions such as CDC. By "effector cell" as used herein is meant a cell of the immune system that expresses one or more Fc receptors and mediates one or more effector functions. Effector cells include but are not limited to monocytes, macrophages, neutrophils, dendritic cells, eosinophils, mast cells, platelets, B cells, large granular lymphocytes, Langerhans' cells, natural killer (NK) cells, and γδ T cells, and may be from any organism including but not limited to humans, mice, rats, rabbits, and monkeys. [59] By "Fab" or "Fab region" as used herein is meant the polypeptides that comprise the VH, CH1 , VL, and CL immunoglobulin domains. Fab may refer to this region in isolation, or this region in the context of a full length antibody or antibody fragment.

[60] By "Fc" or "Fc region", as used herein is meant the polypeptide comprising the constant region of an antibody excluding the first constant region immunoglobulin domain. Thus Fc refers to the last two constant region immunoglobulin domains of IgA, IgD, and IgG, and the last three constant region immunoglobulin domains of IgE and IgM, and the flexible hinge N-terminal to these domains. For IgA and IgM, Fc may include the J chain. For IgG, Fc comprises immunoglobulin domains Cgamma2 and Cgamma3 (Cγ2 and Cγ3) and the hinge between Cgammai (Cγ1) and Cgamma2 (Cγ2). Although the boundaries of the Fc region may vary, the human IgG heavy chain Fc region is usually defined to comprise residues C226 or P230 to its carboxyl-terminus, wherein the numbering is according to the EU index as in Kabat. Fc may refer to this region in isolation, or this region in the context of an Fc polypeptide, for example an antibody. By "Fc polypeptide" as used herein is meant a polypeptide that comprises all or part of an Fc region. Fc polypeptides include antibodies, Fc fusions, isolated Fes, and Fc fragments. [61] By "Fc gamma receptor" or "FcγR" as used herein is meant any member of the family of proteins that bind the IgG antibody Fc region and are substantially encoded by the FcγR genes. In humans this family includes but is not limited to FcγRI (CD64), including isoforms FcγRIa, FcγRIb, and FcγRIc; FcγRII (CD32), including isoforms FcyRlla (including allotypes H131 and R131 ), FcγRllb (including FcγRllb-1 and FcγRllb-2), and FcγRllc; and FcγRIII (CD16), including isoforms FcγRllla (including allotypes V158 and F158) and FcγRlllb (including allotypes FcγRlllb-NA1 and FcγRlllb-NA2) (Jefferis et al., 2002, Immunol Lett 82:57-65, incorporated entirely by reference), as well as any undiscovered human FcγRs or FcγR isoforms or allotypes. Mouse FcγRs include but are not limited to FcγRI (CD64), FcγRII (CD32), FcγRIII (CD16), and FcγRIII-2 (CD16-2), as well as any undiscovered mouse FcγRs or FcγR isoforms or allotypes. An FcγR may be from any organism, including but not limited to humans, mice, rats, rabbits, and monkeys.

[62] By "FcRn" as used herein is meant the receptor protein called the neonatal Fc receptor, the Brambell receptor, the protection receptor. FcRn is a heterodimer comprising the alpha chain (also called heavy chain or FcRn chain) and the protein beta-2-microglobulin (also called (beta-2-m, or β -2-microglobulin, or β -2-m). The alpha chain, in humans, is the product of the FCGRT gene (Fc fragment of IgG receptor transporter alpha) and beta-2-microglobulin is the product of the bea-2-microglobulin gene. FcRn may be from any organism, including but not limited to humans, monkeys, rats, mice, and rabbits. [63] By "Fc ligand" or "Fc receptor" as used herein is meant a molecule, e.g., a polypeptide, from any organism that binds to the Fc region of an antibody to form an Fc-ligand complex. Fc ligands include but are not limited to FcγRs, FcRn, C1q, C3, mannan binding lectin, mannose receptor, staphylococcal protein A, streptococcal protein G, and viral FcγR. Fc ligands also include Fc receptor homologs (FcRH), which are a family of Fc receptors that are homologous to the FcγRs (Davis et al., 2002, Immunological Reviews 190:123-136, incorporated entirely by reference). Fc ligands may include undiscovered molecules that bind Fc.

[64] By "lgG" as used herein is meant a polypeptide belonging to the class of antibodies that are substantially encoded by a recognized immunoglobulin gamma gene. In humans this class comprises IgGI , lgG2, lgG3, and lgG4. In mice this class comprises IgGI, lgG2a, lgG2b, lgG3. By "immunoglobulin (Iq)" herein is meant a protein consisting of one or more polypeptides substantially encoded by immunoglobulin genes. Immunoglobulins include but are not limited to antibodies. Immunoglobulins may have a number of structural forms, including but not limited to full length antibodies, antibody fragments, and individual immunoglobulin domains. By "immunoglobulin (Iq) domain" herein is meant a region of an immunoglobulin that exists as a distinct structural entity as ascertained by one skilled in the art of protein structure. Ig domains typically have a characteristic /?-sandwich folding topology. The known Ig domains in the IgG class of antibodies are VH, Cγ1 , Cγ2, Cγ3, VL, and CL.

[65] By "modification" herein is meant an alteration in the physical, chemical, or sequence properties of a protein, polypeptide, antibody, or immunoglobulin. Modifications of the invention are amino acid modifications and glycoform modifications.

[66] By "amino acid modification" herein is meant an amino acid substitution, insertion, and/or deletion in a polypeptide sequence. By "amino acid substitution" or "substitution" herein is meant the replacement of an amino acid at a particular position in a parent polypeptide sequence with another amino acid. For example, the substitution I332E refers to a variant polypeptide, in this case a constant heavy chain variant, in which the isoleucine at position 332 is replaced with glutamic acid. The WT residue may or may not be designated. For the preceding example, 332E indicates the substitution of position 332 with a glutamic acid. For the purposes herein, multiple substitutions are typically separated by a slash. For example, 239D/332E refers to a double variant comprising the substitutions 239D and 332E. By "amino acid insertion" or "insertion" as used herein is meant the addition of an amino acid at a particular position in a parent polypeptide sequence. For example, insert -236G designates an insertion of glycine at position 236. By "amino acid deletion" or "deletion" as used herein is meant the removal of an amino acid at a particular position in a parent polypeptide sequence. For example, G236- designates the deletion of glycine at position 236.

[67] By "αlvcoform modification" or "modified glvcoform" or "engineered αlvcoform" as used herein is meant a carbohydrate composition that is covalently attached to a protein, for example an antibody, wherein said carbohydrate composition differs chemically from that of a parent protein. Modified glycoform typically refers to the different carbohydrate or oligosaccharide; thus for example an antibody may comprise a modified glycoform. Alternatively, modified glycoform may refer to the antibody that comprises the different carbohydrate or oligosaccharide. [68] By "parent polypeptide", "parent protein", "precursor polypeptide", or "precursor protein" as used herein is meant an unmodified polypeptide that is subsequently modified to generate a variant, e.g., any polypeptide which serves as a template and/or basis for at least one amino acid modification described herein. Said parent polypeptide may be a naturally occurring polypeptide, or a variant or engineered version of a naturally occurring polypeptide. Parent polypeptide may refer to the polypeptide itself, compositions that comprise the parent polypeptide, or the amino acid sequence that encodes it. Accordingly, by "parent antibody" or "parent immunoglobulin" as used herein is meant an antibody or immunoglobulin that is modified to generate a variant (e.g., a parent antibody may include, but is not limited to, a protein comprising the constant region of a naturally occurring Ig).

[69] By "protein" or "polypeptide" as used herein is meant at least two covalently attached amino acids, which includes proteins, polypeptides, oligopeptides and peptides. The protein may be made up of naturally occurring amino acids and peptide bonds, or synthetic peptidomimetic structures, i.e. "analogs", such as peptoids.

[70] By "position" as used herein is meant a location in the sequence of a protein. Positions may be numbered sequentially, or according to an established format, for example the EU index as in Kabat. Corresponding positions are determined as outlined herein, generally through alignment with other parent sequences.

[71] By "residue" as used herein is meant a position in a protein and its associated amino acid identity. For example, Asparagine 297 (also referred to as Asn297 and N297) is a residue at position 297 in the human antibody IgGl [72] By "target antigen" or "target" or "antigen" as used herein is meant the molecule that is bound specifically by the variable region of a given antibody. A target antigen may be a protein, carbohydrate, lipid, or other chemical compound. By "target cell" as used herein is meant a cell that expresses a target antigen.

[73] By "variable region" as used herein is meant the region of an immunoglobulin that comprises one or more Ig domains substantially encoded by any of the V/c, VΛ, and/or VH genes that make up the kappa, lambda, and heavy chain immunoglobulin genetic loci respectively. [74] By "variant protein", "protein variant", "variant polypeptide", or "polypeptide variant" as used herein is meant a polypeptide sequence that differs from that of a parent polypeptide sequence by virtue of at least one modification. Variant polypeptide may refer to the polypeptide itself, a composition comprising the polypeptide, or the amino sequence that encodes it. In one embodiment, the variant polypeptide has at least one amino acid modification compared to the parent polypeptide, e.g. from about one to about ten amino acid modifications, e.g., from about one to about five amino acid modifications compared to the parent. The variant polypeptide sequence herein may possess at least about 80% homology with a parent polypeptide sequence, e.g., at least about 90% homology, at least about 95% homology, etc.. Accordingly, by "variant antibody" or "antibody variant" as used herein is meant an antibody that differs from that of a parent antibody by virtue of at least one modification. Antibody variant may refer to the antibody polypeptide itself, compositions comprising the antibody variant polypeptide, or the amino acid sequence that encodes it. Accordingly, by "variant antibody" or "antibody variant" as used herein is meant an antibody, as defined above, that differs from that of a parent antibody by virtue of at least one modification. Variant antibody may refer to the protein itself, compositions comprising the protein, or the amino acid sequence that encodes it. Accordingly, by "constant heavy chain variant" or "constant light chain variant" or "Fc variant" as used herein is meant a constant heavy chain, constant light chain, or Fc region polypeptide or sequence, respectively, that differs from that of a parent protein by virtue of at least one modification.

[75] By "wild type, wild-type or WT" herein is meant an amino acid sequence or a nucleotide sequence that is found in nature, including allelic variations. A WT protein, polypeptide, antibody, immunoglobulin, IgG, etc., has an amino acid sequence or a nucleotide sequence that has not been intentionally modified. [76] For all immunoglobulin heavy chain constant region positions discussed in the present invention, numbering is according to the EU index as in Kabat (Kabat et al., 1991 , Sequences of Proteins of Immunological Interest, 5th Ed., United States Public Health Service, National Institutes of Health, Bethesda, incorporated entirely by reference). The "EU index as in Kabat" refers to the residue numbering of the human IgGI EU antibody, as described in Edelman et al., 1969, Biochemistry 63:78-85, incorporated entirely by reference. [77] Antibodies

[78] Antibodies are immunological proteins that bind a specific antigen. In most mammals, including humans and mice, antibodies are constructed from paired heavy and light polypeptide chains. The light and heavy chain variable regions show significant sequence diversity between antibodies, and are responsible for binding the target antigen. Each chain is made up of individual immunoglobulin (Ig) domains, and thus the generic term immunoglobulin is used for such proteins.

[79] Natural antibody structural units typically comprise a tetramer. Each tetramer is typically composed of two identical pairs of polypeptide chains, each pair having one "light" (typically having a molecular weight of about 25 kDa) and one "heavy" chain (typically having a molecular weight of about 50-70 kDa). Each of the light and heavy chains is made up of two distinct regions, referred to as the variable and constant regions. For the IgG class of immunoglobulins, the heavy chain is composed of four immunoglobulin domains linked from N- to C-terminus in the order VN-CH 1-CH2-CH3, referring to the heavy chain variable domain, heavy chain constant domain 1 , heavy chain constant domain 2, and heavy chain constant domain 3 respectively (also referred to as VH-Cκ1-Cκ2-Cκ3, referring to the heavy chain variable domain, constant gamma 1 domain, constant gamma 2 domain, and constant gamma 3 domain respectively). The IgG light chain is composed of two immunoglobulin domains linked from N- to C-terminus in the order VL-CL, referring to the light chain variable domain and the light chain constant domain respectively. The constant regions show less sequence diversity, and are responsible for binding a number of natural proteins to elicit important biochemical events. [80] The variable region of an antibody contains the antigen binding determinants of the molecule, and thus determines the specificity of an antibody for its target antigen. The variable region is so named because it is the most distinct in sequence from other antibodies within the same class. In the variable region, three loops are gathered for each of the V domains of the heavy chain and light chain to form an antigen-binding site. Each of the loops is referred to as a complementarity-determining region (hereinafter referred to as a "CDR"), in which the variation in the amino acid sequence is most significant. There are 6 CDRs total, three each per heavy and light chain, designated VH CDR1 , VH CDR2, VH CDR3, VL CDR1 , VL CDR2, and VL CDR3. The variable region outside of the CDRs is referred to as the framework (FR) region. Although not as diverse as the CDRs, sequence variability does occur in the FR region between different antibodies. Overall, this characteristic architecture of antibodies provides a stable scaffold (the FR region) upon which substantial antigen binding diversity (the CDRs) can be explored by the immune system to obtain specificity for a broad array of antigens. A number of high-resolution structures are available for a variety of variable region fragments from different organisms, some unbound and some in complex with antigen. Sequence and structural features of antibody variable regions are disclosed, for example, in Morea et al., 1997, Biophys Chem 68:9-16; Morea et al., 2000, Methods 20:267-279, and the conserved features of antibodies are disclosed, for example, in Maynard et al., 2000, Annu Rev Biomed Eng 2:339-376, both incorporated entirely by reference.

[81] Antibodies are grouped into classes, also referred to as isotypes, as determined genetically by the constant region. Human constant light chains are classified as kappa (CK) and lambda (Cλ) light chains. Human heavy chains are classified as mu, delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively. The IgG class is the most commonly used for therapeutic purposes. By "]flG" as used herein is meant a polypeptide belonging to the class of antibodies that are substantially encoded by a recognized immunoglobulin gamma gene. In humans this class comprises subclasses IgGI , lgG2, lgG3, and lgG4. In mice this class comprises subclasses IgGI , lgG2a, lgG2b, and lgG3. IgM has subclasses, including, but not limited to, IgMI and lgM2. IgA has several subclasses, including but not limited to IgAI and lgA2. Thus, "isotype" as used herein is meant any of the classes or subclasses of immunoglobulins defined by the chemical and antigenic characteristics of their constant regions. The known human immunoglobulin isotypes are IgGI , lgG2, lgG3, lgG4, IgAI , lgA2, IgMI , lgM2, IgD, and IgE. Figure 1 provides the sequences of the human light chain kappa and heavy chain gamma constant chains. Figure 3 shows an alignment of the human IgG constant heavy chains.

[82] Also useful for the invention may be IgGs that are hybrid compositions of the natural human IgG isotypes. Effector functions such as ADCC, ADCP, CDC, and serum half-life differ significantly between the different classes of antibodies, including for example human IgGI , lgG2, lgG3, lgG4, IgAI , lgA2, IgD, IgE, IgG, and IgM (Michaelsen et al., 1992, Molecular Immunology, 29(3): 319-326, entirely incorporated by reference). A number of studies have explored IgGI, lgG2, lgG3, and lgG4 variants in order to investigate the determinants of the effector function differences between them. See for example Canfield & Morrison, 1991 , J. Exp. Med. 173: 1483-1491 ; Chappel et al., 1991 , Proc. Natl. Acad. Sci. USA 88(20): 9036-9040; Chappel et al., 1993, Journal of Biological Chemistry 268:25124-25131 ; Tao et al., 1991 , J . Exp. Med. 173: 1025-1028; Tao et al., 1993, J. Exp. Med. 178: 661-667; Redpath et al., 1998, Human Immunology, 59, 720-727, all entirely incorporated by reference. [83] As described in USSN 11/256,060, filed Oct. 21 , 2005, entitled "IgG Immunoglobulin Variants with Optimized Effector Function", herein expressly incorporated by reference, it is possible to engineer amino acid modifications in an antibody that comprise constant regions from other immunoglobulin classes, for example as those illustrated in the alignments in Figure 3. Such engineered hybrid IgG compositions may provide improved effector function properties, including improved ADCC, phagocytosis, CDC, and serum half-life. For example, as illustrated by Figure 3, an lgG1/lgG3 hybrid variant may be constructed by substituting IgGI positions in the CH2 and CH3 region with the amino acids from lgG3 at positions where the two isotypes differ. Thus a hybrid variant IgG antibody may be constructed that comprises one or more substitutions selected from the group consisting of: 274Q, 276K, 300F, 339T, 356E, 358M, 384S, 392N, 397M, 4221, 435R, and 436F, wherein numbering is according to the EU index. Such variant may provide alternate and/or improved effector function properties.

[84] As another example, relatively poor effector function of lgG2 may be improved by replacing key FcγR binding residues with the corresponding amino acids in an IgG with better effector function. For example, key residue differences between lgG2 and IgGI with respect to FcyR binding may include P233, V234, A235, -236 (referring to a deletion in lgG2 relative to IgGI), and G327. Thus one or more amino acid modifications in the parent lgG2 wherein one or more of these residues is replaced with the corresponding IgGI amino acids, P233E, V234L, A235L, -236G (referring to an insertion of a glycine at position 236), and G327A, may provide enhanced effector function. The sequence of such an IgG, comprising a hybrid of residues from IgGI and lgG2, referred to herein as "Hybrid", is provided in Figure 1. [85] As is well known in the art, immunoglobulin polymorphisms exist in the human population. Gm polymorphism is determined by the IGHG1, IGHG2 and IGHG3 genes which have alleles encoding allotypic antigenic determinants referred to as G1m, G2m, and G3m allotypes for markers of the human IgGI , lgG2 and lgG3 molecules (no Gm allotypes have been found on the gamma 4 chain). Markers may be classified into 'allotypes' and "isoallotypes1. These are distinguished on different serological bases dependent upon the strong sequence homologies between isotypes. Allotypes are antigenic determinants specified by allelic forms of the Ig genes. Allotypes represent slight differences in the amino acid sequences of heavy or light chains of different individuals. Even a single amino acid difference can give rise to an allotypic determinant, although in many cases there are several amino acid substitutions that have occurred. Allotypes are sequence differences between alleles of a subclass whereby the antisera recognize only the allelic differences. An isoallotype is an allele in one isotype which produces an epitope which is shared with a non-polymorphic homologous region of one or more other isotypes and because of this the antisera will react with both the relevant allotypes and the relevant homologous isotypes (Clark, 1997, IgG effector mechanisms, Chem. Immunol. 65:88- 110; Gorman & Clark, 1990, Semin. Immunol. 2(6):457-66, both incorporated entirely by reference).

[86] Allelic forms of human immunoglobulins have been well-characterized (WHO Review of the notation for the allotypic and related markers of human immunoglobulins. J lmmunogen 1976, 3: 357-362; WHO Review of the notation for the allotypic and related markers of human immunoglobulins. 1976, Eur. J. Immunol. 6, 599-601 ; E. van Loghem, 1986, Allotypic markers, Monogr Allergy 19: 40-51 , all incorporated entirely by reference). Additionally, other polymorphisms have been characterized (Kim, et al., 2001 , J. MoI. Evol. 54:1-9, incorporated entirely by reference). At present, 18 Gm allotypes are known: G1m (1 , 2, 3, 17) or G1m (a, x, f, z), G2m (23) or G2m (n), G3m (5, 6, 10, 11, 13, 14, 15, 16, 21 , 24, 26, 27, 28) or G3m (b1, c3, b5, bθ, b3, b4, s, t, g1 , c5, u, v, g5) (Lefranc, et al., The human IgG subclasses: molecular analysis of structure, function and regulation. Pergamon, Oxford, pp. 43-78 (1990); Lefranc, G. et a/., 1979, Hum. Genet.: 50, 199-211 , both incorporated entirely by reference). Allotypes that are inherited in fixed combinations are called Gm haplotypes. Figure 2 shows common haplotypes of the gamma chain of human IgGI (Figure 2a) and lgG2 (Figure 2b) showing the positions and the relevant amino acid substitutions. The antibodies of the present invention may be substantially encoded by any allotype, isoallotype, or haplotype of any immunoglobulin gene. [87] Antibodies of the present invention may be substantially encoded by genes from any organism, e.g..mammals, including but not limited to humans, rodents including but not limited to mice and rats, lagomorpha including but not limited to rabbits and hares, camelidae including but not limited to camels, llamas, and dromedaries, and non-human primates, including but not limited to Prosimians, Platyrrhini (New World monkeys), Cercopithecoidea (Old World monkeys), and Hominoidea including the Gibbons and Lesser and Great Apes. In one embodiment, the antibodies of the present invention are substantially human. The antibodies of the present invention may be substantially encoded by immunoglobulin genes belonging to any of the antibody classes. In one embodiment, the antibodies of the present invention comprise sequences belonging to the IgG class of antibodies, including human subclasses IgGI, lgG2, lgG3, and lgG4. In an alternate embodiment, the antibodies of the present invention comprise sequences belonging to the IgA (including human subclasses IgAI and lgA2), IgD, IgE, IgG, or IgM classes of antibodies. The antibodies of the present invention may comprise more than one protein chain. That is, the present invention may find use in an antibody that is a monomer or an oligomer, including a homo- or hetero-oligomer. [88] In one embodiment, the antibodies of the invention are based on human IgG sequences, and thus human IgG sequences are used as the "base" sequences against which other sequences are compared, including but not limited to sequences from other organisms, for example rodent and primate sequences, as well as sequences from other immunoglobulin classes such as IgA, IgE, IgD, IgM, and the like. It is contemplated that, although the antibodies of the present invention are engineered in the context of one parent antibody, the variants may be engineered in or "transferred" to the context of another, second parent antibody. This is done by determining the "equivalent" or "corresponding" residues and substitutions between the first and second antibodies, typically based on sequence or structural homology between the sequences of the two antibodies. In order to establish homology, the amino acid sequence of a first antibody outlined herein is directly compared to the sequence of a second antibody. After aligning the sequences, using one or more of the homology alignment programs known in the art (for example using conserved residues as between species), allowing for necessary insertions and deletions in order to maintain alignment (i.e., avoiding the elimination of conserved residues through arbitrary deletion and insertion), the residues equivalent to particular amino acids in the primary sequence of the first antibody are defined. Alignment of conserved residues may conserve 100% of such residues. However, alignment of greater than 75% or as little as 50% of conserved residues is also adequate to define equivalent residues. Equivalent residues may also be defined by determining structural homology between a first and second antibody that is at the level of tertiary structure for antibodies whose structures have been determined. In this case, equivalent residues are defined as those for which the atomic coordinates of two or more of the main chain atoms of a particular amino acid residue of the parent or precursor (N on N, CA on CA, C on C and O on O) are within 0.13 nm, e.g., 0.1 nm, after alignment. Alignment is achieved after the best model has been oriented and positioned to give the maximum overlap of atomic coordinates of non-hydrogen protein atoms of the proteins. Regardless of how equivalent or corresponding residues are determined, and regardless of the identity of the parent antibody in which the antibodies are made, what is meant to be conveyed is that the antibodies discovered by the present invention may be engineered into any second parent antibody that has significant sequence or structural homology with said antibody. Thus for example, if a variant antibody is generated wherein the parent antibody is human IgGI, by using the methods described above or other methods for determining equivalent residues, said variant antibody may be engineered in a human lgG2 parent antibody, a human IgA parent antibody, a mouse lgG2a or lgG2b parent antibody, and the like. Again, as described above, the context of the parent antibody does not affect the ability to transfer the antibodies of the present invention to other parent antibodies. For example, the variant antibodies that are engineered in a human IgGI antibody that targets one antigen epitope may be transferred into a human lgG2 antibody that targets a different antigen epitope, and so forth.

[89] In the IgG class of immunoglobulins, there are several immunoglobulin domains in the heavy chain. By "immunoglobulin (Ig) domain" herein is meant a region of an immunoglobulin having a distinct tertiary structure. Of interest in the present invention are the domains of the constant heavy chain, including, the constant heavy (CH) domains and the hinge. In the context of IgG antibodies, the IgG isotypes each have three CH regions: "CH1" refers to positions 118- 220, "CH2" refers to positions 237-340, and "CH3" refers to positions 341-447 according to the EU index as in Kabat. By "hinge" or "hinge region" or "antibody hinge region" or "immunoglobulin hinge region" herein is meant the flexible polypeptide comprising the amino acids between the first and second constant domains of an antibody. Structurally, the IgG CH1 domain ends at EU position 220, and the IgG CH2 domain begins at residue EU position 237. Thus for IgG the hinge is herein defined to include positions 221 (D221 in IgGI ) to 236 (G236 in IgGI ), wherein the numbering is according to the EU index as in Kabat. In some embodiments, for example in the context of an Fc region, the lower hinge is included, with the "lower hinge" generally referring to positions 226 or 230. The constant heavy chain, as defined herein, refers to the N- terminus of the CH1 domain to the C-terminus of the CH3 domain, thus comprising positions 118-447, wherein numbering is according to the EU index. The constant light chain comprises a single domain, and as defined herein refers to positions 108-214 of CK or Cλ, wherein numbering is according to the EU index. [90] Specifically included within the definition of "antibody" are full-length antibodies. By "full length antibody" herein is meant the structure that constitutes the natural biological form of an antibody, including variable and constant regions. For example, in most mammals, including humans and mice, the full length antibody of the IgG class is a tetramer and consists of two identical pairs of two immunoglobulin chains, each pair having one light and one heavy chain, each light chain comprising immunoglobulin domains VL and CL, and each heavy chain comprising immunoglobulin domains VH, CH1 (Cγ1), CH2 (Cγ2), and CH3 (Cγ3). In some mammals, for example in camels and llamas, IgG antibodies may consist of only two heavy chains, each heavy chain comprising a variable domain attached to the Fc region. [91] Alternatively, the antibodies can be a variety of structures, including, but not limited to antibody fragments. Antibody fragments include but are not limited to bispecific antibodies, minibodies, domain antibodies, synthetic antibodies, antibody mimetics, chimeric antibodies, antibody fusions (sometimes referred to as "antibody conjugates"), and fragments of each, respectively. Specific antibody fragments include, but are not limited to, (i) the Fab fragment consisting of VL, VH, CL and CH1 domains, (ii) the Fd fragment consisting of the VH and CH1 domains, (iii) the Fv fragment consisting of the VL and VH domains of a single antibody; (iv) the dAb fragment, which consists of a single variable region, (v) isolated CDR regions, (vi) F(ab')2 fragments, a bivalent fragment comprising two linked Fab fragments (vii) single chain Fv molecules (scFv), wherein a VH domain and a VL domain are linked by a peptide linker which allows the two domains to associate to form an antigen binding site (viii) bispecific single chain Fv dimers and (ix) "diabodies" or "triabodies", multivalent or multispecific fragments constructed by gene fusion. The antibody fragments may be modified. For example, the molecules may be stabilized by the incorporation of disulfide bridges linking the VH and VL domains. Examples of antibody formats and architectures are described in Holliger & Hudson, 2006, Nature Biotechnology 23(9): 1126-1136, and Carter 2006, Nature Reviews Immunology 6:343-357 and references cited therein, all expressly incorporated by reference. [92] Antibodies of the invention may include multispecific antibodies, notably bispecific antibodies, also sometimes referred to as "diabodies". These are antibodies that bind to two (or more) different antigens. Diabodies can be manufactured in a variety of ways known in the art, e.g., prepared chemically or from hybrid hybridomas. In one embodiment, the antibody is a minibody. Minibodies are minimized antibody-like proteins comprising a scFv joined to a CH3 domain. In some cases, the scFv can be joined to the Fc region, and may include some or all of the hinge region. For a description of multispecific antibodies see Holliger & Hudson, 2006, Nature Biotechnology 23(9): 1126-1136 and references cited therein, all expressly incorporated by reference.

[93] In one embodiment, the antibody of the invention is an antibody fragment. Of particular interest are antibodies that comprise Fc regions, Fc fusions, and the constant region of the heavy chain (CH1-hinge-CH2-CH3). Antibodies of the present invention may comprise Fc fragments. An Fc fragment of the present invention may comprise from 1 - 90% of the Fc region, e.g., 10 - 90%, 30 - 90%, etc. Thus for example, an Fc fragment of the present invention may comprise an IgGI Cγ2 domain, an IgGI Cγ2 domain and hinge region, an IgGI Cγ3 domain, and so forth. In one embodiment, an Fc fragment of the present invention additionally comprises a fusion partner, effectively making it an Fc fragment fusion. Fc fragments may or may not contain extra polypeptide sequence.

