Method For Modifying Food Intake And Regulating Food Preference With A Dpp-4 Inhibitor

  *US09713618B2*
  US009713618B2                                 
(12)United States Patent(10)Patent No.: US 9,713,618 B2
 Klein et al. (45) Date of Patent:*Jul.  25, 2017

(54)Method for modifying food intake and regulating food preference with a DPP-4 inhibitor 
    
(75)Inventors: Thomas Klein,  Radolfzell (DE); 
  Michael Mark,  Biberach an der Riss (DE) 
(73)Assignee:Boehringer Ingelheim International GmbH,  Ingelheim am Rhein (DE), Type: Foreign Company 
(*)Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 189 days. 
  This patent is subject to a terminal disclaimer. 
(21)Appl. No.: 13/898,963 
(22)Filed: May  21, 2013 
(65)Prior Publication Data 
 US 2013/0324463 A1 Dec.  5, 2013 
(30)Foreign Application Priority Data 
 May  24, 2012     (EP)   12169265
Jan.  1, 2013 A 61 K 31 522 F I Jul.  25, 2017 US B H C Jan.  1, 2013 A 61 K 31 7028 L I Jul.  25, 2017 US B H C Jan.  1, 2013 A 61 K 38 26 L I Jul.  25, 2017 US B H C Jan.  1, 2013 A 61 K 45 06 L I Jul.  25, 2017 US B H C 1 1 Jan.  1, 2013 A 61 K 31 522 L I Jul.  25, 2017 US B H C 2 Jan.  1, 2013 A 61 K 2300 00 L A Jul.  25, 2017 US B H C 2 1 Jan.  1, 2013 A 61 K 31 7028 L I Jul.  25, 2017 US B H C 2 Jan.  1, 2013 A 61 K 2300 00 L A Jul.  25, 2017 US B H C 3 1 Jan.  1, 2013 A 61 K 38 26 L I Jul.  25, 2017 US B H C 2 Jan.  1, 2013 A 61 K 2300 00 L A Jul.  25, 2017 US B H C
(51)Int. Cl. A61K 031/522 (20060101); A61K 031/7028 (20060101); A61K 038/26 (20060101); A61K 045/06 (20060101)

 
(56)References Cited
 
 U.S. PATENT DOCUMENTS
 2,056,046  A  9/1936    Fourneau     
 2,375,138  A  5/1945    Victors     
 2,629,736  A  2/1953    Krimmel     
 2,730,544  A  1/1956    Sahyun     
 2,750,387  A  6/1956    Krimmel     
 2,928,833  A  3/1960    Leake et al.     
 3,174,901  A  3/1965    Sterne     
 3,236,891  A  2/1966    Seemuller     
 3,454,635  A  7/1969    Muth     
 3,673,241  A  6/1972    Marxer     
 3,925,357  A  12/1975    Okada et al.     
 4,005,208  A  1/1977    Bender et al.     
 4,061,753  A  12/1977    Bodor et al.     
 4,382,091  A  5/1983    Benjamin et al.     
 4,599,338  A  7/1986    Regnier et al.     
 4,639,436  A  1/1987    Junge et al.     
 4,687,777  A  8/1987    Meguro et al.     
 4,743,450  A  5/1988    Harris et al.     
 4,816,455  A  3/1989    Schickaneder et al.     
 4,873,330  A  10/1989    Lindholm     
 4,968,672  A  11/1990    Jacobson et al.     
 5,041,448  A  8/1991    Janssens et al.     
 5,051,509  A  9/1991    Nagano et al.     
 5,051,517  A  9/1991    Findeisen et al.     
 5,084,460  A  1/1992    Munson, Jr. et al.     
 5,130,244  A  7/1992    Nishimaki et al.     
 5,164,526  A  11/1992    Macher     
 5,219,870  A  6/1993    Kim     
 5,223,499  A  6/1993    Greenlee et al.     
 5,234,897  A  8/1993    Findeisen et al.     
 5,258,380  A  11/1993    Janssens et al.     
 5,266,555  A  11/1993    Findeisen et al.     
 5,273,995  A  12/1993    Roth     
 5,284,967  A  2/1994    Macher     
 5,300,298  A  4/1994    LaNoue     
 5,329,025  A  7/1994    Wong et al.     
 5,332,744  A  7/1994    Chakravarty et al.     
 5,389,642  A  2/1995    Dorsch et al.     
 5,399,578  A  3/1995    Buhlmayer et al.     
 5,407,929  A  4/1995    Takahashi et al.     
 5,461,066  A  10/1995    Gericke et al.     
 5,470,579  A  11/1995    Bonte et al.     
 5,591,762  A  1/1997    Hauel et al.     
 5,594,003  A  1/1997    Hauel et al.     
 5,602,127  A  2/1997    Hauel et al.     
 5,614,519  A  3/1997    Hauel et al.     
 5,719,279  A  2/1998    Kufner-Muhl et al.     
 5,728,849  A  3/1998    Bouchard et al.     
 5,753,635  A  5/1998    Buckman et al.     
 5,830,908  A  11/1998    Grunenberg et al.     
 5,879,708  A  3/1999    Makino et al.     
 5,958,951  A  9/1999    Ahrndt et al.     
 5,965,555  A  10/1999    Gebert et al.     
 5,965,592  A  10/1999    Buhlmayer et al.     
 6,011,049  A  1/2000    Whitcomb     
 6,107,302  A  8/2000    Carter et al.     
 6,166,063  A  12/2000    Villhauer     
 6,200,958  B1  3/2001    Odaka et al.     
 6,248,758  B1  6/2001    Klokkers et al.     
 6,303,661  B1  10/2001    Demuth et al.     
 6,342,601  B1  1/2002    Bantick et al.     
 6,372,940  B1  4/2002    Cavazza     
 6,448,323  B1  9/2002    Jordan et al.     
 6,548,481  B1  4/2003    Demuth et al.     
 6,579,868  B1  6/2003    Asano et al.     
 6,727,261  B2  4/2004    Gobbi et al.     
 6,784,195  B2  8/2004    Hale et al.     
 6,821,978  B2  11/2004    Chackalamannil et al.     
 6,869,947  B2  3/2005    Kanstrup et al.     
 6,890,898  B2  5/2005    Bachovchin et al.     
 6,995,183  B2  2/2006    Hamann et al.     
 7,034,039  B2  4/2006    Oi et al.     
 7,060,722  B2  6/2006    Kitajima et al.     
 7,074,794  B2  7/2006    Kitajima et al.     
 7,074,798  B2  7/2006    Yoshikawa et al.     
 7,074,923  B2  7/2006    Dahanukar et al.     
 7,109,192  B2  9/2006    Hauel et al.     
 7,179,809  B2  2/2007    Eckhardt et al.     
 7,183,280  B2  2/2007    Himmelsbach et al.     
 7,192,952  B2  3/2007    Kanstrup et al.     
 7,217,711  B2  5/2007    Eckhardt et al.     
 7,220,750  B2  5/2007    Himmelsbach et al.     
 7,235,538  B2  6/2007    Kanstrup et al.     
 7,247,478  B2  7/2007    Eberhardt et al.     
 7,291,642  B2  11/2007    Kauffmann-Hefner et al.     
 7,361,687  B2  4/2008    Barth et al.     
 7,393,847  B2  7/2008    Eckhardt et al.     
 7,407,955  B2  8/2008    Himmelsbach et al.     
 7,407,995  B2  8/2008    Ok et al.     
 7,432,262  B2  10/2008    Eckhardt et al.     
 7,439,370  B2  10/2008    Eckhardt     
 7,470,716  B2  12/2008    Eckhardt et al.     
 7,476,671  B2  1/2009    Eckhardt et al.     
 7,482,337  B2  1/2009    Himmelsbach et al.     
 7,495,002  B2  2/2009    Langkopf et al.     
 7,495,003  B2  2/2009    Eckhardt et al.     
 7,495,005  B2  2/2009    Himmelsbach et al.     
 7,501,426  B2  3/2009    Himmelsbach et al.     
 7,550,455  B2  6/2009    Himmelsbach et al.     
 7,560,450  B2  7/2009    Eckhardt et al.     
 7,566,707  B2  7/2009    Eckhardt et al.     
 7,569,574  B2  8/2009    Maier et al.     
 7,579,449  B2  8/2009    Eckhardt et al.     
 7,610,153  B2  10/2009    Carter, Jr. et al.     
 7,645,763  B2  1/2010    Himmelsbach et al.     
 7,718,666  B2  5/2010    Boehringer et al.     
 7,754,481  B2  7/2010    Eberhardt et al.     
 7,799,782  B2  9/2010    Munson et al.     
 7,820,815  B2  10/2010    Pfrengle et al.     
 7,838,529  B2  11/2010    Himmelsbach et al.     
 8,039,477  B2  10/2011    Hendrix et al.     
 8,071,583  B2  12/2011    Himmelsbach     
 8,106,060  B2  1/2012    Pfrengle et al.     
 8,119,648  B2  2/2012    Himmelsbach et al.     
 8,158,633  B2  4/2012    Hendrix et al.     
 8,178,541  B2  5/2012    Himmelsbach et al.     
 8,232,281  B2  7/2012    Dugi et al.     
 8,338,450  B2  12/2012    Arora et al.     
 8,455,435  B2  6/2013    Franz et al.     
 8,513,264  B2  8/2013    Mark et al.     
 8,541,450  B2  9/2013    Pfrengle et al.     
 8,637,530  B2  1/2014    Pfrengle et al.     
 8,664,232  B2  3/2014    Himmelsbach et al.     
 8,673,927  B2  3/2014    Dugi et al.     
 8,679,520  B2  3/2014    Horres et al.     
 8,697,868  B2  4/2014    Himmelsbach et al.     
 8,785,455  B2  7/2014    Hotter et al.     
 8,846,695  B2  9/2014    Dugi     
 8,853,156  B2  10/2014    Dugi et al.     
 8,865,729  B2  10/2014    Sieger et al.     
 8,883,800  B2  11/2014    Pfrengle et al.     
 8,883,805  B2  11/2014    Pfrengle et al.     
 8,962,636  B2  2/2015    Pfrengle et al.     
 9,034,883  B2  5/2015    Klein et al.     
 9,108,964  B2  8/2015    Himmelsbach et al.     
 9,149,478  B2  10/2015    Klein et al.     
 9,155,705  B2  10/2015    Friedl et al.     
 9,173,859  B2  11/2015    Dugi et al.     
 9,186,392  B2  11/2015    Klein et al.     
 9,199,998  B2  12/2015    Pfrengle et al.     
 9,212,183  B2  12/2015    Sieger et al.     
 9,266,888  B2  2/2016    Sieger et al.     
 9,321,791  B2  4/2016    Himmelsbach et al.     
 9,415,016  B2  8/2016    Friedl et al.     
 9,457,029  B2  10/2016    Dugi et al.     
 2001//0020006  A1  9/2001    Demuth et al.     
 2001//0051646  A1  12/2001    Demuth et al.     
 2002//0019411  A1  2/2002    Robl et al.     
 2002//0137903  A1  9/2002    Ellsworth et al.     
 2002//0160047  A1  10/2002    Hussain et al.     
 2002//0161001  A1  10/2002    Kanstrup et al.     
 2002//0169174  A1  11/2002    Chackalamannil et al.     
 2002//0198205  A1  12/2002    Himmelsbach et al.     
 2003//0040490  A1  2/2003    Sugiyama et al.     
 2003//0078269  A1  4/2003    Pearson et al.     
 2003//0100563  A1  5/2003    Edmondson et al.     
 2003//0105077  A1  6/2003    Kanstrup et al.     
 2003//0114390  A1  6/2003    Washburn et al.     
 2003//0130313  A1  7/2003    Fujino et al.     
 2003//0149071  A1  8/2003    Gobbi et al.     
 2003//0153509  A1  8/2003    Bachovchin et al.     
 2003//0166578  A1  9/2003    Arch et al.     
 2003//0199528  A1  10/2003    Kanstrup et al.     
 2003//0224043  A1  12/2003    Appel et al.     
 2003//0232987  A1  12/2003    Dahanukar et al.     
 2003//0236272  A1  12/2003    Carr     
 2004//0023981  A1  2/2004    Ren et al.     
 2004//0034014  A1  2/2004    Kanstrup et al.     
 2004//0037883  A1  2/2004    Zhou et al.     
 2004//0063725  A1  4/2004    Barth et al.     
 2004//0077645  A1  4/2004    Himmelsbach et al.     
 2004//0082570  A1  4/2004    Yoshikawa et al.     
 2004//0087587  A1  5/2004    Himmelsbach et al.     
 2004//0097510  A1  5/2004    Himmelsbach et al.     
 2004//0116328  A1  6/2004    Yoshikawa et al.     
 2004//0122048  A1  6/2004    Benjamin et al.     
 2004//0122228  A1  6/2004    Maier et al.     
 2004//0126358  A1  7/2004    Warne et al.     
 2004//0138214  A1  7/2004    Himmelsbach et al.     
 2004//0138215  A1  7/2004    Eckhardt et al.     
 2004//0152659  A1  8/2004    Matsuoka et al.     
 2004//0152720  A1  8/2004    Hartig et al.     
 2004//0166125  A1  8/2004    Himmelsbach et al.     
 2004//0171836  A1  9/2004    Fujino et al.     
 2004//0180925  A1  9/2004    Matsuno et al.     
 2004//0259903  A1  12/2004    Boehringer et al.     
 2005//0020574  A1  1/2005    Hauel et al.     
 2005//0026921  A1  2/2005    Eckhardt et al.     
 2005//0032804  A1  2/2005    Cypes et al.     
 2005//0065145  A1  3/2005    Cao et al.     
 2005//0070562  A1  3/2005    Jones et al.     
 2005//0070594  A1  3/2005    Kauschke et al.     
 2005//0130985  A1  6/2005    Himmelsbach et al.     
 2005//0143377  A1  6/2005    Himmelsbach et al.     
 2005//0171093  A1  8/2005    Eckhardt et al.     
 2005//0187227  A1  8/2005    Himmelsbach et al.     
 2005//0203095  A1  9/2005    Eckhardt et al.     
 2005//0234108  A1  10/2005    Himmelsbach et al.     
 2005//0234235  A1  10/2005    Eckhardt et al.     
 2005//0239778  A1  10/2005    Konetzki et al.     
 2005//0244502  A1  11/2005    Mathias et al.     
 2005//0256310  A1  11/2005    Hulin et al.     
 2005//0261271  A1  11/2005    Feng et al.     
 2005//0261352  A1  11/2005    Eckhardt     
 2005//0266080  A1  12/2005    Desai et al.     
 2005//0276794  A1  12/2005    Papas et al.     
 2006//0004074  A1  1/2006    Eckhardt et al.     
 2006//0034922  A1  2/2006    Cheng et al.     
 2006//0039968  A1  2/2006    Manikandan et al.     
 2006//0039974  A1  2/2006    Akiyama et al.     
 2006//0047125  A1  3/2006    Leonardi et al.     
 2006//0058323  A1  3/2006    Eckhardt et al.     
 2006//0063787  A1  3/2006    Yoshikawa et al.     
 2006//0074058  A1  4/2006    Holmes et al.     
 2006//0079541  A1  4/2006    Langkopf et al.     
 2006//0094722  A1  5/2006    Yasuda et al.     
 2006//0100199  A1  5/2006    Yoshikawa et al.     
 2006//0106035  A1  5/2006    Hendrix et al.     
 2006//0111372  A1  5/2006    Hendrix et al.     
 2006//0111379  A1  5/2006    Guillemont et al.     
 2006//0134206  A1  6/2006    Iyer et al.     
 2006//0142310  A1  6/2006    Pfrengle et al.     
 2006//0154866  A1  7/2006    Chu et al.     
 2006//0159746  A1  7/2006    Troup et al.     
 2006//0173056  A1  8/2006    Kitajima et al.     
 2006//0205711  A1  9/2006    Himmelsbach et al.     
 2006//0205943  A1  9/2006    Dahanukar et al.     
 2006//0247226  A1  11/2006    Himmelsbach et al.     
 2006//0270668  A1  11/2006    Chew et al.     
 2006//0270701  A1  11/2006    Kroth et al.     
 2007//0027168  A1  2/2007    Pfrengle et al.     
 2007//0060530  A1  3/2007    Christopher et al.     
 2007//0072803  A1  3/2007    Chu et al.     
 2007//0072810  A1  3/2007    Asakawa     
 2007//0088038  A1  4/2007    Eckhardt et al.     
 2007//0093659  A1  4/2007    Bonfanti et al.     
 2007//0142383  A1  6/2007    Eckhardt et al.     
 2007//0173452  A1  7/2007    DiMarchi et al.     
 2007//0185091  A1  8/2007    Himmelsbach et al.     
 2007//0196472  A1  8/2007    Kiel et al.     
 2007//0197522  A1  8/2007    Edwards et al.     
 2007//0219178  A1  9/2007    Muramoto     
 2007//0254944  A1  11/2007    Hughes     
 2007//0259900  A1  11/2007    Sieger et al.     
 2007//0259925  A1  11/2007    Boehringer et al.     
 2007//0259927  A1  11/2007    Suzuki et al.     
 2007//0281940  A1  12/2007    Dugi et al.     
 2007//0299076  A1  12/2007    Piotrowski et al.     
 2008//0039427  A1  2/2008    Ray et al.     
 2008//0107731  A1  5/2008    Kohlrausch et al.     
 2008//0108816  A1  5/2008    Zutter     
 2008//0234291  A1  9/2008    Francois et al.     
 2008//0249089  A1  10/2008    Himmelsbach et al.     
 2008//0255159  A1  10/2008    Himmelsbach et al.     
 2008//0312243  A1  12/2008    Eckhardt et al.     
 2008//0318922  A1  12/2008    Nakahira et al.     
 2009//0023920  A1  1/2009    Eckhardt     
 2009//0088408  A1  4/2009    Meade et al.     
 2009//0088569  A1  4/2009    Eckhardt et al.     
 2009//0093457  A1  4/2009    Himmelsbach et al.     
 2009//0131432  A1  5/2009    Himmelsbach et al.     
 2009//0136596  A1  5/2009    Munson et al.     
 2009//0137801  A1  5/2009    Himmelsbach et al.     
 2009//0149483  A1  6/2009    Nakahira et al.     
 2009//0186086  A1  7/2009    Shankar et al.     
 2009//0192314  A1  7/2009    Pfrengle et al.     
 2009//0297470  A1  12/2009    Franz     
 2009//0301105  A1  12/2009    Loerting     
 2009//0325926  A1  12/2009    Himmelsbach     
 2010//0074950  A1  3/2010    Sesha     
 2010//0092551  A1  4/2010    Nakamura et al.     
 2010//0173916  A1  7/2010    Himmelsbach et al.     
 2010//0179191  A1  7/2010    Himmelsbach et al.     
 2010//0183531  A1  7/2010    Johncock et al.     
 2010//0204250  A1  8/2010    Himmelsbach et al.     
 2010//0209506  A1  8/2010    Eisenreich     
 2010//0310664  A1  12/2010    Watson et al.     
 2010//0317575  A1  12/2010    Pinnetti et al.     
 2010//0330177  A1  12/2010    Pourkavoos     
 2011//0009391  A1  1/2011    Braun et al.     
 2011//0028391  A1  2/2011    Holst et al.     
 2011//0046076  A1  2/2011    Eickelmann et al.     
 2011//0065731  A1  3/2011    Dugi et al.     
 2011//0092510  A1  4/2011    Klein et al.     
 2011//0098240  A1  4/2011    Dugi et al.     
 2011//0112069  A1  5/2011    Himmelsbach et al.     
 2011//0144083  A1  6/2011    Himmelsbach et al.     
 2011//0144095  A1  6/2011    Himmelsbach et al.     
 2011//0190322  A1  8/2011    Klein et al.     
 2011//0195917  A1  8/2011    Dugi et al.     
 2011//0206766  A1  8/2011    Friedl et al.     
 2011//0263493  A1  10/2011    Dugi et al.     
 2011//0263617  A1  10/2011    Mark et al.     
 2011//0275561  A1  11/2011    Graefe-Mody et al.     
 2011//0301182  A1  12/2011    Dugi     
 2012//0003313  A1  1/2012    Kohlrausch et al.     
 2012//0035158  A1  2/2012    Himmelsbach et al.     
 2012//0040982  A1  2/2012    Himmelsbach et al.     
 2012//0053173  A1  3/2012    Banno et al.     
 2012//0094894  A1  4/2012    Graefe-Mody et al.     
 2012//0107398  A1  5/2012    Schneider et al.     
 2012//0121530  A1  5/2012    Klein et al.     
 2012//0122776  A1  5/2012    Graefe-Mody et al.     
 2012//0129874  A1  5/2012    Sieger et al.     
 2012//0142712  A1  6/2012    Pfrengle et al.     
 2012//0165251  A1  6/2012    Klein et al.     
 2012//0208831  A1  8/2012    Himmelsbach et al.     
 2012//0219622  A1  8/2012    Kohlrausch et al.     
 2012//0219623  A1  8/2012    Meinicke     
 2012//0252782  A1  10/2012    Himmelsbach et al.     
 2012//0252783  A1  10/2012    Himmelsbach et al.     
 2012//0296091  A1  11/2012    Sieger et al.     
 2013//0064887  A1  3/2013    Ito et al.     
 2013//0122089  A1  5/2013    Kohlrausch et al.     
 2013//0172244  A1  7/2013    Klein et al.     
 2013//0184204  A1  7/2013    Pfrengle et al.     
 2013//0196898  A1  8/2013    Dugi et al.     
 2013//0236543  A1  9/2013    Ito et al.     
 2013//0303554  A1  11/2013    Klein et al.     
 2013//0315975  A1  11/2013    Klein et al.     
 2013//0317046  A1  11/2013    Johansen     
 2013//0324463  A1  12/2013    Klein et al.     
 2014//0100236  A1  4/2014    Busl et al.     
 2014//0274889  A1  9/2014    Johansen et al.     
 2014//0343014  A1  11/2014    Klein et al.     
 2014//0371243  A1  12/2014    Klein et al.     
 2015//0196565  A1  7/2015    Klein et al.     
 2015//0246045  A1  9/2015    Klein et al.     
 2015//0265538  A1  9/2015    Balthes et al.     
 2016//0082011  A1  3/2016    Klein et al.     
 2016//0106677  A1  4/2016    Boeck et al.     
 2016//0310435  A1  10/2016    Friedl et al.     

 
 FOREIGN PATENT DOCUMENTS 
 
       AU       2003280680       A1                6/2004      
       AU       2009224546       A1                9/2009      
       CA       1123437       A1                5/1982      
       CA       2136288       A1                5/1995      
       CA       2418656       A1                2/2002      
       CA       2435730       A1                9/2002      
       CA       2496249       A1                3/2004      
       CA       2496325       A1                3/2004      
       CA       2498423       A1                4/2004      
       CA       2505389       A1                5/2004      
       CA       2508233       A1                6/2004      
       CA       2529729       A1                12/2004      
       CA       2543074       A1                6/2005      
       CA       2555050       A1                9/2005      
       CA       2556064       A1                9/2005      
       CA       2558067       A1                10/2005      
       CA       2558446       A1                10/2005      
       CA       2561210       A1                10/2005      
       CA       2562859       A1                11/2005      
       CA       2576294       A1                3/2006      
       CA       2590912       A1                6/2006      
       CA       2599419       A1                11/2006      
       CA       2651019       A1                11/2007      
       CA       2651089       A1                11/2007      
       CN       101234105       A                8/2008      
       DE       2205815       A1                8/1973      
       DE       2758025       A1                7/1979      
       DE       19705233       A1                8/1998      
       DE       10109021       A1                9/2002      
       DE       10117803       A1                10/2002      
       DE       10238243       A1                3/2004      
       DE       102004019540       A1                11/2005      
       DE       102004024454       A1                12/2005      
       DE       102004044221       A1                3/2006      
       DE       102004054054       A1                5/2006      
       EP       0023032       A1                1/1981      
       EP       0149578       A2                7/1985      
       EP       0223403       A2                5/1987      
       EP       0237608       A1                9/1987      
       EP       0248634       A2                12/1987      
       EP       0342675       A2                11/1989      
       EP       0389282       A2                9/1990      
       EP       0399285       A1                11/1990      
       EP       0400974       A1                12/1990      
       EP       409281       A1                1/1991      
       EP       0412358       A1                2/1991      
       EP       443983       A1                8/1991      
       EP       0475482       A1                3/1992      
       EP       0524482       A1                1/1993      
       EP       0638567       A1                2/1995      
       EP       0657454       A1                6/1995      
       EP       0775704       A1                5/1997      
       EP       0950658       A1                10/1999      
       EP       1054012       A1                11/2000      
       EP       1066265       A1                1/2001      
       EP       1310245       A1                5/2003      
       EP       1333033                         8/2003      
       EP       1338595       A2                8/2003      
       EP       1406873       A2                4/2004      
       EP       1500403       A1                1/2005      
       EP       1514552       A1                3/2005      
       EP       1523994       A1                4/2005      
       EP       1535906       A1                6/2005      
       EP       1537880       A1                6/2005      
       EP       1557165       A1                7/2005      
       EP       1586571       A1                10/2005      
       EP       1743655       A1                1/2007      
       EP       1760076                         3/2007      
       EP       1829877       A1                9/2007      
       EP       1852108       A1                11/2007      
       EP       1897892       A2                3/2008      
       EP       2143443       A1                1/2010      
       ES       385302       A1                4/1973      
       ES       2256797       T3                7/2006      
       ES       2263057       T3                12/2006      
       FR       2707641       A1                1/1995      
       GB       2084580       A                4/1982      
       HU       9003243                         5/1990      
       HU       9902308       A2                7/2000      
       JP       S374895       A                6/1962      
       JP       770120                         3/1995      
       JP       8333339                         12/1996      
       JP       11193270                         7/1999      
       JP       2000502684       A                3/2000      
       JP       2001213770       A                8/2001      
       JP       2001278812       A                10/2001      
       JP       2001292388       A                10/2001      
       JP       2002348279       A                12/2002      
       JP       2003286287       A                10/2003      
       JP       2003300977       A                10/2003      
       JP       2004161749       A                6/2004      
       JP       2004250336       A                9/2004      
       JP       2006045156       A                2/2006      
       JP       2010053576       A                3/2010      
       JP       2010070576       A                4/2010      
       JP       2010524580       A                7/2010      
       KR       20070111099       A                11/2007      
       WO       8706941       A1                11/1987      
       WO       9107945       A1                6/1991      
       WO       9205175       A1                4/1992      
       WO       9219227       A2                11/1992      
       WO       9402150       A1                2/1994      
       WO       9403456       A1                2/1994      
       WO       9532178       A1                11/1995      
       WO       9609045       A1                3/1996      
       WO       9611917       A1                4/1996      
       WO       9636638       A1                11/1996      
       WO       9718814       A1                5/1997      
       WO       9723447       A1                7/1997      
       WO       9723473       A1                7/1997      
       WO       9746526       A1                12/1997      
       WO       9807725                         2/1998      
       WO       9811893                         3/1998      
       WO       9818770       A1                5/1998      
       WO       9822464       A1                5/1998      
       WO       9828007       A1                7/1998      
       WO       9840069       A2                9/1998      
       WO       9846082       A1                10/1998      
       WO       9856406       A1                12/1998      
       WO       9929695       A1                6/1999      
       WO       9938501       A2                8/1999      
       WO       9950248       A1                10/1999      
       WO       9956561       A1                11/1999      
       WO       9967279       A1                12/1999      
       WO       0069464       A1                11/2000      
       WO       0072799       A2                12/2000      
       WO       0073307       A2                12/2000      
       WO       0078735       A1                12/2000      
       WO       0107441       A1                2/2001      
       WO       0132158       A2                5/2001      
       WO       0140180       A2                6/2001      
       WO       0147514       A1                7/2001      
       WO       0151919                         7/2001      
       WO       0152825                         7/2001      
       WO       0152825       A2                7/2001      
       WO       0152852       A1                7/2001      
       WO       0166548       A1                9/2001      
       WO       0168603                         9/2001      
       WO       0168646       A1                9/2001      
       WO       0172290       A2                10/2001      
       WO       0177110       A1                10/2001      
       WO       0196301       A1                12/2001      
       WO       0197808       A1                12/2001      
       WO       0202560       A2                1/2002      
       WO       0214271       A1                2/2002      
       WO       0224698       A1                3/2002      
       WO       02053516       A2                7/2002      
       WO       02068420       A1                9/2002      
       WO       03000241       A2                1/2003      
       WO       03000250                         1/2003      
       WO       03002531       A2                1/2003      
       WO       03002553       A2                1/2003      
       WO       03004496       A1                1/2003      
       WO       03024965       A2                3/2003      
       WO       03033686       A2                4/2003      
       WO       03034944       A1                5/2003      
       WO       03037327       A1                5/2003      
       WO       03053929       A1                7/2003      
       WO       03055881       A1                7/2003      
       WO       03057200       A2                7/2003      
       WO       03059327                         7/2003      
       WO       03064454       A1                8/2003      
       WO       03074500       A2                9/2003      
       WO       03088900       A2                10/2003      
       WO       03094909       A2                11/2003      
       WO       03099279       A1                12/2003      
       WO       03099836       A1                12/2003      
       WO       03104229       A1                12/2003      
       WO       03106428       A1                12/2003      
       WO       2003103629       A1                12/2003      
       WO       2004002924       A1                1/2004      
       WO       2004011416       A1                2/2004      
       WO       2004016587       A1                2/2004      
       WO       2004018467       A2                3/2004      
       WO       2004018468       A2                3/2004      
       WO       2004018469       A1                3/2004      
       WO       2004028524       A1                4/2004      
       WO       2004033455       A1                4/2004      
       WO       2004035575       A1                4/2004      
       WO       2004037169       A2                5/2004      
       WO       2004041820       A1                5/2004      
       WO       2004043940                         5/2004      
       WO       2004046148       A1                6/2004      
       WO       2004048379       A1                6/2004      
       WO       2004050658       A1                6/2004      
       WO       2004052362       A1                6/2004      
       WO       2004058233       A1                7/2004      
       WO       2004062689       A1                7/2004      
       WO       2004065380       A1                8/2004      
       WO       2004074246       A2                9/2004      
       WO       2004081006       A1                9/2004      
       WO       2004082402       A1                9/2004      
       WO       2004096806       A1                11/2004      
       WO       2004096811       A1                11/2004      
       WO       2004106279       A2                12/2004      
       WO       2004108730       A1                12/2004      
       WO       2004111051       A1                12/2004      
       WO       2005000846       A1                1/2005      
       WO       2005000848       A1                1/2005      
       WO       2005007647       A1                1/2005      
       WO       2005007658       A2                1/2005      
       WO       2005012288       A1                2/2005      
       WO       2005023179       A2                3/2005      
       WO       2005049022       A2                6/2005      
       WO       2005051950       A1                6/2005      
       WO       2005058901       A1                6/2005      
       WO       2005061489       A1                7/2005      
       WO       2005063750       A1                7/2005      
       WO       2005082906       A1                9/2005      
       WO       2005085246       A1                9/2005      
       WO       2005092870       A1                10/2005      
       WO       2005092877       A1                10/2005      
       WO       2005095343       A1                10/2005      
       WO       2005095381       A1                10/2005      
       WO       2005097798       A                10/2005      
       WO       2005116000       A1                12/2005      
       WO       2005116014       A1                12/2005      
       WO       2005117861       A1                12/2005      
       WO       2005117948       A1                12/2005      
       WO       2006005613       A1                1/2006      
       WO       2006027204       A1                3/2006      
       WO       2006029577       A1                3/2006      
       WO       2006029769       A1                3/2006      
       WO       06041976       A1                4/2006      
       WO       2006036664       A1                4/2006      
       WO       2006040625       A1                4/2006      
       WO       2006047248       A1                5/2006      
       WO       2006048209       A1                5/2006      
       WO       2006048427       A1                5/2006      
       WO       2006068163       A1                6/2006      
       WO       2006071078       A1                7/2006      
       WO       2006076231       A2                7/2006      
       WO       2006078593       A2                7/2006      
       WO       2006083491       A2                8/2006      
       WO       2006116157                         11/2006      
       WO       2006135693       A2                12/2006      
       WO       2006137085       A1                12/2006      
       WO       2007007173       A2                1/2007      
       WO       2007014886       A1                2/2007      
       WO       2007014895       A2                2/2007      
       WO       2007017423       A1                2/2007      
       WO       2007033350       A1                3/2007      
       WO       2007035355       A2                3/2007      
       WO       2007035665       A1                3/2007      
       WO       2007041053       A2                4/2007      
       WO       2007050485       A2                5/2007      
       WO       2007071738                         6/2007      
       WO       2007072083       A1                6/2007      
       WO       2007078726       A2                7/2007      
       WO       2007093610       A1                8/2007      
       WO       2007099345       A1                9/2007      
       WO       2007120702       A2                10/2007      
       WO       2007120936       A2                10/2007      
       WO       2007128721       A                11/2007      
       WO       2007128724       A1                11/2007      
       WO       2007128761       A2                11/2007      
       WO       2007135196       A2                11/2007      
       WO       2007136151       A1                11/2007      
       WO       2007137107       A2                11/2007      
       WO       2007147185       A1                12/2007      
       WO       2007148185       A2                12/2007      
       WO       2007149797       A2                12/2007      
       WO       2008005569       A2                1/2008      
       WO       2008005576       A1                1/2008      
       WO       2008017670                         2/2008      
       WO       2008022267       A2                2/2008      
       WO       2008055870       A1                5/2008      
       WO       2008055940       A2                5/2008      
       WO       2008070692       A2                6/2008      
       WO       2008081205       A1                7/2008      
       WO       2008083238       A2                7/2008      
       WO       2008087198       A1                7/2008      
       WO       2008093878       A1                8/2008      
       WO       2008093882       A1                8/2008      
       WO       2008113000       A1                9/2008      
       WO       2008130998       A2                10/2008      
       WO       2008131149       A2                10/2008      
       WO       2008137435       A1                11/2008      
       WO       2009011451       A                1/2009      
       WO       2009022007       A1                2/2009      
       WO       2009022008       A1                2/2009      
       WO       2009022009       A1                2/2009      
       WO       2009022010       A1                2/2009      
       WO       2009024542       A2                2/2009      
       WO       2009063072       A2                5/2009      
       WO       2009099734       A1                8/2009      
       WO       2009111200       A1                9/2009      
       WO       2009112691       A2                9/2009      
       WO       2009121945       A2                10/2009      
       WO       2009123992       A1                10/2009      
       WO       2009147125       A1                12/2009      
       WO       2010015664       A1                2/2010      
       WO       2010018217       A2                2/2010      
       WO       2010029089       A2                3/2010      
       WO       2010043688       A1                4/2010      
       WO       2010045656       A2                4/2010      
       WO       2010072776       A1                7/2010      
       WO       2010079197       A1                7/2010      
       WO       2010086411       A1                8/2010      
       WO       2010092124       A1                8/2010      
       WO       2010092125       A1                8/2010      
       WO       2010092163       A2                8/2010      
       WO       2010096384       A2                8/2010      
       WO       2010106457       A2                9/2010      
       WO       2010140111       A1                12/2010      
       WO       2010147768       A1                12/2010      
       WO       2011011541       A1                1/2011      
       WO       2011039337       A1                4/2011      
       WO       2011039367       A2                4/2011      
       WO       2011064352       A1                6/2011      
       WO       2011113947       A1                9/2011      
       WO       2011138380       A1                11/2011      
       WO       2011138421       A1                11/2011      
       WO       2011161161       A1                12/2011      
       WO       2011163206       A2                12/2011      
       WO       2012031124       A2                3/2012      
       WO       2012065993       A1                5/2012      
       WO       2012088682       A1                7/2012      
       WO       2012089127       A1                7/2012      
       WO       2012106303       A1                8/2012      
       WO       2012120040       A1                9/2012      
       WO       2013098372       A1                7/2013      
       WO       2013103629       A1                7/2013      
       WO       2013131967       A1                9/2013      
       WO       2013171167       A1                11/2013      
       WO       2013174768       A1                11/2013      
       WO       2013179307       A2                12/2013      

