Fused Ring Heteroaryl Kinase Inhibitors

FUSED RING HETERO ARYL KINASE INHIBITORS

CROSS-REFERENCES TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 61/106,137, filed October 16, 2008, and U.S. Provisional Application No. 61/106,453, filed October 17, 2008, the contents of both of which are incorporated herein by reference in their entireties and for all purposes.

STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

[0002] This invention was made with government support under grant number W8 IXWH- 06-1-0727 awarded by the Department of Defense. The Government has certain rights in the invention.

BACKGROUND OF THE INVENTION [0003] Protein kinases represent one of the largest super- families of drug targets across all therapeutic areas. The central challenge in the development of kinase inhibitor drug candidates is in targeting the disregulated kinase while avoiding inhibition of non-disease related kinases containing closely related ATP binding pockets. Imatinib, the first clinically approved kinase inhibitor provided a remarkable example of a highly selective inhibitor of the translocation product Bcr-Abl (SEQ ID NO: 1 ) (Capdeville et al, 2002, Nat Rev Drug

Discov 1:493-502; Sawyers, 2002, Cancer Cell 1:13-15). Imatinib potently inhibits Bcr-Abl, the oncogene which drives chronic myelogenous leukaemia, but does not inhibit the cytoplasmic tyrosine kinase, c-Src (SEQ ID NO:2), despite the fact that the two kinases share almost completely identical amino acids lining the ATP binding pocket which Imatinib contacts (Figure IA; Schindler et al., 2000, Science 289:1938-1942; Seeliger et al, 2007, Structure 15:299-311). Significant medicinal chemistry, structural biology, and computational modelling efforts have focussed on understanding the differential selectivity of Imatinib for Bcr-Abl and c-Src.

[0004] The first insight into the basis for selectivity of Imatinib was revealed when Kuriyan and co-workers solved the Imatinib-Abl co-crystal structure (Nagar et al., 2002, Cancer Research 62:4236-4243; Schindler et al, 2000, Id.). This structure revealed a not-previously observed kinase conformation indicating that Imatinib binds AbI in a catalytically inactive conformation defined by a crank shaft-like displacement of the N-terminal region of the activation loop of the kinase effecting a dramatic change in the conformation of the Asp-Phe- GIy (DFG) triad. This conformational change has been subsequently observed in other protein kinase-drug co-crystal structures (Irk, Kit, Flt3, p38 Mapk and B-Raf; Griffith et al, 2004, MoI Cell 13:169-178; Hubbard et al, 1994, Nature 372:746-754; MoI et al, 2004, J Biol Chem 279:31655-31663; Pargellis et al, 2002, Nat Struct Biol 9:268-272; Wan et al, 2004, Cell 116:855-867) and has been termed the "type-II" or "DFG-out" conformation. ATP competitive inhibitors which bind to kinases in the active conformation are termed

"type-I" or "DFG-in" binders; Figure IB and C; Liu and Gray, 2006, Nat Chem Biol 2:358- 364). The identification of an inactive conformation of AbI bound by the highly selective inhibitor Imatinib has guided many successful medicinal chemistry campaigns in search of selective kinase inhibitors (Angell et al, 2008, BioorgMed Chem Lett 18:4433-4437; Cumming et al, 2004, Bioorg Med Chem Lett 14:5389-5394; Gill et al, 2005, J Med Chem 48:414-426.; Heron et al, 2006, Bioorg Med Chem Lett 16:1320-1323; Okram et al, 2006, Chem Biol 13:779-786).

[0005] A wealth of data currently supports the view that the Imatinib bound conformation (DFG-out) of AbI is thermodynamically stable in complex with Imatinib, but that such conformations require energetically unfavourable interactions in c-Src complexes (Levinson et al, 2006, PLoS Biol 4:el44; Nagar et al, 2002, Id.; Seeliger et al, 2007, Id.; Vajpai et al, 2008, J Biol Chem 283: 18292- 18302). Imatinib has been crystallized in both its potent target AbI (Nagar et al, 2002, Id.; Schindler et al, 2000, Id.), as well as the poorly inhibited target, c-Src (Seeliger et al, 2007, Id.). Surprisingly, the Imatinib/co-crystal structures are virtually identical despite the significantly different affinities of Imatinib for the two protein kinases. Efforts to construct mutant forms of c-Src with the ability to be potently inhibited by Imatinib were only partially successful, which led Kuriyan and co-workers to suggest a distributed thermodynamic penalty for c-Src to adopt the DFG-out conformation (Seeliger et al, 2007, Id.). The importance of kinase conformational preference over precise amino acid - identity is highlighted by studies with the Imatinib target receptor kinase, c-Kit (SEQ ID NO:3). Although c-Kit is more closely related to c-Src than AbI (SEQ ID NO:11) in the amino acids lining the ATP binding pocket, c-Kit is more potently inhibited by Imatinib (Deininger et al, 2005, Blood 105:2640- 2653). Structural studies of c-Kit in the absence of ligand (ATP or Imatinib) show the kinase adopts the DFG-out conformation, suggesting the Imatinib bound conformation is stable and pre-formed in the absence of Imatinib, thereby explaining its Imatinib sensitivity (MoI et ah, 2004, Id.)

[0006] Without wishing to be bound by any theory, it is widely held that the explanation of the discrepancy in affinity of Imatinib despite the close similarity in structure of the two drug-protein complexes is based on the relative propensity of the two kinases to adopt the relevant drug-bound (DFG-out/type II) conformation: AbI is predicted to prefer the DFG out conformation relative to c-Src, and since Imatinib binds to the type-II conformation of the kinase, its affinity is higher to AbI than to c-Src.

BRIEF SUMMARY OF THE INVENTION

[0007] Provided herein are new modalities for the inhibition of certain kinases and anticancer treatments. In particular, fused ring heteroaryl compounds useful in a variety of methods, including reducing the activity of certain kinases and treating certain disease states are provided. [0008] In one aspect, compounds are provided having the formula:

In Formula IV, x is an integer from 0 to 4, y is an integer from 0 to 5. Ring A is arylene or heteroarylene. Ring B is aryl or heteroaryl. Z1 is -N= or -C(R22)=. Z2 is -N= or -C(R23)=. R and R are independently hydrogen, substituted or unsubstituted alkyl, or substituted or unsubstituted heteroalkyl. RJ, R , 22 and R , 2^3 are independently -CN, -CF3, -S(O)nR0, -N(O)m, -NR7R8, -C(O)R9, -NR10-C(O)Rπ, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, halomethyl, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclo alkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl, wherein n is an integer from 0 to 2, and m is an integer from 1 to 2. R4 and R5 are independently halogen, -CN, -CF3, -S(O)nR6, -N(O)m, -NR7R8, -C(O)R9, -NR10-C(O)Rn, -NRI2-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, halomethyl, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl, wherein n is an integer from O to 2, and m is an integer from 1 to 2. L1 is a bond, substituted or unsubstituted alkylene or substituted or unsubstituted heteroalkylene. L is -S(O)-, -S(O)2- or -C(O)-. L is a bond, -N(R )-, substituted or unsubstituted alkylene, or substituted or unsubstituted heteroalkylene. L4 is a bond, -NH- or -CH2-. R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R18', R19 and R20 are independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.

[0009] In another aspect, compounds are provided having the formula:

In Formula VI, w is an integer from O to 4, and z is an integer from O to 5. Ring C is cycloalkylene, heterocycloalkylene, arylene, or heteroarylene. Ring D is aryl or heteroaryl. Z1, Z2, R1, R2, R22 and R23 are as defined for Formula IV above. R21 is -CN, -CF3, -S(O)nR6, -N(O)m, -NR7R8, -C(O)R9, -N=NH, -NR10-C(O)Rπ, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl, wherein n, m, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R18', and R19 are as defined for Formula IV above. R68 and R69 are independently halogen, -CN, -CF3, -S(O)nR6, -N(0)m, -NR7R8, -C(O)R9, -N=NH, -NR10-C(O)Rπ, -NR12-C(O)-OR13, -C(O)NR14R15, -NR » 1160cS(O)2R > 117 ', -S(O)2NR , 1188-R0 1186' , -0R , 1i9y, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl, wherein n, m, R6, R7, R8, R9, R10, R1 >, R12, R13, R14, R15, R16, R17, R18, R18', and R19 are as defined for Formula IV above. L5 is a bond, substituted or unsubstituted alkylene, or substituted or unsubstituted heteroalkylene. L6 is -S(O)-, -S(O)2- or -C(O)-. L7 is a bond, -N(R )-, substituted or unsubstituted alkylene, or substituted or unsubstituted heteroalkylene, wherein R20 is as defined for Formula IV above. L8 is a bond, -C(O)-, -NH- or -CH2-.

[0010] In another aspect, compounds are provided having the formula:

In Formula VII, Z1, Z2, R1, R2, R4, R5, R68, R69, w, x, y, z, ring A, ring B, ring C, ring D, L1,

L , L , L , L , L , L , and L are as defined for Formulae V and VI above.

[0011] In another aspect, a method is provided for treating liver cancer, colon cancer, breast cancer, melanoma, acute myelogenous leukemia, chronic myelogenous leukemia, non- small-cell lung cancer, a gastrointestinal stromal tumor, Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL), renal cell carcinoma, hepatocellular carcinoma, hypereosinophilic syndrome, or dermatofibrosarcoma protuberans. The method includes administering an effective amount of a fused ring heteroaryl inhibitor disclosed herein to a subject in need of treatment for an indication described herein.

[0012] In another aspect, a method of reducing the activity of a Src tyrosine kinase is provided. The method includes contacting the Src tyrosine kinase with an effective amount of a fused ring heteroaryl inhibitor disclosed herein.

[0013] In another aspect, a method of reducing the activity of an AbI tyrosine kinase is provided. The method includes contacting the AbI tyrosine kinase with an effective amount of a fused ring heteroaryl inhibitor disclosed herein. [0014] In another aspect, a method of reducing the activity of a T3151 Bcr-Abl kinase is provided. The method includes contacting the T315I Bcr-Abl Kinase with an effective amount of a fused ring heteroaryl inhibitor disclosed herein.

[0015] In another aspect, a method of treating a disease mediated by a T3151 Bcr-Abl kinase in a subject in need thereof is provided. The method includes administering to a subject an effective amount of a fused ring heteroaryl inhibitor disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] Figure 1 A. A schematic representation of Imatinib contacts identified in its complexes with c-Src (PDB ID 2OIQ) (SEQ ID NO:4) and AbI (PDB ID HEP) (SEQ ID NO:5). B. Type I inhibitors, such as PPl (l-ter?-butyl-3-p-tolyl-lH-pyrazolo[3,4- d]pyrimidin-4-amine), occupy the adenosine pocket forming multiple hydrogen bonds with the hinge region of the kinase and threonine gatekeeper. C. Type II inhibitors, such as Imatinib, engage both the hinge binding region and extend into the pocket created by the DFG flip. [0017] Figure 2. IC5O values of Imatinib, and compounds 1-5 for both c-Src and AbI.

[0018] Figure 3. Crystal structures of compounds 3 and 5 bound to c-Src. A. Illustration of c-Src in complex with 3. B. Magnification of the active site of c-Src in complex with 3. C. Illustration of c-Src in complex with 5. D. Magnification of the active site of c-Src in complex with 5. [0019] Figure 4. Structural differences in the binding of 3, 5, and Imatinib to c-Src. A. stereo figure of a structural superposition of 3 in complex with c-Src and Imatinib in complex with AbI (PDB HEP) or c-Src (PDB 2OIQ). B. Stereo figure of 3, 5, and Imatinib in complex with c-Src.

[0020] Figure 5. Three different Type II inhibitors follow a nearly identical path within the active site of three different kinases.

[0021] Figure 6. A composite |2FO-FC| simulated annealing omit electron density map (Bhat, 1988, Journal of Applied Crystallography 21:279-281) computed at 2.3 A and contoured at 1.2σ and centered on Cmpd 5. [0022] Figure 7. Cell-based assays to test the ability of AD57 to inhibit Bcr-ABL and T315I Bcr-Abl in BaF3 cells. A-C. Cell proliferation was quantified by incubation with Resazurin for the indicated time period after 2 or 3 days of drug exposure.

DETAILED DESCRIPTION OF THE INVENTION I. Definitions

[0023] The abbreviations used herein have their conventional meaning within the chemical and biological arts.

[0024] Where substituent groups are specified by their conventional chemical formulae, written from left to right, they equally encompass the chemically identical substituents that would result from writing the structure from right to left, e.g., -CH2O- is equivalent to -OCH2-.

[0025] The term "alkyl," by itself or as part of another substituent, means, unless otherwise stated, a straight (i.e. unbranched) or branched carbon chain, or combination thereof, which may be fully saturated, mono- or polyunsaturated and can include di- and multivalent radicals, having the number of carbon atoms designated (i.e. CJ-CJO means one to ten carbons). Examples of saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, cyclohexyl, (cyclohexyl)methyl, cyclopropylmethyl, homologs and isomers of, for example, n-pentyl, n- hexyl, n-heptyl, n-octyl, and the like. An unsaturated alkyl group is one having one or more double bonds or triple bonds. Examples of unsaturated alkyl groups include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(l,4- pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers.

[0026] The term "alkyl ene" by itself or as part of another substituent means a divalent radical derived from an alkyl, as exemplified, but not limited, by -CH2CH2CH2CH2-. Typically, an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred in the present invention. A "lower alkyl" or "lower alkylene" is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms.

[0027] The term "heteroalkyl," by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain, or cyclic hydrocarbon radical, or combinations thereof, consisting of at least one carbon atoms and at least one heteroatom selected from the group consisting of O, N, P, Si and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized. The heteroatom(s) O, N, P and S and Si may be placed at any interior position of the heteroalkyl group or at the position at which the alkyl group is attached to the remainder of the molecule. Examples include, but are not limited to, -CH2-CH2-O-CH3, - CH2-CH2-NH-CH3, -CH2-CH2-N(CH3)-CH3, -CH2-S-CH2-CH3, -CH2-CH25-S(O)-CH3, -CH2- CH2-S(O)2-CH3, -CH=CH-O-CH3, -Si(CH3)3, -CH2-CH=N-OCH3, -CH=CH-N(CH3)-CH3, 0-CH3, -O-CH2-CH3j and -CN. Up to two heteroatoms may be consecutive, such as, for example, -CH2-NH-OCH3 and -CH2-O-Si(CH3)3. Similarly, the term "heteroalkylene" by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified, but not limited by, -CH2-CH2-S-CH2-CH2- and -CH2-S-CH2-CH2-NH-CH2-. For heteroalkylene groups, heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkyl enedioxy, alkyleneamino, alkylenediamino, and the like). Still further, for alkyl ene and heteroalkylene linking groups, no orientation of the linking group is implied by the direction in which the formula of the linking group is written. For example, the formula -C(O)2R'- represents both -C(O)2R'- and -R1C(O)2-. As described above, heteroalkyl groups, as used herein, include those groups that are attached to the remainder of the molecule through a heteroatom, such as -C(O)R', -C(O)NR', -NR'R", -OR', -SR, and/or - SO2R'. Where "heteroalkyl" is recited, followed by recitations of specific heteroalkyl groups, such as -NR'R or the like, it will be understood that the terms heteroalkyl and -NR'R" are not redundant or mutually exclusive. Rather, the specific heteroalkyl groups are recited to add clarity. Thus, the term "heteroalkyl" should not be interpreted herein as excluding specific heteroalkyl groups, such as -NR'R or the like. [0028] The terms "cycloalkyl" and "heterocycloalkyl", by themselves or in combination with other terms, represent, unless otherwise stated, cyclic versions of "alkyl" and "heteroalkyl", respectively. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule. Examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, 1 -cyclohexenyl, 3- cyclohexenyl, cycloheptyl, and the like. Examples of heterocycloalkyl include, but are not limited to, 1 -(1,2,5,6-tetrahydropyridyl), 1 -piperidinyl, 2-piperidinyl, 3-piperidinyl, A- morpholinyl, 3-morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1-piperazinyl, 2-piperazinyl, and the like. A "cycloalkylene" and "heterocycloalkylene" refer to a divalent radical derived from cycloalkyl and heterocycloalkyl, respectively.

[0029] The terms "halo" or "halogen," by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom. Additionally, terms such as "haloalkyl," are meant to include monohaloalkyl and polyhaloalkyl. For example, the term "halo(Ci-C4)alkyl" is mean to include, but not be limited to, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like.

[0030] The term "aryl" means, unless otherwise stated, a polyunsaturated, aromatic, hydrocarbon substituent which can be a single ring or multiple rings (preferably from 1 to 3 rings) which are fused together or linked covalently. The term "heteroaryl" refers to aryl groups (or rings) that contain from one to four heteroatoms selected from N, O, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen atom(s) are optionally quaternized. A heteroaryl group can be attached to the remainder of the molecule through a carbon or heteroatom. Non-limiting examples of aryl and heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 4-biphenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3- pyrazolyl, 2-imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4- oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5- thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, A- pyrimidyl, 5-benzothiazolyl, purinyl, 2-benzimidazolyl, 5-indolyl, 1 -isoquinolyl, 5- isoquinolyl, 2-quinoxalinyl, 5-quinoxalinyl, 3-quinolyl, and 6-quinolyl. Substituents for each of the above noted aryl and heteroaryl ring systems are selected from the group of acceptable substituents described below. "Arylene" and "heteroarylene" refers to a divalent radical derived from a aryl and heteroaryl, respectively. A "fused ring " refers a ring system with two or more rings having at least one bond and two atoms in common. Thus, a "fused ring aryl" and a "fused ring heteroaryl" refer to ring systems having at least one aryl and heteroaryl, respectively, that share at least one bond and two atoms in common with another ring.

[0031] For brevity, the term "aryl" when used in combination with other terms (e.g., aryloxy, arylthioxy, arylalkyl) includes both aryl and heteroaryl rings as defined above. Thus, the term "arylalkyl" is meant to include those radicals in which an aryl group is attached to an alkyl group (e.g., benzyl, phenethyl, pyridylmethyl and the like) including those alkyl groups in which a carbon atom (e.g., a methylene group) has been replaced by, for example, an oxygen atom (e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(l- naphthyloxy)propyl, and the like).

[0032] The term "oxo" as used herein means an oxygen that is double bonded to a carbon atom. [0033] The term "alkylsulfonyl" as used herein means a moiety having the formula -S(O2)- R', where R' is an alkyl group as defined above. R' may have a specified number of carbons (e.g. "Ci-C4 alkylsulfonyl").

[0034] Each of the above terms (e.g., "alkyl," "heteroalkyl," "aryl" and "heteroaryl") are meant to include both substituted and unsubstituted forms of the indicated radical. Preferred substituents for each type of radical are provided below.

[0035] Substituents for the alkyl and heteroalkyl radicals (including those groups often referred to as alkylene, alkenyl, heteroalkylene, heteroalkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, and heterocycloalkenyl) can be one or more of a variety of groups selected from, but not limited to: -OR', =O, =NR', =N-OR', -NR1R", -SR', halogen, -SiR1R11R'", -OC(O)R', -C(O)R', -CO2R', -CONR'R", -OC(O)NR1R", -NR11C(O)R1,

-NR'-C(O)NR"R"', -NR11C(O)2R', -NR-C(NR1R11R1 ")=NR"", -NR-C(NR'R")=NR'", -S(O)R1, -S(O)2R1, -S(O)2NR1R", -NRSO2R', -CN and -NO2 in a number ranging from zero to (2m'+l), where m' is the total number of carbon atoms in such radical. R', R", R"1 and R"" each preferably independently refer to hydrogen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl (e.g., aryl substituted with 1 -3 halogens), substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups, or arylalkyl groups. When a compound of the invention includes more than one R group, for example, each of the R groups is independently selected as are each R1, R", R1" and R"" groups when more than one of these groups is present. When R' and R" are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 4-, 5-, 6-, or 7-membered ring. For example, -NR1R" is meant to include, but not be limited to, 1 -pyrrolidinyl and 4-morpholinyl. From the above discussion of substituents, one of skill in the art will understand that the term "alkyl" is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., -CF3 and -CH2CF3) and acyl (e.g., -C(O)CH3, -C(O)CF3, -C(O)CH2OCH3, and the like). [0036] Similar to the substituents described for the alkyl radical, substituents for the aryl and heteroaryl groups are varied and are selected from, for example: halogen, -OR', -NR1R", -SR', halogen, -SiR1R11R'", -OC(O)R', -C(O)R', -CO2R', -CONR'R", -OC(O)NR1R", -NR11C(O)R', -NR'-C(O)NR"R'", -NR11C(O)2R1, -NR-C(NR'R"R'")=NR"", -NR-C(NR'R")=NR'", -S(O)R', -S(O)2R', -S(O)2NR1R", -NRSO2R', -CN and -NO2, -R', -N3, -CH(Ph)2, fluoro(Ci-C4)alkoxy, and fluoro(Ci-C4)alkyl, in a number ranging from zero to the total number of open valences on the aromatic ring system; and where R', R", R'" and R"" are preferably independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl. When a compound of the invention includes more than one R group, for example, each of the R groups is independently selected as are each R', R", R'" and R"" groups when more than one of these groups is present.

[0037] Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally form a ring of the formula -T-C(O)-(CRR')q-U-, wherein T and U are independently -NR-, -O-, -CRR'- or a single bond, and q is an integer of from O to 3. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH2VB-, wherein A and B are independently -CRR'-, -0-, -NR-, -S-, -S(O)-, -S(O)2-, -S(O)2NR'- or a single bond, and r is an integer of from 1 to 4. One of the single bonds of the new ring so formed may optionally be replaced with a double bond. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -(CRR')s-X'-(C"R'")d-, where s and d are independently integers of from O to 3, and X' is -0-, -NR'-, -S-, -S(O)-, -S(O)2-, or -S(O)2NR'-. The substituents R, R', R" and R'" are preferably independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl.

[0038] As used herein, the term "heteroatom" or "ring heteroatom" is meant to include oxygen (O), nitrogen (N), sulfur (S), phosphorus (P), and silicon (Si). [0039] A "substituent group," as used herein, means a group selected from the following moieties: (A) -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, and

(B) alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl, substituted with at least one substituent selected from:

(i) oxo, -OH, -NH2, -SH, -CN, -CF3, -NO2, halogen, unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, and

(ii) alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl, substituted with at least one substituent selected from:

(a) oxo, -OH, -NH2, -SH, -CN, -CF3, -NO2, halogen, unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, and

(b) alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, substituted with at least one substituent selected from oxo, -OH, -NH2,

-SH, -CN, -CF3, -NO2, halogen, unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, and unsubstituted heteroaryl.