[94] Chimeric, humanized, and fully human antibodies

[95] lmmunogenicity is the result of a complex series of responses to a substance that is perceived as foreign, and may include production of neutralizing and non-neutralizing antibodies, formation of immune complexes, complement activation, mast cell activation, inflammation, hypersensitivity responses, and anaphylaxis. Several factors can contribute to protein immunogenicity, including but not limited to protein sequence, route and frequency of administration, and patient population. Immunogenicity may limit the efficacy and safety of a protein therapeutic in multiple ways. Efficacy can be reduced directly by the formation of neutralizing antibodies. Efficacy may also be reduced indirectly, as binding to either neutralizing or non-neutralizing antibodies typically leads to rapid clearance from serum. Severe side effects and even death may occur when an immune reaction is raised. Thus in oneembodiment, protein engineering is used to reduce the immunogenicity of the antibodies of the present invention. [96] In some embodiments, the scaffold components can be a mixture from different species. Such antibody may be a chimeric antibody and/or a humanized antibody. In general, both "chimeric antibodies" and "humanized antibodies" refer to antibodies that combine regions from more than one species. "Chimeric antibodies" traditionally comprise variable region(s) from a mouse (or rat, in some cases) and the constant region(s) from a human (Morrison et al., 1984, Proc Natl Acad Sci USA 81: 6851-6855, incorporated entirely by reference). [97] By "humanized" antibody as used herein is meant an antibody comprising a human framework region (FR) and one or more complementarity determining regions (CDRs) from a non-human (usually mouse or rat) antibody. The non-human antibody providing the CDRs is called the "donor" and the human immunoglobulin providing the framework is called the "acceptor". Humanization relies principally on the grafting of donor CDRs onto acceptor (human) VL and VH frameworks (Winter US 5225539, incorporated entirely by reference). This strategy is referred to as "CDR grafting". "Backmutation" of selected acceptor framework residues to the corresponding donor residues is often required to regain affinity that is lost in the initial grafted construct (US 5693762, incorporated entirely by reference). The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region, typically that of a human immunoglobulin, and thus will typically comprise a human Fc region. A variety of techniques and methods for humanizing and reshaping non-human antibodies are well known in the art (See Tsurushita & Vasquez, 2004, Humanization of Monoclonal Antibodies, Molecular Biology of B Cells, 533-545, Elsevier Science (USA), and references cited therein, all incorporated entirely by reference). Humanization or other methods of reducing the immunogenicity of nonhuman antibody variable regions may include resurfacing methods, as described for example in Roguska et a/., 1994, Proc. Natl. Acad. Sci. USA 91 :969-973, incorporated entirely by reference. In one embodiment, selection based methods may be employed to humanize and/or affinity mature antibody variable regions, that is, to increase the affinity of the variable region for its target antigen. Other humanization methods may involve the grafting of only parts of the CDRs, including but not limited to methods described in USSN

09/810,502; Tan et al., 2002, J. Immunol. 169:1119-1125; De Pascalis et al., 2002, J. Immunol. 169:3076-3084, incorporated entirely by reference. Structure-based methods may be employed for humanization and affinity maturation, for example as described in USSN 10/153,159 and related applications, all incorporated entirely by reference. [98] In certain variations, the immunogenicity of the antibody is reduced using a method described in USSN 11/004,590, entitled "Methods of Generating Variant Proteins with Increased Host String Content and Compositions Thereof, filed on December 3, 2004, incorporated entirely by reference. [99] Modifications to reduce immunogenicity may include modifications that reduce binding of processed peptides derived from the parent sequence to MHC proteins. For example, amino acid modifications would be engineered such that there are no or a minimal number of immune epitopes that are predicted to bind, with high affinity, to any prevalent MHC alleles. Several methods of identifying MHC-binding epitopes in protein sequences are known in the art and may be used to score epitopes in an antibody of the present invention. See for example USSN 09/903,378, USSN 10/754,296, USSN 11/249,692, and references cited therein, all expressly incorporated by reference.

[100] In an alternate embodiment, the antibodies of the present invention may be fully human, that is the sequences of the antibodies are completely or substantially human. "Fully human antibody " or "complete human antibody" refers to a human antibody having the gene sequence of an antibody derived from a human chromosome with the modifications outlined herein. A number of methods are known in the art for generating fully human antibodies, including the use of transgenic mice (Bruggemann et al., 1997, Curr Opin Biotechnol 8:455-458,) or human antibody libraries coupled with selection methods (Griffiths et al., 1998, Curr Opin Biotechnol 9:102-108,), both incorporated entirely by reference. [101] Antibodies with IGF-1 R antigens

[102] The antibodies of the present invention may be virtually any antibody that binds to IGF- 1 R, e.g., may comprise the variable regions (e.g., the CDRs) of any known or undiscovered anti-IGF-1 R antibody. Antibodies of the invention may display selectivity for IGF-1 R. Examples include full-length versus splice variants, cell-surface vs. soluble forms, selectivity for various polymorphic variants, or selectivity for specific conformational forms of a target. An antibody of the present invention may bind any epitope or region on IGF-1 R and may be specific for fragments, mutant forms, splice forms, or aberrant forms of said antigens. A number of useful antibodies have been discovered that target IGF-1 R that may find use in the present invention. [103] Suitable IGF-1 R antibodies or immunoadhesins include the IGF-1 R antibodies or immunoadhesins described in the following: Surinya KH et al 2007 J Biol Chem Dec 3 Epub; Yeh et al 2007 Lung Cancer Nov 12 Epub; Tamburini et al 2007 Blood Sep 18 Epub; DiGirolamo et al 2007 J Biol CHem 282(43):31666-74; Nguyen et al 2007 Reproduction 134(1):41-9; Pandini et al 2007 Eur J Cancer 43(8):1318-27; Hopfner et al 2006 World J Gastroenterol. 12(35):5635-43; Bertand et al 2006 leukemia 20(7): 1254-60; Shen et al

Carcinogenesis 2006 27(5):962-71 ; Descamps et al. 2006 J Immunol 177:4218-4223; Maloney et al 2003 Cancer Research 63:5073-5083; Cohen et al. 2005 Clinical Cancer Research 11 :2063-2073; Breuhahn et al Current Cancer Therapy Reviews 2006 2,:157-176; Keyhanhar et al, Hybridoma (Larchmt) 2006 25(4)230-237. [104] The antibodies of the present invention may find use in a wide range of products. In one embodiment the antibody of the invention is a therapeutic, a diagnostic, or a research reagent. In one embodiment, an antibody of the invention is a therapeutic. Alternatively, the antibody of the present invention may be used for agricultural or industrial uses. An antibody of the present invention may find use in an antibody composition that is monoclonal or polyclonal. The antibodies of the present invention may be agonists, antagonists, neutralizing, inhibitory, or stimulatory. In one embodiment, the antibodies of the present invention are used to kill target cells that bear the target antigen, for example cancer cells. In an alternate embodiment, the antibodies of the present invention are used to block, antagonize, or agonize the target antigen. In an alternate embodiment, the antibodies of the present invention are used to block, antagonize, or agonize the target antigen and kill the target cells that bear the target antigen. [105] Modifications for optimizing effector function

[106] The present invention is directed to antibodies comprising modifications, wherein said modifications alter affinity to one or more Fc receptors, and/or alter the ability of the antibody to mediate one or more effector functions. Modifications of the invention include amino acid modifications and glycoform modifications. [107] Amino acid modifications

[108] As described in USSN 11/124,620, filed May 5, 2005, entitled "Optimized Fc Variants", and incorporated entirely by reference, amino acid modifications at heavy chain constant region positions 221 , 222, 223, 224, 225, 227, 228, 230, 231 , 232, 233, 234, 235, 236, 237, 238, 239, 240, 241 , 243, 244, 245, 246, 247, 249, 255, 258, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271 , 272, 273, 274, 275, 276, 278, 280, 281, 282, 283, 284, 285, 286, 288, 290, 291 , 292, 293, 294, 295, 296, 297, 298, 299, 300, 301 , 302, 303, 304, 305, 313, 317, 318, 320, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331 , 332, 333, 334, 335, 336, and 337, allow modification of FcγR binding properties, effector function, and potentially clinical properties of antibodies. [109] In particular, variants that alter binding to one or more human Fc receptors may comprise an amino acid modification in the heavy chain constant region, as described herein, selected from the group consisting of 221 K, 221 Y, 222E, 222Y, 223E, 223K, 224E, 224Y, 225E, 225K, 225W, 227E, 227G, 227K, 227Y, 228E, 228G, 228K, 228Y, 230A, 230E, 230G, 230Y, 231 E, 231G, 231K, 231P, 231Y, 232E, 232G, 232K, 232Y, 233A, 233D, 233F, 233G, 233H, 233I, 233K, 233L, 233M, 233N, 233Q, 233R, 233S, 233T, 233V, 233W, 233Y, 234A, 234D, 234E, 234F, 234G, 234H, 234I, 234K, 234M, 234N, 234P, 234Q, 234R, 234S, 234T, 234V, 234W, 234Y, 235A, 235D, 235E, 235F, 235G, 235H, 235I, 235K, 235M, 235N, 235P, 235Q, 235R, 235S, 235T, 235V, 235W, 235Y, 236A, 236D, 236E, 236F, 236H, 236I, 236K, 236L, 236M, 236N, 236P, 236Q, 236R, 236S, 236T, 236V, 236W, 236Y, 237D, 237E, 237F, 237H, 237I, 237K, 237L, 237M, 237N, 237P, 237Q, 237R, 237S, 237T, 237V, 237W, 237Y, 238D, 238E, 238F, 238G, 238H, 238I, 238K, 238L, 238M, 238N, 238Q, 238R, 238S, 238T, 238V, 238W, 238Y, 239D, 239E, 239F, 239G, 239H, 239I, 239K, 239L, 239M, 239N, 239P, 239Q, 239R, 239T, 239V, 239W, 239Y, 240A, 240I, 240M, 240T, 241 D, 241 E, 241 L, 241 R, 241 S, 241W, 241Y, 243E, 243H, 243L, 243Q, 243R, 243W, 243Y, 244H, 245A, 246D, 246E, 246H, 246Y, 247G, 247V, 249H, 249Q, 249Y, 255E, 255Y, 258H, 258S, 258Y, 260D, 260E, 260H, 260Y, 262A, 262E, 262F, 262I, 262T, 263A, 263I, 263M, 263T, 264A, 264D, 264E, 264F, 264G, 264H, 264I, 264K, 264L, 264M, 264N, 264P, 264Q, 264R, 264S, 264T, 264W, 264Y, 265F, 265G, 265H, 265I, 265K, 265L, 265M, 265N, 265P, 265Q, 265R, 265S, 265T, 265V, 265W, 265Y, 266A, 2661, 266M, 266T, 267D, 267E, 267F, 267H, 2671, 267K, 267L, 267M, 267N, 267P, 267Q, 267R, 267T, 267V, 267W, 267Y, 268D, 268E, 268F, 268G, 2681, 268K, 268L, 268M, 268P, 268Q, 268R, 268T, 268V, 268W, 269F, 269G, 269H, 2691, 269K, 269L, 269M, 269N, 269P, 269R, 269S, 269T, 269V, 269W, 269Y, 270F, 270G, 270H, 2701, 270L, 270M, 270P, 270Q, 270R, 270S, 270T, 270W, 270Y, 271 A, 271 D, 271 E, 271 F, 271 G, 271 H, 2711, 271 K, 271L, 271 M, 271N, 271Q, 271R, 271S, 271T, 271V, 271W, 271Y, 272D, 272F, 272G, 272H, 2721, 272K, 272L, 272M, 272P, 272R, 272S, 272T, 272V, 272W, 272Y, 2731, 274D, 274E, 274F, 274G, 274H, 2741, 274L, 274M, 274N, 274P, 274R, 274T, 274V, 274W, 274Y, 275L, 275W, 276D, 276E, 276F, 276G, 276H, 2761, 276L, 276M, 276P, 276R, 276S, 276T, 276V, 276W, 276Y, 278D, 278E, 278G, 278H, 2781, 278K, 278L, 278M, 278N, 278P, 278Q, 278R, 278S, 278T, 278V, 278W, 280G, 280K, 280L, 280P, 280W, 281 D, 281 E, 281 K, 281 N, 281 P, 281Q, 281 Y, 282E, 282G, 282K, 282P, 282Y, 283G, 283H, 283K, 283L, 283P, 283R, 283Y, 284D, 284E, 284L, 284N, 284Q, 284T, 284Y, 285D, 285E, 285K, 285Q, 285W, 285Y, 286E, 286G, 286P, 286Y, 288D, 288E, 288Y, 290D, 290H, 290L, 290N, 290W, 291 D, 291E, 291G, 291H, 2911, 291Q, 291T, 292D, 292E, 292T, 292Y, 293F, 293G, 293H, 2931, 293L, 293M, 293N, 293P, 293R, 293S, 293T, 293V, 293W, 293Y, 294F, 294G, 294H, 2941, 294K, 294L, 294M, 294P, 294R, 294S, 294T, 294V, 294W, 294Y, 295D, 295E, 295F, 295G, 295H, 2951, 295M, 295N, 295P, 295R, 295S, 295T, 295V, 295W, 295Y, 296A, 296D, 296E, 296G, 296H, 2961, 296K, 296L, 296M, 296N, 296Q, 296R, 296S, 296T, 296V, 297D, 297E, 297F, 297G, 297H, 2971, 297K, 297L, 297M, 297P, 297Q, 297R, 297S, 297T, 297V, 297W, 297Y, 298A, 298D, 298E, 298F, 298H, 2981, 298K, 298M, 298N, 298Q, 298R, 298T, 298W, 298Y, 299A, 299D, 299E, 299F, 299G, 299H, 2991, 299K, 299L, 299M, 299N, 299P, 299Q, 299R, 299S, 299V, 299W, 299Y, 300A, 300D, 300E, 300G, 300H, 300K, 300M, 300N, 300P, 300Q, 300R, 300S, 300T, 300V, 300W, 301 D, 301 E, 301 H, 301 Y, 302I, 303D, 303E, 303Y, 304D, 304H, 304L, 304N, 304T, 305E, 305T, 305Y, 313F, 317E, 317Q, 318H, 318L, 318Q, 318R, 318Y, 320D, 320F, 320G, 320H, 320I, 320L, 320N, 320P, 320S, 320T, 320V, 320W, 320Y, 322D, 322F, 322G, 322H, 3221, 322P, 322S, 322T, 322V, 322W, 322Y, 3231, 324D, 324F, 324G, 324H, 3241, 324L, 324M, 324P, 324R, 324T, 324V, 324W, 324Y, 325A, 325D, 325E, 325F, 325G, 325H, 3251, 325K, 325L, 325M, 325P, 325Q, 325R, 325S, 325T, 325V, 325W, 325Y, 326E, 3261, 326L, 326P, 326T, 327D, 327E, 327F, 327H, 3271, 327K, 327L, 327M, 327N, 327P, 327R, 327S, 327T, 327V, 327W, 327Y, 328A, 328D, 328E, 328F, 328G, 328H, 3281, 328K, 328M, 328N, 328P, 328Q, 328R, 328S, 328T, 328V, 328W, 328Y, 329D, 329E, 329F, 329G, 329H, 3291, 329K, 329L, 329M, 329N, 329Q, 329R, 329S, 329T, 329V, 329W, 329Y, 330E, 330F, 330G, 330H, 3301, 330L, 330M, 330N, 330P, 330R, 330S, 330T, 330V, 330W, 330Y, 331 D, 331 F, 331 H, 3311, 331 L, 331 M, 331Q, 331 R, 331T, 331V, 331 W, 331 Y, 332A, 332D, 332E, 332F, 332H, 332K, 332L, 332M, 332N, 332P, 332Q, 332R, 332S, 332T, 332V, 332W, 332Y, 333A, 333F, 333H, 3331, 333L, 333M, 333P, 333T, 333Y, 334A, 334F, 3341, 334L, 334P, 334T, 335D, 335F, 335G, 335H, 3351, 335L, 335M, 335N, 335P, 335R, 335S, 335V, 335W, 335Y, 336E, 336K, 336Y, 337E, 337H, and 337N, wherein numbering is according to the EU index.

[110] As described in USSN 11/090,981, filed March 24, 2005, entitled "Immunoglobulin variants outside the Fc region", and incorporated entirely by reference, amino acid modifications at heavy chain constant region positions 118, 119, 120, 121 , 122, 124, 126, 129, 131 , 132, 133, 135, 136, 137, 138, 139, 147, 148, 150, 151 , 152, 153, 155, 157, 159, 160, 161 , 162, 163, 164, 165, 166, 167, 168, 169, 171 , 172, 173, 174, 175, 176, 177, 178, 179, 180, 183, 187, 188, 189, 190, 191 , 192, 193, 194, 195, 196, 197, 198, 199, 201 , 203, 205, 206, 207, 208, 209, 210, 211 , 212, 213, 214, 216, 217, 218, 219, 221 , 222, 223, 224, 225, 226, 227, 228, 229, 230, 231 , 232, 233, 234, 235, and 236, allow modification of FcyR binding properties, effector function, and potentially clinical properties of antibodies.

[111] As described in USSN 11/090,981 , filed March 24, 2005, entitled "Immunoglobulin variants outside the Fc region", and incorporated entirely by reference, amino acid modifications at light chain constant region positions 108, 109, 110, 111 , 112, 114, 116, 121 , 122, 123, 124, 125, 126, 127, 128, 129, 131 , 137, 138, 140, 141 , 142, 143, 145, 147, 149, 150, 151 , 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171 , 172, 173, 174, 176, 180, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191 , 193, 195, 197, 199, 200, 202, 203, 204, 205, 206, 207, 208, 210, 211 , 212, 213, allow modification of FcyR binding properties, effector function, and potentially clinical properties of antibodies. [112] In particular, variants that alter binding to one or more human Fc receptors may comprise an amino acid modification in the heavy chain constant region, as described herein, selected from the group consisting of 118K, 118E, 118Y, 119R, 119E, 119Y, 120R, 120E, 1201, 121 E, 121Y, 121 H, 122E, 122R, 124K, 124E, 124Y, 126K, 126D, 129L, 129D, 131G, 131T, 132D, 132R, 132L, 133R, 133E, 133L, 1351, 135E, 135K, 136E, 136K, 1361, 137E, 138S, 138R, 138D, 1391, 139E, 139K, 147A, 147E, 148Y, 148K, 150L, 150K, 150E, 151A, 151D, 152L, 152K, 153L, 153D, 155E, 155K, 1551, 157E, 157K, 157Y, 159K, 159D, 159L, 160K, 160E, 160Y, 161 D, 162D, 162K, 162Y, 163R, 164R, 164E, 164Y, 165D, 165R, 165Y, 166D, 167A, 168L, 169E, 171 G, 171 H, 172K, 172L, 172E, 173T, 173D, 174E, 174K, 174Y, 175D, 175L, 176D, 176R, 176L, 177R, 177E, 177Y, 178D, 179K, 179Y, 179E, 180K, 180L, 180E, 183T, 1871, 187K, 187E, 1881, 189D, 189G, 1901, 190K, 190E, 191D, 191R, 191Y, 192N, 192R, 192L, 193F, 193E, 194R, 194D, 195R, 195D, 195Y, 196K, 196D, 196L, 197R, 197E, 197Y, 198L, 199T, 199D, 199K, 201 E, 201 K, 201 L, 203D, 203L, 203K, 205D, 205L, 206A, 206E, 207K, 207D, 208R, 208E, 208Y, 209E, 209K, 209Y, 210L, 210E, 210Y, 211 R, 211 E, 211 Y, 212Q, 212K, 212H, 212L, 212Y, 213N, 213E, 213H, 213L, 213Y, 214N, 214E, 214H, 214L, 214Y, 216N, 216K, 216H, 216L, 216Y, 217D, 217H, 217A, 217V, 217G, 218D, 218E, 218Q, 218T, 218H, 218L, 218Y, 219D, 219E, 219Q, 219K, 219T, 219H, 219L, 2191, 219Y, 205A, 210A, 213A, 214A, 218A, 221 K, 221Y, 221E, 221N, 221Q, 221 R, 221S, 221T, 221H, 221A, 221V, 221 L, 2211, 221 F, 221 M, 221 W, 221 P, 221 G, 222E, 222Y, 222D, 222N, 222Q, 222R, 222S, 222T, 222H, 222V, 222L, 222I, 222F, 222M, 222W, 222P, 222G, 222A, 223D, 223N, 223Q, 223R, 223S, 223H, 223A, 223V, 223L, 2231, 223F, 223M, 223Y, 223W, 223P, 223G, 223E, 223K, 224D, 224N, 224Q, 224K, 224R, 224S, 224T, 224V, 224L, 2241, 224F, 224M, 224W, 224P, 224G, 224E, 224Y, 224A, 225D, 225N, 225Q, 225R, 225S, 225H, 225A, 225V, 225L, 2251, 225F, 225M, 225Y, 225P, 225G, 225E, 225K, 225W, 226S, 227E, 227K, 227Y, 227G, 227D, 227N, 227Q, 227R, 227S, 227T, 227H, 227A, 227V, 227L, 2271, 227F, 227M, 227W, 228K, 228Y, 228G, 228D, 228N, 228Q, 228R, 228T, 228H, 228A, 228V, 228L, 2281, 228F, 228M, 228W, 229S, 230A, 230E, 230Y, 230G, 230D, 230N, 230Q, 230K, 230R, 230S, 230T, 230H, 230V, 230L, 2301, 230F, 230M, 230W, 231 K, 231P, 231 D, 231 N, 231 Q, 231 R, 231S, 231T, 231H, 231V, 231 L, 2311, 231 F, 231 M, 231W, 232E, 232K, 232Y, 232G, 232D, 232N, 232Q, 232R, 232S, 232T, 232H, 232A, 232V, 232L, 2321, 232F, 232M, 232W, 233D, 233N, 233Q, 233R, 233S, 233T, 233H, 233A, 233V, 233L, 2331, 233F, 233M, 233Y, 233W, 233G, 234D, 234E, 234N, 234Q, 234T, 234H, 234Y, 2341, 234V, 234F, 234K, 234R, 234S, 234A, 234M, 234G, 235D, 235S, 235N, 235Q, 235T, 235H, 235Y, 2351, 235V, 235F, 235E, 235K, 235R, 235A, 235M, 235W, 235P, 235G, 236D, 236E, 236N, 236Q, 236K, 236R, 236S, 236T, 236H, 236A, 236V, 236L, 2361, 236F, 236M, 236Y, 236W, and 236P, wherein numbering is according to the EU index.

[113] In particular, variants that alter binding to one or more human Fc receptors may comprise an amino acid modification in the light chain constant region, as described herein, selected from the group consisting of 108D, 1081, 108Q, 109D, 109P, 109R, 110E, 1101, 110K, 111 E, 111K, 111L, 112E, 112R, 112Y, 114D, 1141, 114K, 116T, 121 D, 122R, 122S, 122Y, 123L, 123R, 124E, 125E, 125K, 126D, 126L, 126Q, 127A, 127D, 127K, 128N, 129E, 1291, 129K, 131T, 137K, 137S, 138D, 138K, 138L, 140E, 140H, 140K, 141E, 141 K, 142D, 142G, 142L, 143A, 143L, 143R, 145D, 145T, 145Y, 147A, 147E, 147K, 149D, 149Y, 150A, 1511, 151K, 152L, 152R, 152S, 153D, 153H, 153S, 154E, 154R, 154V, 155E, 1551, 155K, 156A, 156D, 156R, 157N, 158D, 158L, 158R, 159E, 159K, 159L, 160K, 160V, 161 K, 161 L, 162T, 163E, 163K, 163T, 164Q, 165K, 165P, 165Y, 166E, 166M, 166S, 167K, 167L, 168K, 168Q, 168Y, 169D, 169H, 169S, 1701, 170N, 170R, 171A, 171N, 171V, 172E, 1721, 172K, 173K, 173L, 173Q, 174A, 176T, 180E, 180K, 180S, 181 K, 182E, 182R, 182T, 183D, 183L, 183P, 184E, 184K, 184Y, 1851, 185Q, 185R, 187K, 187Y, 188E, 188S, 188Y, 189D, 189K, 189Y, 190E, 190L, 190R, 191 E, 191 R, 191 S, 193E, 193K, 193S, 1951, 195K, 195Q, 197E, 197K, 197L, 199E, 199K, 199Y, 200S, 202D, 202R, 202Y, 203D, 203L, 203R, 204T, 205E, 205K, 206E, 206I, 206K, 207A, 207E, 207L, 208E, 208K, 208T, 210A, 210E, 210K, 211 A, 211 E, 211P, 212E, 212K, 212T, 213L, 213R, wherein numbering is according to the EU index. [114] Additional substitutions that may also be used in the present invention include other substitutions that modulate Fc receptor affinity, FcγR-mediated effector function, and/or complement mediated effector function include but are not limited to 298A, 298T, 326A, 326D, 326E, 326W, 326Y, 333A, 333S, 334L, and 334A (US 6,737,056; Shields et al, Journal of Biological Chemistry, 2001 , 276(9):6591 -6604; US 6,528,624; ldusogie et al., 2001 , J. Immunology 166:2571-2572), 247L, 255L, 270E, 392T, 396L, and 421 K (USSN 10/754,922; USSN 10/902,588), and 280H, 280Q, and 280Y (USSN 10/370,749), all incorporated entirely by reference.

[115] In other embodiments, antibodies of the present invention may be combined with constant heavy chain variants that alter FcRn binding. These include modifications that modify FcRn affinity in a pH-specific manner. In particular, variants that increase Fc binding to FcRn include but are not limited to: 250E, 250Q, 428L, 428F, 250Q/428L (Hinton et a/., 2004, J. Biol. Chem. 279(8): 6213-6216, Hinton et al. 2006 Journal of Immunology 176:346-356, USSN 11/102621 , PCT/US2003/033037, PCT/US2004/011213, USSN 10/822300, USSN 10/687118, PCT/US2004/034440, USSN 10/966673, all incorporated entirely by reference), 256A, 272A, 286A, 305A, 307A, 311A, 312A, 376A, 378Q, 380A, 382A, 434A (Shields et al, Journal of Biological Chemistry, 2001 , 276(9):6591-6604, USSN 10/982470, US6737056, USSN