 OTHER PUBLICATIONS
  
  Hansen, H.H. et al, The DPP-Iv inhibitor linagliptin and GLP-1 induce synergistic effects on body weight loss and appetite suppression in the diet-induced obese rat. European Journal of Pharmacology, 2014, vol. 741, p. 254-263. *
  Sharkovska, Y. et al. DPP-4 inhibition with linagliptin delays the progression of diabetic nephropathy in db/db mice. 48th EASD Annual Meeting, Berlin, Abstract 35, Oct. 2012. *
  Groop, P.H. et al. Effects of the DPP-4 inhibitor linagliptin on albuminuria in patients with type 2 diabetes and diabetic nephropathy. 48th EASD Annual Meeting, Berlin, Abstract 36, Oct. 2012. *
  Thomas, Leo, et al. Journal of Pharmacology and Experimental Therapeutics, American Society for Therapeutics, U.S. vol. 325, No. 1, Apr. 2008, p. 175-182, abstract p. 177. *
  Tsuprykov, O. et al. Linagliptin is as efficacious as telmisartan in preventing renal disease progression in rats with 5/6 nephrectomy. 73rd Annual Meeting Science Session, ADA, Chicago, Jun. 2013. *
  Aulinger, B.A. et al., “Ex-4 and the DPP-IV Inhibitor Vildagliptin have Additive Effects to Suppress Food Intake in Rodents”. Abstract No. 1545-P, 2008.
  Hansen, H. et al., “Co-Administration of the DPP-4 Inhibitor Linagliptin and Native GLP-1 Induce Body Weight Loss and Appetite Suppression.” 73rd Annual Meeting Science Session, ADA, Chicago, Jun. 21, 2013.
  Headland, K. et al., “The Effect of Combination Linagliptin and Voglibose on Glucose Control and Body Weight.” 73rd Annual Meeting Science Session, ADA, Chicago, Jun. 21, 2013.
  Nielsen, L., “Incretin Mimetics and DPP-IV Inhibitors for the Treatment of Type 2 Diabetes.” DDT, 2005, vol. 10, No. 10, pp. 703-710.
  Clinical Trials. NCTO0622284. “Efficacy and safety of BI 1356 in combination with metformin in patients with type 2 diabetes” ClinicalTrials.gov (Online) No. NCT00622284, Feb. 13, 2008, p. 1-5, URL:http://clinicaltrial.gov/ct2/show/.
  Clinical Trials. View of NCT00730275 updated on Aug. 7, 2008. “A study to assess the pharmacokinetics, safety and tolerability of Sitagliptin in adolescents”. http://clinicaltrials.gov/archive/NCT00730275/20080807.
  Clinical Trials: NCT00954447, View on Jun. 14, 2010. “Efficacy and Safety of Linagliptin in Combination with Insulin in Patients with Type 2 Diabetes”. <http://clinicaltrials.gov/archive/NCT00954447120100614>.
  Clinical Trials: NCT00309608, “Efficacy and Safety of BI 1356 BS (Linagliptin) in Combination With Metformin in Patients With type2 Diabetes” Boehringer Ingelheim Pharmaceuticals, last updated: Dec. 11, 2013.
  Clinical Trials: NCT00309608. Efficacy and safety of BI 1356 in combination with metformin in patients with type2 diabetes. Boehringer Ingelheim Pharmaceuticals, Jan. 27, 2009. Clinical Trials.gov . http://clinicaltrials.gov/archive/NCT00309608/20090127.
  Clinical Trials: NCT00602472. “BI 1356 in combination withe metformin and a sulphonylurea in Type 2 Diabetes”. DrugLib.com, Nov. 3, 2008. http://www.druglib.com/trial/08/NCT00309608.html.
  Clinical Trials: NCT00622284. Efficacy and Safety of BI 1356 in Combination with Metformin in Patients with Type 2 Diabetes. Boehringer Ingelheim Pharmaceuticals, Aug. 2008. http://clinicaltrials.gov/archive/NCT00622284/20100113.
  Clinical Trials: NCT00798161. “Safety and efficacy of Bi 1356 Plus Metformin in Type 2 Diabetes, Factorial Design”. Clinical Trials.gov archive. A Service of the U.S> National Institutes of Health. Nov. 24, 2008, p. 1-3. http://clinicaltrials.gov/archive/NCT00798161/20081124.
  Combs, D. W. et al., “Phosphoryl Chloride Induced Ring Contraction of 11,4-Benzodiazepinones to Chloromethylquinazolines”. J. Heterocyclic Chemistry, BD. 23, 1986, p. 1263-1264.
  Conarello, S.L. et al., “Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance”. PNAS, May 27, 2003, vol. 100, No. 11, p. 6825-6830.
  Conarello, S.L. et al; “Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance,” PNAS 2003; 100:6825-6830; originally published online May 14, 2003; information current as of Dec. 2006. www.pnas.org/cgi/content/full/100/11/6825.
  Cotton, M.L. et al., “L-649,923—The selection of an appropriate salt form and preparation of a stable oral formulation.” International Journal of Pharmaceutics, 1994, vol. 109, Issue 3, pp. 237-249.
  Cygankiewicz, Andrzej et al., Investigations into the Piperazine Derivatives of Dimethylxanthine:, ACTA Polon. Pharm. [Papers of Polish Pharmacology], XXXOV, No. 5, pp. 607-612, 1977.
  Dave, K.G. et al., “Reaction of Nitriles under Acidic Conditions, Part I. A General Method of Synthesis of Condensed Pyrimidines”, J. Heterocyclic Chemistry, BD, 17, 1, ISSN 0022-152X,Nov. 1980, p. 1497-1500.
  Dave, Rutesh H. “Overview of pharmaceutical excipients used in tablets and capsules.” Drug Topics, Oct. 24, 2008.
  Deacon, Carolyn F., et al., “Linagliptin, a xanthine based dipeptyl peptidase-4 inhibitor with an unusual profile for the treatment of type 2 diabetes” Expert Opinion Investig. Drugs 2010, 19 (1) p. 133-140.
  Deacon, C.F. et al; “Dipeptidyl peptidase IV inhabitation as an approach to the treatment and prevention of type 2 diabetes: a historical perspective;” Biochemical and Biophysical Research Communications (BBRC) 294 (2002) 1-4.
  Deacon, C.F., et al. Inhibitors of dipeptidyl peptidase IV: a novel approach for the prevention and treatment of Type 2 diabetes? Expert Opinion on Investigational Drugs, Sep. 2004, vol. 13, No. 9, p. 1091-1102.
  Deacon, Carolyn F. et al. “Linaglipitn, a xanthine-based dipeptidyl peptidase-4 inhibitor with an unusual profile for the treatment of type 2 diabetes” Expert Opin. Investig. Drugs (2010) 19(1): 133-140.
  Definition of “prevent”, e-dictionary, Aug. 15, 2013, http://dictionary.reference.com/browse/prevent.
  DeMEESTER, I. et al.; “CD26, let it cut or cut it down”, Review: Immunology Today; Aug. 1999, vol. 20, No. 8 pp. 367-375.
  Demuth, H-U. et al., “Type 2 diabetes—Therapy with dipeptidyl peptidase IV inhibitors”. Biochimica et Biophysica Acta, vol. 1751(1), 2005, p. 33-44.
  Diabetes Frontier, 2007, vol. 18, No. 2, p. 145-148.
  Diabetes Health Center, “Diabetic Retinopathy—Prevention.” Retrieved online Mar. 22, 2011. www.diabetes.webmd.com/tc/diabetic-retinopathy-prevention <http://www.diabetes.webmd.com/tc/diabetic-retinopathy-prevention?print=true>.
  Diabetesincontrol.com “EASD: Eucreas, a Combination of Galvus and Metformin, Recommended for Approval.” Diabetes In Control.com, Sep. 25, 2007, Retrieved from internet on Nov. 30, 2012, http:/ /www.diabetesincontrol.com/articles/53-diabetes-news/5145.
  Diabetic Neuropathy, Retrieved online Mar. 6, 2012. www.mayoclinic.com/health/diabetic-neuropathy/DS01045/METHOD=print&DSE <http://www.mayoclinic.com/health/diabetic-neuropathy/DS01045/METHOD=print&DSE>.
  Drucker, et al.., The incretin system:glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 2006, 368: 1696-705.
  Dugi, K.A. et al., “BI 1356, a novel xanthine-based DPP-IV inhibitor, exhibits high potency with a wide therapeutic window and significantly reduces postprandial glucose excursions after an oGTT”. Diabetologia, vol. 50, No. Suppl 1, Sep. 2007, p. S367, and 43rd Annual Meeting of the European Association for the Study of Diabetes; Amsterdam, Netherlands, Sep. 18-21, 2007.
  Dunitz, J. et al., “Disappearing Polymorphs.” Acc. Chem. Res. 1995, vol. 28, No. 4, pp. 193-200.
  Eckhardt Matthias et al: 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-yny 1-3-methyl-1-(4-methyl-quina zolin-2-ylmethyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes: Journal of Medicinal Chemistry, American Chemical Society. Washington.; US, vol. 50, No. 26, Dec. 1, 2007, p. 6450-6453.
  Eckhardt, M. et al., “3,5-dihydro-imidazo[4,5-d]pyridazin-4-ones: a class of potent DPP-4 inhibitors” Bioorganic & Medicinal Chemistry Letters, Pergamon, Elsevier Science, GB, vol. 18, No. 11, Jun. 1, 2008, pp. 3158-3162, XP022711188.
  Edosada, C. Y. et al. “Selective Inhibition of Fibroblast Activation Protein Protease Based on Dipeptide Substrate Specificity.” The Journal of Biological Chemistry, 2006, vol. 281, No. 11, pp. 7437-7444.
  Elrishi M A et al: “The dipeptidyl-peptidase-4 (D::-4) inhibitors: A new class of oral therapy for patients with type 2 diabetes mellitus” Practical Diabetes International Chichester, vol. 24, No. 9, Nov. 1, 2007 pp. 474-482.
  eMedicine Health, “Diabetes Causes.” Retrieved from internet on Aug. 22, 2013. <http://www.onhealth.com/diabeteshealth/page3.htm#diabetescauses>.
  Eucreas Scientific Discussion, 2007, p. 1-27, www.emea.europa.eu/humandocs/PD/Fs/EPAR/eucreas/H-807-en6.pdf, Anonymous.
  European Search Report for EP 08 15 9141 mailed Apr. 6, 2009 (European counterpart of U.S. Appl. No. 12/143,128).
  Ferreira, L. et al., “Effects of Sitagliptin Treatment on Dysmetabolism, Inflammation, and Oxidative Stress in an Animal Model of Type 2 Diabetes (ZDF Rat).” Mediators of Inflammation, 2010, vol. 2010, pp. 1-11.
  Ferry, Robert Jr., “Diabetes Causes.” eMedicine Health, MedicineNet.com, 2013, Retrieved from internet on Aug. 22, 2013, http://www.onhealth.com/diabeteshealth/page3.htm#diabetescauses.
  Florez, J. et al. “TCF7L2 Polymorphisms and Progression to Diabetes in the Diabetes Prevention Program.” The New England Journal of Medicine, 2006, vol. 355, No. 3, pp. 241-250.
  Florez, Jose C., et al., “TCF7L2 Polymorphisms and progression to diabetes in the diabetes prevention program”. New England Journal of Medicine, MA Medical Society, vol. 355, No. 2, Jul. 20, 2006, p. 241-250.
  Forst, T. et al., “The Novel, Potent, and Selective DPP-4 Inhibitor BI 1356 Significantly Lowers HbA1c after only 4 weeks of Treatment in Patients with Type 2 Diabetes.” Diabetes, Jun. 2007, Poster No. 0594P.
  Fukushima et al., Drug for Treating Type II Diabetes (6), “action-mechanism of DPP-IV inhibitor and the availability thereof” Mebio, 2009, vol. 26, No. 8, p. 50-58.
  Gallwitz, B. “Sitagliptin with Metformin: Profile of a Combination for the Treatment of Type 2 Diabetes”. Drugs of Today, Oct. 2007, 43(10), p. 681-689.
  Gallwitz, B. et al., “Saxagliptin, a dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes”. IDRUGS, vol. 11, No. 12, Dec. 2008, p. 906-917.
  Gallwitz, B. et al., DPP IV inhibitors for the Treatment of Type 2 Diabetes; Diabetes Frontier (2007) vol. 18, No. 6 pp. 636-642.
  Garber, A. J. et al., “Effects of Vildagliptin on Glucose Control in Patients with Type 2 Diabetes Inadequately Controlled with a Sulphonylurea”. Diabetes, Obesity and Metabolism (2008) vol. 10 pp. 1047-1055.
  Garber, A.J. et al., “Update: Vildaglitin for the treatment of Type 2 diabetes” Expert Opinion on Investigational Drugs, 200801GB, vol. 17, No. 1, Jan. 2008, p. 105-113.
  Garcia-Soria, et al., “The dipeptidyl peptidase-4 inhibitor PHX1149 improves blood glucose control in patents with type 2 diabetes mellitus”. Diabetes, Obesity and Metabolism, Apr. 2008, vol. 10, No. 4, p. 293-300.
  Geka, 2001, vol. 67, No. 11, p. 1295-1299.
  Gennaro, Alfonso R. Remington Farmacia, 2003, Spanish copy: p. 828, English copy: pp. 711-712, Preformulation, Chapter 38.
  Office Action for U.S. Appl. No. 10/695,597 mailed May 2, 2008.
  Sarafidis, P. et al., “Cardiometabolic Syndrome and Chronic Kidney Disease: What is the link?” JCMS 2006, 1: p. 58-65.
  Shintani, Maki, et al., “Insulin Resistance and Genes” Circulatory Sciences (1997) vol. 17, No. 12 pp. 1186-1188.
  Silverman, G. et al., “Handbook of Grignard Reagents.” 1996, Retrieved online: <http://books.google.com/books?id=82 Caxfy-uNkC&printsec=frontcover&dq=intitle:Handbook+intitle:of+intitle:Grignard+intitle:Reagents&hl=en&sa=X&ei=g06GUfSdOKngsATphYCgCg&ved=0CDYQ6AEwAA#v=onepage&q&f=false>.
  Singhal, D. et al., “Drug polymorphism and dosage form design: practical perspective.” Advanced Drug Delivery Reviews, 2004, vol. 56, pp. 335-347.
  Sortino, M.A. et al., “Linagliptin: a thorough characterization beyond its clinical efficacy.” Frontiers in Endocrinology, 2013, vol. 4, Article 16, pp. 1-9.
  St. John Providence Health Center, “Preventing Obesity in Children and Teens.” Retrieved from internet on Aug. 22, 2013, http://www.stjohnprovidence.org/Health I nfoLib/swarticle.aspx?type=85&id= P07863.
  Stahl, P.H., “Handbook of Pharamaceutical Salts”. C.G.Wermuth, Wiley-VCH, 2002, p. 61.
  Sune Negre, J. M. “New Galenic Contributions to Administration Forms”. Continued Training for Hospital Pharmacists 3.2., (Publication date unavailable), Retrieved from Internet on Feb. 23, 2011, http://www.ub.es/legmh/capitols/sunyenegre.pdf.
  Tamm, E, et al., “Double-blind study comparing the immunogenicity of a licenced DTwPHib-CRM197 conjugate vaccine (Quattvaxem TM) with three investigational, liquid formulations using lower doses of Hib-CRM197 conjugate”. Science Direct, Vaccine, Feb. 2005, vol. 23, No. 14, p. 1715-1719.
  Tanaka, S.. et al; “Suppression of Arthritis by the Inhibitors of Dipeptidyl Peptidase IV,” In. J. Immunopharmac., vol. 19, No. 1, pp. 15-24, 1997.
  Targher, G. et al., “Prevalence of Nonalcoholic Fatty Liver Disease and Its Association With Cardiovascular Disease Among Type 2 Diabetic Patients.” Diabetes Care, 2007, vol. 30. No. 5, pp. 1212-1218.
  Abstract in English for German DE10109021, 2002.
  Abstract in English for German DE2205815, 1972.
  Abstract in English for German EP0023032, 1981.
  Abstract in English for JP 2002/348279, Dec. 4, 2002.
  Abstract in English for JP 2003/286287, Oct. 10, 2003.
  Abstract in English, for KR20070111099, Nov. 11, 2007.
  Adebowale, K.O. et al., “Modification and properties of African yam bean (Sphenostylis stenocarpa Hochst. Ex A. Rich.) Harms starch I: Heat moisture treatments and annealing.” Food Hydrocolloids, 2009, vol. 23, No. 7, pp. 1947-1957.
  Ahren, Bo, et al; Improved Meal-Related b-Cell Function and Insulin Sensitivity by the Dipeptidyl Peptidase-IV Inhibitor Vildagliptin in Metformin-Treated Patients with Type 2 Diabetes Over 1 Year; Diabetes Care (2005) vol. 28, No. 8 pp. 1936-1940.
  Ahren, Bo; “DPP-4 inhibitors”, Best practice and research in clinical endocrinology and metabolism—New therapies for diabetes 200712 GB LNKD—DOI:10.1016/J. Beem.2007.07.005, vol. 21, No. 4, Dec. 2007, pp. 517-533.
  Alter, M. et al., “DPP-4 Inhibition on Top of Angiotensin Receptor Bockade Offers a New Therapeutic Approach for Diabetic Nephropathy.” Kidney and Blood Pressue Research, 2012, vol. 36, No. 1, pp. 119-130.
  American Diabetes Association, “Standards of Medical Care in Diabetes-2008.” Diabetes Care, Jan. 2008, vol. 31, Supplement 1, pp. S12-S54.
  Anonymous, Clinicaltrials.gov, 2008, No. NCT00622284, “Efficacy and Safety of BI 1356 in combination with metformin in patients with type 2 diabetes” p. 1-5.
  Anstee, Quentin M. et al. “Mouse models in non-alcholic fatty liver disease and steatohepatitis research” (2006) International Journal of Expermental Pathology, vol. 87, pp. 1-16.
  Augeri, D.J. “Discovery and Preclinical Profile of Saxagliptin (GMB-477118): A Highly Potent, Long-Acting, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes”. Journal Med. Chem, 2005, vol. 48, No. 15, p. 5025-5037.
  Augusti, D.V. et al., “Quantitative determination of the enantiomeric composition of thalidomide solutions by electrospray ionizatio tandem mass spectrometry”. Chem Comm, 2002, p. 2242-2243.
  Augustyns, K. et al., The Unique Properties of Dipeptidyl-peptidase IV (DPP IV/CD 26) and the Therapeutic Potential of DPP-IV Inhibitors, Current Medicinal Chemistry, vol. 6, No. 4, 1999, pp. 311-327.
  Balaban, Y.H.et al., “Dipeptidyl peptidase IV (DDP IV) in NASH patients” Annals of Hepatology, vol. 6, No. 4, Oct. 1, 2007, pp. 242-250, abstract.
  Balbach, S. et al., “Pharmaceutical evaluation of early development candidates the 100 mg-approach.” International Journal of Pharmaceutics, 2004, vol. 275, pp. 1-12.
  Balkan, B. et al, “Inhibition of dipeptidyl peptidase IV with NVP-DPP728 increases plasma GLP-1 (7-36 amide) concentrations and improves oral glucose tolerance in obses Zucker rates”. Diabetologia, 1999, 42, p. 1324-1331.
  Bastin, R.J. et al., “Salt Selection and Optimization Procedures for Pharmaceutical New Chemical Entities”. Organic Process Research and Development, 2000, vol. 4, p. 427-435.
  Beljean-Leymarie et al., Hydrazines et hydrazones hétérocycliques. IV. Synthèses de dérivés de l'hydrazine dans la série des imidazo[4,5-d]pyridazinones-4, Can. J. Chem., vol. 61, No. 11, 1983, pp. 2563-2566.
  Berge, S. et al., “Pharmaceutical Salts.” Journal of Pharmaceutical Sciences, 1977, vol. 66, No. 1, pp. 1-19.
  Bernstein, Joel “Polymorphism in Molecular Crystals.” Oxford University Press, 2002, p. 9.
  Bollag, R.J. et al; “Osteoblast-Derived Cells Express Functional Glucose-Dependent Insulinotropic Peptide Receptors,” Endocrinology, vol. 141, No. 3, 2000, pp. 1228-1235.
  Borloo, M. et al. “Dipeptidyl Peptidase IV: Development, Design, Synthesis and Biological Evaluation of Inhibitors.” 1994, Universitaire Instelling Antwerpen, vol. 56, pp. 57-88.
  Bosi, E. et al., “Effects of Vildagliptin on Glucose Control Over 24 Weeks in Patients With Type 2 Diabetes Inadequately Controlled With Metformin.” Diabetes Care, 2007, vol. 30, No. 4, pp. 890-895.
  Boulton, D.W. et al., “Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of Once-Daily Oral Doses of Saxagliptin for 2 Weeks in Type 2 Diabetic and Healthy Subjects.” Diabetes, 2007, Supplement 1, vol. 56, pp. A161.
  Brazg, R. et al: “Effect of adding sitagliptin, a dipeptidyll peptidase-4 inhibitor, to metformin on 24-h glycaemic control and beta-cell function in patients with type 2 diabetes.” Diabetes, Obesity and Metabolism, Mar. 2007, vol. 9, No. 2, Mar. 2007 pp. 186-193.
  Brazg, Ronald, et al; Effect of Adding MK-0431 to On-Going Metforming Therapy in Type 2 Diabetic Patients Who Have Inadequate Glycemic Control on Metformin; Diabetes ADA (2005) vol. 54, Suppl. 1 p. A3.
  Brittain, H.G., “Methods for the Characterization of Polymorphs: X-Ray Powder Diffraction,” Polymorphism in Pharmaceutical Solids, 1999, p. 235-238.
  Bundgaard, H. “Design of prodrugs: Bioreversible derivatives for various functional groups and chemical entities”. Royal Danish School of Pharmacy, 1985, p. 1-92.
  Busso et al., “Circulating CD26 is Negatively Associated with Inflammation in Human and Experimental Arthritis,” Am. J. Path., vol. 166, No. 2, Feb. 2005, pp. 433-442.
  Byrn, Stephen R. “Solid-State Chemistry of Drugs.” Academic Press, 1982, pp. 1-27.
  Caira, M.R., “Crystalline polymorphism of organic compounds” Topics in Current Chemistry, Springer, Berlin, vol. 198, 1998, p. 163-208.
  Campbell, R. Keith “Rationale for Dipeptidyl Peptidase 4 Inhibitors: A New Class of Oral Agents for the Treatment of Type 2 Diabetes Mellitus.” The Annals of Pharmacotherapy, Jan. 2007, vol. 41, pp. 51-60.
  Chan, J.C. et al., “Safety and efficacy of sitagliptin in patients with type 2 diabetes and chronic renal insufficiency.” 2008, Diabetes, Obesity and Metabolism, vol. 10, pp. 545-555.
  Charbonnel, B. et al., “Efficacy and Safety of the Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Added to Ongoing Metformin Therapy in Patients With Type 2 Diabetes Inadequately Controlled With Metformin Alone.” Diabetes Care, 2006, vol. 29, No. 12, pp. 2638-2643.
  Chaykovska, L. et al., “Effects of DPP-4 Inhibitors on the Heart in a Rat Model of Uremic Cardiomyopathy.” www.plosone.org, 2011, vol. 6, No. 11, p. e27861.
  ChemGaroo, “Leaving Group.” 1999, Retrieved online: http://www.chemgapedia.de/vsengine/vlu/vsc/en/ch/12/oc/vluorganik/substitution/sn2/sn 2. vlu/Page/vsc/en/ch/12/oc/substitution/sn2/abgangsgrupen/abgangsgruppe. vscml. html.
  Chemical Abstract. EP412358, 1991:185517, Findeisen.
  Chemical Abstract: FR2707641, 1995:543545, Dodey.
  Chemical Abstract: No. 211513-37-0—Dalcetrapib. “Propanethioic acid, 2-methyl-,S-(2-[[[1-(2-ethylbutyl)cyclohexyl}carbonyl}amino}pheyl}ester” . Formula: C23 H35 N O2 S. American Chemical Society. Sep. 20, 1998.
  Chemical Abstract: No. 875446-37-0—Anacetrapib. “2-Oxazolidinone, 5-[3,5-bis(trifluoromethyl)phenyl]-3[[4′fluoro-2′—methoxy-5′-(1-methylethyl)-4-(trifluoromethyl)[1,1′-biphenyl]-2-yl]methyl]-4-methyl-,(4S,5R)-” Formula: C30 H25 F10 N O3. American Chemical Society, Feb. 28, 2006.
  Chemical Abstracts Accession No. 106:95577 Romanenko et al., “Synthesis and Biological Activity of 3-Methyl, 7- or 8-alkyl-7,8dialkyl, heterocyclic, and cyclohexylaminoxanthines,” Zaporozh. Med. Institute (1986).
  Chemical Abstracts Accession No. 1987:95577: Abstract of Romanenko et al., “Synthesis and biological activity of 3-methyl, 7- or 8-alkyl, 7,8-dialkyl, heterocyclic, and cyclohexylaminoxanthines,” Zapoeozh, USSR, Farmatsevtichnii Zhurnal, 1986, (Kiev), vol. 5, 1986, pp. 41-44.
  Chemical Abstracts Service, Database Accession number No. RN 668270-12-01, 2004, “1H-Purine-2,6-dione, 8- [(3R)-3-amino-1-piperidinyl]-7-(2-butyn-1-yl)-3,7-dihydro-3-methyl-1-[(4-methyl-2-quinazolinyl)methyl]”.
  Chemistry Review: Tradjenta, “NDA 201280, CMC Director Review Tradjenta (Linagliptin) Tablets.” Center for Drug Evaluation and Research, Aug. 9, 2010, Retrieved from the internet on Nov. 1, 2013, http://www.accessdata.fda.gov/drugsatfdadocs/nda/2011/201280Orig1s000ChemR.pdf.
  Chisari, A. et al. “Sulphinyl, Sulphonyl, and Sulphonium Groups as Leaving Groups in Aromatic Nucleophilic Substitutions.” Journal of the Chemical Society, Perkin Transactions II, 1982, pp. 957-959.
  Clinical Trial NCT00622284 (published online at clinicaltrials.gov on Feb. 22, 2008).
  Clinical Trials. “View of NCT00601250 on Jan. 25, 2008: Efficacy and Safety of BI 1356 vs Placebo added to Metformin Background Therapy in Patients with Type 2 Diabetes” Clinical Trials. Gov Archive, [Online] Jan. 25, 2008 URL:http://clinicaltrials.gov/archive/NCTO0601250/20080125 [retrieved on Feb. 27, 2009].
  Al-Masri, I.M. et al., “Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine.” Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, vol. 24, No. 5, pp. 1061-1066.
  Forst, T. et al., “The oral DPP-4 inhibitor linagliptin significantly lowers HbA1c after 4 weeks of treatment in patients with type 2 diabetes mellitus.” Diabetes, Obesity and Metabolism, 2011, vol. 13, pp. 542-550.
  Gallwitz, B. et al., “2-year efficacy and safety of linagliptin compared with glimepiride in patients with type 2 diabetes inadequately controlled on metformin: a randomised, double-blind, non-inferiority trial.” Lancet, 2012, vol. 380, pp. 475-483.
  Hashida, Mitsuru, “Strategies for designing and developing oral administration formulations.” Yakuji-Jiho, Inc., 1995, pp. 50-51.
  Hocher, B. et al., “The novel DPP-4 inhibitors linagliptin and BI 14361 reduce infarct size after myocardial ischennia/reperfusion in rats.” International Journal of Cardiology, 2013, vol. 167, pp. 87-93.
  Kendall, D. M. et al., “Incretin Mimetics and Dipeptidyl Peptidase-IV Inhibitors: A Review of Emerging Therapies for Type 2 Diabetes.” Diabetes Technology & Therapeutics, 2006, vol. 8, No. 3, pp. 385-398.
  Klein, T. et al., “Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis.” Medical Molecular Morphology, 2014, vol. 47, pp. 137-149.
  Leibovitz, E. et al., “Sitagliptin pretreatment in diabetes patients presenting with acute coronary syndrome: results from the Acute Coronary Syndrome Israeli Survey (ACSIS).” Cardiovascular Diabetology, 2013, vol. 12, No. 1, pp. 1-7.
  Lim, S. et al., “Effect of a Dipeptidyl Peptidase-IV Inhibitor, Des-Fluoro-Sitagliptin, on Neointimal Formation after Balloon Injury in Rats.” Plos One, 2012, vol. 7, No. 4, pp. 1-11.
  Lyssenko, V. et al., “Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes.” The Journal of Clinical Investigation, 2007, vol. 117, No. 8, pp. 2155-2163.
  Matsumiya, Tokyo Medical University, Department of Pharmacology, Diagnosis and Therapy, vol. 96, No. 2, 2008.
  McNay, David E.G. et al., “High fat diet causes rebound weight gain.” Molecular Metabolism, 2013, vol. 2, pp. 103-108.
  Nippon Rinsho, Insulin Glargine, Tokyo Women's Medical Univ. Diabetes Center, 2011.
  Pearson, E. R. et al., “Variation in TCF7L2 Influences Therapeutic Response to Sulfonylureas.” Diabetes, 2007, vol. 56, pp. 2178-2182.
  Prescribing Information, Package insert for Leprinton tablets 100mg, Manufacturer: Tatsumi Kagaku Co., Ltd., Mar. 2003.
  Radermecker, Regis et al., “Lipodystrophy Reactions to Insulin.” American Journal of Clinical Dermatology, 2007, vol. 8, pp. 21-28.
  Rask-Madsen, C. et al., “Podocytes lose their footing.” Nature, 2010, vol. 468, pp. 42-44.
  Sheperd, Todd M. et al., “Efective management of obesity.” The Journal of Family Practice, 2003, vol. 52, No. 1, pp. 34-42.
  Suzuki, Y. et al., “Carbon-Carbon Bond Cleavage of a-Hydroxybenzylheteroarenes Catalyzed by Cyanide Ion: Retro-Benzoin Condensation Affords Ketones and Heteroarenes and Benzyl Migration Affords Benzylheteroarenes and Arenecarbaldehydes.” Chemical Pharmaceutical Bulletin, 1998, vol. 46(2), pp. 199-206.
  Tadayyon, M. et al., “Insulin sensitisation in the treatment of Type 2 diabetes.” Expert Opinion Investigative Drugs, 2003, vol. 12, No. 3, pp. 307-324.
  Abstract for AU 2003280680, Jun. 18, 2004.
  Abstract for AU 2009224546, Sep. 17, 2009.
  Abstract in English for DE19705233, Aug. 13, 1998.
  ACTOS Prescribing Information, 1999, pp. 1-26.
  Ahren, B. et al., “Twelve- and 52-Week Efficacy of the Dipeptidyl Peptidase IV Inhibitor LAF237 in Metformin-Treated Patients With Type 2 Diabetes.” Diabetes Care, 2004, vol. 27, No. 12, pp. 2874-2880.
  Ahren, Bo “Novel combination treatment of type 2 diabetes DPP-4 inhibition + metformin.” Vascular Health and Risk Management, 2008, vol. 4, No. 2, pp. 383-394.
  American Association of Clinical Endocrinologists, “Medical Guidelines for Clinical Practice for the Management of Diabetes Mellitus.” Endocrine Practice, 2007, Col. 13, Suppl. 1, pp. 1-68.
  Baetta, R. et al., “Pharmacology of Dipeptidyl Peptidase-4 Inhibitors.” Drugs, 2011, vol. 71, No. 11, pp. 1441-1467.
  Ranker, Gilbert S., “Prodrugs.” Modern Pharmaceutics Third Edition, Marcel Dekker, Inc., 1996, p. 596.
  Beauglehole, Anthony R., “N3-Substituted Xanthines as Irreversible Adenosine Receptor Antagonists.” Ph.D. Thesis, Deakin University, Australia, 2000, pp. 1-168.
  Blech, S. et al., “The Metabolism and Disposition of the Oral Dipeptidyl Peptidase-4 Inhibitor, Linagliptin, in Humans”, Drug Metabolism and Disposition, 2010, vol. 38, No. 4, p. 667-678.
  Canadian Diabetes Association, “Pharmacologic Management of Type 2 Diabetes.” Canadian Journal of Diabetes, 2003, vol. 27, Suppl. 2, pp. S37-S42.
  Cao, C. et al., “The clinical application of linagliptin in Asians.” Therapeutics and Clinical Risk Management, 2015, vol. 11, pp. 1409-1419.
  Cheon, et al., Biochemical Pharmacology, “Inhibition of dipeptidyl IV by novel inhibitors with pyrazolidine scaffold”, 2005, vol. 70, p. 22-29.
  Chiasson, J.-L et al., “The Synergistic Effect of Miglitol Plus Metformin Combination Therapy in the Treatment of Type 2 Diabetes.” Diabetes Care, 2001, vol. 24, No. 6, pp. 989-994.
  Chowhan, Z.T. et al., Drug-Excipient Interaction Resulting from Powder Mixing IV: Role of Lubricants and Their Effect on In Vitro Dissolution, Journal of Pharmaceutical Sciences, 1986, vol. 75, No. 6, pp. 542-545.
  Clinical Trial Protocol, “A Randomised, Double-blind, Placebo-controlled, Five Parallel Groups Study Investigating the Efficacy and Safety of BI 1356 BS.” Boehringer Ingelheim Pharmaceuticals, last updated on Jun. 24, 2014.
  Clinical Trial, NCT00622284, clinicaltrials.gov, updated Feb. 22, 2008.
  Clinical Trials NCT00601250, clinicaltrials.gov, Jan. 25, 2008.
  Clinical Trials, No. NCT00309608, “Efficacy and Safety of BI 1356 BS in Combination with Metformin in Patients With type2 Diabetes” 2009, pp. 1-3.
  Clinical Trials: NCT00103857, “A Multicenter, Randomized, Double-Blind Factorial Study of the Co-Administration of MK0431 and Metformin in Patients With Type 2 Diabetes Mellitus Who Have Inadequate Glycemic Control” last updated on Apr. 27, 2015.
  Clinical Trials: NCT00309608, “Efficacy and Safety of BI 1356 BS (Linagliptin) in Combination With Metformin in Patients With type2 Diabetes” Boehringer Ingelheim Pharmaceuticals, last updated on Jun. 24, 2014.
  Colorcon, “Lactose Replacement with Starch 1500 in a Direct Compression Formula.” 2005, pp. 1-4.
  Colorcon, “Reducing Coated Tablet Defects from Laboratory through Production Scale: Performance of Hypromellose or Polyvinyl Alcohol-Based Aqueous Film Coating Systems.” Opadry II, 2009, pp. 1-7.
  Craddy, P. et al., “Comparative Effectiveness of Dipeptidylpeptidase-4 Inhibitors in Type 2 Diabetes: A Systematic Review and Mixed Treatment Comparison.” Diabetes Therapy, 2014, vol. 5, No. 1, pp. 1-41.
  Crowe, E. et al., “Early identification and management of chronic kidney disease: summary of NICE guidance.” British Medical Journal, 2008, vol. 337, pp. 812-815.
  Deacon, Carolyn F., “Dipeptidyl peptidase 4 inhibition with sitagliptin: a new therapy for Type 2 diabetes.” Expert Opinion on Investigational Drugs, 2007, vol. 16, No. 4, pp. 533-545.
  Dittberner, S. et al., “Determination of the absolute bioavailability of BI 1356, a substance with non-linear pharmacokinetics, using a population pharmacokinetic modeling approach.” Abstracts of the Annual Meeting of the Population Approach Group in Europe, 2007.
  Drucker, Daniel J., “Dipeptidyl Peptidase-4 Inhibition and the Treatment of Type 2 Diabetes.” Diabetes Care, 2007, vol. 30, No. 6, pp. 1335-1343.
  Dugi, K. K et al., “Safety, tolerability, pharmacokinetics, and pharmacodynamics of BI 1356, a novel DPP-IV inhibitor with a wide therapeutic window.” Diabetic Medicine, 2006, vol. 23, Suppl. 4, p. 300.
  EMEA: European Medicines Agency, “Galvus (vildagliptin)” Retrieved online on Jan. 21, 2016.
  Feng, J. et al., “Discovery of Alogliptin: A Potent, Selective, Bioavailable, and Efficacious Inhibitor of Dipeptidyl Peptidase IV.” Journal of Medicinal Chemistry, 2007, vol. 50, No. 10, pp. 2297-2300.
  Flatt, P.R et al , “Dipeptidyl peptidase IV (DPP IV) and related molecules in type 2 diabetes.” Frontiers in Bioscience, 2008, vol. 13, pp. 3648-3660.
  Gall, “Prevalence of micro-and macroalbuminuria, arterial hypertension, retinopathy and large vessel disease in European type 2 (non-insulin dependent) diabetic patients”, Diabetologia (1991) 655-661.
  Gallwitz, B., “Safety and efficacy of linagliptin in type 2 diabetes patients with common renal and cardiovascular risk factors.” Therapeutic Advances in Endocrinology and Metabolism, 2013, vol. 4, No. 3, pp. 95-105.
  Galvus (Vildagliptin) Scientific Discussion, EMEA, 2007, pp. 1-34.
  Garber, A.J. et al., “Simultaneous glyburide/metformin therapy is superior to component monotherapy as an initial pharmacological treatment for type 2 diabetes.” Diabetes, Obesity and Metabolism, 2002, vol. 4, pp. 201-208.
  Glucophage® Prescribing Information, 2001.
  Goodarzi, M.O. et al., “Metformin revisited: re-evaluation of its properties and role in the pharmacopoeia of modern antidiabetic agents.” Diabetes, Obesity and Metabolism, 2005, vol. 7, pp. 654-665.
  Greischel, et al., Drug Metabolism and Deposition, “The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Exhibits Time-and Dpse-Dependent Localization in Kidney, Liver, and Intestine after Intravenous Dosing: Results from High Resolution Autoradiography in Rats”, 2010, vol. 38, No. 9, p. 1443-1448.
  Guglielmi, C. et al., “Latent autoimmune diabetes in the adults (LADA) in Asia: from pathogenesis and epidemiology to therapy.” Diabetes/Metabolism Research and Reviews, 2012, vol. 28, Supplement 2, pp. 40-46.
  Gupta, V. et al., “Choosing a Gliptin.” Indian Journal of Endocrinology and Metabolism, 2011, vol. 15, No. 4, pp. 298-308.
  Gwaltney, S.L. II et al., “Inhibitors of Dipeptidyl Peptidase 4.” Annual Reports in Medicinal Chemistry, 2005, vol. 40, pp. 149-165.
  Halimi, “Combination treatment in the management of type 2 diabetes: focus on vildagliptin and metformin as a single tablet”, Vascular Health and Risk Management, 2008 481-92.
  He, Y.L. et al., “The Influence of Renal Impairment on the Pharmacokinetics of Vildagliptin.” Clinical Pharmacology & Therapeutics, 2007, vol. 81, Suppl. 1, Abstract No. PIII-86.
  Heise, et al., Diabetes, Obesity and Metabolism, “Pharmacokinetics, pharmacokinetics and tolerability of mutilple oral doses of linagliptin, a dipeptidyl peptidase-4 inhibitor in male type 2 diabetes patients”, 2009, vol. 11, No. 8, p. 786-794.
  Hinke, S.A. et al., “Metformin Effects on Dipeptidylpeptidase IV Degradation of Glucagon-like Peptide-1.” Biochemical and Biophysical Research Communications, 2002, vol. 291, No. 5, pp. 1302-1308.
  Hinke, S.A. et al., “On Combination Therapy of Diabetes With Metformin and Dipeptidyl Peptidase IV Inhibitors.” . Diabetes Care, 2002, vol. 25, No. 8, pp. 1490-1492.
  Hinnen, D. et al., “Incretin Mimetics and DPP-IV Inhibitors: New Paradigms for the Treatment of Type 2 Diabetes.” Journal of the American Board of Family Medicine, 2006, vol. 19, No. 6, pp. 612-620.
  Hull, R. et al., “Nephrotic syndrome in adults.” British Medical Journal, 2008, vol. 336, pp. 1185-1190.
  Zhimei, Xiao et al., “Study progression of oral drugs for treatment of type II diabetes.” Drug Evaluation, 2004, vol. 1, No. 2, pp. 138-143.
  Inzucchi, Silvio E, “Oral Antihyperglycemic Therapy for Type 2 Diabetes.” The Journal of the American Medical Association, 2002, vol. 287, No. 3, pp. 360-372.
  Isomaa, B. et al., “Cardiovascular Morbidity and Mortality Associated With the Metabolic Syndrome.” Diabetes Care, 2001, vol. 24, No. 4, pp. 683-689.
  Janumet Prescribing Information, revised Jan. 2008.