[0040] A "size-limited substituent" or " size-limited substituent group," as used herein means a group selected from all of the substituents described above for a "substituent group," wherein each substituted or unsubstituted alkyl is a substituted or unsubstituted Ci-C20 alkyl, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 20 membered heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted C3-C8 cycloalkyl, and each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 3 to 8 membered heterocycloalkyl.

[0041] A "lower substituent" or "lower substituent group," as used herein means a group selected from all of the substituents described above for a "substituent group," wherein each substituted or unsubstituted alkyl is a substituted or unsubstituted C]-C8 alkyl, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 8 membered heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted C3-C8 cycloalkyl, and each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 3 to 8 membered heterocycloalkyl. [0042] The term "halomethyl" refers halogen substituted methyl, for example monohalomethyl, dihalomethyl or trihalomethyl. The substituting halogens can be homogeneous (e.g., trifluoromethyl) or heterogeneous (e.g., chlorofluoromethyl). Exemplary halomethyl substituents include, but are not limited to, monofluoromethyl, difluoromethyl, trifluoromethyl, monochloromethyl, dichloromethyl, trichloromethyl, chlorofluoromethyl, and the like.

[0043] The compounds of the present invention may exist as salts. The present invention includes such salts. Examples of applicable salt forms include hydrochlorides, hydrobromides, sulfates, methanesulfonates, nitrates, maleates, acetates, citrates, fumarates, tartrates (e.g., (+)-tartrates, (-)-tartrates or mixtures thereof including racemic mixtures, succinates, benzoates and salts with amino acids such as glutamic acid. These salts may be prepared by methods known to those skilled in art. Also included are base addition salts such as sodium, potassium, calcium, ammonium, organic amino, or magnesium salt, or a similar salt. When compounds of the present invention contain relatively basic functionalities, acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired acid, either neat or in a suitable inert solvent. Examples of acceptable acid addition salts include those derived from inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and the like, as well as the salts derived organic acids like acetic, propionic, isobutyric, maleic, malonic, benzoic, succinic, suberic, fumaric, lactic, mandelic, phthalic, benzenesulfonic, p-tolylsulfonic, citric, tartaric, methanesulfonic, and the like. Also included are salts of amino acids such as arginate and the like, and salts of organic acids like glucuronic or galactunoric acids and the like. Certain specific compounds of the present invention contain both basic and acidic functionalities that allow the compounds to be converted into either base or acid addition salts.

[0044] The neutral forms of the compounds are preferably regenerated by contacting the salt with a base or acid and isolating the parent compound in the conventional manner. The parent form of the compound differs from the various salt forms in certain physical properties, such as solubility in polar solvents.

[0045] Certain compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are encompassed within the scope of the present invention. Certain compounds of the present invention may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated by the present invention and are intended to be within the scope of the present invention. [0046] The neutral forms of the compounds are preferably regenerated by contacting the salt with a base or acid and isolating the parent compound in the conventional manner. The parent form of the compound differs from the various salt forms in certain physical properties, such as solubility in polar solvents.

[0047] Certain compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are encompassed within the scope of the present invention. Certain compounds of the present invention may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated by the present invention and are intended to be within the scope of the present invention. [0048] Certain compounds of the present invention possess asymmetric carbon atoms

(optical centers) or double bonds; the racemates, diastereomers, tautomers, geometric isomers and individual isomers are encompassed within the scope of the present invention. The compounds of the present invention do not include those which are known in the art to be too unstable to synthesize and/or isolate. [0049] The compounds of the present invention may also contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute such compounds. For example, the compounds may be radiolabeled with radioactive isotopes, such as for example tritium (3H), iodine-125 (125I) or carbon-14 (14C). All isotopic variations of the compounds of the present invention, whether radioactive or not, are encompassed within the scope of the present invention.

[0050] The terms "a" or "an," as used in herein means one or more. In addition, the phrase "substituted with a[n]," as used herein, means the specified group may be substituted with one or more of any or all of the named substituents. For example, where a group, such as an alkyl or heteroaryl group, is "substituted with an unsubstituted Ci-C20 alkyl, or unsubstituted 2 to 20 membered heteroalkyl," the group may contain one or more unsubstituted Ci-C20 alkyls, and/or one or more unsubstituted 2 to 20 membered heteroalkyls. [0051] "Methods of treating a disease," as used herein, refers to methods of treating a disease state, a condition caused by a disease state, or disease symptoms. The term "treating," "treatment" and other conjugations thereof, include prevention of a disease.

[0052] An "inhibitor" of a kinase as used herein refers to a compound capable of reducing the enzymatic activity of the kinase. Where a method is provided of "reducing the activity" of a kinase disclosed herein, the method reduces the enzymatic kinase activity of the recited kinase.

[0053] An "effective amount" as used herein refers to an amount effective to accomplish the intended purpose of the recited method (e.g. reducing a kinase activity or treating a disease state).

[0054] The term "PDB" refers to the Protein Data Bank archive of the Worldwide Protein Data Bank, as known in the art. PDB identification numbers ("PDB ID") refer to unique alphanumeric identifiers for the structural data files forming the PDB.

[0055] Specific amino acid substitution in a peptide or protein is indicated, as is customary in the art, by the designator "XNNNY" where "X" is the native single letter amino acid code, "NNN" is the numerical position of the substitution, and "Y" is the single letter amino acid code for the substituting residue. The position of a specific amino acid within a peptide or protein sequence is indicated, as is customary in the art, by either a superscripted numerical position identifier prepended (e.g., "123GIy") or postpended (e.g., "Glyl23") to the amino acid name.

Fused Ring Heteroaryl Inhibitors

[0056] Provided herein are certain fused ring heteroaryls useful in, inter alia, reducing the activity of a Src kinase and/or an AbI kinase (i.e. fused ring heteroaryl inhibitors). In one aspect, a compound is provided having the formula:

In Formula V, R and R are independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl. Z1 is -N= or -C(R22)=. Z2 is -N= or -C(R23)=. R3, R21, R22 and R23 are independently -CN, -CF3, -S(O)nR6, -N(O)m, -NR7R8, -C(O)R9, -N=NH, -NR1^C(O)R1 ', -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl, wherein n is an integer from O to 2, and m is an integer from 1 to 2. R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R18 , and R19 are independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.

[0057] In some embodiments for compounds having the structure of Formula V, R1 and R2 are independently hydrogen, R24-substituted or unsubstituted alkyl, or R24-substituted or unsubstituted heteroalkyl. R24 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R25-substituted or unsubstituted alkyl, R25-substituted or unsubstituted heteroalkyl,

R25-substituted or unsubstituted cycloalkyl, R25-substituted or unsubstituted heterocycloalkyl, R25-substituted or unsubstituted aryl, or R25-substituted or unsubstituted heteroaryl.

[0058] In some embodiments, R3 is -CN, -CF3, -S(O)nR6, -N(O)n,, -NR7R8, -C(O)R9, -N=NH, -NR10-C(O)Rπ, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl or substituted heteroaryl, wherein n is an integer from O to 2, and m is an integer from 1 to 2. In some embodiments, R3 is -CN, -CF3, -S(O)nR6, -N(O)m, -NR7R8, -C(O)R9, -N=NH, -NR10-C(O)Rπ, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, R26-substituted or unsubstituted alkyl, R26-substituted or unsubstituted heteroalkyl, R26-substituted or unsubstituted cycloalkyl, R26-substituted or unsubstituted heterocycloalkyl, R26-substituted or unsubstituted aryl, or R26-substituted or unsubstituted heteroaryl. R26 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, -COOH, -COOR27, -C(O)NHR27, R27-substituted or unsubstituted alkyl, R27-substituted or unsubstituted heteroalkyl, R -substituted or unsubstituted cycloalkyl, R -substituted or unsubstituted heterocycloalkyl, R27-substituted or unsubstituted aryl, or R27-substituted or unsubstituted heteroaryl. In some embodiments, R3 is unsubstituted alkyl or unsubstituted heterocycloalkyl. [0059] In some embodiments, R6 is R32-substituted or unsubstituted alkyl, R32-substituted or unsubstituted heteroalkyl, R32-substituted or unsubstituted cycloalkyl, R -substituted or unsubstituted heterocycloalkyl, R32-substituted or unsubstituted aryl, or R32-substituted or unsubstituted heteroaryl. R32 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R33-substituted or unsubstituted alkyl, R33-substituted or unsubstituted heteroalkyl,

R33-substituted or unsubstituted cycloalkyl, R33-substituted or unsubstituted heterocycloalkyl, R33-substituted or unsubstituted aryl, or R33-substituted or unsubstituted heteroaryl.

[0060] In some embodiments, R7 and R8 are independently hydrogen, R34-substituted or unsubstituted alkyl, R34-substituted or unsubstituted heteroalkyl, R34-substituted or unsubstituted cycloalkyl, R34-substituted or unsubstituted heterocycloalkyl, R34-substituted or unsubstituted aryl, or R34-substituted or unsubstituted heteroaryl. R34 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R35-substituted or unsubstituted alkyl, R35-substituted or unsubstituted heteroalkyl, R35-substituted or unsubstituted cycloalkyl, R35-substituted or unsubstituted heterocycloalkyl, R35-substituted or unsubstituted aryl, or R35-substituted or unsubstituted heteroaryl.

[0061] In some embodiments, R9 is hydrogen, R36-substituted or unsubstituted alkyl, R36-substituted or unsubstituted heteroalkyl, R36-substituted or unsubstituted cycloalkyl, R36-substituted or unsubstituted heterocycloalkyl, R36-substituted or unsubstituted aryl, or R36-substituted or unsubstituted heteroaryl. R36 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R37-substituted or unsubstituted alkyl, R37-substituted or unsubstituted heteroalkyl, R37-substituted or unsubstituted cycloalkyl, R37-substituted or unsubstituted heterocycloalkyl, R37-substituted or unsubstituted aryl, or R37-substituted or unsubstituted heteroaryl.

[0062] In some embodiments, R10 is hydrogen, R38-substituted or unsubstituted alkyl, R38-substituted or unsubstituted heteroalkyl, R38-substituted or unsubstituted cycloalkyl, R -substituted or unsubstituted heterocycloalkyl, R -substituted or unsubstituted aryl, or R38-substituted or unsubstituted heteroaryl. R38 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R39-substituted or unsubstituted alkyl, R39-substituted or unsubstituted heteroalkyl, R38-substituted or unsubstituted cycloalkyl, R39-substituted or unsubstituted heterocycloalkyl, R39-substituted or unsubstituted aryl, or R39-substituted or unsubstituted heteroaryl. [0063] In some embodiments, R1 ' is hydrogen, R40-substituted or unsubstituted alkyl, R40-substituted or unsubstituted heteroalkyl, R40-substituted or unsubstituted cycloalkyl, R40-substituted or unsubstituted heterocycloalkyl, R4 -substituted or unsubstituted aryl, or R40-substituted or unsubstituted heteroaryl. R40 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R41 -substituted or unsubstituted alkyl, R4 '-substituted or unsubstituted heteroalkyl, R41 -substituted or unsubstituted cycloalkyl, R4 '-substituted or unsubstituted heterocycloalkyl, R4' -substituted or unsubstituted aryl, or R '-substituted or unsubstituted heteroaryl. [0064] In some embodiments, R12 is hydrogen, R42-substituted or unsubstituted alkyl, R42-substituted or unsubstituted heteroalkyl, R42-substituted or unsubstituted cycloalkyl, R42-substituted or unsubstituted heterocycloalkyl, R42-substituted or unsubstituted aryl, or R42-substituted or unsubstituted heteroaryl. R42 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R43-substituted or unsubstituted alkyl, R -substituted or unsubstituted heteroalkyl, R43-substituted or unsubstituted cycloalkyl, R -substituted or unsubstituted heterocycloalkyl, R43-substituted or unsubstituted aryl, or R43-substituted or unsubstituted heteroaryl.

[0065] In some embodiments, R13 is hydrogen, R44-substituted or unsubstituted alkyl, R44-substituted or unsubstituted heteroalkyl, R44-substituted or unsubstituted cycloalkyl, R44-substituted or unsubstituted heterocycloalkyl, R44-substituted or unsubstituted aryl, or R44-substituted or unsubstituted heteroaryl. R44 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R45-substituted or unsubstituted alkyl, R45-substituted or unsubstituted heteroalkyl, R45-substituted or unsubstituted cycloalkyl, R45-substituted or unsubstituted heterocycloalkyl, R45-substituted or unsubstituted aryl, or R45-substituted or unsubstituted heteroaryl.

[0066] In some embodiments, R14 and R15 are independently hydrogen, R46-substituted or unsubstituted alkyl, R46-substituted or unsubstituted heteroalkyl, R4 -substituted or unsubstituted cycloalkyl, R46-substituted or unsubstituted heterocycloalkyl, R46-substituted or unsubstituted aryl, or R46-substituted or unsubstituted heteroaryl. R46 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R47-substituted or unsubstituted alkyl, R47-substituted or unsubstituted heteroalkyl, R47-substituted or unsubstituted cycloalkyl, R47-substituted or unsubstituted heterocycloalkyl, R47-substituted or unsubstituted aryl, or R47-substituted or unsubstituted heteroaryl.

[0067] In some embodiments, R16 is hydrogen, R4 -substituted or unsubstituted alkyl, R48-substituted or unsubstituted heteroalkyl, R48-substituted or unsubstituted cycloalkyl, R48-substituted or unsubstituted heterocycloalkyl, R48-substituted or unsubstituted aryl, or R48-substituted or unsubstituted heteroaryl. R48 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R49-substituted or unsubstituted alkyl, R4 -substituted or unsubstituted heteroalkyl, R49-substituted or unsubstituted cycloalkyl, R49-substituted or unsubstituted heterocycloalkyl, R49-substituted or unsubstituted aryl, or R49-substituted or unsubstituted heteroaryl.

[0068] In some embodiments, R17 is hydrogen, R50-substituted or unsubstituted alkyl, R50-substituted or unsubstituted heteroalkyl, R50-substituted or unsubstituted cycloalkyl, R50-substituted or unsubstituted heterocycloalkyl, R5 -substituted or unsubstituted aryl, or R50-substituted or unsubstituted heteroaryl. R50 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R5 '-substituted or unsubstituted alkyl, R5 '-substituted or unsubstituted heteroalkyl, R5 '-substituted or unsubstituted cycloalkyl, R5 '-substituted or unsubstituted heterocycloalkyl, R5 '-substituted or unsubstituted aryl, or R5 '-substituted or unsubstituted heteroaryl. [0069] In some embodiments, R18 and R18 are independently hydrogen, R52-substituted or unsubstituted alkyl, R52-substituted or unsubstituted heteroalkyl, R52-substituted or unsubstituted cycloalkyl, R52-substituted or unsubstituted heterocycloalkyl, R52-substituted or unsubstituted aryl, or R52-substituted or unsubstituted heteroaryl. R52 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R53-substituted or unsubstituted alkyl, R53-substituted or unsubstituted heteroalkyl, R53-substituted or unsubstituted cycloalkyl, R53-substituted or unsubstituted heterocycloalkyl, R53-substituted or unsubstituted aryl, or R53-substituted or unsubstituted heteroaryl.

[0070] In some embodiments, R19 is hydrogen, R54-substituted or unsubstituted alkyl, R54-substituted or unsubstituted heteroalkyl, R54-substituted or unsubstituted cycloalkyl, R54-substituted or unsubstituted heterocycloalkyl, R54-substituted or unsubstituted aryl, or R54-substituted or unsubstituted heteroaryl. R54 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R55-substituted or unsubstituted alkyl, R55-substituted or unsubstituted heteroalkyl, R55-substituted or unsubstituted cycloalkyl, R55-substituted or unsubstituted heterocycloalkyl, R55-substituted or unsubstituted aryl, or R55-substituted or unsubstituted heteroaryl. [0071] In some embodiments, R2' is -CN, -CF3, -S(O)nR6, -N(O)m, -NR7R8, -C(O)R9,

-N=NH, -NR'°-C(O)R" , -NR'2-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl substituted heteroaryl. In some embodiments, R is -CN, -CF3, -S(O)nR6, -N(O)m, -NR7R8, -C(O)R9, -N=NH, -NRI0-C(O)Rπ, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, R56-substituted or unsubstituted alkyl, R56-substituted or unsubstituted heteroalkyl, R56-substituted or unsubstituted cycloalkyl, R56-substituted or unsubstituted heterocycloalkyl, R56-substituted or unsubstituted aryl, or R56-substituted or unsubstituted heteroaryl. R56 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R57-substituted or unsubstituted alkyl, R57-substituted or unsubstituted heteroalkyl, R57-substituted or unsubstituted cycloalkyl, R57-substituted or unsubstituted heterocycloalkyl, R57-substituted or unsubstituted aryl, or R57-substituted or unsubstituted heteroaryl. [0072] In some embodiments, R22 is -CN, -CF3, -S(O)nR6, -N(O)n,, -NR7R8, -C(O)R9,

-N=NH, -NR10-C(O)Rπ, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, R60-substituted or unsubstituted alkyl, R60-substituted or unsubstituted heteroalkyl, R -substituted or unsubstituted cycloalkyl, R -substituted or unsubstituted heterocycloalkyl, R60-substituted or unsubstituted aryl, or R60-substituted or unsubstituted heteroaryl. R60 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R61 -substituted or unsubstituted alkyl, R6 '-substituted or unsubstituted heteroalkyl, R61 -substituted or unsubstituted cycloalkyl, R61 -substituted or unsubstituted heterocycloalkyl, R6 '-substituted or unsubstituted aryl, or R61 -substituted or unsubstituted heteroaryl.

[0073] In some embodiments, R23 is -CN, -CF3, -S(O)nR6, -N(O)m, -NR7R8, -C(O)R9, -N=NH, -NR10-C(O)Rn, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR , R -substituted or unsubstituted alkyl, R -substituted or unsubstituted heteroalkyl, R62-substiruted or unsubstituted cycloalkyl, R62-substituted or unsubstituted heterocycloalkyl,

R -substituted or unsubstituted aryl, or R -substituted or unsubstituted heteroaryl. R is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R63-substituted or unsubstituted alkyl, R 3-substiruted or unsubstituted heteroalkyl, R 3-substituted or unsubstituted cycloalkyl, R63-substituted or unsubstituted heterocycloalkyl, R63-substituted or unsubstituted aryl, or R63-substituted or unsubstituted heteroaryl.

[0074] Further to embodiments for the compound having the structure of Formula V, R25, R27, R33, R35, R37, R39, R41, R43, R45, R47, R49, R51, R53, R55, R57, R61 and R63 are independently -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, or unsubstituted heteroaryl.

[0075] In another aspect, compounds are provided having the structure of Formula III:

In Formula III, R ι l , r R> 2 , r R> 3 and R »21 are as defined above for Formula V. [0076] In another aspect, compounds are provided having the structure of Formula IV:

[0077] In Formula IV, Z1 , Z2, R1 , R2, and R3 are as defined for Formula V.

[0078] In Formula IV, x is an integer from 0 to 4, and y is an integer from 0 to 5. In some embodiments, x is 0. In some embodiments, y is 0 or 1, In some embodiments, y is 0.

[0079] Ring A is arylene or heteroarylene, e.g., phenylene. Ring B is aryl or heteroaryl, e.g., phenyl. [0080] In some embodiments, R4 is halogen, -CN, -CF3, -S(O)nR6, -N(O)m, -NR7R8, -C(O)R9, -N=NH, -NRI0-C(O)R", -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, R28-substituted or unsubstituted alkyl, R28-substituted or unsubstituted heteroalkyl, R28-substituted or unsubstituted cycloalkyl, R28-substituted or unsubstituted heterocycloalkyl, R -substituted or unsubstituted aryl, or R -substituted or unsubstituted heteroaryl. R28 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R29-substituted or unsubstituted alkyl, R29-substituted or unsubstituted heteroalkyl, R29-substituted or unsubstituted cycloalkyl, R29-substituted or unsubstituted heterocycloalkyl, R29-substituted or unsubstituted aryl, or R29-substituted or unsubstituted heteroaryl.

[0081] In some embodiments, R5 is halogen, -CN, -CF3, -S(O)nR6, -N(O)m, -NR7R8, -C(O)R9, -N=NH, -NR10-C(O)Rπ, -NRI2-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, halomethyl, R30-substituted or unsubstituted alkyl, R30-substituted or unsubstituted heteroalkyl, R30-substituted or unsubstituted cycloalkyl, R30-substituted or unsubstituted heterocycloalkyl, R3 -substituted or unsubstituted aryl, or R -substituted or unsubstituted heteroaryl. R30 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R3 '-substituted or unsubstituted alkyl, R3 '-substituted or unsubstituted heteroalkyl,

R3 '-substituted or unsubstituted cycloalkyl, R3 '-substituted or unsubstituted heterocycloalkyl, R3 '-substituted or unsubstituted aryl, or R3 '-substituted or unsubstituted heteroaryl.

[0082] In some embodiments, L1 is a bond, substituted or unsubstituted alkylene or substituted or unsubstituted heteroalkylene. In some embodiments, L1 is a bond, R 4- substituted or unsubstituted alkylene, or R64-substituted or unsubstituted heteroalkylene. R64 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R65-substituted or unsubstituted alkyl, R65-substituted or heteroalkyl, R65-substituted or unsubstituted cycloalkyl, R65-substituted or unsubstituted heterocycloalkyl, R65-substituted or unsubstituted aryl, or R65-substituted or unsubstituted heteroaryl. In some embodiments, L1 is methylene. [0083] In some embodiments, L2 is -S(O)-, -S(O)2- or -C(O)-. In some embodiments, L2 is -S(O)-. In some embodiments, L2 is -S(O)2-. In some embodiments, L2 is -C(O)-.

