Mechanical Gastric Band With Cushions

  *US08317677B2*
  US008317677B2                                 
(12)United States Patent(10)Patent No.: US 8,317,677 B2
 Bertolote et al. (45) Date of Patent:Nov.  27, 2012

(54)Mechanical gastric band with cushions 
    
(75)Inventors: Tiago Bertolote,  Geneva (CH); 
  Pierre Fridez,  Froideville (CH) 
(73)Assignee:Allergan, Inc.,  Irvine, CA (US), Type: US Company 
(*)Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 542 days. 
(21)Appl. No.: 12/574,640 
(22)Filed: Oct.  6, 2009 
(65)Prior Publication Data 
 US 2010/0087843 A1 Apr.  8, 2010 
 Related U.S. Patent Documents 
(60)Provisional application No. 61/103,153, filed on Oct.  6, 2008.
 
(51)Int. Cl. A61F 002/00 (20060101); A61F 013/00 (20060101); A61B 017/08 (20060101)
(52)U.S. Cl. 600/37; 606/157
(58)Field of Search  600/37; 606/157

 
(56)References Cited
 
 U.S. PATENT DOCUMENTS
 1,174,814  A  3/1916    Brennan et al.     
 1,830,947  A  11/1931    Klingel     
 1,999,683  A  4/1935    Borresen     
 2,163,048  A  6/1939    McKee     
 2,339,138  A  1/1944    Black     
 2,405,667  A  8/1946    Ottesen     
 2,438,231  A  3/1948    Schultz et al.     
 2,635,907  A  4/1953    Heimbuch     
 2,714,469  A  8/1955    Carlson     
 2,936,980  A  5/1960    Rapata     
 3,059,645  A  10/1962    Hasbrouck et al.     
 3,189,961  A  6/1965    Heller     
 3,667,081  A  6/1972    Burger     
 3,840,018  A  10/1974    Heifetz     
 3,955,834  A  5/1976    Ahlrot     
 4,053,176  A  10/1977    Hilbush     
 4,118,805  A  10/1978    Reimels     
 4,133,315  A  1/1979    Berman et al.     
 4,157,713  A  6/1979    Clarey     
 4,176,412  A  12/1979    Peterson     
 4,236,521  A  12/1980    Lauterjung     
 4,271,827  A  6/1981    Angelchik     
 4,299,012  A  11/1981    Oetiker     
 4,340,083  A  7/1982    Cummins     
 4,399,809  A  8/1983    Baro et al.     
 4,408,597  A  10/1983    Tenney, Jr.     
 4,417,567  A  11/1983    Trick     
 4,424,208  A  1/1984    Wallace et al.     
 4,442,153  A  4/1984    Meltsch     
 4,450,375  A  5/1984    Siegal     
 4,485,805  A  12/1984    Foster, Jr.     
 4,492,004  A  1/1985    Oetiker     
 4,551,862  A  11/1985    Haber     
 4,558,699  A  12/1985    Bashour     
 4,559,699  A  12/1985    Owen et al.     
 4,582,640  A  4/1986    Smestad et al.     
 4,582,865  A  4/1986    Balazs et al.     
 4,592,339  A  6/1986    Kuzmak et al.     
 4,592,355  A  6/1986    Antebi     
 4,601,713  A  7/1986    Fuqua     
 4,671,351  A  6/1987    Rappe     
 4,693,695  A  9/1987    Cheng     
 4,694,827  A  9/1987    Weiner et al.     
 4,696,288  A  9/1987    Kuzmak et al.     
 4,708,140  A  11/1987    Baron     
 4,716,154  A  12/1987    Malson et al.     
 4,753,086  A  6/1988    Schmidt     
 4,760,837  A  8/1988    Petit     
 4,803,075  A  2/1989    Wallace et al.     
 4,881,939  A  11/1989    Newman     
 4,883,467  A  11/1989    Franetzki et al.     
 4,886,787  A  12/1989    De Belder et al.     
 4,896,787  A  1/1990    Delamour et al.     
 4,915,690  A  4/1990    Cone et al.     
 4,925,446  A  5/1990    Garay et al.     
 4,944,659  A  7/1990    Labbe et al.     
 4,958,791  A  9/1990    Nakamura     
 4,969,899  A  11/1990    Cox, Jr.     
 4,994,019  A  2/1991    Fernandez et al.     
 5,045,060  A  9/1991    Melsky et al.     
 5,074,868  A  12/1991    Kuzmak     
 5,084,061  A  1/1992    Gau et al.     
 5,089,019  A  2/1992    Grandjean     
 5,091,171  A  2/1992    Yu et al.     
 5,120,313  A  6/1992    Elftman     
 5,143,724  A  9/1992    Leshchiner et al.     
 5,152,770  A  10/1992    Bengmark et al.     
 5,160,338  A  11/1992    Vincent     
 5,188,609  A  2/1993    Bayless et al.     
 5,224,494  A  7/1993    Enhorning     
 5,226,429  A  7/1993    Kuzmak     
 5,246,456  A  9/1993    Wilkinson     
 5,246,698  A  9/1993    Leshchiner et al.     
 5,259,399  A  11/1993    Brown     
 5,326,349  A  7/1994    Baraff     
 5,343,894  A  9/1994    Frisch et al.     
 5,356,883  A  10/1994    Kuo et al.     
 5,360,445  A  11/1994    Goldowsky     
 5,391,156  A  2/1995    Hildwein et al.     
 5,399,351  A  3/1995    Leshchiner et al.     
 5,449,363  A  9/1995    Brust et al.     
 5,449,368  A  9/1995    Kuzmak     
 5,458,568  A  10/1995    Racchini et al.     
 5,496,312  A  3/1996    Klicek     
 5,509,888  A  4/1996    Miller     
 5,531,716  A  7/1996    Luzio et al.     
 5,535,752  A  7/1996    Halperin et al.     
 5,554,113  A  9/1996    Novak et al.     
 5,562,714  A  10/1996    Grevious     
 5,601,604  A  2/1997    Vincent     
 5,607,418  A  3/1997    Arzbaecher     
 5,633,001  A  5/1997    Agerup     
 5,653,718  A  8/1997    Yoon     
 5,658,298  A  8/1997    Vincent et al.     
 5,676,162  A  10/1997    Larson, Jr. et al.     
 5,695,504  A  12/1997    Gifford, III et al.     
 5,704,893  A  1/1998    Timm     
 5,713,911  A  2/1998    Racenet et al.     
 5,733,257  A  3/1998    Sternby     
 5,748,200  A  5/1998    Funahashi     
 5,759,015  A  6/1998    Van Lintel et al.     
 5,766,232  A  6/1998    Grevious et al.     
 5,769,877  A  6/1998    Barreras, Sr.     
 5,785,295  A  7/1998    Tsai     
 5,817,113  A  10/1998    Gifford, III et al.     
 5,827,529  A  10/1998    Ono et al.     
 5,833,698  A  11/1998    Hinchliffe et al.     
 5,861,014  A  1/1999    Familoni     
 RE36,176  E  3/1999    Kuzmak     
 5,886,042  A  3/1999    Yu et al.     
 5,904,697  A  5/1999    Gifford, III et al.     
 5,910,149  A  6/1999    Kuzmak     
 5,928,195  A  7/1999    Malamud et al.     
 5,938,669  A  8/1999    Klaiber et al.     
 5,944,696  A  8/1999    Bayless et al.     
 5,944,751  A  8/1999    Laub     
 5,993,473  A  11/1999    Chan et al.     
 6,013,679  A  1/2000    Kuo et al.     
 6,024,340  A  2/2000    Lazarus et al.     
 6,024,704  A  2/2000    Meador et al.     
 6,042,345  A  3/2000    Bishop et al.     
 6,048,309  A  4/2000    Flom et al.     
 6,067,991  A  5/2000    Forsell     
 6,074,341  A  6/2000    Anderson et al.     
 6,074,378  A  6/2000    Mouri et al.     
 6,083,249  A  7/2000    Familoni     
 6,090,131  A  7/2000    Daley     
 6,102,678  A  8/2000    Peclat     
 6,102,922  A  8/2000    Jakobsson et al.     
 6,164,933  A  12/2000    Tani et al.     
 6,171,321  B1  1/2001    Gifford, III et al.     
 6,193,734  B1  2/2001    Bolduc et al.     
 6,203,523  B1  3/2001    Haller et al.     
 6,210,345  B1  4/2001    Van Brunt     
 6,210,347  B1  4/2001    Forsell     
 6,221,024  B1  4/2001    Miesel     
 6,224,857  B1  5/2001    Romeo et al.     
 6,306,088  B1  10/2001    Krausman et al.     
 6,327,503  B1  12/2001    Familoni     
 6,371,965  B2  4/2002    Gifford, III et al.     
 6,387,105  B1  5/2002    Gifford, III et al.     
 6,417,750  B1  7/2002    Sohn     
 6,419,696  B1  7/2002    Ortiz et al.     
 6,432,040  B1  8/2002    Meah     
 6,439,539  B1  8/2002    Powell     
 6,443,957  B1  9/2002    Addis     
 6,443,965  B1  9/2002    Gifford, III et al.     
 6,450,173  B1  9/2002    Forsell     
 6,450,946  B1  9/2002    Forsell     
 6,451,034  B1  9/2002    Gifford, III et al.     
 6,453,907  B1  9/2002    Forsell     
 6,454,699  B1  9/2002    Forsell     
 6,454,700  B1  9/2002    Forsell     
 6,454,701  B1  9/2002    Forsell     
 6,454,785  B2  9/2002    De Hoyos Garza     
 6,457,801  B1  10/2002    Fish et al.     
 6,460,543  B1  10/2002    Forsell     
 6,461,293  B1  10/2002    Forsell     
 6,463,935  B1  10/2002    Forsell     
 6,464,628  B1  10/2002    Forsell     
 6,470,892  B1  10/2002    Forsell     
 6,474,584  B2  11/2002    Ekich     
 6,475,136  B1  11/2002    Forsell     
 6,485,496  B1  11/2002    Suyker et al.     
 6,491,704  B2  12/2002    Gifford, III et al.     
 6,491,705  B2  12/2002    Gifford, III et al.     
 6,511,490  B2  1/2003    Robert     
 6,517,556  B1  2/2003    Monassevitch     
 6,527,701  B1  3/2003    Sayet et al.     
 6,547,801  B1  4/2003    Dargent et al.     
 6,565,582  B2  5/2003    Gifford, III et al.     
 6,579,301  B1  6/2003    Bales et al.     
 6,601,604  B1  8/2003    Cooper     
 6,615,084  B1  9/2003    Cigaina     
 6,632,239  B2  10/2003    Snyder et al.     
 6,646,628  B2  11/2003    Shirochi et al.     
 6,676,674  B1  1/2004    Dudai     
 6,681,135  B1  1/2004    Davis et al.     
 6,685,668  B1  2/2004    Cho et al.     
 6,691,047  B1  2/2004    Fredericks     
 6,715,731  B1  4/2004    Post et al.     
 6,729,600  B2  5/2004    Mattes et al.     
 6,754,527  B2  6/2004    Stroebel et al.     
 6,811,136  B2  11/2004    Eberhardt et al.     
 6,820,651  B2  11/2004    Seuret et al.     
 6,834,201  B2  12/2004    Gillies et al.     
 6,871,090  B1  3/2005    He et al.     
 6,889,086  B2  5/2005    Mass et al.     
 6,916,326  B2  7/2005    Benchetrit     
 6,940,467  B2  9/2005    Fischer et al.     
 6,966,875  B1  11/2005    Longobardi     
 7,017,583  B2  3/2006    Forsell     
 7,017,883  B2  3/2006    Bayer et al.     
 7,021,147  B1  4/2006    Subramanian et al.     
 7,037,344  B2  5/2006    Kagan et al.     
 7,040,349  B2  5/2006    Moler et al.     
 7,048,519  B2  5/2006    Fong et al.     
 7,054,690  B2  5/2006    Imran     
 7,058,434  B2  6/2006    Wang et al.     
 7,060,080  B2  6/2006    Bachmann     
 7,066,486  B2  6/2006    Lee     
 7,118,526  B2  10/2006    Egle     
 7,119,062  B1  10/2006    Alvis et al.     
 7,128,750  B1  10/2006    Stergiopulos     
 7,144,400  B2  12/2006    Byrum et al.     
 7,172,607  B2  2/2007    Hofle et al.     
 7,177,693  B2  2/2007    Starkebsum     
 7,191,007  B2  3/2007    Desai et al.     
 7,198,250  B2  4/2007    East     
 7,204,821  B1  4/2007    Clare et al.     
 7,206,637  B2  4/2007    Salo     
 7,223,239  B2  5/2007    Schulze et al.     
 7,238,191  B2  7/2007    Bachmann     
 7,240,607  B2  7/2007    Fish     
 7,255,675  B2  8/2007    Gertner et al.     
 7,263,405  B2  8/2007    Boveja et al.     
 7,282,023  B2  10/2007    Frering     
 7,284,966  B2  10/2007    Xu et al.     
 7,288,064  B2  10/2007    Boustani et al.     
 7,297,103  B2  11/2007    Jarsaillon et al.     
 7,299,082  B2  11/2007    Feldman et al.     
 7,310,557  B2  12/2007    Maschino et al.     
 7,311,503  B2  12/2007    Van Lintel et al.     
 7,311,716  B2  12/2007    Byrun     
 7,311,717  B2  12/2007    Egle     
 7,314,443  B2  1/2008    Jordan et al.     
 7,314,636  B2  1/2008    Caseres et al.     
 7,338,433  B2  3/2008    Coe     
 7,340,306  B2  3/2008    Barrett et al.     
 7,351,198  B2  4/2008    Byrum et al.     
 7,351,240  B2  4/2008    Hassler, Jr. et al.     
 7,353,747  B2  4/2008    Swayze et al.     
 7,364,542  B2  4/2008    Jambor et al.     
 7,366,571  B2  4/2008    Armstrong     
 7,367,340  B2  5/2008    Nelson et al.     
 7,367,937  B2  5/2008    Jambor et al.     
 7,374,565  B2  5/2008    Hassler, Jr. et al.     
 7,390,294  B2  6/2008    Hassler, Jr.     
 7,396,353  B2  7/2008    Lorenzen et al.     
 7,416,528  B2  8/2008    Crawford et al.     
 7,457,668  B2  11/2008    Cancel et al.     
 7,481,763  B2  1/2009    Hassler et al.     
 7,500,944  B2  3/2009    Byrum et al.     
 7,502,649  B2  3/2009    Ben-Haim et al.     
 7,530,943  B2  5/2009    Lechner     
 7,594,885  B2  9/2009    Byrum     
 7,599,743  B2  10/2009    Hassler, Jr. et al.     
 7,599,744  B2  10/2009    Giordano et al.     
 7,601,162  B2  10/2009    Hassler, Jr. et al.     
 7,615,001  B2  11/2009    Jambor et al.     
 7,618,365  B2  11/2009    Jambor et al.     
 7,658,196  B2  2/2010    Ferreri et al.     
 7,670,279  B2  3/2010    Gertner     
 7,699,770  B2  4/2010    Hassler, Jr. et al.     
 7,712,470  B2  5/2010    Gertner     
 7,727,141  B2  6/2010    Hassler, Jr. et al.     
 7,741,476  B2  6/2010    Lebreton     
 7,758,493  B2  7/2010    Gingras     
 7,763,039  B2  7/2010    Ortiz et al.     
 7,766,815  B2  8/2010    Ortiz     
 7,771,439  B2  8/2010    Griffiths     
 7,775,215  B2  8/2010    Hassler, Jr. et al.     
 7,775,966  B2  8/2010    Dlugos et al.     
 7,775,967  B2  8/2010    Gertner     