  Januvia Prescribing Information and Product Label, 2006.
  Januvia, 25mg, 50mg, 100 mg, Summary of Product Characteristics, 2015, www.medicines.org.uk/EMC <http://www.medicines.org.uk/EMC>.
  Kiraly, K. et al., “The dipeptidyl peptidase IV (CD26, EC 3.4.14.5) inhibitor vildagliptin is a potent antihyperalgesic in rats by promoting endomorphin-2 generation in the spinal cord.” European Journal of Pharmacology, 2011, vol. 650, pp. 195-199.
  Kirpichnikov, D. et al., “Mefformin: An Update” Annals of Internal Medicine, 2002, vol. 137, No. 1, pp. 25-33.
  Knowler, W.C. et al., “Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin.” The New England Journal of Medicine, 2002, vol. 346, No. 6, pp. 393-403.
  Konstantinou, D. M. et al., “Pathophysiology-based novel pharmacotherapy for heart failure with preserved ejection fraction.” Pharmacology & Therapeutics, 2013, vol. 140, No. 2, pp. 156-166.
  Kuno, Y. et al., “Effect of the type of lubricant on the characteristics of orally disintegrating tablets manufactured using the phase transition of sugar alcohol.” European Journal of Pharmaceutics and Biopharmaceutics, 2008, vol. 69, pp. 986-992.
  Lachman, L. et al., “The Theory and Practice of Industrial Pharmacy.” Varghese Publishing House, Third Edition, 1987, pp. 190-194.
  Lakatos, P. L. et al., “Elevated serum dipeptidyl peptidase IV (CD26, EC 3.4.14.5) activity in patients with primary biliary cirrhosis.” Journal of Hepatol, 1999, vol. 30, p. 740.
  Linagliptin Monograph, Published by VACO PBM-SHG US Veteran's Administration, 2011, pp. 1-17.
  Lindsay, J.R. et al., “Inhibition of dipeptidyl peptidase IV activity by oral metformin in Type 2 diabetes.” Diabetic Medicine, 2005, vol. 22, pp. 654-657.
  Lu, “High prevlaence of albuminuria in population based patients diagnosed with type 2 diabetes in the Shanghai downtown”, Diabestes Research and Clinical Practice (2007) 184-192.
  Mathieu, C. et al., “Antihyperglycaemic therapy in elderly patients with type 2 diabetes: potential tole of incretin mimetics and DPP-4 inhibitors.” International Journal of Clinical Practice, 2007, vol. 61, Suppl. 154, pp. 29-37.
  Merck Manual of Diagnosis and Therapy: “Obesity.” 1999, 17th Edition, Chapter 5, pp. 58-62.
  Mikhail, Nasser, “Incretin mimetics and dipeptidyl peptidase 4 inhibitors in clinical trials for the treatment of type 2 diabetes.” Expert Opinion on Investigational Drugs, 2008, vol. 17, No. 6, pp. 845-851.
  Naik, R. et al., “Latent Autoimmune Diabetes in Adults.” The Journal of Clinical Endocrinology and Metabolism, 2009, vol. 94, No. 12, pp. 4635-4644.
  Nar, Herbert “Analysis of Binding Kinetics and Thermodynamics of DPP-4 Inhibitors and their Relationship to Structure.” 2nd NovAliX Conference: Biophysics in drug discovery, Strasbourg, France, Jun. 9-12, 2015.
  National Program for Care Guidelines, “Type 2 Diabetes mellitus.” 2002, First Edition, pp. 1-50.
  Novartis AG, Investor Relations Release, “Galvus, a new oral treatment for type 2 diabetes, receives positive opinion recommending European Union approval.” Securities and Exchange Commission, Form 6-K, 2007, pp. 1-4.
  Pietruck, F. et al., “Rosiglitazone is a safe and effective treatment option of new-onset diabetes mellitus after renal transplantation.” Transplant International, 2005, vol. 18, pp. 483-486.
  Poudel, Resham R., “Latent autoimmune diabetes of adults: From oral hypoglycemic agents to early insulin.” Indian Journal of Endocrinology and Metabolism, 2012, vol. 16, Supplement 1, pp. S41-S46.
  Schillinger, M. et al., “Restenosis after percutaneous angioplasty: the role of vascular inflammation.” Vascular Health and Risk Management, 2005, vol. 1, No. 1, pp. 73-78.
  Schnapp, G. et al., “Analysis of Binding Kinetics and Thermodynamics of DPP-4 Inhibitors and their Relationship to Structure.” 23rd PSDI, Protein Structure Determination in Industry, Tegernsee, Germany, Nov. 8-10, 2015.
  Schnapp, G. et al., “Analysis of binding kinetics and thermodynamics of DPPIV Inhibitors and their relationship to structure.” International Workshop: The aspect of time in drug design, Schloss Rauischholzhausen, Marburg, Germany, Mar. 24-27, 2014.
  Schnapp, G. et al., “Comparative Enzyme Kinetic Analysis of the Launched DPP-4 Inhibitors.” American Diabetes Association 74th Scientific Sessions, Poster 1048-P, 2014.
  Schnapp, G. et al., “Comparative Enzyme Kinetic Analysis of the Launched DPP-4 Inhibitors.” American Diabetes Association, Abstract 1048-P, 2014.
  Schurmann, C. et al., “The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Attenuates Inflammation and Accelerates Epithelialization in Wounds of Diabetic ob/ob Mice.” The Journal of Pharmacology and Experimental Therapeutics, 2012, vol. 342, No. 1, pp. 71-80.
  Standl, E. et al., “Diabetes and the Heart.” Diabetes Guidelines (DDG), 2002, pp. 1-25.
  Sulkin, T.V. et al., “Contraindications to Metformin Therapy in Patients With NIDDM.” Diabetes Care, 1997, vol. 20, No. 6, pp. 925-928.
  Takeda Press Release: “Voglibose (BASEN) for the prevention of type 2 diabetes mellitus: A Randomized, Double-blind Trial in Japanese Subjects with Impaired Glucose Tolerance.” 2008, Retrieved online Jul. 6, 2015. https://www.takeda.com/news/2008/200805263621.html.
  Taskinen, M.-R. et al., “Safety and efficacy of linagliptin as add-on therapy to metformin in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study.” Diabetes, Obesity and Metabolism, 2011, vol. 13, pp. 65-74.
  Turner, R.C. et al., “Glycemic Control With Diet, Sulfonylurea, Metformin, or Insulin in Patients With Type 2 Diabetes Mellitus Progressive Requirement for Multiple Therapies (UKPDS 49)” The Journal of the American Medical Association, 1999, vol. 281, No. 21, pp. 2005-2012.
  Van Heek, M. et al., “Ezetimibe, a Potent Cholesterol Absorption Inhibitor, Normalizes Combined Dyslipidemia in Obese Hyperinsulinemic Hamsters.” Diabetes, 2001, vol. 50, pp. 1330-1335.
  Vichayanrat, A. et al., “Efficacy and safety of voglibose in comparison with acarbose in type 2 diabetic patients.” Diabetes Research and Clinical Practice, 2002, vol. 55, pp. 99-103.
  Vickers, 71st Scientific Session of the American Diabetes Association, “The DPP-4 inhibitor linagliptin is weight neutral in the DIO rat but inhibits the weight gain of DIO animals withdrawn from exenatide”, vol. 60, Jul. 2011.
  Vincent, S.H. et al., “Metabolism and Excretion of the Dipeptidyl Peptidase 4 Inhibitor [14C]Sitagliptin in Humans.” Drug Metabolism and Disposition, 2007, vol. 35, No. 4, pp. 533-538.
  Weber, Ann E, “Dipeptidyl Peptidase IV Inhibitors for the Treatment of Diabetes.” Journal of Medicinal Chemistry, 2004, vol. 47, pp. 4135-4141.
  WebMD, Autoimmune Diseases: What Are They? Who Gets Them? “What Are Autoimmune Disorders?” 2015, pp. 1-3. Retrieved online Jul. 9, 2015. http://www.webmd.com/a-to-z-guides/autoimmune-diseases.
  Wikipedia, “Linagliptin” Sep. 12, 2015. <https://en.wikipedia.org/w/index.php?title=Linagliptin&oldid=333469979>.
  Witteles, R. M. et al., “Dipeptidyl Peptidase 4 Inhibition Increases Myocardial Glucose Uptake in Nonischemic Cardiomyopathy.” Journal of Cardiac Failure, 2012, vol. 18, No. 10, pp. 804-809.
  Yale, Jean-Francois, “Oral Antihyperglycemic Agents and Renal Disease: New Agents, New Concepts.” Journal of the American Society of Nephrology, 2005, vol. 16, Suppl. 1, pp. S7-S10.
  Yamagishl, S. et al., “Pleiotropic Effects of Glucagon-like Peptide-1 (GLP-1)-Based Therapies on Vascular Complications in Diabetes.” Current Pharmaceutical Design, 2012, vol. 17, pp. 4379-4385.
  Yap, W.S. et al., “Review of management of type 2 diabetes mellitus.” Journal of Clinical Pharmacy and Therapeutics, 1998, vol. 23, pp. 457-465.
  Yokoyama< “Prevalence of albumineria and renal insufficiency and associated clinical factors in type 2 diabetes: the Japan Diabetes clinical data Management study(JDDM15)” Nephrol Dial Transplant (2009) 24: 1212-1219 Advance Access Pub 2008.
  Zander, M. et al., “Additive Glucose-Lowering Effects of Glucagon-Like Peptide-1 and Metformin in Type 2 Diabetes.” Diabetes Care, 2001, vol. 24, No. 4, pp. 720-725.
  Zeeuw, D. et al., “Albuminuria, a Therapeutic Target for Cardiovascular Protection in Type 2 Diabetic Patients With Nephropathy.” Circulation, 2004, vol. 110, No. 8, pp. 921-927.
  Zerilli, T. et al., “Sitagliptin Phosphate: A DPP-4 Inhibitor for the Treatment of Type 2 Diabetes Mellitus.” Clinical Therapeutics, 2007, vol. 29, No. 12, pp. 2614-2634.
  Gennaro, Alfonso R., Remington Farmacia, 19th Edition, Spanish copy, 1995, p. 2470.
  Gennaro, Alfonso, R; Remington: The Science and Practice of Pharmacy: Oral Solid Dosage Forms; Mack Publishing Company, Philadelphia, PA (1995) vol. II, 19th Edition, Ch. 92 pp. 1615-1649.
  Giron, D.; Thermal Analysis and Calorimetric Methods in the Characterisation of Polymorphs and Solvates; Thermochimica Acta (1995) vol. 248 pp. 1-59.
  Glucotrol XL (glipizide), package insert, Pfizer, Apr. 1, 2002.
  Goldstein, L.A., et al., “Molecular cloning of seprase: a serine integral membrane protease from human melanoma.” Biochimica et Biophysica Acta, vol. 1361, 1997, No. 1, pp. 11-19.
  Gomez-Perez, et al, “Insulin Therapy:current alternatives”, Arch. Med.Res. 36: p. 258-272 (2005).
  Graefe-Mody et al., “The novel DPP-4 inhibitor . . . ” Diabetes, (online) 2008, XP002561421 http://professional.diabetes.org/content/posters/2008/p553-p.pdf.
  Graefe-Mody, et al; Evaluation of the Potential for Steady-State Pharmacokinetic and Phamacodynamic Interactions Between the DPP-4 Inhibitor Linagliptin and Metformin in Healthy Subjects; Currents Medical Research and Opinion (2009) vol. 25, No. 8 pp. 1963-1972.
  Graefe-Mody, U. et al., “Effect of Renal Impairment on the Pharmacokinetics of the Dipeptidyl Peptidase-4 Inhibitor Linagliptin.” Diabetes, Obseity and Metabolism, 2011, pp. 939-946.
  Greene, T.W, et al., “Protection for the Amino Group”. Protective Groups in Organic Synthesis, 3rd edition, 1999, p. 494-653.
  Gwaltney, S. “Medicinal Chemistry Approaches to the Inhibition of Dipeptidyl Peptidase IV”, Current Topics in Medicinal Chemistry, 2008, 8, p. 1545-1552.
  Halimi, et al. “Combination treatment in the management of type 2 diabetes focus on vildagliptin and metformin as a single tablet”, Vascualr Health and Risk Management, 2008, 4(3) p. 481-492.
  Haluzik, M. et al., “Renal Effects of DPP-4 Inhibitors: A Focus on Microalbuminuria.” International Journal of Endocrinology, 2013, vol. 35, No. 6, pp. 1-7.
  Hayashi, Michio., “Recipe for Oral Hypoglycemic Agents to Pathological Condition” Pharmacy (2006) vol. 57, No. 9 pp. 2735-2739.
  He, Y. L. et al., “Bioequivalence of Vildagliptin/Metformin Combination Tablets and Coadministration of Vildagliptin and Metformin as Free Combination in Healthy Subjects”. J. Clinical Pharmacology, 2007, vol. 47, No. 9, Abstracts of the 36th Annual Meeting of the American College of Clinical Pharmacology, San Francisco, CA, Abstract 116, p. 1210.
  He, Y.L. et al., “The influence of hepatic impariment on the pharmacokinetics f the dipeptidyl peptidase IV (DPP-4) inhibitor vildagliptin” European Journal of Clinical Pharmacology, vol. 63, No. 7, May 8, 2007, p. 677-686.
  Heihachiro, A. et al., “Synthesis of Prolyl Endopeptidase Inhibitors and Evaluation of Their Structure-Activity Relationships: In Vitro Inhibition of Prolyl Endopeptidase from Canine Brain.” 1993, Chemical and Pharmaceutical Bulletin, vol. 41, pp. 1583-1588.
  Heise, T. et al., “Treatment with BI 1356, a Novel and Potent DPP-IV Inhibitor, Significantly Reduces Glucose Excursions after an oGTT in Patients with Type 2 Diabetes.” A Journal of the American Diabetes Association, Jun. 2007, vol. 56, Supplement 1, Poster No. 0588P.
  Herman, G. A. et al., “Dipeptidyl Peptidase-4 Inhibitors for the Treatment of Type 2 Diabetes: Focus on Sitagliptin.” Clinical Pharmacology and Therapeutics, 2007, vol. 81, No. 5, pp. 761-767.
  Herman, Gary et al. “Co-Administration of MK-0431 and Metformin in Patients with Type 2 Diabetes Does Not Alter the Pharmacokinetics of MK-0431 or Metformin” (2005) Journal of American Diabetes Association vol. 54, Supplement 1, 3 pgs.
  Hermann, Robert, et al; Lack of Association of PAX4 Gene with Type 1 Diabetes in the Hungarian Populations; Diabetes (2005) vol. 54 pp. 2816-2819.
  Hermansen, K., “Efficacy and Safety of the Dipeptidyl Peptidase-4 Inhibitor, Sitagliptin, in Patients with Type 2 Diabetes Mellitus Inadequately Controlled on Glimepiride Alone or on Glimepiride and Metformin”. Diabetes, Obesity and Metabolism (2007) vol. 9, No. 5 pp. 733-745.
  Hilfiker, R. et al., “Relevance of Solid-state Properties for Pharmaceutical Products.” Polymorphism in the Pharmaceutical Industry, 2006, Chapter 1, pp. 1-19.
  Hocher, B. et al., “Renal and Cardiac Effects of DPP-4 Inhibitors—from Preclinical Development to Clinical Research.” Kidney & Blood Pressue Research, 2012, vol. 36, No. 1, pp. 65-84.
  Holman, et al., “Addition of biphasic, prandial, or basal insulin to oral therapy in type 2 diabetes”, N. England Journal Medicine, p. 1716-1730, 2007.
  Horsford, E. N. “On the source of free hydrochloric acid in the gastric juice.” Proceedings of the Royal Society of London, Published in 1868-1869, vol. 17, pp. 391-395.
  Hu, Y. et al., “Synthesis and Structure-activity Relationship of N-alkyl Gyl-boro-Pro Inhibitors of DPP4, FAP, and DPP7.” Bioorganic & Medicinal Chemistry Letters 15, 2005, pp. 4239-4242.
  Huettner Silks et al: “BI 1356, a novel and selective xanthine based DPP-IV inhibitor, demonstrates good safety and tolerability with a wide therapeutic window” DIABETES< American Diabetes Association, US, vol. 56, No. Suppl 1, Jun. 1, 2007, p. A156.
  Hunziker, D. et al, “Inhibitors of DPP IV-recent advances and structural views”, Current Topics in Medicinal Chemistry, 2005, vol. 5 issue 16, pp. 1623-1637.
  Huttner, S. et al., “Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Single Oral Doses of BI 1356, an Inhibitor of Dipeptidyl Peptidase 4, in Healthy Male Volunteers.” Journal of Clinical Pharmacology, 2008, vol. 48, No. 10, pp. 1171-1178.
  International Search Report for PCT/EP2013/060309 mailed Aug. 9, 2013.
  Inukai, T., “Treatment of Diabetes in Patients for Whom Metformin Treatment is Not Appropriate.” Modern Physician, 2008, vol. 28, No. 2, pp. 163-165.
  Januvia; Patient Information; 2010.
  Johansen, O. E. et al., “Cardiovascular with linagliptin in patients with type 2 diabetes mellitus: a pre-specified, prospective, and adjudicated meta-analysis of a phase 3 programme.” Cardiovascular Diabetology, Biomed Central, 2012, vol. 11, No. 1, pp. 1-10.
  Johansen, O.E. et al., “b-cell Function in Latnet Autoimmune Diabetes in Adults (LADA) Treated with Linagliptin Versus Glimepiride: Exploratory Results from a Two Year Double-Blind, Randomized, Controlled Study.” www.abstractsonline.com, Jun. 10, 2012, XP-002708003.
  John Hopkins Children's Center, “Liver Disorders and Diseases.” Retrieved online May 26, 2014 <http://www.hopkinschildrens.org/non-alcoholic-fatty-liver-disease.aspx>
  Jones, R.M. et al., “GPR119 agonists for the treatment of type 2 diabetes”. Expert Opinion on Therapeutic Patents 2009 Informa Healthcare for GBR LNKSD—DOI: 10.1517/13543770903153878, vol. 19, No. 10, Oct. 2009, p. 1339-1359.
  Kanada, S. et al., “Safety, tolerability, pharmacokenetics and pharmacodynamics of multiple doses of BI 1356 (proposed tradename ONDERO), a dipeptidyl peptidase 4 inhibitor, in Japanese patients with type 2 diabetes” Diabetes, vol. 57, No. Suppl. 1, Jun. 2008, p. A158-A159 and 68th Annual Meeting of the American Diabetes Associtaion: San Francisco, CA , Jun. 6-10, 2008.
  Kelly. T., “Fibroblast activation protein-cx and dipeptidyl peptidase IV (CD26)P: Cell-surface proteases that activate cell signaling and are potential targets for cancern therapy”. Drug Resistence Update 8, 2005, vol. 8. No. 1-2, pp. 51-58.
  Kharkevich, D. A., “Educational Literature” Pharmacology (1987) Third Edition, Meditsina Press, Moscow pp. 47-48.
  Kibbe, A., Editor. Handbook of Pharmaceutical Excipients, Third Edition, Copovidon—pp. 196-197, Date of Revision: Dec. 16, 2008. Mannitol—pp. 424-425, Date of Revision: Feb. 19, 2009, Published in 2009.
  Kidney Disease (Nephropathy), Retrieved online May 13, 2013. www.diabetes.org/living-with-diabetes/complications/kidney-disease-nephropathy.html <http://www.diabetes.org/living-with-diabetes/complications/kidney-disease-nephropathy.html>.
  Kim, D. et al., “(2R)-4-Oxo-4-(3-(Trifluoremethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: A Potent, Orally Active Dipeptidyl Peptidase IV inhibitor for the Treatment of Type 2 Diabetes.” Journal Med. Chem, 2005, 48, p. 141-151.
  Kim, Kwang-Rok et al., “KR-62436, 6-{2-{2-(5-cyano4,5-dihydropyrazol-1-yl)-2-oxoethylamino}ethylamino} nicotinonitrile, is a novel dipeptidyl peptidase-IV (DDP-IV inhibitor with anti-hyperglycemic activity” European Journal of Pharmacology 518, 2005, p. 63-70.
  Knorr, M. et al., “Comparison of Direct and Indirect Antioxidant Effects of Linagliptin (BI 1356, Ondero) with other Gliptins—Evidence for Anti-Inflammatory Properties of Linagliptin”. Free Radical Biology and medicine, Elsevier Science, U.S. vol. 49, Oct. 23, 2010, p. S197.
  Komori, Kiyoshi., “Treatment of Diabetes in Patients for Whom Metforming Treatment is Not Appropriate” Modern Physician (2008) vol. 28, No. 2 pp. 163-165.
  Korom, S. et al; Inhibition of CD26/dipeptidyl peptidase IV activity in vivo prolongs cardiac allograft survival in rat recipients1,2, Transplantation, May 27, 1997, vol. 63, No. 10, pp. 1495-1500.
  Kroller-Schön, S. et al., “Glucose-independent Improvement of Vascular Dysfunction in Experimental Sepsis by Dipeptidyl Peptidase-4 Inhibition.” Cardiovascular Research, 2012, vol. 96, No. 1, pp. 140-149.
  Lakatos, P. L. et al., “Elevated Serum Dipeptidyl IV (CD26, EC 3.4.14.5) Activity in Experimental Liver Cirrhosis.” European Journal of Clinical Investigation, 2000, vol. 30, No. 9, pp. 793-797.
  Lambier, A.M. et al., Dipeptidyl-Peptidase IV from Bench to Bedside: An Update on Structural Properties, Functions, and Clinical Aspects of the Enzyme DPP IV. Critical Reviews in Clinical Laboratory Sciences, 2003, 40(3), p. 209-294.
  Lee Jones, K. et al., “Effect of Metformin in Pediatric Patients With Type 2 Diabetes.” Diabetes Care, 2002, vol. 25, No. 1, pp. 89-94.
  Levien,T.L. et al, “New drugs in development for the treatment of diabetes”, Diabetes Spectrum, American Diabetes Association, US, vol. 22, No. 2, Jan. 1, 2009, pp. 92-106.
  Lovshin, J.A. et al., “Incretin-based therapies for type 2 diabetes mellitus.” Nature Reviews Endocrinology, 2009, vol. 5, pp. 262-269.
  March, J. “Advanced Organic Chemistry: Reactions, Mechanisms, and Structure”. Fourth Edition, 1992, pp. 652-653.
  Matsumiya, Teruhiko, et al., “Therapeutic Drugs for Clinicians” Diagnosis and Treatment (2008) vol. 96, No. 2 pp. 389-390.
  Mayo Clinic Staff: “Nonalchoholic fatty liver disease: Prevention” [retrieved on Nov. 30, 2012]. retrieved from the Internet: ,URL: http://www.mayoclinic.com/health/nonalcoholic-fatty-liver-disease/DS00577DSECTION=prevention>.
  Medline Plus, “Obesity” 2013, Retrieved from internet on Aug. 22, 2013, http://www.nlm.nih.gov/medlineplus/obesity.html.
  Meece, J. “When Oral Agents Fail: Optimizing Insulin Therapy in the Older Adult”. Consultant Pharmacist, The Society, Arlington, VA US. vol. 24, No. Suppl B, Jun. 1, 2009, p. 11-17.
  Mendes, F.D, et al. “Recent advances in the treatment of non-alcoholic fatty liver disease”. Expert Opinion on Investigational Drugs, vol. 14, No. 1, Jan. 1, 2005, p. 29-35.
  Merck: “Initial Therapy with Janumet (sitagliptin/metformin) provided significantly greater blood sugar lowering compared to metformin alone in patients with type 2 diabetes”. Webwire.com, Jun. 8, 2009, p. 1-4. http://www.webwire.com/ViewPressRel.asp?ald=96695.
  Nathan, D. et al., “Management of Hyperglycemia in Type 2 Diabetes: A Consensus Algorithm for the Initiation and Adjustment of Therapy.” Diabetes Care, Aug. 2006, vol. 29, No. 8, pp. 1963-1972.
  Nauck, M. A. et al., “Efficacy and Safety of Adding the Dipeptidyl Peptidase-4 Inhibitor Alogliptin to Metformin Therapy in Patients with Type 2 Diabetes Inadequately Controlled with Metformin Monotherapy: A Multicentre, Randomised, Double-Blind, Placebo-Cotrolled Study.” Clinical Practice, 2008, vol. 63, No. 1, pp. 46-55.
  Nauck, M. A. et al., “Efficacy and Safety of the Dipeptidyl Peptidase-4 Inhibitor, Sitagliptin, Compared with the Sulfonylurea, Glipizide, in Patients with Type 2 Diabetes Inaduately Controlled on Metformin alone: A Randomized, Double-Blind, Non-Inferiority Trial.” Diabetes Obesity and Metabolism, 2007, vol. 9, No. 2, pp. 194-205.
  Nielsen, L., “Incretin mimetics and DPP-IV inhibitors for the treatment of type 2 diabetes.” Drug Discovery Today, 2005, vol. 10, No. 10, pp. 703-710.
  Nihon Ijinpo, Japan Medicinal Journal, 2001, No. 4032, p. 137.
  O'Farrell, et al., “Pharmacokinetic and Pharmacodynamic Assessments of the Dipeptidyl Peptidase-4 Inhibitor PHX1149: Double-Blind, Placebo-controlled, Single-and Multiple-Dose Studies in Healthy Subjects”. Clinical Therapeutics, Excerpta Medica, Princeton, NJ, vol. 29, No. 8, 2007, p. 1692-1705.
  Office Action for U.S. Appl. No. 10/695,597, mailed May 2, 2008.
  Patani George A. et al.: “Bioisoterism : A Rational Approach in Drug Design”, Chemical Reviews, 1996, vol. 96, No. 8, pp. 3147-3176.
  Pei, Z.: “From the bench to the bedside: Dipeptidyl peptidase IV inhibitors, a new class of oral antihyperglycemic agents” Current Opinion in Drug Discovery and Development, Current Drugs, London, GB vol. 11, No. 4, Jul. 1, 2008 pp. 512-532.
  Plummer, C.J.G. et al., “The Effect of Melting Point Distributions on DSC Melting Peaks.” Polymer Bulletin, 1996, vol. 36, pp. 355-360.
  Pospisilik, et al; Dipeptidyl Peptidase IV Inhibitor Treatment Stimulates ?-Cell Survival and Islet Neogenesis in Streptozotocin-Induced Diabetic Rats; Diabetes, vol. 52, Mar. 2003 pp. 741-750.
  Pratley, R. et al., “Inhibition of DPP-4: a new therapeutic approach for the treatment of type 2 diabetes.” Current Medical Research and Opinion, 2007, vol. 23, No. 4, pp. 919-931.
  Priimenko, B. A., et al; Synthesis and Pharmacological Activity of Derivates of 6,8-Dimethyl Imidazo(1,2-f) Xanthine-(Russ.); Khimiko-Farmatsevticheskii zhurnal (1984) vol. 18, No. 12 pp. 1456-1461.
  Rhee et al.: “Nitrogen-15-Labeled Deoxynucleosides. 3. Synthesis of [3-15N]-2′-Deoxyadenosine” J. Am. Chem. Soc. 1990, 112, 8174-8175.
  Rosenbloom, et al., “Type 2 Diabetes mellitus in the child and adolescent”, Pediatric Diabetes, 2008, p. 512-526.
  Rosenstock, et al., “Efficacy and tolerability of initial combination therapy with vildagliptin and pioglitazone compared with component montherapy in patients with type 2 diabetes”. Diabetes, Obesity and Metabolism, Mar. 2007, vol. 9, No. 2, p. 175-185.
  Rosenstock, et al., Sitagliptin Study 019 Groups, Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin, Clinical Therapeutics, 2006, vol. 28, Issue 10, p. 1556-1568.
  Rosenstock, J. et al., “Alogliptin added to insulin therapy in patients with type 2 diabetes reduces HbA1c without causing weight gain or increased hypoglycaemia”. Diabetes, Obesity and Metabolishm, Dec. 2009, vol. 11. No. 12, p. 1145-1152.
  Russell-Jones, D. et al., “Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): a randomised controlled trial.” Diabetologia, 2009, vol. 52, pp. 2046-2055.
  Salomon, J., et al; Ultraviolet and g-Ray-Induced Reactions of Nucleic Acid Constituents. Reactions of Purines with Amines; Photochemistry and Photobiology (1974) vol. 19 pp. 21-27.
  Sarafidis, P. et al., “'Cardiometabolic Syndrome and Chronic Kidney Disease: What is the link?” JCMS 2006, 1: p. 58-65.
  Sathananthan, A., et al., “Personalized pharmacotherapy for type 2 diabetes mellitus”. Personalized Medicine 2009 Future Medicine Ltd, vol. 6, No. 4, Jul. 2009, p. 417-422.
  Sauer, R, et al. “Water-soluble phosphate prodrugs of 1-Propargyl-7-styrylxanthine derivatives, A2A-selective adenosine receptor antagonists”. Journal Med. Chem., vol. 43, Issue 3, Jan. 2000, p. 440-448.
  Schmidt, D. et al., “Fibromatosis of Infancy and Childhood Histology, Ultrastructure and Clinicopathologic Correlation.” Zeitschrift für Kinderchirurgie, 1985, vol. 40, No. 1, pp. 40-46.
  Schwartz, M. S. et al., “Type 2 Diabetes Mellitus in Childhood: Obesity and Insulin Resistance”. JAOA Review Article, vol. 108, No. 9, Sep. 2008, p. 518.
  Scientific Discussion: “Eucreas. Scientific discussion”. Online Oct. 2007, p. 1-27, URL:http://www.emea.europa.eu/humandocs/PDFs/EPAR/eucreas/H-807-en6.pdf. see point 2. quality aspects pp. 2-4. (EMEA).
  Sedo, A. et al; “Dipeptidyl peptidase IV activity and/or structure homologs: Contributing factors in the pathogenesis of rheumatoid arthritis?” Arthritis Research & Therapy 2005, vol. 7, pp. 253-269.
  Shanks, N. et al., Are animal models predictive for humans?, PEHM, Philosophy, Ethics, and Humanaities in Medicine, 4(2), 2009, 1-20.
  Shintani, Maki, et al., “Insulin Resistance and Genes”Circulatory Sciences (1997) vol. 17, No. 12 pp. 1186-1188.
  Silverman, G. et al., “Handbook of Grignard Reagents.” 1996, Retrieved online: <http://books.google.com/books?id=82CaxfY-uNkC&printsec=frontcover&dq=intitle:Handbook+intitle:of+intitle:Grignard+intitle:Reagents&hl=en&sa=X&ei=g06GU5SdOKngsATphYCgCg&ved=0CDYQ6AEwAA#v=onepage&q&f=false>.
  Singhal, D. et al., “Drug polymorphism and dosage form design: a practical perspective.” Advanced Drug Delivery Reviews, 2004, vol. 56, pp. 335-347.
  Stahl, P.H., “Handbook of Pharmaceutical Salts”. C.G. Wermuth, Wiley-VCH, 2002, p. 61.
  Tamm, E, et al., “Double-blind study comparing the immunogenicity of a licensed DTwPHib-CRM197 conjugate vaccine (Quattvaxem TM) with three investigational, liquid formulations using lower doses of Hib-CRM197 conjugate”. Science Direct, Vaccine, Feb. 2005, vol. 23, No. 14, p. 1715-1719.
  Targher, G. et al., “Prevalence of Nonalcoholic Fatty Liver Disease and Its Association With Cardiovascular Disease Among Type 2 Diabetic Patients.” Diabetes Care, 2007, vol. 30, No. 5, pp. 1212-1218.
  EMEA Guidelines on Eucreas®, 2007, pp. 1-27.
  EMEA Guidelines on Galvus®, 2007, pp. 1-34.
  Kishore, Preeti MD., “Complications of Diabetes Mellitus.” Merck Manual Consumer Version, 2016, pp. 1-7.
  Moritoh, Y. et al., “Combination treatment with alogliptin and voglibose increases active GLP-1 circulation, prevents the development of diabetes and preserves pancreatic beta-cells in prediabetic db/db mice.” Diabetes, Obesity and Metabolism, 2010, vol. 12, pp. 224-233.
  Rosenstock, J. et al., “Triple Therapy in Type 2 Diabetes.” Diabetes Care, 2006, vol. 29, No. 3, pp. 554-559.
  U.S. Appl. No. 15/235,575, filed Aug. 12, 2016, Inventor: Klaus Dugi.
  Yasuda, N. et al., “Metformin Causes Reduction of Food Intake and Body Weight Gain and Improvement of Glucose Intolerance in Combination with Dipeptidyl Peptidase IV Inhibitor in Zucker fa/fa Rats.” The Journal of Pharmacology and Experimental Therapeutics, 2004, vol. 310, No. 2, pp. 614-619.
  Fantus, George, “Metformin's contraindications: needed for now.” Canadian Medical Association Journal, 2005, vol. 173, No. 5, pp. 505-507.
  Eu Clinical Trial Register, “A multicenter, international, rendomized, parallel group, double-blind, placebo-controlled, cardiovascular safety and renal microvascular outcome study with linagliptin, 5 mg once daily in patients with type 2 diabetes mellitus at high vascular risk.” Aug. 19, 2015.
  Fiorucci, et al. Trends in Molecular Medicine, Targeting farnesoid X receptor for liver and metabolic disorders, 13(7), 2007, p. 298-309.
  Morhenn, “Keratinacyte proliferation n wound healing and skin diseases”, Immunology Today, vol. 9, Issue 4, 1988, p. 104.
  Karaliede et al, Diabetes Care, Endothelial Factors and Diabetic Nephropathy, 2011, 34, Suppl 2, p. 291-296.
  Ferreira, Triple Combination therapy with sitagliptin, metformin and rosiglitazone improves glycaemic control in patiens with type 2 diabetes, Diabetologixa, 2008, Suppl 1.
  Third Party Observation for application No. EP20070728655, May 13, 2013.
  Thomas, L, et al: “BI 1356, a novel and selective xanthine beased DPP-IV inhibitor, exhibits a superior profile when compared to sitagliptin and vildagliptin.” Diabetologoa, vol. 50, No. Suppl. 1, Sep. 2007, p. S363.
  Thomas, L., “Chronic treatment with the Dipeptidyl Peptidase-4 Inhibitor BI 1356[9R)-8-(3-Amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione] Increases Basal Glucagon-Like Peptide-1 and Improves Glycemic Control in Diabetic Rodent Models” The Journal of Pharmacology and Experimental Therapeutics, Feb. 2009, vol. 328, No. 2, pp. 556-563.
  Thornber, C.W., “Isosterism and Molecular Modification in Drug Design.” Chemical Society Reviews, 1979, pp. 563-580.
  Tounyoubyou, “Symposium-19: Future Perspectives on Incretion Therapy in Diabetes.” 2008, vol. 51, Suppl. 1, p. S-71, S19-2.
  Tradjenta, Highlights of Prescribing Information (revised Sep. 2012).
  Tribulova, N. et al. “Chronic Disturbances in No Production Results in Histochemical and Subcellular Alterations of the Rat Heart.” Physiol. Res., 2000, vol. 49, No. 1, pp. 77-88.
  Tsujihata, et al., “TAK-875, an orally available G protein-Coupled receptor 40/Free fatty acid receptor 1 Agonist, Enhances Glucose Dependent Insulin Secretion and improves both Postprandial and Fasting hyperglycemic in type 2 Diabetic rats”, J. Pharm Exp. 2011, vol. 339, No. 1, p. 228-237.
  U.S. Appl. No. 12/724,653, filed Mar. 16, 2010—Xanthine Derivatives, the Preparation Thereof and Their Use as Pharmaceutical Compositions. Inventor: Frank Himmelsbach, et al.
  U.S. Appl. No. 12/767,855, filed Apr. 27, 2010—Xanthine Derivatives, the Preparation Thereof and Their use as Pharmaceutical Compositions. Inventor: Frank Himmelsbach, et al.
  Uhlig-Laske, B. et al., “Linagliptin, a Potent and Selective DPP-4 Inhibitior, is Safe and Efficacious in Patients with Inadequately Controlled Type 2 Diabetes Despite Metformin Therapy”. 535-P. Clinical Therapeutics/New Technology—Pharmacologic Treatment of Diabetes or Its Complications, Posters, vol. 58, Jun. 5, 2009, p. A143.
  United Healthcare, “Diabetes.” Retrieved from internet on Aug. 22, 2013, http://www.uhc.com/source4women/healthtopics/diabetesirelatedinformation/dOf0417b073bf11OVgnVCM1000002f1Ob1Oa.htm.
  Villhauer, E.B., “1-[[3-Hydroxy-1-adamantyl)amino]acetyl]-1-cyano-(S)-pyrrolidine: A Potent, Selective, and Orally Bioavailable Dipeptidyl Peptidase IV Inhibitor with Antihyperglycemic Properties” Journal Med. Chem, 2003, 46, p. 2774-2789.
  Villhauer, E.B., et al., “1-{2-{5-Cyanopyridin-2-yl)amino}-ethylamino}acetyl-1-1(S)-pyrrolidine-carbonitrile: A Potent, Selective, and Orally Bioavailable Dipeptidyl Peptidase IV Inhibitor with Antihyperglycemic Properties”. Journal of Medical Chemistry, 2002, vol. 45, No. 12, p. 2362-2365.
  Wang Y et al: “BI-1356. Dipeptidyl-peptidase IV inhibitor, antidiabetic agent.” Drugs of the Future, Prous Science, ES,vol. 33, No. 6, Jun. 1, 2008, pp. 473-477.
  Wertheimer, et al., “Drug Delivery Systems improve pharmaceutical profile and faciliate medication adherence”, Adv. Therapy 22: p. 559-577 (2005).
  White, John R. Jr., “Dipeptidyl Peptidase-IV Inhibitors: Phamacological Profile and Clinical Use”. Clinical Diabetes, Apr. 2008, vol. 26, No. 2, pp. 53-57.
  Wikipedia, Annulation. Jun. 23, 2008, http://en.wikipedia.org/wiki/Annelation.
  Williams-Herman, D. et al., “Efficacy and safety of initial combination therapy with sitagliptin and metformin in patients with type 2 diabetes: a 54-week study”. Current Medical Research and Opinion, Informa Healthcare, GB, vol. 25, No. 3, Jan. 2009, p. 569-583.
  Wolff, M.E.: “Burger's Medicinal Chemistry and Drug Discovery” Fifth Edition, vol. 1: Principles and Practice, pp. 975-977, 1994, John Wiley & Sons, Inc.
  World Health Organization (WHO). “Addendum 1 to “The use of stems in the selection of International Nonproprietary names (INN) for pharmaceutical substances”” Online Jun. 19, 2007, pp. 1-3, retrieved from URL: http://www.who.int/medicindedocs/index/assoc/s1414e/s1414e.pdf.
  X-Ray Diffraction. The United States Pharmacopeia, 2002, USP 25 NF20, p. 2088-2089.
  Yasuda, et al. “E3024 3-but-2-ynyl-5-methyl-2-piperazin-1-y1-3,5-dihydro-4H-imidazol [ 4,5-d]pyridazin-4-one tosylate, is a move, selective and competitive dipeptidyl peptidase-IV inhibitor”. European Journal of Pharmacology, vol. 548, No. 1-3, Oct. 24, 2006, p. 181-187. Abstract.
  Yoshikawa, Seiji et al.: Chemical Abstract of Japanese Patent No. WO 2003/104229 Preparation of purinone derivatives as dipeptidylpeptidase IV (DPP-IV) inhibitors, 2003.
  Youssef, S. et al., “Purines XIV. Reactivity of 8-Promo-3,9-dimethylxanthine Towards Some Nucleophilic Reagents.” Journal of Heterocyclic Chemistry, 1998, vol. 35, pp. 949-954.
  Zejc, Alfred, et al; “Badania Nad Piperazynowymi Pochodnymi Dwumetyloksantyn” Acta Polon Pharm, XXXV (1976) Nr. 4 pp. 417-421.
  Zhong, Qing et al; “Glucose-dependent insulinotropic peptide stimulates proliferation and TGF-? release from MG-63 cells,” Peptides 24 (2003) 611-616.
  Zhu, G. et al., “Stabilization of Proteins Encapsulated in Cylindrical Poly(lactide-co-glycolide) Implants: Mechanism of Stabilization by Basic Additives.” Pharmaceutical Research, 2000, vol. 17, No. 3, pp. 351-357.
  Zimmer et al; Synthesis of 8-Substituted Xanthines and their Oxidative Skeleton Rearrangement to 1-Oxo-2,4,7,9-tetraazaspiro[4,5]dec-2-ene-6,8,10-triones; Euripean Journal Organic Chemistry (1999) vol. 9 pp. 2419-2428.
 