11/429793, USSN 11/429786, PCT/US2005/029511 , USSN 11/208422, all incorporated entirely by reference), 252F, 252T, 252Y, 252W, 254T, 256S, 256R, 256Q, 256E, 256D, 256T, 309P, 311 S, 433R, 433S, 433I, 433P, 433Q, 434H, 434F, 434Y, 252Y/254T/256E, 433K/434F/436H, 308T/309P/311S (DaII Acqua et al. Journal of Immunology, 2002, 169:5171-5180, US7083784, PCT/US97/03321 , US6821505, PCT/US01/48432, USSN 11/397328, all incorporated entirely by reference), 257C, 257M, 257L, 257N, 257Y, 279E, 279Q, 279Y, insertion of Ser after 281 , 283F, 284E, 306Y, 307V, 308F, 308Y 311V, 385H, 385N, (PCT/US2005/041220, USSN 11/274065, USSN 11/436,266, all incorporated entirely by reference ) 204D, 284E, 285E, 286D, and 290E (PCT/US2004/037929 incorporated entirely by reference). [116] In some embodiments of the invention, antibodies may comprise isotypic modifications, that is, modifications in a parent IgG to the amino acid type in an alternate IgG. For example as illustrated in Figure 3, an IgGI /lgG3 hybrid variant may be constructed by substituting IgGI positions in the CH2 and/or CH3 region with the amino acids from lgG3 at positions where the two isotypes differ. Thus a hybrid variant IgG antibody may be constructed that comprises one or more substitutions selected from the group consisting of: 274Q, 276K, 300F, 339T, 356E, 358M, 384S, 392N, 397M, 4221, 435R, and 436F. In other embodiments of the invention, an lgG1/lgG2 hybrid variant may be constructed by substituting lgG2 positions in the CH2 and/or CH3 region with amino acids from IgGI at positions where the two isotypes differ. Thus a hybrid variant IgG antibody may be constructed that comprises one or more modifications selected from the group consisting of 233E, 234L, 235L, -236G (referring to an insertion of a glycine at position 236), and 327A. [117] Means for optimizing effector function [118] The present invention is directed to antibodies comprising means for altering affinity to one or more Fc receptors, and/or alter the ability of the antibody to mediate one or more effector functions. Means of the invention include amino acid modifications (e.g., positional means for optimizing effector function, substitutional means for optimizing effector function, etc.) and glycoform modifications (e.g., means for glycoform modifications). [119] Amino acid modifications [120] As described in USSN 11/124,620, filed May 5, 2005, entitled Optimized Fc Variants", and incorporated entirely by reference, positional means for optimizing effector function include but is not limited to, modification of an amino acid at one or more heavy chain constant region positions (e.g., at positions 221 , 222, 223, 224, 225, 227, 228, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241 , 243, 244, 245, 246, 247, 249, 255, 258, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271 , 272, 273, 274, 275, 276, 278, 280, 281 , 282, 283, 284, 285, 286, 288, 290, 291 , 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 313, 317, 318, 320, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331 , 332, 333, 334, 335, 336, and 337) which allow modification of FcyR binding properties, effector function, and potentially clinical properties of antibodies. [121] In particular, substitutional means for optimizing effector functions, for altering binding to one or more human Fc receptors, include, but is not limited to, a substition of an amino acid at one or more heavy chain constant region positions, e.g., one or more of the following amino acid substitutions in the heavy chain constant region positions: 221 K, 221 Y, 222E, 222Y, 223E, 223K, 224E, 224Y, 225E, 225K, 225W, 227E, 227G, 227K, 227Y, 228E, 228G, 228K, 228Y, 230A, 230E, 230G, 230Y, 231E, 231G, 231 K, 231 P, 231Y, 232E, 232G, 232K, 232Y, 233A, 233D, 233F, 233G, 233H, 233I, 233K, 233L, 233M, 233N, 233Q, 233R, 233S, 233T, 233V, 233W, 233Y, 234A, 234D, 234E, 234F, 234G, 234H, 2341, 234K, 234M, 234N, 234P, 234Q, 234R, 234S, 234T, 234V, 234W, 234Y, 235A, 235D, 235E, 235F, 235G, 235H, 2351, 235K, 235M, 235N, 235P, 235Q, 235R, 235S, 235T, 235V, 235W, 235Y, 236A, 236D, 236E, 236F, 236H, 2361, 236K, 236L, 236M, 236N, 236P, 236Q, 236R, 236S, 236T, 236V, 236W, 236Y, 237D, 237E, 237F, 237H, 2371, 237K, 237L, 237M, 237N, 237P, 237Q, 237R, 237S, 237T, 237V, 237W, 237Y, 238D, 238E, 238F, 238G, 238H, 2381, 238K, 238L, 238M, 238N, 238Q, 238R, 238S, 238T, 238V, 238W, 238Y, 239D, 239E, 239F, 239G, 239H, 2391, 239K, 239L, 239M, 239N, 239P, 239Q, 239R, 239T, 239V, 239W, 239Y, 240A, 240I, 240M, 240T, 241 D, 241 E, 241 L, 241 R, 241S, 241W, 241 Y, 243E, 243H, 243L, 243Q, 243R, 243W, 243Y, 244H, 245A, 246D, 246E, 246H, 246Y, 247G, 247V, 249H, 249Q, 249Y, 255E, 255Y, 258H, 258S, 258Y, 260D, 260E, 260H, 260Y, 262A, 262E, 262F, 262I, 262T, 263A, 263I, 263M, 263T, 264A, 264D, 264E, 264F, 264G, 264H, 264I, 264K, 264L, 264M, 264N, 264P, 264Q, 264R, 264S, 264T, 264W, 264Y, 265F, 265G, 265H, 265I, 265K, 265L, 265M, 265N, 265P, 265Q, 265R, 265S, 265T, 265V, 265W, 265Y, 266A, 266I, 266M, 266T, 267D, 267E, 267F, 267H, 267I, 267K, 267L, 267M, 267N, 267P, 267Q, 267R, 267T, 267V, 267W, 267Y, 268D, 268E, 268F, 268G, 268I, 268K, 268L, 268M, 268P, 268Q, 268R, 268T, 268V, 268W, 269F, 269G, 269H, 269I, 269K, 269L, 269M, 269N, 269P, 269R, 269S, 269T, 269V, 269W, 269Y, 270F, 270G, 270H, 2701, 270L, 270M, 270P, 270Q, 270R, 270S, 270T, 270W, 270Y, 271 A, 271 D, 271 E, 271F, 271G, 271H, 2711, 271K, 271 L, 271M, 271N, 271Q, 271R, 271S, 271T, 271V, 271W, 271Y, 272D, 272F, 272G, 272H, 2721, 272K, 272L, 272M, 272P, 272R, 272S, 272T, 272V, 272W, 272Y, 2731, 274D, 274E, 274F, 274G, 274H, 2741, 274L, 274M, 274N, 274P, 274R, 274T, 274V, 274W, 274Y, 275L, 275W, 276D, 276E, 276F, 276G, 276H, 2761, 276L, 276M, 276P, 276R, 276S, 276T, 276V, 276W, 276Y, 278D, 278E, 278G, 278H, 2781, 278K, 278L, 278M, 278N, 278P, 278Q, 278R, 278S, 278T, 278V, 278W, 280G, 280K, 280L, 280P, 280W, 281 D, 281 E, 281 K, 281 N, 281 P, 281 Q, 281 Y, 282E, 282G, 282K, 282P, 282Y, 283G, 283H, 283K, 283L, 283P, 283R, 283Y, 284D, 284E, 284L, 284N, 284Q, 284T, 284Y, 285D, 285E, 285K, 285Q, 285W, 285Y, 286E, 286G, 286P, 286Y, 288D, 288E, 288Y, 290D, 290H, 290L, 290N, 290W, 291 D, 291 E, 291 G, 291 H, 2911, 291 Q, 291T, 292D, 292E, 292T, 292Y, 293F, 293G, 293H, 2931, 293L, 293M, 293N, 293P, 293R, 293S, 293T, 293V, 293W, 293Y, 294F, 294G, 294H, 2941, 294K, 294L, 294M, 294P, 294R, 294S, 294T, 294V, 294W, 294Y, 295D, 295E, 295F, 295G, 295H, 2951, 295M, 295N, 295P, 295R, 295S, 295T, 295V, 295W, 295Y, 296A, 296D, 296E, 296G, 296H, 2961, 296K, 296L, 296M, 296N, 296Q, 296R, 296S, 296T, 296V, 297D, 297E, 297F, 297G, 297H, 2971, 297K, 297L, 297M, 297P, 297Q, 297R, 297S, 297T, 297V, 297W, 297Y, 298A, 298D, 298E, 298F, 298H, 2981, 298K, 298M, 298N, 298Q, 298R, 298T, 298W, 298Y, 299A, 299D, 299E, 299F, 299G, 299H, 2991, 299K, 299L, 299M, 299N, 299P, 299Q, 299R, 299S, 299V, 299W, 299Y, 300A, 300D, 300E, 300G, 300H, 300K, 300M, 300N, 300P, 300Q, 300R, 300S, 300T, 300V, 300W, 301 D, 301 E, 301 H, 301 Y, 302I, 303D, 303E, 303Y, 304D, 304H, 304L, 304N, 304T, 305E, 305T, 305Y, 313F, 317E, 317Q, 318H, 318L, 318Q, 318R, 318Y, 320D, 320F, 320G, 320H, 320I, 320L, 320N, 320P, 320S, 320T, 320V, 320W, 320Y, 322D, 322F, 322G, 322H, 322I, 322P, 322S, 322T, 322V, 322W, 322Y, 323I, 324D, 324F, 324G, 324H, 324I, 324L, 324M, 324P, 324R, 324T, 324V, 324W, 324Y, 325A, 325D, 325E, 325F, 325G, 325H, 3251, 325K, 325L, 325M, 325P, 325Q, 325R,

325S, 325T, 325V, 325W, 325Y, 326E, 3261, 326L, 326P, 326T, 327D, 327E, 327F, 327H, 3271, 327K, 327L, 327M, 327N, 327P, 327R, 327S, 327T, 327V, 327W, 327Y, 328A, 328D, 328E, 328F, 328G, 328H, 3281, 328K, 328M, 328N, 328P, 328Q, 328R, 328S, 328T, 328V, 328W, 328Y, 329D, 329E, 329F, 329G, 329H, 3291, 329K, 329L, 329M, 329N, 329Q, 329R, 329S, 329T, 329V, 329W, 329Y, 330E, 330F, 330G, 330H, 3301, 330L, 330M, 330N, 330P, 330R, 330S, 330T, 330V, 330W, 330Y, 331 D, 331 F, 331 H, 3311, 331L, 331 M, 331Q, 331 R, 331T, 331V, 331W, 331Y, 332A, 332D, 332E, 332F, 332H, 332K, 332L, 332M, 332N, 332P, 332Q, 332R, 332S, 332T, 332V, 332W, 332Y, 333A, 333F, 333H, 3331, 333L, 333M, 333P, 333T, 333Y, 334A, 334F, 3341, 334L, 334P, 334T, 335D, 335F, 335G, 335H, 3351, 335L, 335M, 335N, 335P, 335R, 335S, 335V, 335W, 335Y, 336E, 336K, 336Y, 337E, 337H, and 337N, wherein numbering is according to the EU index.

[122] As described in USSN 11/090,981, filed March 24, 2005, entitled "Immunoglobulin variants outside the Fc region", and incorporated entirely by reference, positional means for optimizing effector function include, but is not limited to, modification of an amino acid at one or more heavy chain constant region positions (e.g, at positions 118, 119, 120, 121 , 122, 124, 126, 129, 131, 132, 133, 135, 136, 137, 138, 139, 147, 148, 150, 151, 152, 153, 155, 157, 159, 160, 161 , 162, 163, 164, 165, 166, 167, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 183, 187, 188, 189, 190, 191 , 192, 193, 194, 195, 196, 197, 198, 199, 201, 203, 205, 206, 207, 208, 209, 210, 211 , 212, 213, 214, 216, 217, 218, 219, 221 , 222, 223, 224, 225, 226, 227, 228, 229, 230, 231 , 232, 233, 234, 235, and 236) which allow modification of FcγR binding properties, effector function, and potentially clinical properties of antibodies. [123] As described in USSN 11/090,981 , filed March 24, 2005, entitled "Immunoglobulin variants outside the Fc region", and incorporated entirely by reference, positional means for optimizing effector function, include but is not limited to, modification of an amino acid at one or more light chain constant region positions (e.g., at positions 108, 109, 110, 111 , 112, 114, 116, 121 , 122, 123, 124, 125, 126, 127, 128, 129, 131 , 137, 138, 140, 141 , 142, 143, 145, 147, 149, 150, 151 , 152, 153, 154, 155, 156, 157, 159, 160, 161 , 162, 163, 164, 165, 166, 167, 168, 169, 170, 171 , 172, 173, 174, 176, 180, 181 , 182, 183, 184, 185, 187, 188, 189, 190, 191 , 193, 195, 197, 199, 200, 202, 203, 204, 205, 206, 207, 208, 210, 211 , 212, 213) which allow modification of FcγR binding properties, effector function, and potentially clinical properties of antibodies. [124] In particular, substitional means for altering binding to one or more human Fc receptors include, but is not limited to, a substition of an amino acid at one or more heavy chain constant region positions, e.g., one or more of the following substitutions: 118K, 118E, 118Y, 119R, 119E, 119Y, 120R, 120E, 1201, 121 E, 121Y, 121H, 122E, 122R, 124K, 124E, 124Y, 126K, 126D, 129L, 129D, 131G, 131T, 132D, 132R, 132L, 133R, 133E, 133L, 1351, 135E, 135K, 136E, 136K, 1361, 137E, 138S, 138R, 138D, 1391, 139E, 139K, 147A, 147E, 148Y, 148K, 150L, 150K, 150E, 151 A, 151 D, 152L, 152K, 153L, 153D, 155E, 155K, 1551, 157E, 157K, 157Y, 159K, 159D, 159L, 160K, 160E, 160Y, 161 D, 162D, 162K, 162Y, 163R, 164R, 164E, 164Y, 165D, 165R, 165Y, 166D, 167A, 168L, 169E, 171G, 171H, 172K, 172L, 172E, 173T, 173D, 174E, 174K, 174Y, 175D, 175L, 176D, 176R, 176L, 177R, 177E, 177Y, 178D, 179K, 179Y, 179E, 180K, 180L, 180E, 183T, 1871, 187K, 187E, 1881, 189D, 189G, 1901, 190K, 190E, 191 D, 191 R, 191 Y, 192N, 192R, 192L, 193F, 193E, 194R, 194D, 195R, 195D, 195Y, 196K, 196D, 196L, 197R, 197E, 197Y, 198L, 199T, 199D, 199K, 201 E, 201 K, 201 L, 203D, 203L, 203K, 205D, 205L, 206A, 206E, 207K, 207D, 208R, 208E, 208Y, 209E, 209K, 209Y, 21 OL, 21 OE, 210Y, 211R, 211E, 211Y, 212Q, 212K, 212H, 212L, 212Y, 213N, 213E, 213H, 213L, 213Y, 214N, 214E, 214H, 214L, 214Y, 216N, 216K, 216H, 216L, 216Y, 217D, 217H, 217A, 217V, 217G, 218D, 218E, 218Q, 218T, 218H, 218L, 218Y, 219D, 219E, 219Q, 219K, 219T, 219H, 219L, 2191, 219Y, 205A, 210A, 213A, 214A, 218A, 221K, 221Y, 221E, 221N, 221Q, 221 R, 221S, 221T, 221H, 221A, 221V, 221 L, 2211, 221F, 221M, 221W, 221P, 221G, 222E, 222Y, 222D, 222N, 222Q, 222R, 222S, 222T, 222H, 222V, 222L, 222I, 222F, 222M, 222W, 222P, 222G, 222A, 223D, 223N, 223Q, 223R, 223S, 223H, 223A, 223V, 223L, 223I, 223F, 223M, 223Y, 223W, 223P, 223G, 223E, 223K, 224D, 224N, 224Q, 224K, 224R, 224S, 224T, 224V, 224L, 2241, 224F, 224M, 224W, 224P, 224G, 224E, 224Y, 224A, 225D, 225N, 225Q, 225R, 225S, 225H, 225A, 225V, 225L, 2251, 225F, 225M, 225Y, 225P, 225G, 225E, 225K, 225W, 226S, 227E, 227K, 227Y, 227G, 227D, 227N, 227Q, 227R, 227S, 227T, 227H, 227A, 227V, 227L, 2271, 227F, 227M, 227W, 228K, 228Y, 228G, 228D, 228N, 228Q, 228R, 228T, 228H, 228A, 228V, 228L, 2281, 228F, 228M, 228W, 229S, 230A, 230E, 230Y, 230G, 230D, 230N, 230Q, 230K, 230R, 230S, 230T, 230H, 230V, 230L, 2301, 230F, 230M, 230W, 231 K, 231 P, 231 D, 231 N, 231Q, 231 R, 231 S, 231T, 231 H, 231V, 231 L, 2311, 231 F, 231 M, 231 W, 232E, 232K, 232Y, 232G, 232D, 232N, 232Q, 232R, 232S, 232T, 232H, 232A, 232V, 232L, 2321, 232F, 232M, 232W, 233D, 233N, 233Q, 233R, 233S, 233T, 233H, 233A, 233V, 233L, 2331, 233F, 233M, 233Y, 233W, 233G, 234D, 234E, 234N, 234Q, 234T, 234H, 234Y, 2341, 234V, 234F, 234K, 234R, 234S, 234A, 234M, 234G, 235D, 235S, 235N, 235Q, 235T, 235H, 235Y, 2351, 235V, 235F, 235E, 235K, 235R, 235A, 235M, 235W, 235P, 235G, 236D, 236E, 236N, 236Q, 236K, 236R, 236S, 236T, 236H, 236A, 236V, 236L, 2361, 236F, 236M, 236Y, 236W, and 236P, wherein numbering is according to the EU index. [125] In particular, substitutional means for altering binding to one or more human Fc receptors include, but is not limited to, a substition of an amino acid modification at one or more light chain constant region positions, e.g., one or more of the following amino acid substitutions in the light chain constant region positions: 108D, 1081, 108Q, 109D, 109P, 109R, 110E, 1101, 110K, 111E, 111 K, 111L, 112E, 112R, 112Y, 114D, 1141, 114K, 116T, 121 D, 122R, 122S, 122Y, 123L, 123R, 124E, 125E, 125K, 126D, 126L, 126Q, 127A, 127D, 127K, 128N, 129E, 1291, 129K, 131T, 137K, 137S, 138D, 138K, 138L, 140E, 140H, 140K, 141 E, 141 K, 142D, 142G, 142L, 143A, 143L, 143R, 145D, 145T, 145Y, 147A, 147E, 147K, 149D, 149Y, 150A, 1511, 151 K, 152L, 152R, 152S, 153D, 153H, 153S, 154E, 154R, 154V, 155E, 1551, 155K, 156A, 156D, 156R, 157N, 158D, 158L, 158R, 159E, 159K, 159L, 160K, 160V, 161 K, 161 L, 162T, 163E, 163K, 163T, 164Q, 165K, 165P, 165Y, 166E, 166M, 166S, 167K, 167L, 168K, 168Q, 168Y, 169D, 169H, 169S, 1701, 170N, 170R, 171A, 171N, 171V, 172E, 1721, 172K, 173K, 173L, 173Q, 174A, 176T, 180E, 180K, 180S, 181K, 182E, 182R, 182T, 183D, 183L, 183P, 184E, 184K, 184Y, 1851, 185Q, 185R, 187K, 187Y, 188E, 188S, 188Y, 189D, 189K, 189Y, 190E, 190L, 190R, 191E, 191 R, 191S, 193E, 193K, 193S, 1951, 195K, 195Q, 197E, 197K, 197L, 199E, 199K, 199Y, 200S, 202D, 202R, 202Y, 203D, 203L, 203R, 204T, 205E, 205K, 206E, 2061, 206K, 207A, 207E, 207L, 208E, 208K, 208T, 210A, 210E, 210K, 211A, 211E, 211P, 212E, 212K, 212T, 213L, 213R, wherein numbering is according to the EU index. [126] Additional substitutional means that may also be used in the present invention include substitutional means for modulating Fc receptor affinity, FcγR-mediated effector function, and/or complement mediated effector function, e.g., one or more of the following amino acid substitutions: 298A, 298T, 326A, 326D, 326E, 326W, 326Y, 333A, 333S, 334L, and 334A (US 6,737,056; Shields et al, Journal of Biological Chemistry, 2001 , 276(9):6591-6604; US 6,528,624; ldusogie et al., 2001 , J. Immunology 166:2571-2572), 247L, 255L, 270E, 392T, 396L, and 421 K (USSN 10/754,922; USSN 10/902,588), and 280H, 280Q, and 280Y (USSN 10/370,749), all incorporated entirely by reference. [127] In other embodiments, antibodies of the present invention may be combined with means for altering FcRn binding, e.g., antibodies of the present invention may be combined with constant heavy chain variants. These include means for modifying FcRn affinity in a pH-specific manner. In particular, substitional means for increasing Fc binding to FcRn include, but are not limited to, one or more of the following amino acid substitutions: 250E, 250Q, 428L, 428F,

250Q/428L (Hinton et al., 2004, J. Biol. Chem. 279(8): 6213-6216, Hinton et al. 2006 Journal of Immunology 176:346-356, USSN 11/102621, PCT/US2003/033037, PCT/US2004/011213, USSN 10/822300, USSN 10/687118, PCT/US2004/034440, USSN 10/966673, all incorporated entirely by reference), 256A, 272A, 286A, 305A, 307A, 311A, 312A, 376A, 378Q, 380A, 382A, 434A (Shields et al, Journal of Biological Chemistry, 2001 , 276(9):6591-6604, USSN

10/982470, US6737056, USSN 11/429793, USSN 11/429786, PCT/US2005/029511 , USSN 11/208422, all incorporated entirely by reference), 252F, 252T, 252Y, 252W, 254T, 256S, 256R, 256Q, 256E, 256D, 256T, 309P, 311 S, 433R, 433S, 433I, 433P, 433Q, 434H, 434F, 434Y, 252Y/254T/256E, 433K/434F/436H, 308T/309P/311S (DaII Acqua et al. Journal of Immunology, 2002, 169:5171-5180, US7083784, PCT/US97/03321 , US6821505, PCT/U S01/48432, USSN 11/397328, all incorporated entirely by reference), 257C, 257M, 257L, 257N, 257Y, 279E, 279Q, 279Y, insertion of Ser after 281, 283F, 284E, 306Y, 307V, 308F, 308Y 311V, 385H, 385N, (PCT/US2005/041220, USSN 11/274065, USSN 11/436,266, all incorporated entirely by reference ) 204D, 284E, 285E, 286D, and 290E (PCT/U S2004/037929 incorporated entirely by reference).

[128] In some embodiments of the invention, antibodies may comprise means for isotypic modifications, that is, modifications in a parent IgG to the amino acid type in an alternate IgG. For example as illustrated in Figure 3, an lgG1/lgG3 hybrid variant may be constructed by a substitutional means for substituting IgGI positions in the CH2 and/or CH3 region with the amino acids from lgG3 at positions where the two isotypes differ. Thus a hybrid variant IgG antibody may be constructed that comprises one or more substitutional means, e.g., 274Q, 276K, 300F, 339T, 356E, 358M, 384S, 392N, 397M, 4221, 435R, and 436F. In other embodiments of the invention, an lgG1/lgG2 hybrid variant may be constructed by a substitutional means for substituting lgG2 positions in the CH2 and/or CH3 region with amino acids from IgGI at positions where the two isotypes differ. Thus a hybrid variant IgG antibody may be constructed that comprises one or more substitutional means, e.g., one or more of the following amino acid substations: 233E, 234L, 235L, -236G (referring to an insertion of a glycine at position 236), and 327A. [129] Glycoform modifications [130] Many polypeptides, including antibodies, are subjected to a variety of post-translational modifications involving carbohydrate moieties, such as glycosylation with oligosaccharides. There are several factors that can influence glycosylation. The species, tissue and cell type have all been shown to be important in the way that glycosylation occurs. In addition, the extracellular environment, through altered culture conditions such as serum concentration, may have a direct effect on glycosylation. (Lifely et a/., 1995, Glycobiology 5(8): 813-822), incorporated entirely by reference.

[131] All antibodies contain carbohydrate at conserved positions in the constant regions of the heavy chain. Each antibody isotype has a distinct variety of N-linked carbohydrate structures. Aside from the carbohydrate attached to the heavy chain, up to 30% of human IgGs have a glycosylated Fab region. IgG has a single N-linked biantennary carbohydrate at Asn297 of the CH2 domain. For IgG from either serum or produced ex vivo in hybridomas or engineered cells, the IgG are heterogeneous with respect to the Asn297 linked carbohydrate (Jefferis et al., 1998, Immunol. Rev. 163:59-76; Wright et al., 1997, Trends Biotech 15:26-32, both incorporated entirely by reference). For human IgG, the core oligosaccharide normally consists of GlcNAc2Man3GlcNAc, with differing numbers of outer residues.

[132] The carbohydrate moieties of the present invention will be described with reference to commonly used nomenclature for the description of oligosaccharides. A review of carbohydrate chemistry which uses this nomenclature is found in Hubbard et al. 1981 , Ann. Rev. Biochem. 50:555-583, incorporated entirely by reference. This nomenclature includes, for instance, Man, which represents mannose; GIcNAc, which represents 2-N-acetylglucosamine; Gal which represents galactose; Fuc for fucose; and GIc, which represents glucose. Sialic acids are described by the shorthand notation NeuNAc, for 5-N-acetylneuraminic acid, and NeuNGc for 5- glycolylneuraminic. [133] The term "glycosylation" is the attachment of oligosaccharides (carbohydrates containing two or more simple sugars linked together e.g. from two to about twelve simple sugars linked together) to a glycoprotein. The oligosaccharide side chains are typically linked to the backbone of the glycoprotein through either N- or O-linkages. The oligosaccharides of the present invention occur generally are attached to a CH2 domain of an Fc region as N-linked oligosaccharides. "N-linked glycosylation" refers to the attachment of the carbohydrate moiety to an asparagine residue in a glycoprotein chain. The skilled artisan will recognize that, for example, each of murine IgGI , lgG2a, lgG2b and lgG3 as well as human IgGI , lgG2, lgG3, lgG4, IgA and IgD CH2 domains have a single site for N-linked glycosylation at amino acid residue 297 (Kabat et al. Sequences of Proteins of Immunological Interest, 1991 , incorporated entirely by reference).

[134] For the purposes herein, a "mature core carbohydrate structure" refers to a processed core carbohydrate structure attached to an Fc region which generally consists of the following carbohydrate structure GlcNAc(Fucose)-GlcNAc-Man-(Man-GlcNAc)2 typical of biantennary oligosaccharides. The mature core carbohydrate structure is attached to the Fc region of the glycoprotein, generally via N-linkage to Asn297 of a CH2 domain of the Fc region. A "bisecting GIcNAc" is a GIcNAc residue attached to the β1 ,4 mannose of the mature core carbohydrate structure. The bisecting GIcNAc can be enzymatically attached to the mature core carbohydrate structure by a β(1 ,4)-N-acetylglucosaminyltransferase III enzyme (GnTIII). CHO cells do not normally express GnTIII (Stanley et al., 1984, J. Biol. Chem. 261 :13370-13378), but may be engineered to do so (Umana et al., 1999, Nature Biotech. 17:176-180). [135] The present invention contemplates antibodies that comprise modified glycoforms or engineered glycoforms. By "modified glycoform" or "engineered glycoform" as used herein is meant a carbohydrate composition that is covalently attached to a protein, for example an antibody, wherein said carbohydrate composition differs chemically from that of a parent protein. Engineered glycoforms may be useful for a variety of purposes, including but not limited to enhancing or reducing FcγR-mediated effector function. In one embodiment, the antibodies of the present invention are modified to control the level of fucosylated and/or bisecting oligosaccharides that are covalently attached to the Fc region. [136] Historically, antibodies produced in Chinese Hamster Ovary Cells (CHO), one of the most commonly used industrial hosts, contain about 2 to 6% in the population that are nonfucosylated. YB2/0 (rat myeloma) and Led 3 cell line (a lectin mutant of CHO line which has a deficient GDP-mannose 4,6 dehydratase leading to the deficiency of GDP-fucose or GDP- sugar intermediates that are the substrate of α1 ,6-fucosyltransferase (Ripka et al., 1986)), however, can produce antibodies with 78% to 98% nonfucosylated species. Unfortunately, the yield of antibody from these cells is extremely poor and therefore these cell lines are not useful to make therapeutic antibody products commercially. The FUT8 gene encodes the α1 ,6- fucosyltransferase enzyme that catalyzes the transfer of a fucosyl residue from GDP-fucose to position 6 of Asn-linked (N-linked) GlcNac of an N-glycan (Yanagidani et al., 1997, J Biochem 121 :626-632). It is known that the α1 ,6 fucosyltransferase is the only enzyme responsible for adding fucose to the N-linked biantennary carbohydrate at Asn297 in the CH2 domain of the IgG antibody.

[137] A variety of methods are well known in the art for generating modified glycoforms (Umaήa et al., 1999, Nat Biotechnol 17:176-180; Davies et al., 2001 , Biotechnol Bioeng 74:288- 294; Shields et al., 2002, J Biol Chem 277:26733-26740; Shinkawa et a/., 2003, J Biol Chem 278:3466-3473); (US 6,602,684; USSN 10/277,370; USSN 10/113,929; PCT WO 00/61739A1 ; PCT WO 01/29246A1 ; PCT WO 02/31140A1 ; PCT WO 02/30954A1 ); Yamane-Ohnuki et al., 2004, Biotechnology and Bioengineering 87(5):614-621 ; (Potelligent™ technology [Biowa, Inc., Princeton, NJ]; GlycoMAb™ glycosylation engineering technology [GLYCART biotechnology AG, Zurich, Switzerland]; all of which are expressly incorporated by reference). These techniques control the level of fucosylated and/or bisecting oligosaccharides that are covalently attached to the Fc region, for example by expressing an IgG in various organisms or cell lines, engineered or otherwise (for example Lec-13 CHO cells or rat hybridoma YB2/0 cells), by regulating enzymes involved in the glycosylation pathway (for example FUT8 [σ1 ,6- fucosyltranserase] and/or /?1-4- N-acetylglucosaminyltransferase III [GnTIII]), or by modifying carbohydrate(s) after the IgG has been expressed.

[138] Other methods for modifying glycoforms of the antibodies of the invention include using glycoengineered strains of yeast (Li et al., 2006, Nature Biotechnology 24(2):210-215), moss (Nechansky et al., 2007, MoI Immunjol 44(7): 1826-8), and plants (Cox et al., 2006, Nat

Biotechnol 24(12):1591-7). Methods for modifying glycoforms include but are not limited to using a glycoengineered strain of yeast Pichia pastoris (Li et al., 2006, Nature Biotechnology 24(2):210-215), a glycoengineered strain of the moss Physcomitrella patens wherein the enzymes β1 ,2-xylosyltransferase and/or ά1 ,3-fucosyltransferase are knocked out in (Nechansky et al., 2007, MoI. Immunol. 44(7): 1826-8), and the use of RNA interference to inhibit endogenous alpha-1 ,3-fucosyltransferase and/or beta-1 ,2-xylosyltransferase in the aquatic plant Lemna minor (Cox et al., 2006, Nat. Biotechnol. 24(12):1591-7).