 7,794,386  B2  9/2010    Brooks     
 7,811,298  B2  10/2010    Birk     
 7,828,813  B2  11/2010    Mouton     
 7,832,407  B2  11/2010    Gertner     
 7,841,978  B2  11/2010    Gertner     
 7,844,342  B2  11/2010    Dlugos et al.     
 7,862,502  B2  1/2011    Pool et al.     
 7,879,068  B2  2/2011    Dlugos et al.     
 7,951,067  B2  5/2011    Byrum et al.     
 2001//0011543  A1  8/2001    Forsell     
 2002//0072780  A1  6/2002    Foley     
 2002//0091395  A1  7/2002    Gabbay     
 2002//0095181  A1  7/2002    Beyar     
 2002//0098097  A1  7/2002    Singh     
 2002//0139208  A1  10/2002    Yatskov     
 2002//0183765  A1  12/2002    Adams     
 2002//0198548  A1  12/2002    Robert     
 2003//0014003  A1  1/2003    Gertner     
 2003//0019498  A1  1/2003    Forsell     
 2003//0045775  A1  3/2003    Forsell     
 2003//0045902  A1  3/2003    Weadock     
 2003//0055311  A1  3/2003    Neukermans et al.     
 2003//0060873  A1  3/2003    Gertner et al.     
 2003//0066536  A1  4/2003    Forsell     
 2003//0073880  A1  4/2003    Polsky et al.     
 2003//0093157  A1  5/2003    Casares et al.     
 2003//0100910  A1  5/2003    Gifford, III et al.     
 2003//0120288  A1  6/2003    Benchetrit     
 2003//0148995  A1  8/2003    Piron et al.     
 2003//0158564  A1  8/2003    Benchetrit     
 2003//0158569  A1  8/2003    Wazne     
 2003//0181890  A1  9/2003    Schulze et al.     
 2003//0181917  A1  9/2003    Gertner     
 2003//0191433  A1  10/2003    Prentiss     
 2003//0208212  A1  11/2003    Cigaina     
 2004//0000843  A1  1/2004    East     
 2004//0044332  A1  3/2004    Stergiopulos     
 2004//0049209  A1  3/2004    Benchetrit     
 2004//0059393  A1  3/2004    Policker et al.     
 2004//0068847  A1  4/2004    Belisle et al.     
 2004//0133219  A1  7/2004    Forsell     
 2004//0147816  A1  7/2004    Policker et al.     
 2004//0148034  A1  7/2004    Kagan et al.     
 2004//0153106  A1  8/2004    Dudai     
 2004//0162595  A1  8/2004    Foley     
 2004//0215159  A1  10/2004    Forsell     
 2004//0230137  A1  11/2004    Mouton     
 2004//0254536  A1  12/2004    Conlon et al.     
 2004//0254537  A1  12/2004    Conlon et al.     
 2004//0260319  A1  12/2004    Egle     
 2004//0267288  A1  12/2004    Byrum et al.     
 2004//0267291  A1  12/2004    Byrum et al.     
 2004//0267292  A1  12/2004    Byrum et al.     
 2004//0267293  A1  12/2004    Byrum et al.     
 2004//0267377  A1  12/2004    Egle     
 2005//0002984  A1  1/2005    Byrum et al.     
 2005//0038484  A1  2/2005    Knudson et al.     
 2005//0038498  A1  2/2005    Dubrow et al.     
 2005//0055039  A1  3/2005    Burnett et al.     
 2005//0070934  A1  3/2005    Tanaka et al.     
 2005//0070937  A1  3/2005    Jambor et al.     
 2005//0100779  A1  5/2005    Gertner     
 2005//0104457  A1  5/2005    Jordan et al.     
 2005//0119672  A1  6/2005    Benchetrit     
 2005//0119674  A1  6/2005    Gingras     
 2005//0131383  A1  6/2005    Chen et al.     
 2005//0131485  A1  6/2005    Knudson et al.     
 2005//0136122  A1  6/2005    Sadozai et al.     
 2005//0142152  A1  6/2005    Leshchiner et al.     
 2005//0143765  A1  6/2005    Bachmann et al.     
 2005//0143766  A1  6/2005    Bachmann et al.     
 2005//0154274  A1  7/2005    Jarsaillon et al.     
 2005//0171568  A1  8/2005    Duffy     
 2005//0183730  A1  8/2005    Byrum     
 2005//0192531  A1  9/2005    Birk     
 2005//0192601  A1  9/2005    Demarais     
 2005//0192629  A1  9/2005    Saadat et al.     
 2005//0216042  A1  9/2005    Gertner     
 2005//0226936  A1  10/2005    Agerup     
 2005//0228415  A1  10/2005    Gertner     
 2005//0228504  A1  10/2005    Demarais     
 2005//0240155  A1  10/2005    Conlon     
 2005//0240156  A1  10/2005    Conlon     
 2005//0240279  A1  10/2005    Kagan et al.     
 2005//0244288  A1  11/2005    O'Neill     
 2005//0250979  A1  11/2005    Coe     
 2005//0251181  A1  11/2005    Bachmann     
 2005//0251182  A1  11/2005    Bachmann     
 2005//0267406  A1  12/2005    Hassler, Jr.     
 2005//0267500  A1  12/2005    Hassler, Jr.     
 2005//0267533  A1  12/2005    Gertner     
 2005//0271729  A1  12/2005    Wang     
 2005//0277899  A1  12/2005    Conlon et al.     
 2005//0283041  A1  12/2005    Egle     
 2005//0288739  A1  12/2005    Hassler, Jr. et al.     
 2005//0288740  A1  12/2005    Hassler, Jr. et al.     
 2006//0015138  A1  1/2006    Gertner     
 2006//0020298  A1  1/2006    Camilleri et al.     
 2006//0041183  A1  2/2006    Massen et al.     
 2006//0074439  A1  4/2006    Garner et al.     
 2006//0074473  A1  4/2006    Gertner     
 2006//0089571  A1  4/2006    Gertner     
 2006//0122147  A1  6/2006    Wohlrab     
 2006//0142700  A1  6/2006    Sobelman et al.     
 2006//0142790  A1  6/2006    Gertner     
 2006//0161186  A1  7/2006    Hassler, Jr. et al.     
 2006//0167531  A1  7/2006    Gertner et al.     
 2006//0173238  A1  8/2006    Starkebaum     
 2006//0173424  A1  8/2006    Conlon     
 2006//0178555  A1  8/2006    Bortolotti     
 2006//0183967  A1  8/2006    Lechner     
 2006//0189887  A1  8/2006    Hassler, Jr. et al.     
 2006//0189888  A1  8/2006    Hassler, Jr. et al.     
 2006//0189889  A1  8/2006    Gertner     
 2006//0194758  A1  8/2006    Lebreton     
 2006//0195139  A1  8/2006    Gertner     
 2006//0197412  A1  9/2006    Rasmussen     
 2006//0199997  A1  9/2006    Hassler, Jr. et al.     
 2006//0211912  A1  9/2006    Dlugos et al.     
 2006//0211913  A1  9/2006    Dlugos et al.     
 2006//0211914  A1  9/2006    Hassler, Jr. et al.     
 2006//0212051  A1  9/2006    Snyder et al.     
 2006//0212053  A1  9/2006    Gertner     
 2006//0235448  A1  10/2006    Roslin et al.     
 2006//0246137  A1  11/2006    Hermitte et al.     
 2006//0247721  A1  11/2006    Maschino et al.     
 2006//0247722  A1  11/2006    Maschino et al.     
 2006//0252982  A1  11/2006    Hassler, Jr. et al.     
 2006//0252983  A1  11/2006    Lembo et al.     
 2006//0257488  A1  11/2006    Hubbard     
 2006//0264699  A1  11/2006    Gertner     
 2006//0276812  A1  12/2006    Hill et al.     
 2006//0293627  A1  12/2006    Byrum et al.     
 2007//0015954  A1  1/2007    Dlugos     
 2007//0015955  A1  1/2007    Tsonton     
 2007//0015956  A1  1/2007    Crawford et al.     
 2007//0016231  A1  1/2007    Jambor et al.     
 2007//0016262  A1  1/2007    Gross et al.     
 2007//0027356  A1  2/2007    Ortiz     
 2007//0027358  A1  2/2007    Gertner et al.     
 2007//0044655  A1  3/2007    Fish     
 2007//0077292  A1  4/2007    Pinsky     
 2007//0078476  A1  4/2007    Hull, Sr. et al.     
 2007//0125826  A1  6/2007    Shelton     
 2007//0156013  A1  7/2007    Birk     
 2007//0167672  A1  7/2007    Dlugos et al.     
 2007//0167982  A1  7/2007    Gertner et al.     
 2007//0173685  A1  7/2007    Jambor et al.     
 2007//0173888  A1  7/2007    Gertner et al.     
 2007//0179335  A1  8/2007    Gertner et al.     
 2007//0185373  A1  8/2007    Tsonton     
 2007//0185462  A1  8/2007    Byrum     
 2007//0213836  A1  9/2007    Paganon     
 2007//0218083  A1  9/2007    Brooks     
 2007//0232848  A1  10/2007    Forsell     
 2007//0232849  A1  10/2007    Gertner     
 2007//0233170  A1  10/2007    Gertner     
 2007//0235083  A1  10/2007    Dlugos     
 2007//0243227  A1  10/2007    Gertner     
 2007//0250085  A1  10/2007    Bachmann et al.     
 2007//0250086  A1  10/2007    Wiley et al.     
 2007//0255335  A1  11/2007    Herbert et al.     
 2007//0255336  A1  11/2007    Herbert et al.     
 2007//0265598  A1  11/2007    Karasik     
 2007//0265645  A1  11/2007    Birk et al.     
 2007//0265646  A1  11/2007    McCoy et al.     
 2007//0298005  A1  12/2007    Thibault     
 2008//0009680  A1  1/2008    Hassler, Jr.     
 2008//0015406  A1  1/2008    Dlugos et al.     
 2008//0015501  A1  1/2008    Gertner     
 2008//0027269  A1  1/2008    Gertner     
 2008//0027469  A1  1/2008    Bachmann     
 2008//0071306  A1  3/2008    Gertner     
 2008//0097496  A1  4/2008    Chang et al.     
 2008//0108862  A1  5/2008    Jordan et al.     
 2008//0147002  A1  6/2008    Gertner     
 2008//0161717  A1  7/2008    Gertner     
 2008//0161875  A1  7/2008    Stone     
 2008//0166028  A1  7/2008    Turek et al.     
 2008//0167647  A1  7/2008    Gertner     
 2008//0167648  A1  7/2008    Gertner     
 2008//0172072  A1  7/2008    Pool et al.     
 2008//0188766  A1  8/2008    Gertner     
 2008//0195092  A1  8/2008    Kim et al.     
 2008//0208240  A1  8/2008    Paz     
 2008//0221598  A1  9/2008    Dlugos et al.     
 2008//0243071  A1  10/2008    Quijano et al.     
 2008//0249806  A1  10/2008    Dlugos et al.     
 2008//0250340  A1  10/2008    Dlugos et al.     
 2008//0250341  A1  10/2008    Dlugos et al.     
 2008//0255403  A1  10/2008    Voegele et al.     
 2008//0255414  A1  10/2008    Voegele et al.     
 2008//0255425  A1  10/2008    Voegele et al.     
 2008//0255459  A1  10/2008    Voegele et al.     
 2008//0255537  A1  10/2008    Voegele et al.     
 2008//0275294  A1  11/2008    Gertner     
 2008//0275295  A1  11/2008    Gertner     
 2008//0275484  A1  11/2008    Gertner     
 2008//0281347  A1  11/2008    Gertner     
 2008//0287969  A1  11/2008    Tsonton et al.     
 2008//0287974  A1  11/2008    Widenhouse et al.     
 2008//0287976  A1  11/2008    Weaner et al.     
 2008//0300618  A1  12/2008    Gertner     
 2008//0319435  A1  12/2008    Rioux et al.     
 2009//0054914  A1  2/2009    Lechner     
 2009//0062825  A1  3/2009    Pool et al.     
 2009//0062826  A1  3/2009    Steffen     
 2009//0082793  A1  3/2009    Birk     
 2009//0118572  A1  5/2009    Lechner     
 2009//0149874  A1  6/2009    Ortiz et al.     
 2009//0157106  A1  6/2009    Marcotte et al.     
 2009//0157107  A1  6/2009    Kierath et al.     
 2009//0157113  A1  6/2009    Marcotte et al.     
 2009//0171375  A1  7/2009    Coe et al.     
 2009//0171378  A1  7/2009    Coe et al.     
 2009//0171379  A1  7/2009    Coe et al.     
 2009//0187202  A1  7/2009    Ortiz et al.     
 2009//0192404  A1  7/2009    Ortiz et al.     
 2009//0192415  A1  7/2009    Ortiz et al.     
 2009//0192533  A1  7/2009    Dlugos, Jr. et al.     
 2009//0192534  A1  7/2009    Ortiz et al.     
 2009//0192541  A1  7/2009    Ortiz et al.     
 2009//0198261  A1  8/2009    Schweikert     
 2009//0202387  A1  8/2009    Dlugos, Jr. et al.     
 2009//0204131  A1  8/2009    Ortiz et al.     
 2009//0204132  A1  8/2009    Ortiz et al.     
 2009//0204141  A1  8/2009    Dlugos, Jr. et al.     
 2009//0204179  A1  8/2009    Dlugos, Jr. et al.     
 2009//0209995  A1  8/2009    Byrum et al.     
 2009//0216255  A1  8/2009    Coe et al.     
 2009//0220176  A1  9/2009    Fusco     
 2009//0222031  A1  9/2009    Axelsson     
 2009//0222065  A1  9/2009    Dlugos, Jr. et al.     
 2009//0228063  A1  9/2009    Dlugos, Jr. et al.     
 2009//0228072  A1  9/2009    Coe et al.     
 2009//0270904  A1  10/2009    Birk et al.     
 2009//0306462  A1  12/2009    Lechner     
 2009//0312785  A1  12/2009    Stone et al.     
 2010//0010291  A1  1/2010    Birk et al.     
 2010//0087843  A1  4/2010    Bertolote et al.     
 2010//0099945  A1  4/2010    Birk et al.     
 2010//0100079  A1  4/2010    Berkcan     
 2010//0145378  A1  6/2010    Gertner     
 2010//0152532  A1  6/2010    Marcotte     
 2010//0168508  A1  7/2010    Gertner     
 2010//0185049  A1  7/2010    Birk et al.     
 2010//0191265  A1  7/2010    Lau et al.     
 2010//0191271  A1  7/2010    Lau et al.     
 2010//0204647  A1  8/2010    Gertner     
 2010//0204723  A1  8/2010    Gertner     
 2010//0226988  A1  9/2010    Lebreton     
 2010//0228080  A1  9/2010    Tavori et al.     
 2010//0234682  A1  9/2010    Gertner     
 2010//0249803  A1  9/2010    Griffiths     
 2010//0280310  A1  11/2010    Raven     
 2010//0305397  A1  12/2010    Birk et al.     
 2010//0312147  A1  12/2010    Gertner     
 2010//0324358  A1  12/2010    Birk et al.     
 2010//0324359  A1  12/2010    Birk     
 2011//0201874  A1  8/2011    Birk et al.     