[0084] In some embodiments, L3 is a bond, -N(R20)-, substituted or unsubstituted alkylene, or substituted or unsubstituted heteroalkylene. In some embodiments, L3 is a bond, -N(R20)-, R66-substituted or unsubstituted alkylene, or R66-substituted or unsubstituted heteroalkylene. R66 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R67-substituted or unsubstituted alkyl, R67-substituted or heteroalkyl, R67-substituted or unsubstituted cycloalkyl, R67-substituted or unsubstituted heterocycloalkyl, R67-substituted or unsubstituted aryl, or R67-substituted or unsubstituted heteroaryl. In some embodiments, L3 is -N(R20)-. In some embodiments, L3 is -NH-. [0085] In some embodiments, R2 is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. In some embodiments, R20 is hydrogen, R58-substituted or unsubstituted alkyl, R58-substituted or unsubstituted heteroalkyl, R58-substituted or unsubstituted cycloalkyl, R58-substituted or unsubstituted heterocycloalkyl, R -substituted or unsubstituted aryl, or R -substituted or unsubstituted heteroaryl. R58 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R59-substituted or unsubstituted alkyl, R59-substituted or unsubstituted heteroalkyl, R59-substituted or unsubstituted cycloalkyl, R59-substituted or unsubstituted heterocycloalkyl, R59-substituted or unsubstituted aryl, or R59-substituted or unsubstituted heteroaryl.

[0086] In some embodiments, R29, R31, R59, R65 and R67 are independently -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, unsubstituted alkyl, heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, or unsubstituted heteroaryl.

[0087] In some embodiments, L4 is a bond, -NH- or -CH2-. In some embodiments, L4 is a bond. In some embodiments, L4 is -NH-. In some embodiments, L is -CH2-.

[0088] In another embodiment, compounds are provided having the formula:

[0089] In Formula I, x, y, ring A, ring B, L1, L2, L3, R1, R2, R3, R4, and R5 are as defined for Formula IV above.

[0090] In another embodiment, compounds are provided having the formula:

[0091] In Formula Ia, x, y, ring A, ring B, L2, L3, R1, R2, R3, R4, and R5 are as defined for Formula IV above. [0092] In some embodiments, a compound is provided having the structure of Formula Ib:

[0093] In Formula Ib, y, ring B, L2, L3, R1, R2, R3 and R5 are as defined for Formula IV above. In some embodiments, R1 and R2 are hydrogen. In some embodiments, R3 is unsubstituted alkyl. In some embodiments, R3 is Ci-C1O alkyl, preferably methyl, ethyl, isopropyl or cyclopentyl. In some embodiments, R3 is substituted C1-CiO alkyl. In some embodiments, R3 is substituted alkyl, including but not limited to, benzyl or cyclopropylmethyl. In some embodiments, R3 is substituted or unsubstituted pyrrolidine. In some embodiments, R3 is substituted or unsubstituted tetrahydrofuran.

[0094] In some embodiments, a compound is provided having the structure of Formula II:

In Formula II, R1, R2, R3 are as defined above in Formulae I, III, IV and/or V; R5 and y are as defined above for Formula V; and L1 and L3 are as defined above in Formula I and/or IV. In some embodiments, R1 and R2 in Formula II are hydrogen, L1 is a bond or methylene, L3 is -N(R20)-, and y is 1. In some embodiments, R1 and R2 are hydrogen, L1 is methylene, L3 is -N(R20)-, and y is 1. In some embodiments, R1 and R2 are hydrogen, L1 is methylene, L3 is -NH-, and y is 1.

[0095] In some embodiments of Formulae I and/or IV, ring A is arylene, and ring B is aryl. Further, ring A may be phenyl ene, and ring B may be phenyl.

[0096] In some embodiments of Formulae I, II, and/or IV, L1 is substituted or unsubstituted Ci-C3 alkyl ene or substituted or unsubstituted 2 to 4 membered heteroalkylene. In some embodiments, L1 is R64-substituted or unsubstituted CpC3 alkylene or R64-substituted or unsubstituted 2 to 4 membered heteroalkylene, where R64 is as defined for Formulae I, II and/or IV. L1 may be unsubstituted Ci-C3 alkylene or unsubstituted 2 to 4 membered heteroalkylene. L1 may be unsubstituted C]-Ci0 alkylene or unsubstituted 2 to 10 membered heteroalkylene. L1 may further be methylene.

[0097] In other embodiments of Formulae I, II, III, IV and/or V, at least one of R1 or R2 may be hydrogen. R and R may also both be hydrogen simultaneously. R may also be substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. R3 may also be substituted or unsubstituted alkyl or substituted or unsubstituted heterocycloalkyl. In some embodiments, R3 is R26-substituted or unsubstituted alkyl, R26-substituted or unsubstituted heteroalkyl, R26-substituted or unsubstituted cycloalkyl, R26-substituted or unsubstituted heterocycloalkyl, R26-substituted or unsubstituted aryl, or R26-substituted or unsubstituted heteroaryl, where R26 is as defined for Formulae I, III, IV and/or IV. In some embodiments, R3 is unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, or unsubstituted heteroaryl. In some embodiments, R is R -substituted or unsubstituted alkyl, or R26-substituted or unsubstituted heterocycloalkyl.

[0098] R3 may also be substituted or unsubstituted Ci-Ci0 alkyl or substituted or unsubstituted 3 to 6 membered heterocycloalkyl. R3 may also be substituted or unsubstituted Ci-C3 alkyl. R3 may be methyl, ethyl or isopropyl. R3 may also be an unsubstituted 3 to 6 membered heterocycloalkyl. R3 may be cyclopentyl. In some embodiments, R3 is R26-substituted or unsubstituted Ci-Ci0 alkyl, or R26-substituted or unsubstituted 3 to 8 membered heterocycloalkyl, where R26 is as defined for Formulae I, III, IV and/or IV. In some embodiments, R is R -substituted or unsubstituted Cj-C3 alkyl. In some embodiments, R is R -substituted 3 to 6 membered heterocycloalkyl.

[0099] In some embodiments of Formulae I, II, and/or IV, R5 is halomethyl. In some embodiments, R5 may be -Br, -Cl, -I, -NO2, -CH3, -C2H5, -SH, -OH, -OCH3, -CN, -SCH3, -NO or -C(O)H. In some embodiments, R5 may be -CF3. In other embodiments, L2 may be a bond or -C(O)-L3-. L3 may be -N(R20)-. L3 may be -NH-. L1 may be substituted or unsubstituted Cj-Cio alkylene or substituted or unsubstituted 2 to 10 membered heteroalkylene. In some embodiments, L1 is R64-substituted or unsubstituted Ci-Cio alkylene or R64-substituted or unsubstituted 2 to 10 membered heteroalkylene, where R64 is as defined for Formulae I, II and/or IV. The symbol x may be 0 and y may be 1.

[0100] In some embodiments, a compound is provided having the structure of Formula Ha:

In Formula Ha, R1, R2, R3 are as defined above in Formulae I, III, IV and/or V; R5 and y are as defined above for Formula V. In some embodiments, R1 and R2 in Formula Ha are hydrogen, and y is 1. In some embodiments, R3 is R26-substituted or unsubstituted alkyl, R26-substituted or unsubstituted heteroalkyl, R26-substituted or unsubstituted cycloalkyl, R26-substituted or unsubstituted heterocycloalkyl, R26-substituted or unsubstituted aryl, or R26-substituted or unsubstituted heteroaryl, wherein R26 is as defined for Formula IV. In some embodiments, R3 is R26-substituted or unsubstituted alkyl, or R26-substituted or unsubstituted cycloalkyl. In some embodiments, R3 is R26-substituted alkyl. In some embodiments, R3 is benzyl. In some embodiments, R3 is cyclopropylmethyl. In some embodiments, R3 is unsubstituted alkyl or unsubstituted cycloalkyl. In some embodiments, R3 is unsubstituted C1-C10 alkyl or unsubstituted C3-C8 cycloalkyl. In some embodiments, R3 is unsubstituted C]-C3 alkyl or unsubstituted C3-C6 cycloalkyl. In some embodiments, R3 is methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-buty\, or cyclopentanyl. In some embodiments, R3 is methyl. In some embodiments, R3 is isopropyl. In some embodiments, R3 is cyclopentanyl. In some embodiments, R5 is R30-substituted or unsubstituted alkyl, R30-substituted or unsubstituted heteroalkyl, R30-substituted or unsubstituted cycloalkyl, R30-substituted or unsubstituted heterocycloalkyl, R30-substituted or unsubstituted aryl, or R30-substituted or unsubstituted heteroaryl, wherein R30 is as defined for Formula IV. In some embodiments, R5 is R -substituted or unsubstituted alkyl. In some embodiments, R5 is R30-substituted or unsubstituted C1-C1O alkyl. In some embodiments, R5 is R30-substituted or unsubstituted Cj-C3 alkyl. In some embodiments, R5 is R30-substituted alkyl. In some embodiments, R5 is halogen substituted methyl, preferably trifluoromethyl. [0101] In some embodiments, a compound is provided having the structure of Formula lib:

In Formula lib, R1, R2, R3 are as defined above in Formulae I, III, IV and/or V; R5 and y are as defined above for Formula V. In some embodiments, R1 and R2 in Formula Ha are hydrogen, and y is 1. In some embodiments, R3 is R26-substituted or unsubstituted alkyl, R26-substituted or unsubstituted heteroalkyl, R26-substituted or unsubstituted cycloalkyl, R26-substituted or unsubstituted heterocycloalkyl, R26-substituted or unsubstituted aryl, or R26-substituted or unsubstituted heteroaryl, wherein R26 is as defined for Formula IV. In some embodiments, R3 is R2 -substituted or unsubstituted alkyl, or R26-substituted or unsubstituted cycloalkyl. In some embodiments, R3 is R26-substituted alkyl. In some embodiments, R3 is benzyl. In some embodiments, R3 is cyclopropylmethyl. In some embodiments, R3 is unsubstituted alkyl or unsubstituted cycloalkyl. In some embodiments, R3 is unsubstituted CI-CJO alkyl or unsubstituted C3-Cg cycloalkyl. In some embodiments, R3 is unsubstituted Ci-C3 alkyl or unsubstituted C3-C6 cycloalkyl. In some embodiments, R3 is methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-buty\, or cyclopentanyl. In some embodiments, R3 is methyl. In some embodiments, R3 is isopropyl. In some embodiments, R3 is cyclopentanyl. In some embodiments, R5 is R30-substituted or unsubstituted alkyl, R30-substituted or unsubstituted heteroalkyl, R30-substituted or unsubstituted cycloalkyl, R30-substituted or unsubstituted heterocycloalkyl, R30-substituted or unsubstituted aryl, or R30-substituted or unsubstituted heteroaryl, wherein R30 is as defined for Formula IV. In some embodiments, R5 is R30-substituted or unsubstituted alkyl. In some embodiments, R5 is R30-substituted or unsubstituted Cj-Cio alkyl. In some embodiments, R5 is R3 -substituted or unsubstituted Ci-C3 alkyl. In some embodiments, R5 is R30-substituted alkyl. In some embodiments, R5 is halogen substituted methyl, preferably trifluoromethyl. [0102] In some embodiments, a compound is provided having the structure of Formula Hc:

In Formula Hc, R1, R2, R3 are as defined above in Formulae I, III, IV and/or V; R5 and y are as defined above for Formula V. In some embodiments, R1 and R2 in Formula Ha are hydrogen, and y is 1. In some embodiments, R3 is R26-substituted or unsubstituted alkyl, R26-substituted or unsubstituted heteroalkyl, R26-substituted or unsubstituted cycloalkyl, R26-substituted or unsubstituted heterocycloalkyl, R26-substituted or unsubstituted aryl, or R26-substituted or unsubstituted heteroaryl, wherein R26 is as defined for Formula IV. In some embodiments, R3 is R26-substituted or unsubstituted alkyl, or R26-substituted or unsubstituted cycloalkyl. In some embodiments, R3 is R26-substituted alkyl. In some embodiments, R3 is benzyl. In some embodiments, R3 is cyclopropylmethyl. In some embodiments, R3 is unsubstituted alkyl or unsubstituted cycloalkyl. In some embodiments, R3 is unsubstituted Cj-Cio alkyl or unsubstituted C3-C8 cycloalkyl. In some embodiments, R3 is unsubstituted Ci-C3 alkyl or unsubstituted C3-C6 cycloalkyl. In some embodiments, R3 is methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, or cyclopentanyl. In some embodiments, R3 is methyl. In some embodiments, R3 is isopropyl. In some embodiments, R3 is cyclopentanyl. In some embodiments, R5 is R30-substituted or unsubstituted alkyl, R30-substituted or unsubstituted heteroalkyl, R30-substituted or unsubstituted cycloalkyl, R30-substituted or unsubstituted heterocycloalkyl, R30-substituted or unsubstituted aryl, or R , 30 -substituted or unsubstituted heteroaryl, wherein R 30 is as defined for Formula IV. In some embodiments, R5 is R3 -substituted or unsubstituted alkyl. In some embodiments, R5 is R30-substituted or unsubstituted Ci -Qo alkyl. In some embodiments, R5 is R3 -substituted or unsubstituted CpC3 alkyl. In some embodiments, R5 is R30-substituted alkyl. In some embodiments, R5 is halogen substituted methyl, preferably trifluoromethyl. [0103] In some embodiments, a compound is provided having the structure of Formula Hd:

In Formula Hd, R1, R2, R3 are as defined above in Formulae I, III, IV and/or V; R5 and y are as defined above for Formula V. In some embodiments, R1 and R2 in Formula Ha are hydrogen, and y is 1. In some embodiments, R is R -substituted or unsubstituted alkyl, R26-substituted or unsubstituted heteroalkyl, R26-substituted or unsubstituted cycloalkyl, R2 -substituted or unsubstituted heterocycloalkyl, R2 -substituted or unsubstituted aryl, or R26-substituted or unsubstituted heteroaryl, wherein R26 is as defined for Formula IV. In some embodiments, R3 is R26-substituted or unsubstituted alkyl, or R2 -substituted or unsubstituted cycloalkyl. In some embodiments, R3 is R26-substituted alkyl. In some embodiments, R3 is benzyl. In some embodiments, R3 is cyclopropylmethyl. In some embodiments, R3 is unsubstituted alkyl or unsubstituted cycloalkyl. In some embodiments, R3 is unsubstituted C1-CiO alkyl or unsubstituted C3-Cg cycloalkyl. In some embodiments, R3 is unsubstituted C]-C3 alkyl or unsubstituted C3-C6 cycloalkyl. In some embodiments, R3 is methyl, ethyl, n-propyl, isopropyl, n-butyl, or cyclopentanyl. In some embodiments, R3 is methyl. In some embodiments, R3 is isopropyl. In some embodiments, R3 is cyclopentanyl. In some embodiments, R5 is R -substituted or unsubstituted alkyl,

R , 30 -substituted or unsubstituted heteroalkyl, R 30 -substituted or unsubstituted cycloalkyl, R30-substituted or unsubstituted heterocycloalkyl, R3 -substituted or unsubstituted aryl, or R30-substituted or unsubstituted heteroaryl, wherein R3 is as defined for Formula IV. In some embodiments, R5 is R30-substituted or unsubstituted alkyl. In some embodiments, R5 is R30-substituted or unsubstituted C1-C1O alkyl. In some embodiments, R5 is R30-substituted or unsubstituted Ci-C3 alkyl. In some embodiments, R5 is R30-substituted alkyl. hi some embodiments, R5 is halogen substituted methyl, preferably trifluoromethyl. [0104] In another aspect, compounds are provided having the formula:

wherein R1, R2, Z1, and Z2 are as defined above.

[0105] Ring C is cycloalkylene, heterocycloalkylene, arylene, or heteroarylene. Ring D is aryl or heteroaryl. In some embodiments, ring C is heteroarylene or heterocycloalkylene. In some embodiments, ring C is a nitrogen-containing 5-6 membered heterocycloalkylene, e.g., pyrrolidine-diyl. In some embodiment, ring D is aryl or heteroaryl. In one embodiment, ring D is aryl, e.g., phenyl.

[0106] In Formula VI, w is an integer from 0 to 4, and z is an integer from 0 to 5. In some embodiments, w is 0. In some embodiments, z is 0 or 1, In some embodiments, z is 0.

[0107] In some embodiments, R68 is halogen, -CN, -CF3, -S(O)nR6, -N(O)1n, -NR7R8

-C(O)R9, -N=NH, -NR10-C(O)Rn, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, R70-substituted or unsubstituted alkyl, R70-substituted or unsubstituted heteroalkyl, R70-substituted or unsubstituted cycloalkyl, R70-substituted or unsubstituted heterocycloalkyl, R7 -substituted or unsubstituted aryl, or R7 -substituted or unsubstituted heteroaryl. R70 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R71 -substituted or unsubstituted alkyl, R71 -substituted or unsubstituted heteroalkyl, R7 '-substituted or unsubstituted cycloalkyl, R71 -substituted or unsubstituted heterocycloalkyl, R71-substituted or unsubstituted aryl, or R7 '-substituted or unsubstituted heteroaryl. [0108] In some embodiments, R69 is halogen, -CN, -CF3, -S(O)nR6, -N(O)m, -NR7R8, -C(O)R9, -N=NH, -NR10-C(O)Rπ, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, halomethyl, R72-substituted or unsubstituted alkyl, R72-substituted or unsubstituted heteroalkyl, R72-substituted or unsubstituted cycloalkyl, R72-substituted or unsubstituted heterocycloalkyl, R , 72 -substituted or unsubstituted aryl, or R 72 -substituted or unsubstituted heteroaryl. R72 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R73-substituted or unsubstituted alkyl, R73-substituted or unsubstituted heteroalkyl, R73-substituted or unsubstituted cycloalkyl, R73-substituted or unsubstituted heterocycloalkyl, R73-substituted or unsubstituted aryl, or R73-substituted or unsubstituted heteroaryl. [0109] In some embodiments, L5 is a bond, substituted or unsubstituted alkylene or substituted or unsubstituted heteroalkylene. In some embodiments, L5 is a bond, R74-substituted or unsubstituted alkylene, or R74-substituted or unsubstituted heteroalkylene. R74 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R75-substituted or unsubstituted alkyl, R75-substituted or heteroalkyl, R75-substituted or unsubstituted cycloalkyl, R75-substituted or unsubstituted heterocycloalkyl, R75-substituted or unsubstituted aryl, or R75-substituted or unsubstituted heteroaryl. In some embodiments, L5 is a bond. In some embodiments, L5 is a bond, and R21 is substituted phenyl, preferably NH2-substituted phenyl.

[0110] In some embodiments, L6 is -S(O)-, -S(O)2- or -C(O)-. In some embodiments, L6 is -S(O)-. In some embodiments, L6 is -S(O)2-. In some embodiments, L6 is -C(O)-. [0111] In some embodiments, L7 is a bond, -N(R78)-, substituted or unsubstituted alkylene, or substituted or unsubstituted heteroalkylene. In some embodiments, L7 is a bond, -N(R78)-, R76-substituted or unsubstituted alkylene, or R76-substituted or unsubstituted heteroalkylene. R76 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R77-substituted or unsubstituted alkyl, R77-substituted or heteroalkyl, R77-substituted or unsubstituted cycloalkyl, R77-substituted or unsubstituted heterocycloalkyl, R77-substituted or unsubstituted aryl, or R77-substituted or unsubstituted heteroaryl.

[0112] In some embodiments, R is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. In some embodiments, R is hydrogen, R -substituted or unsubstituted alkyl, R -substituted or unsubstituted heteroalkyl, R79-substituted or unsubstituted cycloalkyl, R79-substituted or unsubstituted heterocycloalkyl, R79-substituted or unsubstituted aryl, or R79-substituted or unsubstituted heteroaryl. R79 is -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, R80-substituted or unsubstituted alkyl, R80-substituted or unsubstituted heteroalkyl, R80-substituted or unsubstituted cycloalkyl, R80-substituted or unsubstituted heterocycloalkyl, R80-substituted or unsubstituted aryl, or R80-substituted or unsubstituted heteroaryl. [0113] In some embodiments, R71, R73, R75, R77 and R80 are independently -OH, -NH2, -SH, -CN, -CF3, -NO2, oxo, halogen, unsubstituted alkyl, heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, or unsubstituted heteroaryl.

[0114] In some embodiments, L8 is a bond, -C(O)-, -NH- or -CH2-. In some embodiments, L8 is a bond. In some embodiments, L8 is -C(O)-. In some embodiments, L8 is -NH-. In some embodiments, L is -CH2-.

[0115] In some embodiments, compounds are provided having the formula

wherein R1, R2, R21, L5, L7, L8, ring C, ring D, R68, R69, w and z are as defined above. In some embodiments, a compound is provided wherein R is substituted aryl, L and L are bonds, ring C is heterocycloalkylene, preferably nitrogen containing heterocycloalkylene, L7 is -NH-, ring D is aryl, preferably phenyl, w is 0, and z is 0 or 1. In some embodiments, z is 1, and R69 is halomethyl, preferably trifluoromethyl. In some embodiments, R21 is NH2-substituted phenyl. [0116] In another aspect, compounds are provided having the fonnula:

wherein Z1, Z2, R1, R2, R4, R5R68, R69, w, x, y, z, ring A, ring B, ring C, ring D, L1, L2, L3, L4, L5, L6, L7, and L8 are as defined above. In some embodiments, R5 and R69 are independently halomethyl, preferably trifluoromethyl.

[0117] In some embodiments, compounds are provided having the formula:

wherein R1, R2, R4, R5, L1, L2, L3, L5, L7, L8, ring A, ring B, ring C, ring D, R68, R69, w, x, y and z are as defined above. In some embodiments, L , L and L are bonds, L is -C(O)-, L and L7 are -NH-, ring A is arylene, preferably phenylene, ring B and ring D are independently aryl, preferably phenyl, ring C is heterocycloalkylene, x and w are 0, y and z are 1, and R5 and R69 are independently halomethyl, preferably trifluoromethyl.

[0118] In some embodiments, one or more substituted groups described in any of the above Formulae is substituted with at least one substituent group. More specifically, in some embodiments, at least one substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, or substituted heteroarylene described in the above Formulae is substituted with at least one substituent group. In other embodiments, at least one or all of these groups are substituted with at least one size-limited substituent group. Alternatively, at least one or all of these groups are substituted with at least one lower substituent group.