 
     * cited by examiner
 
     Primary Examiner —Robert Landsman
     Assistant Examiner —Bruce D Hissong
     Art Unit — 1646
     Exemplary claim number — 1
 
(74)Attorney, Agent, or Firm — Paula K. Wittmayer; David L. Kershner

(57)

Abstract

The present invention relates to the use of a certain DPP-4 inhibitor for modifying food intake and regulating food preference.
5 Claims, 4 Drawing Sheets, and 4 Figures


FIELD OF THE INVENTION

[0001] The present invention relates to the use of a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents, such as e.g. including a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) to specifically modify and/or reduce the intake of food by a subject, particularly wherein said food is rich in fat and/or in carbohydrate (e.g. high caloric, palatable, sweet and/or fatty food), for example such food which has a high glycemic index and/or wherein the amount of mono- and/or di-saccharides constitute a large portion of the total amount of carbohydrate and/or wherein a large portion of the total amount of energy stems from fat.
[0002] The present invention further relates to a principle for combined weight and pre-diabetes/diabetes management (such as e.g. for appetite suppression, change in diet preference, body weight loss and/or body weight control) such as in obese (e.g. human) subjects by using a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents, such as e.g. a GLP-1 receptor agonist, such as a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1, e.g. for appetite suppression, change in diet preference and/or body weight loss, and/or an α-glucosidase inhibitor, such as voglibose, e.g. for body weight control).

BACKGROUND OF THE INVENTION

[0003] Lifestyle in many parts of the world today is characterized by an enormous meal and “between-meal” intake of calories (e.g. from solid food and snacks as well as drinkable calories), often associated with or provoked by multiple temptations of an “adipogenic”, sedentary and calorie-laden environment and shortage of physical exercise.
[0004] This lifestyle is often referred to as “western world lifestyle”, and it is generally regarded as unhealthy. Our food earlier consisted of an average of 10% protein, 30% fat and 60 carbohydrates; the carbohydrates mostly in the form of slowly absorbed carbohydrates. The food and especially the between-meal snack consumed today often has a much higher amount of quickly absorbed carbohydrates and fat. The amount of quickly absorbed carbohydrates may be measured as the glycemic index or as the fraction of mono- and di-saccharide of the total amount of carbohydrates. The excess intake of quickly absorbed carbohydrates and/or high fat leads to reduced feelings of hunger and to increased stress. Also, some human beings have cravings for sweet and/or fat food, sometimes enhanced by stress or premenstrual tension, or they may have psychological problems manifested as binge eating or compulsive eating habits.
[0005] As a consequence of this western world lifestyle, eating behavior, food or taste preference and/or the psychological disorders described above there is a general excessive intake of food, especially of highly caloric unhealthy food, like sodas, juice, chocolate milk, sweetened coffee, candy, chocolate, cake, biscuits, crackers, french fries, burgers, white bread with jam or jelly or honey, chips, sweet and fat cereals.
[0006] Therefore, in addition or in alternative to conventional weight management algorithms like diet, exercise, behavioral or lifestyle modification or—especially in case of extremely obese subjects—bariatric (weight-loss) surgery, there remains a need for further options for weight management by pharmaceutical or pharmacotherapeutic interventions, such as for managing, treating or preventing weight gain, overweight, obesity or other (metabolic) diseases or disorders associated or related therewith, for promoting weight loss, for controlling body weight, for changing eating behavior, for regulating food or taste preference and/or for maintaining or adjusting adequate balance of healthy and unhealthy food consumption e.g. to meet individual's established nutritional requirements and a healthy nutritional lifestyle.

SUMMARY OF THE INVENTION

[0007] The present invention relates to the use of a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents, such as e.g. including a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) to specifically modify and/or reduce the intake of food by a subject, particularly wherein said food is rich in fat and/or in carbohydrate (e.g. high caloric, palatable, sweet and/or fatty food), for example such food which has a high glycemic index and/or wherein the amount of mono- and/or di-saccharides constitute a large portion of the total amount of carbohydrate and/or wherein a large portion of the total amount of energy stems from fat.
[0008] The present invention further relates to the use of a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents, such as e.g. including a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) for reducing the intake of high caloric (palatable, rich in fat and/or carbohydrate) food and/or for regulating or shifting food or taste preference or choice of food away from high caloric (palatable, rich in fat and/or carbohydrate) food intake, particularly with decreasing the amount of unhealthy and/or high caloric (e.g. palatable, rich in fat and/or carbohydrate) food intake and, optionally, with increasing (e.g. relatively to the amount of unhealthy and/or high caloric food intake) the amount of healthy and/or low caloric food intake.
[0009] Accordingly, the present invention relates to the use of a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents, such as e.g. including a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) for altering eating attitudes and shifting eating and/or taste preference towards healthy food.
[0010] Accordingly, the present invention relates to the use of a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents, such as e.g. including a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) for altering eating attitudes and shifting eating and/or taste preference away from unhealthy food.
[0011] Further, the present invention relates to the use of a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents, such as e.g. including a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) for reducing, facilitating a reduction in, or preventing an increase in caloric intake, excessive food energy intake, body weight, total body fat mass, total body fat percentage, visceral fat and/or over eating.
[0012] In an embodiment, the subject described herein is overweight or obese, e.g. with or without risk factors for or comorbidities such as diabetes mellitus, dyslipidemia, hypertension and/or metabolic syndrome.
[0013] In particular, the subject described herein is overweight or obese, e.g. with or without diabetes.
[0014] In another embodiment, the subject described herein is a subject with an abnormal or excessive intake of food.
[0015] In another embodiment, the subject described herein is a subject having diabetes (e.g. type 1 or type 2 diabetes or LADA, particularly type 2 diabetes), e.g. with or without obesity or overweight.
[0016] In particular, the subject within this invention may be a human, e.g. a human child, a human adolescent or a human adult.
[0017] For example, unhealthy food in the meaning of this invention may be food from one or more of the groups A) to D):

A) The glycemic index is above 60%

B) The glycemic index is above 40% and wherein more than 30% of the total amount of energy stems from fat

C) The amount of mono- and/or di-saccharides constitute more than 25% of total carbohydrate content

D) The amount of mono- and/or di-saccharides constitute more than 25% of total carbohydrate content and wherein more than 30% of the total amount of energy stems from fat.