 
 FOREIGN PATENT DOCUMENTS 
 
       CA       949965                         6/1974      
       CN       1250382                         4/2000      
       CN       1367670                         9/2002      
       DE       4225524                         2/1994      
       DE       10020688                         12/2000      
       EP       0119596                         9/1984      
       EP       0230747                         8/1987      
       EP       0416250                         3/1991      
       EP       0611561                         8/1994      
       EP       0695558                         2/1996      
       EP       0876808                         11/1998      
       EP       1036545                         9/2000      
       EP       1072282                         1/2001      
       EP       1105073                         6/2001      
       EP       1396242                         3/2004      
       EP       1396243                         3/2004      
       EP       1491167                         12/2004      
       EP       1491168                         12/2004      
       EP       1529502                         5/2005      
       EP       1574189                         9/2005      
       EP       1600183                         11/2005      
       EP       1602346                         12/2005      
       EP       1704833                         9/2006      
       EP       1719480                         11/2006      
       EP       1754890                         11/2006      
       EP       1736123                         12/2006      
       EP       1736195                         12/2006      
       EP       1736202                         12/2006      
       EP       1743605                         1/2007      
       EP       1829504                         9/2007      
       EP       1829505                         9/2007      
       EP       1829506                         9/2007      
       EP       1967168                         9/2008      
       EP       1992315                         11/2008      
       EP       2074970                         7/2009      
       EP       2074971                         7/2009      
       EP       1 547 549       B1                8/2009      
       EP       2087862                         8/2009      
       EP       2095796                         9/2009      
       EP       2095798                         9/2009      
       FR       1566202                         5/1969      
       FR       2688693                         9/1993      
       FR       2769491                         4/1999      
       FR       2783153                         3/2000      
       FR       2797181                         2/2001      
       FR       2799118                         4/2001      
       FR       2823663                         10/2002      
       FR       2855744                         12/2004      
       FR       2921822                         4/2009      
       GB       1174814                         12/1969      
       GB       2090747                         7/1982      
       JP       57-171676                         10/1982      
       JP       1-67309                         4/1989      
       JP       2-019147                         1/1990      
       JP       2-132104                         11/1990      
       JP       3-105702                         11/1991      
       JP       11-244395                         9/1999      
       JP       2003-526410                         9/2003      
       JP       2005-131380                         5/2005      
       JP       2005-334658                         12/2005      
       SE       8503144                         12/1986      
       WO       WO 86/00079                         1/1986      
       WO       WO 86/00912                         2/1986      
       WO       WO 89/11701                         11/1989      
       WO       WO 90/00369                         1/1990      
       WO       WO 92/20349                         11/1992      
       WO       WO 94/02517                         2/1994      
       WO       WO 96/33751                         1/1996      
       WO       WO 98/35639                         8/1998      
       WO       WO 98/35640                         8/1998      
       WO       WO 00/00108                         1/2000      
       WO       WO 00/01428                         1/2000      
       WO       WO00/09047       A1                2/2000      
       WO       WO 00/09048                         2/2000      
       WO       WO 00/15158                         3/2000      
       WO       WO 00/66196                         11/2000      
       WO       WO 01/10359                         2/2001      
       WO       WO 01/12078                         2/2001      
       WO       WO 01/41671                         6/2001      
       WO       WO 01/47435                         7/2001      
       WO       WO 01/47575                         7/2001      
       WO       WO 01/49245                         7/2001      
       WO       WO 01/52777                         7/2001      
       WO       WO 01/68007                         9/2001      
       WO       WO 01/70131                         9/2001      
       WO       WO 01/85071                         11/2001      
       WO       WO 02/05753                         1/2002      
       WO       WO 02/09792                         2/2002      
       WO       WO 02/19953                         3/2002      
       WO       WO 02/26317                         4/2002      
       WO       WO 02/053093                         7/2002      
       WO       WO 02/065948                         8/2002      
       WO       WO 02/096326                         12/2002      
       WO       WO 03/007782                         1/2003      
       WO       WO 03/055420                         7/2003      
       WO       WO 03/057092                         7/2003      
       WO       WO 03/059215                         7/2003      
       WO       WO 03/077191                         9/2003      
       WO       WO 03/101352                         12/2003      
       WO       WO 03/105732                         12/2003      
       WO       WO 20/04/014245                         2/2004      
       WO       WO 20/04/019671       A2                3/2004      
       WO       WO 20/04/108025                         12/2004      
       WO       WO 20/04/112563                         12/2004      
       WO       WO 20/05/007232                         1/2005      
       WO       WO 20/05/009305                         2/2005      
       WO       WO 20/05/067994                         5/2005      
       WO       WO 20/05/072195                         8/2005      
       WO       WO 20/05/087147                         9/2005      
       WO       WO 20/05/094447                         10/2005      
       WO       WO 20/05/112888                         12/2005      
       WO       WO 20/06/049725                         5/2006      
       WO       WO 20/06/083885                         8/2006      
       WO       WO 20/06/108203                         10/2006      
       WO       WO 20/07/067206                         6/2007      
       WO       WO 20/07/081304                         7/2007      
       WO       WO 20/07/106727                         9/2007      
       WO       WO 20/07/114905                         10/2007      
       WO       WO 20/07/145638                         12/2007      
       WO       WO 20/08/063673                         5/2008      
       WO       WO 20/08/109300                         9/2008      
       WO       WO 20/08/134755                         11/2008      
       WO       WO 20/09/050709                         4/2009      
       WO       WO 20/09/132127                         10/2009      
       WO       WO 20/09/136126                         11/2009      
       WO       WO 20/10/042493                         4/2010      