[0119] In other embodiments of the Formulae, each substituted or unsubstituted alkyl is a substituted or unsubstituted Ci-C20 alkyl, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 20 membered heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted C4-C8 cycloalkyl, each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 4 to 8 membered heterocycloalkyl, each substituted or unsubstituted aryl is a substituted or unsubstituted C4-Cg aryl, each substituted or unsubstituted heteroaryl is a substituted or unsubstituted 4 to 8 membered heteroaryl, each substituted or unsubstituted alkylene is a substituted or unsubstituted Ci-C2O alkylene, each substituted or unsubstituted heteroalkylene is a substituted or unsubstituted 2 to 20 membered heteroalkylene, each substituted or unsubstituted cycloalkylene substituted or unsubstituted C4-C8 cycloalkylene, each substituted or unsubstituted heterocycloalkylene is a substituted or unsubstituted 4 to 8 membered heterocycloalkylene, and each substituted or unsubstituted arylene is a substituted or unsubstituted C4-C8 arylene, each substituted or unsubstituted heteroarylene is a substituted or unsubstituted 4 to 8 membered heteroarylene. [0120] Alternatively, each substituted or unsubstituted alkyl is a substituted or unsubstituted Ci-C8 alkyl, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 8 membered heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted C5-C7 cycloalkyl, each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 5 to 7 membered heterocycloalkyl, each substituted or unsubstituted aryl is a substituted or unsubstituted Cs-C7 aryl, each substituted or unsubstituted heteroaryl is a substituted or unsubstituted 5 to 7 membered heteroaryl, each substituted or unsubstituted alkylene is a substituted or unsubstituted Cj-C8 alkylene, each substituted or unsubstituted heteroalkylene is a substituted or unsubstituted 2 to 8 membered heteroalkylene, each substituted or unsubstituted cycloalkylene substituted or unsubstituted C5-C6 cycloalkylene, and each substituted or unsubstituted heterocycloalkylene is a substituted or unsubstituted 5 to 7 membered heterocycloalkylene, each substituted or unsubstituted arylene is a substituted or unsubstituted Cs-C7 arylene, each substituted or unsubstituted heteroarylene is a substituted or unsubstituted 5 to 7 membered heteroarylene.

[0121] In any of the Formulae above, the substituents described herein, including linking moieties (e.g., alkylene or heteroalkylene), can be size-limited substituents or lower substituent groups. For example, any alkyl group can be a Ci-Cio, Ci-C6, or Ci-C4 alkyl group. Any heteroalkyl group can have 2-10, 2-6, or 2-4 members. Any cycloalkyl group can be a C3-C8, Cs-C7, or C5-C6 cycloalkyl group. Any heterocycloalkyl group can have 3-8, 4-7, or 5-6 members. Any aryl group can be a C5-C8 or C5-C6 aryl group. Any heteroaryl group can have 5-8 or 5-6 members.

[0122] In some embodiments, the compound is a compound set forth in Table Ia below. In some embodiments, the compound is a compound set forth in Table Ib below. Table 1 a. Inhibition data for selected compounds described herein.

+++ represents an IC50 of less than 1 μM; ++ represents an IC5O from 1 μM to 5 μM; and + represents an IC50 of over 5 μM.

Table Ib. Inhibition data for selected compounds described herein.

+++ represents an IC50 of less than 1 μM;

++ represents an IC5O from 1 μM to 5 μM; and

+ represents an IC50 of over 5 μM.

[0123] Some methods of synthesizing the fused ring heteroaryl compounds disclosed herein are set forth in the examples section below. One skilled in the art will immediately understand how to synthesize any of the fused ring heteroaryl compounds within the scope of this invention using or elaborating upon the synthesis methods disclosed herein and general principles of chemical synthesis known in the art. Methods of Reducing Kinase Activity

[0124] In another aspect, a method of reducing the activity of a Src tyrosine kinase is provided. The method includes contacting the Src tyrosine kinase with an effective amount of the compound of Formula I, II, III, IV or V. In some embodiments, the compound is the compound of Formula I, II or IV. In other embodiments, the compounds are the compound of Formula I.

[0125] A Src tyrosine kinase, as used herein, refers to any one of the family of Src proto- oncogenic tyrosine kinases and oncogene tyrosine kinases. In some embodiments, the Src tyrosine kinase is the cellular Src tyrosine kinase (c-Src), such as the human c-Src (also referred to in the art MGCl 17393) (SEQ ID NO:6) or oncogenic derivatives thereof. See also Mather et al, J Biol Chem. 2008 Aug 15;283(33):22709-22.

[0126] The contacting may occur in vitro, in situ, or in vivo. For example, the compound may be exposed to a cell containing the Src tyrosine kinase, allowed to enter into the cell, and contact the Src tyrosine kinase thereby reducing the activity of the Src tyrosine kinase. The cell may be any appropriate cell, such as a mammalian cell (e.g. a human cell). The cell may also form part of a tissue, organ or organism.

[0127] In some related embodiments, the compound may also be capable of reducing the activity of an AbI tyrosine kinase. An AbI tyrosine kinase refers to any one of the family of AbI proto-oncogenic tyrosine kinases. In some embodiments, the AbI tyrosine kinase is the cellular AbI tyrosine kinase (c-Abl) or oncogenic derivatives thereof such as Bcr-Abl. See, e.g. Shaul Y (2000), Cell Death Differ. 7 (1): 10-6; Era T (2002) Int. J. Hematol. 76 (1): 35- 43; and Pendergast AM (2003) Adv. Cancer Res. 85: 51-100. Thus, in some embodiments the AbI kinase is a Bcr-Abl kinase or a T3151 Bcr-Abl kinase. The method may further include contacting an AbI tyrosine kinase with the compound thereby reducing the activity of the AbI tyrosine kinase. Where the method further includes contacting an AbI tyrosine kinase with the compound, it is understood that more than one compound is typically required to contact both an AbI and a Src tyrosine kinase. Therefore, a plurality of compounds having the same chemical structure are used.

[0128] As described above, the contacting of the AbI and Src tyrosine kinases may occur in vitro, in situ, or in vivo. Thus, in some embodiments, a plurality of the compound is contacted with a cell or vessel containing the AbI and Src tyrosine kinases. Once contacted by the compound, the AbI and Src tyrosine kinase activities are reduced.

[0129] In another aspect, a method of reducing the activity of an AbI tyrosine kinase is provided. The method includes contacting the AbI tyrosine kinase with an effective amount of a compound of Formula I, II, III, IV or V. In some embodiments, the compound is the compound of Formula I, II or IV. In other embodiments, the compounds is the compound of Formula I. In some embodiments, the AbI kinase is a Bcr-Abl kinase or a T3151 Bcr-Abl kinase. As described above, the contacting of the AbI tyrosine kinases may occur in vitro, in situ, or in vivo. Thus, the compound may be exposed to a cell containing the AbI tyrosine kinase, allowed to enter into the cell, and contact the AbI tyrosine kinase thereby reducing the activity of the Src tyrosine kinase.

[0130] In some related embodiments, the compound may also be capable of reducing the activity of a Src kinase. Thus, the method may further include contacting a Src tyrosine kinase with the compound thereby reducing the activity of the Src tyrosine kinase. As explained above, where the method further includes contacting a Src tyrosine kinase with the compound, it is understood that more than one compound is typically required to contact both an AbI and a Src tyrosine kinase. Therefore, a plurality of compounds having the same chemical structure are used. Thus, in some embodiments, a plurality of the compound is contacted with a cell or vessel containing the AbI and Src tyrosine kinases. Once contacted by the compound, the AbI and Src tyrosine kinase activities are reduced.

[0131] In another aspect, a method of reducing the activity of a T3151 Bcr-Abl kinase is provided. The method includes contacting the T3151 Bcr-Abl Kinase with an effective amount of a compound having Formula I, II, III, IV or V. In some embodiments, the compound had the Formula I, II or IV. In another embodiment, the compound had the Formula I.

[0132] In some related embodiments, the compound may also be capable of reducing the activity of a Src kinase. Thus, the method may further include contacting a Src tyrosine kinase with the compound thereby reducing the activity of the Src tyrosine kinase. As explained above, where the method further includes contacting a Src tyrosine kinase with the compound, it is understood that more than one compound is typically required to contact both a T315I Bcr-Abl kinase and a Src tyrosine kinase. Therefore, a plurality of compounds having the same chemical structure are used. Thus, in some embodiments, a plurality of the compound is contacted with a cell or vessel containing the T3151 Bcr-Abl kinase and Src tyrosine kinases. Once contacted by the compound, the T3151 Bcr-Abl kinase and Src tyrosine kinase activities are reduced.

Methods of Treatment

[0133] In another aspect, a method of treating a disease mediated by a T3151 Bcr-Abl kinase in a subject in need thereof is provided. The method includes administering to a subject an effective amount of a compound of Formula I, II, III, IV or V. In some embodiments, the compound is the compound of Formula I, II or IV. The disease mediated by a T3151 Bcr-Abl kinase may be hypereosinophilic syndrome, dermatofϊbrosarcoma protuberans, chronic myelogenous leukemia, or a gastrointestinal stromal tumor. The compound may also be co-administered with a pharmaceutically acceptable excipient.

[0134] In another aspect, a method is provided for treating liver cancer, colon cancer, breast cancer, melanoma, acute myelogenous leukemia, chronic myelogenous leukemia, non- small-cell lung cancer, a gastrointestinal stromal tumor, Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL), renal cell carcinoma, hepatocellular carcinoma, hypereosinophilic syndrome, or dermatofϊbrosarcoma protuberans. The method includes administering an effective amount of the compound of Formula I, II, III, IV or V to a subject in need thereof. In some embodiments, the compound is of Formula I, II or IV. The compound may also be co-administered with a pharmaceutically acceptable excipient. [0135] Thus, the present invention provides methods of reducing Src (e.g. c-Src) and or AbI (e.g. Bcr-Abl or T3151 Bcr-Abl) kinase activity in a cell. The method includes contacting the cell with a fused ring heteroaryl inhibitor described above (e.g. a compound of Formula I, II, III, IV or V). The cell may be isolated or form part of an organ or organism.

[0136] The inhibitors provided herein find therapeutic utility via reduction of Src (e.g. c- Src) and or AbI (e.g. Bcr-Abl or T3151 Bcr-Abl) kinase activity in the treatment of diseases or conditions. The inhibitor may have an IC50 or Kj against the Src and/or AbI kinase of less than 10 μM, 5 μM, 1 μM, 500 nM, 100 nM, 50 nM, 25 nM, 10 nM, 5 nM, 1 nM, 0.5 nM, or 0.1 nM.

[0137] In therapeutic use for the treatment of disease states recited above, the fused ring heteroaryls utilized in the pharmaceutical method of the invention are administered at the initial dosage of about 0.001 mg/kg to about 1000 mg/kg daily. A daily dose range of about 0.1 mg/kg to about 100 mg/kg is more typical. The dosages, however, may be varied depending upon the requirements of the patient, the severity of the condition being treated, and the modulator being employed. Determination of the proper dosage for a particular situation is within the skill of the practitioner. Generally, treatment is initiated with smaller dosages, which are less than the optimum dose of the modulator. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day.

Pharmaceutical Formulations

[0138] In another aspect, the present invention provides a pharmaceutical composition including a compound in admixture with a pharmaceutically acceptable excipient. One of skill in the art will recognize that the pharmaceutical compositions include the pharmaceutically acceptable salts of the compounds of the present invention described above.

[0139] In therapeutic and/or diagnostic applications, the compounds of the invention can be formulated for a variety of modes of administration, including systemic and topical or localized administration. Techniques and formulations generally may be found in Remington: The Science and Practice of Pharmacy (20th ed.) Lippincott, Williams & Wilkins (2000).

[0140] The compounds according to the invention are effective over a wide dosage range. The exact dosage will depend upon the route of administration, the form in which the compound is administered, the subject to be treated, the body weight of the subject to be treated, and the preference and experience of the attending physician.

[0141] Pharmaceutically acceptable salts are generally well known to those of ordinary skill in the art, and may include, by way of example but not limitation, acetate, benzenesulfonate, besylate, benzoate, bicarbonate, bitartrate, bromide, calcium edetate, carnsylate, carbonate, citrate, edetate, edisylate, estolate, esylate, fumarate, gluceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isethionate, lactate, lactobionate, malate, maleate, mandelate, mesylate, mucate, napsylate, nitrate, pamoate (embonate), pantothenate, phosphate/diphosphate, polygalacturonate, salicylate, stearate, subacetate, succinate, sulfate, tannate, tartrate, or teoclate. Other pharmaceutically acceptable salts may be found in, for example, Remington: The Science and Practice of Pharmacy (20th ed.) Lippincott, Williams & Wilkins (2000). Preferred pharmaceutically acceptable salts include, for example, acetate, benzoate, bromide, carbonate, citrate, gluconate, hydrobromide, hydrochloride, maleate, mesylate, napsylate, pamoate (embonate), phosphate, salicylate, succinate, sulfate, or tartrate. [0142] Depending on the specific conditions being treated, such agents may be formulated into liquid or solid dosage forms and administered systemically or locally. The agents may be delivered, for example, in a timed- or sustained- low release form as is known to those skilled in the art. Techniques for formulation and administration may be found in Remington: The Science and Practice of Pharmacy (20th ed.) Lippincott, Williams & Wilkins (2000). Suitable routes may include oral, buccal, by inhalation spray, sublingual, rectal, transdermal, vaginal, transmucosal, nasal or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intra-articullar, intra -sternal, intra-synovial, intra-hepatic, intralesional, intracranial, intraperitoneal, intranasal, or intraocular injections or other modes of delivery.

[0143] For injection, the agents of the invention may be formulated and diluted in aqueous solutions, such as in physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiological saline buffer. For such transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

[0144] Use of pharmaceutically acceptable inert carriers to formulate the compounds herein disclosed for the practice of the invention into dosages suitable for systemic administration is within the scope of the invention. With proper choice of carrier and suitable manufacturing practice, the compositions of the present invention, in particular, those formulated as solutions, may be administered parenterally, such as by intravenous injection. The compounds can be formulated readily using pharmaceutically acceptable carriers well known in the art into dosages suitable for oral administration. Such carriers enable the compounds of the invention to be formulated as tablets, pills, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a subject (e.g. patient) to be treated. [0145] For nasal or inhalation delivery, the agents of the invention may also be formulated by methods known to those of skill in the art, and may include, for example, but not limited to, examples of solubilizing, diluting, or dispersing substances such as, saline, preservatives, such as benzyl alcohol, absorption promoters, and fluorocarbons.

[0146] Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. Determination of the effective amounts is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.

[0147] In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. The preparations formulated for oral administration may be in the form of tablets, dragees, capsules, or solutions.

[0148] Pharmaceutical preparations for oral use can be obtained by combining the active compounds with solid excipients, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl- cellulose, sodium carboxym ethyl-cellulose (CMC), and/or polyvinylpyrrolidone (PVP: povidone). If desired, disintegrating agents may be added, such as the cross- linked polyvinylpyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.

[0149] Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol (PEG), and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dye-stuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

[0150] Pharmaceutical preparations that can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin, and a plasticizer, such as glycerol or sorbitol. The push- fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols (PEGs). In addition, stabilizers may be added.

[0151] Depending upon the particular condition, or disease state, to be treated or prevented, additional therapeutic agents, which are normally administered to treat or prevent that condition, may be administered together with the inhibitors of this invention. For example, chemotherapeutic agents or other anti-proliferative agents may be combined with the inhibitors of this invention to treat proliferative diseases and cancer. Examples of known chemotherapeutic agents include, but are not limited to, adriamycin, dexamethasone, vincristine, cyclophosphamide, fluorouracil, topotecan, taxol, interferons, and platinum derivatives.

[0152] Other examples of agents the compounds of this invention may also be combined with include, without limitation, anti-inflammatory agents such as corticosteroids, TNF blockers, IL-I RA, azathioprine, cyclophosphamide, and sulfasalazine; immunomodulatory and immunosuppressive agents such as cyclosporin, tacrolimus, rapamycin, mycophenolate mofetil, interferons, corticosteroids, cyclophophamide, azathioprine, and sulfasalazine; neurotrophic factors such as acetylcholinesterase inhibitors, MAO inhibitors, interferons, anti-convulsants, ion channel blockers, riluzole, and anti-Parkinsonian agents; agents for treating cardiovascular disease such as beta-blockers, ACE inhibitors, diuretics, nitrates, calcium channel blockers, and statins; agents for treating liver disease such as corticosteroids, cholestyramine, interferons, and anti-viral agents; agents for treating blood disorders such as corticosteroids, anti-leukemic agents, and growth factors; agents for treating diabetes such as insulin, insulin analogues, alpha glucosidase inhibitors, biguanides, and insulin sensitizers; and agents for treating immunodeficiency disorders such as gamma globulin.

[0153] These additional agents may be administered separately, as part of a multiple dosage regimen, from the composition. Alternatively, these agents may be part of a single dosage form, mixed together with the compound in a single composition.

[0154] The present invention is not to be limited in scope by the exemplified embodiments, which are intended as illustrations of single aspects of the invention. Indeed, various modifications of the invention in addition to those described herein will become apparent to those having skill in the art from the foregoing description. Such modifications are intended to fall within the scope of the invention. Moreover, any one or more features of any embodiment of the invention may be combined with any one or more other features of any other embodiment of the invention, without departing from the scope of the invention. For example, the compounds of the present invention described above are equally applicable to the methods of treatment and the method of reducing kinase activity described herein. References cited throughout this application are examples of the level of skill in the art and are hereby incorporated by reference herein in their entirety for all purposes, whether previously specifically incorporated or not.

Assays

[0155] The activity of AbI or Src kinases can be assessed using a variety of in vitro, in situ, and in vivo assays, e.g., P assays, fluorescent assays, immunoassays and the like. Furthermore, such assays can be used to test for inhibitors of AbI and Src kinases. One particular assay is disclosed below in the Examples in the section entitled "In vitro Kinase Assays." AbI and Src kinases have been implicated in a number of disorders that are targets for a therapeutic or prophylactic regimen. The inhibitors and methods of the invention are useful to treat these disease states as discussed above. Thus, using methods disclosed herein as well as those generally known in the art, one skilled in the art can easily make and test the fused ring heteroaryl compounds set forth herein to assess the degree to which kinase activities are reduced.

Exemplary syntheses

[0156] The compounds of the invention are synthesized by an appropriate combination of generally well known synthetic methods. Techniques useful in synthesizing the compounds of the invention are both readily apparent and accessible to those of skill in the relevant art. The discussion below is offered to illustrate certain of the diverse methods available for use in assembling the compounds of the invention. However, the discussion is not intended to define the scope of reactions or reaction sequences that are useful in preparing the compounds of the present invention.

[0157] For example, Scheme 1 following provides one of a variety of overall synthetic strategies which may be employed in the synthesis of compounds described herein. Substituents in Scheme 1 are as described herein for Formula IV. . Scheme 1

[0158] Regarding Scheme 1, in Step a, an acid starting material may be reacted with oxalyl chloride, e.g., in DMF and CH2Cl2, to afford the acid chloride. In Step b, the acid chloride may be reacted with malononitrile and NaH in, e.g., THF, to afford the substituted malononitrile. In Step c, the compound may be further reacted with dimethyl sulfate and NaHCCβ in, e.g., dioxane and water, to afford the enol ether. In Step d, the enol ether may be reacted with a hydrazine in, e.g., THF, to afford the pyrazole. In Step e, the pyrazole may be further reacted with an amide to afford the pyrazolo[3,4-d]pyrimidine amine. In Step f, the pendant nitrate may be reduced to afford the amine. Finally, in Step g, elaboration at the pendant amine may be employed to afford a compound of the invention. [0159] Optionally, one or more functionalities described herein and in Scheme 1 may be protected during synthesis and subsequently deprotected by methods well known in the art. Exemplary amine protecting groups include, but are not limited to, carbobenzyloxy (Cbx), p- methyoxybenzyl carbonyl (Boz), tert-butyloxycarbonyl (Boc), 9-fluorenylmethyloxy carbonyl (FMoc), benzyl (Bn), p-methoxybenzyl (PMB), 2,3-dimethoxybenzyl (DMPM), p-methoxyphenyl (PMP), tosyl (Ts), allyloxycarbonyl (Alloc), and the like.

[0160] Formation of carbon- carbon bonds, for example between aryl functionalities, is available by a variety of routes known in the art. For example, the Suzuki reaction depicted in Scheme 2 is the reaction of an aryl- or vinyl -boronic acid with an aryl- or vinyl -halide, catalyzed by a Pd complex. Exemplary Pd complexes include, but are not limited to, tetrakis(triphenylphosphine)palladium(0), and polymer-bound tetrakis palladium, as known in the art. Scheme 2

Pd complex

Examples

Example 1: Protein Expression and Purification.

[0161] 6xHIS (SEQ ID NO:7) fusions of c-Src or AbI were expressed in bacteria in the presence of the YopH phosphatase and GroEL chaperone based on a recently developed strategy (Seeliger et al., 2005, Protein Sci 14:3135-3139). Briefly each kinase was purified in batch by Ni-NTA immobilized metal affinity chromatography. The 6X His was removed by TEV cleavage to yield the liberated kinase domain. Following cleavage, ion exchange chromatography was utilized to remove excess TEV and minor contaminants. In the final step the proteins were applied to a gel filtration column in 100 mM NaCl, 20 mM Tris, 5% glycerol, 2 mM DTT. Pooled fractions were concentrated and flash frozen in liquid nitrogen for storage. Proteins were isolated in their unphosphorylated state as revealed by Western blot analysis, as known in the art. Typical yields for either protein construct ranged from 1- 10 mg of protein per 1 L of bacterial culture.

Example 2: In vitro Kinase Assays. [0162] Purified c-Src or AbI were diluted in kinase reaction buffer (1 OmM HEPES [pH 7.2], 10 mM MgC12, 0.2 mM DTT) to a concentration of approximately 10 nM and pre- incubated with lmg/mL BSA, 2.5% (v/v) DMSO, 133 μM peptide (sequence EAIYAAPFKKK (SEQ ID NO:8) for AbI and EIYGEFKKK (SEQ ID NO:9) for c-Src), and varying concentrations of inhibitor. Kinase reactions were initiated by the addition of 100 mM cold ATP supplemented with 5 mCi γ32P ATP and allowed to proceed at room temperature (RT). At 10 minutes 1 mL of the reactions were spotted onto phosphocellulose sheets (P81, Whatman) and subsequently soaked in wash buffer (1.0% (v/v) phosphoric acid). The sheets were washed five times in buffer, dried, and transferred radioactivity was measured by phosphorimaging using a Typhoon™ scanner (Molecular Dynamics). Radioactive counts were quantified using ImageQuant™ software, and titration data were fit to a sigmoidal dose response to derive IC5O values using the Prism® software package. Dose responses were based on a 12 point inhibitor titration, using 1/3 dilutions starting from 100 mM. Experiments were completed 2-4 times to derive mean values.