[139] Engineered glycoform typically refers to the different carbohydrate or oligosaccharide; thus for example an antibody may comprise an engineered glycoform. Alternatively, engineered glycoform may refer to the antibody that comprises the different carbohydrate or oligosaccharide. For the purposes of modified glycoforms described herein, a "parent antibody" is a glycosylated antibody having the same amino acid sequence and mature core carbohydrate structure as an engineered glycoform of the present invention, except that fucose is attached to the mature core carbohydrate structure of the parent antibody. For instance, in a composition comprising the parent glycoprotein about 50-100% or about 70-100% of the parent glycoprotein comprises a mature core carbohydrate structure having fucose attached thereto. [140] The present invention provides a composition comprising a glycosylated antibody having an Fc region, wherein about 51-100% of the glycosylated antibody in the composition comprises a mature core carbohydrate structure which lacks fucose, attached to the Fc region of the antibody. In one embodiment, about 80-100% of the antibody in the composition comprises a mature core carbohydrate structure which lacks fucose. In another embodiment about 90-99% of the antibody in the composition lacks fucose attached to the mature core carbohydrate structure. In another embodiment, the antibody in the composition both comprises a mature core carbohydrate structure that lacks fucose and additionally comprises at least one amino acid modification in the Fc region. In another embodiment, the combination of engineered glycoform and amino acid modification provides optimal Fc receptor binding properties to the anti-IGF-1 R antibody. [141] Optimized properties of antibodies [142] The present invention provides variant antibodies that are optimized for a number of therapeutically relevant properties. A variant antibody comprises one or more modification(s) relative to a parent antibody, wherein said modification(s) provide one or more optimized properties. Thus the antibodies of the present invention are variant antibodies. An antibody of the present invention differs from its parent antibody by virtue of at least one modification. Thus variant antibodies of the present invention have at least one modification compared to the parent. Alternatively, the variant antibodies of the present invention may have more than one modification as compared to the parent, for example from about one to fifty amino acid modifications, e.g., from about one to ten amino acid modifications, from about one to about five amino acid modifications, etc., compared to the parent. Thus the sequences of the variant antibodies and those of the parent antibodies are substantially homologous. For example, the variant antibody sequences herein will possess about 80% homology with the parent antibody sequence, e.g., at least about 90% homology, e.g. at least about 95% homology, etc. [143] In another embodiment, the antibodies of the present invention comprise amino acid modifications that provide optimized effector function properties relative to the parent. Substitutions and optimized effector function properties are described in USSN 10/672,280,

PCT US03/30249, and USSN 10/822,231 , and USSN 60/627,774, filed 11 /12/2004 and entitled Optimized Fc Variants". Properties that may be optimized include but are not limited to enhanced or reduced affinity for an FcγR. In one embodiment, the antibodies of the present invention are optimized to possess enhanced affinity for a human activating FcγR, e.g., FcγRI, FcγRlla, FcγRllc, FcγRllla, and FcγRlllb. In one embodiment, an antibody of the invention is optimized to possess enhanced affinity for a human FcγRllla. In an alternate embodiment, the antibodies are optimized to possess reduced affinity for the human inhibitory receptor FcγRllb. These embodiments are anticipated to provide antibodies with enhanced therapeutic properties in humans, for example enhanced effector function and greater anti-cancer potency. In an alternate embodiment, the antibodies of the present invention are optimized to have reduced or ablated affinity for a human FcγR, including but not limited to FcγRI, FcγRlla, FcγRllb, FcγRllc, FcγRllla, and FcγRlllb. These embodiments are anticipated to provide antibodies with enhanced therapeutic properties in humans, for example reduced effector function and reduced toxicity. In other embodiments, antibodies of the present invention provide enhanced affinity for one or more FcγRs, yet reduced affinity for one or more other FcγRs. For example, an antibody of the present invention may have enhanced binding to FcγRllla, yet reduced binding to FcγRllb. Alternately, an antibody of the present invention may have enhanced binding to FcγRlla and FcγRI, yet reduced binding to FcγRllb. In yet another embodiment, an antibody of the present invention may have enhanced affinity for FcγRllb, yet reduced affinity to one or more activating FcγRs.

[144] The modifications of the invention may enhance binding affinity for one or more FcγRs. By "greater affinity" or "improved affinity" or "enhanced affinity" or "better affinity" than a parent immunoglobulin, as used herein is meant that an Fc variant binds to an Fc receptor with a significantly higher equilibrium constant of association (K3) or lower equilibrium constant of dissociation (Kd) than the parent polypeptide when the amounts of variant and parent polypeptide in the binding assay are essentially the same. For example, the Fc variant with improved FcγR binding affinity may display from about 5 fold to about 1000 fold, e.g. from about 10 fold to about 500 fold improvement in Fc receptor binding affinity compared to the parent polypeptide, where Fc receptor binding affinity is determined, for example, as disclosed in the Examples herein. Accordingly, by "reduced affinity" as compared to a parent Fc polypeptide as used herein is meant that an Fc variant binds an Fc receptor with significantly lower Ka or higher Kd than the parent polypeptide. [145] Embodiments may comprise optimization of Fc binding to a human FcR, however in alternate embodiments the antibodies of the present invention possess enhanced or reduced affinity for FcRs from nonhuman organisms, including but not limited to rodents and non-human primates. Antibodies that are optimized for binding to a nonhuman FcR may find use in experimentation. For example, mouse models are available for a variety of diseases that enable testing of properties such as efficacy, toxicity, and pharmacokinetics for a given drug candidate. As is known in the art, cancer cells can be grafted or injected into mice to mimic a human cancer, a process referred to as xenografting. Testing of antibodies that comprise antibodies that are optimized for one or more mouse FcRs, may provide valuable information with regard to the efficacy of the protein, its mechanism of action, and the like. The antibodies of the present invention may also be optimized for enhanced functionality and/or solution properties in aglycosylated form. In one embodiment, the aglycosylated antibodies of the present invention bind an Fc ligand with greater affinity than the aglycosylated form of the parent antibody. Said Fc ligands include but are not limited to FcγRs, C1q, FcRn, and proteins A and G, and may be from any source including but not limited to human, mouse, rat, rabbit, or monkey. In an alternate embodiment, the antibodies are optimized to be more stable and/or more soluble than the aglycosylated form of the parent antibody.

[146] Antibodies of the invention may comprise modifications that modulate interaction with Fc ligands other than FcγRs, including but not limited to complement proteins, FcRn, and Fc receptor homologs (FcRHs). FcRHs include but are not limited to FcRHI , FcRH2, FcRH3, FcRH4, FcRH5, and FcRH6 (Davis et a/., 2002, Immunol. Reviews 190:123-136, incorporated entirely by reference).

[147] In one embodiment, the Fc ligand specificity of the antibody of the present invention will determine its therapeutic utility. The utility of a given antibody for therapeutic purposes will depend on the epitope or form of the target antigen and the disease or indication being treated. For some targets and indications, enhanced FcγR-mediated effector functions may be desirable. This may be particularly favorable for anti-cancer antibodies. Thus antibodies may be used that comprise antibodies that provide enhanced affinity for activating FcγRs and/or reduced affinity for inhibitory FcγRs. For some targets and indications, it may be further beneficial to utilize antibodies that provide differential selectivity for different activating FcγRs; for example, in some cases enhanced binding to FcγRlla and FcγRllla may be desired, but not FcγRI, whereas in other cases, enhanced binding only to FcγRlla may be desired. For certain targets and indications, it may be desirable to utilize antibodies that enhance both FcγR-mediated and complement-mediated effector functions, whereas for other cases it may be advantageous to utilize antibodies that enhance either FcγR-mediated or complement-mediated effector functions. For some targets or cancer indications, it may be advantageous to reduce or ablate one or more effector functions, for example by knocking out binding to C1q, one or more FcγR's, FcRn, or one or more other Fc ligands. For other targets and indications, it may be desirable to utilize antibodies that provide enhanced binding to the inhibitory FcγRllb, WT level, reduced, or ablated binding to activating FcγRs. This may be particularly useful, for example, when the goal of an antibody is to inhibit inflammation or auto-immune disease, or modulate the immune system in some way.

[148] Clearly an important parameter that determines the most beneficial selectivity of a given antibody to treat a given disease is the context of the antibody, that is, what type of antibody is being used. Thus the Fc ligand selectivity or specificity of a given antibody will provide different properties depending on whether it composes an antibody or antibodies with a coupled fusion or conjugate partner. For example, toxin, radionucleotide, or other conjugates may be less toxic to normal cells if the antibody that comprises them has reduced or ablated binding to one or more Fc ligands. As another example, in order to inhibit inflammation or auto-immune disease, it may be desirable to utilize an antibody with enhanced affinity for activating FcγRs, such as to bind these FcγRs and prevent their activation. Conversely, an antibody that comprises two or more Fc regions with enhanced FcγRllb affinity may co-engage this receptor on the surface of immune cells, thereby inhibiting proliferation of these cells. Whereas in some cases an antibodies may engage its target antigen on one cell type yet engage FcγRs on separate cells from the target antigen, in other cases it may be advantageous to engage FcγRs on the surface of the same cells as the target antigen. For example, if an antibody targets an antigen on a cell that also expresses one or more FcγRs, it may be beneficial to utilize an antibody that enhances or reduces binding to the FcγRs on the surface of that cell. This may be the case, for example when the antibody is being used as an anti-cancer agent and co-engagement of target antigen and FcγR on the surface of the same cell promotes signaling events within the cell that result in growth inhibition, apoptosis, or other anti-proliferative effect. Alternatively, antigen and FcγR co- engagement on the same cell may be advantageous when the antibody is being used to modulate the immune system in some way, wherein co-engagement of target antigen and FcγR provides some proliferative or anti-proliferative effect. Likewise, antibodies that comprise two or more Fc regions may benefit from antibodies that modulate FcγR selectivity or specificity to co- engage FcγRs on the surface of the same cell.

[149] The Fc ligand specificity of the antibodies of the present invention can be modulated to create different effector function profiles that may be suited for particular antigen epitopes, indications or patient populations. Figure 4 describes several embodiments of receptor binding profiles that include improvements to, reductions to or no effect to the binding to various receptors, where such changes may be beneficial in certain contexts. The receptor binding profiles in the figure could be varied by degree of increase or decrease to the specified receptors. Additionally, the binding changes specified could be in the context of additional binding changes to other receptors such as C1q or FcRn, for example by combining with ablation of binding to C1q to shut off complement activation, or by combining with enhanced binding to C1q to increase complement activation. Other embodiments with other receptor binding profiles are possible; the listed receptor binding profiles are exemplary. [150] The presence of different polymorphic forms of FcyRs provides yet another parameter that impacts the therapeutic utility of the antibodies of the present invention. Whereas the specificity and selectivity of a given antibody for the different classes of FcγRs significantly affects the capacity of an antibody to target a given antigen for treatment of a given disease, the specificity or selectivity of an antibody for different polymorphic forms of these receptors may in part determine which research or pre-clinical experiments may be appropriate for testing, and ultimately which patient populations may or may not respond to treatment. Thus the specificity or selectivity of antibodies of the present invention to Fc ligand polymorphisms, including but not limited to FcγR, C1q, FcRn, and FcRH polymorphisms, may be used to guide the selection of valid research and pre-clinical experiments, clinical trial design, patient selection, dosing dependence, and/or other aspects concerning clinical trials. [151] Other modifications

[152] Antibodies of the present invention may comprise one or more modifications that provide optimized properties that are not specifically related to effector function per se. Said modifications may be amino acid modifications, or may be modifications that are made enzymatically or chemically. Such modification(s) likely provide some improvement in the antibody, for example an enhancement in its stability, solubility, function, or clinical use. The present invention contemplates a variety of improvements that made be made by coupling the antibodies of the present invention with additional modifications. [153] In one embodiment, the variable region of an antibody of the present invention may be affinity matured, that is to say that amino acid modifications may be made in the VH and/or VL domains of the antibody to enhance binding of the antibody to its target antigen. Such types of modifications may improve the association and/or the dissociation kinetics for binding to the target antigen. Other modifications include those that improve selectivity for target antigen vs. alternative targets. These include modifications that improve selectivity for antigen expressed on target vs. non-target cells. Other improvements to the target recognition properties may be provided by additional modifications. Such properties may include, but are not limited to, specific kinetic properties (i.e. association and dissociation kinetics), selectivity for the particular target versus alternative targets, and selectivity for a specific form of target versus alternative forms. Examples include full-length versus splice variants, cell-surface vs. soluble forms, selectivity for various polymorphic variants, or selectivity for specific conformational forms of the target antigen.

[154] Antibodies of the invention may comprise one or more modifications that provide reduced or enhanced internalization of an antibody. In one embodiment, antibodies of the present invention can be utilized or combined with additional modifications in order to reduce the cellular internalization of an antibody that occurs via interaction with one or more Fc ligands. This property might be expected to enhance effector function, and potentially reduce immunogenicity of the antibodies of the invention. Alternatively, antibodies of the present antibodies of the present invention can be utilized directly or combined with additional modifications in order to enhance the cellular internalization of an antibody that occurs via interaction with one or more Fc ligands. For example, in one embodiment, an antibody is used that provides enhanced binding to FcγRI, which is expressed on dendritic cells and active early in immune response. This strategy could be further enhanced by combination with additional modifications, either within the antibody or in an attached fusion or conjugate partner, that promote recognition and presentation of Fc peptide fragments by MHC molecules. These strategies are expected to enhance target antigen processing and thereby improve antigenicity of the target antigen (Bonnerot and Amigorena, 1999, Immunol Rev. 172:279-84, incorporated entirely by reference), promoting an adaptive immune response and greater target cell killing by the human immune system. These strategies may be particularly advantageous when the targeted antigen is shed from the cellular surface. An additional application of these concepts arises with idiotype vaccine immunotherapies, in which clone-specific antibodies produced by a patient's lymphoma cells are used to vaccinate the patient. [155] In one embodiment, modifications are made to improve biophysical properties of the antibodies of the present invention, including but not limited to stability, solubility, and oligomeric state. Modifications can include, for example, substitutions that provide more favorable intramolecular interactions in the antibody such as to provide greater stability, or substitution of exposed nonpolar amino acids with polar amino acids for higher solubility. A number of optimization goals and methods are described in USSN 10/379,392, incorporated entirely by reference, that may find use for engineering additional modifications to further optimize the antibodies of the present invention. The antibodies of the present invention can also be combined with additional modifications that reduce oligomeric state or size, such that tumor penetration is enhanced, or in vivo clearance rates are increased as desired. [156] Other modifications to the antibodies of the present invention include those that enable the specific formation or homodimeric or homomultimeric molecules. Such modifications include but are not limited to engineered disulfides, as well as chemical modifications or aggregation methods which may provide a mechanism for generating covalent homodimeric or homomultimers. For example, methods of engineering and compositions of such molecules are described in Kan et al., 2001 , J. Immunol., 2001 , 166: 1320-1326; Stevenson et al., 2002, Recent Results Cancer Res. 159: 104-12; US 5,681 ,566; Caron et al., 1992, J. Exp. Med. 176:1191-1195, and Shopes, 1992, J. Immunol. 148(9):2918-22, all incorporated entirely by reference. Additional modifications to the variants of the present invention include those that enable the specific formation or heterodimeric, heteromultimeric, bifunctional, and/or multifunctional molecules. Such modifications include, but are not limited to, one or more amino acid substitutions in the CH3 domain, in which the substitutions reduce homodimer formation and increase heterodimer formation. For example, methods of engineering and compositions of such molecules are described in Atwell et al., 1997, J. MoI. Biol. 270(1 ):26-35, and Carter et al., 2001, J. Immunol. Methods 248:7-15, both incorporated entirely by reference. Additional modifications include modifications in the hinge and CH3 domains, in which the modifications reduce the propensity to form dimers.

[157] In further embodiments, the antibodies of the present invention comprise modifications that remove proteolytic degradation sites. These may include, for example, protease sites that reduce production yields, as well as protease sites that degrade the administered protein in vivo. In one embodiment, additional modifications are made to remove covalent degradation sites such as deamidation (i.e. deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues), oxidation, and proteolytic degradation sites. Deamidation sites that are particularly useful to remove are those that have enhance propensity for deamidation, including, but not limited to asparaginyl and glutamyl residues followed by glycines (NG and QG motifs, respectively). In such cases, substitution of either residue can significantly reduce the tendency for deamidation. Common oxidation sites include methionine and cysteine residues. Other covalent modifications, that can either be introduced or removed, include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the "-amino groups of lysine, arginine, and histidine side chains (T.E. Creighton, Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983), incorporated entirely by reference), acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group. Additional modifications also may include but are not limited to posttranslational modifications such as N-linked or O-linked glycosylation and phosphorylation. [158] Modifications may include those that improve expression and/or purification yields from hosts or host cells commonly used for production of biologies. These include, but are not limited to various mammalian cell lines (e.g. CHO), yeast cell lines, bacterial cell lines, and plants. Additional modifications include modifications that remove or reduce the ability of heavy chains to form inter-chain disulfide linkages. Additional modifications include modifications that remove or reduce the ability of heavy chains to form intra-chain disulfide linkages. [159] The antibodies of the present invention may comprise modifications that include the use of unnatural amino acids incorporated using, for example, the technologies developed by Schultz and colleagues, including but not limited to methods described by Cropp & Shultz, 2004, Trends Genet. 20(12):625-30, Anderson et a/., 2004, Proc. Natl. Acad. Sci. U.S.A. 101(2):7566- 71 , Zhang et a/., 2003, 303(5656):371-3, and Chin et a/., 2003, Science 301 (5635):964-7, all incorporated entirely by reference. In some embodiments, these modifications enable manipulation of various functional, biophysical, immunological, or manufacturing properties discussed above. In additional embodiments, these modifications enable additional chemical modification for other purposes. Other modifications are contemplated herein. For example, the antibody may be linked to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol. Additional amino acid modifications may be made to enable specific or non-specific chemical or posttranslational modification of the antibodies. Such modifications, include, but are not limited to PEGylation and glycosylation. Specific substitutions that can be utilized to enable PEGylation include, but are not limited to, introduction of novel cysteine residues or unnatural amino acids such that efficient and specific coupling chemistries can be used to attach a PEG or otherwise polymeric moiety. Introduction of specific glycosylation sites can be achieved by introducing novel N-X-T/S sequences into the antibodies of the present invention.

[160] Covalent modifications of antibodies are included within the scope of this invention, and are generally, but not always, done post-translationally. For example, several types of covalent modifications of the antibody are introduced into the molecule by reacting specific amino acid residues of the antibody with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues.

[161] In some embodiments, the covalent modification of the antibodies of the invention comprises the addition of one or more labels. The term "labeling group" is any detectable label. In some embodiments, the labeling group is coupled to the antibody via spacer arms of various lengths to reduce potential steric hindrance. Various methods for labeling proteins are known in the art and may be used in performing the present invention. In general, labels fall into a variety of classes, depending on the assay in which they are to be detected: a) isotopic labels, which may be radioactive or heavy isotopes; b) magnetic labels (e.g., magnetic particles); c) redox active moieties; d) optical dyes; enzymatic groups (e.g. horseradish peroxidase, β- galactosidase, luciferase, alkaline phosphatase); e) biotinylated groups; and f) predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags, etc.). In some embodiments, the labeling group is coupled to the antibody via spacer arms of various lengths to reduce potential steric hindrance. Various methods for labeling proteins are known in the art and may be used in performing the present invention. Specific labels include optical dyes, including, but not limited to, chromophores, phosphors and fluorophores, with the latter being specific in many instances. Fluorophores can be either "small molecule" fluores, or proteinaceous fluores. By "fluorescent label" is meant any molecule that may be detected via its inherent fluorescent properties. [162] Antibody conjugates and fusions

[163] In one embodiment, the antibodies of the invention are antibody "fusion proteins", sometimes referred to herein as "antibody conjugates". The fusion partner or conjugate partner can be proteinaceous or non-proteinaceous; the latter generally being generated using functional groups on the antibody and on the conjugate partner. Conjugate and fusion partners may be any molecule, including small molecule chemical compounds and polypeptides. For example, a variety of antibody conjugates and methods are described in Trail et al., 1999, Curr. Opin. Immunol. 11 :584-588, incorporated entirely by reference. Possible conjugate partners include but are not limited to cytokines, cytotoxic agents, toxins, radioisotopes, chemotherapeutic agent, anti-angiogenic agents, tyrosine kinase inhibitors, and other therapeutically active agents. In some embodiments, conjugate partners may be thought of more as payloads, that is to say that the goal of a conjugate is targeted delivery of the conjugate partner to a targeted cell, for example a cancer cell or immune cell, by the antibody. Thus, for example, the conjugation of a toxin to an antibody targets the delivery of said toxin to cells expressing the target antigen. As will be appreciated by one skilled in the art, in reality the concepts and definitions of fusion and conjugate are overlapping. The designation of an antibody as a fusion or conjugate is not meant to constrain it to any particular embodiment of the present invention. Rather, these terms are used loosely to convey the broad concept that any antibody of the present invention may be linked genetically, chemically, or otherwise, to one or more polypeptides or molecules to provide some desirable property. [164] Suitable conjugates include, but are not limited to, labels as described below, drugs and cytotoxic agents including, but not limited to, cytotoxic drugs (e.g., chemotherapeutic agents) or toxins or active fragments of such toxins. Suitable toxins and their corresponding fragments include diptheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin and the like. Cytotoxic agents also include radiochemicals made by conjugating radioisotopes to antibodies, or binding of a radionuclide to a chelating agent that has been covalently attached to the antibody. Additional embodiments utilize calicheamicin, auristatins, geldanamycin, maytansine, and duocarmycins and analogs; for the latter, see U.S. 2003/0050331 , incorporated entirely by reference. [165] In one embodiment, the antibodies of the present invention are fused or conjugated to a cytokine. By "cytokine" as used herein is meant a generic term for proteins released by one cell population that act on another cell as intercellular mediators. For example, as described in Penichet et al., 2001, J. Immunol. Methods 248:91-101 , incorporated entirely by reference, cytokines may be fused to antibody to provide an array of desirable properties. Examples of such cytokines are lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormone such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH); hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor-alpha and -beta; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO); nerve growth factors such as NGF-beta; platelet-growth factor; transforming growth factors (TGFs) such as TGF-alpha and TGF-beta; insulin-like growth factor-l and -II; erythropoietin (EPO); osteoinductive factors; interferons such as interferon-alpha, beta, and -gamma; colony stimulating factors (CSFs) such as macrophage-CSF (M-CSF); granulocyte-macrophage-CSF (GM-CSF); and granulocyte-CSF (G-CSF); interleukins (ILs) such as IM , IL-1 alpha, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL- 10, IL-11 , IL-12; IL-15, a tumor necrosis factor such as TNF-alpha or TNF-beta; C5a; and other polypeptide factors including LIF and kit ligand (KL). As used herein, the term cytokine includes proteins from natural sources or from recombinant cell culture, and biologically active equivalents of the native sequence cytokines.

[166] In an alternate embodiment, the antibodies of the present invention are fused, conjugated, or operably linked to a toxin, including but not limited to small molecule toxins and enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof. For example, a variety of immunotoxins and immunotoxin methods are described in Thrush et al., 1996, Ann. Rev. Immunol. 14:49-71 , incorporated entirely by reference. Small molecule toxins include but are not limited to calicheamicin, maytansine (US 5,208,020, incorporated entirely by reference), trichothene, and CC1065. In one embodiment of the invention, the antibody is conjugated to one or more maytansine molecules (e.g. about 1 to about 10 maytansine molecules per antibody molecule). Maytansine, for example, may be converted to May-SS-Me which may be reduced to May-SH3 and reacted with modified antibody (Chari et al., 1992, Cancer Research 52: 127-131, incorporated entirely by reference) to generate a maytansinoid-antibody conjugate. Another conjugate of interest comprises an antibody conjugated to one or more calicheamicin molecules. The antibiotics in the calicheamicin family are capable of producing double-stranded DNA breaks at sub-picomolar concentrations. Structural analogues of calicheamicin that may be used include but are not limited to , N-acetyl- PSAG, and Θ1i, (Hinman et al., 1993, Cancer Research 53:3336-3342; Lode et al., 1998, Cancer Research 58:2925-2928) (US 5,714,586; US 5,712,374; US 5,264,586; US 5,773,001, all incorporated entirely by reference). Dolastatin 10 analogs such as auristatin E (AE) and monomethylauristatin E (MMAE) may find use as conjugates for the antibodies of the present invention (Doronina et al., 2003, Nat Biotechnol 21 (7):778-84; Francisco et al., 2003 Blood 102(4): 1458-65, both incorporated entirely by reference). Useful enzymatically active toxins include but are not limited to diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the tricothecenes. See, for example, PCT WO 93/21232, incorporated entirely by reference. The present invention further contemplates a conjugate between an antibody of the present invention and a compound with nucleolytic activity, for example a ribonuclease or DNA endonuclease such as a deoxyribonuclease (DNase). [167] In an alternate embodiment, an antibody of the present invention may be fused, conjugated, or operably linked to a radioisotope to form a radioconjugate. A variety of radioactive isotopes are available for the production of radioconjugate antibodies. Examples include, but are not limited to, At211 , 1131, 1125, Y90, Re186, Re188, Sm 153, Bi212, P32, and radioactive isotopes of Lu.

[168] In yet another embodiment, an antibody of the present invention may be conjugated to a "receptor" (such as streptavidin) for utilization in tumor pretargeting wherein the antibody- receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g. avidin) which is conjugated to a cytotoxic agent (e.g. a radionucleotide). In an alternate embodiment, the antibody is conjugated or operably linked to an enzyme in order to employ Antibody Dependent Enzyme Mediated Prodrug Therapy (ADEPT). ADEPT may be used by conjugating or operably linking the antibody to a prod rug-activating enzyme that converts a prodrug (e.g. a peptidyl chemotherapeutic agent, see PCT WO 81/01145, incorporated entirely by reference) to an active anti-cancer drug. See, for example, PCT WO 88/07378 and US 4,975,278, both incorporated entirely by reference. The enzyme component of the immunoconjugate useful for ADEPT includes any enzyme capable of acting on a prodrug in such a way so as to covert it into its more active, cytotoxic form. Enzymes that are useful in the method of this invention include but are not limited to alkaline phosphatase useful for converting phosphate-containing prodrugs into free drugs; arylsulfatase useful for converting sulfate-containing prodrugs into free drugs; cytosine deaminase useful for converting non-toxic 5-fluorocytosine into the anti-cancer drug, 5- fluorouracil; proteases, such as serratia protease, thermolysin, subtilisin, carboxypeptidases and cathepsins (such as cathepsins B and L), that are useful for converting peptide-containing prodrugs into free drugs; D-alanylcarboxypeptidases, useful for converting prodrugs that contain D-amino acid substituents; carbohydrate-cleaving enzymes such as /?-galactosidase and neuramimidase useful for converting glycosylated prodrugs into free drugs; beta-lactamase useful for converting drugs derivatized with σ-lactams into free drugs; and penicillin amidases, such as penicillin V amidase or penicillin G amidase, useful for converting drugs derivatized at their amine nitrogens with phenoxyacetyl or phenylacetyl groups, respectively, into free drugs. Alternatively, antibodies with enzymatic activity, also known in the art as "abzymes", can be used to convert the prodrugs of the invention into free active drugs (see, for example, Massey, 1987, Nature 328: 457-458, incorporated entirely by reference). Antibody-abzyme conjugates can be prepared for delivery of the abzyme to a tumor cell population. A variety of additional conjugates are contemplated for the antibodies of the present invention. A variety of chemotherapeutic agents, anti-angiogenic agents, tyrosine kinase inhibitors, and other therapeutic agents are described below, which may find use as antibody conjugates. [169] Also contemplated as fusion and conjugate partners are Fc polypeptides. Thus an antibody may be a multimeric Fc polypeptide, comprising two or more Fc regions. The advantage of such a molecule is that it provides multiple binding sites for Fc receptors with a single protein molecule. In one embodiment, Fc regions may be linked using a chemical engineering approach. For example, Fab's and Fc's may be linked by thioether bonds originating at cysteine residues in the hinges, generating molecules such as FabFc2 . Fc regions may be linked using disulfide engineering and/or chemical cross-linking. In one embodiment, Fc regions may be linked genetically. In one embodiment, Fc regions in an antibody are linked genetically to generated tandemly linked Fc regions as described in USSN 11/022,289, filed 12/21/2004, entitled "Fc polypeptides with novel Fc ligand binding sites," incorporated entirely by reference. Tandemly linked Fc polypeptides may comprise two or more Fc regions, e,g, one to three, two, etc., Fc regions. It may be advantageous to explore a number of engineering constructs in order to obtain homo- or hetero- tandemly linked antibodies with the most favorable structural and functional properties. Tandemly linked antibodies may be homo- tandemly linked antibodies, that is an antibody of one isotype is fused genetically to another antibody of the same isotype. It is anticipated that because there are multiple FcγR, C1q, and/or FcRn binding sites on tandemly linked Fc polypeptides, effector functions and/or pharmacokinetics may be enhanced. In an alternate embodiment, antibodies from different isotypes may be tandemly linked, referred to as hetero- tandemly linked antibodies. For example, because of the capacity to target FcγR and FcσRI receptors, an antibody that binds both FcγRs and FcσRI may provide a significant clinical improvement. [170] In addition to antibodies, an antibody-like protein that is finding an expanding role in research and therapy is the Fc fusion (Chamow et a/., 1996, Trends Biotechnol 14:52-60; Ashkenazi et al., 1997, Curr Opin Immunol 9:195-200, both incorporated entirely by reference). "Fc fusion" is herein meant to be synonymous with the terms "immunoadhesin", "Ig fusion", "Ig chimera", and "receptor globulin" (sometimes with dashes) as used in the prior art (Chamow et al., 1996, Trends Biotechnol 14:52-60; Ashkenazi et al., 1997, Curr Opin Immunol 9:195-200). An Fc fusion is a protein wherein one or more polypeptides are operably linked to Fc. An Fc fusion combines the Fc region of an antibody, and thus its favorable effector functions and pharmacokinetics, with the target-binding region of a receptor, ligand, or some other protein or protein domain. The role of the latter is to mediate target recognition, and thus it is functionally analogous to the antibody variable region. Because of the structural and functional overlap of Fc fusions with antibodies, the discussion on antibodies in the present invention extends also to Fc. [171] Virtually any protein or small molecule may be linked to Fc to generate an Fc fusion. Protein fusion partners may include, but are not limited to, the variable region of any antibody, the target-binding region of a receptor, an adhesion molecule, a ligand, an enzyme, a cytokine, a chemokine, or some other protein or protein domain. Small molecule fusion partners may include any therapeutic agent that directs the Fc fusion to a therapeutic target. Such targets may be any molecule, e.g., an extracellular receptor that is implicated in disease. [172] Fusion and conjugate partners may be linked to any region of an antibody of the present invention, including at the N- or C- termini, or at some residue in-between the termini. In one embodiment, a fusion or conjugate partner is linked at the N- or C-terminus of the antibody, e.g., the N-terminus. A variety of linkers may find use in the present invention to covalently link antibodies to a fusion or conjugate partner. By "linker", "linker sequence", "spacer", "tethering sequence" or grammatical equivalents thereof, herein, is meant a molecule or group of molecules (such as a monomer or polymer) that connects two molecules and often serves to place the two molecules in a desirable configuration. Linkers are known in the art; for example, homo-or hetero-bifunctional linkers as are well known (see, 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200, incorporated entirely by reference). A number of strategies may be used to covalently link molecules together. These include, but are not limited to polypeptide linkages between N- and C-termini of proteins or protein domains, linkage via disulfide bonds, and linkage via chemical cross-linking reagents. In one aspect of this embodiment, the linker is a peptide bond, generated by recombinant techniques or peptide synthesis. The linker may contain amino acid residues that provide flexibility. Thus, the linker peptide may predominantly include the following amino acid residues: GIy, Ser, Ala, or Thr. The linker peptide should have a length that is adequate to link two molecules in such a way that they assume the correct conformation relative to one another so that they retain the desired activity. Suitable lengths for this purpose include at least one and not more than 50 amino acid residues. In one embodiment, the linker is from about 1 to 30 amino acids in length, with linkers of 1 to 20 amino acids in length being desirable. Useful linkers include glycine-serine polymers (including, for example, (GS)n, (GSGGS)n, (GGGGS)n and (GGGS)n, where n is an integer of at least one), glycine-alanine polymers, alanine-serine polymers, and other flexible linkers, as will be appreciated by those in the art. Alternatively, a variety of nonproteinaceous polymers, including but not limited to polyethylene glycol (PEG), polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol, may find use as linkers, that is may find use to link the antibodies of the present invention to a fusion or conjugate partner, or to link the antibodies of the present invention to a conjugate. [173] Production of antibodies [174] The present invention provides methods for producing and experimentally testing antibodies. The described methods are not meant to constrain the present invention to any particular application or theory of operation. Rather, the provided methods are meant to illustrate generally that one or more antibodies may be produced and experimentally tested to obtain variant antibodies. General methods for antibody molecular biology, expression, purification, and screening are described in Antibody Engineering, edited by Duebel &

Kontermann, Springer-Verlag, Heidelberg, 2001 ; and Hayhurst & Georgiou, 2001, Curr Opin Chem Biol 5:683-689; Maynard & Georgiou, 2000, Annu Rev Biomed Eng 2:339-76; Antibodies: A Laboratory Manual by Harlow & Lane, New York: Cold Spring Harbor Laboratory Press, 1988, all incorporated entirely by reference. [175] In one embodiment of the present invention, nucleic acids are created that encode the antibodies, and may then be cloned into host cells, expressed and assayed, if desired. Thus, nucleic acids, and particularly DNA, may be made that encode each protein sequence. These practices are carried out using well-known procedures. For example, a variety of methods that may find use in the present invention are described in Molecular Cloning - A Laboratory Manual, 3rd Ed. (Maniatis, Cold Spring Harbor Laboratory Press, New York, 2001), and Current Protocols in Molecular Biology (John Wiley & Sons), both incorporated entirely by reference. As will be appreciated by those skilled in the art, the generation of exact sequences for a library comprising a large number of sequences is potentially expensive and time consuming. By "library" herein is meant a set of variants in any form, including but not limited to a list of nucleic acid or amino acid sequences, a list of nucleic acid or amino acid substitutions at variable positions, a physical library comprising nucleic acids that encode the library sequences, or a physical library comprising the variant proteins, either in purified or unpurified form. Accordingly, there are a variety of techniques that may be used to efficiently generate libraries of the present invention. Such methods that may find use in the present invention are described or referenced in US 6,403,312; USSN 09/782,004; USSN 09/927,790; USSN 10/218,102; PCT WO 01/40091 ; and PCT WO 02/25588, all incorporated entirely by reference. Such methods include but are not limited to gene assembly methods, PCR-based method and methods that use variations of PCR, ligase chain reaction-based methods, pooled oligo methods such as those used in synthetic shuffling, error-prone amplification methods and methods which use oligos with random mutations, classical site-directed mutagenesis methods, cassette mutagenesis, and other amplification and gene synthesis methods. As is known in the art, there are a variety of commercially available kits and methods for gene assembly, mutagenesis, vector subcloning, and the like, and such commercial products find use in the present invention for generating nucleic acids that encode antibodies.