 OTHER PUBLICATIONS
  
  “Innovative medical devices and implants”; LGSP medical futures, p. 5.
  Acuna-Goycolea et al.; “Mechanism of Neuropeptide Y, Peptide YY, and Pancreatic Polypeptide Inhibition of Identified Green Fluorescent Protein-Expressing GABA Neurons in the Hypothalamic Neuroendocrine Acruate Nucleus”; The Journal of Neuroscience; V. 25(32); pp. 7406-7419; Aug. 10, 2005.
  Adrian et al.; “Mechanism of Pancreatic Polypeptide Release in Man.” The Lancet; pp. 161-163; Jan. 22, 1977.
  Anson; “Shape Memory Alloys—Medical Applications,” Source: Materials World, vol. 7, No. 12, pp. 745-747, Dec. 1999.
  Asakawa et al; “Antagonism of Ghrelin Receptor Reduces Food Intake and Body Weight Gain in Mice”; Gut.; V.52; pp. 947-952; 2003.
  Baggio et al. “Biology of Incretins: GLP-1 and GIP”; Gastroenrology; V. 132; pp. 2131-2157; 2007.
  Ballantyne; “Peptide YY(1-36) and Peptide YY(3-36): Part I. Distribution, Release, and Actions”; Obesity Surgery; V.16; pp. 651-658; 2006.
  Ballantyne; “Peptide YY(1-36) and Peptide YY(3-36): Part II. Changes after Gastrointestinal Surgery and Bariatric Surgery”; Obesity Surgery; V.16; pp. 795-803; 2006.
  Berne et al; “Physiology”; V. 5; pp. 55-57, 210, 428, 540, 554, 579, 584, 591; 2004.
  BioEnterics Lap-Band Adjustable Gastric Banding System, Inamed Health, pub., pp. 1-115; Aug. 28, 2003.
  Boulant et al.; “Cholecystokinin in Transient Lower Oesophageal Sphincter Relaxation Due to Gastric Distension in Humans”; Gut.; V. 40; pp. 575-581; 1997.
  Bradjewin et al.; “Dose Ranging Study of the Effects of Cholecystokinin in Healthy Volunteers”; J. Psychiatr. Neurosci.; V. 16 (2); pp. 91-95; 1991.
  Burdyga et al.; “Cholecystokinin Regulates Expression of Y2 Receptors in Vagal Afferent Neurons Serving the Stomach”; The Journal of Neuroscience; V. 28; No. 45; pp. 11583-11592; Nov. 5, 2008.
  Chaptini et al.; “Neuroendocrine Regulation of Food Intake”; Current Opinion in Gastroenterology; V. 24; pp. 223-229; 2008.
  Chaudhri; “Can Gut Hormones Control Appetite and Prevent Obesity?” Diabetes Care; V. 31; Supp 2; pp. S284-S289; Feb. 2008.
  Cohen et al.; “Oxyntomodulin Suppresses Appetite and Reduces Food Intake in Humans”; J. Clin. Endocrinol. Metab.; V. 88; No. 10; pp. 4696-4701; 2003.
  Corno et al.; “A new implantable device for telemetric control of pulmonary blood flow”; New ideas; received in revised form Jul. 12, 2002; 10 pages.
  Corno et al.; “FlowWatchTM in clipped and in clipped position”; Interact Cardio Vase Thorac Surg 2002; 1:46-49; Copyright @ 2002 The European Association for Cardio-thoracic Surgery; 1 page.
  Cummings et al.; “Plasma Ghrelin Levels After Diet-Induced Weight Loss or Gastric Bypass Surgery”; N. Engl J. Med; V. 346, No. 21; pp. 1623-1630; May 23, 2002.
  Cummings; “Gastrointestinal Regulation of Foot Intake”; The Food Journal of Clinical Investigation; V. 117, N. 1; pp. 13-23; Jan. 2007.
  Dakin et al.; “Oxyntomodulin Inhibits Food Intake in the Rat”; Endocrinology; V. 142; No. 10; pp. 4244-4250; 2001.
  Dakin et al.; “Peripheral Oxyntomodulin Reduces Food Intake and Body Weight gain in Rats”; Endocrinology; V. 145; No. 6; pp. 2687-2695; Jun. 2004.
  Davison; “Activation of Vagal-Gastric Mechanoreceptors by Cholecystokinin”; Proc. West. Pharmocol. Soc.; V. 29; pp. 363-366; 1986.
  De Waele et al.; “Endoscopic Volume Adjustment of Intragastric Balloons for Intolerance”; Obesity Surgery; V. 11; pp. 223-224; 2001.
  De Waele et al.; “Intragastric Balloons for Preoperative Weight Reduction”; Obesity Surgery; V. 58; pp. 58-60; 2001.
  Desai et al.; “Molecular Weight of Heparin Using 13C Nuclear Magnetic Resonance Spectroscopy” Journal of Pharmaceutical Science, V. 84, I 2; 1995, Abstract only.
  Doldi et al.; “Intragastric Balloon: Another Option for Treatment of Obesity and Morbid Obesity”; Hepato-Gastroenterology; V. 51, N. 55; pp. 294-307; Jan.-Feb. 2004.
  Doldi et al.; “Treatment of Morbid Obesity with Intragastric Balloon in Association with Diet”; Obesity Surgery; V. 10, pp. 583-587; 2000.
  Doldi et al; “Intragastric Balloon in Obese Patients”; Obesity Surgery; V. 10, 578-581; 2000.
  Ekblad et al.; “Distribution of Pancreatic Peptide and Peptide-YY”; Peptides; V. 23; pp. 251-261; 2002.
  El Khoury et al.; “Variation in Postprandial Ghrelin Status Following Ingestion of High-Carbohydrate, High Fat, and High Protein Meals in Males”; Ann Nutr Metab; V. 50; pp. 260-269; 2006.
  Galloro et al; “Preliminary Endoscopic Technical Report of an New Silicone Intragastric Balloon in the Treatment of Morbid Obesity”; Obesity Surgery; V. 9, pp. 68-71; 1999.
  GinShiCel MH Hydroxy Propyl Methyl Cellulose, Web Page http://www.ginshicel.cn/MHPC.html, Nov. 12, 2008.
  Girard; “The incretins: From the concept to their use in the treatment of type 2 diabetes. Part A: Incretins: Concept and physiological functions”; Diabetes and Metabolism; V. 34; pp. 550-559; 2008.
  Greenough et al.; “Untangling the Effects of Hunger, Anxiety, and Nausea on Energy Intake During Intravenous Cholecystokinin Octapeptide (CCK-8) Infusion”; Physiology & Behavior; V. 65, No. 2; pp. 303-310; 1998.
  Grise et al.; “Peptide YY Inhibits Growth of Human Breast Cancer in Vitro and in Vivo”; Journal of Surgical Research; V. 82; pp. 151-155; 1999.
  Grundy; “Signaling the State of the Digestive Tract”; Autonomic Neuroscience: Basic and Clinical; V. 125; pp. 76-80; 2006.
  Grundy; “Vagal Control of Gastrointestinal Function”; Bailliere's Clinical Gastroenterology; V. 2; No. 1; pp. 23-43; 1988.
  Hallden et al. “Evidence for a Role of the Gut Hormone PYY in the Regulation of Intestinal Fatty Acid Binding Protein Transcripts in Differentiated Subpopulations of Intestinal Epithelial Cell Hybrids”; Journal of Biological Chemistry; V. 272 (19); pp. 125916-126000; 1997.
  Hameed et al.; “Gut hormones and appetite control.” Oral Diseases; V. 15; pp. 18-26; 2009.
  Hassan et al.; “Effects of Adjuvants to Local Anesthetics on Their Duration III Experimental Studies of Hyaluronic Acid” Abstract Pub Med [Acta Anesthesiol Scand.; 29 (4): 384-8], 1 page; May 1985.
  Hodson et al.; “Management of Obesity with the New Intragastric Balloon”; Obesity Surgery; V. 11, pp. 327-329, 2001.
  Holzer; “Gastrointestinal Afferents as Targets of Novel Drugs for the Treatment of Functional Bowel Disorders and Visceral Pain”; European Journal of Pharmacology; V. 429; pp. 177-193; 2001.
  Houpt; “Gastrointestinal Factors in Hunger and Satiety.” Neuroscience and Behavioral Reviews; V. 6; pp. 145-164; 1982.
  Iverson et al.; “Recent Advances in Microscale Pumping Technologies: A Review and Evaluation”; Microfluid Nanofluid; vol. 5; pp. 145-174; Feb. 19, 2008.
  Jones; “Molecular, pharmacological, and clinical aspects of liraglutide, a oncedaily human GLP-1 analogue”; Molecular and Cellular Endocrinology; V. 297; pp. 137-140; 2009.
  Kerem et al.; “Exogenous Ghrelin Enhances Endocrine and Exocrine Regeneration in Pancreatectomized Rats”; J. Gastrointest Surg.; V. 13; pp. 775-783, 2009.
  Kesty et al.; “Hormone-based therapies in the regulation of fuel metabolism and body weight”; Expert Opin. Biol. Ther.; V. 8; No. 11; pp. 1733-1747; 2008.
  Kissileff et al.; “Peptides that Regulate Food Intake: Cholecystokinin and Stomach Distension Combine to Reduce Food Intake in Humans”; Am. J. Physiol. Regul. Integr. Comp. Physiol; V. 285; pp. 992-998; 2003.
  Kojima et al.; “A role for pancreatic polypeptide in feeding and body weight regulation.” Peptides; V. 28; pp. 459-463; 2007.
  Kulicke et al. “Visco-Elastic Propeerties of Sodium Hyaluronate Solutions,” American Institute of Physics; pp. 585-587; 2008.
  LAP-BAND AP System Adjustable Gastric Banding System with OmniformTM Design: Directions for Use (DFU); Allergan, 16 pages; 2009.
  Le Roux et al.; “Gut Hormone Profiles Following Bariatric Surgery Favor an Anorectic State, Facilitate Weight Loss, and Improve Metabolic Parameters”; Ann. Surg; V. 243; No. 1; pp. 108-114; Jan. 2006.
  Liu et al.; “Adjuvant Hormonal Treatment With Peptide YY or Its Analog Decreases Human Pancreatic Carcinoma Growth”; The American Journal of Surgery; V. 171; pp. 192-196; Jan. 1996.
  Mathus-Vliegen et al. “Intragastric Balloons for Morbid Obesity: Results, Patient Tolerance and Balloon Life Span”; Br. J. Surg.; V. 77, No. 7, pp. 76-79; Jan. 1990.
  Mathus-Vliegen et al. “Treating Morbid and Supermorbid Obesity” International Journal of Gastroenterology; V. 5, No. 1, pp. 9-12; 2000.
  Medeiros et al.; “Processing and metabolism of Peptide-YY: Pivotal roles of Dipeptidase-IV, Aminopeptidase-P, and Endopeptidase-24.11”; Endocrinology; V. 134, No. 5; pp. 2088-2094; 1994.
  Naslund et al. “Pranidal subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects”; British Journal of Nutrition; V. 91; pp. 439-446; 2004.
  Potier et al.; “Protein, amino acids, and the control of food intake”; Current Opinion in Clinical Nutrition and Metabolic Care; V. 12; pp. 54-58; 2009.
  Qian et al.; “Pulmonary delivery of a GLP-1 receptor agonist, BMS-686117”; International Journal of Pharmaceutics; V. 366; pp. 218-220; 2008.
  Rang et al.; “Pharmacology”; V. 5; pp. 203, 397, 402, 524; 2004.
  Raybould et al.; “Integration of Postprandial Gastrointestinal Tract: Role of CCK and Sensory Pathways”; Annals of New York Academy of Science; pp. 143-156; 1994.
  Renshaw et al. “Peptide YY: A Potential Therapy for Obesity”; Current Drug Targets; V. 6; pp. 171-179; 2005.
  Sannino et al.; “Crosslinking of Cellulose Derivatives and Hyaluronic Acid with Water-Soluble Carbodiimide” Polymer 46; pp. 11206-11212; 2005.
  Shechter et al.; “Reversible PEGylation of peptide YY3-36 prolongs its inhibition of food intake in mice”; FEBS Letters; V. 579; pp. 2439-2444; 2005.
  Silver et al.; “Physical Properties of Hyaluronic Acid and Hydroxypropylmethylcellulose in Solution: Evaluation of Coating Ability” Journal of Applied Biomaterials, V. 5; pp. 89-98, 1994.
  Small et al.; “Gut hormones and the control of appetite”; TRENDS in Endocrinology and Metabolism; V. 15; No. 6; pp. 259-263; Aug. 2004.
  Stanley et al.; “Gastrointestinal Satiety Signals III. Glucagon-like Peptide 1, oxyntomodulin, peptide YY, and pancreatic polypeptide”; Am. J. Physiol Gastrointest Liver Physiol; V. 286; pp. 693-697; 2004.
  Tezel; “The Science of Hyaluronic Acid Dermal Fillers,” Journal of Cosmetic and Laser Therapy (2008) 10: pp. 35-42.
  Tolhurst et al.; “Nutritional regulation of glucagon-like peptidel secretion”; J. Physiol.; V. 587, No. 1; pp. 27-32; 2009.
  Totte et al.; “Weight Reduction by Means of Intragastric Device: Experience with the Bioenterics Intragastric Balloon”; Obesity Surgery; V. 11, pp. 519-523; 2001.
  Tough et al.; “Y4 Receptors Mediate the Inhibitory Responses of Pancreatic Polypeptide in Human and Mouse Colon Mucosa”; The Journal of Pharmacology and Experimental Therapeutics; V. 319, No. 1; pp. 20-30; 2006.
  Tseng et al; “Peptide YY and cancer: Current findings and potential clinical applications”; Peptides; V. 23; pp. 389-395; 2002.
  Valassi et al.; “Neuroendocrine control of food intake”; Nut. Metab. & Cariovasc. Disease; V. 18; pp. 158-168; 2008.
  Van Der Lely et al.; “Biological, Physiological, Pathophysiological Aspects of Ghrelin”; Endocrine Reviews; V. 25, No. 3; pp. 426-457; 2004.
  Verdich et al. “A Meta-Analysis of the Effect of Glucagon-Like-Peptide-1 (7-36) Amide on ad Libitum Energy Intake in Humans”; J. Clin. Endocrinal. Metab. V. 86; pp. 4382-4389; Sep. 2001.
  Wahlen et al.; “The BioEnterics Intragastric Balloon (BIB): How to Use It”; Obesity Surgery; V. 11; pp. 524-527; 2001.
  Wang et al.; “Plasma Ghrelin Modulation in Gastric Band Operation and Sleeve Gastrectomy”; Obes. Surg.; pp. 357-362; 2008.
  Weiner et al.; “Preparation of Extremely Obese Patients for Laparoscopic Gastric Banding by Gastric Balloon Therapy”; Obesity Surgery; V. 9, pp. 261-264, 1999.
  Wynne et al.; “Subcutaneous Oxyntomodulin Reduces Body Weight in Overweight and Obese Subjects: A Double-Blind Randomized, Controlled Trial”; Diabetes; V. 54; pp. 2390-2395; 2005.
  Yuzuriha et al.; “Gastrointestinal Hormones (anorexigenic peptide YY and orexigenic ghrelin) influence neural tube development”; FASEB J.; V. 21; pp. 2108-2112; 2007.
  Brown et al; “Symmetrical Pouch Dilation After Laparoscopic Adjustable Gastric Banding: Incidence and Management”; Obesity Surgery; V. 18, pp. 1104-1108; 2008.
  Ceelen et al.; “Surgical Treatment of Severe Obesity With a Low-Pressure Adjustable Gastric Band: Experimental Data and Clinical Results in 625 Patients”; Annals of Surgery; V. 237, No. 1; pp. 10-16; 2003.
  Dixon et al.; “Pregnancy After Lap-Band Surgery: Management of the Band to Achieve Healthy Weight Outcomes”; Obesity Surgery; V. 11, pp. 59-65; 2001.
  Neary et al.; “Peptide YY(3-36) and Glucagon-Like Peptide-1(7-36) Inhibit Food Intake Additively”; Endocrinology; V.146; pp. 5120-5127; 2005.
  Padidela et al.; “Elevated basal and post-feed glucagon-like petide 1 (GLP-1) concentrations in the neonatel period”; European Journal of Endocrinology; v. 160; pp. 53-58; 2009.
  Shi et al.; “Sexually Dimorphic Responses to Fat Loss After Caloric Restriction or Surgical Lipectomy”; Am. J. Physiol. Endocrinol. Metab.; V. 293; E316-E326; 2007.
  Xanthakos et al.; “Bariatric Surgery for Extreme Adolescent Obesity: Indications, Outcomes, and Physiologic Effects on the Gut-Brain Axis”; Pathophysiology; V. 15; pp. 135-146; 2008.
 