Example 3: Crystallization and Structure Determination. [0163] Prior to crystallization, purified c-Src was applied to a S200 gel filtration column. Pooled fractions were concentrated to 3-10mg/mL and mixed with equimolar amounts of 3 or 5 in 100 mM NaCl, 10 mM Tris [pH 7.8], 5% glycerol, 2 mM DTT, 4% DMSO. Hanging drops containing 1 μL of complexes were mixed with equal volume of well buffer containing 4% PEG 4K, 16% glycerol, 50 mM NaAc, 100 mM MES [pH 6.5] and grown at 14°C to yield both the c-Src-3 and c-Src-5 crystals. Crystals were cryoprotected in well buffer supplemented with 20% glycerol and flash frozen. Diffraction data were collected at -1700C. Data processing and reduction was carried out using HKL2000 (Otwinowski and Minor, 1997, Macromolecular Crystallography, Pt A 276:307- 326) for the c-Src-5 complex and XDS (Kabsch, 1993, Journal of Applied Crystallography 26:795-800) for the c-Src-3 complex. Both structures were solved by molecular replacement using the X-ray crystallographic structure of the Src kinase domain (PDB ID:1YOJ) (SEQ ID NO: 12) lacking the activation segment, helix aC, and any ligands as the search model in the program PHASER (Mccoy et ah, 2007, Journal of Applied Crystallography 40:658-674). Molecular replacement solutions were modified and refined with alternate cycles of manual fitting and building into |2Fo-Fc| and composite omit electron density maps using Coot (Emsley and Cowtan, 2004, Acta Crystallographica Section D-Biological Crystallography 60:2126- 2132). Refinement of the structures was conducted using simulated annealing and maximum likelihood protocols using CNS (Brunger et ah, 1998, Acta Crystallographica Section D- Biological Crystallography 54:905-921)and REFMAC (Murshudov et ah, 1997, Acta Crystallographica Section D-Biological Crystallography 53:240-255). Topology and parameter files for the inhibitors were generated using PRODRG (Schuttelkopf and van Aalten, 2004, Acta Crystallographica Section D-Biological Crystallography 60:1355-1363). Data collection and refinement statistics are shown in Table 2 below. A representative composite omit simulated annealing electron density (|2FO-FC|) map from the Src-5 complex is shown in Figure 6. All structural figures were prepared with PYMOL (Delano and Lam, 2005, Abstracts of Papers of the American Chemical Society 230:U1371-U1372). Structures have been deposited in the Protein Data Bank under ID codes 3EL7 (Src-3) (SEQ ID NO:4) and 3EL8 (Src-5) (SEQ ID NO:4).

Table 2. X-ray crystallographic data collection and refinement statistics.

[0164] Chemical Synthesis. Starting materials were commercially available. Reactions were monitored by thin layer chromatography (TLC), and compounds were characterized by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Compounds 1-4 were synthesized starting from 3-nitrophenyl acetic acid, and Cmpd 5 was synthesized starting from 4-nitrophenyl boronic acid based on established routes for preparing pyrazolopyrimidines as known in the art (Bishop et al., 1999, J American Chemical Society 121:627- 631 ; Bishop et al, 1998, Cur r Biol 8:257-266; Blethrow et al., 2004, Curr Protoc MoI Biol Chapter 18, Unit 18 11 ; Apsel et al., 2008, Nat. Chem. Biol. 4:691-699; Dar et al., 2008, Chem. Biol. 20:1015-1022)with modifications as described herein.

Example 4. 2-(l-methoxy-2-(3-nitrophenyl)ethylidene)malononitrile

[0165] 2-(l-methoxy-2-(3-nitrophenyl)ethylidene)malononitrile, a compound useful in the synthesis of compounds described herein, is conveniently synthesized by a variety of routes known in the art, including that provided in Scheme 3 following. Scheme 3

[0166] 2-(3-nitrophenyl)acetyl chloride. To a solution of 3-nitrophenyl acetic acid (5g, 27.6 mmol; Sigma- Aldrich) was added oxalyl chloride (12 mL, 138 mmol) and DMF (0.1 mL) in 40 mL CH2Cl2. The reaction mixture was stirred for 6 hours at room temperature yielding a clear yellow solution. Solvent was removed in vacuo to afford a yellow solid of the acid chloride, which was washed with CH2Cl2 three times and carried on directly to the next step.

[0167] 2-(2-(3-nitrophenyl)acetyl)malononitrile. The acid chloride was dissolved in 10 mL of THF and added dropwise to a reaction flask containing an ice-cold solution of malononitrile (2.7g, 41 mmol) and NaH (3.5g of a 60% paraffin oil emulsion, 88.3 mmol) in THF. The reaction was stirred for 4 hours and wanned to room temperature, after which 25 mL of 2N HCl was added. The aqueous layer was extracted three times with EtOAc. The organic extracts were combined and concentrated in vacuo. [0168] 2-(l-methoxy-2-(3-nitrophenyl)ethylidene)malononitrile. The crude material containing 2-(2-(3-nitrophenyl)acetyl)malononitrile was dissolved in H2O (7 mL) and 1,4- dioxane (42 mL), to which NaHCO3 (11.5 g, 138 mmol) and dimethyl sulfate (10.5 mL, 110 mmol) were added. The reaction mixture was heated to 80 0C and left stirring for 12 hours. The reaction mixture was diluted with EtOAc (100 mL) and brine (100 mL). The aqueous portion was extracted with EtOAc (3 x 100 mL). The combined organic fractions were dried over MgSO4, filtered, and concentrated in vacuo. The recovered solid was purified by silica gel chromatography (100% chloroform). Fractions containing the desired enol ether were pooled, concentrated, and dissolved in hot MeOH. The solution was cooled and fine white crystals formed overnight, which were recovered by filtration and washed with ice cold MeOH to afford 2-(l-methoxy-2-(3-nitrophenyl)ethylidene)malononitrile. 1H NMR (400 MHz, DMSO): δ 7.78 (IH, d), 7.72 (t, IH), 8.22 (d, IH), 8.25 (s, IH)5 4.36 (s, 2H), 4.04 (s, 3H). Example 5. l-(3-((4-ammo-l-methyl-lH-pyrazolo[3,4-d]pyrimidin-3-yl)methyl)phenyl)- 3-(3-(trifluoromethyl)phenyl)urea (Cmpd 1)

[0169] 2-(l-methoxy-2-(3-nitrophenyl)ethylidene)malononitrile (0.4g; l .όmmol) was combined with methylhydrazine (0.09 niL; 1.6 mmol; Sigma- Aldrich) in 1OmL of THF for 1 hour on a ice-bath. The product was concentrated in vacuo and recrystallized from MeOH to yield 3-(3-nitrobenzyl)-5-amino-l-methyl-li/-pyrazole-4-carbonitrile (ESI-MS m/z [M+H]+ found 258.1, calculated 258.09). The crystallized product (0.2g; 0.8mmol) was combined with formamide (1.5mL) and heated to 1600C overnight. H2O was added to the cooled reaction and the precipitate was filtered and dried to yield 3-(3-nitrobenzyl)-l-methyl-lH- pyrazolo[3,4-J]pyrimidin-4-amine (ESI-MS m/z [M+Η]+ found 285.1 , calculated 285.1). This precipitated intermediate (0.09 g; O.33mmol) was then mixed with excess Zinc dust, 5 mL THF, 0.4 mL HOAc for 12 hours under Argon at room temperature. Afterwards the reaction was filtered through Celite®, extracted with EtOAc and concentrated in vacuo to yield 3-(3-aminobenzyl)-l-methyl-lH-pyrazolo[3,4-<i]pyrimidin-4-amine (ESI-MS m/z [M+Η]+ found 255.3, calculated 255.13). ). To the reduced precursor, molar equivalents of 3-(trifluoromethyl)phenyl isocyanate (Sigma- Aldrich) were added drop wise in ice-cold CH2Cl2. The reaction proceeded until completion as judged by TLC, was concentrated in vacuo, resuspended in 50:50 H2O-CH3CN, and purified on a C18 column in CH3CN/H20/0.1%TFA (1-100% gradient) to yield final Cmpd 1 l-(3-((4-amino-l-methyl- lH-pyrazolo[3,4-(i]pyrimidin-3-yl)methyl)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (ESI- MS m/z [M+H]+ found 442.1, calculated 442.15; 1H NMR (400 MHz, DMSO): δ 9.31 (s, IH), 9.05 (s, IH), 8.43 (s, IH), 8.03 (s, IH), 7.56 (d, J= 8Hz, IH), 7.50 (t, J= 8Hz, IH), 7.37 (s, IH), 7.36 (d, J= 8HZ, IH), 7.30 (d, J= 8Hz, IH), 7.21 (t, J= 8Hz, IH), 6.88 (d, J= 8Hz, IH), 4.40 (s, 2H), 3.93 (s, IH). 13C NMR (400 MHz, DMSO): δ 33.48, 34.34, 98.15, 116.47 (d), 1 15.05, 117.11, 117.98, 119.13, 122.29, 122.91, 124.73 (q), 129.33, 130.00 (q), 130.32, 139.24, 140.15, 141.21, 146.00, 149.49, 152.37, 153.00, 153.76, 159.48 (q)).

Example 6. l-(3-((4-amino-l-isopropyl-lH-pyrazolo[3,4-d]pyrimidin-3- yl)methyl)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (Cmpd 2)

[0170] A specific synthetic strategy for Cmpd 2 is depicted in Scheme 4 following. Scheme 4

[0171] Reagent 2-(l -methoxy-2-(3-nitrophenyl)ethylidene)malononitrile (1.2g; 4.7 mmol) was combined with isopropylhydrazine-HCl (0.57g; 5.2 mmol; Sigma- Aldrich), 1.4 mL triethylamine in 5OmL EtOH for at 2 hours at RT. The reaction was concentrated in vacuo, suspended in brine and extracted with chloroform. The organic layer was dried over MgSO4. Following, the organic suspension was filtered, concentrated in vacuo, and purified on silica gel in 1% MeOH:CHCl3 to yield 3-(3-nitrobenzyl)-5-amino-l-isopropyl-lH-pyrazole-4- carbonitrile (ESI-MS m/z [M+H]+ found 286.4, calculated 286.12). The product was combined with formamide (1.5mL) and heated to 1600C overnight. H2O was added to the cooled reaction and the precipitate was filtered and dried to yield 3-(3-nitrobenzyl)-l- isopropyl-lH-pyrazolo[3,4-(f|pyrimidm-4-amine (ESI-MS m/z [M+H]+ found 313.4, calculated 313.13). This precipitated intermediate was then mixed with excess Zinc dust, 5 mL THF, 0.4 mL HOAc for 12 hours under Argon at room temperature. Afterwards the reaction was filtered through Celite®, extracted with EtOAc and concentrated in vacuo to yield 3-(3-aminobenzyl)-l-isopropyl-l//-pyrazolo[3,4-<i]pyrimidin-4-amine ESI-MS m/z [M+H]+ found 283.11, calculated 282.16. To the reduced precursor, molar equivalents of 3-(trifluoromethyl)phenyl isocyanate (Sigma-Aldrich) were added drop wise in ice-cold CH2Cl2. The reaction proceeded until completion as judged by TLC, was concentrated in vacuo, resuspended in 50:50 H2O-CH3CN, and purified on a Ci8 column in

CH3CN/H20/0.1%TFA (1-100% gradient) to yield Cmpd 2 l-(3-((4-amino-l-isopropyl-l/f- pyrazolo[3,4-ιi]pyrimidin-3-yl)methyl)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (ESI-MS m/z [M+H]+ found 470.5, calculated 470.18; 1H NMR (400 MHz, DMSO): δ 9.25 (IH, s), 8.97 (s, IH), 8.36 (s, IH), 8.05 (s, IH), 7.48 - 7.54 (m, 2H), 7.41 (s, IH), 7.30 (d, J= 8Hz, 2H), 7.20 (t, J= 8Hz, IHO, 6.88 (d, J= 8Hz, IH), 5.03 (septet, J= 8Hz, IH), 1.48 (s, 6H). 13C NMR (400 MHz, DMSO): 5 22.15, 33.44, 49.21, 98.32, 116.48 (d), 117.03, 118.92, 122.16, 122.67, 124.70(q), 129.33, 129.98 (q), 130.47 (q), 139.50, 140.07, 141.15, 145.31, 150.15, 151.77, 152.94, 154.32, 159.10 (q)).

Example 7. l-(3-((4-amino- l-cyclopentyl-l H-pyrazolo [3,4-d] pyrimidin-3- yl)methyl)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (Cmpd 3)

[0172] Reagent 2-(l-methoxy-2-(3-nitrophenyl)ethylidene)malononitrile (0.3g; 1.3 mmol) was combined with hydrazine monohydrate (0.07 mL; 1.4 mmol; Sigma- Aldrich) in 5 mL EtOH for 1 hour at RT. The reaction was concentrated in vacuo to yield 3-(3-nitrobenzyl)-5- amino-lH-pyrazole-4-carbonitrile (0.3g; 1.3 mmol; ESI-MS m/z [M+H]+ found 244.5, calculated 244.1, 1H NMR (400 MHz, DMSO): δ 11.77 (s, IH), 8.09 (d, J= 8 Hz, IH), 8.08 (s, IH), 7.69 (d, J= 8 Hz, IH), 7.60 (m, IH), 6.33 (s, 2H), 3.96 (s, 2H) ), which was subsequently combined with formamide (6mL) and heated to 1800C overnight. H2O was added to the cooled reaction and the precipitate was filtered and dried to yield 3-(3- nitrobenzyl)-l/J-pyrazolo[3,4-<i]pyrimidin-4-amine (0.26g; 0.96 mmol; ESI-MS m/z [M+H]+ found 271.4, calculated 271.09; 1H NMR (400 MHz, DMSO): δ 8.18 (s, IH), 8.10 (s, IH), 8.06 (d, J= 8 Hz, IH), 7.69 (d, J= 8Hz, IH), 7.58 (m, IH), 7.22 (br, 2H), 4.51 (s, 2H)). The recovered intermediate (0.05g; 0.18 mmol) was combined with bromocyclopentane (0.1 mL; 0.38 mmol), 0.125g K2CO3, in 1 mL DMF and refluxed under argon for 2 hours. The reaction was filtered to remove solid K2CO3, and the filtrate was combined with brine and the organic product was extracted in CH2Cl2 to yield 3-(3-nitrobenzyl)-l-cyclopentyl-l//- pyrazolo[3,4-<|pyrimidin-4-amine (ESI-MS m/z [M+H]+ found 339.5, calculated 339.15; 1H NMR (400 MHz, CDCl3): δ 8.30 (s, IH), 8.12 (m, 2H), 7.51 (m, 2H), 5.25 (pen, 8 Hz, IH), 5.06 (br, 2H), 4.42 (s, 2H), 2.14 (m, 4H), 1.97 (m, 2H), 1.73 (m, 2H)). Reduction of this material was carried out as per Cmpd 1 to yield 3 -(3 -aminobenzyl)- l-cyclopentyl-l H- pyrazolo[3,4-<i]pyrimidin-4-amine (ESI-MS m/z [M+H]+ found 309.5, calculated 309.17). The reduced precursor was coupled to 3-(trifluoromethyl) phenyl isocyanate and purified as described for Cmpd 1 to yield Cmpd 3 l-(3-((4-amino-l-cyclopentyl-lH-pyrazolo[3,4- <i]pyrimidin-3-yl)methyl)phenyl)-3-(3-(trifluoromethyl) phenyl)urea (ESI-MS m/z [M+H]+ found 496.4, calculated 496.2; 1H NMR (400 MHz, DMSO): δ 9.22 (s, IH), 8.93 (s, IH), 8.34 (s, IH), 8.06 (s, IH), 7.50-7.60, (m, 2H), 7.43 (s, IH), 7.18-7.22 (m, 3H), 6.90 (d, J= 8 Hz, IH), 5.20 (pentet, J= 7 Hz, IH), 4.40 (s, 2H), 1.98-2.13 (m, 4H), 1.85-1.95 (m, 2H), 1.62-1.73 (m, 2H); 13C NMR (400 MHz, DMSO): δ 24.76, 32.33, 33.48, 57.62, 98.34, 114.48, 117.01, 118.17, 118.46, 118.89, 122.13, 122.34, 122.66, 129.97 (q), 139.53, 140.11, 141.16, 145.37, 150.60, 152.32, 152.94, 154.38, 159.00 (q)).

Example 8. l-(3-((l-tert-butyI-4-amino-lH-pyrazoIo[3,4-d]pyrimidin-3- yl)methyl)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (Cmpd 4)

[0173] Reagent 2-(l -methoxy-2-(3-nitrophenyl)ethylidene)malononitrile (1.2g; 4.7 mmol) was combined with tert-butylhydrazine-HCl (0.57g; 5.2 mmol; Sigma- Aldrich), 1.4 mL triethylamine in 5OmL EtOH for at 2 hours at 800C. The reaction was concentrated in vacuo, resuspended in brine and extracted with chloroform. The organic layer was dried over MgSO4. Following, the organic suspension was filtered, concentrated in vacuo, and purified on silica gel in 1% MeOH:CHCl3 to yield 3-(3-nitrobenzyl)-l-ter?-butyl-5-amino-lH- pyrazole-4-carbonitrile (ESI-MS m/z [M-CH3]+ found 285.5, calculated 285.14; 1H NMR (400 MHz, DMSO): δ 8.11 (s, IH), 8.08-8.12 (m, IH), 7.69 (d, J= 8 Hz, IH), 7.59-7.64 (m, IH), 3.96 (s, 2H), 3.34 (br, 2H), 1.52 (s, 9H)). This product was combined with formamide as per Cmpd 1 to yield 3-(3-nitrobenzyl)-l-ter?-butyl-lH-pyrazolo[3,4-<f]pyrimidin-4-amine (ESI-MS m/z [M+H]+ found 327.4, calculated 327.15; 1H NMR (400 MHz, DMSO): δ 8.22 (s, IH), 8.14 (s, IH), 8.07 (d, J= 8 Hz, IH), 7.67 (d, J= 8Hz, IH), 7.59 (d, J= 8Hz, IH), 7.22 (br, 2H), 4.52 (s, 2H), 1.70 (s, 9H)). Reduction of this material was completed as per Cmpd 1 to yield 3-(3-aminobenzyl)-l-/ert-butyl-l//-pyrazolo[3,4-(fJpyrimidin-4-amine (ESI- MS m/z [M+H]+ found 297.13 , calculated 297.17). The reduced precursor was coupled to 3-(trifluoromethyl)phenyl isocyanate and purified as described for Cmpd 1 to yield Cmpd 4 l-(3-((l-tert-butyl-4-amino-lH-pyrazolo[3,4-J]pyrimidin-3-yl)methyl)phenyl)-3-(3- (trifluoromethyl)phenyl)urea (ESI-MS m/z [M+H]+ found 484.5, calculated 484.2; 1H NMR (400 MHz, DMSO): δ 9.25 (s, IH), 8.96 (s, IH), 8.32 (s, IH), 8.06 (s, IH), 7.46-7.55 (m, 2H), 7.40 (s, IH), 7.29 (d, J= 8Hz, 2H), 7.20 (t, J= 8Hz, IH), 6.89 (d, J= 8Hz, IH), 4.39 (s, 2H), 1.73 (s, 9H). 13C NMR (400 MHz, DMSO): δ 29.25, 33.40, 60.74, 99.58, 116.43 (d), 116.95, 118.86, 122.13, 122.64, 124.69 (q), 129.29, 129.98 (q), 130.32, 139.60, 140.06, 141.16, 143.31, 149.70, 152.69, 152.92, 154.81, 159.12 (q)).

Example 9. l-(4-(4-amino-l-isopropyl-lH-pyrazolo[3,4-d]pyrimidin-3-yl)phenyl)-3-(3- (trifluoromethyl)phenyl)urea (Cmpd 5)

[0174] A synthetic strategy for Cmpd 5 is depicted in Scheme 5 following. Scheme 5

[0175] With reference to Scheme 5, 4-nitrophenyl boronic acid (100 mg, 0.330 mmol; Sigma- Aldrich), was coupled to 3-iodo-l-isopropyl-lH-pyrazolo[3,4-d]pyrimidin-4-amine (140mg, 0.8248mmol; Apsel et al., 2008) via the Suzuki reaction in 6 mL 1,2 methoxy ethane, 1 mL of saturated sodium carbonate, 1.65 mL EtOH, and 200 mg of polymer-bound tetrakis Palladium. The reaction was stirred under argon for 12 hours at room temperature, filtered through Whatman paper to remove Palladium, mixed with brine, extracted in chloroform and the product was subsequently purified on silica in EtOAc and concentrated in vacuo. The purified solid l-isopropyl-3-(4-nitrophenyl)-lH-pyrazolo[3,4-<i]pyrimidin-4- amine (ESI-MS m/z [M+H]+ found 299.1, calculated 299.1 ; lOOmg, 0.336 mmol) was combined with Zinc dust, 5 mL THF, 0.4 mL HOAc for 12 hours at room temperature under Argon. Then the reaction mixture was filtered through Celite®, extracted with EtOAc and concentrated in vacuo to yield 3-(4-aminophenyl)-l-isopropyl-lH-pyrazolo[3,4-<i]pyrimidin- 4-amine (ESI-MS m/z [M+H]+ found 269.1 , calculated 269.1 ). To this reduced product, molar equivalents of 3-(trifluoromethyl)phenyl isocyanate (Sigma- Aldrich) were added dropwise in ice-cold CH2Cl2. The reaction proceeded until completion as judged by TLC, was concentrated in vacuo, resuspended in 50:50 H2O-CH3CN, and purified on a Cl 8 column in CH3CN/H20/0.1%TFA (1-100% gradient) to yield Cmpd 5 l-(4-(4-amino-l-isopropyl-lH- pyrazolo[3,4-<i]pyrimidin-3-yl)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (ESI-MS m/z

[M+H]+ found 455.2, calculated 455.2; 1H NMR (400 MHz, DMSO): δ 9.48 (s, IH), 9.42 (s, IH), 8.39 (s, IH), 8.07 (s, IH), 7.70 (d, J= 8Hz, 2H), 7.60 (d, J= 8Hz, 2H), 7.60 - 7.64 (m, IH), 7.53 (t, J= 8Hz, IH), 7.33 (d, J= 8Hz, IH), 5.10 (septet, J= 6.8Hz, IH), 1.51 (d, J = 6Hz, 6H), 3.10 (q, J= 4Hz, 1.5H, trace triethylamine), 1.18 (t, J= 8Hz, 2H, trace triethylamine).!3C NMR (400 MHz, DMSO): δ 9.08 (trace triethylamine), 22.23, 46.20 (trace triethylamine), 49.17, 97.40, 115.45, 116.0 (d), 119.20, 122.34, 124.70(q), 126.19, 129.35, 130.00 (q), 130.40, 140.85, 141.09, 145.20, 151.70, 152.35, 153.00, 155.72, 159.41 (q)).