[176] The antibodies of the present invention may be produced by culturing a host cell transformed with nucleic acid, e.g., an expression vector, containing nucleic acid encoding the antibodies, under the appropriate conditions to induce or cause expression of the protein. The conditions appropriate for expression will vary with the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation. A wide variety of appropriate host cells may be used, including but not limited to mammalian cells, bacteria, insect cells, and yeast. For example, a variety of cell lines that may find use in the present invention are described in the ATCC® cell line catalog, available from the American Type Culture Collection. [177] In one embodiment, the antibodies are expressed in mammalian expression systems, including systems in which the expression constructs are introduced into the mammalian cells using virus such as retrovirus or adenovirus. Any mammalian cells may be used, e.g., human, mouse, rat, hamster, primate cells, etc.. Suitable cells also include known research cells, including but not limited to Jurkat T cells, NIH3T3, CHO, BHK, COS, HEK293, PER C.6, HeLa, Sp2/0, NSO cells and variants thereof. In an alternatel embodiment, library proteins are expressed in bacterial cells. Bacterial expression systems are well known in the art, and include Escherichia coli (E. coli), Bacillus subtilis, Streptococcus cremoris, and Streptococcus lividans. In alternate embodiments, antibodies are produced in insect cells (e.g. Sf21/Sf9, Trichoplusia ni Bti-Tn5b1-4) or yeast cells (e.g. S. cerevisiae, Pichia, etc). In an alternate embodiment, antibodies are expressed in vitro using cell free translation systems. In vitro translation systems derived from both prokaryotic (e.g. E. coli) and eukaryotic (e.g. wheat germ, rabbit reticulocytes) cells are available and may be chosen based on the expression levels and functional properties of the protein of interest. For example, as appreciated by those skilled in the art, in vitro translation is required for some display technologies, for example ribosome display. In addition, the antibodies may be produced by chemical synthesis methods or transgenic expression systems, both animal (e.g. cow, sheep or goat milk, embryonated hen's eggs, whole insect larvae, etc.) and plant (e.g. corn, tobacco, duckweed, etc.) systems. [178] The nucleic acids that encode the antibodies of the present invention may be incorporated into an expression vector in order to express the protein. A variety of expression vectors may be utilized for protein expression. Expression vectors may comprise self-replicating extra-chromosomal vectors or vectors which integrate into a host genome. Expression vectors are constructed to be compatible with the host cell type. Thus expression vectors which find use in the present invention include but are not limited to those which enable protein expression in mammalian cells, bacteria, insect cells, yeast, and in in vitro systems. As is known in the art, a variety of expression vectors are available, commercially or otherwise, that may find use in the present invention for expressing antibodies.

[179] Expression vectors typically comprise a protein operably linked with control or regulatory sequences, selectable markers, any fusion partners, and/or additional elements. By "operablv linked" herein is meant that the nucleic acid is placed into a functional relationship with another nucleic acid sequence. Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the antibody, and are typically appropriate to the host cell used to express the protein. In general, the transcriptional and translational regulatory sequences may include promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. As is also known in the art, expression vectors typically contain a selection gene or marker to allow the selection of transformed host cells containing the expression vector. Selection genes are well known in the art and will vary with the host cell used.

[180] Antibodies may be operably linked to a fusion partner to enable targeting of the expressed protein, purification, screening, display, and the like. Fusion partners may be linked to the antibody sequence via a linker sequence. The linker sequence will generally comprise a small number of amino acids, typically less than ten, although longer linkers may also be used. Typically, linker sequences are selected to be flexible and resistant to degradation. As will be appreciated by those skilled in the art, any of a wide variety of sequences may be used as linkers. For example, a common linker sequence comprises the amino acid sequence GGGGS. A fusion partner may be a targeting or signal sequence that directs antibody and any associated fusion partners to a desired cellular location or to the extracellular media. As is known in the art, certain signaling sequences may target a protein to be either secreted into the growth media, or into the periplasmic space, located between the inner and outer membrane of the cell. A fusion partner may also be a sequence that encodes a peptide or protein that enables purification and/or screening. Such fusion partners include but are not limited to polyhistidine tags (His-tags) (for example H6 and H10 or other tags for use with Immobilized Metal Affinity Chromatography (IMAC) systems (e.g. Ni+2 affinity columns)), GST fusions, MBP fusions, Strep-tag, the BSP biotinylation target sequence of the bacterial enzyme BirA, and epitope tags which are targeted by antibodies (for example c-myc tags, flag-tags, and the like). As will be appreciated by those skilled in the art, such tags may be useful for purification, for screening, or both. For example, an antibody may be purified using a His-tag by immobilizing it to a Ni+2 affinity column, and then after purification the same His-tag may be used to immobilize the antibody to a Ni+2 coated plate to perform an ELISA or other binding assay (as described below). A fusion partner may enable the use of a selection method to screen antibodies (see below). Fusion partners that enable a variety of selection methods are well-known in the art, and all of these find use in the present invention. For example, by fusing the members of an antibody library to the gene III protein, phage display can be employed (Kay et al.. Phage display of peptides and proteins: a laboratory manual, Academic Press, San Diego, CA, 1996; Lowman et al., 1991, Biochemistry 30: 10832- 10838; Smith, 1985, Science 228:1315-1317, incorporated entirely by reference). Fusion partners may enable antibodies to be labeled. Alternatively, a fusion partner may bind to a specific sequence on the expression vector, enabling the fusion partner and associated antibody to be linked covalently or noncovalently with the nucleic acid that encodes them. [181] The methods of introducing exogenous nucleic acid into host cells are well known in the art and will vary with the host cell used. Techniques include but are not limited to dextran- mediated transfection, calcium phosphate precipitation, calcium chloride treatment, polybrene mediated transfection, protoplast fusion, electroporation, viral or phage infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei. In the case of mammalian cells, transfection may be either transient or stable. [182] In one embodiment, antibodies are purified or isolated after expression. Proteins may be isolated or purified in a variety of ways known to those skilled in the art. Standard purification methods include chromatographic techniques, including ion exchange, hydrophobic interaction, affinity, sizing or gel filtration, and reversed-phase, carried out at atmospheric pressure or at high pressure using systems such as FPLC and HPLC. Purification methods also include electrophoretic, immunological, precipitation, dialysis, and chromatofocusing techniques. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. As is well known in the art, a variety of natural proteins bind Fc and antibodies, and these proteins can find use in the present invention for purification of antibodies. For example, the bacterial proteins A and G bind to the Fc region. Likewise, the bacterial protein L binds to the Fab region of some antibodies, as of course does the antibody's target antigen. Purification can often be enabled by a particular fusion partner. For example, antibodies may be purified using glutathione resin if a GST fusion is employed, Ni+2 affinity chromatography if a His-tag is employed, or immobilized anti-flag antibody if a flag-tag is used. For general guidance in suitable purification techniques, see, e.g. incorporated entirely by reference Protein Purification: Principles and Practice, 3rd Ed., Scopes, Springer-Verlag, NY, 1994, incorporated entirely by reference. The degree of purification necessary will vary depending on the screen or use of the antibodies. In some instances no purification is necessary. For example in one embodiment, if the antibodies are secreted, screening may take place directly from the media. As is well known in the art, some methods of selection do not involve purification of proteins. Thus, for example, if a library of antibodies is made into a phage display library, protein purification may not be performed. [183] In vitro experimentation

[184] Antibodies may be screened using a variety of methods, including but not limited to those that use in vitro assays, in vivo and cell-based assays, and selection technologies. Automation and high-throughput screening technologies may be utilized in the screening procedures. Screening may employ the use of a fusion partner or label. The use of fusion partners has been discussed above. By "labeled" herein is meant that the antibodies of the invention have one or more elements, isotopes, or chemical compounds attached to enable the detection in a screen. In general, labels fall into three classes: a) immune labels, which may be an epitope incorporated as a fusion partner that is recognized by an antibody, b) isotopic labels, which may be radioactive or heavy isotopes, and c) small molecule labels, which may include fluorescent and colorimetric dyes, or molecules such as biotin that enable other labeling methods. Labels may be incorporated into the compound at any position and may be incorporated in vitro or in vivo during protein expression. [185] In one embodiment, the functional and/or biophysical properties of antibodies are screened in an in vitro assay. In vitro assays may allow a broad dynamic range for screening properties of interest. Properties of antibodies that may be screened include but are not limited to stability, solubility, and affinity for Fc ligands, for example FcγRs. Multiple properties may be screened simultaneously or individually. Proteins may be purified or unpurified, depending on the requirements of the assay. In one embodiment, the screen is a qualitative or quantitative binding assay for binding of antibodies to a protein or nonprotein molecule that is known or thought to bind the antibody. In one embodiment, the screen is a binding assay for measuring binding to the target antigen. In an alternate embodiment, the screen is an assay for binding of antibodies to an Fc ligand, including but not limited to the family of FcγRs, the neonatal receptor FcRn, the complement protein C1q, and the bacterial proteins A and G. Said Fc ligands may be from any organism, e.g., humans, mice, rats, rabbits, monkeys, etc.. Binding assays can be carried out using a variety of methods known in the art, including but not limited to FRET (Fluorescence Resonance Energy Transfer) and BRET (Bioluminescence Resonance Energy Transfer) -based assays, AlphaScreen™ (Amplified Luminescent Proximity Homogeneous Assay), Scintillation Proximity Assay, ELISA (Enzyme-Linked Immunosorbent Assay), SPR (Surface Plasmon Resonance, also known as Biacore™), isothermal titration calorimetry, differential scanning calorimetry, gel electrophoresis, and chromatography including gel filtration. These and other methods may take advantage of some fusion partner or label of the antibody. Assays may employ a variety of detection methods including but not limited to chromogenic, fluorescent, luminescent, or isotopic labels. [186] The biophysical properties of antibodies, for example stability and solubility, may be screened using a variety of methods known in the art. Protein stability may be determined by measuring the thermodynamic equilibrium between folded and unfolded states. For example, antibodies of the present invention may be unfolded using chemical denaturant, heat, or pH, and this transition may be monitored using methods including but not limited to circular dichroism spectroscopy, fluorescence spectroscopy, absorbance spectroscopy, NMR spectroscopy, calorimetry, and proteolysis. As will be appreciated by those skilled in the art, the kinetic parameters of the folding and unfolding transitions may also be monitored using these and other techniques. The solubility and overall structural integrity of an antibody may be quantitatively or qualitatively determined using a wide range of methods that are known in the art. Methods which may find use in the present invention for characterizing the biophysical properties of antibodies include gel electrophoresis, isoelectric focusing, capillary electrophoresis, chromatography such as size exclusion chromatography, ion-exchange chromatography, and reversed-phase high performance liquid chromatography, peptide mapping, oligosaccharide mapping, mass spectrometry, ultraviolet absorbance spectroscopy, fluorescence spectroscopy, circular dichroism spectroscopy, isothermal titration calorimetry, differential scanning calorimetry, analytical ultra-centrifugation, dynamic light scattering, proteolysis, and cross-linking, turbidity measurement, filter retardation assays, immunological assays, fluorescent dye binding assays, protein-staining assays, microscopy, and detection of aggregates via ELISA or other binding assay. Structural analysis employing X-ray crystallographic techniques and NMR spectroscopy may also find use. In one embodiment, stability and/or solubility may be measured by determining the amount of protein solution after some defined period of time. In this assay, the protein may or may not be exposed to some extreme condition, for example elevated temperature, low pH, or the presence of denaturant. Because function typically requires a stable, soluble, and/or well-folded/structured protein, the aforementioned functional and binding assays also provide ways to perform such a measurement. For example, a solution comprising an antibody could be assayed for its ability to bind target antigen, then exposed to elevated temperature for one or more defined periods of time, then assayed for antigen binding again. Because unfolded and aggregated protein is not expected to be capable of binding antigen, the amount of activity remaining provides a measure of the antibody's stability and solubility.

[187] In one embodiment, the library is screened using one or more cell-based or in vitro assays. For such assays, antibodies, purified or unpurified, are typically added exogenously such that cells are exposed to individual variants or groups of variants belonging to a library. These assays are typically, but not always, based on the biology of the ability of the antibody to bind to antigen and mediate some biochemical event, for example effector functions like cellular lysis, phagocytosis, ligand/receptor binding inhibition, inhibition of growth and/or proliferation, apoptosis, etc. Such assays often involve monitoring the response of cells to antibody, for example cell survival, cell death, cellular phagocytosis, cell lysis, change in cellular morphology, or transcriptional activation such as cellular expression of a natural gene or reporter gene. For example, such assays may measure the ability of antibodies to elicit ADCC, ADCP, or CDC. For some assays additional cells or components, that is in addition to the target cells, may need to be added, for example serum complement, or effector cells such as peripheral blood monocytes (PBMCs), NK cells, macrophages, and the like. Such additional cells may be from any organism, e.g., humans, mice, rats, rabbits, monkeys, etc. Crosslinked or monomeric antibodies may cause apoptosis of certain cell lines expressing the antibody's target antigen, or they may mediate attack on target cells by immune cells which have been added to the assay. Methods for monitoring cell death or viability are known in the art, and include the use of dyes, fluorophores, immunochemical, cytochemical, and radioactive reagents. For example, caspase assays or annexin-flourconjugates may enable apoptosis to be measured, and uptake or release of radioactive substrates (e.g. Chromium-51 release assays) or the metabolic reduction of fluorescent dyes such as alamar blue may enable cell growth, proliferation, or activation to be monitored. In one embodiment, the DELFIA® EuTDA-based cytotoxicity assay (Perkin Elmer, MA) is used. Alternatively, dead or damaged target cells may be monitored by measuring the release of one or more natural intracellular proteins, for example lactate dehydrogenase. Transcriptional activation may also serve as a method for assaying function in cell-based assays. In this case, response may be monitored by assaying for natural genes or proteins which may be upregulated or down-regulated, for example the release of certain interleukins may be measured, or alternatively readout may be via a luciferase or GFP-reporter construct. Cell-based assays may also involve the measure of morphological changes of cells as a response to the presence of an antibody. Cell types for such assays may be prokaryotic or eukaryotic, and a variety of cell lines that are known in the art may be employed. Alternatively, cell-based screens are performed using cells that have been transformed or transfected with nucleic acids encoding the antibodies.

[188] In vitro assays include but are not limited to binding assays, ADCC, CDC, phagocytosis, cytotoxicity, proliferation, apoptosis, necrosis, cell cycle arrest, peroxide/ozone release, chemotaxis of effector cells, inhibition of such assays by reduced effector function antibodies; ranges of activities such as >100x improvement or >100x reduction, blends of receptor activation and the assay outcomes that are expected from such receptor profiles. [189] In vivo experimentation

[190] The biological properties of the antibodies of the present invention may be characterized in cell, tissue, and whole organism experiments. As is known in the art, drugs are often tested in animals, including but not limited to mice, rats, rabbits, dogs, cats, pigs, and monkeys, in order to measure a drug's efficacy for treatment against a disease or disease model, or to measure a drug's pharmacokinetics, toxicity, and other properties. Said animals may be referred to as disease models. With respect to the antibodies of the present invention, a particular challenge arises when using animal models to evaluate the potential for in-human efficacy of candidate polypeptides - this is due, at least in part, to the fact that antibodies that have a specific effect on the affinity for a human Fc receptor may not have a similar affinity effect with the orthologous animal receptor. These problems can be further exacerbated by the inevitable ambiguities associated with correct assignment of true orthologs (Mechetina et al., Immunogenetics, 2002 54:463—468, incorporated entirely by reference), and the fact that some orthologs simply do not exist in the animal (e.g. humans possess an FcyRlla whereas mice do not). Therapeutics are often tested in mice, including but not limited to nude mice, SCID mice, xenograft mice, and transgenic mice (including knockins and knockouts). For example, an antibody of the present invention that is intended as an anti-cancer therapeutic may be tested in a mouse cancer model, for example a xenograft mouse. In this method, a tumor or tumor cell line is grafted onto or injected into a mouse, and subsequently the mouse is treated with the therapeutic to determine the ability of the antibody to reduce or inhibit cancer growth and metastasis. An alternative approach is the use of a SCID murine model in which immune-deficient mice are injected with human Periferal Blood Lymphocytes (PBLs), conferring a semi-functional and human immune system - with an appropriate array of human FcRs - to the mice that have subsequently been injected with antibodies or Fc-polypeptides that target injected human tumor cells. In such a model, the Fc-polypeptides that target the desired antigen (such as her2/neu on SkOV3 ovarian cancer cells) interact with human PBLs within the mice to engage tumoricidal effector functions. Such experimentation may provide meaningful data for determination of the potential of said antibody to be used as a therapeutic. Any organism, e.g., mammals, may be used for testing. For example because of their genetic similarity to humans, monkeys can be suitable therapeutic models, and thus may be used to test the efficacy, toxicity, pharmacokinetics, or other property of the antibodies of the present invention. Tests of the antibodies of the present invention in humans are ultimately required for approval as drugs, and thus of course these experiments are contemplated. Thus the antibodies of the present invention may be tested in humans to determine their therapeutic efficacy, toxicity, pharmacokinetics, and/or other clinical properties. [191] The antibodies of the present invention may confer superior performance on Fc- containing therapeutics in animal models or in humans. The receptor binding profiles of such antibodies, as described in this specification, may, for example, be selected to increase the potency of cytotoxic drugs or to target specific effector functions or effector cells to improve the selectivity of the drug's action. Further, receptor binding profiles can be selected that may reduce some or all effector functions thereby reducing the side-effects or toxicity of such Fc- containing drug. For example, an antibody with reduced binding to FcγRllla, FcγRI and FcγRlla can be selected to eliminate most cell-mediated effector function, or an antibody with reduced binding to C1q may be selected to limit complement-mediated effector functions. In some contexts, such effector functions are known to have potential toxic effects, therefore eliminating them may increase the safety of the Fc-bearing drug and such improved safety may be characterized in animal models. In some contexts, such effector functions are known to mediate the desirable therapeutic activity, therefore enhancing them may increase the activity or potency of the Fc-bearing drug and such improved activity or potency may be characterized in animal models.

[192] Optimized antibodies can be tested in a variety of orthotopic tumor models. These clinically relevant animal models are important in the study of pathophysiology and therapy of aggressive cancers like pancreatic, prostate and breast cancer. Immune deprived mice including, but not limited to athymic nude or SCID mice are frequently used in scoring of local and systemic tumor spread from the site of intraorgan (e.g. pancreas, prostate or mammary gland) injection of human tumor cells or fragments of donor patients. [193] In embodiments, antibodies of the present invention may be assessed for efficacy in clinically relevant animal models of various human diseases. In many cases, relevant models include various transgenic animals for specific tumor antigens.

[194] Relevant transgenic models such as those that express human Fc receptors (e.g., CD16 including the gamma chain, FcγRI , Rlla/b, FcRn, and others) could be used to evaluate and test antibodies and Fc-fusions in their efficacy. The evaluation of antibodies by the introduction of human genes that directly or indirectly mediate effector function in mice or other rodents may enable physiological studies of efficacy in tumor toxicity or other diseases such as autoimmune disorders and RA. Human Fc receptors such as FcγRllla may possess polymorphisms such as that in position 158 V or F which would further enable the introduction of specific and combinations of human polymorphisms into rodents. The various studies involving polymorphism-specific FcRs are not limited to this section, however, and encompass all discussions and applications of FcRs in general as specified in throughout this application.

Antibodies of the present invention may confer superior activity on Fc-containing drugs in such transgenic models. In particular variants with binding profiles optimized for human FcγRllla mediated activity may show superior activity in transgenic CD16 mice. Similar improvements in efficacy in mice transgenic for the other human Fc receptors, e.g. FcγRlla, FcγRI, FcRn etc., may be observed for antibodies with binding profiles optimized for the respective receptors. Mice transgenic for multiple human receptors would show improved activity for antibodies with binding profiles optimized for the corresponding multiple receptors, for example as outlined in Figure 4. [195] Because of the difficulties and ambiguities associated with using animal models to characterize the potential efficacy of candidate therapeutic antibodies in a human patient, some variant polypeptides of the present invention may find utility as proxies for assessing potential in-human efficacy. Such proxy molecules may mimic - in the animal system - the FcR and/or complement biology of a corresponding candidate human antibody. This mimicry is most likely to be manifested by relative association affinities between specific antibodies and animal vs. human receptors. For example, if one were using a mouse model to assess the potential inhuman efficacy of an antibody that has enhanced affinity for human FcγRllla, an appropriate proxy variant would have enhanced affinity for mouse FcγRIII-2 (mouse CD16-2). Alternatively if one were using a mouse model to assess the potential in-human efficacy of an antibody that has reduced affinity for the inhibitory human FcγRllb, an appropriate proxy variant would have reduced affinity for mouse FcγRII. It should also be noted that the proxy antibodies could be created in the context of a human antibody, an animal antibody, or both. [196] In one embodiment, the testing of antibodies may include study of efficacy in primates (e.g. cynomolgus monkey model) to facilitate the evaluation of depletion of specific target cells harboring target antigen. Additional primate models include but are not limited to that of the rhesus monkey and Fc polypeptides in therapeutic studies of autoimmune, transplantation, and cancer.

[197] Toxicity studies are performed to determine the antibody or Fc-fusion related-effects that cannot be evaluated in standard pharmacology profile or occur only after repeated administration of the agent. Most toxicity tests are performed in two species - a rodent and a non-rodent - to ensure that any unexpected adverse effects are not overlooked before new therapeutic entities are introduced into humans. In general, these models may measure a variety of toxicities including genotoxicity, chronic toxicity, immunogenicity, reproductive/developmental toxicity and carcinogenicity. Included within the aforementioned parameters are standard measurement of food consumption, bodyweight, antibody formation, clinical chemistry, and macro- and microscopic examination of standard organs/tissues (e.g. cardiotoxicity). Additional parameters of measurement are injection site trauma and the measurement of neutralizing antibodies, if any. Traditionally, monoclonal antibody therapeutics, naked or conjugated, are evaluated for cross-reactivity with normal tissues, immunogenicity/antibody production, conjugate or linker toxicity and "bystander" toxicity of radiolabeled species. Nonetheless, such studies may have to be individualized to address specific concerns and following the guidance set by ICH S6 (Safety studies for biotechnological products also noted above). As such, the general principles are that the products are sufficiently well characterized and for which impurities/contaminants have been removed, that the test material is comparable throughout development, and GLP compliance. [198] The pharmacokinetics (PK) of the antibodies of the invention can be studied in a variety of animal systems, with the most relevant being non-human primates such as the cynomolgus, rhesus monkeys. Single or repeated i.v./s.c. administrations over a dose range of 6000-fold (0.05-300 mg/kg) may be used to evaluate the half-life (days to weeks), plasma concentration, clearance, volume of distribution and level of systemic absorbance. Examples of such parameters of measurement generally include maximum observed plasma concentration (Cmax), the time to reach Cmax (Tmax), the area under the plasma concentration-time curve from time 0 to infinity [AUC(0-inf] and apparent elimination half-life (T1/2). Additional measured parameters could include compartmental analysis of concentration-time data obtained following i.v. administration and bioavailability. Examples of pharmacological/toxicological studies using cynomolgus have been established for Rituxan® and Zevalin® in which monoclonal antibodies to CD20 are cross-reactive. Biodistribution, dosimetry (for radiolabled antibodies), and PK studies can also be done in rodent models. Such studies would evaluate tolerance at all doses administered, toxicity to local tissues, localization to rodent xenograft animal models, and depletion of target cells (e.g. CD20 positive cells).

[199] The antibodies of the present invention may confer superior pharmacokinetics on Fc- containing therapeutics in animal systems or in humans. For example, increased binding to FcRn may increase the half-life and exposure of the Fc-containing drug. Alternatively, decreased binding to FcRn may decrease the half-life and exposure of the Fc-containing drug in cases where reduced exposure is favorable such as when such drug has side-effects. [200] It is known in the art that the array of Fc receptors is differentially expressed on various immune cell types, as well as in different tissues. Differential tissue distribution of Fc receptors may ultimately have an impact on the pharmacodynamic (PD) and pharmacokinetic (PK) properties of antibodies of the present invention. Because antibodies of the presentation have varying affinities for the array of Fc receptors, further screening of the polypeptides for PD and/or PK properties may be extremely useful for defining the optimal balance of PD, PK, and therapeutic efficacy conferred by each candidate polypeptide. [201] Pharmacodynamic studies may include, but are not limited to, targeting specific tumor cells or blocking signaling mechanisms, measuring depletion of target antigen expressing cells or signals, etc. The antibodies of the present invention may target particular effector cell populations and thereby direct Fc-containing drugs to recruit certain activities to improve potency or to increase penetration into a particularly favorable physiological compartment. For example, neutrophil activity and localization can be targeted, e.g., by an antibody that targets FcγRlllb. Such pharmacodynamic effects may be demonstrated in animal models or in humans. [202] Clinical use

[203] The antibodies of the present invention may be used for various therapeutic purposes. As will be appreciated by those in the art, the antibodies of the present invention may be used for any therapeutic purpose that uses antibodies and the like. In one embodiment, the antibodies are administered to a patient to treat disorders including but not limited to cancer, autoimmune and inflammatory diseases, and infectious diseases.