     Primary Examiner —Samuel Gilbert
     Assistant Examiner —Sunita Reddy
     Art Unit — 3735
     Exemplary claim number — 1
 
(74)Attorney, Agent, or Firm — Stephen Donovan; Debra Condino

(57)

Abstract

A system for regulating the functioning of an organ or duct generally includes an implantable band structured to at least partially circumscribe an organ or duct and an actuating mechanism operable to effect constriction of the band. The system further includes a plurality of incompressible cushion segments defining a substantially star-shaped inner circumference of the band, the star-shape effective to prevent pinching and necrosis of tissue during adjustment.
21 Claims, 21 Drawing Sheets, and 49 Figures


RELATED APPLICATION

[0001] This application claims priority to and the benefit of U.S. Provisional Patent Application No. 61/103,153, filed on Oct. 6, 2008, the entire disclosure of which is incorporated herein by this reference.

BACKGROUND

[0002] This invention relates to surgical devices for regulating or controlling an organ or a duct, for example, a gastric banding system.
[0003] Obesity is well recognized as a serious health problem, and is associated with numerous health complications, ranging from non-fatal conditions to life threatening chronic diseases. According to the World Health Organization, debilitating health problems associated with obesity include respiratory difficulties, chronic musculoskeletal problems, skin problems and infertility. Life-threatening problems fall into four main areas: cardiovascular disease problems; conditions associated with insulin resistance such as type 2 diabetes; certain types of cancers, especially the hormonally related and large bowel cancers; and gallbladder disease. Beyond these physiological problems, obesity has also psychological consequences, ranging from lowered self-esteem to clinical depression.
[0004] Surgical intervention is sometimes indicated for people suffering from the effects of obesity. Such intervention not only mitigates the myriad health problems arising from being overweight, but may reduce the risk of early death of the patient. Left untreated, morbid obesity may reduce a patient's life expectancy by ten to fifteen years.

SUMMARY OF THE INVENTION

[0005] A system for regulating an organ or duct, for example, the functioning of an organ or duct, is provided. The system generally comprises an implantable band having a first end and a second end, a distal region and a proximal region, and a connector configured to couple the first end with the second end such that the band is formable into a loop configuration. The band is structured to circumscribe, or at least partially circumscribe, an organ or duct, for example, a stomach. The system further comprises a mechanism for enabling adjustment of an inner circumference of the loop configuration to effect constriction of the organ or duct.
[0006] For the sake of simplicity, and in no way intended to limit the scope of the invention, the “organ or duct” will hereinafter typically be referred to as a “stomach” and the system will be described as a gastric band system. The band is structured to circumscribe an upper portion of a stomach to form a stoma that controls the intake of food to the stomach. It is to be appreciated that although the invention is hereinafter typically described as pertaining to a gastric band system for application to a stomach, for example, for obesity treatment, the system, with appropriate modification thereto, can be used for regulating or controlling any organ or duct that would benefit from application of the present system thereto.
[0007] Once the band is implanted about the stomach, the size of an inner diameter of the band can be adjusted to provide the desired degree of restriction. Techniques for determining appropriate adjustment of gastric bands, timing and amount of adjustments, are known in the art and therefore will not be described in great detail herein.
[0008] Advantageously, in a broad aspect of the invention, the system may be structured to substantially prevent or at least reduce the occurrence of pinching of the body tissues, for example, the tissues of the stomach, during constriction or tightening of the band.
[0009] For example, in a specific embodiment, the system further comprises a contact region located between the first end and the second end of the band which is structured and functions to progressively move tissue, for example stomach tissue, during tightening of the band, without entrapping the tissue.
[0010] The contact region may comprise plurality of first segments and a plurality of second segments arranged in a generally alternating manner along the proximal (e.g. stomach-facing) region of the band. The first segments may comprise relatively wide, substantially incompressible cushion segments, and the second segments may comprise relatively thin, elastic tension segments. During constriction of the band, adjacent incompressible cushion segments form a progressively narrowing angle, for example, a substantially V-shaped surface. A tension segment is located between the adjacent cushion segments and forms the vertex of the angle or V.
[0011] In some embodiments, the cushion segments and tension segments form an inner circumference of the loop configuration having a generally star-shape, defined by the contact region. Deformation of the star-shape during adjustment substantially or entirely prevents pinching of tissues, as the cushion segments roll forward one another without gaps there-between thus pushing the tissue inwardly.
[0012] More specifically, in some embodiments, the contact region defines alternating convex stomach-facing surfaces and concave stomach-facing surfaces. The convex organ facing surfaces may be defined by the cushion segments and the convex organ facing surfaces are defined by the tension segments located between adjacent cushion segments. During constriction of the band, the convex organ-facing surfaces may maintain their shape while folding at the tension segments inwardly toward one another. This mechanism and structure causes the tissues of the stomach to be pushed outwardly from the band constriction without the tissues becoming entrapped and/or pinched by the contact region.
[0013] In addition, the structure of the contact region, including cushion segments and tension segments, may be advantageously structured to maintain mechanical stability of the band. For example, the tension segments provide a means for maintaining positioning of the cushion segments and by substantially preventing the contact region of the band from creasing, folding or rolling out of position while the band is implanted in the body around the duct or organ, for example, the stomach.
[0014] In some embodiments, the contact region comprises a membrane, for example, a somewhat tubular-shaped elastic membrane encompassing, secured to or defining the cushion segments. In one embodiment, portions of the membrane may form the tension segments between adjacent cushion segments.
[0015] In one embodiment, the cushion segments are formed of individual incompressible molded elements in contact with or spaced apart from one another, and affixed to the membrane. The cushion segments may be spaced apart by portions of the elastic membrane which are stretched under tension.
[0016] The cushion segments may be located on an internal surface of the membrane or alternatively may be located on an external surface of the membrane. In one embodiment, the cushion segments are located on an external surface of the membrane and are overmolded to the membrane.
[0017] In another feature of the invention, membrane may include structure, for example, corrugations or indentations, for facilitating expansion of the membrane during adjustment of the loop. For example, such corrugations can be located and structured to minimize the force required to elongate or stretch the membrane in the radial direction during tightening of the band. The corrugated surfaces of the membrane reduce membrane deformation energy by allowing the membrane to unfold rather than stretch during adjustment.
[0018] The mechanism for enabling adjustment may comprise an electronic interface, for example, an implantable electronic interface, connected to the band, and a control, for example an external control unit, capable of communicating with the interface to regulate the constriction of the band about said organ or duct.
[0019] These and other features of the present invention may be more clearly understood and appreciated upon consideration of the following Detailed Description and the accompanying Drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1 shows a schematic representation of one embodiment of the present invention, the system including a band including a contact region, an interface including an antenna/controller pod, and an external control.
[0021] FIG. 2 shows a perspective, cutaway view of the contact region shown in FIG. 1.
[0022] FIG. 3 shows a perspective view of the contact region shown in FIG. 1.
[0023] FIG. 3A shows a cross-sectional view of the contact region taken along lines 3A-3A of FIG. 3.
[0024] FIG. 4A shows an elevation view of the contact region shown in FIG. 1.
[0025] FIG. 4B shows an elevation view of an alternative contact region in accordance with another embodiment of the invention.
[0026] FIG. 4C shows a perspective view of the alternative contact region shown in FIG. 4B.
[0027] FIG. 5A shows a cross-sectional view of the band shown in FIG. 1.
[0028] FIG. 5B shows a cross-sectional view of the band taken along lines 5B-5B of FIG. 5A.
[0029] FIG. 5C shows a perspective, cutaway view of the band in a fully open position.
[0030] FIG. 5D shows a perspective, cutaway view of the band in a constricted position.
[0031] FIGS. 5E and 5F are schematic representations of an amplified adjustment feature of an embodiment of the present invention.
[0032] FIGS. 5G and 5H are simplified schematic representations of another embodiment of the invention.
[0033] FIGS. 6A through 6C show plan views of the band at different levels of constriction.
[0034] FIG. 7 is a partial perspective view of a screw thread portion of a tension element useful in the band of the system of the invention.
[0035] FIG. 8 is a perspective view of an entire tension element shown in FIG. 7.
[0036] FIG. 9 is a perspective view of the tension element of FIG. 8 coupled to a rigid distal peripheral portion in the band of the system of the invention.
[0037] FIG. 10 is a perspective view of the band of the system in a straightened configuration and located within a trocar to facilitate implantation.
[0038] FIG. 11 is a cross-sectional view of an actuator housing on an end of the band.
[0039] FIG. 12 is a perspective view of an actuator in the housing shown in FIG. 11.
[0040] FIG. 13 is a perspective of the tension element engaged with the actuator shown in FIG. 12.
[0041] FIG. 14 is a cross-sectional view depicting the construction of the actuator shown in FIG. 12.
[0042] FIG. 15 is a cross-sectional view depicting the construction of a reference position switch useful in the system of the invention.
[0043] FIGS. 16A and 16B are perspective views illustrating a clip used to close the band of the system of the invention.
[0044] FIG. 17 is a perspective view of the antennae/controller pod of the system shown in FIG. 1.
[0045] FIG. 18 is a cut-away view of the interior of the implantable antenna/controller pod.
[0046] FIG. 19 is a schematic view of telemetric power and control circuitry useful in systems of the invention.
[0047] FIG. 20 is a view of a signal strength indicator portion of the control shown in FIG. 1.
[0048] FIG. 21 is a schematic diagram illustrating placement of the implantable portions of the system of the invention.
[0049] Each of FIGS. 22A-22H is a view illustrating steps in a method of laparoscopically implanting the system of the present invention.
[0050] FIG. 23 is a perspective view of a contact region including a membrane and overmolded incompressible cushions of a gastric band of the present invention.
[0051] FIGS. 24 and 25 are cross sectional views of the contact region shown in FIG. 23 taken along line 24-24 and line 25-25, respectively.
[0052] FIGS. 25-27A show another advantageous feature of the embodiment of the invention shown in FIG. 24.