Example 10. N-(3-((4-amino-l-benzyl-lH-pyrazolo[3,4-d]pyrimidin-3- yl)methyl)phenyl)-3-(trifluoromethyl)benzamide (BB5)

[0176] A synthetic strategy for Cmpd BB5 is depicted in Scheme 6 following. Scheme 6

[0177] Reagent 2-(l -methoxy-2-(3-nitrophenyl)ethylidene)malononitrile (0.97 g; 4.0 mmol) was combined with hydrazine (0.3mL; 6.0 mmol; Sigma- Aldrich) in 1OmL EtOH for 90 minutes at room temperature. Afterwards the reaction was concentrated in vacuo, suspended in brine and extracted with chloroform (3x 50 mL). The organic layer was dried over MgSO4, then filtered, and concentrated in vacuo to afford 3-(3-nitrobenzyl)-5-amino- lJ7-pyrazole-4-carbonitrile (ESI-MS m/z [M+H]+ found 244.5, calculated 244.1). The product was combined with formamide (1.5mL) and heated to 1600C overnight. H2O was added to the cooled reaction and the precipitate was filtered and dried to afford 3-(3- nitrobenzyl)-lH-pyrazolo[3,4-<f]pyrimidin-4-amine (ESI-MS m/z [M+H]+ found 271.4, calculated 271.1). This recovered solid (50 mg, 0.19 mmol) was then added to a solution containing benzyl bromide (0.1 mL, 0.28 mmol), K2CO3 (0.125 g), DMF (1.0 mL). The reaction mixture was purged with Argon and stirred overnight at 80 0C. The reaction was filtered to remove solid K2CO3, and the filtrate was combined with brine and the organic product was extracted in CH2Cl2 (3x 50 mL) to afford 3-(3-nitrobenzyl)-l-benzyl-l//- pyrazolo[3,4-ήT|pyrimidin-4-amine (ESI-MS m/z [M+H]+ found 361.4, calculated 361.1). This precipitated intermediate was then mixed with excess Zinc dust, 5 mL THF, 0.4 mL HOAc for 12 hours under Argon at room temperature. Afterwards the reaction was filtered through Celite®, extracted with EtOAc and concentrated in vacuo to afford 3-(3- aminobenzyl)-l-benzyl-lH-pyrazolo[3,4-<f]pyrimidin-4-amme (ESI-MS m/z [M+H]+ found 331.5, calculated 331.2). To this reduced precursor, molar equivalents of 3-(trifluoromethyl) benzoyl chloride (Sigma- Aldrich) were added drop wise in ice-cold CH2Cl2. The reaction proceeded until completion as judged by TLC, was concentrated in vacuo, resuspended in 50:50 H2O-CH3CN, and purified on a Ci8 column in CH3CN/H20/0.1%TFA (1-100% gradient) to yield final Cmpd BB5 N-(3-((4-amino-l-benzyl-lH-pyrazolo[3,4-d]pyrimidin-3- yl)methyl)phenyl)-3-(trifluoromethyl)benzamide (ESI-MS m/z [M+H]+ found 503.4, calculated 503.2).

Example 11. l-(3-((4-amino-l-benzyl-lH-pyrazolo[3,4-d]pyrimidin-3- yl)methyl)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (BB6)

[0178] To 3-(3-aminobenzyl)-l-benzyl-lH-pyrazolo[3,4-<i]pyrimidin-4-amine, molar equivalents of 3-(trifluoromethyl)phenyl isocyanate (Sigma- Aldrich) were added drop wise in ice-cold CH2Cl2. The reaction proceeded until completion as judged by TLC, was concentrated in vacuo, resuspended in 50:50 H2O-CH3CN, and purified on a Cl 8 column in CH3CN/H20/0.1%TFA (1-100% gradient) to yield final Cmpd BB6 l-(3-((4-amino-l-benzyl- l//-pyrazolo[3,4-(f|pyrimidin-3-yl)methyl)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (ESI- MS m/z [M+H]+ found 518.4, calculated 518.2). Example 12. l-(4-(4-amino-l-methyl-lH-pyrazolo[3,4-d]pyrimidin-3-yl)phenyl)-3-(3- (trifluoromethyl) phenyl)urea (AD59)

[0179] A synthetic strategy for Cmpd AD59 is depicted in Scheme 7 following. Scheme 7

[0181] 4-nitrobenzoic acid (5g, 29.9 mmol; Sigma-Aldrich) was combined with oxaylyl chloride (13.1 mL, 149.5) and DMF (0.1 mL) in 50 niL of dichloromethane and stirred for 2 hours at room temperature to yield a clear yellow solution. The reaction mixture was concentrated in vacuo and washed twice with dichloromethane to yield a bright yellow solid. The solid was dissolved in dry THF and added drop-wise to a round bottom flask containing a cooled solution of malononitrile (2.96g, 44.9 mmol) and NaH (8.45g of a 60% oil emulsion; 95.7 mmol) in THF. The reaction was allowed to warm slowly to room temperature and left for 2 hours. Following, 25 mL of 2N HCl and 50 mL of brine were added and the organic layer was extracted 3 times using EtOAc. The combined organic extracts were dried over Na2SO4, filtered, and concentrated in vacuo. This brown solid was dissolved in 50 mL of H20/dioxane (1 :8), NaHCO3 (20.Ig, 239 mmol), and dimethyl sulfate (14.2 mL, 150 mmol). The solution was heated to 80 0C for four hours. After cooling, brine was added, and the organic layer was extracted three times using EtOAc. The combined extracts were dried, concentrated in vacuo, and purified on silica in EtOAc-hexanes (50-100% gradient). The pure yellow solid, containing 2-(methoxy(4-nitrophenyl)methylene) malononitrile (lOOmg, 0.436 mmol) was added dropwise to monomethylhydrazine (20.1 mg, 0.436 mmol) in ice- cold THF. After 2 hours the reaction was complete as judged by TLC, giving 5-amino-l- methyl-3-(4-nitrophenyl)-lH-pyrazole-4-carbonitrile (ESI-MS m/z [M+H]+ found 243.9, calculated 244.1), which was concentrated in vacuo, suspended in 2 mL of formamide and heated to 165 0C for 12 hours. Following, the solution was cooled, 8 mL Of H2O was added, and a brown solid was collected by filtration. The purified solid l-methyl-3-(4-nitrophenyl)- lH-pyrazolo[3,4-φyrimidin-4-amine (ESI-MS m/z [M+H]+ found 270.9, calculated 271.1; 60 mg, 0.222 mmol) was combined with Zinc dust (0.4 g), 10 mL THF, 0.25 mL HOAc for 12 hours at room temperature. Afterwards, the reaction mixture was filtered through Celite®, extracted with EtOAc and concentrated in vacuo to yield 3-(4-aminophenyl)-l-methyl-lH- pyrazolo[3,4-J]pyrimidin-4-amine (ESI-MS m/z [M+Η]+ found 241.0, calculated 241.1). To this reduced product, molar equivalents of 3-(trifluoromethyl)ρhenyl isocyanate (Sigma- Aldrich) were added dropwise in ice-cold CH2Cl2. The reaction proceeded until completion as judged by TLC, was concentrated in vacuo, resuspended in 50:50 H2O-CH3CN, and purified on a C 18 column in CH3CN/H20/0.1 %TFA (1-100% gradient) to afford Cmpd AD59 l-(4-(4-amino-l-methyl-lH-pyrazolo[3,4-(i]pyrimidin-3-yl)phenyl)-3-(3-(trifluoromethyl) phenyl)urea (ESI-MS m/z [M+Η]+ found 428.0, calculated 428.1).

Example 13. l-(4-(4-amino-l-cyclopentyl-lH-pyrazolo[3,4-d]pyrimidin-3-yl)phenyl)-3- (3-(trifluoromethyl)phenyl)urea (AD60) [0182] A synthetic strategy for Cmpd AD60 is depicted in Scheme 8 following. Scheme 8

[0183] Reagent 3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine) (0.5g; 1.9 mmol; Apsel et al., 2008, Id.) was combined with cyclopentyl iodide (0.24 mL; 2.1 mmol), l .Oόg K2CO3, in 20 mL DMF and heated to 45 °C under argon for 2 hours. The reaction was filtered to remove solid K2CO3, and the filtrate was combined with brine and the organic product was extracted in CH2Cl2 (3x 50 mL). The combined organic layer was concentrated in vacuo and purified by silica gel chromatography (MeOH/Chloroform; 5:95) to afford l-cyclopentyl-3- iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine (ESI-MS m/z [M+H]+ found 330.0, calculated 330.0). 4-nitrophenyl boronic acid (190 mg, 1.1 mmol; Sigma-Aldrich), was coupled to 1- cyclopentyl-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine (150mg, 0.456 mmol) via the Suzuki reaction in 6 mL 1,2 methoxy ethane, 1 mL of saturated sodium carbonate, 1.65 mL EtOH, and 200 mg of polymer-bound tetrakis palladium. The reaction was stirred under argon for 12 hours at room temperature, filtered through Whatman paper to remove palladium, mixed with brine, extracted in chloroform and the product was subsequently purified on silica in EtOAc and concentrated in vacuo. The purified solid l~cyclopentyl-3-(4- nitrophenyl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine (ESI-MS m/z [M+H]+ found 325.0, calculated 325.1 ; lOOmg, 0.31 mmol) was combined with Zinc dust (605 mg, 9.25 mmol), 10 mL THF, 0.35 mL HOAc for 12 hours at room temperature under Argon. The reaction was filtered through CeIi te®, extracted with EtOAc and concentrated in vacuo to yield 3-(4- aminophenyl)-l -cyclopentyl- lH-pyrazolo [3, 4-d]pyrimidin-4-amine (ESI-MS m/z [M+H]+ found 295.0, calculated 295.2). To this reduced product, molar equivalents of

3-(trifluoromethyl)phenyl isocyanate (Sigma-Aldrich) were added dropwise in ice-cold CH2C12. The reaction proceeded until completion as judged by TLC, was concentrated in vacuo, resuspended in 50:50 H20-CH3CN, and purified on a Cl 8 column in CH3CN/H20/0.1%TFA (1-100% gradient) to yield AD60 l-(4-(4-amino-l -cyclopentyl- IH- pyrazolo[3,4-d]pyrimidin-3-yl)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (ESI-MS m/z [M+H]+ found 482.2, calculated 482.0).

Example 14. l-(4-(4-amino-l-(3-hydroxypropyl)-lH-pyrazoIo[3,4-d]pyrimidin-3- yl)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (AD64)

Step l 2

[0184] 5-amino-3-(4-nitrophenyl)-lH-pyrazole-4-carbonitrile. A 100O mL round bottom flask was pre-cooled in an ice-water bath, to which a solution of malononitrile (10.2 g, 0.154 mol) was mixed into a suspension of sodium hydride (6.72 g, 0.28 mol) in THF (100 mL). To this mixture, 4-nitrobenzoyl chloride (26 g, 0.14 mol; Sigma- Aldrich) was added slowly. After 20 minutes, the reaction was removed from the ice- water bath and left stirring for 2 hours. Dimethyl sulfate (16 mL, 0.168 mol) was then added with a syringe. The reaction vessel was placed into an oil bath at 90 0C and almost immediately afterwards a yellow solid began to form. The reaction was left at 90 0C for 2 hours. The reaction mixture was removed from the oil bath and allowed to cool to room temperature. Afterwards, hydrazine (7.5 mL, 0.154 mol) was added, and the reaction was left stirring for 60 minutes. 200 mL of brine and 100 mL of 2N HCl were added and separated from the organic layer. The aqueous phase was extracted two additional times with CH2Cl2. The organic phases were combined and concentrated in vacuo to yield a bright yellow solid. The solid was suspended in 100 mL EtOH, refluxed for 30 minutes, and the insoluble solid was collected by filtration, washed with room temperature EtOH, and dried to yield 5-amino-3-(4- nitrophenyl)-lH-pyrazole-4-carbonitrile (9.1g, 28% yield).

Step 2

[0185] 3-(4-nitrophenyl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine. A solution of formamide (30 mL) and 5-amino-3-(4-nitrophenyl)-lH-pyrazole-4-carbomtrile (7.25 g, 32 mmol) was heated to 160 0C overnight under an argon atmosphere. The reaction was cooled, and 25 mL of H2O was added. The resulting solid was recovered by filtration and rinsed with cold H2O to afford 3-(4-nitrophenyl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine (5.9 g, 72% yield). ESI-MS m/z [M+H]+ found 257.5, calculated 257.2. Step 3

[0186] 3-(-t-butyldimethylsilyloxy)-protected 3-(4-amino-3-(4-aminophenyl)-lH- pyrazolo[3,4-rf]pyrimidin-l-yl)propan-l-ol. A solution of 3-(4-nitrophenyl)-lΗ- pyrazolo[3,4-d]pyrimidin-4-amine (0.5 g, 1.95 mmol) and K2CO3 (1.08 g, 7.8 mmol) in DMF (20 mL) was brought to 80 0C under an argon atmosphere. 3-(-t-butyldimethylsilyloxy) propyl bromide (0.54 mL, 2.34 mmol) was added with a syringe. The reaction mixture was left stirring for 3 hours. The reaction mixture was cooled and then filtered. The filtrate was concentrated in vacuo, but not to dryness. 14 mL of 0.1 sodium citrate was added causing an orange solid to form, which was collected by filtration to afford TBS-protected 3-(4-amino-3- (4-nitrophenyl)-lH-pyrazolo[3,4-<i]pyrimidin-l-yl)propan-l-ol (0.79 g, 94% yield). ESI-MS m/z [M+Η]+ found 429.6, calculated 429.6.

[0187] The orange solid (400 mg, 0.93 mmol) was combined with zinc dust (1.8 g, 28 mmol), 10 mL THF, and 1 mL HOAc for 12 hours at room temperature under an argon atmosphere. Following, the reaction mixture was filtered through Celite®, extracted with EtOAc, and concentrated in vacuo to afford TBS-protected 3-(4-amino-3-(4-aminophenyl)- lH-pyrazolo[3,4-J]pyrimidin-l-yl)propan-l-ol. ESI-MS m/z [M+Η]+ found 399.7, calculated 399.6).

Step 4

[0188] A solution of TBS-protected 3-(4-amino-3-(4-aminophenyl)-l//-pyrazolo[3,4- <i]pyrimidin-l-yl)propan-l-ol (0.2 g, 0.51 mmol) in CH2Cl2 (10 mL) was cooled in an ice- water bath. To this, 3-(trifluoromethyl)phenyl isocyanate (0.072 mL, 0.5 mmol) diluted in CH2Cl2 (5 mL) was added dropwise. The reaction was allowed to warm to room temperature and left stirring for 12 hours. Formation of the urea intermediate was judged by TLC and LC-MS (ESI-MS m/z [M+H]+ found 586.8, calculated 587.7). Then 2N HCl (3 mL) was added into the reaction mixture. After 1 hour, water (25 mL) was added, and organic phases were extracted (2x 50 mL CH2Cl2). Organic phases were concentrated in vacuo and purified using silica gel column chromatography (EtOAc, 100%) to afford final compound AD64. ESI-MS m/z [M+H]+ found 472.6, calculated 472.4. Example 15: N-(4-(4-amino-l-(3-hydroxypropyl)-lH-pyrazolo[3,4-d]pyrimidin-3- yl)phenyl)-3-(trifluoromethyl)benzamide (AD65)

[0189] A solution of TBS-protected 3-(4-amino-3-(4-aminophenyl)-li/-pyrazolo[3,4- <f]pyrimidin-l-yl)propan-l-ol (0.2 g, 0.51 mmol) in CH2Cl2 (10 niL) was cooled in an ice- water bath. To this, 3-(trifluoromethyl)benzoyl chloride (0.074 mL, 0.5 mmol; Sigma- Aldrich) diluted in CH2Cl2 (5 mL) was added dropwise. The reaction was allowed to warm to room temperature and left stirring for 3 hours. Formation of the benzamide intermediate was judged by TLC and LC-MS (ESI-MS m/z [M+H]+ found 571.7, calculated 571.2). Afterwards, 2N HCl (3 mL) was added directly to the reaction mixture and stirred for 1 hour. Water (25 mL) was added, and organic phases were extracted (2x CH2Cl2). Organic phases were concentrated in vacuo and purified using silica gel column chromatography (EtOAc, 100%) to afford final compound AD65. ESI-MS m/z [M+H]+ found 457.6, calculated 457.2.

Example 16. l-(4-(4-amino-l-((»S)-tetrahydrofuran-3-yl)-lH-pyrazolo[3,4-^pyrirmdin- 3-yl)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (AD66)

Step !

[0190] (i?)-tetrahydrofuran-3-yl methanesulfonate. A solution of (i?)-tetrahydrofuran-3- ol (1.1 g, 12.5 mmol) and triethylamine (13.6 mL, 97.5 mmol) in CH2Cl2 was cooled in an ice-water bath. To this, methanesulfonyl chloride (3.0 mL, 39 mmol) diluted in CH2Cl2 (10 mL) was added dropwise. The reaction was left stirring for 12 hours at room temperature. Water was added, and organic phases extracted in CH2Cl2 (3x 50 mL), which were subsequently dried onto silica and purified by silica gel chromatography (50% EtOAc:Hexanes to 100% EtOAc gradient) to afford (i?)-tetrahydrofuran-3-yl methanesulfonate (0.97g, brown oil, 47% yield). Step 2

[0191] 3-(4-aminophenyl)-l-((S)-tetrahydrofuran-3-yl)-lHr-pyrazolo[3,4-rf]pyrimidin- 4-amine. A solution of 3-(4-nitrophenyl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine (0.5 g, 1.95 mmol), K2CO3 (1.08 g, 7.8 mmol), and (i?)-tetrahydrofuran-3-yl methanesulfonate (0.389 g, 2.34 mmol) in DMF (20 mL) was brought to 80 0C under an argon atmosphere. The reaction mixture was left stirring for 3 hours, then cooled and filtered. The filtrate was concentrated in vacuo, but not to dryness. 20 mL of 0.1 sodium citrate was added causing a solid to form, which was collected by filtration to afford l-((5)-tetrahydrofuran-3-yl)-3-(4-nitrophenyl)-lH- pyrazolo[3,4-d]pyrimidin-4-amine. ESI-MS m/z [M+H]+ found 327.6, calculated 327.3.

[0192] The resulting solid (250 mg, 0.77 mmol) was combined with zinc dust (1.5 g, 23 mmol), 30 mL THF, and 0.9 mL HOAc for 12 hours at room temperature under an argon atmosphere. Following, the reaction mixture was filtered through Celite® and concentrated in vacuo to afford 3-(4-aminophenyl)-l-((S)-tetrahydrofuran-3-yl)-lH-pyrazolo[3,4- <f]ρyrimidin-4-amine. ESI-MS m/z [M+Η]+ found 297.2, calculated 297.1).

Step 3

[0193] A solution of 3-(4-aminophenyl)-l-((5)-tetrahydrofuran-3-yl)-lH-pyrazolo[3,4- <i]pyrimidin-4-amine (0.1 g, 0.34 mmol) in CH2Cl2 (10 mL) was cooled in an ice-water bath. To this, 3-(trifluoromethyl)phenyl isocyanate (0.047 mL, 0.34 mmol) diluted in CH2Cl2 (5 mL) was added dropwise. The reaction was allowed to warm to room temperature and left stirring for 12 hours. Reaction completion was judged by TLC and LC-MS. The reaction mixture was filtered, dried onto silica, and purified using silica gel column chromatography (50% EtOAc:Hexanes to 100% EtOAc gradient) to afford final compound AD66. ESI-MS m/z [M+H]+ found 484.4, calculated 484.2. Example 17. iV-(4-(4-amino-l-((S)-tetrahydrofuran-3-yl)-lH-pyrazolo[3,4-rf]pyrimidin- 3-yl)phenyl)-3-(trifluoromethyl)benzamide (AD67)

[0194] A solution of 3-(4-aminophenyl)-l-((S)-tetrahydrofuran-3-yl)-lH-pyrazolo[3,4- <i]pyrimidin-4-amine (0.1 g, 0.34 mmol) in CH2Cl2 (10 mL) was cooled in an ice-water bath. To this, 3-(trifluoromethyl)benzoyl chloride (0.050 mL, 0.34 rnmol) diluted in CH2Cl2 (5 mL) was added dropwise. The reaction was allowed to warm to room temperature and left stirring for 12 hours. The reaction proceeded until completion as judged by TLC and LC-MS, was concentrated in vacuo, resuspended in 50:50 H2O-CH3CN, and purified on a Cl 8 column in CH3CN/H2O/0.1 %TFA (1-100% gradient) to afford AD67. ESI-MS m/z [M+H]+ found 469.4, calculated 469.2.

Example 18. 7V-(4-(4-amino-l-((i?)-tetrahydrofuran-3-yl)-lH-pyrazolo[3,4-rf]pyrimidin- 3-yl)phenyl)-3-(trifluoromethyl)benzamide (AD68)

Step 1

[0195] (S)-tetrahydrofuran-3-yl methanesulfonate. A solution of (>S)-tetrahydrofuran-3- ol (1.0 g, 11 mmol) and triethylamine (9.4 mL, 86 mmol) in CH2Cl2 (20 mL) was cooled in an ice-water bath. To this, methanesulfonyl chloride (3.0 mL, 39 mmol) diluted in CH2Cl2 (10 mL) was added dropwise. The reaction was left stirring for 12 hours at room temperature. Water was added, and organic phases extracted in CH2Cl2 (3x 50 mL), which were subsequently dried onto silica and purified by silica gel chromatography (50% EtOAc:Hexanes to 100% EtOAc gradient) to afford (S)-tetrahydrofuran-3-yl methanesulfonate (1.52 g, brown oil, 83% yield). Step 2

[0196] 3-(4-aminophenyl)-l-((i?)-tetrahydrofuran-3-yl)-lH-pyrazolo[3,4-rf]pyrimidin- 4-amine. A solution of 3-(4-nitrophenyl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine (0.5 g, 1.95 mmol), K2CO3 (1.08 g, 7.8 mmol), and (5)-tetrahydroftιran-3-yl methanesulfonate (0.389 g, 2.34 mmol) in DMF (20 mL) was brought to 80 °C under an argon atmosphere. The reaction mixture was left stirring for 3 hours, then cooled and filtered. The filtrate was concentrated in vacuo, but not to dryness. 20 mL of 0.1 sodium citrate was added causing a solid to form, which was collected by filtration to afford l-((i?)-tetrahydrofuran-3-yl)-3-(4-nitrophenyl)-lH- pyrazolo[3,4-<]pyrimidin-4-amine. ESI-MS m/z [M+Η]+ found 327.6, calculated 327.3.