[204] A "patient" for the purposes of the present invention includes both humans and other animals, e.g., mammals, e.g., humans. Thus the antibodies of the present invention have both human therapy and veterinary applications. The term "treatment" or "treating" in the present invention is meant to include therapeutic treatment, as well as prophylactic, or suppressive measures for a disease or disorder. Thus, for example, successful administration of an antibody prior to onset of the disease results in treatment of the disease. As another example, successful administration of an optimized antibody after clinical manifestation of the disease to combat the symptoms of the disease comprises treatment of the disease. "Treatment" and "treating" also encompasses administration of an optimized antibody after the appearance of the disease in order to eradicate the disease. Successful administration of an agent after onset and after clinical symptoms have developed, with possible abatement of clinical symptoms and perhaps amelioration of the disease, comprises treatment of the disease. Those "in need of treatment" include mammals already having the disease or disorder, as well as those prone to having the disease or disorder, including those in which the disease or disorder is to be prevented. [205] In one embodiment, an antibody of the present invention is administered to a patient having a disease involving inappropriate expression of a protein or other molecule. Within the scope of the present invention this is meant to include diseases and disorders characterized by aberrant proteins, due for example to alterations in the amount of a protein present, protein localization, posttranslational modification, conformational state, the presence of a mutant or pathogen protein, etc. Similarly, the disease or disorder may be characterized by alterations molecules including but not limited to polysaccharides and gangliosides. An overabundance may be due to any cause, including but not limited to overexpression at the molecular level, prolonged or accumulated appearance at the site of action, or increased activity of a protein relative to normal. Included within this definition are diseases and disorders characterized by a reduction of a protein. This reduction may be due to any cause, including but not limited to reduced expression at the molecular level, shortened or reduced appearance at the site of action, mutant forms of a protein, or decreased activity of a protein relative to normal. Such an overabundance or reduction of a protein can be measured relative to normal expression, appearance, or activity of a protein, and said measurement may play an important role in the development and/or clinical testing of the antibodies of the present invention. Accordingly, an antibody of the invention may be administered to a patient having an IGF-1 R associated disease, e.g., which may include, but is not limited to cancer, autoimmunity, inflammatory disorders, and infectious diseases.

[206] By "cancer" and "cancerous" herein refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include but are not limited to carcinoma, lymphoma, blastoma, sarcoma (including liposarcoma), neuroendocrine tumors, mesothelioma, schwanoma, meningioma, adenocarcinoma, melanoma, and leukemia or lymphoid malignancies.

[207] More particular examples of such cancers include hematologic malignancies, such as non-Hodgkin's lymphomas (NHL). NHL cancers include but are not limited to Burkitt's lymphoma (BL), small lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/CLL), mantle cell lymphoma (MCL), follicular lymphoma (FL), diffuse large B-cell lymphoma (DLCL), marginal zone lymphoma (MZL), hairy cell leukemia (HCL) and lymphoplasmacytic leukemia (LPL), extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT), nodal marginal zone B cell lymphoma, mediastinal large cell lymphoma, intravascular large cell lymphoma, primary effusion lymphoma, precursor B-lymphoblastic leukemia/lymphoma, precursor T- and NK-cells lymphoma (precursor T lymphoblastic lymphoma, blastic NK cell lymphoma), tumors of the mature T and NK cells, including peripheral T-cell lymphoma and leukemia (PTL), adult T-cell leukemia/T-cell lymphomas and large granular lymphocytic leukemia, T-cell chronic lymphocytic leukemia/prolymphocytic leukemia, T-cell large granular lymphocytic leukemia, aggressive NK-cell leukemia, extranodal T-/NK cell lymphoma, enteropathy-type T-cell lymphoma, hepatosplenic T-cell lymphoma, anaplastic large cell lymphoma (ALCL), angiocetric and angioimmunoblastic T-cell lymphoma, mycosis fungoides/Sezary syndrome, and cutaneous T-cell lymphoma (CTCL). Other cancers that may be treatable by the antibodies of the invention include but are not limited to Hodgkin's lymphoma, tumors of lymphocyte precursor cells, including B-cell acute lymphoblastic leukemia/lymphoma (B-ALL), and T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), thymoma, Langerhans cell histocytosis, multiple myeloma, myeloid neoplasias such as acute myelogenous leukemias (AML), including AML with maturation, AML without differentiation, acute promyelocytic leukemia, acute myelomonocytic leukemia, and acute monocytic leukemias, myelodysplastic syndromes, and chronic myeloproliferative disorders (MDS), including chronic myelogenous leukemia (CML).

[208] Other cancers that may be treatable by the antibodies of the invention include but are not limited to tumors of the central nervous system such as glioma, glioblastoma, neuroblastoma, astrocytoma, medulloblastoma, ependymoma, and retinoblastoma; solid tumors of the head and neck (eg. nasopharyngeal cancer, salivary gland carcinoma, and esophageal cancer), lung (eg. small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung and squamous carcinoma of the lung), digestive system (eg. gastric or stomach cancer including gastrointestinal cancer, cancer of the bile duct or biliary tract, colon cancer, rectal cancer, colorectal cancer, and anal carcinoma), reproductive system (eg. testicular, penile, or prostate cancer, uterine, vaginal, vulval, cervical, ovarian, and endometrial cancer), skin (eg. melanoma, basal cell carcinoma, squamous cell cancer, actinic keratosis), liver (eg. liver cancer, hepatic carcinoma, hepatocellular cancer, and hepatoma), bone (eg. osteoclastoma, and osteolytic bone cancers) additional tissues and organs (eg. pancreatic cancer, bladder cancer, kidney or renal cancer, thyroid cancer, breast cancer, cancer of the peritoneum, and Kaposi's sarcoma), and tumors of the vascular system (eg. angiosarcoma and hemagiopericytoma).

[209] Indications that may be treated by anti-IGF-1 R antibodies of the invention include but are not limited to all non-Hodgkin's lymphomas (NHL), especially refractory/resistant NHL, chronic lymphocytic leukemia (CLL), B-cell acute lymphoblastic leukemia/lymphoma (B-ALL), mantle cell lymphoma (MCL), T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), anaplastic large cell lymphoma (ALCL), cutaneous T-cell lymphoma (CTCL), and multiple myeloma.

[210] Autoimmunity results from a breakdown of self-tolerance involving humoral and/or cell- mediated immune mechanisms. Among the consequences of failure in central and/or peripheral tolerance are survival and activation of self-reactive B cells and T cells. Several autoimmune diseases are defined by excessive activation of both B and/or T lymphocytes. Activation of these cells requires in cooperation, antigen engagement and co-stimulatory signals from interacting lymphocytes. Thus antibody-mediated depletion, inhibition, anti-proliferation, and/or blockade of B cells and/or T cells are therapeutic approaches for the treatment of autoimmune disease.

[211] By "autoimmune diseases" herein include allogenic islet graft rejection, alopecia areata, ankylosing spondylitis, antiphospholipid syndrome, autoimmune Addison's disease, antineutrophil cytoplasmic autoantibodies (ANCA), autoimmune diseases of the adrenal gland, autoimmune hemolytic anemia, autoimmune hepatitis, autoimmune myocarditis, autoimmune neutropenia, autoimmune oophoritis and orchitis, autoimmune thrombocytopenia, autoimmune urticaria, Behcet's disease, bullous pemphigoid, cardiomyopathy, Castleman's syndrome, celiac spruce-dermatitis, chronic fatigue immune dysfunction syndrome, chronic inflammatory demyelinating polyneuropathy, Churg-Strauss syndrome, cicatrical pemphigoid, CREST syndrome, cold agglutinin disease, Crohn's disease, dermatomyositis, discoid lupus, essential mixed cryoglobulinemia, factor VIII deficiency, fibromyalgia-fibromyositis, glomerulonephritis, Grave's disease, Guillain-Barre, Goodpasture's syndrome, graft-versus-host disease (GVHD), Hashimoto's thyroiditis, hemophilia A, idiopathic pulmonary fibrosis, idiopathic thrombocytopenia purpura (ITP), IgA neuropathy, IgM polyneuropathies, immune mediated thrombocytopenia, juvenile arthritis, Kawasaki's disease, lichen plantus, lupus erythematosus, Meniere's disease, mixed connective tissue disease, multiple sclerosis, type 1 diabetes mellitus, myasthenia gravis, pemphigus vulgaris, pernicious anemia, polyarteritis nodosa, polychrondritis, polyglandular syndromes, polymyalgia rheumatica, polymyositis and dermatomyositis, primary agammaglobinulinemia, primary biliary cirrhosis, psoriasis, psoriatic arthritis, Reynauld's phenomenon, Reiter's syndrome, rheumatoid arthritis, sarcoidosis, scleroderma, Sjorgen's syndrome, solid organ transplant rejection, stiff-man syndrome, systemic lupus erythematosus, takayasu arteritis, temporal arteristis / giant cell arteritis, thrombotic thrombocytopenia purpura, ulcerative colitis, uveitis, vasculitides such as dermatitis herpetiformis vasculitis, vitiligo, and Wegner"s granulomatosis. [212] Indications that may be treated by anti-IGF-1 R antibodies of the invention include but are not limited to all non-Hodgkin's lymphomas (NHL), especially refractory/resistant NHL, chronic lymphocytic leukemia (CLL), B-cell acute lymphoblastic leukemia/lymphoma (B-ALL), mantle cell lymphoma (MCL), T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), anaplastic large cell lymphoma (ALCL), cutaneous T-cell lymphoma (CTCL), and multiple myeloma.

[213] By "inflammatory disorders" herein include acute respiratory distress syndrome (ARDS), acute septic arthritis, adjuvant arthritis, juvenile idiopathic arthritis, allergic encephalomyelitis, allergic rhinitis, allergic vasculitis, allergy, asthma, atherosclerosis, chronic inflammation due to chronic bacterial or viral infections, chronic obstructive pulmonary disease (COPD), coronary artery disease, encephalitis, inflammatory bowel disease, inflammatory osteolysis, inflammation associated with acute and delayed hypersensitivity reactions, inflammation associated with tumors, peripheral nerve injury or demyelinating diseases, inflammation associated with tissue trauma such as burns and ischemia, inflammation due to meningitis, multiple organ injury syndrome, pulmonary fibrosis, sepsis and septic shock, Stevens-Johnson syndrome, undifferentiated arthropy, and undifferentiated spondyloarthropathy.

[214] By "infectious diseases" herein include diseases caused by pathogens such as viruses, bacteria, fungi, protozoa, and parasites. Infectious diseases may be caused by viruses including adenovirus, cytomegalovirus, dengue, Epstein-Barr, hanta, hepatitis A, hepatitis B, hepatitis C, herpes simplex type I, herpes simplex type II, human immunodeficiency virus (HIV), human papilloma virus (HPV), influenza, measles, mumps, papova virus, polio, respiratory syncytial virus (RSV), rinderpest, rhinovirus, rotavirus, rubella, SARS virus, smallpox, viral meningitis, and the like. Infections diseases may also be caused by bacteria including Bacillus anthracis, Borrelia burgdorferi, Campylobacter jejuni, Chlamydia trachomatis, Clostridium botulinum, Clostridium tetani, Diptheria, E. coli, Legionella, Helicobacter pylori, Mycobacterium rickettsia, Mycoplasma nesisseria, Pertussis, Pseudomonas aeruginosa, S. pneumonia, Streptococcus, Staphylococcus, Vibria cholerae, Yersinia pestis, and the like. Infectious diseases may also be caused by fungi such as Aspergillus fumigatus, Blastomyces dermatitidis, Candida albicans, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum, Penicillium marneffei, and the like. Infectious diseases may also be caused by protozoa and parasites such as chlamydia, kokzidioa, leishmania, malaria, rickettsia, trypanosoma, and the like. [215] Alternatively, a T cell depletion therapy could be effectively used against infectious diseases in which the infectious agent (virus, bacteria, parasite etc) uses human T cells as an obligate part of their life cycle. An example of this type of infectious disease is HIV infection. During the infection, HIV virus uses human T cells, in particular CD4+ T cells, in order to survive and propagate. HIV virus enters CD4+ T cells, and using reverse transcriptase converts its viral single stranded RNA into double stranded DNA, that crosses into the nucleus and inserts into the host's DNA. The stage of the disease that is characterized by the viral DNA being integrated into the host's DNA is referred to as a latent stage of the infection and may persist for many years. When HIV-infected CD4+ T cell is activated, HIV viruses overcome the cell and use its RNA- and protein-synthesizing machinery together with the host's membrane to make thousands of copies of itself and exit the dying cell to infect new CD4+ T cells. [216] Furthermore, antibodies of the present invention may be used to prevent or treat additional conditions including but not limited to heart conditions such as congestive heart failure (CHF), myocarditis and other conditions of the myocardium; skin conditions such as rosecea, acne, and eczema; bone and tooth conditions such as bone loss, osteoporosis, Paget's disease, Langerhans' cell histiocytosis, periodontal disease, disuse osteopenia, osteomalacia, monostotic fibrous dysplasia, polyostotic fibrous dysplasia, bone metastasis, bone pain management, humoral malignant hypercalcemia, periodontal reconstruction, spinal cord injury, and bone fractures; metabolic conditions such as Gaucher's disease; endocrine conditions such as Cushing's syndrome; and neurological conditions.

[217] A number of the receptors that may interact with the antibodies of the present invention are polymorphic in the human population. For a given patient or population of patients, the efficacy of the antibodies of the present invention may be affected by the presence or absence of specific polymorphisms in proteins. For example, FcγRIIIA is polymorphic at position 158, which is commonly either V (high affinity) or F (low affinity). Patients with the V/V homozygous genotype are observed to have a better clinical response to treatment with the anti-CD20 antibody Rituxan® (rituximab), likely because these patients mount a stronger NK response (Dall'Ozzo et a/. (2004) Cancer Res. 64:4664-9, incorporated entirely by reference). Additional polymorphisms include but are not limited to FcγRIIA R131 or H131 , and such polymorphisms are known to either increase or decrease Fc binding and subsequent biological activity, depending on the polymorphism. Antibodies of the present invention may bind to a particular polymorphic form of a receptor, for example FcγRIIIA 158 V, or to bind with equivalent affinity to all of the polymorphisms at a particular position in the receptor, for example both the 158V and 158F polymorphisms of FcγRIIIA. In one embodiment, antibodies of the present invention may have equivalent binding to polymorphisms that may be used in an antibody to eliminate the differential efficacy seen in patients with different polymorphisms. Such a property may give greater consistency in therapeutic response and reduce non-responding patient populations. Such variant Fc with identical binding to receptor polymorphisms may have increased biological activity, such as ADCC, CDC or circulating half-life, or alternatively decreased activity, via modulation of the binding to the relevant Fc receptors. In one embodiment, antibodies of the present invention may bind with higher or lower affinity to one of the polymorphisms of a receptor, either accentuating the existing difference in binding or reversing the difference. Such a property may allow creation of therapeutics particularly tailored for efficacy with a patient population possessing such polymorphism. For example, a patient population possessing a polymorphism with a higher affinity for an inhibitory receptor such as FcγRIIB could receive a drug containing an antibody with reduced binding to such polymorphic form of the receptor, creating a more efficacious drug. [218] In one embodiment, patients are screened for one or more polymorphisms in order to predict the efficacy of the antibodies of the present invention. This information may be used, for example, to select patients to include or exclude from clinical trials or, post-approval, to provide guidance to physicians and patients regarding appropriate dosages and treatment options. For example, in patients that are homozygous or heterozygous for FcγRIIIA 158F antibody drugs such as the anti-CD20 mAb, Rituxan® are minimally effective (Carton 2002 Blood 99: 754-758; Weng 2003 J. Clin. Oncol. 21 :3940-3947, both incorporated entirely by reference); such patients may show a much better clinical response to the antibodies of the present invention. In one embodiment, patients are selected for inclusion in clinical trials for an antibody of the present invention if their genotype indicates that they are likely to respond significantly better to an antibody of the present invention as compared to one or more currently used antibody therapeutics. In another embodiment, appropriate dosages and treatment regimens are determined using such genotype information. In another embodiment, patients are selected for inclusion in a clinical trial or for receipt of therapy post-approval based on their polymorphism genotype, where such therapy contains an antibody engineered to be specifically efficacious for such population, or alternatively where such therapy contains an antibody that does not show differential activity to the different forms of the polymorphism.

[219] Included in the present invention are diagnostic tests to identify patients who are likely to show a favorable clinical response to an antibody of the present invention, or who are likely to exhibit a significantly better response when treated with an antibody of the present invention versus one or more currently used antibody therapeutics. Any of a number of methods for determining FcγR polymorphisms in humans known in the art may be used. [220] Furthermore, the present invention comprises prognostic tests performed on clinical samples such as blood and tissue samples. Such tests may assay for effector function activity, including but not limited to ADCC, CDC, phagocytosis, and opsonization, or for killing, regardless of mechanism, of cancerous or otherwise pathogenic cells. In one embodiment, ADCC assays, such as those described previously, are used to predict, for a specific patient, the efficacy of a given antibody of the present invention. Such information may be used to identify patients for inclusion or exclusion in clinical trials, or to inform decisions regarding appropriate dosages and treatment regimens. Such information may also be used to select a drug that contains a particular antibody that shows superior activity in such assay. [221] Formulation

[222] Pharmaceutical compositions are contemplated wherein an antibody of the present invention and one or more therapeutically active agents are formulated. Formulations of the antibodies of the present invention are prepared for storage by mixing said antibody having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed., 1980, incorporated entirely by reference), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, acetate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl orbenzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; sweeteners and other flavoring agents; fillers such as microcrystalline cellulose, lactose, corn and other starches; binding agents; additives; coloring agents; salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG). In one embodiment, the pharmaceutical composition that comprises the antibody of the present invention may be in a water-soluble form, such as being present as pharmaceutically acceptable salts, which is meant to include both acid and base addition salts. "Pharmaceutically acceptable acid addition salt" refers to those salts that retain the biological effectiveness of the free bases and that are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. "Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly useful are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine. The formulations to be used for in vivo administration should be sterile. This is readily accomplished by filtration through sterile filtration membranes or other methods.

[223] The antibodies disclosed herein may also be formulated as immunoliposomes. A liposome is a small vesicle comprising various types of lipids, phospholipids and/or surfactant that is useful for delivery of a therapeutic agent to a mammal. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., 1985, Proc Natl Acad Sci USA, 82:3688; Hwang et al., 1980, Proc Natl Acad Sci USA, 77:4030; US 4,485,045; US 4,544,545; and PCT WO 97/38731, all incorporated entirely by reference. Liposomes with enhanced circulation time are disclosed in US 5,013,556, incorporated entirely by reference. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. A chemotherapeutic agent or other therapeutically active agent is optionally contained within the liposome (Gabizon et al., 1989, J National Cancer Inst 81:1484, incorporated entirely by reference). [224] The antibody and other therapeutically active agents may also be entrapped in microcapsules prepared by methods including but not limited to coacervation techniques, interfacial polymerization (for example using hydroxymethylcellulose or gelatin-microcapsules, or poly-(methylmethacylate) microcapsules), colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules), and macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed., 1980, incorporated entirely by reference. Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymer, which matrices are in the form of shaped articles, e.g. films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (US 3,773,919, incorporated entirely by reference), copolymers of L-glutamic acid and gamma ethyl- L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the Lupron Depot® (which are injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), poly-D-(-)-3-hydroxybutyric acid, and ProLease® (commercially available from Alkermes), which is a microsphere-based delivery system composed of the desired bioactive molecule incorporated into a matrix of poly-DL- lactide-co-glycolide (PLG). [225] Administration

[226] Administration of the pharmaceutical composition comprising an antibody of the present invention, e.g., in the form of a sterile aqueous solution, may be done in a variety of ways, including, but not limited to orally, subcutaneously, intravenously, intranasally, intraotically, transdermally, topically (e.g., gels, salves, lotions, creams, etc.), intraperitoneally, intramuscularly, intrapulmonary, vaginally, parenterally, rectally, or intraocularly. In some instances, for example for the treatment of wounds, inflammation, etc., the antibody may be directly applied as a solution or spray. As is known in the art, the pharmaceutical composition may be formulated accordingly depending upon the manner of introduction. [227] Subcutaneous administration may be desirable in some circumstances because the patient may self-administer the pharmaceutical composition. Many protein therapeutics are not sufficiently potent to allow for formulation of a therapeutically effective dose in the maximum acceptable volume for subcutaneous administration. This problem may be addressed in part by the use of protein formulations comprising arginine-HCI, histidine, and polysorbate (see WO 04091658, incorporated entirely by reference). Antibodies of the present invention may be more amenable to subcutaneous administration due to, for example, increased potency, improved serum half-life, or enhanced solubility. [228] As is known in the art, protein therapeutics are often delivered by IV infusion or bolus. The antibodies of the present invention may also be delivered using such methods. For example, administration may be by intravenous infusion with 0.9% sodium chloride as an infusion vehicle. [229] Pulmonary delivery may be accomplished using an inhaler or nebulizer and a formulation comprising an aerosolizing agent. For example, AERx® inhalable technology commercially available from Aradigm, or Inhance™ pulmonary delivery system commercially available from Nektar Therapeutics may be used. Antibodies of the present invention may be more amenable to intrapulmonary delivery. FcRn is present in the lung, and may promote transport from the lung to the bloodstream (e.g. Syntonix WO 04004798, Bitonti et al. (2004) Proc. Nat. Acad. Sci. 101 :9763-8, both incorporated entirely by reference). Accordingly, antibodies that bind FcRn more effectively in the lung or that are released more efficiently in the bloodstream may have improved bioavailability following intrapulmonary administration. Antibodies of the present invention may also be more amenable to intrapulmonary administration due to, for example, improved solubility or altered isoelectric point. [230] Furthermore, antibodies of the present invention may be more amenable to oral delivery due to, for example, improved stability at gastric pH and increased resistance to proteolysis. Furthermore, FcRn appears to be expressed in the intestinal epithelia of adults (Dickinson et al. (1999) J. Clin. Invest. 104:903-11 , incorporated entirely by reference), so antibodies of the present invention with improved FcRn interaction profiles may show enhanced bioavailability following oral administration. FcRn mediated transport of antibodies may also occur at other mucus membranes such as those in the gastrointestinal, respiratory, and genital tracts (Yoshida et al. (2004) Immunity 20:769-83, incorporated entirely by reference). [231] In addition, delivery systems are known in the art and may be used to administer the antibodies of the present invention. Examples include, but are not limited to, encapsulation in liposomes, microparticles, microspheres (eg. PLA/PGA microspheres), and the like. Alternatively, an implant of a porous, non-porous, or gelatinous material, including membranes or fibers, may be used. Sustained release systems may comprise a polymeric material or matrix such as polyesters, hydrogels, poly(vinylalcohol),polylactides, copolymers of L-glutamic acid and ethyl-L-gutamate, ethylene-vinyl acetate, lactic acid-glycolic acid copolymers such as the Lupron Depot®, and poly-D-(-)-3-hydroxyburyric acid. It is also possible to administer a nucleic acid encoding the antibody of the current invention, for example by retroviral infection, direct injection, or coating with lipids, cell surface receptors, or other transfection agents. In all cases, controlled release systems may be used to release the antibody at or close to the desired location of action. [232] Dosing

[233] The dosing amounts and frequencies of administration are, in one embodiment, selected to be therapeutically or prophylactically effective. As is known in the art, adjustments for protein degradation, systemic versus localized delivery, and rate of new protease synthesis, as well as the age, body weight, general health, sex, diet, time of administration, drug interaction and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art.

[234] The concentration of the therapeutically active antibody in the formulation may vary from about 0.1 to 100 weight %. In one embodiment, the concentration of the antibody is in the range of 0.003 to 1.0 molar. In order to treat a patient, a therapeutically effective dose of the antibody of the present invention may be administered. By "therapeutically effective dose" herein is meant a dose that produces the effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques. Dosages may range from 0.0001 to 100 mg/kg of body weight or greater, for example 0.1 , 1 , 10, or 50 mg/kg of body weight, e.g., 1 to 10mg/kg of body weight. [235] In some embodiments, only a single dose of the antibody is used. In other embodiments, multiple doses of the antibody are administered. The elapsed time between administrations may be less than 1 hour, about 1 hour, about 1-2 hours, about 2-3 hours, about 3-4 hours, about 6 hours, about 12 hours, about 24 hours, about 48 hours, about 2-4 days, about 4-6 days, about 1 week, about 2 weeks, or more than 2 weeks. [236] In other embodiments the antibodies of the present invention are administered in metronomic dosing regimes, either by continuous infusion or frequent administration without extended rest periods. Such metronomic administration may involve dosing at constant intervals without rest periods. Typically such regimens encompass chronic low-dose or continuous infusion for an extended period of time, for example 1-2 days, 1-2 weeks, 1-2 months, or up to 6 months or more. The use of lower doses may minimize side effects and the need for rest periods.

[237] In certain embodiments the antibody of the present invention and one or more other prophylactic or therapeutic agents are cyclically administered to the patient. Cycling therapy involves administration of a first agent at one time, a second agent at a second time, optionally additional agents at additional times, optionally a rest period, and then repeating this sequence of administration one or more times. The number of cycles is typically from 2 - 10. Cycling therapy may reduce the development of resistance to one or more agents, may minimize side effects, or may improve treatment efficacy. [238] Combination therapies

[239] The antibodies of the present invention may be administered concomitantly with one or more other therapeutic regimens or agents. The additional therapeutic regimes or agents may be used to improve the efficacy or safety of the antibody. Also, the additional therapeutic regimes or agents may be used to treat the same disease or a comorbidity rather than to alter the action of the antibody. For example, an antibody of the present invention may be administered to the patient along with chemotherapy, radiation therapy, or both chemotherapy and radiation therapy. The antibody of the present invention may be administered in combination with one or more other prophylactic or therapeutic agents, including but not limited to cytotoxic agents, chemotherapeutic agents, cytokines, growth inhibitory agents, anti- hormonal agents, kinase inhibitors, anti-angiogenic agents, cardioprotectants, immunostimulatory agents, immunosuppressive agents, agents that promote proliferation of hematological cells, angiogenesis inhibitors, protein tyrosine kinase (PTK) inhibitors, additional antibodies, FcγRllb or other Fc receptor inhibitors, or other therapeutic agents. [240] The terms "in combination with" and "co-administration" are not limited to the administration of said prophylactic or therapeutic agents at exactly the same time. Instead, it is meant that the antibody of the present invention and the other agent or agents are administered in a sequence and within a time interval such that they may act together to provide a benefit that is increased versus treatment with only either the antibody of the present invention or the other agent or agents. In one embodiment, that the antibody and the other agent or agents act additively, e.g., they act synergistically. Such molecules are suitably present in combination in amounts that are effective for the purpose intended. The skilled medical practitioner can determine empirically, or by considering the pharmacokinetics and modes of action of the agents, the appropriate dose or doses of each therapeutic agent, as well as the appropriate timings and methods of administration.