[0018] For example, healthy food in the meaning of this invention may be food from one or more of the groups E) to H):

E) The glycemic index is below 60%

F) The glycemic index is below 40% and wherein less than 30% of the total amount of energy stems from fat

G) The amount of mono- and/or di-saccharides constitute together constitute less than 25% of the total carbohydrate content

H) The amount of mono- and/or di-saccharides constitute less than 25% of the total carbohydrate content, and wherein less than 30% of the total amount of energy stems from fat

[0019] Further, the present invention relates to a DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents, such as e.g. including a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) for use in the treatment and/or prevention of a metabolic disease such as described herein (such as e.g. type 2 diabetes mellitus and/or obesity) in a patient in need thereof (such as e.g. a patient having overweight, obesity and/or diabetes), particularly in a patient who is further in need of reduction in, facilitation of a reduction in, or prevention of an increase in caloric intake, excessive food energy intake, body weight, total body fat mass, total body fat percentage, visceral fat and/or over eating, and/or
[0020] in a patient who is further in need of modification of and/or reduction in intake of food, particularly wherein said food is rich in fat and/or in carbohydrate (e.g. high caloric, palatable, sweet and/or fatty food), for example such food which has a high glycemic index and/or wherein the amount of mono- and/or di-saccharides constitute a large portion of the total amount of carbohydrate and/or wherein a large portion of the total amount of energy stems from fat, and/or
in a patient who is further in need of reduction in intake of high caloric (palatable, rich in fat and/or carbohydrate) food and/or of regulation or shift in food or taste preference or choice of food away from unhealthy food (e.g. as described herein) and towards healthy food (e.g. as described herein), such as in a patient in need of decrease in the amount of unhealthy and/or high caloric (e.g. palatable, rich in fat and/or carbohydrate) food intake and/or in need of increase in the amount of healthy and/or low caloric food intake.
[0021] Accordingly, in a particular embodiment, a preferred DPP-4 inhibitor within the meaning of this invention is linagliptin.
[0022] Pharmaceutical compositions or combinations for use in these therapies (treatments or preventions) comprising a certain DPP-4 inhibitor (preferably linagliptin) as defined herein optionally together with one or more other active agents are also contemplated.
[0023] Further, the present invention relates to a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one, two or more further active agents, each as defined herein, for use in the therapies (treatments or preventions) as described herein.
[0024] Further, the present invention relates to the use of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one, two or more further active agents, each as defined herein, for preparing a pharmaceutical composition which is suitable for the treatment and/or prevention purposes of this invention.
[0025] Further, the present invention relates to a therapeutic (treatment or prevention) method as described herein, said method comprising administering an effective amount of a certain DPP-4 inhibitor (preferably linagliptin) and, optionally, one or more other active or therapeutic agents to the patient in need thereof, each as described herein.
[0026] Furthermore, the present invention relates to a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in preventing, protecting against, reducing (e.g. the likelihood of) or minimizing the side effects associated with the therapeutic use of alpha-gucosidase inhibitors/blockers (e.g. voglibose, miglitol or acarbose), such as gastrointestinal adverse effects (e.g. dyspepsia, flatulence or diarrhea, or nausea or vomiting).
[0027] Further, the present invention relates to a combination of a certain DPP-4 inhibitor (preferably linagliptin) and an alpha-gucosidase inhibitor/blocker (e.g. voglibose, miglitol or acarbose), such as e.g. for use in therapy (e.g. improving glycemic and/or body weight control) such as described herein in a patient in need thereof (e.g. diabetes patient, such as e.g. patients having or being at-risk of renal impairment e.g. with indication on dose reduction of an alpha-gucosidase inhibitor/blocker used), optionally in combination with one or more other active agents, such as e.g. wherein the alpha-gucosidase inhibitor/blocker is present or is used in reduced amount and/or less frequent (daily) dosing (such as e.g. voglibose in low dose such as 0.2 mg, 1-3 times a day; acarbose in low dose such as 25-50 mg (or up to 100 mg), each 1-3 times a day; or miglitol in low dose such as 25-50 mg (or up to 100 mg), each 1-3 times a day) when co-administered with the DPP-4 inhibitor (preferably linagliptin).
[0028] Other aspects of the present invention become apparent to the skilled person from the foregoing and following remarks (including the examples and claims).
[0029] The aspects of the present invention, in particular the pharmaceutical compounds, compositions, combinations, methods and uses, refer to a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents, such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1, as defined hereinbefore and hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] FIG. 1 shows bidaily s.c. treatment of male Sprague Dawley rats (obesity model) with linagliptin and native GLP-1 leading to a significant reduction of body weight (BW) up to 8%. Data show mean vaules+SEM (standard error of the mean) of 10 animals.
[0031] FIG. 2 shows significant decrease in fat mass following application of the combination of linagliptin and native GLP-1 in these animals.
[0032] FIGS. 3a and 3b show that the Linagliptin/GLP-1 treated animals possess altered food preferences in reduction intake of high fat diet a) and switching to chow diet b).