[0197] The resulting solid (250 mg, 0.77 mmol) was combined with zinc dust (1.5 g, 23 mmol), 30 mL THF, and 0.9 mL HOAc for 12 hours at room temperature under an argon atmosphere. Following, the reaction mixture was filtered through Celite® and concentrated in vacuo to afford 3-(4-aminophenyl)-l-((i?)-tetrahydrofuran-3-yl)-l//-pyrazolo[3,4- (fjpyrimidin-4-amine. ESI-MS m/z [M+H]+ found 297.5, calculated 297.1).

Step 3

[0198] A solution of 3-(4-aminophenyl)-l-((i?)-tetrahydrofuran-3-yl)-l//-pyrazolo[3,4- J]pyrimidin-4-amine (0.075 g, 0.25 mmol) in CH2Cl2 (10 mL) was cooled in an ice-water bath. To this, 3-(trifluoromethyl)benzoyl chloride (0.035 mL, 0.25 mmol) diluted in CH2Cl2 (5 mL) was added dropwise. The reaction was allowed to warm to room temperature and left stirring for 12 hours. The reaction proceeded until completion as judged by TLC and LC- MS, was concentrated in vacuo, resuspended in 50:50 H2O-CH3CN, and purified on a Cl 8 column in CH3CN/H2O/0.1%TFA (1-100% gradient) to afford AD68. ESI-MS m/z [M+H]+ found 469.4, calculated 469.2. Example 19. l-(4-(4-amino-l-((R)-tetrahydrofuran-3-yl)-lH-pyrazolo[3,4-d]pyrimidin- 3-yl)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (AD69)

[0199] A solution of 3-(4-aminophenyl)-l -((i?)-tetrahydrofuran-3-yl)-l//-pyrazolo[3,4- <i]pyrimidin-4-amine (0.075 g, 0.25 mmol) in CH2Cl2 (10 niL) was cooled in an ice-water bath. To this, 3-(trifluoromethyl)phenyl isocyanate (0.035 mL, 0.25 mmol) diluted in CH2Cl2 (5 mL) was added dropwise. The reaction was allowed to warm to room temperature and left stirring for 12 hours. The reaction proceeded until completion as judged by TLC and LC- MS, was concentrated in vacuo, resuspended in 50:50 H2O-CH3CN, and purified on a Cl 8 column in CH3CN/H2O/0.1%TFA (1-100% gradient) to afford AD69. ESI-MS m/z [M+H]+ found 484.4, calculated 484.4.

Example 20. N-(4-(4-amino-l-((S)-pyrrolidin-3-yl)-lH-pyrazolo[3,4-d]pyrimidin-3- yl)phenyl)-3-(trifluoromethyl)benzamide (AD070)

Step 1

[0200] (i?)-l-(ter£-butoxycarbonyl)pyrrolidin-3-yl methanesulfonate. A solution of (R)- tert-bntyl 3-hydroxypyrrolidine-l-carboxylate (1.0 g, 5.3 mmol) and triethylamine (2.77 mL, 20 mmol) in CH2Cl2 (20 mL) was cooled in an ice-water bath. To this, methanesulfonyl chloride (1.15 mL, 15 mmol) diluted in CH2Cl2 (10 mL) was added dropwise. The reaction was left stirring for 12 hours at room temperature. Water was added, and organic phases extracted in CH2Cl2 (3x 50 mL), which were subsequently dried onto silica and purified by silica gel chromatography (50% EtOAc:Hexanes to 100% EtOAc gradient) to afford (R)-I- (te/t-butoxycarbonyl)pyrrolidin-3-yl methanesulfonate (1.53 g, brown oil, 100% yield).

Step 2

[0201] (S)-tert-butyl 3-(4-amino-3-(4-aminophenyl)-lH-pyrazolo[3,4-^pyrimidin-l- yl)pyrrolidine-l-carboxylate. A solution of 3-(4-nitrophenyl)-lH-pyrazolo[3,4- d]pyrimidin-4-amine (0.5 g, 1.95 mmol), K2CO3 (1.08 g, 7.8 mmol), and (R)-\-(tert- butoxycarbonyl)pyrrolidin-3-yl methanesulfonate (0.62 g, 2.34 mmol) in DMF (20 mL) was brought to 80 0C under an argon atmosphere. The reaction mixture was left stirring for 6 hours, then cooled and filtered. The filtrate was concentrated in vacuo, but not to dryness. 20 mL of 0.1 sodium citrate was added causing a solid to form, which was collected by filtration to afford (S)-tert-buty\ 3-(4-amino-3-(4-nitrophenyl)-lH-pyrazolo[3,4-<i]pyrimidin- l-yl)ρyrrolidine-l-carboxylate (0.43 g, 52% yield). ESI-MS m/z [M+H]+ found 426.7, calculated 426.2.

[0202] The resulting solid (330 mg, 0.78 mmol) was combined with zinc dust (1.5 g, 23 mmol), 30 mL THF, and 0.9 mL HOAc for 12 hours at room temperature under an argon atmosphere. Following, the reaction mixture was filtered through Celite®, mixed with water, and extracted with EtOAc. The organic phases were concentrated in vacuo to afford {S)-tert- butyl 3-(4-amino-3-(4-aminophenyl)-lH-pyrazolo[3,4-<i]pyrimidin-l-yl)pyrrolidine-l- carboxylate. ESI-MS m/z [M+H]+ found 396.5, calculated 396.5).

Step 3

[0203] A solution of (S)-tert-bu\y\ 3-(4-amino-3-(4-aminophenyl)-li7-pyrazolo[3,4- J]pyrimidin-l-yl)pyrrolidine-l-carboxylate (0.075 g, 0.17 mmol) in CH2Cl2 (10 mL) was cooled in an ice-water bath. To this, 3-(trifiuoromethyl)benzoyl chloride (0.025 mL, 0.17 mmol) diluted in CH2Cl2 (5 mL) was added dropwise. The reaction was allowed to warm to room temperature and left stirring for 4 hours, yielding the benzamide derivative (ESI-MS m/z [M+H]+ found 568.5, calculated 568.6). Boc-deprotection was completed through the addition of formic acid (5 mL) and concentrated HCl (0.5 mL) added dropwise directly to the reaction mixture. The reaction mixture was left stirring for 12 hours and then was concentrated in vacuo, resuspended in 50:50 H2O-CH3CN, and purified on a Cl 8 column in CH3CN/H2O/0.1%TFA (1-100% gradient) to afford AD70. ESI-MS m/z [M+H]+ found 468.5, calculated 468.2. Example 21a. l-(4-(4-amino-l-((iS)-pyrrolidin-3-yl)-lH-pyrazolo[3,4-</]pyrimidin-3- yI)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (AD71a) Example 21b. (S)-3-(4-amino-3-(4-aminophenyl)-lH-pyrazolo[3,4-rf]pyrimidin-l-yl)-N-

(3-(trifluoromethyl)phenyl)pyrrolidine-l-carboxamide (AD71b) Example 21c. (S)-3-(4-amino-3-(4-(3-(3-(trifluoromethyl)phenyl)ureido)phenyl)-lH- pyrazolo[3,4-d]pyrimidin-l-yl)-N-(3-(trifluoromethyl)phenyl)pyrrolidine-l- carboxamide (AD71c)

[0204] A solution of (S)-tert-buty\ 3-(4-amino-3-(4-aminophenyl)-lH-pyrazolo[3,4- <i]pyrimidm-l-yl)pyrrolidine-l-carboxylate (0.080 g, 0.17 mmol) in CH2Cl2 (10 mL) was cooled in an ice-water bath. To this, 3-(trifluoromethyl)phenyl isocyanate (0.026 mL, 0.19 mmol) diluted in CH2Cl2 (5 mL) was added dropwise. The reaction was allowed to warm to room temperature and left stirring for 6 hours. After, formic acid (5 mL) and concentrated HCl (0.5 mL) were added dropwise directly to the reaction mixture. Three major species were observed by LC-MS corresponding to AD71a, AD71b, and AD71c. The reaction mixture was left stirring for 12 hours and then was concentrated in vacuo, resuspended in 50:50 H2O-CH3CN, and purified on a Q8 column in CH3CN/H2O/0.1%TFA (1-100% gradient) to afford AD71a (ESI-MS m/z [M+H]+ found 483.5, calculated 483.2), AD71b (ESI-MS m/z [M+H]+ found 483.5, calculated 483.2), and AD71c (ESI-MS m/z [M+H]+ found 670.5, calculated 670.2).

Example 22. N-(4-(4-amino-l-((R)-pyrrolidm-3-yl)-lH-pyrazolo[3,4-d]pyrimidin-3- yl)phenyl)-3-(trifluoromethyl)benzamide (AD72) Step l

OH ,s=o

O

Boc Boc

[0205] (5)-l-(fcrϊ-butoxycarbonyl)pyrrolidin-3-yl methanesulfonate. A solution of (S)- tert-buty\ 3-hydroxypyrrolidine-l-carboxylate (1.0 g, 5.3 mmol) and triethylamine (2.77 mL, 20 mmol) in CH2Cl2 (20 niL) was cooled in an ice-water bath. To this, methanesulfonyl chloride (1.15 mL, 15 mmol) diluted in CH2Cl2 (10 mL) was added dropwise. The reaction was left stirring for 12 hours at room temperature. Water was added, and organic phases extracted in CH2Cl2 (3x 50 mL), which were subsequently dried onto silica and purified by silica gel chromatography (50% EtOAc:Hexanes to 100% EtOAc gradient) to afford (S)-I- (te/-t-butoxycarbonyl)pyrrolidin-3-yl methanesulfonate (0.97 g, brown oil, 70% yield).

Step 2

[0206] (R)-tert-butyl 3-(4-amino-3-(4-aminophenyl)-lH-pyrazolo[3,4-rf]pyrimidin-l- yl)pyrrolidine-l-carboxylate. A solution of 3 -(4-nitrophenyl)-lH-pyrazolo [3,4- d]pyrimidin-4-amine (0.5 g, 1.95 mmol), K2CO3 (1.08 g, 7.8 mmol), and (S)-\-(tert- butoxycarbonyl)pyrrolidin-3-yl methanesulfonate (0.62 g, 2.34 mmol) in DMF (20 mL) was brought to 80 0C under an argon atmosphere. The reaction mixture was left stirring for 2 hours, then cooled and filtered. The filtrate was concentrated in vacuo, but not to dryness. 20 mL of 0.1 sodium citrate was added causing a solid to form, which was collected by filtration to afford (R)-tert-bvΛy\ 3-(4-amino-3-(4-nitrophenyl)-lH-pyrazolo[3,4-<i]pyrimidin- l-yl)pyrrolidine-l-carboxylate (0.38 g, 46% yield). ESI-MS m/z [M+H]+ found 426.5, calculated 426.2.

[0207] The resulting solid (300 mg, 0.70 mmol) was combined with zinc dust (1.4 g, 21 mmol), 30 mL THF, and 0.8 mL HOAc for 12 hours at room temperature under an argon atmosphere. Following, the reaction mixture was filtered through Celite® and concentrated in vacuo to afford (R)-tert-buty\ 3-(4-amino-3-(4-aminophenyl)-lH-pyrazolo[3,4- J]pyrimidin-l-yl)pyrrolidine-l-carboxylate. ESI-MS m/z [M+H]+ found 396.5, calculated 396.5. Step 3

[0208] A solution of (R)-tert-buty\ 3-(4-amino-3-(4-aminophenyl)-lH-pyrazolo[3,4- J]pyrimidin-l-yl)pyrrolidine-l-carboxylate (0.055 g, 0.14 mmol) in CH2Cl2 (10 mL) was cooled in an ice- water bath. To this, 3-(trifluoromethyl)benzoyl chloride (0.021 mL, 0.14 mmol) diluted in CH2Cl2 (5 mL) was added dropwise. The reaction was allowed to warm to room temperature and left stirring for 4 hours, yielding the benzamide derivative. Boc- deprotection was completed through the addition of formic acid (5 mL) and concentrated HCl (0.5 mL) added dropwise directly to the reaction mixture. The reaction mixture was left stirring for 12 hours and then was concentrated in vacuo, resuspended in 50:50 H2O-CH3CN, and purified on a C18 column in CH3CN/H2O/0.1%TFA (1-100% gradient) to afford AD72. ESI-MS m/z [M+H]+ found 468.5, calculated 468.2.

Example 23a. l-(4-(4-amino-l-((R)-pyrrolidin-3-yl)-lH-pyrazolo[3,4-d]pyrimidin-3- yl)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (AD73a) Example 23b. (R)-3-(4-amino-3-(4-aminophenyl)-lH-pyrazolo[3,4-d]pyrimidin-l-yl)-N-

(3-(trifluoromethyl)phenyl)pyrrolidine-l-carboxamide (AD73b) Example 23c. (R)-3-(4-amino-3-(4-(3-(3-(trifluoromethyl)phenyl)ureido)phenyl)-lH- pyrazolo[3,4-d]pyrimidin-l-yl)-N-(3-(trifluoromethyl)phenyl)pyrrolidine-l- carboxamide (AD73c)

[0209] A solution of (R)-tert-hvXy\ 3-(4-amino-3-(4-aminophenyl)-lH-pyrazolo[3,4- J]pyrimidin-l-yl)pyrrolidine-l-carboxylate (0.090 g, 0.23 mmol) in CH2Cl2 (10 mL) was cooled in an ice-water bath. To this, 3-(trifluoromethyl)phenyl isocyanate (0.032 mL, 0.23 mmol) diluted in CH2Cl2 (5 mL) was added dropwise. The reaction was allowed to warm to room temperature and left stirring for 6 hours. After, formic acid (5 mL) and concentrated HCl (0.5 mL) were added dropwise directly to the reaction mixture. Three major species were observed by LC-MS corresponding to AD73a, AD73b, and AD73c. The reaction mixture was left stirring for 12 hours and then was concentrated in vacuo, resuspended in 50:50 H2O-CH3CN, and purified on a C18 column in CH3CN/H2O/0.1%TFA (1-100% gradient) to afford AD73a (ESI-MS m/z [M+H]+ found 483.5, calculated 483.2), AD73b (ESI-MS m/z [M+H]+ found 483.5, calculated 483.2), and AD73c (ESI-MS m/z [M+H]+ found 670.5, calculated 670.2J.

Example 24. (S)-tert-butyl 3-(4-amino-3-(4-(3-(3-(trifluoromethyl)phenyl)ureido) phenyl)-lH-pyrazolo[3,4-d]pyrimidin-l-yl)pyrrolidine-l-carboxylate (AD78)

[0210] A solution of (S)-tert-buty\ 3-(4-amino-3-(4-aminophenyl)-l.H-pyrazolo[3,4-

<i]pyrimidin-l-yl)pyrrolidine-l -carboxylate (0.035 g, 0.09 mmol) in CH2Cl2 (10 mL) was cooled in an ice- water bath. To this, 3-(trifluoromethyl)phenyl isocyanate (0.012 mL, 0.09 mmol) diluted in CH2Cl2 (5 mL) was added dropwise. The reaction was allowed to warm to room temperature and left stirring for 6 hours. The reaction proceeded until completion as judged by TLC and LC-MS, was concentrated in vacuo, resuspended in 50:50 H2O-CH3CN, and purified on a C18 column in CH3CN/H2O/0.1%TFA (1-100% gradient) to afford AD78. ESI-MS m/z [M+H]+ found 583.5, calculated 583.2.

Example 25. (R)-tert-butyl 3-(4-amino-3-(4-(3-(3- (trifluoromethyl)phenyl)ureido)phenyl)-lH-pyrazolo[3,4-d]pyrimidin-l- yl)pyrrolidine- 1 -carboxylate (AD79)

[0211] A solution of (R)-tert-buty\ 3-(4-amino-3-(4-aminophenyl)-lH-pyrazolo[3,4- <i]pyrimidin-l-yl)pyrrolidine-l -carboxylate (0.100 g, 0.25 mmol) in CH2Cl2 (10 mL) was cooled in an ice-water bath. To this, 3-(trifluoromethyl)phenyl isocyanate (0.035 mL, 0.25 mmol) diluted in CH2Cl2 (5 mL) was added dropwise. The reaction was allowed to warm to room temperature and left stirring for 6 hours. The reaction proceeded until completion as judged by TLC and LC-MS, was concentrated in vacuo, resuspended in 50:50 H2O-CH3CN, and purified on a Cl 8 column in CH3CN/H2O/0.1%TFA (1-100% gradient) to afford AD79. ESI-MS m/z [M+H]+ found 583.5, calculated 583.2. Example 26. Cell based assays: Inhibition of Bcr-Abl and T315I Bcr-Abl.

[0212] The ability of AD57 to inhibit Bcr-Abl and T3151 Bcr-Abl was examined in a cell based assay. The Bcr-Abl oncogene was transduced into BaF3 cells, rendering them IL-3-independent.'TL-3" refers to interleukin 3 which in human maps to gene locus 5q31.1, as known in the art. Recombinant IL-3 is available commercially. BaF3 is a hematopoietic cell line that is normally dependent on IL-3 for growth and proliferation. However, through expression of activated Bcr-Abl, the cells become transformed to an IL-3 independent state. In this assay, cell proliferation is directly correlated to the activity of Bcr-Abl. Wild-type Bcr-Abl, T3151 Bcr-Abl, and parental BaF3 cells were treated with AD57 (Cmpd 5) at the indicated concentrations for two days. The parental BaF3 cells, but not the Bcr-Abl transduced cells, were grown in the presence of recombinant IL-3 during the time course of this experiment. After the two day treatment, cell proliferation was quantified using the dye Resazurin, which is converted into a fluorescently detectable form only when metabolized by living cells.

[0213] Figure 7 A-C shows that AD57 (Cmpd 5) equally inhibits the growth of Bcr-Abl and T315I Bcr-Abl cells. According to the crystal structure of AD57 (Cmpd 5) in complex with Src, the ability of AD57 (Cmpd 5) to equally inhibit WT and T315I Bcr-Abl is likely mediated through its unique ability to recognize the DFG-out conformation of the kinase, but in a manner that renders the drug insensitive to mutations at the Thr315 position. Notably, the effects of AD57 (Cmpd 5) on WT and T315I Bcr-Abl differ with respect to Imatinib, which effectively inhibits Bcr-Abl, but not the T3151 mutant. This result suggests that AD57 (Cmpd 5) will be effective in inhibiting the growth of cancer cells that are dependent of Bcr- Abl, and will not be rendered ineffective by the emergence of drug-resistant clones, including the highly prevalent T3151 Bcr-Abl mutant. Cancers that have been treated by Imatinib include CML, gastrointestinal stromal tumors, hypereoinophilic syndrome, and Ph-positive acute lymphoblastic leukemia. Resistance to Imatinib in these cancers has been linked to mutations at the position that is analogous T315I, including T670I in c-Kit (SEQ ID NO:3) and T674I in PDGFR (SEQ ID NO: 10). Since AD57 (Cmpd 5) inhibits T315I Bcr-Abl, it is plausible that the inhibitor will be effective against Bcr-Abl, c-Kit, PDGFR, and their Imatinib-resistant forms in these cancers.

[0214] It is possible to inhibit the growth of BaF3 cells transduced with Bcr-Abl through non-specific inhibition mediated toxicity. Therefore, the effects of the inhibitors on the growth of parental BaF3 cells have also been measured. AD57 (Cmpd 5) preferentially inhibits Bcr-Abl transformed BaF3 cells, but not parental BaF3 cells (especially comparing the growth of cells at 1 mM inhibitor). This suggests that the primary target of AD57 (Cmpd 5) in the BaF3-Bcr-Abl cells is indeed Bcr-Abl. This result also suggests that the effects of AD57 (Cmpd 5) on Bcr-Abl transduced BaF3 cells is not mediated through a generally toxic mechanism.

Example 27. Developing a DFG-out binder for c-Src.

[0215] An approach pioneered by Liu, Gray, and co-workers was applied, whereby type II (DFG-out) kinase inhibitors can be created by fusing a so-called hinge binding element of a type-I kinase inhibitor to an element capable of binding in the pocket created by the characteristic DFG movement in type II inhibitor bound structures (Liu and Gray, 2006, Id.; Okram et al, 2006, Id..) The hinge-binding element from the well-characterized pyrazolopyrimidine PPl was chosen for that purpose, because it has been examined at both the structural and functional level and was first identified as a selective c-Src family tyrosine kinase inhibitor (Hanke et al, 1996, J Biol Chem 271:695-701; Liu et al, 1999, Chem Biol 6:671-678; Schindler et al, 1999, MoI Cell 3:639-648). In order to select the DFG-out binding element for the design, the co-crystal structures of AbI, Raf and p38 were examined in complex with Imatinib, BAY43-9006, and BIRB796, respectively; three chemically distinct type II inhibitors with three different kinase targets (Pargellis et al, 2002, Id.; Schindler et al, 2000, Id. ; Wan et al, 2004, Id.). Each inhibitor follows nearly the identical path within the active site pocket, despite their chemical uniqueness (Figure 5). A key feature of the observed binding modes is the interaction with a portion of the activation segment termed the DFG motif and a highly conserved glutamic acid residue within helix αC, which are mediated through the amide/urea linker and hydrophobic portions of the inhibitors. Movement of the Asp residue out and the Phe residue in (hence 'DFG-out') by a flip of approximately 180 degrees relative to their position in the active state creates the cavity that is filled by these inhibitors. The extended portions of each inhibitor are remarkably similar, and their interactions with the kinase are mediated through highly conserved residues within the ATP pocket, suggesting that the general inhibitor features could be applied to other kinases.