DETAILED DESCRIPTION

[0053] Turning now to FIG. 1, an embodiment of a system of the present invention is generally shown at 10. In one aspect of the invention, the system 10 is useful for regulating the functioning of an organ or duct (not shown) for example, a stomach. In one embodiment, the system 10 is a gastric banding system useful in the treatment of obesity and/or obesity related diseases.
[0054] It is to be understood that although much of the following description is generally directed to gastric banding systems of the invention, the present invention is in no way limited thereto. Other embodiments of the invention may be applied to regulate the functioning of other body organs or ducts, such as in the treatment of gastro-esophageal reflux disease, urinary or fecal incontinence, colostomy, or to regulate blood flow.
[0055] In this exemplary embodiment, the system 10 generally comprises an implantable portion 12 including an adjustable band 20, an interface 14 including an antenna/controller pod 15, and a control 16 in communication, for example, telemetric communication, with the pod 15. Pod 15 may be connected to the band 20 by means of antenna cable 17 and may include removable tag 18 for facilitating laparoscopic positioning thereof.
[0056] Laparoscopically implanted gastric bands and their use in the treatment of obesity are now well known. Generally, in accordance with the present invention, the band 20 is structured to be implantable in a patient, for example, laparoscopically implantable, around an upper region of the patient's stomach, thereby forming a stoma that restricts food intake and provides feelings of satiety. The inner diameter of the band 20 is adjustable in vivo in order to enable a physician or patient to achieve most desirable stoma size, and the best clinical results.
[0057] The band 20 includes a first end 22 and a second end 24, a distal region 26 and a proximal region 28, and a connector 30 configured to couple the first end 22 with the second end 24 of the band 20 such that the band 20 is formable into a loop configuration, as shown.
[0058] When the band 20 is formed into said loop configuration, the proximal region 28 forms an inner circumferential surface which at least partially circumscribes and contacts the organ or duct, for example, the stomach, to be regulated or controlled.
[0059] Generally, by loosening or tightening the band 20 about the stomach, regulation and/or functioning of the stomach can be controlled or adjusted. When not connected at first and second ends 22, 24, the band 20 can be temporarily straightened in order to facilitate surgical implantation, for example, via laparoscopic techniques.
[0060] The system 10 further comprises a contact region 44 disposed between the first and the second ends 22, 24 of the band 20. Turning now to FIGS. 2 and 3, the contact region 44 may comprise, at least in part, an elastic component made of, for example, a molded silicone elastomer. The elastic component comprises a membrane 45 having a generally tubular form which covers or encases the internal mechanisms of the band 20, for example, gastric band tightening mechanisms such as those to be described hereinafter. The membrane 45, when at rest, may have an arcuate or C-shaped form.
[0061] As shown in FIG. 2, contact region 44 comprises first segments 48 and second segments 52 arranged in a generally alternating manner. The first segments 48 may be defined by generally planar and/or convex stomach-facing surfaces, i.e. proximal surfaces, of the contact region 44. The second segments 52 may be defined by generally concave exterior surfaces generally forming indentations between the first segments 48.
[0062] In some embodiments, the first segments 48 comprise cushion segments 60. The cushion segments 60 are spaced apart from one another by the second segments 52. The cushion segments 60 may be made of non-compressible material, for example, a silicone elastomer.
[0063] In one aspect of the present invention, a suitable incompressible material making up the cushions is a moldable material that has substantially constant density throughout and maintains its volume when deformed. The volume of incompressible materials cannot be reduced more than a nominal amount (e.g., about 5%) when subjected to static compression, or external pressure. The cushions may be a soft silicone material that is a deformable, resilient solid or a gel.
[0064] The cushion segments 60 may be made of a material that has a different durometer, for example, is softer, than the material forming the membrane 45. In a specific embodiment, the cushions comprise a soft, molded silicone elastomer material having hardness of 5 Shore A. The membrane comprises a soft molded silicone elastomer material having a hardness of 30 Shore A.
[0065] In one embodiment, cushions 60 may be structured to provide form, definition, support and/or structural integrity to the first segments 48. The second segments 52 may be portions of the membrane 45 which are stretched under tension. The second segments may be structured to provide stability to the contact region 44 and to maintain positioning, for example, circumferential positioning, of the cushions 60 during use of the system 10.
[0066] Turning now specifically to FIG. 3, the first segments 48 may have a first axial width W1, and the second segments have a second axial width W2 which is less than the first axial width W1.
[0067] In the shown embodiment of the invention, the contact region 44 includes seven first segments 48 (including 48′), each first segment being generally equally spaced apart by intermediate second segments 52. In other embodiments of the invention, contact region 44 includes at least three first segments, at least four first segments, at least five first segments, or at least six first segments. In other embodiments of the invention, the contact region 44 includes more than seven first segments, for example, up to ten first segments or more.
[0068] In another aspect of the invention, membrane 45 may be structured to facilitate expansion in a radial direction during adjustment of the inner circumference of the band 20. For example, turning now to FIG. 3, membrane 45 may include radially expandable surfaces 56. For example, membrane 45 includes one or more corrugations 58.
[0069] In the shown embodiment, the corrugations 58 are generally aligned with the cushion segments 60. As shown in FIG. 3A, the corrugations 58 may be defined by convolutions 58a defined in an upper surface and lower surface of the membrane 45. The corrugations 58 may be placed to minimize the force required by the actuating mechanism to elongate the membrane 45 in the radial direction. Rather than requiring excessive stretching of the membrane, the membrane unfolds during adjustment.
[0070] In the shown embodiment, certain first segments 48 include corrugations 58 and other first segments (e.g. first segments 48′) do not include corrugations. For example, intermediate first segments 48 include corrugations 58 and terminal first segments 48′ do not include corrugations.
[0071] The presently described and shown corrugated structure of the contact region 44 may function to facilitate controlled expansion and/or contraction of the first segments 48, for example, during adjustment of the inner circumference of the band. In some embodiments of the invention, the corrugated surfaces 56 function, at least in part, to decrease the level of force required to adjust the inner circumference of the loop.
[0072] In some embodiments, the contact region 44 includes first cushions 60 and second cushions 60a which are configured somewhat differently than first cushions 60. In the shown embodiment, first cushions 60 are located on intermediate first segments 48 and second cushions 60a are located on terminal first segments 48′ (i.e. those first segments located at the extremities of the contact region 44).
[0073] More specifically, in the embodiment shown in FIG. 2, each first cushion 60 includes a substantially planar or convex face 61 and at least one or more distal projections 62. For example, each cushion 60 includes three longitudinal, arcuate projections 62 as shown. A cross-sectional view of first cushion 60 having these features is also shown in FIG. 3A.
[0074] FIG. 4A shows an elevation view of the contact region 44 (cushions not shown) in order to illustrate width W1 of first segment 48 relative to width W2 of second segment 52 of contact region 44. In an exemplary embodiment of the invention, W1 is about 17 mm and W2 is about 13 mm.
[0075] FIG. 4B shows an elevation view of an alternative contact region 44′ in accordance with the invention. Contact region 44′ is identical to contact region 44 shown in FIG. 4A, with a primary difference being that first segment width W1′ of contact region 44′ is greater than first segment width W1 of contact region 44. That is, W1′>W1. The additional width of first segment width W1′ is provided by upper and lower protuberances 66 on first segments 48′. In an exemplary embodiment, W1′ is about 19 mm and W2 is about 13 mm. FIG. 4C shows a perspective view of contact region 44′ having first segments 48′ with protuberances 66.
[0076] Turning now to FIGS. 5A-5D, an exemplary inner mechanism of the band 20 which enables adjustment of the inner circumference of the loop configuration will now be described. Band 20 may comprise a flexible tension element 132 having fixed end 133 mounted to first end 22 of band 20 and another end 134 that is coupled to an actuator 135 at second end 24 of adjustable element 20. Tension element 132 is slidingly disposed within a substantially cylindrical tube of axially compressible material 136. When tension element 132 is pulled through actuator 135, compressible material 136 is compressed and the diameter of loop opening 137 is reduced.
[0077] Turning now specifically to FIGS. 5B through 5D, compressible material 136 may be surrounded on a distal face 137 thereof with a flexible, relatively sturdy elastomeric material, such as silicone element 138. Both compressible material 136 and silicone element 138 are enclosed within the membrane 45 of contact region 44.
[0078] In one aspect of the invention, the band 12 may be structured to provide an amplified adjustment feature. This concept is illustrated in FIGS. 5E and 5F, and in FIGS. 26 through 27A.
[0079] The incompressible cushion segments 60 provide enhanced and more efficient control of adjustment of the inner diameter of the band 20. FIGS. 5E and 5F are schematic representations of the cross-section of the band in the open configuration and constricted configuration, respectively. Outer diameter D represents the outer diameter of axially adjustable portion of the band 20. Areas of individual cushion regions 60 are represented by areas AI in FIG. 5E (open configuration). The total area occupied by the individual cushion regions is represented as annular area AT in FIG. 5F (constricted configuration). Surface S represents the available lumen around the stomach (or other organ or duct being controlled or regulated) and diameter Deq represents an equivalent diameter, that is, the diameter of a circle having the same surface area as S.
[0080] When the loop is constricted from the fully open state, diameter D (FIG. 5E) becomes D′ (FIG. 5F), the surface S becomes S′ and the equivalent diameter Deq becomes D′eq. Because the cushions occupying AI are incompressible, the total surface area AT occupied by the cushions does not change. The equivalent diameter Deq decreases more rapidly than the diameter D.
[0081] For example, D=29 mm in a fully open position and a total surface of the incompressible cushions AT equal to about 120 square mm: S=540.52 sq mm and Deq=26.2 mm. When in fully closed position, D′=19 mm: S′=163.53 sq mm, and D′eq=14.4. Thus D-D′=10 mm, and Deq-D′eq=11.8 mm, which provides an “amplification factor” of about 1.18. Thus, by changing the values of D, D′ and AT, the amplification factor can be controlled.
[0082] The substantially incompressible cushion segments allow a relative restriction of the lumen during adjustment greater than without substantially incompressible cushion segments. That greater relative restriction arises from the fact that the cross-section of the substantially incompressible cushion segments remains constant during adjustment, whereas the area of the lumen decreases during closure, so that the ratio (cushion cross-section)/(lumen) increases. Accordingly, the substantially incompressible cushion segment effect on lumen restriction increases during closure.
[0083] FIGS. 5G and 5H show a simplified schematic representation an embodiment of the invention in which contact region 444 comprises an elastic membrane 445 and a single continuous, incompressible cushion segment 460 instead of the individual, separate cushion segments 60 shown in FIG. 2. Other than cushion segment 460 being a single substantially continuous cushion segment rather than a plurality of individual separate cushion segments 60, the band 420 may be identical to band 20. The continuous cushion segment 460 is configured or shaped to accommodate tension segments 452 of the membrane 445. For example, the continuous cushion segment 460 has a variable thickness, with the thickest regions functioning similarly to incompressible cushion regions 60 described elsewhere herein. FIG. 5H shows bending of tension regions 452 and deformation of incompressible cushions 60 during the constriction of the loop.
[0084] Turning back to FIG. 5A, band 20 may further comprise member 140 of a relatively rigid material. By its structural rigidity, member 140 imposes a generally circular arc shape for the entirety of band 20. In some embodiments of the invention, rigidity of band 140 functions to prevent the exterior diameter of band 12 from changing during adjustment of the internal diameter of the loop.
[0085] Generally, an increase or reduction of the length of tension element 132 results in reversible radial displacement at the internal periphery of the band 20. This in turn translates into a variation of internal diameter of the loop from a fully open diameter to a fully closed diameter.
[0086] In various embodiments of the invention, the diameter of the opening 137 formed by the band 20 may be between about 25 mm or about 35 mm in a fully dilated position (e.g. see FIG. 5C). The diameter of the opening 137 may be between about 15 mm and about 20 mm when the band 20 is in a fully constricted position (e.g. see FIG. 5D).
[0087] FIGS. 6A, 6B and 6C show the band 12 at progressively increased levels of constriction, with FIG. 6A showing the opening 137 being larger than in FIG. 6B, which shows the opening 137 larger than in FIG. 6C. In the shown embodiment of the invention, while diameter of opening 137 is adjustable, the diameter an outer circumferential surface 139 of the band 12 remains relatively fixed during adjustments of the opening 137. Membrane 45 of contact region 44 stretches or unfolds as described elsewhere herein, as axially compressible material 136 moves apart from distal element 130 and band (not visible in FIGS. 6A-6C) and opening 137 constricts. (See also FIG. 5D).
[0088] Referring now to FIG. 7, tension element 132 is described. In some embodiments, tension element 132 has sufficient flexibility to permit it to be formed into a substantially circular shape, while also being able to transmit the force necessary to adjust the inner diameter of the loop. Tension element 132 may comprise flexible core 141, for example, comprising a metal alloy wire of circular cross section, on which is fixed, and wound coaxially, at least one un-joined coil spring which defines a screw thread pitch.
[0089] Tension element 32 may comprise two un-joined coil springs that form a screw thread: first spring 142, wound helicoidally along the flexible core 141, and second spring 143 of greater exterior diameter. Second spring 143 preferably comprises coils 144 of rectangular transverse section, so as to delineate a flat external generatrix. First spring 142 is interposed between coils 144 of the second spring 143 to define and maintain a substantially constant square screw thread pitch, even when the tension element is subjected to bending.
[0090] Second spring 143 may be made by laser cutting a cylindrical hollow tube, e.g., made from stainless steel, or alternatively, by winding a wire with a rectangular, trapezoidal or other cross-section. When helically intertwined with first spring 142, coils 144 of second spring 143 are activated with an intrinsic elastic compression force from the adjacent coils of first spring 142. First spring 142 is intertwined between the coils of second spring 143. First spring 142 is fixedly joined to flexible core 141 at one end. At the second end, a crimped cap 145 (see FIG. 8) is located a short distance from the ends of springs 142 and 143 to allow for small extensions, for example, to accommodate flexion of tension element 132 and/or to limit this extension to keep the thread pitch substantially constant.
[0091] Referring now to FIG. 8, free end 134 of tension element 132 includes crimped cap 145. Second spring 143 includes coils having a square transverse section. Flexible core 141 extends through first and second springs 142 and 143, and terminates close to cap 145. In one embodiment of the invention, tension element 132 further comprises third spring 146 that is coupled to flexible core 141, and first and second springs 142 and 143 at junction 147. Third spring 146 includes loop 148 at the end opposite to junction 147, which permits the tension element 132 to be fixed at first end 22 of band 20.
[0092] With respect to FIG. 9, tension element 132 is shown disposed within a skeleton 150 of the band 20. Skeleton 150 includes layer 151 that forms a distal periphery, anchor 152 that accepts loop 148 of tension element 132, and actuator housing 153. Skeleton 150 may be made of a high strength moldable plastic.
[0093] In accordance with another aspect of the invention, third spring 146 permits band 12 to be straightened for insertion through a trocar, for example a 18 mm trocar, despite a differential elongation of the skeleton 150 and tension element 132. This feature is illustrated in FIG. 10 which shows band 12 disposed in a trocar 300 in order to facilitate laparoscopic implantation of the band 12.
[0094] Referring now to FIG. 11, in the shown embodiment, connector 30 includes housing 155 having recessed portion 156, tension element cavity 157 and cable lumen 158. Recess 156 is configured to accept actuator housing 153 of skeleton 150, so that as tension element 132 is drawn through actuator 135 it extends into tension element cavity 157. Cable lumen 158 extends through housing 155 so that cable 124 may be coupled to actuator 135. Housing 155 may be grasped in area G using atraumatic laparoscopic graspers during implantation.
[0095] In FIG. 12, actuator housing 153 of skeleton 150 is shown with actuator 135 and tension element 132 disposed therethrough. Antenna cable 17 is coupled to motor (not shown) disposed within actuator housing 153. Tension element 132 is in the fully opened (largest diameter) position, so that crimped cap 145 contacts printed circuit board 159 of the reference position switch described below with respect to FIG. 15.
[0096] With respect to FIGS. 13 and 14, actuator 135 includes motor 166 coupled to antenna cable 17 that drives nut 160 through gears 161. Nut 160 is supported by upper and lower bearings 162 to minimize energy losses due to friction. Nut 160 is self-centering, self-guiding and provides high torque-to-axial force transfer. In addition, nut 160 is self-blocking, meaning that nut 160 will not rotate due to the application of pushing or pulling forces on tension element 132. This condition may be achieved by ensuring that the height (h) of the thread divided by the circumference of the screw (2πR) is less than the arctangent of the friction coefficient (p):
          h/(2πR)<arctan(μ)
[0097] Gears 161 preferably are selected to provide good mechanical efficiency, for example, with a reduction factor greater than 1000. In addition, the volume of the actuator depicted in FIGS. 13 and 14 may be quite small, with a total volume less than 1 cm3 and a diameter less than 12.5 mm, so that the device may easily pass through a standard trocar. In a preferred embodiment, gears 161 are selected to provide a force of more than 2 kg on the screw thread of the tension element at an electrical consumption of only 50 mW. The gears and other components of actuator 135 may be made of stainless steel or other alloys like Arcap (CuNiZn), or can be gold plated to permit operation in the high humidity likely to be encountered in a human body.
[0098] Motor 166 employed in actuator 135 may comprise a Lavet-type high precision stepper motor with a flat magnetic circuit, such as are used in watches. The motor 166 may be a two phase (two coil) motor that permits bi-directional rotation, has good efficiency, and may be supplied with a square wave signal directly by the microcontroller circuitry within antenna/controller pod 15, thus eliminating the need for an interface circuit. Alternatively, the motor employed in actuator 135 may be of a brushless DC type motor. In addition, the motor preferably is compatible with magnetic resonance imaging, i.e., remains functional when exposed to strong magnetic fields used in medical imaging equipment.
[0099] Referring now to FIG. 15, a reference position switch of an embodiment of the present invention is described. In one embodiment the actuator of the present invention employs nut 160 driven by a stepper motor. Thus, there is no need for the system to include a position sensor or encoder to determine the length of tension element 132 drawn through the actuator. Instead, the diameter of opening 137 may be computed as a function of the screw thread pitch and the number of rotations of nut 160. At least one reference datum point may be provided which may be calculated by using a reference position switch that is activated when band 12 is moved to its fully open position. Crimped cap 145 on the free end of tension element 132 may be used to serve this function by contacting electrical traces 163 on printed circuit board 159 (and also limits elongation of the screw thread). Circuit board 159 is disposed just above bearing 165, which forms part of actuator 135. When crimped cap 145 contacts traces 163 it closes a switch that signals the implantable controller that the band 12 is in the fully open position.
[0100] Referring now to FIGS. 16A and 16B, clip 30 may include a clip element 167 on first end 22 of band 20 and the housing 155 on the second end of the band 20. Clip element 167 includes aperture 170, tab 171 having hinge 172 and slot 173. Aperture 170 is dimensioned to accept housing 155 on second end 24 of band 20, while slot 173 is dimensioned to accept flange 174 disposed on second end 24.