DETAILED DESCRIPTION OF THE INVENTION

[0033] The glycemic index is a measure of the ability of food to raise the blood glucose level. The glycemic index of a food can be determined by feeding a group consisting of at least 10 healthy people a portion of food containing 50 grams of digestible (available) carbohydrate and then measure the effect on their blood glucose levels during the following two hours. For each person, the area under their two-hour blood glucose response (glucose AUC) is measured. On another occasion, the same group of people consume 50 g of glucose, and their two-hour blood glucose response is also measured. The glycemic index for the food is the AUC determined for the food divided by the AUC determined for glucose multiplied by 100% (calculated as the average for the group). Food with a high glycemic index contain rapidly digested carbohydrate, which produces a large rapid rise and fall in the level of blood glucose. In contrast, foods with a low glycemic index score contain slowly digested carbohydrate, which produces a gradual, relatively low rise in the level of blood glucose.
[0034] In the present context, mono-saccharides is intended to indicate a carbohydrate that cannot be hydrolysed to simpler carbohydrates. The most relevant mono-saccharides in food are glucose and fructose.
[0035] In the present context, di-saccharides is intended to indicate carbohydrates which can be hydrolysed into two mono-saccharides. The most relevant di-saccharides in food are sucrose, maltose and lactose.
[0036] The amount of mono- and/or di-saccharides in food may be analysed specifically by enzymatic, gas-liquid chromatography (GLC) or high performance liquid chromatography (HPLC) methods. Depending on the food matrix to be analyzed, extraction of the low molecular weight carbohydrates in aqueous ethanol, usually 80% (v/v), may be advisable before analysis. Relevant analysis methods are provided in e.g. Southgate, “Determination of food carbohydrates”, Elsevier, Science Publishers, Barkinggate, 1991; Greenfield, “Food composition data. Production, management and use”, Elsevier Applied Science, London, 1992; and Department of Health, “Dietary sugars and human health, Her Majesty's Stationary Office, London, 1989.
[0037] In the present context, carbohydrates can be defined as in “Carbohydrates in human nutrition. (FAO Food and Nutrition Paper—66)”, Report of a Joint FAO/WHO Expert Consultation, Rome, 14-18 Apr. 1997, Report of a Joint FAO WHO Expert Consultation Rome, 14-18 Apr. 1997, namely as polyhydroxy aldehydes, ketones, alcohols, acids, their simple derivatives and their polymers having linkages of the acetal type.
[0038] In the present context, fat is intended to indicate mono-, di- and/or tri-carboxylic acid ester derived from glycerol and cholesterol, where the glycerols are the more important source of energy in the food of the two. The amount of fat in food may be determined as disclosed in FAO: Food energy—methods of analysis and conversion factors, Report of a Technical Workshop, Rome, 3-6 Dec. 2002.
[0039] In the present context, total carbohydrate content is intended to indicate the sum of carbohydrates present in the food. It is not measured as such, but rather calculated as the difference between the total weight of the food and the sum of the weights of the non-carbohydrate components [FAO: Food energy—methods of analysis and conversion factors, Report of a Technical Workshop, Rome, 3-6 Dec. 2002.
[0040] In the present context, food, unless otherwise stated, is intended to indicate food in any form, i.e. both liquid and solid food, as well as basic food and candy, snacks, etc.
[0041] In the present context, reducing intake of food is intended to indicate that the amount of food (measured by its energy content) eaten by a group consisting of one or more subjects being administered a certain DPP-4 inhibitor, optionally in combination with another active agent, is reduced compared to a similar control group not being administered a certain DPP-4 inhibitor, optionally in combination with another active agent, as provided in the present invention.
[0042] Similarly, increasing intake of food is intended to indicate that the amount of food (measured by its energy content) eaten by a group consisting of one or more subjects being administered a certain DPP-4 inhibitor, optionally in combination with another active agent, is increased compared to a similar control group not being administered a certain DPP-4 inhibitor, optionally in combination with another active agent, as provided in the present invention.
[0043] In the present context, abnormal or excessive intake of food is intended to indicate an intake with pathological consequences, such as obesity, or which can be ascribed to a psychological state connected with e.g. pregnancy or premenstrual tension, or to a psychological disease, such as binge eating or compulsory eating habits.
[0044] An effective amount of a compound as used herein means an amount sufficient to cure, alleviate or partially arrest the manifestations (e.g. clinical manifestations) of a given state or condition, such as a disease or disorder, and its complications. An amount adequate to accomplish this is defined as “effective amount”. Effective amounts for each purpose will depend on the severity of the condition, disease or injury as well as the weight and general state of the subject and mode of administration, or the like. It will be understood that determining an appropriate dosage may be achieved using routine experimentation, by constructing a matrix of values and testing different points in the matrix, which is all within the ordinary skills of a trained physician or veterinary.
[0045] In the present context, treatment or treating mean the management and care of a patient or subject for the purpose of combating a condition, such as a disease or a disorder. The term is intended to include the full spectrum of treatments for a given condition from which the patient or subject is suffering, such as administration of the active compound to alleviate the symptoms or complications, to delay the progression of the disease, disorder or condition, to alleviate or relief the symptoms and complications, and/or to cure or eliminate the disease, disorder or condition as well as to prevent the condition, wherein prevention is to be understood as the management and care of a patient for the purpose of combating the disease, condition, or disorder and includes the administration of the active compounds to prevent or delay the onset of the symptoms or complications.
[0046] Within the meaning of this invention, unless otherwise noted, the uses or methods according to the invention may relate either to medical, such as therapeutic and/or prophylactic, uses/methods or to non-medical, such as non-therapeutic and/or non-prophylactic, uses/methods (such as e.g. cosmetic uses or methods).
[0047] Accordingly, within the meaning of this invention, unless otherwise noted, the treatments and/or preventions according to the invention may relate either to treatments and/or preventions for medical, such as therapeutic and/or prophylactic, purposes or to treatments and/or preventions for non-medical, such as non-therapeutic and/or non-prophylactic, purposes (such as e.g. cosmetic or lifestyle purposes).
[0048] Thus, in one aspect, the present invention provides the use of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1), to modify or reduce the intake of specific types of food (e.g. unhealthy food) by a subject (e.g. a subject with overweight, obesity and/or diabetes) wherein the food has a high glycemic index and/or wherein the mono- and/or di-saccharides constitute a large proportion of the total amount of carbohydrates in said food and/or wherein a large proportion of the total amount of energy stems from fat in said food.
[0049] In a further aspect, the invention provides a method for decreasing the intake of food by a subject, wherein the food has a high glycemic index, said method comprising the administration of an effective amount of a certain DPP-4 inhibitor, optionally in combination with one or more other active agents (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1), to said subject.
[0050] Particularly in this aspect, the glycemic index of the food may be above 60%, such as above 65%, such as above 70%, such as above 75%, such as above 80%, such as above 90%.
[0051] In a further aspect, the invention provides a method for decreasing the intake of food by a subject, wherein the mono- and/or di-saccharides constitute a large proportion of the total amount of carbohydrates in said food, said method comprising the administration of an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1), to said subject.
[0052] Particularly in this aspect, the amount of mono- and/or di-saccharides together of total carbohydrate content may be above 25%, such as above 30%, such as above 40%, such as above 50%, such as above 60%, such as above 70%, such as above 80%, such as above 90%, or even 100%.
[0053] In an embodiment of this aspect, the mono-, di- and tri-saccharides together constitute more than 25% of the total amount of carbohydrates.
[0054] In a further aspect, the invention provides a method for decreasing the intake of food by a subject, wherein the food has a glycemic index above 40%, and wherein more than 30% of the total amount of energy stems from fat in said food, said method comprising administering an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1), to said subject.
[0055] There is included in this aspect any combination of food with a glycemic index above 40%, such as above 45%, such as above 50%, such as above 55%, such as above 60%, such as above 65%, such as above 70%, such as above 75%, such as above 80%, such as above 90%, and wherein more than 30%, such as more than 35%, such as more than 40%, such as more than 50%, such as more than 60%, such as more than 70%, such as more than 80% of the total amount of energy stems from fat.
[0056] In a further aspect, the invention provides a method of decreasing the intake of food by a subject, wherein mono- and/or di-saccharides together constitute more than 25% of the total amount of carbohydrates and wherein more than 30% of the total amount of energy stems from fat in said food, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0057] There is included in this aspect any combination of food wherein mono- and/or di-saccharides together constitute more than 25%, such as more than 30%, such as more than 40%, such as more than 45%, such as more than 50%, such as more than 70%, such as more than 80%, such as more than 90%, or even 100% of the total amount of carbohydrates, and wherein more than 30%, such as more than 35%, such as more than 40%, such as more than 50%, such as more than 60%, such as more than 70%, such as more than 80% of the total amount of energy stems from fat.
[0058] Further thus, in another aspect, the present invention provides the use of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1), to modify or increase the intake of specific types of food (e.g. healthy food) by a subject (e.g. a subject with overweight, obesity and/or diabetes) wherein the food has a low glycemic index and/or wherein the mono- and/or di-saccharides constitute a small proportion of the total amount of carbohydrates in said food and/or wherein a small proportion of the total amount of energy stems from fat in said food.
[0059] In a further aspect, the invention provides a method of increasing the intake of food by a subject, wherein the food has a low glycemic index, said method comprising the administration of an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1), to said subject
[0060] Particularly in this aspect, the glycemic index of the food may be below 60%, such as below 50%, such as below 40%, such as below 35%, such as below 30%, such as below 20%, such as below 10%, such as below 5%.
[0061] In a further aspect, the invention provides a method of increasing the intake of food by a subject, wherein the mono- and/or di-saccharides constitute a small proportion of the total amount of carbohydrates in said food, said method comprising the administration of an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1), to said subject
[0062] Particularly in this aspect, the amount of mono- and/or di-saccharides together of total carbohydrate content may be below 25%, such as below 20%, such as below 15%, such as below 10%, such as below 5%.
[0063] In an embodiment of this aspect, the mono-, di- and tri-saccharides together constitute less than 25% of the total amount of carbohydrates.
[0064] In a further aspect, the invention provides a method of increasing the intake of food by a subject, wherein the food has a glycemic index below 40%, and wherein less than 30% of the total amount of energy stems from fat in said food, said method comprising administering an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1), to said subject.
[0065] There is included in this aspect any combination of food with a glycemic index below 40%, such as below 30%, such as below 20%, such as below 10%, such as below 5%, and wherein less than 30%, such as less than 20%, such as less than 10%, such as less than 5% of the total amount of energy stems from fat.
[0066] In a further aspect, the invention provides a method of increasing the intake of food by a subject, wherein mono- and/or di-saccharides together constitute less than 25% of the total amount of carbohydrates and wherein less than 30% of the total amount of energy stems from fat in said food, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0067] There is included in this aspect any combination of food wherein mono- and/or di-saccharides together constitute less than 25%, such as less than 20%, such as less than 15%, such as less than 10%, such as less than 5% of the total amount of carbohydrates, and wherein less than 30%, such as less than 25%, such as less than 20%, such as less than 15%, such as less than 10%, such as less than 5% of the total amount of energy stems from fat.
[0068] In another aspect, the decrease in intake of food with a high glycemic index and/or food wherein mono- and/or di-saccharides constitute a large proportion of the total amount of carbohydrates and/or food wherein a large proportion of the total amount of energy stems from fat, as discussed above, is accompanied by an increase in the intake of food with a low glycemic index and/or of food wherein mono- and/or di-saccharides constitute as small proportion of the total amount of carbohydrates and/or food wherein a small proportion of the total amount of energy stems from fat, as discussed above.
[0069] Further thus, in another aspect, the present invention provides the use of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1), to regulate or shift food or taste preference or choice of food in a subject (e.g. a subject with overweight, obesity and/or diabetes) away from unhealthy food, such as having a high glycemic index and/or wherein the mono- and/or di-saccharides constitute a large proportion of the total amount of carbohydrates in said food and/or wherein a large proportion of the total amount of energy stems from fat in said food, each as discussed above.
[0070] Further thus, in another aspect, the present invention provides the use of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1), to regulate or shift food or taste preference or choice of food in a subject (e.g. a subject with overweight, obesity and/or diabetes) towards healthy food, such as having a low glycemic index and/or wherein the mono- and/or di-saccharides constitute a small proportion of the total amount of carbohydrates in said food and/or wherein a small proportion of the total amount of energy stems from fat in said food, each as discussed above.
[0071] Further thus, in another aspect, the present invention provides the use of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1), to regulate or shift food or taste preference or choice of food in a subject (e.g. a subject with overweight, obesity and/or diabetes) away from unhealthy food, such as having a high glycemic index and/or wherein the mono- and/or di-saccharides constitute a large proportion of the total amount of carbohydrates and/or wherein a large proportion of the total amount of energy stems from fat (each as discussed in more detail above), and towards healthy food, such as having a low glycemic index and/or wherein the mono- and/or di-saccharides constitute a small proportion of the total amount of carbohydrates and/or wherein a small proportion of the total amount of energy stems from fat (each as discussed in more detail above).
[0072] For example, in an embodiment, the present invention relates to a method for reducing intake of food by a subject (e.g. a subject with overweight, obesity and/or diabetes), wherein said food has a glycemic index above 60%, or wherein said food has a glycemic index above 40% combined with that more than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with another active agent (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0073] In another embodiment, the invention relates to a method for reducing intake of food by a subject (e.g. a subject with overweight, obesity and/or diabetes), wherein mono- and/or di-saccharides together in said food constitute more than 25% of the total amount of carbohydrate in said food, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with another active agent (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0074] In another embodiment, the invention relates to a method for reducing intake of food by a subject (e.g. a subject with overweight, obesity and/or diabetes), wherein mono- and/or di-saccharides together in said food constitute more than 25% of the total amount of carbohydrate in said food combined with that more than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with another active agent (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0075] In another embodiment, the invention relates to a method of increasing intake of food in a subject, wherein said food has a glycemic index below 60%, or wherein said food has a glycemic index below 40% combined with that less than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with another active agent (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0076] In another embodiment, the invention relates to a method of increasing intake of food in a subject wherein mono- and/or di-saccharides together constitute less than 25% of the total amount of carbohydrate in said food, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with another active agent (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0077] In another embodiment, the invention relates to a method of increasing intake of food in a subject wherein mono- and/or di-saccharides together constitute less than 25% of the total amount of carbohydrate in said food combined with that less than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with another active agent (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0078] In another embodiment, the invention relates to a method of treating a subject with an abnormal or excessive intake of food wherein the glycemic index is above 60%, or wherein the glycemic index is above 40% combined with that more than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with another active agent (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0079] In another embodiment, the invention relates to a method of treating a subject with an abnormal or excessive intake of food wherein the mono- and/or di-saccharides together constitute more than 25% of the total amount of carbohydrates, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with another active agent (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0080] In another embodiment, the invention relates to a method of treating a subject with an abnormal or excessive intake of food wherein the mono- and/or di-saccharides together constitute more than 25% of the total amount of carbohydrates combined with that more than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with another active agent (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0081] In another embodiment, the invention relates to method of regulating or shifting food or taste preference or choice of food in a subject (e.g. a subject with overweight, obesity and/or diabetes) away from food wherein the glycemic index is above 60%, or wherein the glycemic index is above 40% combined with that more than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with another active agent (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0082] In another embodiment, the invention relates to method of regulating or shifting food or taste preference or choice of food in a subject (e.g. a subject with overweight, obesity and/or diabetes) away from food wherein the mono- and/or di-saccharides together constitute more than 25% of the total amount of carbohydrates, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with another active agent (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0083] In another embodiment, the invention relates to method of regulating or shifting food or taste preference or choice of food in a subject (e.g. a subject with overweight, obesity and/or diabetes) away from food wherein the mono- and/or di-saccharides together constitute more than 25% of the total amount of carbohydrates combined with that more than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with another active agent (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0084] In another embodiment, the invention relates to method of regulating or shifting food or taste preference or choice of food in a subject (e.g. a subject with overweight, obesity and/or diabetes) towards food wherein the glycemic index is below 60%, or wherein the glycemic index is below 40% combined with that less than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with another active agent (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0085] In another embodiment, the invention relates to method of regulating or shifting food or taste preference or choice of food in a subject (e.g. a subject with overweight, obesity and/or diabetes) towards food wherein the mono- and/or di-saccharides together constitute less than 25% of the total amount of carbohydrates, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with another active agent (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0086] In another embodiment, the invention relates to method of regulating or shifting food or taste preference or choice of food in a subject (e.g. a subject with overweight, obesity and/or diabetes) towards food wherein the mono- and/or di-saccharides together constitute less than 25% of the total amount of carbohydrates combined with that less than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with another active agent (such as e.g. a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1).
[0087] The amount of energy in food is typically quoted in calories or joules, and it can be measured by burning the food, e.g. in a bomb calorimeter. The amount of energy attributable to fat can be determined by multiplying the amount of fat in the food, analysed as discussed above, with 38 kJ/g.
[0088] It is well-known that many people prefer sweet and/or fatty food because they think it has a better taste. Accordingly, the present invention also provides a method a regulating taste preferences, and in particular regulating taste preferences away from sweet and fatty food, said method comprising the administration of an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents.
[0089] It is quite clear that the western world life style is not healthy as evidenced by the increase in obesity with all its pathological consequences, such as diabetes and diabetic complications, and in that sense the life style must be regarded as abnormal. Accordingly, in one embodiment, the present invention relates to a method of normalising lifestyle, and in particular the food preference, said method comprising the administration of an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents.
[0090] In one embodiment, the subject to be treated has an increased appetite, hunger or craving for sweet or fat food. This may be related to e.g. stress, quit of smoking, pregnancy, premenstrual tension, or it can be ascribed physiological problems or diseases, such as binge eating, compulsive eating habits and Seasonal Affective Disorder.
[0091] Binge eating disorder (BED) is a fairly new diagnosable disorder—see e.g. Int. J. Obesity, 2002, 26, 299-307 and Curr. Opin. Psychiatry, 17, 43-48, 2004. BED is characterised by binge eating episodes as is bulimia nervosa (BN). However, subjects with BED do not, contrary to patients with BN, engage in compensatory behaviors, such as e.g. self-induced vomiting, excessive exercise, and misuse of laxatives, diuretics or enemas. Studies have shown that 1-3% of the general population suffer from BED, whereas a higher prevalence (up to 25-30%) have been reported for obese patients [Int. J. Obesity, 2002, 26, 299-307]. These numbers show that BED subjects may or may not be obese, and that obese patients may or may not have BED, i.e. that the cause of the obesity is BED. However, a proportion of subjects with BED eventually becomes obese due to the excess calorie intake. Laboratory studies have shown that BED patients consumed more dessert and snack (rich in fat and poor in proteins) than did an obese control group [Int. J. Obesity, 2002, 26, 299-307], and the method of the present invention is thus believed to be suited for treatment of BED. In one embodiment, the invention relates to a method or treating BED in a subject, the method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents. In particular, said subject is obese.
[0092] Bulimia nervosa (BN) is characterised by the same binge eating episodes as is BED, however, BN is, however, also characterised by the above mentioned compensatory behavior. A proportion of subjects with BN will eventually become obese to the extent that the compensatory behavior cannot fully compensate the excess calorie intake. Studies have compared binges of patients with BN and with BED concluding that binges in subjects with BN were higher in carbohydrates and sugar content than those of subjects with BED. No difference was, however, found in the number of consumed calories [Int. J. Obesity, 2002, 26, 299-307]. The methods of the present invention is therefore believed to be suited for the treatment of BN.
[0093] In one embodiment, the invention relates to a method of treating BN in a subject, the method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents. In particular, said subject is obese.
[0094] Craving for food or the intense desire to eat a particular food is normally associated with energy dense food, such as fatty or carbohydrate-rich food [Appetite, 17, 177-185, 1991; Appetite, 17, 167-175, 1991]. Examples of such foods include chocolate, biscuits, cakes and snacks. A proportion of food cravers eventually become obese due to the excess calorie intake. The methods of the present invention are believed to be suited for the treatment of food craving, in particular craving for fatty or carbohydrate-rich food.
[0095] In one embodiment, the invention relates to a method of treating food craving, such as craving for fatty or carbohydrate-rich food, such as chocolate craving in a subject, the method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents. In particular, said subject is obese.
[0096] A snack is typically a light, casual, hurried convenience meal eaten between real meals. Snacks are typically fatty and carbohydrate-rich. Studies have shown that there is an increasing prevalence of snacking, especially among US children, and that snacking is a significant cause for the increase in BMI in e.g. children [J. Pediatrics, 138, 493-498, 2001; Obes. Res., 11, 143-151, 2003]. A shift towards more healthy snacks could probably arrest or change the increase in BMI which has taken place over the last years. Data in shown here illustrate that a certain DPP-4 inhibitor, optionally in combination with one or more other active agents, is capable of shifting food preferences from fatty and carbohydrate-rich food to low-fat glycemic index low food. The certain DPP-4 inhibitor, optionally in combination with one or more other active agents, is therefore useful in diminishing the amount of snacking or in changing the preference of snack to more healthy snack.
[0097] In one embodiment, the invention relates to a method of changing the snack preference in a subject to low fat, glycemic index low snack, the method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents. In particular, said subject is obese.
[0098] In one embodiment, the invention provides a method of lowering the amount a snack intake (“snacking”) of a subject, the method comprising administering to said subject an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents. In particular, said subject is obese.
[0099] According to the above discussion, the certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents (such as e.g. including a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1), is believed to be useful in the treatment of obesity or overweight, wherein the obesity or overweight is caused by BED, BN, food craving (e.g. chocolate craving) or snacking, or over-eating.
[0100] The subject of the present invention can in principle be any animal, in particular mammals, such as humans, pet animals, such as cats and dogs, and zoo animals, such as elephants, giraffes, lions and snakes; with humans being preferred.
[0101] Type 2 diabetes mellitus is a common chronic and progressive disease arising from a complex pathophysiology involving the dual endocrine effects of insulin resistance and impaired insulin secretion with the consequence not meeting the required demands to maintain plasma glucose levels in the normal range. This leads to chronic hyperglycaemia and its associated micro- and macrovascular complications or chronic damages, such as e.g. diabetic nephropathy, retinopathy or neuropathy, or macrovascular (e.g. cardio- or cerebrovascular) complications. The vascular disease component plays a significant role, but is not the only factor in the spectrum of diabetes associated disorders. The high frequency of complications leads to a significant reduction of life expectancy. Diabetes is currently the most frequent cause of adult-onset loss of vision, renal failure, and amputation in the Industrialised World because of diabetes induced complications and is associated with a two to five fold increase in cardiovascular disease risk.
[0102] Furthermore, diabetes (particularly type 2 diabetes) is often coexistent and interrelated with obesity and these two conditions together impose a particularly complex therapeutic challenge. Because of the effects of obesity on insulin resistance, weight loss and its maintenance is an important therapeutic objective in overweight or obese individuals with prediabetes, metabolic syndrome or diabetes. Studies have been demonstrated that weight reduction in subjects with type 2 diabetes is associated with decreased insulin resistance, improved measures of glycemia and lipemia, and reduced blood pressure. Maintenance of weight reduction over longer term is considered to improve glycemic control and prevent diabetic complications (e.g. reduction of risk for cardiovascular diseases or events). Thus, weight loss is recommended for all overweight or obese individuals who have or are at risk for diabetes. However, obese patients with type 2 diabetes have much greater difficulty losing weight and maintain the reduced weight than the general non-diabetic population.
[0103] In the present context, obese or obesity implies an excess of adipose tissue. In this context obesity is best viewed as any degree of excess adiposity that imparts a health risk. The distinction between normal and obese individuals can only be approximated, but the health risk imparted by obesity is probably a continuum with increasing adiposity. In a broad meaning, individuals with a body mass index (BMI=body weight in kilograms divided by the square of the height in meters) above 25 (or ≧30 kg/m2 or ≧27 kg/m2) may be regarded as obese.
[0104] Overweight may be defined as the condition wherein the individual has a body mass index (BMI) greater than or 25 kg/m2 and less than 30 kg/m2. The terms “overweight” and “pre-obese” are used interchangeably.
[0105] Obesity may be also defined as the condition wherein the individual has a BMI equal to or greater than 30 kg/m2. According to a WHO definition the term obesity may be categorized as follows: class I obesity is the condition wherein the BMI is equal to or greater than 30 kg/m2 but lower than 35 kg/m2; class II obesity is the condition wherein the BMI is equal to or greater than 35 kg/m2 but lower than 40 kg/m2; class III obesity (extreme obesity) is the condition wherein the BMI is equal to or greater than 40 kg/m2. Obesity may include e.g. visceral or abdominal obesity.
[0106] Visceral obesity may be defined as the condition wherein a waist-to-hip ratio of greater than or equal to 1.0 in men and 0.8 in women is measured. It defines the risk for insulin resistance and the development of pre-diabetes.
[0107] Abdominal obesity may usually be defined as the condition wherein the waist circumference is >40 inches or 102 cm in men, and is >35 inches or 94 cm in women. With regard to a Japanese ethnicity or Japanese patients abdominal obesity may be defined as waist circumference 85 cm in men and ≧90 cm in women (see e.g. investigating committee for the diagnosis of metabolic syndrome in Japan).
[0108] The treatment of type 2 diabetes typically begins with diet and exercise, followed by oral antidiabetic monotherapy, and although conventional monotherapy may initially control blood glucose in some patients, it is however associated with a high secondary failure rate. The limitations of single-agent therapy for maintaining glycemic control may be overcome, at least in some patients, and for a limited period of time by combining multiple drugs to achieve reductions in blood glucose that cannot be sustained during long-term therapy with single agents. Available data support the conclusion that in most patients with type 2 diabetes current monotherapy will fail and treatment with multiple drugs will be required.
[0109] But, because type 2 diabetes is a progressive disease, even patients with good initial responses to conventional combination therapy will eventually require an increase of the dosage or further treatment with insulin because the blood glucose level is very difficult to maintain stable for a long period of time. Although existing combination therapy has the potential to enhance glycemic control, it is not without limitations (especially with regard to long term efficacy). Further, traditional therapies may show an increased risk for side effects, such as hypoglycemia or weight gain, which may compromise their efficacy and acceptability.
[0110] Thus, for many patients, these existing drug therapies result in progressive deterioration in metabolic control despite treatment and do not sufficiently control metabolic status especially over long-term and thus fail to achieve and to maintain glycemic control in advanced, progressed or late stage type 2 diabetes, including diabetes with inadequate glycemic control despite conventional oral and/or non-oral antidiabetic medication.
[0111] Therefore, although intensive treatment of hyperglycemia can reduce the incidence of chronic damages, many patients with diabetes remain inadequately treated, partly because of limitations in long term efficacy, tolerability and dosing inconvenience of conventional antihyperglycemic therapies.
[0112] In addition, obesity, overweight or weight gain (e.g. as side or adverse effect of some conventional antidiabetic medications) further complicates the treatment of diabetes and its microvascular or macrovascular complications.
[0113] This high incidence of therapeutic failure is a major contributor to the high rate of long-term hyperglycemia-associated complications or chronic damages (including micro- and makrovascular complications such as e.g. diabetic nephrophathy, retinopathy or neuropathy, or cerebro- or cardiovascular complications such as e.g. myocardial infarction, stroke or death) in patients with diabetes.
[0114] Oral antidiabetic drugs conventionally used in therapy (such as e.g. first- or second-line, and/or mono- or (initial or add-on) combination therapy) include, without being restricted thereto, metformin, sulphonylureas, thiazolidinediones, glinides and α-glucosidase inhibitors.
[0115] Non-oral (typically injected) antidiabetic drugs conventionally used in therapy (such as e.g. first- or second-line, and/or mono- or (initial or add-on) combination therapy) include, without being restricted thereto, GLP-1 or GLP-1 analogues, and insulin or insulin analogues.
[0116] However, the use of these conventional antidiabetic or antihyperglycemic agents can be associated with various adverse effects. For example, metformin can be associated with lactic acidosis or gastrointestinal side effects; sulfonylureas, glinides and insulin or insulin analogues can be associated with hypoglycemia and weight gain; thiazolidinediones can be associated with edema, bone fracture, weight gain and heart failure/cardiac effects; and alpha-glucosidase blockers and GLP-1 or GLP-1 analogues can be associated with gastrointestinal adverse effects (e.g. dyspepsia, flatulence or diarrhea, or nausea or vomiting).
[0117] Therefore, it remains a need in the art to provide efficacious, safe and tolerable antidiabetic therapies.
[0118] Further, within the therapy of type 2 diabetes, it is a need for treating the condition effectively, avoiding the complications inherent to the condition, and delaying disease progression.
[0119] Further, within the therapy of type 2 diabetes, it is a need for sustained improvements in diabetic phenotype, glycemic and/or metabolic control, and/or (blood) glucose profile (preferably over long-term and/or during chronic treatment).
[0120] Furthermore, it remains a need that antidiabetic treatments not only prevent the long-term complications often found in advanced stages of diabetes disease, but also are a therapeutic option in those diabetes patients who have developed or are at risk of developing complications, such as renal impairment.
[0121] Moreover, it remains a need to provide prevention or reduction of risk for adverse effects associated with conventional antidiabetic therapies.
[0122] Further, it remains a need in the art to provide efficacious, safe and tolerable therapies for obesity patients with or without diabetes, particularly for reducing, facilitating a reduction, controlling, maintaining and/or preventing an increase of body weight in such patients.
[0123] Further, within the management of the dual epidemic of diabetes and obesity (“diabesity”), it is an objective to find therapies which are safe, tolerable and effective in the treatment or prevention of these conditions together, particularly in achieving long term weight reduction and weight control, and improving glycemic control.
[0124] Within the scope of the present invention it has now been found that a certain DPP-4 inhibitor (preferably linagliptin) as defined herein as well as pharmaceutical combinations, compositions, uses or methods according to this invention of that DPP-4 inhibitor (preferably linagliptin) optionally in combination with one or more other active agents (such as e.g. including a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1, and/or such as e.g. including an alpha-glucosidase inhibitor, such as voglibose) as defined herein have properties, which make them suitable for the purpose of this invention and/or for fulfilling one or more of the needs mentioned herein.
[0125] The enzyme DPP-4 (dipeptidyl peptidase IV) also known as CD26 is a serine protease known to lead to the cleavage of a dipeptide from the N-terminal end of a number of proteins having at their N-terminal end a prolin or alanin residue. Due to this property DPP-4 inhibitors interfere with the plasma level of bioactive peptides including the peptide GLP-1 and are considered to be promising drugs for the treatment of diabetes mellitus.
[0126] For example, DPP-4 inhibitors and their uses are disclosed in WO 2002/068420, WO 2004/018467, WO 2004/018468, WO 2004/018469, WO 2004/041820, WO 2004/046148, WO 2005/051950, WO 2005/082906, WO 2005/063750, WO 2005/085246, WO 2006/027204, WO 2006/029769, WO2007/014886; WO 2004/050658, WO 2004/111051, WO 2005/058901, WO 2005/097798; WO 2006/068163, WO 2007/071738, WO 2008/017670; WO 2007/128721, WO 2007/128724, WO 2007/128761, or WO 2009/121945.
[0127] A DPP-4 inhibitor within the meaning of the present invention includes, without being limited to, any of those DPP-4 inhibitors mentioned hereinabove and herein below, preferably orally and/or subcutaneously active DPP-4 inhibitors.
[0128] A GLP-1 receptor agonist within the meaning of this invention includes, without being limited, exogenous GLP-1 (natural or synthetic), GLP-1 analogue, GLP-1 mimetic and any other substance (whether peptidic or non-peptidic, e.g. small molecule) which promotes signalling through the GLP-1 receptor; preferably included is any short acting representative thereof, such as e.g. a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as e.g. exenatide or native GLP-1.
[0129] Within the context of this invention, a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue refers to those of such agents having a short half life (or to be administered subcutaneously at least twice daily), such as e.g. exendin-4 or exenatide, or native GLP-1.
[0130] Accordingly, a short acting GLP-1 receptor agonist may be herein referred to as such agent having duration of action of <24 h, or having a short half life of about below 13 h, below 10 h, below 5 h, or below 2.5 h (e.g. about 2.4 h or even below), or to be administered subcutaneously at least twice daily, such as e.g. exenatide or native GLP-1.
[0131] All of these agents, as far as they exhibit the desired property and function, are contemplated and included within the scope of this invention.
[0132] In a first embodiment (embodiment A), a DPP-4 inhibitor in the context of the present invention is any DPP-4 inhibitor of
[0133]  [see pdf for image]
wherein R1 denotes ([1,5]naphthyridin-2-yl)methyl, (quinazolin-2-yl)methyl, (quinoxalin-6-yl)methyl, (4-methyl-quinazolin-2-yl)methyl, 2-cyano-benzyl, (3-cyano-quinolin-2-yl)methyl, (3-cyano-pyridin-2-yl)methyl, (4-methyl-pyrimidin-2-yl)methyl, or (4,6-dimethyl-pyrimidin-2-yl)methyl and R2 denotes 3-(R)-amino-piperidin-1-yl, (2-amino-2-methyl-propyl)-methylamino or (2-(S)-amino-propyl)-methylamino,
or its pharmaceutically acceptable salt.
[0134] Regarding the first embodiment (embodiment A), preferred DPP-4 inhibitors are any or all of the following compounds and their pharmaceutically acceptable salts:
[0135] 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine (compare WO 2004/018468, example 2(142)):
[0136]  [see pdf for image]
[0137] 1-[([1,5]naphthyridin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-((R)-3-amino-piperidin-1-yl)-xanthine (compare WO 2004/018468, example 2(252)):
[0138]  [see pdf for image]
[0139] 1-[(Quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-((R)-3-amino-piperidin-1-yl)-xanthine (compare WO 2004/018468, example 2(80)):
[0140]  [see pdf for image]
[0141] 2-((R)-3-Amino-piperidin-1-yl)-3-(but-2-yinyl)-5-(4-methyl-quinazolin-2-ylmethyl)-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one (compare WO 2004/050658, example 136):
[0142]  [see pdf for image]
[0143] 1-[(4-Methyl-quinazolin-2-ylmethyl]-3-methyl-7-(2-butyln-1-yl)-8-[(2-amino-2-methyl-propyl)-methylamino]-xanthine (compare WO 2006/029769, example 2(1)):
[0144]  [see pdf for image]
[0145] 1-[(3-Cyano-quinolin-2-ylmethyl]-3-methyl-7-(2-butyn-1-yl)-8-((R)-3-amino-piperidin-1-yl)-xanthine (compare WO 2005/085246, example 1(30)):
[0146]  [see pdf for image]
[0147] 1-(2-Cyano-benzyl)-3-methyl-7-(2-butyn-1-yl)-8-((R)-3-amino-piperidin-1-yl)-xanthine (compare WO 2005/085246, example 1(39)):
[0148]  [see pdf for image]
[0149] 1-[(4-Methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-[(S)-(2-amino-propyl)-methylamino]-xanthine (compare WO 2006/029769, example 2(4)):
[0150]  [see pdf for image]
[0151] 1-[(3-Cyano-pyridin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-((R)-3-amino-piperidin-1-yl)-xanthine (compare WO 2005/085246, example 1(52)):
[0152]  [see pdf for image]
[0153] 1-[(4-Methyl-pyrimidin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-((R)-3-amino-piperidin-1-yl)-xanthine (compare WO 2005/085246, example 1(81)):
[0154]  [see pdf for image]
[0155] 1-[(4,6-Dimethyl-pyrimidin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-((R)-3-amino-piperidin-1-yl)-xanthine (compare WO 2005/085246, example 1(82)):
[0156]  [see pdf for image]
[0157] 1-[(Quinoxalin-6-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-((R)-3-amino-piperidin-1-yl)-xanthine (compare WO 2005/085246, example 1(83)):
[0158]  [see pdf for image]
[0159] These DPP-4 inhibitors are distinguished from structurally comparable DPP-4 inhibitors, as they combine exceptional potency and a long-lasting effect with favourable pharmacological properties, receptor selectivity and a favourable side-effect profile or bring about unexpected therapeutic advantages or improvements when combined with other pharmaceutical active substances. Their preparation is disclosed in the publications mentioned.
[0160] In a second embodiment (embodiment B), a DPP-4 inhibitor in the context of the present invention is a DPP-4 inhibitor selected from the group consisting of sitagliptin, vildagliptin, saxagliptin, alogliptin, gemigliptin,
[0161] (2S)-1-{[2-(5-Methyl-2-phenyl-oxazol-4-yl)-ethylamino]-acetyl}-pyrrolidine-2-carbonitrile,
[0162] (2S)-1-{[1,1,-Dimethyl-3-(4-pyridin-3-yl-imidazol-1-yl)-propylamino]-acetyl}-pyrrolidine-2-carbonitrile,
[0163] (S)-1-((2S,3S,11bS)-2-Amino-9,10-dimethoxy-1,3,4,6,7,11b-hexahydro-2H-pyrido[2,1-a]isoquinolin-3-yl)-4-fluoromethyl-pyrrolidin-2-one,
[0164] (3,3-Difluoropyrrolidin-1-yl)-((2S,4S)-4-(4-(pyrimidin-2-yl)piperazin-1-yl)pyrrolidin-2-yl)methanone,
[0165] (1((3S,4S)-4-amino-1-(4-(3,3-difluoropyrrolidin-1-yl)-1,3,5-triazin-2-yl)pyrrolidin-3-yl)-5,5-difluoropiperidin-2-one,
[0166] (2S,4S)-1-{2-[(3S,1R)-3-(1H-1,2,4-Triazol-1-ylmethyl)cyclopentylamino]-acetyl}-4-fluoropyrrolidine-2-carbonitrile,
[0167] (R)-2-[6-(3-Amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-ylmethyl]-4-fluoro-benzonitrile,
[0168] 5-{(S)-2-[2-((S)-2-Cyano-pyrrolidin-1-yl)-2-oxo-ethylamino]-propyl}-5-(1H-tetrazol-5-yl)-10,11-dihydro-5H-dibenzo[a,d]cycloheptene-2,8-dicarboxylic acid bis-dimethylamide,
[0169] 3-{(2S,4S)-4-[4-(3-Methyl-1-phenyl-1H-pyrazol-5-yl)piperazin-1-yl]pyrrolidin-2-ylcarbonyl}thiazolidine,
[0170] [(2R)-1-{[(3R)-pyrrolidin-3-ylamino]acetyl}pyrrolidin-2-yl]boronic acid,
[0171] (2S,4S)-1-[2-[(4-ethoxycarbonylbicyclo[2.2.2]oct-1-yl)amino]acetyl]-4-fluoropyrrolidine-2-carbonitrile,
[0172] 2-({6-[(3R)-3-amino-3-methylpiperidin-1-yl]-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydro-5H-pyrrolo[3,2-d]pyrimidin-5-yl}methyl)-4-fluorobenzonitrile,
[0173] 6-[(3R)-3-amino-piperidin-1-yl]-5-(2-chloro-5-fluoro-benzyl)-1,3-dimethyl-1,5-dihydro-pyrrolo[3,2-d]pyrimidine-2,4-dione, and
[0174] (S)-2-methylpyrazolo[1,5-a]primidine-6-carboxylic acid {2-[(2-cyanopyrrolidin-1-yl)-2-oxoethylamino]-2-methylpropyl}amide,
or its pharmaceutically acceptable salt.
[0175] A more preferred DPP-4 inhibitor among the abovementioned DPP-4 inhibitors of embodiment A of this invention is 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine, particularly the free base thereof (which is also known as linagliptin or BI 1356).
[0176] As further DPP-4 inhibitors the following compounds can be mentioned:
[0177] Sitagliptin (MK-0431) having the structural formula A below is (3R)-3-amino-1-[3-(trifluoromethyl)-5,6,7,8-tetrahydro-5H-[1,2,4]triazolo[4,3-a]pyrazin-7-yl]-4-(2,4,5-trifluorophenyl)butan-1-one, also named (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine,
[0178]  [see pdf for image]
[0179] In one embodiment, sitagliptin is in the form of its dihydrogenphosphate salt, i.e. sitagliptin phosphate. In a further embodiment, sitagliptin phosphate is in the form of a crystalline anhydrate or monohydrate. A class of this embodiment refers to sitagliptin phosphate monohydrate. Sitagliptin free base and pharmaceutically acceptable salts thereof are disclosed in U.S. Pat. No. 6,699,871 and in Example 7 of WO 03/004498. Crystalline sitagliptin phosphate monohydrate is disclosed in WO 2005/003135 and in WO 2007/050485.
[0180] For details, e.g. on a process to manufacture, to formulate or to use this compound or a salt thereof, reference is thus made to these documents.
[0181] A tablet formulation for sitagliptin is commercially available under the trade name Januvia®. A tablet formulation for sitagliptin/metformin combination is commercially available under the trade name Janumet®.
[0182] Vildagliptin (LAF-237) having the structural formula B below is (2S)-{[(3-hydroxyadamantan-1-yl)amino]acetyl}pyrrolidine-2-carbonitrile, also named (S)-1-[(3-hydroxy-1-adamantyl)amino]acetyl-2-cyano-pyrrolidine,
[0183]  [see pdf for image]
[0184] Vildagliptin is specifically disclosed in U.S. Pat. No. 6,166,063 and in Example 1 of WO 00/34241. Specific salts of vildagliptin are disclosed in WO 2007/019255. A crystalline form of vildagliptin as well as a vildagliptin tablet formulation are disclosed in WO 2006/078593. Vildagliptin can be formulated as described in WO 00/34241 or in WO 2005/067976. A modified release vildagliptin formulation is described in WO 2006/135723.
[0185] For details, e.g. on a process to manufacture, to formulate or to use this compound or a salt thereof, reference is thus made to these documents.
[0186] A tablet formulation for vildagliptin is expected to be commercially available under the trade name Galvus®. A tablet formulation for vildagliptin/metformin combination is commercially available under the trade name Eucreas®.
[0187] Saxagliptin (BMS-477118) having the structural formula C below is (1S,3S,5S)-2-{(2S)-2-amino-2-(3-hydroxyadamantan-1-yl)acetyl}-2-azabicyclo[3.1.0]hexane-3-carbonitrile, also named (S)-3-hydroxyadamantylglycine-L-cis-4,5-methanoprolinenitrile,
[0188]  [see pdf for image]
[0189] Saxagliptin is specifically disclosed in U.S. Pat. No. 6,395,767 and in Example 60 of WO 01/68603.
[0190] In one embodiment, saxagliptin is in the form of its HCl salt or its mono-benzoate salt as disclosed in WO 2004/052850. In a further embodiment, saxagliptin is in the form of the free base. In a yet further embodiment, saxagliptin is in the form of the monohydrate of the free base as disclosed in WO 2004/052850. Crystalline forms of the HCl salt and of the free base of saxagliptin are disclosed in WO 2008/131149. A process for preparing saxagliptin is also disclosed in WO 2005/106011 and WO 2005/115982. Saxagliptin can be formulated in a tablet as described in WO 2005/117841.
[0191] For details, e.g. on a process to manufacture, to formulate or to use this compound or a salt thereof, reference is thus made to these documents.
[0192] Alogliptin (SYR-322) having the structural formula E below is 2-({6-[(3R)-3-aminopiperidin-1-yl]-3-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl}methyl)benzonitrile
[0193]  [see pdf for image]
[0194] Alogliptin is specifically disclosed in US 2005/261271, EP 1586571 and in WO 2005/095381. In one embodiment, alogliptin is in the form of its benzoate salt, its hydrochloride salt or its tosylate salt each as disclosed in WO 2007/035629. A class of this embodiment refers to alogliptin benzoate. Polymorphs of alogliptin benzoate are disclosed in WO 2007/035372. A process for preparing alogliptin is disclosed in WO 2007/112368 and, specifically, in WO 2007/035629. Alogliptin (namely its benzoate salt) can be formulated in a tablet and administered as described in WO 2007/033266. A solid preparation of alogliptin/pioglitazone and its preparation and use is described in WO 2008/093882. A solid preparation of alogliptin/metformin and its preparation and use is described in WO 2009/011451.
[0195] For details, e.g. on a process to manufacture, to formulate or to use this compound or a salt thereof, reference is thus made to these documents.
[0196] (2S)-1-{[2-(5-Methyl-2-phenyl-oxazol-4-yl)-ethylamino]-acetyl}-pyrrolidine-2-carbonitrile or a pharmaceutically acceptable salt thereof, preferably the mesylate, or
[0197] (2S)-1-{[1,1,-Dimethyl-3-(4-pyridin-3-yl-imidazol-1-yl)-propylamino]-acetyl}-pyrrolidine-2-carbonitrile or a pharmaceutically acceptable salt thereof:
[0198] These compounds and methods for their preparation are disclosed in WO 03/037327. The mesylate salt of the former compound as well as crystalline polymorphs thereof are disclosed in WO 2006/100181. The fumarate salt of the latter compound as well as crystalline polymorphs thereof are disclosed in WO 2007/071576. These compounds can be formulated in a pharmaceutical composition as described in WO 2007/017423.
[0199] For details, e.g. on a process to manufacture, to formulate or to use these compounds or salts thereof, reference is thus made to these documents.
[0200] (S)-1-((2S,3S,11bS)-2-Amino-9,10-dimethoxy-1,3,4,6,7,11b-hexahydro-2H-pyrido[2,1-a]isoquinolin-3-yl)-4-fluoromethyl-pyrrolidin-2-one (also named carmegliptin) or a pharmaceutically acceptable salt thereof:
[0201]  [see pdf for image]
[0202] This compound and methods for its preparation are disclosed in WO 2005/000848. A process for preparing this compound (specifically its dihydrochloride salt) is also disclosed in WO 2008/031749, WO 2008/031750 and WO 2008/055814. This compound can be formulated in a pharmaceutical composition as described in WO 2007/017423.
[0203] For details, e.g. on a process to manufacture, to formulate or to use this compound or a salt thereof, reference is thus made to these documents.
[0204] (3,3-Difluoropyrrolidin-1-yl)-((2S,4S)-4-(4-(pyrimidin-2-yl)piperazin-1-yl)pyrrolidin-2-yl)methanone (also named gosogliptin) or a pharmaceutically acceptable salt thereof:
[0205] This compound and methods for its preparation are disclosed in WO 2005/116014 and U.S. Pat. No. 7,291,618.
[0206] For details, e.g. on a process to manufacture, to formulate or to use this compound or a salt thereof, reference is thus made to these documents.
[0207] (1((3S,4S)-4-amino-1-(4-(3,3-difluoropyrrolidin-1-yl)-1,3,5-triazin-2-yl)pyrrolidin-3-yl)-5,5-difluoropiperidin-2-one or a pharmaceutically acceptable salt thereof:
[0208]  [see pdf for image]
[0209] This compound and methods for its preparation are disclosed in WO 2007/148185 and US 20070299076. For details, e.g. on a process to manufacture, to formulate or to use this compound or a salt thereof, reference is thus made to these documents.
[0210] (2S,4S)-1-{2-[(3S,1R)-3-(1H-1,2,4-Triazol-1-ylmethyl)cyclopentylamino]-acetyl}-4-fluoropyrrolidine-2-carbonitrile (also named melogliptin) or a pharmaceutically acceptable salt thereof:
[0211]  [see pdf for image]
[0212] This compound and methods for its preparation are disclosed in WO 2006/040625 and WO 2008/001195. Specifically claimed salts include the methanesulfonate and p-toluenesulfonate. For details, e.g. on a process to manufacture, to formulate or to use this compound or a salt thereof, reference is thus made to these documents.
[0213] (R)-2-[6-(3-Amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-ylmethyl]-4-fluoro-benzonitrile or a pharmaceutically acceptable salt thereof:
[0214]  [see pdf for image]
[0215] This compound and methods for its preparation and use are disclosed in WO 2005/095381, US 2007060530, WO 2007/033350, WO 2007/035629, WO 2007/074884, WO 2007/112368, WO 2008/033851, WO 2008/114800 and WO 2008/114807. Specifically claimed salts include the succinate (WO 2008/067465), benzoate, benzenesulfonate, p-toluenesulfonate, (R)-mandelate and hydrochloride. For details, e.g. on a process to manufacture, to formulate or to use this compound or a salt thereof, reference is thus made to these documents.
[0216] 5-{(S)-2-[2-((S)-2-Cyano-pyrrolidin-1-yl)-2-oxo-ethylamino-]propyl}-5-(1H-tetrazol-5-yl)-10,11-dihydro-5H-dibenzo[a,d]cycloheptene-2,8-dicarboxylic acid bis-dimethylamide or a pharmaceutically acceptable salt thereof:
[0217]  [see pdf for image]
[0218] This compound and methods for its preparation are disclosed in WO 2006/116157 and US 2006/270701. For details, e.g. on a process to manufacture, to formulate or to use this compound or a salt thereof, reference is thus made to these documents.
[0219] 3-{(2S,4S)-4-[4-(3-Methyl-1-phenyl-1H-pyrazol-5-yl)piperazin-1-yl]pyrrolidin-2-ylcarbonyl}thiazolidine (also named teneligliptin) or a pharmaceutically acceptable salt thereof:
[0220] This compound and methods for its preparation are disclosed in WO 02/14271. Specific salts are disclosed in WO 2006/088129 and WO 2006/118127 (including hydrochloride, hydrobromide, inter alia). Combination therapy using this compound is described in WO 2006/129785. For details, e.g. on a process to manufacture, to formulate or to use this compound or a salt thereof, reference is thus made to these documents.
[0221] [(2R)-1-{[(3R)-pyrrolidin-3-ylamino]acetyl}pyrrolidin-2-yl]boronic acid (also named dutogliptin) or a pharmaceutically acceptable salt thereof:
[0222] This compound and methods for its preparation are disclosed in WO 2005/047297, WO 2008/109681 and WO 2009/009751. Specific salts are disclosed in WO 2008/027273 (including citrate, tartrate). A formulation of this compound is described in WO 2008/144730. A formulation of dutogliptin (as its tartrate salt) with metformin is described in WO 2009/091663. For details, e.g. on a process to manufacture, to formulate or to use this compound or a salt thereof, reference is thus made to these documents.
[0223] (2S,4S)-1-[2-[(4-ethoxycarbonylbicyclo[2.2.2]oct-1-yl)amino]acetyl]-4-fluoropyrrolidine-2-carbonitrile (also named bisegliptin) or a pharmaceutically acceptable salt thereof:
[0224] This compound and methods for its preparation are disclosed in WO 2005/075421, US 2008/146818 and WO 2008/114857. For details, e.g. on a process to manufacture, to formulate or to use this compound or a salt thereof, reference is thus made to these documents.
[0225] 2-({6-[(3R)-3-amino-3-methylpiperidin-1-yl]-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydro-5H-pyrrolo[3,2-d]pyrimidin-5-yl}methyl)-4-fluorobenzonitrile or a pharmaceutically acceptable salt thereof, or 6-[(3R)-3-amino-piperidin-1-yl]-5-(2-chloro-5-fluoro-benzyl)-1,3-dimethyl-1,5-dihydro-pyrrolo[3,2-d]pyrimidine-2,4-dione or a pharmaceutically acceptable salt thereof:
[0226] These compounds and methods for their preparation are disclosed in WO 2009/084497 and WO 2006/068163, respectively. Combination therapy using the latter of these two compounds is described in WO 2009/128360. For details, e.g. on a process to manufacture, to formulate or to use these compounds or salts thereof, reference is thus made to these documents.
[0227] (S)-2-methylpyrazolo[1,5-a]primidine-6-carboxylic acid {2-[(2-cyanopyrrolidin-1-yl)-2-oxoethylamino]-2-methylpropyl}amide (also named anagliptin) or a pharmaceutically acceptable salt:
[0228] This compound and methods for its preparation are disclosed in WO 2004/067509. Combination therapy using this compound is described in WO 2009/139362. For details, e.g. on a process to manufacture, to formulate or to use this compound or a salt thereof, reference is thus made to these documents.
[0229] Preferably the DPP-4 inhibitor of this invention is selected from the group consisting of linagliptin, sitagliptin, vildagliptin, alogliptin, saxagliptin, teneligliptin, anagliptin, gemigliptin and dutogliptin, or a pharmaceutically acceptable salt of one of the herein mentioned DPP-4 inhibitors, or a prodrug thereof.
[0230] A particularly preferred DPP-4 inhibitor to be emphasized within the present invention is linagliptin. The term “linagliptin” as employed herein refers to linagliptin or a pharmaceutically acceptable salt thereof, including hydrates and solvates thereof, and crystalline forms thereof, preferably linagliptin refers to 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine. Crystalline forms are described in WO 2007/128721. Methods for the manufacture of linagliptin are described in the patent applications WO 2004/018468 and WO 2006/048427 for example. Linagliptin is distinguished from structurally comparable DPP-4 inhibitors, as it combines exceptional potency and a long-lasting effect with favourable pharmacological properties, receptor selectivity and a favourable side-effect profile or bring about unexpected therapeutic advantages or improvements in mono- or dual or triple combination therapy.
[0231] For avoidance of any doubt, the disclosure of each of the foregoing and following documents cited above in connection with the specified DPP-4 inhibitors is specifically incorporated herein by reference in its entirety.
[0232] An embodiment of this invention refers to a DPP-4 inhibitor suitable for use in the treatment and/or prevention of metabolic diseases (particularly type 2 diabetes mellitus) in patients, wherein said patients further suffering from renal disease, renal dysfunction or renal impairment, particularly characterized in that said DPP-4 inhibitor is administered to said patients in the same dose levels as to patients with normal renal function, thus e.g. said DPP-4 inhibitor does not require downward dosing adjustment for impaired renal function.
[0233] For example, a DPP-4 inhibitor according to this invention (especially one which may be suited for patients with impaired renal function) may be such an oral DPP-4 inhibitor, which and whose active metabolites have preferably a relatively wide (e.g. about >100 fold) therapeutic window and/or, especially, that are primarily eliminated via hepatic metabolism or biliary excretion (preferably without adding additional burden to the kidney).
[0234] In more detailed example, a DPP-4 inhibitor according to this invention (especially one which may be suited for patients with impaired renal function) may be such an orally administered DPP-4 inhibitor, which has a relatively wide (e.g. >100 fold) therapeutic window (preferably a safety profile comparable to placebo) and/or which fulfils one or more of the following pharmacokinetic properties (preferably at its therapeutic oral dose levels):
[0235] The DPP-4 inhibitor is substantially or mainly excreted via the liver (e.g. >80% or even >90% of the administered oral dose), and/or for which renal excretion represents no substantial or only a minor elimination pathway (e.g. <10%, preferably <7%, of the administered oral dose measured, for example, by following elimination of a radiolabelled carbon (14C) substance oral dose);
[0236] The DPP-4 inhibitor is excreted mainly unchanged as parent drug (e.g. with a mean of >70%, or >80%, or, preferably, 90% of excreted radioactivity in urine and faeces after oral dosing of radiolabelled carbon (14C) substance), and/or which is eliminated to a non-substantial or only to a minor extent via metabolism (e.g. <30%, or <20%, or, preferably, 10%);
[0237] The (main) metabolite(s) of the DPP-4 inhibitor is/are pharmacologically inactive. Such as e.g. the main metabolite does not bind to the target enzyme DPP-4 and, optionally, it is rapidly eliminated compared to the parent compound (e.g. with a terminal half-life of the metabolite of ≦20 h, or, preferably, about 16 h, such as e.g. 15.9 h).
[0238] In one embodiment, the (main) metabolite in plasma (which may be pharmacologically inactive) of a DPP-4 inhibitor having a 3-amino-piperidin-1-yl substituent is such a derivative where the amino group of the 3-amino-piperidin-1-yl moiety is replaced by a hydroxyl group to form the 3-hydroxy-piperidin-1-yl moiety (e.g. the 3-(S)-hydroxy-piperidin-1-yl moiety, which is formed by inversion of the configuration of the chiral center).
[0239] Further properties of a DPP-4 inhibitor according to this invention may be one or more of the following: Rapid attainment of steady state (e.g. reaching steady state plasma levels (>90% of the steady state plasma concentration) between second and fifth day of treatment with therapeutic oral dose levels), little accumulation (e.g. with a mean accumulation ratio RA,AUC≦1.4 with therapeutic oral dose levels), and/or preserving a long-lasting effect on DPP-4 inhibition, preferably when used once-daily (e.g. with almost complete (>90%) DPP-4 inhibition at therapeutic oral dose levels, >80% inhibition over a 24 h interval after once-daily intake of therapeutic oral drug dose), significant decrease in 2 h postprandial blood glucose excursions by ≧80% (already on first day of therapy) at therapeutic dose levels, and cumulative amount of unchanged parent compound excreted in urine on first day being below 1% of the administered dose and increasing to not more than about 3-6% in steady state.
[0240] Thus, for example, a DPP-4 inhibitor according to this invention may be characterized in that said DPP-4 inhibitor has a primarily non-renal route of excretion, i.e. said DPP-4 inhibitor is excreted to a non-substantial or only to a minor extent (e.g. <10%, preferably <7%, e.g. about 5%, of administered oral dose, preferably of oral therapeutic dose) via the kidney (measured, for example, by following elimination of a radiolabelled carbon (14C) substance oral dose).
[0241] Further, a DPP-4 inhibitor according to this invention may be characterized in that said DPP-4 inhibitor is excreted substantially or mainly via the liver, bile or faeces (measured, for example, by following elimination of a radiolabelled carbon (14C) substance oral dose).
[0242] Further, a DPP-4 inhibitor according to this invention may be characterized in that said DPP-4 inhibitor is excreted mainly unchanged as parent drug (e.g. with a mean of >70%, or >80%, or, preferably, 90% of excreted radioactivity in urine and faeces after oral dosing of radiolabelled carbon (14C) substance),

said DPP-4 inhibitor is eliminated to a non-substantial or only to a minor extent via metabolism, and/or

the main metabolite of said DPP-4 inhibitor is pharmacologically inactive or has a relatively wide therapeutic window.

[0243] Further, a DPP-4 inhibitor according to this invention may be characterized in that said DPP-4 inhibitor does not significantly impair glomerular and/or tubular function of a type 2 diabetes patient with chronic renal insufficiency (e.g. mild, moderate or severe renal impairment or end stage renal disease), and/or

said DPP-4 inhibitor trough levels in the blood plasma of type 2 diabetes patients with mild or moderate renal impairment are comparable to the levels in patients with normal renal function, and/or

said DPP-4 inhibitor does not require to be dose-adjusted in a type 2 diabetes patient with impaired renal function (e.g. mild, moderate or severe renal impairment or end stage renal disease, preferably regardless of the stage of renal impairment).