[241] In one embodiment, the antibodies of the present invention are administered with one or more additional molecules comprising antibodies or Fc. The antibodies of the present invention may be co-administered with one or more other antibodies that have efficacy in treating the same disease or an additional comorbidity; for example two antibodies may be administered that recognize two antigens that are overexpressed in a given type of cancer, or two antigens that mediate pathogenesis of an autoimmune or infectious disease. [242] Examples of anti-cancer antibodies that may be co-administered include, but are not limited to, anti-17-1A cell surface antigen antibodies such as Panorex™ (edrecolomab); anti-4- 1 BB antibodies; anti-4Dc antibodies; anti-A33 antibodies such as A33 and CDP-833; anti-σ401 integrin antibodies such as natalizumab; anti-σ4/?7 integrin antibodies such as LDP-02; anti- cNβλ integrin antibodies such as F-200, M-200, and SJ-749; anti-σV/?3 integrin antibodies such as abciximab, CNTO-95, Mab-17E6, and Vitaxin™; anti-complement factor 5 (C5) antibodies such as 5G1.1 ; anti-CA125 antibodies such as OvaRex® (oregovomab); anti-CD3 antibodies such as Nuvion® (visilizumab) and Rexomab; anti-CD4 antibodies such as IDEC-151, MDX- CD4, OKT4A; anti-CD6 antibodies such as Oncolysin B and Oncolysin CD6; anti-CD7 antibodies such as HB2; anti-CD19 antibodies such as B43, MT-103, and Oncolysin B; anti- CD20 antibodies such as 2H7, 2H7.v16, 2H7.v114, 2H7.v115, Bexxar® (tositumomab, 1-131 labeled anti-CD20), Rituxan® (rituximab), and Zevalin® (Ibritumomab tiuxetan, Y-90 labeled anti-CD20); anti-CD22 antibodies such as Lymphocide™ (epratuzumab, Y-90 labeled anti-

CD22); anti-CD23 antibodies such as IDEC-152; anti-CD25 antibodies such as basiliximab and Zenapax® (daclizumab); anti-CD30 antibodies such as AC10, MDX-060, and SGN-30; anti- CD33 antibodies such as Mylotarg® (gemtuzumab ozogamicin), Oncolysin M, and Smart M195; anti-CD38 antibodies; anti-CD40 antibodies such as SGN-40 and toralizumab; anti-CD40L antibodies such as 5c8, Antova™, and IDEC-131 ; anti-CD44 antibodies such as bivatuzumab; anti-CD46 antibodies; anti-CD52 antibodies such as Campath® (alemtuzumab); anti-CD55 antibodies such as SC-1; anti-CD56 antibodies such as huN901-DM1 ; anti-CD64 antibodies such as MDX-33; anti-CD66e antibodies such as XR-303; anti-CD74 antibodies such as IMMU- 110; anti-CD80 antibodies such as galiximab and IDEC-114; anti-CD89 antibodies such as MDX-214; anti-CD123 antibodies; anti-CD138 antibodies such as B-B4-DM1 ; anti-CD146 antibodies such as AA-98; anti-CD148 antibodies; anti-CEA antibodies such as cT84.66, labetuzumab, and Pentacea™; anti-CTLA-4 antibodies such as MDX-101 ; anti-CXCR4 antibodies; anti-EGFR antibodies such as ABX-EGF, Erbitux® (cetuximab), IMC-C225, and Merck Mab 425; anti-EpCAM antibodies such as Crucell's anti-EpCAM, ING-1 , and IS-IL-2; anti- ephrin B2/EphB4 antibodies; anti-Her2 antibodies such as Herceptin®, MDX-210; anti-FAP (fibroblast activation protein) antibodies such as sibrotuzumab; anti-ferritin antibodies such as NXT-211 ; anti-FGF-1 antibodies; anti-FGF-3 antibodies; anti-FGF-8 antibodies; anti-FGFR antibodies, anti-fibrin antibodies; anti-G250 antibodies such as WX-G250 and Rencarex®; anti- GD2 ganglioside antibodies such as EMD-273063 and TriGem; anti-GD3 ganglioside antibodies such as BEC2, KW-2871 , and mitumomab; anti-gpllb/llla antibodies such as ReoPro; anti- heparinase antibodies; anti-Her2/ErbB2 antibodies such as Herceptin® (trastuzumab), MDX- 210, and pertuzumab; anti-HLA antibodies such as Oncolym®, Smart 1D10; anti-HM1.24 antibodies; anti-ICAM antibodies such as ICM3; anti-lgA receptor antibodies; anti-IGF-1 antibodies such as CP-751871 and EM-164; anti-IGF-1 R antibodies such as IMC-A12; anti-IL-6 antibodies such as CNTO-328 and elsilimomab; anti-IL-15 antibodies such as HuMax™-IL15; anti-KDR antibodies; anti-laminin 5 antibodies; anti-Lewis Y antigen antibodies such as Hu3S193 and IGN-311; anti-MCAM antibodies; anti-Mud antibodies such as BravaRex and TriAb; anti-NCAM antibodies such as ERIC-1 and ICRT; anti-PEM antigen antibodies such as Theragyn and Therex; anti-PSA antibodies; anti-PSCA antibodies such as IG8; anti-Ptk antibodies; anti-PTN antibodies; anti-RANKL antibodies such as AMG-162; anti-RLIP76 antibodies; anti-SK-1 antigen antibodies such as Monopharm C; anti-STEAP antibodies; anti- TAG72 antibodies such as CC49-SCA and MDX-220; anti-TGF-jff antibodies such as CAT-152; anti-TNF-σ antibodies such as CDP571 , CDP870, D2E7, Humira® (adalimumab), and Remicade® (infliximab); anti-TRAIL-R1 and TRAIL-R2 antibodies; anti-VE-cadherin-2 antibodies; and anti-VLA-4 antibodies such as Antegren™. Furthermore, anti-idiotype antibodies including but not limited to the GD3 epitope antibody BEC2 and the gp72 epitope antibody 105AD7, may be used. In addition, bispecific antibodies including but not limited to the anti- CD3/CD20 antibody Bi20 may be used. [243] Examples of antibodies that may be co-administered to treat autoimmune or inflammatory disease, transplant rejection, GVHD, and the like include, but are not limited to, anti-σ4jff7 integrin antibodies such as LDP-02, anti-beta2 integrin antibodies such as LDP-01 , anti-complement (C5) antibodies such as 5G1.1 , anti-CD2 antibodies such as BTI-322, MEDI- 507, anti-CD3 antibodies such as OKT3, SMART anti-CD3, anti-CD4 antibodies such as IDEC- 151 , MDX-CD4, OKT4A, anti-CD11a antibodies, anti-CD14 antibodies such as IC14, anti-CD18 antibodies, anti-CD23 antibodies such as IDEC 152, anti-CD25 antibodies such as Zenapax, anti-CD40L antibodies such as 5c8, Antova, IDEC-131 , anti-CD64 antibodies such as MDX-33, anti-CD80 antibodies such as IDEC-114, anti-CD147 antibodies such as ABX-CBL, anti-E- selectin antibodies such as CDP850, anti-gpllb/llla antibodies such as ReoPro/Abcixima, anti- ICAM-3 antibodies such as ICM3, anti-ICE antibodies such as VX-740, anti-FcγR1 antibodies such as MDX-33, anti-lgE antibodies such as rhuMab-E25, anti-IL-4 antibodies such as SB- 240683, anti-IL-5 antibodies such as SB-240563, SCH55700, anti-IL-8 antibodies such as ABX- IL8, anti-interferon gamma antibodies, and anti-TNFa antibodies such as CDP571, CDP870, D2E7, Infliximab, MAK-195F, anti-VLA-4 antibodies such as Antegren. Examples of other Fc- containing molecules that may be co-administered to treat autoimmune or inflammatory disease, transplant rejection, GVHD, and the like include, but are not limited to, the p75 TNF receptor/Fc fusion Enbrel® (etanercept) and Regeneron's IL-1 trap. [244] Examples of antibodies that may be co-administered to treat infectious diseases include, but are not limited to, anti-anthrax antibodies such as ABthrax, anti-CMV antibodies such as

CytoGam and sevirumab, anti-cryptosporidium antibodies such as CryptoGAM, Sporidin-G, anti- helicobacter antibodies such as Pyloran, anti-hepatitis B antibodies such as HepeX-B, Nabi-HB, anti-HIV antibodies such as HRG-214, anti-RSV antibodies such as felvizumab, HNK-20, palivizumab, RespiGam, and anti-staphylococcus antibodies such as Aurexis, Aurograb, BSYX- A110, and SE-Mab.

[245] Alternatively, the antibodies of the present invention may be co-administered or with one or more other molecules that compete for binding to one or more Fc receptors. For example, coadministering inhibitors of the inhibitory receptor FcyRllb may result in increased effector function. Similarly, co-administering inhibitors of the activating receptors such as FcγRllla may minimize unwanted effector function. Fc receptor inhibitors include, but are not limited to, Fc molecules that are engineered to act as competitive inhibitors for binding to FcyRllb, FcγRllla, or other Fc receptors, as well as other immunoglobulins and specifically the treatment called IVIg (intravenous immunoglobulin). In one embodiment, the inhibitor is administered and allowed to act before the antibody is administered. An alternative way of achieving the effect of sequential dosing would be to provide an immediate release dosage form of the Fc receptor inhibitor and then a sustained release formulation of the antibody of the invention. The immediate release and controlled release formulations could be administered separately or be combined into one unit dosage form. Administration of an FcγRllb inhibitor may also be used to limit unwanted immune responses, for example anti-Factor VIII antibody response following Factor VIII administration to hemophiliacs.

[246] In one embodiment, the antibodies of the present invention are administered with a chemotherapeutic agent. By "chemotherapeutic agent" as used herein is meant a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include but are not limited to alkylating agents such as thiotepa and cyclosphosphamide (CYTOXAN™); alkyl sulfonates such as busulfan, improsulfan and piposulfan; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; antibiotics such as aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, calicheamicin, carabicin, caminomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L- norleucine, doxorubicin, epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti estrogens including for example tamoxifen, raloxifene, aromatase inhibiting 4(5)-imidazoles, 4-hydroxytamoxifen, trioxifene, keoxifene, LY 117018, onapristone, and toremifene (Fareston); anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethylenethiophosphaoramide and trimethylolomelamine; folic acid replenisher such as frolinic acid; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, ranimustine; platinum analogs such as cisplatin and carboplatin; vinblastine; platinum; proteins such as arginine deiminase and asparaginase; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine, 5-FU; taxanes, e.g. paclitaxel (TAXOL®, Bristol-Myers Squibb Oncology, Princeton, N.J.) and docetaxel (TAXOTERE®, Rhne-Poulenc Rorer, Antony, France); topoisomerase inhibitor RFS 2000; thymidylate synthase inhibitor (such as Tomudex); additional chemotherapeutics including aceglatone; aldophosphamide glycoside; aminolevulinic acid; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; difluoromethylomithine (DMFO); elformithine; elliptinium acetate; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidamine; mitoguazone; mitoxantrone; mopidamol; nitracrine; pentostatin; phenamet; pirarubicin; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK®; razoxane; sizofuran; spirogermanium; tenuazonic acid; triaziquone; 2, 2',2"- trichlorotriethylamine; urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); cyclophosphamide; thiotepa; chlorambucil; gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; etoposide (VP-16); ifosfamide; mitomycin C; mitoxantrone; vincristine; vinorelbine; navelbine; novantrone; teniposide; daunomycin; aminopterin; xeioda; ibandronate; CPT-11 jretinoic acid; esperamicins; capecitabine. Pharmaceutically acceptable salts, acids, or derivatives of any of the above may also be used.

[247] A chemotherapeutic or other cytotoxic agent may be administered as a prodrug. By "prodrug" as used herein is meant a precursor or derivative form of a pharmaceutically active substance that is less cytotoxic to tumor cells compared to the parent drug and is capable of being enzymatically activated or converted into the more active parent form. See, for example Wilman, 1986, Biochemical Society Transactions, 615th Meeting Belfast, 14:375-382; Stella et al., "Prodrugs: A Chemical Approach to Targeted Drug Delivery," Directed Drug Delivery; and Borchardt et al., (ed.): 247-267, Humana Press, 1985, all incorporated entirely by reference. The prodrugs that may find use with the present invention include but are not limited to phosphate-containing prodrugs, thiophosphate-containing prodrugs, sulfate-containing prodrugs, peptide-containing prodrugs, D-amino acid-modified prodrugs, glycosylated prodrugs, beta-lactam-containing prodrugs, optionally substituted phenoxyacetamide-containing prodrugs or optionally substituted phenylacetamide-containing prodrugs, 5-fluorocytosine and other 5- fluorouridine prodrugs which can be converted into the more active cytotoxic free drug. Examples of cytotoxic drugs that can be derivatized into a prodrug form for use with the antibodies of the present invention include but are not limited to any of the aforementioned chemotherapeutic agents.

[248] A variety of other therapeutic agents may find use for administration with the antibodies of the present invention. In one embodiment, the antibody is administered with an anti- angiogenic agent. By "anti-angiogenic agent" as used herein is meant a compound that blocks, or interferes to some degree, the development of blood vessels. The anti-angiogenic factor may, for instance, be a small molecule or a protein, for example an antibody, Fc fusion, or cytokine, that binds to a growth factor or growth factor receptor involved in promoting angiogenesis. One such anti-angiogenic factor herein is an antibody that binds to Vascular Endothelial Growth Factor (VEGF). Other agents that inhibit signaling through VEGF may also be used, for example, RNA-based therapeutics that reduce levels of VEGF or VEGF-R expression, VEGF- toxin fusions, Regeneron's VEGF-trap, and antibodies that bind VEGF-R. In an alternate embodiment, the antibody is administered with a therapeutic agent that induces or enhances adaptive immune response, for example an antibody that targets CTLA-4. Additional anti- angiogenesis agents include, but are not limited to, angiostatin (plasminogen fragment), antithrombin III, angiozyme, ABT-627, Bay 12-9566, benefin, bevacizumab, bisphosphonates, BMS-275291 , cartilage-derived inhibitor (CDI), CAI, CD59 complement fragment, CEP-7055, CoI 3, combretastatin A-4, endostatin (collagen XVIII fragment), farnesyl transferase inhibitors, fibronectin fragment, gro-beta, halofuginone, heparinases, heparin hexasaccharide fragment, HMV833, human chorionic gonadotropin (hCG), IM-862, interferon alpha, interferon beta, interferon gamma, interferon inducible protein 10 (IP-10), interleukin-12, kringle 5 (plasminogen fragment), marimastat, metalloproteinase inhibitors (eg. TIMPs), 2-methodyestradiol, MMI 270 (CGS 27023A), plasminogen activator inhibitor (PAI), platelet factor-4 (PF4), prinomastat, prolactin 16kDa fragment, proliferin-related protein (PRP), PTK 787/ZK 222594, retinoids, solimastat, squalamine, SS3304, SU5416, SU6668, SU 11248, tetrahydrocortisol-S, tetrathiomolybdate, thalidomide, thrombospondin-1 (TSP-1 ), TNP-470, transforming growth factor beta (TGF-/?), vasculostatin, vasostatin (calreticulin fragment), ZS6126,and ZD6474. [249] In one embodiment, the antibody is administered with a tyrosine kinase inhibitor. By "tyrosine kinase inhibitor" as used herein is meant a molecule that inhibits to some extent tyrosine kinase activity of a tyrosine kinase. Examples of such inhibitors include but are not limited to quinazolines, such as PD 153035, 4-(3-chloroanilino) quinazoline; pyridopyrimidines; pyrimidopyrimidines; pyrrolopyrimidines, such as CGP 59326, CGP 60261 and CGP 62706; pyrazolopyrimidines, 4-(phenylamino)-7H-pyrrolo(2,3-d) pyrimidines; curcumin (diferuloyl methane, 4,5-bis (4-fluoroanilino)phthalimide); tyrphostines containing nitrothiophene moieties; PD-0183805 (Warner-Lambert); antisense molecules (e.g. those that bind to ErbB-encoding nucleic acid); quinoxalines (US 5,804,396); tryphostins (US 5,804,396); ZD6474 (Astra Zeneca); PTK-787 (Novartis/Schering A G); pan-ErbB inhibitors such as C1-1033 (Pfizer); Affinitac (ISIS 3521 ; Isis/ϋlly); lmatinib mesylate (STI571 ,Gleevec®; Novartis); PK1 166 (Novartis); GW2016 (Glaxo SmithKline); C1-1033 (Pfizer); EKB-569 (Wyeth); Semaxinib (Sugen); ZD6474 (AstraZeneca); PTK-787 (Novartis/Schering AG); INC-1C11 (Imclone); or as described in any of the following patent publications: US 5,804,396; PCT WO 99/09016 (American Cyanimid); PCT WO 98/43960 (American Cyanamid); PCT WO 97/38983 (Warner-Lambert); PCT WO 99/06378 (Warner-Lambert); PCT WO 99/06396 (Warner-Lambert); PCT WO 96/30347 (Pfizer, Inc); PCT WO 96/33978 (AstraZeneca); PCT WO96/3397 (AstraZeneca); PCT WO 96/33980

(AstraZeneca), gefitinib (IRESSA™, ZD1839, AstraZeneca), and OSI-774 (Tarceva™, OSI Pharmaceuticals/Genentech), all patent publications incorporated entirely by reference. [250] In another embodiment, the antibody is administered with one or more immunomodulatory agents. Such agents may increase or decrease production of one or more cytokines, up- or down-regulate self-antigen presentation, mask MHC antigens, or promote the proliferation, differentiation, migration, or activation state of one or more types of immune cells. Immunomodulatory agents include but are not limited to: non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, ibuprofen, celecoxib, diclofenac, etodolac, fenoprofen, indomethacin, ketoralac, oxaprozin, nabumentone, sulindac, tolmentin, rofecoxib, naproxen, ketoprofen, and nabumetone; steroids (eg. glucocorticoids, dexamethasone, cortisone, hydroxycortisone, methylprednisolone, prednisone, prednisolone, trimcinolone, azulfidineicosanoids such as prostaglandins, thromboxanes, and leukotrienes; as well as topical steroids such as anthralin, calcipotriene, clobetasol, and tazarotene); cytokines such as TGFb, IFNa, IFNb, IFNg, IL-2, IL-4, IL-10; cytokine, chemokine, or receptor antagonists including antibodies, soluble receptors, and receptor-Fc fusions against BAFF, B7, CCR2, CCR5, CD2, CD3, CD4, CD6, CD7, CD8, CD11 , CD14, CD15, CD17, CD18, CD20, CD23, CD28, CD40, CD40L, CD44, CD45, CD52, CD64, CD80, CD86, CD147, CD152, complement factors (C5, D) CTLA4, eotaxin, Fas, ICAM, ICOS, IFNσ, IFN0, IFNK, IFNAR, IgE, IL-1 , IL-2, IL-2R, IL-4, IL-5R, IL-6, IL-8, IL-9 IL-12, IL-13, IL- 13R1 , IL-15, IL-18R, IL-23, integrins, LFA-1, LFA-3, MHC, selectins, TGF0, TNFσ, TNF0, TNF- R1 , T-cell receptor, including Enbrel® (etanercept), Humira® (adalimumab), and Remicade® (infliximab); heterologous anti-lymphocyte globulin; other immunomodulatory molecules such as 2-amino-6-aryl-5 substituted pyrimidines, anti-idiotypic antibodies for MHC binding peptides and MHC fragments, azathioprine, brequinar, bromocryptine, cyclophosphamide, cyclosporine A, D- penicillamine, deoxyspergualin, FK506, glutaraldehyde, gold, hydroxychloroquine, leflunomide, malononitriloamides (e.g. leflunomide), methotrexate, minocycline, mizoribine, mycophenolate mofetil, rapamycin, and sulfasasazine.

[251] In an alternate embodiment, antibodies of the present invention are administered with a cytokine. By "cytokine" as used herein is meant a generic term for proteins released by one cell population that act on another cell as intercellular mediators. Examples of such cytokines are lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormones such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH); hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor-alpha and -beta; mullerian- inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO); nerve growth factors such as NGF- beta; platelet-growth factor; transforming growth factors (TGFs) such as TGF-alpha and TGF- beta; insulin-like growth factor-l and -II; erythropoietin (EPO); osteoinductive factors; interferons such as interferon-alpha, beta, and -gamma; colony stimulating factors (CSFs) such as macrophage-CSF (M-CSF); granulocyte-macrophage-CSF (GM-CSF); and granulocyte-CSF (G-CSF); interleukins (ILs) such as IL-1 , IL-1 alpha, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL- 10, IL-11 , IL-12; IL-15, a tumor necrosis factor such as TNF-alpha or TNF-beta; and other polypeptide factors including LIF and kit ligand (KL). As used herein, the term cytokine includes proteins from natural sources or from recombinant cell culture, and biologically active equivalents of the native sequence cytokines.

[252] In one embodiment, cytokines or other agents that stimulate cells of the immune system are co-administered with the antibody of the present invention. Such a mode of treatment may enhance desired effector function. For example, agents that stimulate NK cells, including but not limited to IL-2 may be co-administered. In another embodiment, agents that stimulate macrophages, including but not limited to C5a, formyl peptides such as N-formyl-methionyl- leucyl-phenylalanine (Beigier-Bompadre et al. (2003) Scand. J. Immunol. 57: 221-8, incorporated entirely by reference), may be co-administered. Also, agents that stimulate neutrophils, including but not limited to G-CSF, GM-CSF, and the like may be administered.

Furthermore, agents that promote migration of such immunostimulatory cytokines may be used. Also additional agents including but not limited to interferon gamma, IL-3 and IL-7 may promote one or more effector functions. [253] In an alternate embodiment, cytokines or other agents that inhibit effector cell function are co-administered with the antibody of the present invention. Such a mode of treatment may limit unwanted effector function.

[254] In an additional embodiment, the antibody is administered with one or more antibiotics, including but not limited to: aminoglycoside antibiotics (eg. apramycin, arbekacin, bambermycins, butirosin, dibekacin, gentamicin, kanamycin, neomycin, netilmicin, paromomycin, ribostamycin, sisomycin, spectrinomycin), aminocyclitols (eg. sprctinomycin), amphenicol antibiotics (eg. azidamfenicol, chloramphenicol, florfrnicol, and thiamphemicol), ansamycin antibiotics (eg. rifamide and rifampin), carbapenems (eg. imipenem, meropenem, panipenem); cephalosporins (eg. cefaclor, cefadroxil, cefamandole, cefatrizine, cefazedone, cefozopran, cefpimizole, cefpiramide, cefpirome, cefprozil, cefuroxine, cefixime, cephalexin, cephradine ), cephamycins (cefbuperazone, cefoxitin, cefminox, cefmetazole, and cefotetan); lincosamides (eg. clindamycin, lincomycin); macrolide (eg. azithromycin, brefeldin A, clarithromycin, erythromycin, roxithromycin, tobramycin), monobactams (eg. aztreonam, carumonam, and tigernonam); mupirocin; oxacephems (eg. flomoxef, latamoxef, and moxalactam); penicillins (eg. amdinocillin, amdinocillin pivoxil, amoxicillin, bacampicillin, bexzylpenicillinic acid, benzylpenicillin sodium, epicillin, fenbenicillin, floxacillin, penamecillin, penethamate hydriodide, penicillin o-benethamine, penicillin O, penicillin V, penicillin V benzoate, penicillin V hydrabamine, penimepicycline, and phencihicillin potassium); polypeptides (eg. bacitracin, colistin, polymixin B, teicoplanin, vancomycin); quinolones (amifloxacin, cinoxacin, ciprofloxacin, enoxacin, enrofloxacin, feroxacin, flumequine, gatifloxacin, gemifloxacin, grepafloxacin, lomefloxacin, moxifloxacin, nalidixic acid, norfloxacin, ofloxacin, oxolinic acid, pefloxacin, pipemidic acid, rosoxacin, rufloxacin, sparfloxacin, temafloxacin, tosufloxacin, trovafloxacin); rifampin; streptogramins (eg. quinupristin, dalfopristin); sulfonamides (sulfanilamide, sulfamethoxazole); tetracyclenes (chlortetracycline, demeclocycline hydrochloride, demethylchlortetracycline, doxycycline, duramycin, minocycline, neomycin, oxytetracycline, streptomycin, tetracycline, vancomycin). [255] Anti-fungal agents such as amphotericin B, ciclopirox, clotrimazole, econazole, fluconazole, flucytosine, itraconazole, ketoconazole, niconazole, nystatin, terbinafine, terconazole, and tioconazole may also be used. [256] Antiviral agents including protease inhibitors, reverse transcriptase inhibitors, and others, including type I interferons, viral fusion inhibitors, and neuramidase inhibitors, may also be used. Examples of antiviral agents include, but are not limited to, acyclovir, adefovir, amantadine, amprenavir, clevadine, enfuvirtide, entecavir, foscamet, gangcyclovir, idoxuridine, indinavir, lopinavir, pleconaril, ribavirin, rimantadine, ritonavir, saquinavir, trifluridine, vidarabine, and zidovudine.

[257] The antibodies of the present invention may be combined with other therapeutic regimens. For example, in one embodiment, the patient to be treated with an antibody of the present invention may also receive radiation therapy. Radiation therapy can be administered according to protocols commonly employed in the art and known to the skilled artisan. Such therapy includes but is not limited to cesium, iridium, iodine, or cobalt radiation. The radiation therapy may be whole body irradiation, or may be directed locally to a specific site or tissue in or on the body, such as the lung, bladder, or prostate. Typically, radiation therapy is administered in pulses over a period of time from about 1 to 2 weeks. The radiation therapy may, however, be administered over longer periods of time. For instance, radiation therapy may be administered to patients having head and neck cancer for about 6 to about 7 weeks. Optionally, the radiation therapy may be administered as a single dose or as multiple, sequential doses. The skilled medical practitioner can determine empirically the appropriate dose or doses of radiation therapy useful herein. In accordance with another embodiment of the invention, the antibody of the present invention and one or more other anti-cancer therapies are employed to treat cancer cells ex vivo. It is contemplated that such ex vivo treatment may be useful in bone marrow transplantation and particularly, autologous bone marrow transplantation. For instance, treatment of cells or tissue(s) containing cancer cells with antibody and one or more other anticancer therapies, such as described above, can be employed to deplete or substantially deplete the cancer cells prior to transplantation in a recipient patient.

[258] It is of course contemplated that the antibodies of the invention may employ in combination with still other therapeutic techniques such as surgery or phototherapy.

EXAMPLES [259] Examples are provided below to illustrate the present invention. These examples are not meant to constrain the present invention to any particular application or theory of operation.

[260] For reference to immunoglobulin constant regions, positions are numbered according to the EU index as in Kabat (Kabat et al., 1991 , Sequences of Proteins of Immunological Interest, 5th Ed., United States Public Health Service, National Institutes of Health, Bethesda). [261] Example 1. Production of anti-IGF-1 R antibodies. [262] The murine anti-IGF-1 R antibodies, 9E11 and 7C2 (Keyhanfar et al. 2006 Biochem J. 400: 1 -9), bind IGF-1 R. Figure 1 b shows the heavy and light chain variable regions of 7C2, which are respectively called HO VH (SEQ ID NO:19) and LO VL (SEQ ID NO:17). [263] The sequences of the variable domains of 7C2 were joined to the human kappa and human IgGI constant regions to complete a chimeric antibody. DNA's encoding the variable regions, were synthetically constructed at Blue Heron Biotechnology, lnc (Bothell, Washington). The variable region DNA's were subcloned into the vector pcDNA3.1 in front of the sequences encoding the kappa constant region, in the case of the light chain, and in front of the sequences enconding the IgGI constant region, in the case of the heavy chain. The sequences of the heavy and light chains of chimeric 7C2 (7C2 HO and 7C2 LO, respectively) antibodies are also shown in Figure 1b as SEQ ID NOs: 20 and 18, respectively.

[264] Similarly, the variable regions of 9E11 were joined to the human kappa and human IgGI constant regions to complete a chimeric antibody as described above. The sequences of the heavy and light chains of chimeric 9E11 (9E11 HO IgGI WT and 9E11 LO kappa, respectively) are also provided in Figure 1b as SEQ ID NOs; 9 and 8, respectively.

[265] S239D/I332E variants were constructed in the Fc region of either wildtype or a hybrid lgG1/lgG2 antibody (Figure 1a, SEQ ID NOs:2 or 6, respectively) in the pcDNA3.1Zeo vector using quick-change mutagenesis techniques (Stratagene). All sequences were sequenced to confirm the fidelity of the sequence. Plasmids containing heavy chain gene (VH-CH1-CH2-CH3) (wild-type or variants) were co-transfected with plasmid containing light chain gene (VL-CLK) into 293T cells. Media were harvested 5 days after transfection, and antibodies were purified from the supernatant using protein A affinity chromatography (Pierce, Catalog # 20334). [266] To assess the capacity of the antibody variants to mediate effector function against IGF1 R expressing cells, chimeric 9E11 AND 7C2 antibodies (9E11 IgGI WT and 7C2 IgGI WT) and hybrid S239D/I332E optimized variants of the chimeric antibodies (9E11 hybrid v90 and 7C2 hybrid v90) were tested in a cell-based ADCC assay. Human peripheral blood monocytes (PBMCs) were isolated from leukopaks and used as effector cells, and IGF1 R positive MCF7 human breast adenocarcinoma cells were used as target cells. Target cells were seeded at 10,000 cells/well in 96-well plates and treated with designated antibodies in triplicates starting at 1 μg/ml and in reduced concentrations in ΛΛ log steps. PBMCs isolated using a Ficoll gradient were added at 50-fold excess to MCF7 cells. The cells were co-cultured for 4 hrs before processing for LDH activity using the Cytotoxicity Detection Kit according to the manufacturer's instructions. [267] Figure 6 shows the results of the ADCC assay comparing chimeric anti-IGF-1 R antibodies (9E11 IgG WT or 7C2 IgGI WT) with hybrid S239D/I332E hybrid variant anti-IGF1 R antibodies (9E11 IgG(Hybrid) S239D/I332E and 7C2 IgG(Hybrid) S239D/I332E) against MCF7 breast cancer cells. Without the Fc gamma receptor enhancing modification, both the 7C2 and 9E11 antibodies show very little cytotoxicity, whereas the V90 (i.e., S239D/I332E) modifications greatly enhance ADCC. The graphs show that the antibodies differ not only in their EC50, reflecting their relative potency, but also in the maximal level of ADCC attainable by the antibodies at saturating concentrations, reflecting their relative efficacy. These two terms, potency and efficacy, are sometimes used loosely to refer to desired clinical properties. In the current experimental context, however, they are denoted as specific quantities, and therefore are here explicitly defined. By "potency" as used in the current experimental context is meant the EC50 of an anti-IGF1 R antibody. By "efficacy" as used in the current experimental context is meant the maximal possible effector function of an antibody at saturating levels. Considerable enhancements in potency and efficacy are observed for the Fc variant antibodies as compared to the antibody with WT Fc region. [268] Growth inhibition ofHT29 and MCF7 tumor cell lines treated with wildtype S239D/I332E optimized chimeric 7C2 antibodies (HOLO hybrid v90) or chimeric 7C2 antibody (isotype control) was also tested under different growth conditions. Cell growth was allowed for 3 days with 10ng/ml antibodies added. Cell growth was stimulated with either 1% FBS (fetal bovine serum) or with 10ng/ml human IGF-1. Optical density measurements were used to quantitate the cell concentrations. The percent growth inhibition was calculated with the formula: % inhibition = 100 * (C-D)/(C-B) wherein, B = baseline = cell number in the absence of stimulation (serum or IGFs) and in the presence of antibody (to block autocrine-stimulated growth), C = cell number in the presence of stimulation, and D = cell number in the presence of stimulation AND antibody. Figure 7 shows that the hybrid S239D/I332E optimized anti-IGF-1R 7C2 antibody (i.e HOLO hybrid v90) has much stronger growth inhibition than the isotype control chimeric antibody (i.e., isotype control).Recombinant IGF-1 R was purchased at Calbiochem, San Diego, CA. [269] All cited references are herein expressly incorporated by reference in their entirety. [270] Whereas particular embodiments of the invention have been described above for purposes of illustration, it will be appreciated by those skilled in the art that numerous variations of the details may be made without departing from the invention as described in the appended claims.