[0101] An example of a method of coupling the first end 22 with second end 24 during implantation of the band 20 is now described. To couple first end 22 and second end 24, clip element 167 is grasped by the tab 171, and tag 18 of pod 15 (see FIG. 1) is inserted through aperture 170. Clip element 167 is then pulled towards second end 24 so that housing 155 passes through aperture 170 while housing 155 is grasped with atraumatic forceps; the conical shape of housing 155 facilitates this action. Force is applied to tab 171 until slot 173 captures flange 174, thereby securing the first and second ends 22, 24 in the closed position. The physician may subsequently choose to disengage slot 173 from flange 174 by manipulating tab 171 using laparoscopic forceps, for example, to reposition the band 12. In some embodiments, forces inadvertently applied to tab 171 in an opposite direction will cause tab 171 to buckle at hinge 172, but will not cause flange 174 to exit slot 173. Accordingly, hinge 172 of tab 171 prevents accidental opening of clip 30 when the tab 171 is subjected to forces that cause the tab 171 to fold backwards away from housing 155 such as may arise due to movement of the patient, the organ, or bolus of fluid passing through the organ.
[0102] With respect to FIGS. 17 and 18, removable tag 18 of antenna/controller pod 15 may include apertures 175. Tag 18 comprises a grip structure that facilitates manipulation and placement of the pod during implantation; after which the tag is removed, for example, using a scissors cut. Tag 18 also includes aperture 18b that allows the use of a suture thread to assist in passing the antenna/controller pod 15 behind the stomach. Holes 175 also are dimensioned to be compatible with standard suture needles from size 1-0 to 7-0 to permit pod 15 to be sutured to the patient's sternum, thereby ensuring that pod 15 remains accessible to the external antenna and cannot migrate from a desired implantation site.
[0103] As shown in FIG. 18, antenna/controller pod 15 encloses printed circuit board 176 that carries the antenna and microcontroller circuitry of band (not shown). The antenna receives energy and commands from external control 16 (see FIG. 1), and supplies those signals to the microcontroller, which in turn powers motor 166 of actuator 135 (FIGS. 12 and 13). The circuitry of antenna/controller pod 15 uses the energy received from the incoming signal to power the circuit, interprets the commands received from external control 16, and supplies appropriate signals to the motor of actuator 135. The circuit also retrieves information regarding operation of the motor 166 of actuator 135 and relays that information to external control 16 via the antenna. The circuit board 176 may be covered with a water-resistant polymeric covering, e.g., Parylene, to permit use in the high (up to 100%) humidity environment encountered in the body.
[0104] Antenna/controller pod 15 may include a mechanical closure system that is augmented by silicone glue so that the pod 15 is fluid tight. This silicone glue also is used to protect soldered wires.
[0105] Actuator 135 may be linked to subcutaneous antenna/controller pod 15 to receive a radio frequency control and power signal. In one embodiment, the motor 166 of the actuator 135 has no internal energy supply, but rather is powered by the receiving circuit of the antenna through a rechargeable energy storage device, such as a capacitor. For example, the receiving circuit converts radio frequency waves received from external control 16 via the antenna into a motor control and power signal. In another embodiment the actuator 135 may be driven via an implantable rechargeable battery.
[0106] Referring to FIG. 19, one suitable arrangement of circuitry that may be employed in external control 16 of the present invention is described. External control 16 includes microprocessor 180 coupled to a keyboard/control panel 212 and display 213. External control 16 produces a signal comprising one or more data bytes to be transmitted to the implantable antenna/controller pod (not shown) and actuator 135.
[0107] External control 16 includes modulator 181 for amplitude modulation of the RF wave from RF generator 182, which signal is emitted by an external antenna 214. The emitted wave is received by antenna 183 in the antenna/controller pod (not shown), where AM demodulator 184 extracts the data bytes from the envelope of received RF signal. The data bytes then are decoded by microcontroller 185. A special code is used that allows easy decoding of the data by microcontroller 185, but also provides maximal security against communication failure.
[0108] External oscillator 186, which is a voltage controlled oscillator (VCO), provides a clock signal to microcontroller 185. Oscillator 186 may comprise, for example, a relaxation oscillator comprising an external resistor-capacitor network connected to a discharging logic circuitry already implemented in the microcontroller or a crystal oscillator comprising a resonant circuit with a crystal, capacitors and logic circuits.
[0109] Microcontroller 185 interprets the received instructions and produces an output that drives the motor of actuator 135. As discussed above, actuator 135 may comprise a bi-directional stepper motor that drives nut 160 through a series of reducing gears. In one embodiment, the two coils of the stepper motor of actuator 135 are directly connected to microcontroller 185, which receives the working instructions from demodulator 184, interprets them and provides the voltage sequences to the motor coils. When the supply of voltage pulses to the stepper motor stops, the gears are designed to remain stationary, even if a reverse torque or force is applied to nut 160 by tension element 132.
[0110] As also described above, use of a stepper motor in actuator 135 makes it is possible to obtain positional information on nut 160 and tension element 132 without the use of sensors or encoders, because the displacement of the tension element is proportional to the number of pulses supplied to the stepper motor coils. Two signals may be employed to ensure precise control, reference position signal SRP, generated by the reference position switch of FIG. 15, and the actuator signal SA.
[0111] According to one embodiment, signal SA is the voltage signal taken at one of the outputs of microcontroller 185 that is connected to the motor coils of actuator 135. Alternatively, signal SA could be derived from the current applied to a motor coil instead of the voltage, or may be an induced voltage on a secondary coil wrapped around one of the motor coils of actuator 135. In either case, signal SA may be a pulsating signal that contains information on the number of steps turned by the rotor and further indicates whether blockage of the mechanism has occurred. Specifically, if the rotor of the stepper motor fails to turn, the magnetic circuit is disturbed, and by induction, affects signal SA, e.g., by altering the shape of the signal. This disturbance can be detected in the external control, as described below.
[0112] Signals SA and SRP are converted into frequencies using external oscillator 186, so that the voltage level of signal SA applied to external oscillator 186 causes the oscillator to vary its frequency FOSC proportionally to the signal SA. Thus, FOSC contains all the information of signal SA. When crimped cap 145 and tension element 132 are in the reference position (band 12 is fully open), the reference position switch produces reference position signal SRP. Signal SRP is used to induce a constant shift of the frequency FOSC, which shift is easily distinguishable from the variations due to signal SA.
[0113] If oscillator 186 is a relaxation oscillator, as described above, signals SA and SRP modify the charging current of the external resistor capacitor network. In this case, the relaxation oscillator may comprise an external resistor-capacitor network connected to a transistor and a logic circuit implemented in microcontroller 185. With SA and SRP, the goal is to modify the charging current of the capacitor of the RC network to change the frequency of the relaxation oscillator. If the charging current is low, the voltage of the capacitor increases slowly and when the threshold of the transistor is reached, the capacitor discharges through the transistor. The frequency of the charging-discharging sequence depends on the charging current.
[0114] If oscillator 186 is a crystal oscillator, signals SA and SRP modify the capacitor of the resonant circuit. In this case, the crystal oscillator circuit preferably comprises a crystal in parallel with capacitors, so that the crystal and capacitors form a resonant circuit which oscillates at a fixed frequency. This frequency can be adjusted by changing the capacitors. If one of these capacitors is a Varicap (a type of diode), it is possible to vary its capacitance value by modifying the reverse voltage applied on it, SA and SRP can be used to modify this voltage.
[0115] In either of the foregoing cases, signals SA and SRP may be used to modify at least one parameter of a resistor-capacitor (RC) network associated with the oscillator 186 or at least one parameter of a crystal oscillator comprising the oscillator 186.
[0116] Referring still to FIG. 19, signals SA and SRP, derived from the stepper motor or from the output of the microcontroller 185, may be used directly for frequency modulation by the oscillator 186 without any encoding or intervention by the microcontroller 185. By using oscillator 186 of microcontroller 185 as part of the VCO for the feedback signal, no additional components are required, and operation of micro controller 185 is not adversely affected by the changes in the oscillator frequency FOSC. The oscillating signal FOSC drives voltage driven switch 187 for absorption modulation, such that feedback transmission is performed with passive telemetry by FM-AM absorption modulation.
[0117] More specifically, signal FOSC drives switch 187 such that during the ON state of the switch 187 there is an increase in energy absorption by RF-DC converter 188. Accordingly, therefore the absorption rate is modulated at the frequency FOSC and thus the frequency of the amplitude modulation of the reflected wave detected by external control 16 contains the information for signal SA. As discussed below, pickup 189 in external control 16 separates the reflected wave where it can be decoded by FM demodulation in demodulator 190 to obtain signal SA′. This method therefore allows the transmission of different signals carried at different frequencies, and has the advantage that the ON state of switch 187 can be very short and the absorption very strong without inducing an increase in average consumption. In this way, feedback transmission is less sensitive to variation in the quality of coupling between the antennas 183 and 214.
[0118] In external control 16, the feedback signal FOSC is detected by the pickup 189 and fed to FM demodulator 190, which produces a voltage output VOUT that is proportional to FOSC. VOUT is fed to filter 191 and level detector 192 to obtain the information corresponding to the actuator signal SA, which in turn corresponds to the pulses applied to the stepper motor coil. Microprocessor 180 counts these pulses to calculate the corresponding displacement of the tension element 32, which is proportional to the number of pulses.
[0119] Signal VOUT also is passed through analog-to-digital converter 193 and the digital output is fed to the microprocessor 180, where signal processing is performed to detect perturbations of the shape of the feedback signal that would indicate a blockage of the rotor of the stepper motor. Microprocessor 180 stops counting any detected motor pulses when it detects that the actuator is blocked, and outputs an indication of this status. Level detector 194 produces an output when it detects that the demodulated signal VOUT indicates the presence of the reference position signal SRP due to activation of the reference position switch. This output induces a reset of the position of the tension element calculated by microprocessor 180 in the external control. In this way, a small imprecision, e.g. an offset, can be corrected.
[0120] As described above, external control 16 may be configured to transmit both energy and commands to the implantable controller circuitry in antenna/controller pod 15. External control 16 may also receive feedback information from the implantable controller that can be correlated to the position of the tension element and the diameter of the loop. As will be apparent to one of skill in the art, external control 16 and the implantable controller may be configured in a master-slave arrangement, in which the implantable controller is completely passive, awaiting both instructions and power from external control 16.
[0121] Power may be delivered to the implantable pod 15 via magnetic induction. The quality of the coupling may be evaluated by analyzing the level of the feedback signal received by external control 16, and a metric corresponding to this parameter may be displayed on signal strength indicator 217 on control 16, which in the shown embodiment, includes 6 LEDs (corresponding to six levels of coupling). If the coupling between the antennae is insufficient, the motor of actuator may not work properly.
[0122] Referring now to FIG. 21, band 20 of the presently described system of the invention is shown implanted in a patient. Band 20 of band 12 is disposed encircling the upper portion of the patient's stomach S while antenna/controller pod 15 is disposed adjacent to the patient's sternum ST. Pod 15 is located in this position beneath the patient's skin SK so that it is easily accessible in the patient's chest area to facilitate coupling of the implanted pod 15 to an external antenna of control 16.
[0123] Referring to FIGS. 22A to 22H, a method of implanting the band and pod of the system of the present invention is described. The method is similar to laparoscopic procedures used to implant previously-known hydraulically-actuated gastric bands.
[0124] Access to the abdomen is obtained by using 4 to 6 small holes, generally 10 to 18 mm in diameter, with a trocar inserted in each hole, as depicted in FIG. 22A. A camera and laparoscopic surgical tools are introduced and manipulated through the trocars. In addition, to permit free motion of the surgical tools and camera, the abdomen is inflated with CO2 to an overpressure of approximately 0.15 bars.
[0125] In FIGS. 22B-22E, the band 20 of the adjustable portion 12 is straightened (as depicted in FIG. 10) and inserted, antenna first, into the abdomen through an 18 mm trocar. Alternatively, a laparoscopic cannula may be used to make an incision and then withdrawn, and the device inserted through the opening so created (other instruments also may be used to form this laparotomy). In FIG. 22B, tag 18 of antenna/controller pod 15 is shown entering the abdomen through trocar 300 using atraumatic graspers 310. In FIG. 22C, housing 155 is shown being drawn into the abdomen through trocar 300, again using atraumatic graspers 310. FIG. 22D shows band 20 entering the abdomen in an extended position. In FIG. 22E, the band 20 is permitted to resume its arcuate shape.
[0126] Band 20 then is manipulated using atraumatic graspers 310 as described elsewhere herein, to secure the band 20 around the upper portion of the patient's stomach until slot 173 of clip 30 is engaged with flange 174, as shown in FIG. 22F. A fold of stomach tissue then may be sutured around the band 20 to prevent migration of the band 20.
[0127] Finally, as shown in FIG. 22G, a channel may be formed through the abdominal wall and antenna/controller pod 15 passed through the channel. Tag 18 then is cut off of antenna/controller pod 15, and the pod 15 is sutured into position above the patient's sternum, as depicted in FIG. 22H. The trocars then are removed, and the band 20 may be activated to adjust the diameter of the inner diameter as desired by the physician.
[0128] The process of removing the band 20 of the present invention involves substantially reversing the sequence of steps described above, and may be accomplished non-destructively. In particular, a plurality of cannulae into the abdominal cavity and the abdominal cavity then insufflated to create a pneumoperitoneum. Using laparoscopic graspers, the clip 30 may be unclipped and the band 20 removed from a position encircling the patient's stomach. The band 20 may then be straightened and withdrawn from the abdominal cavity either through one of the plurality of cannulae or via a laparotomy.
[0129] FIGS. 23 through 25 illustrate an alternative contact region 1010 of a gastric banding system of the present invention. Contact region 1010 may be identical to contact region 44 except as explicitly described below. Contact region 1010 can replace contact region 44 described and shown, for example, in FIGS. 3 and 3A, in system 10.
[0130] Contact region 1010 comprises a membrane 1014 which may be substantially identical to membrane 45 described and shown elsewhere herein. In this embodiment however, cushion segments 1016, which may be made of the same incompressible materials as cushion segments 60, are affixed to an external surface of the membrane 1014 and define at least a portion of the stomach-facing surface of the contact region 1010. The cushion segments 1016 may be individually molded to, or molded as a whole, directly to the membrane 1014 using conventional molding techniques, for example, conventional overmolding techniques.
[0131] In a specific embodiment, cushions 1016 are made of silicone elastomer having a hardness of 10 Shore A and membrane 1014 is made of silicone elastomer having a hardness of 30 Shore A.
[0132] Alternatively, the membrane 1014 may be made of silicone elastomer of different hardness, such as, for example, 20 Shore A to 45 Shore A. Alternatively still, the cushions could be made of an even softer silicone elastomer, such as 5 Shore A or 1 Shore A. Alternatively, the cushions or the membrane could be made of other suitable implantable materials.
[0133] FIGS. 24 and 25 are cross sectional views of the contact region shown in FIG. 23 taken along line 24-24 and line 25-25, respectively.
[0134] Another feature of this embodiment of the invention is shown in FIG. 24. Specifically, the membrane 1014 may includes a structural support, for example, a wedge 1025 located at the interface between the membrane 1014 and each of the cushion segments 1016. Wedges 1025 may provide an increased surface area on which the cushion segments are molded thereby providing additional adherence and/or support between the membrane 1014 and the cushion segments 1016. Like membrane 45, membrane 1014 includes corrugations 1027 for facilitating unfolding or expansion of the membrane 1014 during adjustment of the band.
[0135] Another advantageous feature of this embodiment is shown in FIGS. 26-27A. In some embodiments, the cushion segments 60 and tension segments 52 form an inner circumference of the loop configuration having a generally star-shape, defined by the contact region, as shown in FIG. 26. The stomach lumen is indicated by numeral 1033. During constriction of the band, which is shown dilated in FIGS. 26 and 26A and constricted in FIGS. 27 and 27A, adjacent incompressible cushion segments 60 form, a progressively narrowing angle, for example, a progressively narrowing substantially V-shaped surface having convex, arcuate surfaces defined by the cushion segments 60. Tension segments 52 located between the adjacent cushion segments 60 and form the vertices of the angles.
[0136] While not wishing to be bound by any particular theory of operation, it is believed that the structure of the contact member 44 and at least partially due to the incompressibility of the cushion segments 60 enables the band to constrict about the stomach without pinching the tissue. For example, as shown in FIGS. 27 and 27A, the stomach tissue does not become entrapped between adjacent cushion segments 60. During constriction of the band, the convex stomach-facing surfaces maintain their shape and form no gaps, while folding inwardly toward one another. This mechanism and structure causes the tissues of the stomach constricted without the tissues becoming entrapped and/or pinched. This progressive V-shape acts differently than a mechanical pliers.
[0137] As stated elsewhere herein, the system of the present invention has numerous applications apart from gastric banding. For example, the system of the present invention may be used for the treatment of fecal incontinence, ileostomy, colostomy, gastro-esophageal reflux disease, urinary incontinence and isolated-organ perfusion.
[0138] For treatment of fecal incontinence, the ring may be used with little or no modifications. In addition, because the ring adjustment procedure will be performed by the patient on at least a daily basis, a portable user-friendly external control may be used. In addition, because the ring will regularly be transitioned between the closed and fully opened position, the patient microchip card is unneeded. Instead, the fully closed position may be stored in the memory of the implantable controller, and read by the external remote at each use (subject to periodic change by the physician).
[0139] A similarly modified device could be used by patients who have undergone ileostomy or colostomy, or disposed surrounding the esophageal junction, to treat gastro-esophageal reflux disease.
[0140] For treatment of urinary incontinence, the system of the present invention may be further modified to minimize the volume of the loop surrounding the urethra by moving the actuator motor to a location elsewhere in the lower abdomen or pelvis, and coupling the actuator to the motor via a transmission cable.
[0141] The present invention also may be beneficially employed to perform isolated-organ perfusion. The treatment of certain cancers requires exposure to levels of chemotherapy agents that are too high for systemic circulation. It has been suggested that one solution to this problem is perform an open surgery procedure in which blood flow to the cancerous organ is stopped and quiescent blood replaced by circulation from an external source containing a desired dose of drug. Individual or multiple rings of the present invention may be used as valves to isolate the cancerous organ and permit perfusion of the organ with high doses of drugs. Such procedures could thus be performed on a repetitive basis without surgery, thereby reducing the trauma and the risk to the patient while improving patient outcomes.
[0142] Although particular embodiments of the present invention have been described above in detail, it will be understood that this description is merely for purposes of illustration. Further variations will be apparent to one skilled in the art in light of this disclosure and are intended to fall within the scope of the appended claims.
(57)