[0244] Further, a DPP-4 inhibitor according to this invention may be characterized in that said DPP-4 inhibitor provides its minimally effective dose at that dose that results in >50% inhibition of DPP-4 activity at trough (24 h after last dose) in >80% of patients, and/or said DPP-4 inhibitor provides its fully therapeutic dose at that dose that results in >80% inhibition of DPP-4 activity at trough (24 h after last dose) in >80% of patients.
[0245] Further, a DPP-4 inhibitor according to this invention may be characterized in that being suitable for use in type 2 diabetes patients who are with diagnosed renal impairment or complication and/or who are at risk of developing renal complications, e.g. patients with or at risk of diabetic nephropathy (including chronic and progressive renal insufficiency, albuminuria, proteinuria, fluid retention in the body (edema) and/or hypertension).
[0246] In the monitoring of the treatment of diabetes mellitus the HbA1c value, the product of a non-enzymatic glycation of the haemoglobin B chain, is of exceptional importance. As its formation depends essentially on the blood sugar level and the life time of the erythrocytes the HbA1c in the sense of a “blood sugar memory” reflects the average blood sugar level of the preceding 4-12 weeks. Diabetic patients whose HbA1c level has been well controlled over a long time by more intensive diabetes treatment (i.e. <6.5% of the total haemoglobin in the sample) are significantly better protected from diabetic microangiopathy. The available treatments for diabetes can give the diabetic an average improvement in their HbA1c level of the order of 1.0-1.5%. This reduction in the HbA1C level is not sufficient in all diabetics to bring them into the desired target range of <7.0%, preferably <6.5% and more preferably <6% HbA1c.
[0247] Within the meaning of this invention, inadequate or insufficient glycemic control means in particular a condition wherein patients show HbA1c values above 6.5%, in particular above 7.0%, even more preferably above 7.5%, especially above 8%. An embodiment of patients with inadequate or insufficient glycemic control include, without being limited to, patients having a HbA1c value from 7.5 to 10% (or, in another embodiment, from 7.5 to 11%). A special sub-embodiment of inadequately controlled patients refers to patients with poor glycemic control including, without being limited, patients having a HbA1c value 9%.
[0248] Within glycemic control, in addition to improvement of the HbA1c level, other recommended therapeutic goals for type 2 diabetes mellitus patients are improvement of fasting plasma glucose (FPG) and of postprandial plasma glucose (PPG) levels to normal or as near normal as possible. Recommended desired target ranges of preprandial (fasting) plasma glucose are 70-130 mg/dL (or 90-130 mg/dL) or <110 mg/dL, and of two-hour postprandial plasma glucose are <180 mg/dL or <140 mg/dL.
[0249] In one embodiment, diabetes patients within the meaning of this invention may include patients who have not previously been treated with an antidiabetic drug (drug-naïve patients). Thus, in an embodiment, the therapies described herein may be used in naïve patients. In another embodiment, diabetes patients within the meaning of this invention may include patients with advanced or late stage type 2 diabetes mellitus (including patients with failure to conventional antidiabetic therapy), such as e.g. patients with inadequate glycemic control on one, two or more conventional oral and/or non-oral antidiabetic drugs as defined herein, such as e.g. patients with insufficient glycemic control despite (mono-)therapy with metformin, a thiazolidinedione (particularly pioglitazone), a sulphonylurea, a glinide, GLP-1 or GLP-1 analogue, insulin or insulin analogue, or an α-glucosidase inhibitor, or despite dual combination therapy with metformin/sulphonylurea, metformin/thiazolidinedione (particularly pioglitazone), sulphonylurea/α-glucosidase inhibitor, pioglitazone/sulphonylurea, metformin/insulin, pioglitazone/insulin or sulphonylurea/insulin. Thus, in an embodiment, the therapies described herein may be used in patients experienced with therapy, e.g. with conventional oral and/or non-oral antidiabetic mono- or dual or triple combination medication as mentioned herein.
[0250] A further embodiment of diabetic patients within the meaning of this invention refers to patients ineligible for metformin therapy including
[0251] patients for whom metformin therapy is contraindicated, e.g. patients having one or more contraindications against metformin therapy according to label, such as for example patients with at least one contraindication selected from:
[0252] renal disease, renal impairment or renal dysfunction (e.g., as specified by product information of locally approved metformin),
[0253] dehydration,
[0254] unstable or acute congestive heart failure,
[0255] acute or chronic metabolic acidosis, and
[0256] hereditary galactose intolerance;
and
[0257] patients who suffer from one or more intolerable side effects attributed to metformin, particularly gastrointestinal side effects associated with metformin, such as for example patients suffering from at least one gastrointestinal side effect selected from:
[0258] nausea,
[0259] vomiting,
[0260] diarrhoea,
[0261] intestinal gas, and
[0262] severe abdominal discomfort.
[0263] A further embodiment of the diabetes patients which may be amenable to the therapies of this invention may include, without being limited, those diabetes patients for whom normal metformin therapy is not appropriate, such as e.g. those diabetes patients who need reduced dose metformin therapy due to reduced tolerability, intolerability or contraindication against metformin or due to (mildly) impaired/reduced renal function (including elderly patients, such as e.g. ≧60-65 years).
[0264] A further embodiment of patients (e.g. diabetic and/or obese) within the meaning of this invention refers to patients having renal disease, renal dysfunction, or insufficiency or impairment of renal function (including mild, moderate and severe renal impairment), e.g. as suggested by elevated serum creatinine levels (e.g. serum creatinine levels above the upper limit of normal for their age, e.g. ≧130-150 μmol/l, or ≧1.5 mg/dl (≧136 μmol/l) in men and ≧1.4 mg/dl (≧124 μmol/l) in women) or abnormal creatinine clearance (e.g. glomerular filtration rate (GFR)≦30-60 ml/min).
[0265] In this context, for more detailed example, mild renal impairment may be e.g. suggested by a creatinine clearance of 50-80 ml/min (approximately corresponding to serum creatine levels of ≦1.7 mg/dL in men and ≦1.5 mg/dL in women); moderate renal impairment may be e.g. suggested by a creatinine clearance of 30-50 ml/min (approximately corresponding to serum creatinine levels of >1.7 to ≦3.0 mg/dL in men and >1.5 to ≦2.5 mg/dL in women); and severe renal impairment may be e.g. suggested by a creatinine clearance of <30 ml/min (approximately corresponding to serum creatinine levels of >3.0 mg/dL in men and >2.5 mg/dL in women). Patients with end-stage renal disease require dialysis (e.g. hemodialysis or peritoneal dialysis).
[0266] For other more detailed example, patients with renal disease, renal dysfunction or renal impairment include patients with chronic renal insufficiency or impairment, which can be stratified according to glomerular filtration rate (GFR, ml/min/1.73 m2) into 5 disease stages: stage 1 characterized by normal GFR≧90 plus either persistent albuminuria or known structural or hereditary renal disease; stage 2 characterized by mild reduction of GFR (GFR 60-89) describing mild renal impairment; stage 3 characterized by moderate reduction of GFR (GFR 30-59) describing moderate renal impairment; stage 4 characterized by severe reduction of GFR (GFR 15-29) describing severe renal impairment; and terminal stage 5 characterized by requiring dialysis or GFR<15 describing established kidney failure (end-stage renal disease, ESRD).
[0267] A further embodiment of patients (e.g. diabetic and/or obese) within the meaning of this invention refers to type 2 diabetes and/or obesity patients with or at risk of developing renal complications, such as diabetic nephropathy (including chronic and progressive renal insufficiency, albuminuria, proteinuria, fluid retention in the body (edema) and/or hypertension).
[0268] Examples of metabolic disorders or diseases amenable by the therapy of this invention may include, without being limited to, type 1 diabetes, type 2 diabetes, impaired glucose tolerance (IGT), impaired fasting blood glucose (IFG), hyperglycemia, postprandial hyperglycemia, postabsorptive hyperglycemia, latent autoimmune diabetes in adults (LADA), overweight, obesity, dyslipidemia, hyperlipidemia, hypercholesterolemia, hypertriglyceridemia, hyperNEFA-emia, fasting or postprandial hyperlipidemia such as postprandial lipemia (e.g. postprandial hypertriglyceridemia), hypertension, atherosclerosis, endothelial dysfunction, osteoporosis, chronic systemic inflammation, non alcoholic fatty liver disease (NAFLD), retinopathy, neuropathy, nephropathy, polycystic ovarian syndrome, and/or metabolic syndrome.
[0269] The present invention further relates to a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents, such as e.g. including a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) for use in at least one of the following methods:
[0270] preventing, slowing the progression of, delaying the onset of or treating a metabolic disorder or disease, such as e.g. type 1 diabetes mellitus, type 2 diabetes mellitus, impaired glucose tolerance (IGT), impaired fasting blood glucose (IFG), hyperglycemia, postprandial hyperglycemia, postabsorptive hyperglycemia, latent autoimmune diabetes in adults (LADA), overweight, obesity, dyslipidemia, hyperlipidemia, hypercholesterolemia, hypertriglyceridemia, hyperNEFA-emia, postprandial lipemia (e.g. postprandial hypertriglyceridemia), hypertension, atherosclerosis, endothelial dysfunction, osteoporosis, chronic systemic inflammation, non alcoholic fatty liver disease (NAFLD), retinopathy, neuropathy, nephropathy, polycystic ovarian syndrome, and/or metabolic syndrome;
[0271] improving and/or maintaining glycemic control and/or for reducing of fasting plasma glucose, of postprandial plasma glucose, of postabsorptive plasma glucose and/or of glycosylated hemoglobin HbA1c, or preventing, reducing the risk of, slowing the progression of, delaying the onset of or treating worsening or deterioration of glycemic control, need for insulin therapy or elevated HbA1c despite treatment;
[0272] preventing, slowing, delaying the onset of or reversing progression from pre-diabetes, impaired glucose tolerance (IGT), impaired fasting blood glucose (IFG), insulin resistance and/or from metabolic syndrome to type 2 diabetes mellitus;
[0273] preventing, reducing the risk of, slowing the progression of, delaying the onset of or treating of complications of diabetes mellitus such as micro- and macrovascular diseases, such as nephropathy, micro- or macroalbuminuria, proteinuria, retinopathy, cataracts, neuropathy, learning or memory impairment, neurodegenerative or cognitive disorders, cardio- or cerebrovascular diseases, tissue ischaemia, diabetic foot or ulcus, atherosclerosis, hypertension, endothelial dysfunction, myocardial infarction, acute coronary syndrome, unstable angina pectoris, stable angina pectoris, peripheral arterial occlusive disease, cardiomyopathy, heart failure, heart rhythm disorders, vascular restenosis, and/or stroke;
[0274] reducing body weight and/or body fat and/or liver fat and/or intra-myocellular fat or preventing an increase in body weight and/or body fat and/or liver fat and/or intra-myocellular fat or facilitating a reduction in body weight and/or body fat and/or liver fat and/or intra-myocellular fat;
[0275] preventing, slowing, delaying the onset of or treating the degeneration of pancreatic beta cells and/or the decline of the functionality of pancreatic beta cells and/or for improving, preserving and/or restoring the functionality of pancreatic beta cells and/or stimulating and/or restoring or protecting the functionality of pancreatic insulin secretion;
[0276] preventing, slowing, delaying the onset of or treating non alcoholic fatty liver disease (NAFLD) including hepatic steatosis, non-alcoholic steatohepatitis (NASH) and/or liver fibrosis (such as e.g. preventing, slowing the progression, delaying the onset of, attenuating, treating or reversing hepatic steatosis, (hepatic) inflammation and/or an abnormal accumulation of liver fat);
[0277] preventing, slowing the progression of, delaying the onset of or treating type 2 diabetes with failure to conventional antidiabetic mono- or combination therapy;
[0278] achieving a reduction in the dose of conventional antidiabetic medication required for adequate therapeutic effect;
[0279] reducing the risk for adverse effects associated with conventional antidiabetic medication (e.g. hypoglycemia or weight gain); and/or
[0280] maintaining and/or improving the insulin sensitivity and/or for treating or preventing hyperinsulinemia and/or insulin resistance;
in a patient in need thereof (such as e.g. a patient as described herein, for example a patient having overweight, obesity and/or diabetes),
particularly in a patient who is further in need of reduction in, facilitation of a reduction in, or prevention of an increase in caloric intake, excessive food energy intake, body weight, total body fat mass, total body fat percentage, visceral fat and/or over eating, and/or
in a patient who is further in need of modification of and/or reduction in intake of food, particularly wherein said food is rich in fat and/or in carbohydrate (e.g. high caloric, palatable, sweet and/or fatty food), for example such food which has a high glycemic index and/or wherein the amount of mono- and/or di-saccharides constitute a large portion of the total amount of carbohydrate and/or wherein a large portion of the total amount of energy stems from fat, and/or
in a patient who is further in need of reduction in intake of high caloric (palatable, rich in fat and/or carbohydrate) food and/or of regulation or shift in food or taste preference or choice of food away from unhealthy food (e.g. as described herein) and towards healthy food (e.g. as described herein), such as in a patient in need of decrease in the amount of unhealthy and/or high caloric (e.g. palatable, rich in fat and/or carbohydrate) food intake and/or in need of increase in the amount of healthy and/or low caloric food intake.
[0281] In a particular embodiment, the present invention further relates to a method of:

reducing, facilitation of a reduction in, or preventing an increase in caloric intake, excessive food energy intake, body weight, total body fat mass, total body fat percentage, visceral fat and/or over eating, and/or

[0282] modifying and/or reducing intake of food, particularly wherein said food is rich in fat and/or in carbohydrate (e.g. high caloric, palatable, sweet and/or fatty food), for example such food which has a high glycemic index and/or wherein the amount of mono- and/or di-saccharides constitute a large portion of the total amount of carbohydrate and/or wherein a large portion of the total amount of energy stems from fat, and/or
reducing intake of high caloric (palatable, rich in fat and/or carbohydrate) food and/or regulating or shifting food or taste preference or choice of food away from unhealthy food (e.g. as described herein) and towards healthy food (e.g. as described herein), such as decreasing the amount of unhealthy and/or high caloric (e.g. palatable, rich in fat and/or carbohydrate) food intake and/or increasing the amount of healthy and/or low caloric food intake,
in a subject (such as e.g. a human subject in need thereof, for example a patient having overweight, obesity and/or diabetes),
said method comprising administering (such as e.g. simultaneously, e.g. twice daily, e.g. subcutaneously or transdermally) an effective amount of a certain DPP-4 inhibitor as defined herein (preferably linagliptin, such as e.g. in a subcutaneous amount of 0.3-10 mg or 0.1-30 mg, preferably from 1 to 5 mg or from 1 to 10 mg, e.g. 2.5 mg or 5 mg per day) and a GLP-1 receptor agonist, particularly a short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1, to the subject.
[0283] Within this invention it is to be understood that the combinations, compositions or combined uses according to this invention may envisage the simultaneous, sequential or separate administration of the active components or ingredients.
[0284] In this context, “combination” or “combined” within the meaning of this invention may include, without being limited, fixed and non-fixed (e.g. free) forms (including kits) and uses, such as e.g. the simultaneous, sequential or separate use of the components or ingredients.
[0285] The combined administration of this invention may take place by administering the active components or ingredients together, such as e.g. by administering them simultaneously in one single or in two separate formulations or dosage forms. Alternatively, the administration may take place by administering the active components or ingredients sequentially, such as e.g. successively in two separate formulations or dosage forms.
[0286] For the combination therapy of this invention the active components or ingredients may be administered separately (which implies that they are formulated separately) or formulated altogether (which implies that they are formulated in the same preparation or in the same dosage form). Hence, the administration of one element of the combination of the present invention may be prior to, concurrent to, or subsequent to the administration of the other element of the combination.
[0287] For example, in one embodiment, for the combination therapy according to this invention the DPP-4 inhibitor and the GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) are administered in different formulations or different dosage forms.
[0288] In another embodiment, for the combination therapy according to this invention the DPP-4 inhibitor and the GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) are administered in the same formulation or in the same dosage form.
[0289] In a further embodiment, for the combination therapy according to this invention the DPP-4 inhibitor and the GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) are administered simultaneously.
[0290] In a further embodiment, for the combination therapy according to this invention the DPP-4 inhibitor is administered orally and the GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) is administered subcutaneously.
[0291] In a further embodiment, for the combination therapy according to this invention the DPP-4 inhibitor and the GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) are each administered subcutaneously. In a further embodiment, for the combination therapy according to this invention the DPP-4 inhibitor and the GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) are administered simultaneously and each subcutaneously.
[0292] The present invention also provides a kit-of-parts or combination therapeutic product comprising

a) a pharmaceutical composition comprising a DPP-4 inhibitor (preferably linagliptin) as defined herein, optionally together with one or more pharmaceutically acceptable carriers and/or diluents, and

[0293] b) a pharmaceutical composition comprising a GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) as defined herein, optionally together with one or more pharmaceutically acceptable carriers and/or diluents.
[0294] The present invention also provides a kit comprising

a) a DPP-4 inhibitor (preferably linagliptin) as defined herein, and

b) a GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) as defined herein,

and, optionally, instructions directing use of the DPP-4 inhibitor and the GLP-1 receptor agonist in combination (e.g. simultaneously), e.g. for a purpose of this invention.

[0295] The present invention also provides a pharmaceutical composition or fixed dose combination comprising

a) a DPP-4 inhibitor (preferably linagliptin) as defined herein, and

b) a GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) as defined herein;

and, optionally, one or more pharmaceutically acceptable carriers and/or diluents.

[0296] The present invention also provides a transdermal or subcutaneous (injectable) pharmaceutical composition, delivery system or device for systemic use comprising

a) a DPP-4 inhibitor (preferably linagliptin) as defined herein, and, optionally,

b) a GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) as defined herein;

and, optionally, one or more pharmaceutically acceptable carriers and/or diluents.

[0297] Further, the present invention relates to a pharmaceutical composition according to this invention comprising

a DPP-4 inhibitor (preferably linagliptin) as defined herein, and, optionally,

a GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) as defined herein;

and, optionally, one or more pharmaceutically acceptable carriers and/or diluents,

said composition being for subcutaneous administration to the patient in need thereof, e.g. by injection.

[0298] Unless otherwise noted, combination therapy may refer to first line, second line or third line therapy, or initial or add-on combination therapy or replacement therapy.
[0299] With respect to embodiment A, the methods of synthesis for the DPP-4 inhibitors according to embodiment A of this invention are known to the skilled person. Advantageously, the DPP-4 inhibitors according to embodiment A of this invention can be prepared using synthetic methods as described in the literature. Thus, for example, purine derivatives of formula (I) can be obtained as described in WO 2002/068420, WO 2004/018468, WO 2005/085246, WO 2006/029769 or WO 2006/048427, the disclosures of which are incorporated herein. Purine derivatives of formula (II) can be obtained as described, for example, in WO 2004/050658 or WO 2005/110999, the disclosures of which are incorporated herein.
[0300] Purine derivatives of formula (III) and (IV) can be obtained as described, for example, in WO 2006/068163, WO 2007/071738 or WO 2008/017670, the disclosures of which are incorporated herein. The preparation of those DPP-4 inhibitors, which are specifically mentioned hereinabove, is disclosed in the publications mentioned in connection therewith. Polymorphous crystal modifications and formulations of particular DPP-4 inhibitors are disclosed in WO 2007/128721 and WO 2007/128724, respectively, the disclosures of which are incorporated herein in their entireties. Formulations of particular DPP-4 inhibitors with metformin or other combination partners are described in WO 2009/121945, the disclosure of which is incorporated herein in its entirety.
[0301] Typical dosage strengths of the dual fixed combination (tablet) of linagliptin/metformin IR (immediate release) are 2.5/500 mg, 2.5/850 mg and 2.5/1000 mg, which may be administered 1-3 times a day, particularly twice a day.
[0302] Typical dosage strengths of the dual fixed combination (tablet) of linagliptin/metformin XR (extended release) are 5/500 mg, 5/1000 mg and 5/1500 mg (each one tablet) or 2.5/500 mg, 2.5/750 mg and 2.5/1000 mg (each two tablets), which may be administered 1-2 times a day, particularly once a day, preferably to be taken in the evening with meal.
[0303] The present invention further provides a DPP-4 inhibitor as defined herein for use in (add-on or initial) combination therapy with metformin (e.g. in a total daily amount from 500 to 2000 mg metformin hydrochloride, such as e.g. 500 mg, 850 mg or 1000 mg once or twice daily).
[0304] With respect to embodiment B, the methods of synthesis for the DPP-4 inhibitors of embodiment B are described in the scientific literature and/or in published patent documents, particularly in those cited herein.
[0305] The elements of the combination of this invention may be administered by various ways, for example by oral, buccal, sublingual, enterical, parenteral (e.g., transdermal, intramuscular or subcutaneous), inhalative (e.g., liquid or powder inhalation, aerosol), pulmonary, intranasal (e.g. spray), intraperitoneal, vaginal, rectal, or topical routes of administration and may be formulated, alone or together, in suitable dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles appropriate for each route of administration.
[0306] In an embodiment, the DPP-4 inhibitor according to the invention is preferably administered orally. In another embodiment, the GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) is preferably administered by injection (preferably subcutaneously).
[0307] Suitable doses and dosage forms of the DPP-4 inhibitors may be determined by a person skilled in the art and may include those described herein or in the relevant references.
[0308] For pharmaceutical application in warm-blooded vertebrates, particularly humans, the compounds of this invention are usually used in dosages from 0.001 to 100 mg/kg body weight, preferably at 0.01-15 mg/kg or 0.1-15 mg/kg, in each case 1 to 4 times a day. For this purpose, the compounds, optionally combined with other active substances, may be incorporated together with one or more inert conventional carriers and/or diluents, e.g. with corn starch, lactose, glucose, microcrystalline cellulose, magnesium stearate, polyvinylpyrrolidone, citric acid, tartaric acid, water, water/ethanol, water/glycerol, water/sorbitol, water/polyethylene glycol, propylene glycol, cetylstearyl alcohol, carboxymethylcellulose or fatty substances such as hard fat or suitable mixtures thereof into conventional galenic preparations such as plain or coated tablets, capsules, powders, suspensions or suppositories.
[0309] The pharmaceutical compositions according to this invention comprising the DPP-4 inhibitors as defined herein are thus prepared by the skilled person using pharmaceutically acceptable formulation excipients as described in the art and appropriate for the desired route of administration. Examples of such excipients include, without being restricted to diluents, binders, carriers, fillers, lubricants, flow promoters, crystallisation retardants, disintegrants, solubilizers, colorants, pH regulators, surfactants and emulsifiers.
[0310] Oral formulations or dosage forms of the DPP-4 inhibitor of this invention may be prepared according to known techniques.
[0311] Examples of suitable diluents for compounds according to embodiment A include cellulose powder, calcium hydrogen phosphate, erythritol, low substituted hydroxypropyl cellulose, mannitol, pregelatinized starch or xylitol.
[0312] A pharmaceutical composition or dosage form (e.g. oral tablet) of a DPP-4 inhibitor according to embodiment A of the invention may typically contain as excipients (in addition to an active ingredient), for example: one or more diluents, a binder, a disintegrant, and a lubricant, preferably each as disclosed herein-below. In an embodiment, the disintegrant may be optional.
[0313] Examples of suitable lubricants for compounds according to embodiment A include talc, polyethyleneglycol, calcium behenate, calcium stearate, hydrogenated castor oil or magnesium stearate.
[0314] Examples of suitable binders for compounds according to embodiment A include copovidone (copolymerisates of vinylpyrrolidon with other vinylderivates), hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose (HPC), polyvinylpyrrolidon (povidone), pregelatinized starch, or low-substituted hydroxypropylcellulose (L-HPC).
[0315] Examples of suitable disintegrants for compounds according to embodiment A include corn starch or crospovidone.
[0316] Suitable methods of preparing (oral) preparations or dosage forms of the DPP-4 inhibitors according to embodiment A of the invention are
[0317] direct tabletting of the active substance in powder mixtures with suitable tabletting excipients;
[0318] granulation with suitable excipients and subsequent mixing with suitable excipients and subsequent tabletting as well as film coating; or
[0319] packing of powder mixtures or granules into capsules.
[0320] Suitable granulation methods are
[0321] wet granulation in the intensive mixer followed by fluidised bed drying;
[0322] one-pot granulation;
[0323] fluidised bed granulation; or
[0324] dry granulation (e.g. by roller compaction) with suitable excipients and subsequent tabletting or packing into capsules.
[0325] An exemplary composition (e.g. tablet core) of a DPP-4 inhibitor according to embodiment A of the invention comprises the first diluent mannitol, pregelatinized starch as a second diluent with additional binder properties, the binder copovidone, the disintegrant corn starch, and magnesium stearate as lubricant; wherein copovidone and/or corn starch may be optional.
[0326] A tablet of a DPP-4 inhibitor according to embodiment A of the invention may be film coated, preferably the film coat comprises hydroxypropylmethylcellulose (HPMC), polyethylene glycol (PEG), talc, titanium dioxide and iron oxide (e.g. red and/or yellow).
[0327] In a further embodiment, the DPP-4 inhibitor according to the invention is preferably administered by injection (preferably subcutaneously). In another embodiment, the GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) is preferably administered by injection (preferably subcutaneously) as well.
[0328] Injectable formulations of the GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) and/or the DPP-4 inhibitor of this invention (particularly for subcutaneous use) may be prepared according to known formulation techniques, e.g. using suitable liquid carriers, which usually comprise sterile water, and, optionally, further additives such as e.g. preservatives, pH adjusting agents, buffering agents, isotoning agents, solubility aids and/or tensides or the like, to obtain injectable solutions or suspensions. In addition, injectable formulations may comprise further additives, for example salts, solubility modifying agents or precipitating agents which retard release of the drug(s). In further addition, injectable GLP-1 formulations may comprise GLP-1 stabilizing agents (e.g. a surfactant).
[0329] For example, an injectable formulation (particularly for subcutaneous use) containing the GLP-1 receptor agonist (e.g. exenatide), optionally together with the DPP-4 inhibitor of this invention, may further comprise the following additives: a tonicity-adjusting agent (such as e.g. mannitol), an antimicrobial preservative (such as e.g. metacresol), a buffer or pH adjusting agent (such as e.g. glacial acetic acid and sodium acetate trihydrate in water for injection as a buffering solution at pH 4.5), and optionally a solubilizing and/or stabilizing agent (such as e.g. a surfactant or detergent).
[0330] In a further embodiment, the DPP-4 inhibitor according to the invention is preferably administered by a transdermal delivery system. In another embodiment, the GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) is preferably administered by a transdermal delivery system as well.
[0331] Transdermal formulations (e.g. for transdermal patches or gels) of the GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) and/or the DPP-4 inhibitor of this invention may be prepared according to known formulation techniques, e.g. using suitable carriers and, optionally, further additives. To facilitate transdermal passage, different methodologies and systems may be used, such as e.g. techniques involving formation of microchannels or micropores in the skin, such as e.g. iontophoresis (based on low-level electrical current), sonophoresis (based on low-frequency ultrasound) or microneedling, or the use of drug-carrier agents (e.g. elastic or lipid vesicles such as transfersomes) or permeation enhancers.
[0332] For further details on dosage forms, formulations and administration of DPP-4 inhibitors of this invention and/or GLP-1 receptor agonist of this invention, reference is made to scientific literature and/or published patent documents, particularly to those cited herein.
[0333] The pharmaceutical compositions (or formulations) may be packaged in a variety of ways. Generally, an article for distribution includes one or more containers that contain the one or more pharmaceutical compositions in an appropriate form. Tablets are typically packed in an appropriate primary package for easy handling, distribution and storage and for assurance of proper stability of the composition at prolonged contact with the environment during storage. Primary containers for tablets may be bottles or blister packs.
[0334] A suitable bottle, e.g. for a pharmaceutical composition or combination (tablet) comprising a DPP-4 inhibitor according to embodiment A of the invention, may be made from glass or polymer (preferably polypropylene (PP) or high density polyethylene (HD-PE)) and sealed with a screw cap. The screw cap may be provided with a child resistant safety closure (e.g. press-and-twist closure) for preventing or hampering access to the contents by children. If required (e.g. in regions with high humidity), by the additional use of a desiccant (such as e.g. bentonite clay, molecular sieves, or, preferably, silica gel) the shelf life of the packaged composition can be prolonged.
[0335] A suitable blister pack, e.g. for a pharmaceutical composition or combination (tablet) comprising a DPP-4 inhibitor according to embodiment A of the invention, comprises or is formed of a top foil (which is breachable by the tablets) and a bottom part (which contains pockets for the tablets). The top foil may contain a metallic foil, particularly aluminium or aluminium alloy foil (e.g. having a thickness of 20 μm to 45 μm, preferably 20 μm to 25 μm) that is coated with a heat-sealing polymer layer on its inner side (sealing side). The bottom part may contain a multi-layer polymer foil (such as e.g. poly(vinyl chloride) (PVC) coated with poly(vinylidene chloride) (PVDC); or a PVC foil laminated with poly(chlorotrifluoroethylene) (PCTFE)) or a multi-layer polymer-metal-polymer foil (such as e.g. a cold-formable laminated PVC/aluminium/polyamide composition).
[0336] To ensure a long storage period especially under hot and wet climate conditions an additional overwrap or pouch made of a multi-layer polymer-metal-polymer foil (e.g. a laminated polyethylene/aluminium/polyester composition) may be used for the blister packs. Supplementary desiccant (such as e.g. bentonite clay, molecular sieves, or, preferably, silica gel) in this pouch package may prolong the shelf life even more under such harsh conditions.
[0337] Solutions for injection may be available in typical suitable presentation forms such as vials, cartridges or prefilled (disposable) pens, which may be further packaged.
[0338] The article may further comprise a label or package insert, which refer to instructions customarily included in commercial packages of therapeutic products, that may contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products. In one embodiment, the label or package inserts indicates that the composition can be used for any of the purposes described herein.
[0339] With respect to the first embodiment (embodiment A), the dosage typically required of the DPP-4 inhibitors mentioned herein in embodiment A when administered intravenously is 0.1 mg to 10 mg, preferably 0.25 mg to 5 mg, and when administered orally is 0.5 mg to 100 mg, preferably 2.5 mg to 50 mg or 0.5 mg to 10 mg, more preferably 2.5 mg to 10 mg or 1 mg to 5 mg, in each case 1 to 4 times a day. Thus, e.g. the dosage of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine when administered orally is 0.5 mg to 10 mg per patient per day, preferably 2.5 mg to 10 mg or 1 mg to 5 mg per patient per day.
[0340] For example, doses of linagliptin when administered subcutaneously or i.v. for human patients are in the range of 0.3-10 mg, preferably from 1 to 5 mg, particularly 2.5 mg, per patient per day.
[0341] In a further embodiment, for example, doses of linagliptin when administered subcutaneously for human patients (such as e.g. in obese human patients or for treating obesity) are in the range of 0.1-30 mg, preferably from 1 to 10 mg, particularly 5 mg, per patient per day.
[0342] A dosage form prepared with a pharmaceutical composition comprising a DPP-4 inhibitor mentioned herein in embodiment A contain the active ingredient in a dosage range of 0.1-100 mg. Thus, e.g. particular oral dosage strengths of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine are 0.5 mg, 1 mg, 2.5 mg, 5 mg and 10 mg.
[0343] With respect to the second embodiment (embodiment B), the doses of DPP-4 inhibitors mentioned herein in embodiment B to be administered to mammals, for example human beings, of, for example, approximately 70 kg body weight, may be generally from about 0.5 mg to about 350 mg, for example from about 10 mg to about 250 mg, preferably 20-200 mg, more preferably 20-100 mg, of the active moiety per person per day, or from about 0.5 mg to about 20 mg, preferably 2.5-10 mg, per person per day, divided preferably into 1 to 4 single doses which may, for example, be of the same size. Single oral dosage strengths comprise, for example, 10, 25, 40, 50, 75, 100, 150 and 200 mg of the DPP-4 inhibitor active moiety.
[0344] An oral dosage strength of the DPP-4 inhibitor sitagliptin is usually between 25 and 200 mg of the active moiety. A recommended dose of sitagliptin is 100 mg calculated for the active moiety (free base anhydrate) once daily. Unit dosage strengths of sitagliptin free base anhydrate (active moiety) are 25, 50, 75, 100, 150 and 200 mg. Particular unit dosage strengths of sitagliptin (e.g. per tablet) are 25, 50 and 100 mg. An equivalent amount of sitagliptin phosphate monohydrate to the sitagliptin free base anhydrate is used in the pharmaceutical compositions, namely, 32.13, 64.25, 96.38, 128.5, 192.75, and 257 mg, respectively. Adjusted dosages of 25 and 50 mg sitagliptin are used for patients with renal failure. Typical dosage strengths of the dual combination of sitagliptin/metformin are 50/500 mg and 50/1000 mg.
[0345] An oral dosage range of the DPP-4 inhibitor vildagliptin is usually between 10 and 150 mg daily, in particular between 25 and 150 mg, 25 and 100 mg or 25 and 50 mg or 50 and 100 mg daily. Particular examples of daily oral dosage are 25, 30, 35, 45, 50, 55, 60, 80, 100 or 150 mg. In a more particular aspect, the daily administration of vildagliptin may be between 25 and 150 mg or between 50 and 100 mg. In another more particular aspect, the daily administration of vildagliptin may be 50 or 100 mg. The application of the active ingredient may occur up to three times a day, preferably one or two times a day. Particular dosage strengths are 50 mg or 100 mg vildagliptin. Typical dosage strengths of the dual combination of vildagliptin/metformin are 50/850 mg and 50/1000 mg.
[0346] Alogliptin may be administered to a patient at an oral daily dose of between 5 mg/day and 250 mg/day, optionally between 10 mg and 200 mg, optionally between 10 mg and 150 mg, and optionally between 10 mg and 100 mg of alogliptin (in each instance based on the molecular weight of the free base form of alogliptin). Thus, specific oral dosage amounts that may be used include, but are not limited to 10 mg, 12.5 mg, 20 mg, 25 mg, 50 mg, 75 mg and 100 mg of alogliptin per day. Alogliptin may be administered in its free base form or as a pharmaceutically acceptable salt.
[0347] Saxagliptin may be administered to a patient at an oral daily dose of between 2.5 mg/day and 100 mg/day, optionally between 2.5 mg and 50 mg. Specific oral dosage amounts that may be used include, but are not limited to 2.5 mg, 5 mg, 10 mg, 15 mg, 20 mg, 30 mg, 40 mg, 50 mg and 100 mg of saxagliptin per day. Typical dosage strengths of the dual combination of saxagliptin/metformin are 2.5/500 mg and 2.5/1000 mg.
[0348] A special embodiment of the DPP-4 inhibitors of this invention refers to those orally administered DPP-4 inhibitors which are therapeutically efficacious at low dose levels, e.g. at oral dose levels <100 mg or <70 mg per patient per day, preferably <50 mg, more preferably <30 mg or <20 mg, even more preferably from 1 mg to 10 mg, particularly from 1 mg to 5 mg (more particularly 5 mg), per patient per day (if required, divided into 1 to 4 single doses, particularly 1 or 2 single doses, which may be of the same size, preferentially, administered orally once- or twice daily (more preferentially once-daily), advantageously, administered at any time of day, with or without food. Thus, for example, the daily oral amount 5 mg BI 1356 can be given in an once daily dosing regimen (i.e. 5 mg BI 1356 once daily) or in a twice daily dosing regimen (i.e. 2.5 mg BI 1356 twice daily), at any time of day, with or without food.
[0349] The GLP-1 receptor agonist (particularly short acting GLP-1, GLP-1 mimetic or GLP-1 analogue, such as exenatide or native GLP-1) are typically administered by subcutaneous injection, such as e.g. in an amount of 1-30 μg, 1-20 μg or 5-10 μg, e.g. once, twice or thrice daily. An embodiment thereof refers to those short-acting GLP-1 analogues (or any short-acting GLP-1 receptor agonists in general) that are to be administered at least twice daily, such as e.g. exenatide.
[0350] For example, exenatide is typically administered twice daily by subcutaneous injection (e.g. formulated as Byetta, e.g. in doses of 5-30 μg, particularly 5-20 μg, preferably 5-10 μg, specific dosage strengths are 5 or 10 μg).
[0351] The dosage of the active ingredients in the combinations and compositions in accordance with the present invention may be varied, although the amount of the active ingredients shall be such that a suitable dosage form is obtained. Hence, the selected dosage and the selected dosage form shall depend on the desired therapeutic effect, the route of administration and the duration of the treatment. Dosage ranges for the combination may be from the maximal tolerated dose for the single agent to lower doses, e.g. to one tenth of the maximal tolerated dose.
[0352] A particularly preferred DPP-4 inhibitor to be emphasized within the meaning of this invention is 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine (also known as BI 1356 or linagliptin). BI 1356 exhibits high potency, 24 h duration of action, and a wide therapeutic window. In patients with type 2 diabetes receiving multiple oral doses of 1, 2.5, 5 or 10 mg of BI 1356 once daily for 12 days, BI 1356 shows favourable pharmacodynamic and pharmacokinetic profile (see e.g. Table 3 below) with rapid attainment of steady state (e.g. reaching steady state plasma levels (>90% of the pre-dose plasma concentration on Day 13) between second and fifth day of treatment in all dose groups), little accumulation (e.g. with a mean accumulation ratio RA,AUC≦1.4 with doses above 1 mg) and preserving a long-lasting effect on DPP-4 inhibition (e.g. with almost complete (>90%) DPP-4 inhibition at the 5 mg and 10 mg dose levels, i.e. 92.3 and 97.3% inhibition at steady state, respectively, and >80% inhibition over a 24 h interval after drug intake), as well as significant decrease in 2 h postprandial blood glucose excursions by ≧80% (already on Day 1) in doses ≧2.5 mg, and with the cumulative amount of unchanged parent compound excreted in urine on Day 1 being below 1% of the administered dose and increasing to not more than about 3-6% on Day 12 (renal clearance CLR,ss is from about 14 to about 70 mL/min for the administered oral doses, e.g. for the 5 mg dose renal clearance is about 70 ml/min). In people with type 2 diabetes BI 1356 shows a placebo-like safety and tolerability. With low doses of about 5 mg, BI 1356 acts as a true once-daily oral drug with a full 24 h duration of DPP-4 inhibition. At therapeutic oral dose levels, BI 1356 is mainly excreted via the liver and only to a minor extent (about <7% of the administered oral dose) via the kidney. BI 1356 is primarily excreted unchanged via the bile. The fraction of BI 1356 eliminated via the kidneys increases only very slightly over time and with increasing dose, so that there will likely be no need to modify the dose of BI 1356 based on the patients' renal function. The non-renal elimination of BI 1356 in combination with its low accumulation potential and broad safety margin may be of significant benefit in a patient population that has a high prevalence of renal insufficiency and diabetic nephropathy.
[0353] 
[00001] [TABLE-US-00001]
  TABLE 3
 