Claims

We claim:

1. An antibody that binds IGF-R1 , said antibody comprising a heavy chain and/or a light chain and at least one modification in the constant region relative to a parent anti-IGF-1 R antibody, wherein said VH CDR1 comprises an amino acid sequence of SEQ ID NO:11 , wherein said VH CDR2 comprises an amino acid sequence of SEQ ID NO:12; wherein said VH CDR3 comprises an amino acid sequence of SEQ ID NO: 13; wherein said VL CDR1 comprises an amino acid sequence of SEQ ID NO: 14, wherein said VL CDR2 comprises an amino acid sequence of SEQ ID NO: 15, and wherein said VL CDR3 comprises an amino acid sequence of SEQ ID NO: 16.

2. The antibody of claim 1 , wherein said heavy chain constant region comprises an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 2-5 and/or said light chain constant region comprises an amino acid sequence of SEQ ID NO:1.

3. An antibody according to claim 2, wherein said second modification is an amino acid modification.

4. An antibody according to claim 3, wherein said amino acid modification is at a position selected from the group consisting of 221 , 222, 223, 224, 225, 227, 228, 230, 231 , 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 243, 244, 245, 246, 247, 249, 255, 258, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271 , 272, 273, 274, 275, 276, 278, 280, 281 , 282, 283, 284, 285, 286, 288, 290, 291 , 292, 293, 294, 295, 296, 297, 298, 299, 300, 301 , 302, 303, 304, 305, 313, 317, 318, 320, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331 , 332, 333, 334, 335, 336, and 337, wherein numbering is according to the EU index.

5. An antibody according to claim 3, wherein said amino acid modification is a substitution selected from the group consisting of 221 K, 221 Y, 222E, 222Y, 223E, 223K, 224E, 224Y, 225E, 225K, 225W, 227E, 227G, 227K, 227Y, 228E, 228G, 228K, 228Y, 230A, 230E, 230G, 230Y, 231 E, 231 G, 231 K, 231 P, 231 Y, 232E, 232G, 232K, 232Y, 233A, 233D, 233F, 233G, 233H, 233I, 233K, 233L, 233M, 233N, 233Q, 233R, 233S, 233T, 233V, 233W, 233Y, 234A, 234D, 234E, 234F, 234G, 234H, 2341, 234K, 234M, 234N, 234P, 234Q, 234R, 234S, 234T, 234V, 234W, 234Y, 235A, 235D, 235E, 235F, 235G, 235H, 2351, 235K, 235M, 235N, 235P, 235Q, 235R, 235S, 235T, 235V, 235W, 235Y, 236A, 236D, 236E, 236F, 236H, 236I, 236K, 236L, 236M, 236N, 236P, 236Q, 236R, 236S, 236T, 236V, 236W, 236Y, 237D, 237E, 237F, 237H, 237I, 237K, 237L, 237M, 237N, 237P, 237Q, 237R, 237S, 237T, 237V, 237W, 237Y, 238D, 238E, 238F, 238G, 238H, 238I, 238K, 238L, 238M, 238N, 238Q, 238R, 238S, 238T, 238V, 238W, 238Y, 239D, 239E, 239F, 239G, 239H, 2391, 239K, 239L, 239M, 239N, 239P, 239Q, 239R, 239T, 239V, 239W, 239Y, 240A, 2401, 240M, 240T, 241D, 241E, 241L, 241R, 241S, 241W, 241Y, 243E, 243H, 243L, 243Q, 243R, 243W, 243Y, 244H, 245A, 246D, 246E, 246H, 246Y, 247G, 247V, 249H, 249Q, 249Y, 255E, 255Y, 258H, 258S, 258Y, 260D, 260E, 260H, 260Y, 262A, 262E, 262F, 262I, 262T, 263A, 263I, 263M, 263T, 264A, 264D, 264E, 264F, 264G, 264H, 264I, 264K, 264L, 264M, 264N, 264P, 264Q, 264R, 264S, 264T, 264W, 264Y, 265F, 265G, 265H, 265I, 265K, 265L, 265M, 265N, 265P, 265Q, 265R, 265S, 265T, 265V, 265W, 265Y, 266A, 266I, 266M, 266T, 267D, 267E, 267F, 267H, 267I, 267K, 267L, 267M, 267N, 267P, 267Q, 267R, 267T, 267V, 267W, 267Y, 268D, 268E, 268F, 268G, 268I, 268K, 268L, 268M, 268P, 268Q, 268R, 268T, 268V, 268W, 269F, 269G, 269H, 269I, 269K, 269L, 269M, 269N, 269P, 269R, 269S, 269T, 269V, 269W, 269Y, 270F, 270G, 270H, 270I, 270L, 270M, 270P, 270Q, 270R, 270S, 270T, 270W, 270Y, 271A, 271D, 271E, 271F, 271G, 271H, 2711, 271K, 271L, 271M, 271N, 271Q, 271R, 271S, 271T, 271V, 271W, 271Y, 272D, 272F, 272G, 272H, 272I, 272K, 272L, 272M, 272P, 272R, 272S, 272T, 272V, 272W, 272Y, 273I, 274D, 274E, 274F, 274G, 274H, 2741, 274L, 274M, 274N, 274P, 274R, 274T, 274V, 274W, 274Y, 275L, 275W, 276D, 276E, 276F, 276G, 276H, 2761, 276L, 276M, 276P, 276R, 276S, 276T, 276V, 276W, 276Y, 278D, 278E, 278G, 278H, 2781, 278K, 278L, 278M, 278N, 278P, 278Q, 278R, 278S, 278T, 278V, 278W, 280G, 280K, 280L, 280P, 280W, 281D, 281E, 281K, 281N, 281P, 281Q, 281Y, 282E, 282G, 282K, 282P, 282Y, 283G, 283H, 283K, 283L, 283P, 283R, 283Y, 284D, 284E, 284L, 284N, 284Q, 284T, 284Y, 285D, 285E, 285K, 285Q, 285W, 285Y, 286E, 286G, 286P, 286Y, 288D, 288E, 288Y, 290D, 290H, 290L, 290N, 290W, 291D, 291E, 291G, 291H, 2911, 291Q, 291T, 292D, 292E, 292T, 292Y, 293F, 293G, 293H, 293I, 293L, 293M, 293N, 293P, 293R, 293S, 293T, 293V, 293W, 293Y, 294F, 294G, 294H, 294I, 294K, 294L, 294M, 294P, 294R, 294S, 294T, 294V, 294W, 294Y, 295D, 295E, 295F, 295G, 295H, 2951, 295M, 295N, 295P, 295R, 295S, 295T, 295V, 295W, 295Y, 296A, 296D, 296E, 296G, 296H, 2961, 296K, 296L, 296M, 296N, 296Q, 296R, 296S, 296T, 296V, 297D, 297E, 297F, 297G, 297H, 2971, 297K, 297L, 297M, 297P, 297Q, 297R, 297S, 297T, 297V, 297W, 297Y, 298A, 298D, 298E, 298F, 298H, 2981, 298K, 298M, 298N, 298Q, 298R, 298T, 298W, 298Y, 299A, 299D, 299E, 299F, 299G, 299H, 2991, 299K, 299L, 299M, 299N, 299P, 299Q, 299R, 299S, 299V, 299W, 299Y, 300A, 300D, 300E, 300G, 300H, 300K, 300M, 300N, 300P, 300Q, 300R, 300S, 300T, 300V, 300W, 301D, 301E, 301H, 301Y, 3021, 303D, 303E, 303Y, 304D, 304H, 304L, 304N, 304T, 305E, 305T, 305Y, 313F, 317E, 317Q, 318H, 318L, 318Q, 318R, 318Y, 320D, 320F, 320G, 320H, 320I, 320L, 320N, 320P, 320S, 320T, 320V, 320W, 320Y, 322D, 322F, 322G, 322H, 322I, 322P, 322S, 322T, 322V, 322W, 322Y, 323I, 324D, 324F, 324G, 324H, 3241, 324L, 324M, 324P, 324R, 324T, 324V, 324W, 324Y, 325A, 325D, 325E, 325F, 325G, 325H, 3251, 325K, 325L, 325M, 325P, 325Q, 325R, 325S, 325T, 325V, 325W, 325Y, 326E, 3261, 326L, 326P, 326T, 327D, 327E, 327F, 327H, 3271, 327K, 327L, 327M, 327N, 327P, 327R, 327S, 327T, 327V, 327W, 327Y, 328A, 328D, 328E, 328F, 328G, 328H, 3281, 328K, 328M, 328N, 328P, 328Q, 328R, 328S, 328T, 328V, 328W, 328Y, 329D, 329E, 329F, 329G, 329H, 3291, 329K, 329L, 329M, 329N, 329Q, 329R, 329S, 329T, 329V, 329W, 329Y, 330E, 330F, 330G, 330H, 3301, 330L, 330M, 330N, 330P, 330R, 330S, 330T, 330V, 330W, 330Y, 331D, 331F, 331H, 3311, 331L, 331M, 331Q, 331R, 331T, 331V, 331W, 331Y, 332A, 332D, 332E, 332F, 332H, 332K, 332L, 332M, 332N, 332P, 332Q, 332R, 332S, 332T, 332V, 332W, 332Y, 333A, 333F, 333H, 333I, 333L, 333M, 333P, 333T, 333Y, 334A, 334F, 334I, 334L, 334P, 334T, 335D, 335F, 335G, 335H, 335I, 335L, 335M, 335N, 335P, 335R, 335S, 335V, 335W, 335Y, 336E, 336K, 336Y, 337E, 337H, and 337N, wherein numbering is according to the EU index.

6. The antibody of claim 3, wherein said modification is at a position selected from the group consisting of 221, 222, 223, 224, 225, 228, 230, 231 , 232, 240, 244, 245, 247, 262, 263, 266, 271 , 273, 275, 281, 284, 291 , 299, 302, 304, 313, 323, 325, 328, 332, 336, wherein the positional numbering is according to the EU index.

7. The antibody of claim 3, wherein said modification is a substitution selected from the group consisting of 221 K, 221 Y, 222E, 222Y, 223E, 223K, 224E, 224Y, 225E, 225K, 225W, 228E, 228G, 228K, 228Y, 230A, 230E, 230G, 230Y, 231 E, 231 G, 231 K, 231 P, 231 Y, 232E, 232G, 232K, 232Y, 240A, 240I, 240M, 240T, 244H, 245A, 247G, 247V, 262A, 262E, 262F, 2621, 262T, 263A, 2631, 263M, 263T, 266A, 2661, 266M, 266T, 271 A, 271 D, 271 E, 271 F, 271G, 271 H, 2711, 271K, 271 L, 271M, 271N, 271Q, 271R, 271S, 271T, 271V, 271W, 271Y, 273I, 275L, 275W, 281 D, 281 E, 281 K, 281 N, 281P, 281Q, 281 Y, 284D, 284E, 284L, 284N, 284Q, 284T, 284Y, 291D, 291E, 291G, 291H, 2911, 291Q, 291T, 299A, 299D, 299E, 299F, 299G, 299H, 299I, 299K, 299L, 299M, 299N, 299P, 299Q, 299R, 299S, 299V, 299W, 299Y, 304D, 304H, 304L, 304N, 304T, 313F, 323I, 325A, 325D, 325E, 325F, 325G, 325H, 3251, 325K, 325L, 325M, 325P, 325Q, 325R, 325S, 325T, 325V, 325W, 325Y, 328A, 328D, 328E, 328F, 328G, 328H, 3281, 328K, 328M, 328N, 328P, 328Q, 328R, 328S, 328T, 328V, 328W, 328Y, 332A, 332D, 332E, 332F, 332H, 332K, 332L, 332M, 332N, 332P, 332Q, 332R, 332S, 332T, 332V, 332W, 332Y, 336E, 336K, and 336Y.

8. An antibody according to claim 6, further comprising a second amino acid modification at a position selected from the group consisting of 221 , 222, 223, 224, 225, 227, 228, 230, 231 , 232, 233, 234, 235, 236, 237, 238, 239, 240, 241 , 243, 244, 245, 246, 247, 249, 255, 258, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271 , 272, 273, 274, 275, 276, 278, 280, 281 , 282, 283, 284, 285, 286, 288, 290, 291 , 292, 293, 294, 295, 296, 297, 298, 299, 300, 301 , 302, 303, 304, 305, 313, 317, 318, 320, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331 , 332, 333, 334, 335, 336, and 337, wherein numbering is according to the EU index. 9. An antibody according to claim 8, wherein said second amino acid modification is a substitution selected from the group consisting of 221 K, 221 Y, 222E, 222Y, 223E, 223K, 224E, 224Y, 225E, 225K, 225W, 227E, 227G, 227K, 227Y, 228E, 228G, 228K, 228Y, 230A, 230E, 230G, 230Y, 231 E, 231 G, 231 K, 231 P, 231 Y, 232E, 232G, 232K, 232Y, 233A, 233D, 233F, 233G, 233H, 233I, 233K, 233L, 233M, 233N, 233Q, 233R, 233S, 233T, 233V, 233W, 233Y, 234A, 234D, 234E, 234F, 234G, 234H, 234I, 234K, 234M, 234N, 234P, 234Q, 234R, 234S, 234T, 234V, 234W, 234Y, 235A, 235D, 235E, 235F, 235G, 235H, 235I, 235K, 235M, 235N, 235P, 235Q, 235R, 235S, 235T, 235V, 235W, 235Y, 236A, 236D, 236E, 236F, 236H, 236I, 236K, 236L, 236M, 236N, 236P, 236Q, 236R, 236S, 236T, 236V, 236W, 236Y, 237D, 237E, 237F, 237H, 237I, 237K, 237L, 237M, 237N, 237P, 237Q, 237R, 237S, 237T, 237V, 237W, 237Y, 238D, 238E, 238F, 238G, 238H, 238I, 238K, 238L, 238M, 238N, 238Q, 238R, 238S, 238T, 238V, 238W, 238Y, 239D, 239E, 239F, 239G, 239H, 239I, 239K, 239L, 239M, 239N, 239P, 239Q, 239R, 239T, 239V, 239W, 239Y, 240A, 240I, 240M, 240T, 241 D, 241 E, 241 L, 241 R, 241S, 241W, 241 Y, 243E, 243H, 243L, 243Q, 243R, 243W, 243Y, 244H, 245A, 246D, 246E, 246H, 246Y, 247G, 247V, 249H, 249Q, 249Y, 255E, 255Y, 258H, 258S, 258Y, 260D, 260E, 260H, 260Y, 262A, 262E, 262F, 262I, 262T, 263A, 263I, 263M, 263T, 264A, 264D, 264E, 264F, 264G, 264H, 264I, 264K, 264L, 264M, 264N, 264P, 264Q, 264R, 264S, 264T, 264W, 264Y, 265F, 265G, 265H, 265I, 265K, 265L, 265M, 265N, 265P, 265Q, 265R, 265S, 265T, 265V, 265W, 265Y, 266A, 266I, 266M, 266T, 267D, 267E, 267F, 267H, 267I, 267K, 267L, 267M, 267N, 267P, 267Q, 267R, 267T, 267V, 267W, 267Y, 268D, 268E, 268F, 268G, 268I, 268K, 268L, 268M, 268P, 268Q, 268R, 268T, 268V, 268W, 269F, 269G, 269H, 269I, 269K, 269L, 269M, 269N, 269P, 269R, 269S, 269T, 269V, 269W, 269Y, 270F, 270G, 270H, 270I, 270L, 270M, 270P, 270Q, 270R, 270S, 270T, 270W, 270Y, 271 A, 271 D, 271 E, 271 F, 271 G, 271 H, 2711, 271K, 271L, 271 M, 271N, 271Q, 271R, 271S, 271T, 271V, 271W, 271Y, 272D, 272F, 272G, 272H, 272I, 272K, 272L, 272M, 272P, 272R, 272S, 272T, 272V, 272W, 272Y, 273I, 274D, 274E, 274F, 274G, 274H, 274I, 274L, 274M, 274N, 274P, 274R, 274T, 274V, 274W, 274Y, 275L, 275W, 276D, 276E, 276F, 276G, 276H, 276I, 276L, 276M, 276P, 276R, 276S, 276T, 276V, 276W, 276Y, 278D, 278E, 278G, 278H, 278I, 278K, 278L, 278M, 278N, 278P, 278Q, 278R, 278S, 278T, 278V, 278W, 280G, 280K, 280L, 280P, 280W, 281 D, 281 E, 281 K, 281 N, 281 P, 281 Q, 281 Y, 282E, 282G, 282K, 282P, 282Y, 283G, 283H, 283K, 283L, 283P, 283R, 283Y, 284D, 284E, 284L, 284N, 284Q, 284T, 284Y, 285D, 285E, 285K, 285Q, 285W, 285Y, 286E, 286G, 286P, 286Y, 288D, 288E, 288Y, 290D, 290H, 290L, 290N, 290W, 291 D, 291 E, 291 G, 291 H, 2911, 291 Q, 291T, 292D, 292E, 292T, 292Y, 293F, 293G, 293H, 293I, 293L, 293M, 293N, 293P, 293R, 293S, 293T, 293V, 293W, 293Y, 294F, 294G, 294H, 294I, 294K, 294L, 294M, 294P, 294R, 294S, 294T, 294V, 294W, 294Y, 295D, 295E, 295F, 295G, 295H, 295I, 295M, 295N, 295P, 295R, 295S, 295T, 295V, 295W, 295Y, 296A, 296D, 296E, 296G, 296H, 296I, 296K, 296L, 296M, 296N, 296Q, 296R, 296S, 296T, 296V, 297D, 297E, 297F, 297G, 297H, 297I, 297K, 297L, 297M, 297P, 297Q, 297R, 297S, 297T, 297V, 297W, 297Y, 298A, 298D, 298E, 298F, 298H, 298I, 298K, 298M, 298N, 298Q, 298R, 298T, 298W, 298Y, 299A, 299D, 299E, 299F, 299G, 299H, 299I, 299K, 299L, 299M, 299N, 299P, 299Q, 299R, 299S, 299V, 299W, 299Y, 300A, 300D, 300E, 300G, 300H, 300K, 300M, 300N, 300P, 300Q, 300R, 300S, 300T, 300V, 300W, 301 D, 301 E, 301 H, 301 Y, 302I, 303D, 303E, 303Y, 304D, 304H, 304L, 304N, 304T, 305E, 305T, 305Y, 313F, 317E, 317Q, 318H, 318L, 318Q, 318R, 318Y, 320D, 320F, 320G, 320H, 320I, 320L, 320N, 320P, 320S, 320T, 320V, 320W, 320Y, 322D, 322F, 322G, 322H, 322I, 322P, 322S, 322T, 322V, 322W, 322Y, 323I, 324D, 324F, 324G, 324H, 324I, 324L, 324M, 324P, 324R, 324T, 324V, 324W, 324Y, 325A, 325D, 325E, 325F, 325G, 325H, 325I, 325K, 325L, 325M, 325P, 325Q, 325R, 325S, 325T, 325V, 325W, 325Y, 326E, 326I, 326L, 326P, 326T, 327D, 327E, 327F, 327H, 327I, 327K, 327L, 327M, 327N, 327P, 327R, 327S, 327T, 327V, 327W, 327Y, 328A, 328D, 328E, 328F, 328G, 328H, 3281, 328K, 328M, 328N, 328P, 328Q, 328R, 328S, 328T, 328V, 328W, 328Y, 329D, 329E, 329F, 329G, 329H, 3291, 329K, 329L, 329M, 329N, 329Q, 329R, 329S, 329T, 329V, 329W, 329Y, 330E, 330F, 330G, 330H, 3301, 330L, 330M, 330N, 330P, 330R, 330S, 330T, 330V, 330W, 330Y, 331 D, 331F, 331 H, 3311, 331 L, 331 M, 331 Q, 331 R, 331 T, 331V, 331 W, 331 Y, 332A, 332D, 332E, 332F, 332H, 332K, 332L, 332M, 332N, 332P, 332Q, 332R, 332S, 332T, 332V, 332W, 332Y, 333A, 333F, 333H, 3331, 333L, 333M, 333P, 333T, 333Y, 334A, 334F, 3341, 334L, 334P, 334T, 335D, 335F, 335G, 335H, 3351, 335L, 335M, 335N, 335P, 335R, 335S, 335V, 335W, 335Y, 336E, 336K, 336Y, 337E, 337H, and 337N, wherein numbering is according to the EU index.

10. An antibody according to claim 5, wherein the amino acid modification is 332E.

11. An antibody according to claim 10, further comprising a second amino acid modification selected from the group consisting of: 236A, 239D, 332E, 268D, 268E, 330Y, and 330L.

12. An antibody according to claim 11 , wherein the second amino acid modification is 239D.

13. An antibody according to claim 1, wherein said modification is a glycoform modification that reduces the level of fucose relative to the parent antibody.

14. A composition comprising plurality of glycosylated antibodies, wherein about 80-100% of the glycosylated antibody in the composition comprises an antibody according to claim 13.

15. An antibody according to claim 1 , wherein said modification further reduces binding to FcγRllb as compared to said parent anti-IGF-1 R antibody.

16. A nucleic acid sequence encoding an antibody according to claim 1.

17. A method of treating an IGF-1 R associated disease, wherein said method comprises administering an antibody according to claim 1.

18. A method of claim 17, wherein said disease is selected from the group consisting of leukemia, lymphoma and myeloma.

19. The method of claim 17, wherein said disease is selected from the group consisting of sarcoma, breast cancer, prostate cancer, colon cancer, lung cancer, ovarian cancer, and pancreatic cancer.

20. A composition comprising an antibody according to claim 1 and an acceptable carrier.

21. A method of inhibiting proliferation of a cell expressing IGF-1 R, wherein said method comprises contacting said cell with an antibody according to claim 1.

22. A method of enhancing antibody dependent cell cytotoxicity toward a cell expressing

IGF-1 R, wherein said method comprises contacting said cell with an antibody according to claim 1.

23. A method of depleting a mammal of at least one cell expressing IGF-1 R, wherein said method comprises administering to the mammal an antibody according to claim 1.

1 / 14

Figure 1a

> Kappa constant light chain (CK) (SEQ ID NO:1)

RTVAAPSVFIFPPSDEQLKSGTASWCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQD SKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

> IgGI constant heavy chain (CH) (SEQ ID NO:2)

ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG

LYSLSSWTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPS

VFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY

RWSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKN

QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN

VFSCSVMHEALHNHYTQKSLSLSPGK

> lgG2 constant heavy chain (CH) (SEQ ID NO:3)

ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG

LYSLSSWTVPSSNFGTQTYTCNVDHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLF

PPKPKDTLMISRTPEVTCVWDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRW

SVLTWHQDWLNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVS

LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFS

CSVMHEALHNHYTQKSLSLSPGK

> lgG3 constant heavy chain (CH) (SEQ ID NO:4)

ASTKGPSVFPLAPCSRSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS

GLYSLSSWTVPSSSLGTQTYTCNVNHKPSNTKVDKRVELKTPLGDTTHTCPRCPEPKSCD

TPPPCPRCPEPKSCDTPPPCPRCPEPKSCDTPPPCPRCPAPELLGGPSVFLFPPKPKDTL

MISRTPEVTCVWDVSHEDPEVQFKWYVDGVEVHNAKTKPREEQYNSTFRWSVLTVLHQ

DWLNGKEYKCKVSNKALPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGF

YPSDIAVEWESSGQPENNYNTTPPMLDSDGSFFLYSKLTVDKSRWQQGNIFSCSVMHEAL

HNRFTQKSLSLSPGK

> lgG4 constant heavy chain (CH) (SEQ ID NO:5)

ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG

LYSLSSWTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPSCPAPEFLGGPSVFL

FPPKPKDTLMISRTPEVTCVWDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRV

VSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQV

SLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVF

SCSVMHEALHNHYTQKSLSLSLGK 2 / 14

Figure 1a (continued)

> Hybrid constant heavy chain (CH) (SEQ ID NO: 6)

ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG

LYSLSSWTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPS

VFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTF

RWSVLTWHQDWLNGKEYKCKVSNKALPAPIEKTISKTKGQPREPQVYTLPPSREEMTKN

QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGN

VFSCSVMHEALHNHYTQKSLSLSPGK

> Hybrid constant heavy chain (CH) with 239D and 332E substitutions (SEQ ID NO:7)

ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG

LYSLSSWWPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPD

VFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTF

RWSVLTWHQDWLNGKEYKCKVSNKALPAPEEKTISKTKGQPREPQVYTLPPSREEMTK

NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG

NVFSCSVMHEALHNHYTQKSLSLSPGK

3 / 14

Figure 1b

>Anti-IGF-1 R 9E11 LO kappa (SEQ ID NO:8).

DVLMTQTPLSLPVSLGDQASISCRSSQTIVHSNGNTYLEWFLQKPGQSPKLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDLGVWCFQGSHVPWTFGGGTKLEIKRWAAPSVFIFP PSDEQLKSGTASWCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTL TLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

>Anti-IGF-1 R 9E11 HO IgGI WT (SEQ ID N0:9)

DVKLVESGGGLVKLGGSLKLSCAASGFTFSNFYMSWVRLTPEKRLELVAAINSYGGSTYYP

DTVKGRFTISRDNAKSTLYLQMSSLKSEDTALYYCVRQAPDYYGSNRWYFDVWGAGTTVT

VSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ

SSGLYSLSSWTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLG

GPSVFLFPPKPKDTLMISRTPEVTCWVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY

NSTYRWSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE

MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRW

QQGNVFSCSVMHEALHNHYTQKSLSLSPGK

>Anti-IGF-1 R 9E11 HO hybrid v90 (SEQ ID NO: 10)

DVKLVESGGGLVKLGGSLKLSCAASGFTFSNFYMSWVRLTPEKRLELVAAINSYGGSTYYP

DTVKGRFTISRDNAKSTLYLQMSSLKSEDTALYYCVRQAPDYYGSNRWYFDVWGAGTTVT

VSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ

SSGLYSLSSWTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLG

GPDVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQF

NSTFRWSVLTWHQDWLNGKEYKCKVSNKALPAPEEKTISKTKGQPREPQVYTLPPSREE

MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRW

QQGNVFSCSVMHEALHNHYTQKSLSLSPGK

> Heavy chain 7C2 CDR1 (SEQ ID N0:11) FTFSSYY

> Heavy chain 7C2 CDR2 (SEQ ID N0:12) NSYGGG

> Heavy chain 7C2 CDR3 (SEQ ID NO:13) QAPDYYGSNRWYFD

> Light chain 7C2 CDR1 (SEQ ID N0:14) QSIVHSNGNTY

> Light chain 7C2 CDR2 (SEQ ID NO:15) QVSNRFS

> Light chain 7C2 CDR3 (SEQ ID N0:16) GSHVPWT 4 / 14

Figure 1b (Continued)

>Anti-IGF-1 R 7C2 LO VL (SEQ ID NO:17)

DVLMTQSPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWFLQKPGQSPKLLIYQVSNRFS

GVPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPWTFGGGTKLEIK

>Anti-IGF-1 R 7C2 LO (SEQ ID NO: 18)

DVLMTQSPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWFLQKPGQSPKLLIYQVSNRFS GVPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPWTFGGGTKLEIKRTVAAPSVFI FPPSDEQLKSGTASWCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSS TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

>Anti-IGF-1 R 7C2 HO VH (SEQ ID NO: 19)

DVKLVESGGGLVKLGGSLKLSCAASGFTFSSYYMSWVRQTPEKRLELVAAVNSYGGGTYY PDTVKGRFTISRDNAKNTLYLQMSSLKSEDTALYHCVRQAPDYYGSNRWYFDVWGAGTTV TVSS

>Anti-IGF-1 R 7C2 HO (SEQ ID NO:20)

DVKLVESGGGLVKLGGSLKLSCAASGFTFSSYYMSWVRQTPEKRLELVAAVNSYGGGTYY

PDTVKGRFTISRDNAKNTLYLQMSSLKSEDTALYHCVRQAPDYYGSNRWYFDVWGAGTTV

TVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL

QSSGLYSLSSWTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELL

GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ

YNSTYRWSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE

EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR

WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

>7C2 IgGI S239D/I332E anti-IGF1 R heavy chain (SEQ ID NO:21)

DVKLVESGGGLVKLGGSLKLSCAASGFTFSSYYMSWVRQTPEKRLELVAAVNSYGGGTYYPDTVKG RFTISRDNAKNTLYLQMSSLKSEDTALYHCVRQAPDYYGSNRWYFDVWGAGTTVTVSSASTKGPSV FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSWTVPSSS LGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPDVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRWSVLTVLHQDWLNGKEYKCKVSN KALPAPEEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYK TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

>7C2 Hybrid S239D/I332E anti-IGF1 R heavy chain (SEQ ID NO:22)

DVKLVESGGGLVKLGGSLKLSCAASGFTFSSYYMSWVRQTPEKRLELVAAVNSYGGGTYYPDTVKG RFTISRDNAKNTLYLQMSSLKSEDTALYHCVRQAPDYYGSNRWYFDNΛ/VGAGTTVTVSSASTKGPSV FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSWTVPSSS LGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPDVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRWSVLTWHQDWLNGKEYKCKVSN KALPAPEEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYK TTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 5/14

Sign in to the Lens

Feedback