Claims

1. A system for constricting a stomach of a patient for treating obesity, the system comprising:
a gastric band having a first end, a second end, a distal region and a proximal region and a connector configured to couple the first end with the second end such that the gastric band is formable into a loop to circumscribe the stomach;
a membrane disposed between the first end and the second end of the gastric band;
at least one cushion segment coupled to the membrane and disposed on the proximal region of the gastric band; and
a mechanism for enabling adjustment of an inner circumference of the loop, the mechanism comprising an interface connected to the gastric band, and a control capable of communicating with the interface to regulate constriction of the gastric band about the stomach;
wherein the membrane includes at least one support wedge secured to the at least one cushion segment.
2. The system of claim 1 wherein the at least one cushion segment comprises a plurality of cushion segments disposed on the proximal region.
3. The system of claim 2 wherein the membrane defines a plurality of tension segments disposed in a substantially alternating manner between adjacent cushion segments.
4. The system of claim 1 wherein the at least one cushion segment is made of a substantially incompressible material.
5. The system of claim 1 wherein the at least one cushion segment is made of an incompressible material.
6. The system of claim 1 wherein the at least one cushion segment comprises a single incompressible cushion segment disposed along substantially the entire proximal region.
7. The system of claim 6 wherein the single incompressible cushion segment includes thick regions and relatively thin regions disposed in a substantially alternating manner between the thick regions.
8. The system of claim 1 wherein the at least one cushion segment is located on an external surface of the membrane.
9. The system of claim 1 wherein the at least one cushion segment is molded to the membrane.
10. The system of claim 1 wherein the at least one cushion segment is molded to an external surface of the membrane.
11. The system of claim 1 wherein the at least one cushion segment defines at least a portion of an inner circumferential surface of the gastric band when the gastric band is formed in the shape of the loop.
12. The system of claim 1 wherein the at least one cushion segment is substantially incompressible.
13. The system of claim 1 wherein the membrane includes corrugated surfaces to allow unfolding of the membrane during adjustment.
14. The system of claim 1 wherein the membrane is made of a first material and the at least one cushion segment is made of a second material having a different durometer than the first material.
15. The system of claim 1 wherein the at least one cushion segment is located on an internal surface of the membrane.
16. A system for constricting a stomach of a patient for treating obesity, the system comprising:
a gastric band having a first end, a second end, a distal region and a proximal region and a connector configured to couple the first end with the second end such that the gastric band is formable into a loop to circumscribe the stomach;
a contact region disposed between the first end and the second end of the gastric band, an inner circumference of the loop having a generally star-shape defined by the contact region; and
a mechanism for enabling adjustment of the inner circumference of the loop;
wherein the contact region includes a membrane and at least one cushion segment, the membrane disposed between the first end and the second end of the gastric band, and the at least one cushion segment coupled to the membrane and disposed on the proximal region of the gastric band, the membrane including at least one support wedge secured to the at least one cushion segment.
17. The system of claim 16 wherein the contact region includes a plurality of cushion segments spaced apart by a plurality of tension segments.
18. The system of claim 17 wherein the plurality of tension segments define vertices of the generally star-shape.
19. The system of claim 16 wherein the contact region is structured to prevent pinching of the organ when the gastric band is positioned around the stomach and the inner circumference is adjusted.
20. The system of claim 1 wherein the at least one cushion segment forms a substantially V-shaped surface.
21. The system of claim 1 wherein the at least one cushion segment comprises a plurality of cushion segments including a first segment defined by a convex stomach-facing surface and a second segment defined by a concave stomach-facing surface.
*****

Download Citation


Sign in to the Lens

Feedback