[0216] It was hypothesized that derivatization on the phenyl ring in PPl with a m-trifluoromethyl phenylurea group would create an inhibitor that could engage the DFG-out pocket. The pyrazolopyrimidine core of PPl occupies the portion of the active site within which the adenosine ring of ATP normally sits, forming key hydrogen bonds with the backbone of the kinase hinge region (Figure IB). A panel of molecules were synthesized searching for an inhibitor with tight (nM) binding affinity for c-Src.

[0217] The modelling suggested that addition of a methylene group between the pyrazolopyrimidine core and the phenyl ring would provide flexibility in guiding the m- trifluoromethyl phenyl urea substitution into the DFG pocket. Therefore, compounds 1-4 were synthesized, in which the phenyl group of PPl has been replaced with a benzyl functionality and the Nl position of the pyrazole ring has been varied with different alkyl groups (Figure 2 middle). Cmpd 5 was created to provide a direct link between the pyrazolopyrimidine core and the derivatized phenyl (Figure 2 bottom). Each molecule was prepared based on previously established routes for generating pyrazolopyrimidines (Bishop et al, 1999, Id.; Bishop et al., 1998, Id.; Blethrow et al, 2004, Id.) with the exception that the urea linker was appended through inclusion of a nitro group in the starting material, which in the final synthetic steps was reduced and coupled to m-trifluoromethyl phenyl isocyanate to generate the type II analogues.

Example 28. Inhibition of Src and AbI in vitro.

[0218] To ascertain the potency of the designed compounds, their ability to inhibit kinase domain fragments of c-Src and AbI that were expressed and purified identically from bacteria in their unphosphorylated forms was examined. The half maximal inhibitory concentrations (IC5o) was measured utilizing an in vitro assay in which the kinase catalyses phosphorylation of a synthetic peptide substrate in the presence of 100 mM ATP and varying amounts of inhibitor (Figure 2). From this analysis, the IC50 values for Imatinib were 24,370 and 11 nM for c-Src and AbI, respectively. These values are in close agreement to published values and highlight the inherent selectivity of Imatinib for AbI with respect to c-Src (Seeliger et al, 2007, Id.).

[0219] Cmpd 1 was found to inhibit c-Src with an IC50 of approximately 6.2 μM, whereas a control compound in which the urea linker was placed at the para position of the benzyl ring lacked any detectable inhibitory activity (data not shown). In measuring the IC50 values for 1-4, an interesting correlation between the size of the alkyl group substitutions and selectivity for c-Src and AbI was observed (Figure 2). The methyl derivative 1 was the weakest inhibitor against both c-Src and AbI, followed by the isopropyl 2 and t-butyl 3 compounds which gained moderate potency, with the optimal derivative appearing to be the cyclopentyl substitution 4, with an IC50 of 480 nM for c-Src (Figure 2). Curiously, while most compounds in this set equally inhibited both c-Src and AbI, the cyclopentyl derivative showed a reproducible selectivity towards c-Src over AbI of approximately 5 fold. Although small, this modest degree of selectivity appeared significant in comparison to the yet smaller IC5O value differences between c-Src and AbI for compounds 1, 2, and 4. Cmpd 5 was the most potent inhibitor that we identified, with IC50 values of 25 and 41 nM for c-Src and AbI, respectively (Figure2). Interestingly, the potency of 5 approaches that of Imatinib for AbI, but without any significant discrimination against c-Src. In this test of compounds two interesting features were identified: Cmpd 3 with unexpected selectivity for c-Src, and Cmpd 5 with extremely high potency for both c-Src and AbI. In order to investigate whether the designed mode of binding was achieved co-crystal structures of c-Src bound to inhibitors 3 and 5 were determined.

Example 29. Binding Mode Revealed by Co-crystallography.

[0220] Purified c-Src kinase domain in complex with 3 and 5 yielded crystals that diffracted to 2.8 and 2.3 Angstrom, respectively. Both structures were determined by molecular replacement, finding a single copy of c-Src within the asymmetric unit of the P2i crystal form for the c-Src-3 complex and two copies of c-Src in the Pl crystal form of the c- Src-5 complex. Interestingly, only one kinase molecule within the c-Src-5 complex appeared to contain inhibitor. This feature was observed previously in the co-crystal structure of c-Src with Imatinib, where only one kinase within the asymmetric unit was found to be in a drug complex despite molar equivalents of the protein and inhibitor at a concentration well above their binding constant (Seeliger et al., 2007, Id.). The structures of c-Src in complex with 3 and 5 are shown in Figure 3, with corresponding magnification of the active site.

[0221] As shown, the pyrazolopyrimidine core for both inhibitors lie deep within the adenosine pocket that is lined by the hinge region of the kinase. In comparison to PP 1 , the plane of the pyrazolopyrimidine rings of both 3 and 5 deviate slightly with respect to each other. As a result of the altered geometry, both 3 and 5 only form a single hydrogen bond to the main chain carbonyl of Glu339. Cmpd 3 is shifted away from the side chain hydroxyl of the Thr338 gatekeeper, and as a result does not form the hydrogen bond seen in PPl or in 5 with this residue. Both the benzyl group of 3 and the phenyl group in 5 lie juxtaposed to the gatekeeper; both of which are twisted out of plane relative to the pyrazolopyrimidine ring. In both 3 and 5, the urea extension forms the designed hydrogen bond with the side chain of Glu310 within helix aC, while the m-trifluoromethyl phenyl portion of both compounds lie within a pocket lined by residues Leu317, Leu322, Val402, Met314, His384. As a result of occupying this space, Asp404 and Phe405 are flipped near 180 degrees relative to their active state positions. In the c-Src-5 complex, the side chain carbonyl of Asp404 forms a hydrogen bond to the main chain amide of Gly406 (Figure 3B). The precise configuration has not been observed in crystal structures of DFG-out kinases, but has been hypothesized to occur during the DFG flip as revealed in molecular dynamic simulations (Levinson et al, 2006, Id.). Interestingly, the configuration of the aspartic acid side chain through to the glycine amide is strikingly similar to the structure of a beta bend (Fersht, 1999, Structure and Mechanism in Protein Science: a guide to enzyme catalysis and protein folding, New York: W.H. Freeman and Co.) In a classic beta bend, a nine atom turn along the main chain separates a carbonyl acceptor from an amide donor, and often contains a -CH2- glycine between the donor- acceptor pairs. Here the side chain of Asp404 appears to supply both the carbonyl acceptor and intervening -CH2- group. In both structures of c-Src described here, the configuration of the DFG triad and the position of Glu310 of helix aC adopt conformations that deviate from what was previously observed in either apo c-Src or the PPl -bound form of the closely related enzyme HCK (Schindler et ai, 1999, Id.; Xu et al., 1997, Nature 385:595-602). Rather 3 and 5 recognize the DFG-out configuration of c-Src that is similarly engaged by Imatinib. [0222] In their hybrid design approach, the set of type II inhibitors that were successfully developed for AbI by Liu, Gray, and co-workers started from four different type I scaffolds (Okram et al., 2006, Id.). It is noteworthy to mention that each of the designed inhibitors was tested against a panel of protein kinases including c-Src. Interestingly, each type II variant exhibited decreased affinity for c-Src relative to the starting scaffolds, whereas they gained potency and selectivity for AbI. While these experiments suggested that a hybrid design approach is feasible, it also hinted at the restricted effectiveness of new type II inhibitors towards certain kinases. [0223] One of the more significant differences between the c-Src complexes and the AbI- Imatinib structure is in the path of the P-loop (Figure 4A); the region defined by the "GXGXXG motif of kinases within the bl-b2 linker and that forms the top shelf of the ATP pocket. Notably, in the Abl-Imatinib complex, the P-loop tightly encloses the drug binding site in large part through residue Tyr253, which folds back onto the lip of the pyrimidine core. In the c-Src-Imatinib complex, the region occupied by Tyr253 of AbI is left unoccupied, whereas in the c-Src-3 complex, the cyclopentyl group of the inhibitor itself fills this space. Since the overall binding conformation of compounds 1-4 are less sensitive to the influence of substitutions at the R-I position on the pyrazole ring this series of inhibitors could be a reliable measure of engaging the Tyr253 pocket through varying steric bulk of the inhibitor. Indeed, the structure and activity of compounds 1-4 could be explained based on the potential role of the Tyr253 region as an affinity pocket, since there is a distinct structure activity relationship when this substituent is varied.

[0224] Interestingly, one other distinguishing feature between the 3-, 5-, and Imatinib complexes with c-Src is in the approach of these inhibitors towards the gatekeeper pocket (Figure 4B). Notably, the benzyl group of 3 and the phenyl ring of 5 are rotated away from Thr338 relative to o-m ethyl -phenylamino portion of Imatinib in a rank order that reflects the relative affinity of the drugs for c-Src. This extra distance from the gatekeeper Thr suggests compounds 1-5 may bind to mutant kinases such as the clinically relevant Imatinib resistant AbI Thr315Ile kinase (Shah et al, 2002, Cancer Cell 2:117-125). It can be concluded that the relative energy differences between favoured and disfavoured conformational states of particular kinases can be overcome by small molecules.

WHAT IS CLAIMED IS:

1. A compound having the formula:

wherein x is an integer from 0 to 4; y is an integer from 0 to 5; ring A is arylene or heteroarylene; ring B is aryl or heteroaryl;

Z1 is -N= or -C(R22)=;

Z2 is -N= or -C(R23)=;

R1 and R2 are independently hydrogen, substituted or unsubstituted alkyl, or substituted or unsubstituted heteroalkyl;

R3, R4, R5, R22 and R23 are independently -CN, -CF3, -S(O)nR6, -N(O)1n, -NR7R8, -C(O)R9, -NR10-C(O)Rπ, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, halomethyl, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; n is an integer from O to 2; m is an integer from 1 to 2;

R6, R7, R8, R9, R10, R1 1, R12, R13, R14, R15, R16, R17, R18, R18', R19, and R20 are independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

L1 is a bond, substituted or unsubstituted alkylene or substituted or unsubstituted heteroalkylene;

V is -S(O)-, -S(O)2-, or -C(O) -; LL33 iiss aa bboonndd,, --NN((RR:20)-, substituted or unsubstituted alkylene, or substituted or unsubstituted heteroalkylene; and L4 is a bond, -NH- or -CH2-.

2. The compound of claim 1 having the formula:

wherein x is an integer from 0 to 4; y is an integer from 0 to 5; ring A is arylene or heteroarylene; ring B is aryl or heteroaryl;

R1 and R2 are independently hydrogen, substituted or unsubstituted alkyl, or substituted or unsubstituted heteroalkyl;

R3, R4 and R5 are independently -CN, -CF3, -S(O)nR6, -N(O)m, -NR7R8, -C(O)R9, -NR10-C(O)Rπ, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, halomethyl, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl, wherein n is an integer from O to 2, and m is an integer from 1 to 2;

L1 is a bond, substituted or unsubstituted alkylene or substituted or unsubstituted heteroalkyl ene;

L2 is -S(O)-, -S(O)2- or -C(O)-,

L 3 i •s a bond, -N(R , 20 )-, substituted or unsubstituted alkylene, or substituted or unsubstituted heteroalkylene; and

R6, R7, R8, R9, R10, R". R12, R13, R14, R15, R16, R17, R18, R18', R19, and R20 are independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.

3. The compound of claim 1 , wherein ring A is arylene, and ring B is aryl.

4. The compound of claim 1, wherein ring A is phenylene, and ring B is phenyl.

5. The compound of claim 1, wherein L2 is a bond or -C(O)-L3-.

6. The compound of claim 5, wherein L3 is -N(R2 )-.

7. The compound of claim 5, wherein L3 is -NH-.

8. The compound of claim 1, wherein L1 is substituted or unsubstituted Ci-CiQ alkylene or substituted or unsubstituted 2 to 10 membered heteroalkylene.

9. The compound of claim 1, wherein L1 is substituted or unsubstituted Ci-C3 alkylene or substituted or unsubstituted 2 to 4 membered heteroalkylene.

10. The compound of claim 1, wherein L1 is unsubstituted Ci-C3 alkylene or unsubstituted 2 to 4 membered heteroalkylene.

11. The compound of claim 1, wherein L1 is unsubstituted Cj-Cio alkylene or unsubstituted 2 to 10 membered heteroalkylene.

12. The compound of claim 1, wherein L1 is methylene.

13. The compound of claim 1 , wherein at least one of R1 or R2 is hydrogen.

14. The compound of claim 1, wherein R1 and R2 are hydrogen.

15. The compound of claim 1 , wherein R3 is substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.

16. The compound of claim 1, wherein R3 is substituted or unsubstituted alkyl or substituted or unsubstituted heterocycloalkyl.

17. The compound of claim 1 , wherein R3 is substituted or unsubstituted Cj-Cio alkyl or substituted or unsubstituted 3 to 6 membered heterocycloalkyl.

18. The compound of claim 1 , wherein R3 is substituted or unsubstituted Ci-C3 alkyl.

19. The compound of claim 1, wherein R3 is methyl, ethyl or isopropyl.

20. The compound of claim 1, wherein R3 is an unsubstituted 3 to 6 membered heterocycloalkyl.

21. The compound of claim 1 , wherein R3 is cyclopentyl.

22. The compound of claim 1 , wherein x is 0 and y is 1.

23. The compound of claim 1, wherein R5 is -CX3 wherein X is independently a halogen.

24. The compound of claim 1, wherein R5 is -CF3.

25. The compound of claim 1 having the formula:

26. The compound of claim 25, wherein R! and R2 are hydrogen; L1 is a bond or methylene; L3 is -N(R20)-; and y is 1.

27. A compound having the formula

wherein w is an integer from 0 to 4; z is an integer from 0 to 5; ring C is cycloalkylene, heterocycloalkylene, arylene, or heteroarylene; ring D is aryl or heteroaryl;

Z1 is -N= or -C(R22)=;

Z2 is -N= or -C(R23)=;

R1 and R2 are independently hydrogen, substituted or unsubstituted alkyl, or substituted or unsubstituted heteroalkyl;

R6, R7, R8, R9, R10, R", R12, R13, R14, R15, R16, R17, R18, R18', R19, and R20 are independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

R21 is -CN, -CF3, -S(O)nR6, -N(O)111, -NR7R8, -C(O)R9, -N=NH,

-NR10-C(O)Rn, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; n is an integer from O to 2; m is an integer from 1 to 2;

R22 and R23 are independently -CN, -CF3, -S(O)nR6, -N(O)n,, -NR7R8,

-C(O)R9, -NR10-C(O)Rπ, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, halomethyl, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

R68 and R69 are independently halogen, -CN, -CF3, -S(O)nR6, -N(O)1n, -NR7R8,

-C(O)R 9y, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

L5 is a bond, substituted or unsubstituted alkylene, or substituted or unsubstituted heteroalkylene;

L6 is -S(O)-, -S(O)2-, or -C(O)-;

L7 is a bond, -N(R2 )-, substituted or unsubstituted alkylene, or substituted or unsubstituted heteroalkylene; and

L8 is a bond, -C(O)-, -NH-, or -CH2-.

28. A compound having the formula

wherein w is an integer from O to 4; x is an integer from O to 4; y is an integer from O to 5; z is an integer from O to 5; ring A is arylene or heteroarylene; ring B and ring D are independently aryl or heteroaryl; ring C is cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;

Z1 is -N= or -C(R22)=;

Z2 is -N= or -C(R23)=; R1 and R2 are independently hydrogen, substituted or unsubstituted alkyl, or substituted or unsubstituted heteroalkyl; R3, R4, R5, R22, and R23 are independently -CN, -CF3, -S(O)nR6, -N(O)n,, -NR7R8, -C(O)R9, -NR10-C(O)R' ', -NRI2-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, halomethyl, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; n is an integer from O to 2; m is an integer from 1 to 2; R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R18', R19, and R20 are independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; R68 and R69 are independently halogen, -CN, -CF3, -S(O)nR6, -N(O)1n, -NR7R8, -C(O)R9, -N=NH, -NR10-C(O)Rπ, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; L1 and L5 are independently a bond, substituted or unsubstituted alkyl ene or substituted or unsubstituted heteroalkylene; L2 and L6 are independently -S(O)-, -S(O)2-, or -C(O)-; L3 and L7 are independently a bond, -N(R20)-, substituted or unsubstituted alkyl ene, or substituted or unsubstituted heteroalkylene; L4 is a bond, -NH- or -CH2-; and L8 is a bond, -C(O)-, -NH-, or -CH2-.

29. A compound having the formula

30. A method of treating liver cancer, colon cancer, breast cancer, melanoma, acute myelogenous leukemia, chronic myelogenous leukemia, non-small-cell lun£ cancer, a gastrointestinal stromal tumor, Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL), renal cell carcinoma, hepatocellular carcinoma, hypereosinophilic syndrome, or dermatofibrosarcoma protuberans in a subject in need thereof, said method comprising administering to the subject an effective amount of the compound of claim 1.

31. A method of reducing the activity of a Src tyrosine kinase, said method comprising contacting said Src tyrosine kinase with an effective amount of a compound having the formula:

wherein x is an integer from 0 to 4; y is an integer from 0 to 5; ring A is arylene or heteroarylene; ring B is aryl or heteroaryl;

Z1 is -N= or -C(R22)=;

Z2 is -N= or -C(R23)=;

R1 and R2 are independently hydrogen, substituted or unsubstituted alkyl, or substituted or unsubstituted heteroalkyl;

R3, R4, R5, R22, and R23 are independently -CN, -CF3, -S(O)nR6, -N(O)111, -NR7R8, -C(O)R9, -NR10-C(O)Rn, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, halomethyl, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; n is an integer from O to 2; m is an integer from 1 to 2;

R6, R7, R8, R9, R10, R", R12, R13, R14, R15, R16, R17, R18, R18', R19, and R20 are independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

L1 is a bond, substituted or unsubstituted alkylene or substituted or unsubstituted heteroalkylene;

L2 is -S(O) -, -S(O)2-, or -C(O) -, L is a bond, -N(R )-, substituted or unsubstituted alkylene, or substituted or unsubstituted heteroalkylene; and L4 is a bond, -NH-, or -CH2-.

32. The method of claim 31 , further comprising contacting a AbI tyrosine kinase with said compound thereby reducing the activity of said AbI tyrosine kinase.

33. The method of claim 32, wherein said AbI kinase is a Bcr- AbI kinase or a T3151 Bcr- AbI kinase.

34. A method of reducing the activity of an AbI tyrosine kinase, said method comprising contacting said AbI tyrosine kinase with an effective amount of a compound of claim 1.

35. The method of claim 34, wherein said AbI kinase is a Bcr- AbI kinase or a T3151 Bcr- AbI kinase.

36. The method of claim 34, further comprising contacting a Src tyrosine kinase with said compound thereby reducing the activity of said Src tyrosine kinase.

37. A method of reducing the activity of a T3151 Bcr- AbI kinase, said method comprising contacting said T315I Bcr- AbI Kinase with an effective amount of a compound having the formula:

wherein,

Z1 is -N= or -C(R22)=;

Z2 is -N= or -C(R23)=;

R1 and R2 are independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl; RR33,, RR2211,, RR2222 aanndd RR2233 aarree ii]ndependently -CN, -CF3, -S(O)nR6, -N(O)m, -NR7R8, -C(O)R9, -NR!0-C(O)Rn, -NR1^C(O)-OR1 J, -C(O)NR14R'3, -NR10S(O)2R", -S(O)2NR18R -OR19, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl, wherein n is an integer from 0 to 2, and m is an integer from 1 to 2; and R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R18', R19, and R20 are independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.

38. The method of claim 37, further comprising contacting a Src tyrosine kinase with said compound thereby reducing the activity of said Src tyrosine kinase.

39. The method of claim 37, wherein said compound has the formula:

wherein x is an integer from 0 to 4; y is an integer from 0 to 5; ring A is arylene or heteroarylene; ring B is aryl or heteroaryl;

R and R are independently hydrogen, substituted or unsubstituted alkyl, or substituted or unsubstituted heteroalkyl;

R3, R4, and R5 are independently -CN, -CF35-S(O)nR6, -N(O)n,, -NR7R8, -C(O)R9, -NR10-C(O)Rπ, -NRI2-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl, wherein n is an integer from O to 2, and m is an integer from 1 to 2;

L1 is a bond, substituted or unsubstituted alkylene or substituted or unsubstituted heteroalkylene; L2 is -S(O)-, -S(O)2-, or -C(O) -;

L is a bond, -N(R )-, substituted or unsubstituted alkylene, or substituted or unsubstituted heteroalkylene;

L4 is a bond, -NH-, or -CH2-; and

R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R18', R19, and R20 are independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.

40. A method of treating a disease mediated by a T3151 Bcr-Abl kinase in a subject in need thereof, said method comprising administering to said subject an effective amount of a compound having the formula:

wherein,

Z1 is -N= or -C(R22)=;

Z2 is -N= or -C(R23)=;

R1 and R2 are independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl;

R3, R21, R22, and R23 are independently -CN, -CF3, -S(O)nR6, -N(O)1n, -NR7R8, -C(O)R9, -NR10-C(O)Rπ, -NR12-C(O)-OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl, wherein n is an integer from O to 2, and m is an integer from 1 to 2; and

R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R18', R19, and R20 are independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.

41. The method of claim 40, wherein said compound has the formula:

wherein x is an integer from 0 to 4; y is an integer from 0 to 5; ring A is arylene or heteroarylene; ring B is aryl or heteroaryl;

R1 and R2 are independently hydrogen, substituted or unsubstituted alkyl, or substituted or unsubstituted heteroalkyl;

R3, R4, and R5 are independently -CN, -CF3, -S(O)nR6, -N(O)1n, -NR7R8, -C(O)R9, -NR10-C(O)R1 !, -NRI 2-C(O) -OR13, -C(O)NR14R15, -NR16S(O)2R17, -S(O)2NR18R18', -OR19, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl, wherein n is an integer from O to 2, and m is an integer from 1 to 2;

L1 is a bond, substituted or unsubstituted alkylene or substituted or unsubstituted heteroalkylene;

L2 is -S(O) -, -S(O)2-, or -C(O) -,

L3 is a bond, -N(R20)-, substituted or unsubstituted alkylene, or substituted or unsubstituted heteroalkylene;

L4 is a bond, -NH-, or -CH2-; and

R6, R7, R8, R9, R10, R1 1, R'2, R13, R14, R15, R16, R17, R18, R18', R19, and R20 are independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.

42. The method of claim 40, wherein said disease is hypereosinophilic syndrome, dermato fibrosarcoma protuberans, chronic myelogenous leukemia, or a gastrointestinal stromal tumor.


Feedback