  Geometric mean (gMean) and geometric coefficient of variation (gCV)
  of pharmacokinetic parameters of BI 1356 at steady state (Day 12)
    1 mg   2.5 mg   5 mg   10 mg
  Parameter   gMean (gCV)   gMean (gCV)   gMean (gCV)   gMean (gCV)
 
AUC0-24   40.2   (39.7)   85.3   (22.7)   118   (16.0)   161   (15.7)
  [nmol · h/L]
AUCτ, ss   81.7   (28.3)   117   (16.3)   158   (10.1)   190   (17.4)
  [nmol · h/L]
Cmax   3.13   (43.2)   5.25   (24.5)   8.32   (42.4)   9.69   (29.8)
  [nmol/L]
Cmax, ss   4.53   (29.0)   6.58   (23.0)   11.1   (21.7)   13.6   (29.6)
  [nmol/L]
tmax* [h]   1.50   [1.00-3.00]   2.00   [1.00-3.00]   1.75   [0.92-6.02]   2.00   [1.50-6.00]
tmax, ss* [h]   1.48   [1.00-3.00]   1.42   [1.00-3.00]   1.53   [1.00-3.00]   1.34   [0.50-3.00]
T1/2, ss [h]   121   (21.3)   113   (10.2)   131   (17.4)   130   (11.7)
  Accumulation   23.9   (44.0)   12.5   (18.2)   11.4   (37.4)   8.59   (81.2)
t1/2, [h]
RA, Cmax   1.44   (25.6)   1.25   (10.6)   1.33   (30.0)   1.40   (47.7)
RA, AUC   2.03   (30.7)   1.37   (8.2)   1.33   (15.0)   1.18   (23.4)
fe0-24 [%]   NC   0.139   (51.2)   0.453   (125)   0.919   (115)
feτ, ss [%]   3.34   (38.3)   3.06   (45.1)   6.27   (42.2)   3.22   (34.2)
CLR, ss   14.0   (24.2)   23.1   (39.3)   70   (35.0)   59.5   (22.5)
  [mL/min]
 
  *median and range [min-max]
  NC not calculated as most values below lower limit of quantification
[0354] As different metabolic functional disorders often occur simultaneously, it is quite often indicated to combine a number of different active principles with one another. Thus, depending on the functional disorders diagnosed, improved treatment outcomes may be obtained if a DPP-4 inhibitor is combined with one or more active substances which may be customary for the respective disorders, such as e.g. one or more active substances selected from among the other antidiabetic substances, especially active substances that lower the blood sugar level or the lipid level in the blood, raise the HDL level in the blood, lower blood pressure or are indicated in the treatment of atherosclerosis or obesity.
[0355] The DPP-4 inhibitors mentioned above—besides their use in mono-therapy—may also be used in conjunction with other active substances, by means of which improved treatment results can be obtained. Such a combined treatment may be given as a free combination of the substances or in the form of a fixed combination, for example in a tablet or capsule. Pharmaceutical formulations of the combination partner needed for this may either be obtained commercially as pharmaceutical compositions or may be formulated by the skilled man using conventional methods. The active substances which may be obtained commercially as pharmaceutical compositions are described in numerous places in the prior art, for example in the list of drugs that appears annually, the “Rote Liste®” of the federal association of the pharmaceutical industry, or in the annually updated compilation of manufacturers' information on prescription drugs known as the “Physicians' Desk Reference”.
[0356] Examples of antidiabetic combination partners are metformin; sulphonylureas such as glibenclamide, tolbutamide, glimepiride, glipizide, gliquidon, glibornuride and gliclazide; nateglinide; repaglinide; mitiglinide; thiazolidinediones such as rosiglitazone and pioglitazone; PPAR gamma modulators such as metaglidases; PPAR-gamma agonists such as e.g. rivoglitazone, mitoglitazone, INT-131 and balaglitazone; PPAR-gamma antagonists; PPAR-gamma/alpha modulators such as tesaglitazar, muraglitazar, aleglitazar, indeglitazar and KRP297; PPAR-gamma/alpha/delta modulators such as e.g. lobeglitazone; AMPK-activators such as AICAR; acetyl-CoA carboxylase (ACC1 and ACC2) inhibitors; diacylglycerol-acetyltransferase (DGAT) inhibitors; pancreatic beta cell GCRP agonists such as GPR119 agonists (SMT3-receptor-agonists), such as the GPR119 agonists 5-ethyl-2-{4-[4-(4-tetrazol-1-yl-phenoxymethyl)-thiazol-2-yl]-piperidin-1-yl}-pyrimidine or 5-[1-(3-isopropyl-[1,2,4]oxadiazol-5-yl)-piperidin-4-ylmethoxy]-2-(4-methanesulfonyl-phenyl)-pyridine; 11β-HSD-inhibitors; FGF19 agonists or analogues; alpha-glucosidase blockers such as acarbose, voglibose and miglitol; alpha2-antagonists; insulin and insulin analogues such as human insulin, insulin lispro, insulin glusilin, r-DNA-insulinaspart, NPH insulin, insulin detemir, insulin degludec, insulin tregopil, insulin zinc suspension and insulin glargin; Gastric inhibitory Peptide (GIP); amylin and amylin analogues (e.g. pramlintide or davalintide); GLP-1 and GLP-1 analogues such as Exendin-4, e.g. exenatide, exenatide LAR, liraglutide, taspoglutide, lixisenatide (AVE-0010), LY-2428757 (a PEGylated version of GLP-1), dulaglutide (LY-2189265), semaglutide or albiglutide; SGLT2-inhibitors such as e.g. dapagliflozin, sergliflozin (KGT-1251), atigliflozin, canagliflozin, ipragliflozin, luseogliflozin or tofogliflozin; inhibitors of protein tyrosine-phosphatase (e.g. trodusquemine); inhibitors of glucose-6-phosphatase; fructose-1,6-bisphosphatase modulators; glycogen phosphorylase modulators; glucagon receptor antagonists; phosphoenolpyruvatecarboxykinase (PEPCK) inhibitors; pyruvate dehydrogenasekinase (PDK) inhibitors; inhibitors of tyrosine-kinases (50 mg to 600 mg) such as PDGF-receptor-kinase (cf. EP-A-564409, WO 98/35958, U.S. Pat. No. 5,093,330, WO 2004/005281, and WO 2006/041976) or of serine/threonine kinases; glucokinase/regulatory protein modulators incl. glucokinase activators; glycogen synthase kinase inhibitors; inhibitors of the SH2-domain-containing inositol 5-phosphatase type 2 (SHIP2); IKK inhibitors such as high-dose salicylate; JNK1 inhibitors; protein kinase C-theta inhibitors; beta δ agonists such as ritobegron, YM 178, solabegron, talibegron, N-5984, GRC-1087, rafabegron, FMP825; aldosereductase inhibitors such as AS 3201, zenarestat, fidarestat, epalrestat, ranirestat, NZ-314, CP-744809, and CT-112; SGLT-1 or SGLT-2 inhibitors; KV 1.3 channel inhibitors; GPR40 modulators such as e.g. [(35)-6-({2′,6′-dimethyl-4′-[3-(methylsulfonyl)propoxy]biphenyl-3-yl}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetic acid; SCD-1 inhibitors; CCR-2 antagonists; dopamine receptor agonists (bromocriptine mesylate [Cycloset]); 4-(3-(2,6-dimethylbenzyloxy)phenyl)-4-oxobutanoic acid; sirtuin stimulants; and other DPP IV inhibitors.
[0357] Metformin is usually given in doses varying from about 500 mg to 2000 mg up to 2500 mg per day using various dosing regimens from about 100 mg to 500 mg or 200 mg to 850 mg (1-3 times a day), or about 300 mg to 1000 mg once or twice a day, or delayed-release metformin in doses of about 100 mg to 1000 mg or preferably 500 mg to 1000 mg once or twice a day or about 500 mg to 2000 mg once a day. Particular dosage strengths may be 250, 500, 625, 750, 850 and 1000 mg of metformin hydrochloride.
[0358] For children 10 to 16 years of age, the recommended starting dose of metformin is 500 mg given once daily. If this dose fails to produce adequate results, the dose may be increased to 500 mg twice daily. Further increases may be made in increments of 500 mg weekly to a maximum daily dose of 2000 mg, given in divided doses (e.g. 2 or 3 divided doses). Metformin may be administered with food to decrease nausea.
[0359] A dosage of pioglitazone is usually of about 1-10 mg, 15 mg, 30 mg, or 45 mg once a day.
[0360] Rosiglitazone is usually given in doses from 4 to 8 mg once (or divided twice) a day (typical dosage strengths are 2, 4 and 8 mg).
[0361] Glibenclamide(glyburide) is usually given in doses from 2.5-5 to 20 mg once (or divided twice) a day (typical dosage strengths are 1.25, 2.5 and 5 mg), or micronized glibenclamide in doses from 0.75-3 to 12 mg once (or divided twice) a day (typical dosage strengths are 1.5, 3, 4.5 and 6 mg).
[0362] Glipizide is usually given in doses from 2.5 to 10-20 mg once (or up to 40 mg divided twice) a day (typical dosage strengths are 5 and 10 mg), or extended-release glibenclamide in doses from 5 to 10 mg (up to 20 mg) once a day (typical dosage strengths are 2.5, 5 and 10 mg).
[0363] Glimepiride is usually given in doses from 1-2 to 4 mg (up to 8 mg) once a day (typical dosage strengths are 1, 2 and 4 mg).
[0364] A dual combination of glibenclamide/metformin is usually given in doses from 1.25/250 once daily to 10/1000 mg twice daily. (typical dosage strengths are 1.25/250, 2.5/500 and 5/500 mg).
[0365] A dual combination of glipizide/metformin is usually given in doses from 2.5/250 to 10/1000 mg twice daily (typical dosage strengths are 2.5/250, 2.5/500 and 5/500 mg).
[0366] A dual combination of glimepiride/metformin is usually given in doses from 1/250 to 4/1000 mg twice daily.
[0367] A dual combination of rosiglitazone/glimepiride is usually given in doses from 4/1 once or twice daily to 4/2 mg twice daily (typical dosage strengths are 4/1, 4/2, 4/4, 8/2 and 8/4 mg).
[0368] A dual combination of pioglitazone/glimepiride is usually given in doses from 30/2 to 30/4 mg once daily (typical dosage strengths are 30/4 and 45/4 mg).
[0369] A dual combination of rosiglitazone/metformin is usually given in doses from 1/500 to 4/1000 mg twice daily (typical dosage strengths are 1/500, 2/500, 4/500, 2/1000 and 4/1000 mg).
[0370] A dual combination of pioglitazone/metformin is usually given in doses from 15/500 once or twice daily to 15/850 mg thrice daily (typical dosage strengths are 15/500 and 15/850 mg).
[0371] The non-sulphonylurea insulin secretagogue nateglinide is usually given in doses from 60 to 120 mg with meals (up to 360 mg/day, typical dosage strengths are 60 and 120 mg); repaglinide is usually given in doses from 0.5 to 4 mg with meals (up to 16 mg/day, typical dosage strengths are 0.5, 1 and 2 mg). A dual combination of repaglinide/metformin is available in dosage strengths of 1/500 and 2/850 mg.
[0372] Acarbose is usually given in doses from 25 to 100 mg with meals (usually 3 times a day). Miglitol is usually given in doses from 25 to 100 mg with meals (usually 3 times a day). Voglibose is usually given in doses from 0.2 to 0.3 mg with meals (usually 3 times a day).
[0373] Examples of combination partners that lower the lipid level in the blood are HMG-CoA-reductase inhibitors such as simvastatin, atorvastatin, lovastatin, fluvastatin, pravastatin, pitavastatin and rosuvastatin; fibrates such as bezafibrate, fenofibrate, clofibrate, gemfibrozil, etofibrate and etofyllinclofibrate; nicotinic acid and the derivatives thereof such as acipimox; PPAR-alpha agonists; PPAR-delta agonists such as e.g. {4-[(R)-2-ethoxy-3-(4-trifluoromethyl-phenoxy)-propylsulfanyl]-2-methyl-phenoxy}-acetic acid; inhibitors of acyl-coenzyme A:cholesterolacyltransferase (ACAT; EC 2.3.1.26) such as avasimibe; cholesterol resorption inhibitors such as ezetimib; substances that bind to bile acid, such as cholestyramine, colestipol and colesevelam; inhibitors of bile acid transport; HDL modulating active substances such as D4F, reverse D4F, LXR modulating active substances and FXR modulating active substances; CETP inhibitors such as torcetrapib, JTT-705 (dalcetrapib) or compound 12 from WO 2007/005572 (anacetrapib); LDL receptor modulators; MTP inhibitors (e.g. lomitapide); and ApoB100 antisense RNA.
[0374] A dosage of atorvastatin is usually from 1 mg to 40 mg or 10 mg to 80 mg once a day.
[0375] Examples of combination partners that lower blood pressure are beta-blockers such as atenolol, bisoprolol, celiprolol, metoprolol and carvedilol; diuretics such as hydrochlorothiazide, chlortalidon, xipamide, furosemide, piretanide, torasemide, spironolactone, eplerenone, amiloride and triamterene; calcium channel blockers such as amlodipine, nifedipine, nitrendipine, nisoldipine, nicardipine, felodipine, lacidipine, lercanipidine, manidipine, isradipine, nilvadipine, verapamil, gallopamil and diltiazem; ACE inhibitors such as ramipril, lisinopril, cilazapril, quinapril, captopril, enalapril, benazepril, perindopril, fosinopril and trandolapril; as well as angiotensin II receptor blockers (ARBs) such as telmisartan, candesartan, valsartan, losartan, irbesartan, olmesartan, azilsartan and eprosartan.
[0376] A dosage of telmisartan is usually from 20 mg to 320 mg or 40 mg to 160 mg per day.
[0377] Examples of combination partners which increase the HDL level in the blood are Cholesteryl Ester Transfer Protein (CETP) inhibitors; inhibitors of endothelial lipase; regulators of ABC1; LXRalpha antagonists; LXRbeta agonists; PPAR-delta agonists; LXRalpha/beta regulators, and substances that increase the expression and/or plasma concentration of apolipoprotein A-I.
[0378] Examples of combination partners for the treatment of obesity are sibutramine; tetrahydrolipstatin (orlistat); alizyme (cetilistat); dexfenfluramine; axokine; cannabinoid receptor 1 antagonists such as the CB1 antagonist rimonobant; MCH-1 receptor antagonists; MC4 receptor agonists; NPY5 as well as NPY2 antagonists (e.g. velneperit); beta3-AR agonists such as SB-418790 and AD-9677; 5HT2c receptor agonists such as APD 356 (lorcaserin); myostatin inhibitors; Acrp30 and adiponectin; steroyl CoA desaturase (SCD1) inhibitors; fatty acid synthase (FAS) inhibitors; CCK receptor agonists; Ghrelin receptor modulators; Pyy 3-36; orexin receptor antagonists; and tesofensine; as well as the dual combinations bupropion/naltrexone, bupropion/zonisamide, topiramate/phentermine and pramlintide/metreleptin.
[0379] Examples of combination partners for the treatment of atherosclerosis are phospholipase A2 inhibitors; inhibitors of tyrosine-kinases (50 mg to 600 mg) such as PDGF-receptor-kinase (cf. EP-A-564409, WO 98/35958, U.S. Pat. No. 5,093,330, WO 2004/005281, and WO 2006/041976); oxLDL antibodies and oxLDL vaccines; apoA-1 Milano; ASA; and VCAM-1 inhibitors.
[0380] The present invention is not to be limited in scope by the specific embodiments described herein. Various modifications of the invention in addition to those described herein may become apparent to those skilled in the art from the present disclosure. Such modifications are intended to fall within the scope of the appended claims.
[0381] All patent applications cited herein are hereby incorporated by reference in their entireties.
[0382] Further embodiments, features and advantages of the present invention may become apparent from the following examples. The following examples serve to illustrate, by way of example, the principles of the invention without restricting it.

EXAMPLES

Reduction of Body Weight, Fat Mass and Alteration of Food Preference by Linagliptin Optionally in Combination with a GLP-1 Receptor Agonist

Model for Obesity:

[0383] Male Sprague Dawley rats are from Taconic at 6 weeks of age. Throughout the study the rats have ad libitum access to a two choice diet—regular Altromin 1324 rodent chow (Brogaarden, Denmark) and a high fat paste (HFD) made from Chocolate spread (Nutella, Ferrero Italy), Peanutbutter and powdered regular Altromin 1324 rodent chow (Brogaarden, Denmark). The animals are kept on the diet for 23 weeks before experimentation. One week prior to first dose (week 28), rats are single-housed.
[0384] Day 0 is the first day of dosing. Animals are subjected to bi-daily treatment (saline s.c., linagliptin 0.5 mg/kg, native GLP-1 0.4 mg/ml and the combination thereof) and are dosed between 7:00-9:00 AM and 15:00-17:00 PM. Animals are dosed for 32 days. Rats are terminated on study day 33.

Key Findings

[0385] Bidaily s.c. treatment with linagliptin and native GLP-1 lead to a significant reduction of body weight (BW) up to 8%. Data show mean vaules+SEM of 10 animals (FIG. 1).
[0386] In accordance, fat mass is significantly decreased following application of the combination of linagliptin and native GLP-1 (FIG. 2).
[0387] Linagliptin/GLP-1 treated animals possess altered food preferences in reduction intake of high fat diet a) and switching to chow diet b) (FIG. 3a, 3b).

Co-Administration of the DPP-4 Inhibitor Linagliptin and Native GLP-1 Induce Body Weight Loss and Appetite Suppression

[0388] Linagliptin is a dipeptidyl peptidase (DPP)-4 inhibitor approved for the treatment of type 2 diabetes. DPP-4 inhibitors are weight-neutral, suggesting that elevation of endogenous incretin levels may not be sufficient to promote weight loss per se. Here it is evaluated the effect of subcutaneous co-administration of linagliptin and native GLP-1(7-36) in a rat model. In normal-weight rats, acute linagliptin treatment (0.5 mg/kg, sc BID) has no effect on nocturnal food intake, whereas GLP-1 treatment (0.4 mg/kg, sc BID) evokes a modest and short-lived suppression of food intake. In contrast, linagliptin and GLP-1 co-administration induces a robust acute anorectic response. In diet-induced obese (DIO) rats, 14 days of linagliptin or GLP-1 monotherapy has no effect on body weight, whereas continuation with combined linagliptin (0.5 mg/kg, sc BID) and GLP-1 treatment (0.4 mg/kg, sc BID) for an additional 14 days induces a sustained decrease in food intake and body weight (−6.4±0.8%, compared with baseline body weight). Interestingly, the body weight-lowering effect of combined linagliptin and GLP-1 treatment is associated with a marked increase in chow preference at the expense of palatable high-fat-carbohydrate diet intake. In addition, combined linagliptin and GLP-1 treatment specifically increases preprodynorphin m RNA levels in the nucleus accumbens. These data demonstrate that combined treatment with linagliptin and GLP-1 synergistically reduces body weight in an obese rat model. This anti-obesity effect is caused by appetite suppression and change in diet preference, presumably associated with increased dynorphin activity in dopaminergic forebrain regions involved in reward anticipation and habit learning. In conclusion, linagliptin and GLP-1 (native GLP-1, GLP-1 receptor agonist, or GLP-1 mimetic or analogue, such as e.g. short acting GLP-1) co-administration may therefore hold promise as a novel therapeutic principle for combined weight and diabetes management as well as for appetite suppression, change in diet preference and body weight loss in obese patients.

Glucose and Body Weight Control by Combination Linagliptin and Voglibose

[0389] It is investigated that combination therapy with the dipeptidyl peptidase-4 inhibitor linagliptin and the α-glucosidase inhibitor (AGI) voglibose can improve or maintain glycemic and body weight control. Male ZDF-Leprfa/Crl (diabetic fa/fa) rats fed standard chow are allocated (n=10/group) based on body weight and fasting plasma glucose (FPG). Rats are dosed (po) daily for 4 days in 2 studies—S1: vehicle, linagliptin (1 mg/kg), high-dose voglibose (10 mg/kg), or linagliptin+voglibose; S2: as S1 except low-dose voglibose (1 mg/kg). An oral sucrose tolerance test (4 g/kg po) is performed on Day 4 and body weight is recorded daily. On Day 4, mean FPG levels are 7.39 and 8.18 mM, and mean insulin levels are 2.01 and 3.76 ng/mL, in S1 and S2, respectively. Improved glucose control is observed with linagliptin (S1 −10%, S2 −17%; both P<0.05), voglibose (S1 −33%, P<0.001; S2 −18%, P<0.01), linagliptin+voglibose (S1 −33%, S2 −33%; both P<0.001) compared with vehicle. Improvement in glucose control is potentiated with linagliptin+low-dose voglibose compared with either drug alone (P<0.01). Plasma active GLP-1 is increased 5 min after the sucrose load with linagliptin (S1 160%, P<0.01; S2 144%, P<0.001) and linagliptin+voglibose (S1 834%, S2 639%; both P<0.001) compared with vehicle, and is larger than linagliptin or voglibose alone (P<0.001 for all). Compared with vehicle, linagliptin-induced improvements in glucose control are independent of changes in overall weight (S1 +0.7%, S2 −0.2%; both P=ns). In contrast, voglibose (S1 −3.0%; S2 −1.7%) and linagliptin+voglibose (S1 −3.4%; S2 −2.0%) reduce overall weight compared with vehicle (P<0.001 for all). Therapy with linagliptin+voglibose potentiates improvements in glucose control. This combination may minimize the side effects of AGIs because lower doses of voglibose may be required to maintain glycemic control, and may have additional beneficial effects due to the supra-additive increase in active GLP-1 levels.
(57)

Claims

1. A method of shifting food or taste preference or choice of a subject in need thereof away from an unhealthy food toward a healthy food, the method comprising administering to the subject an effective amount of a dipeptidyl peptidase-4 (DPP-4) inhibitor in combination with a glucagon-like peptide-1 (GLP-1) receptor agonist which is exenatide or human GLP-1, wherein the unhealthy food is a food having a high glycemic index and/or wherein mono- and/or di-saccharides constitute a large proportion of the total amount of carbohydrates and/or wherein a large proportion of the total amount of energy stems from fat, and wherein the healthy food is a food having a low glycemic index and/or wherein mono- and/or di-saccharides constitute a small proportion of the total amount of carbohydrates and/or wherein a small proportion of the total amount of energy stems from fat, wherein the DPP-4 inhibitor is administered subcutaneously.
2. The method according to claim 1, wherein the DPP-4 inhibitor is linagliptin and the GLP-1 receptor agonist is exenatide.
3. The method according to claim 1, wherein
(a) said unhealthy food is a food from one or more of the groups A) to D):
A) The glycemic index is above 60%
B) The glycemic index is above 40% and wherein more than 30% of the total amount of energy stems from fat
C) The amount of mono- and/or di-saccharides constitute more than 25% of total carbohydrate content
D) The amount of mono- and/or di-saccharides constitute more than 25% of total carbohydrate content and wherein more than 30% of the total amount of energy stems from fat; and wherein
(b) said healthy food is food from one or more of the groups E) to H):
E) The glycemic index is below 60%
F) The glycemic index is below 40% and wherein less than 30% of the total amount of energy stems from fat
G) The amount of mono- and/or di-saccharides constitute together constitute less than 25% of the total carbohydrate content
H) The amount of mono- and/or di-saccharides constitute less than 25% of the total carbohydrate content, and wherein less than 30% of the total amount of energy stems from fat.
4. The method according to claim 1, wherein said subject is overweight or obese.
5. The method according to claim 1, wherein said subject has diabetes with or without obesity or overweight.
*****

Download Citation


Sign in to the Lens

Feedback