System, Method And Computer-accessible Medium For Tracking Vessel Motion During Three-dimensional Coronary Artery Microscopy

  *US08593619B2*
  US008593619B2                                 
(12)United States Patent(10)Patent No.: US 8,593,619 B2
 Colice et al. (45) Date of Patent:Nov.  26, 2013

(54)System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy 
    
(75)Inventors: Christopher Max Colice,  Boston, MA (US); 
  Brett E. Bouma,  Quincy, MA (US); 
  Guillermo J. Tearney,  Cambridge, MA (US); 
  Jinyong Ha,  Cambridge, MA (US); 
  Milen Shishkov,  Watertown, MA (US) 
(73)Assignee:The General Hospital Corporation,  Boston, MA (US), Type: US Company 
(*)Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 676 days. 
(21)Appl. No.: 12/437,392 
(22)Filed: May  7, 2009 
(65)Prior Publication Data 
 US 2010/0110414 A1 May  6, 2010 
 Related U.S. Patent Documents 
(60)Provisional application No. 61/051,231, filed on May  7, 2008.
 
(51)Int. Cl. G01C 003/08 (20060101)
(52)U.S. Cl. 356/28.5; 356/28
(58)Field of Search  356/28-28.5, 27, 3.01-3.15, 4.01-4.1, 5.01-5.1, 6-22

 
(56)References Cited
 
 U.S. PATENT DOCUMENTS
 2,339,754  A  1/1944    Brace     
 3,090,753  A  5/1963    Matuszak et al.     
 3,500,048  A*3/1970    Menke 250/333
 3,601,480  A  8/1971    Randall     
 3,856,000  A  12/1974    Chikama     
 3,872,407  A  3/1975    Hughes     
 3,941,121  A  3/1976    Olinger     
 3,973,219  A  8/1976    Tang et al.     
 3,983,507  A  9/1976    Tang et al.     
 4,030,827  A  6/1977    Delhaye et al.     
 4,030,831  A  6/1977    Gowrinathan     
 4,140,364  A  2/1979    Yamashita et al.     
 4,141,362  A  2/1979    Wurster     
 4,224,929  A  9/1980    Furihata     
 4,295,738  A  10/1981    Meltz et al.     
 4,300,816  A  11/1981    Snitzer et al.     
 4,303,300  A  12/1981    Pressiat et al.     
 4,428,643  A  1/1984    Kay     
 4,479,499  A  10/1984    Alfano et al.     
 4,533,247  A  8/1985    Epworth     
 4,585,349  A  4/1986    Gross et al.     
 4,601,036  A  7/1986    Faxvog et al.     
 4,607,622  A  8/1986    Fritch et al.     
 4,631,498  A  12/1986    Cutler     
 4,639,999  A  2/1987    Daniele     
 4,650,327  A  3/1987    Ogi     
 4,696,568  A*9/1987    Weistra 356/28.5
 4,734,578  A  3/1988    Horikawa     
 4,744,656  A  5/1988    Moran et al.     
 4,751,706  A  6/1988    Rohde et al.     
 4,763,977  A  8/1988    Kawasaki et al.     
 4,770,492  A  9/1988    Levin et al.     
 4,827,907  A  5/1989    Tashiro et al.     
 4,834,111  A  5/1989    Khanna et al.     
 4,868,834  A  9/1989    Fox et al.     
 4,890,901  A  1/1990    Cross, Jr.     
 4,892,406  A  1/1990    Waters     
 4,905,169  A  2/1990    Buican et al.     
 4,909,631  A  3/1990    Tan et al.     
 4,925,302  A  5/1990    Cutler     
 4,928,005  A  5/1990    Lefevre et al.     
 4,940,328  A  7/1990    Hartman     
 4,965,441  A  10/1990    Picard     
 4,965,599  A  10/1990    Roddy et al.     
 4,966,589  A  10/1990    Kaufman     
 4,984,888  A  1/1991    Tobias et al.     
 4,993,834  A  2/1991    Carlhoff et al.     
 4,998,972  A  3/1991    Chin et al.     
 5,039,193  A  8/1991    Snow et al.     
 5,040,889  A  8/1991    Keane     
 5,045,936  A  9/1991    Lobb et al.     
 5,046,501  A  9/1991    Crilly     
 5,065,331  A  11/1991    Vachon et al.     
 5,085,496  A  2/1992    Yoshida et al.     
 5,108,907  A*4/1992    Pleass et al. 435/34
 5,120,953  A  6/1992    Harris     
 5,121,983  A  6/1992    Lee     
 5,127,730  A  7/1992    Brelje et al.     
 5,192,979  A*3/1993    Grage et al. 356/28.5
 5,197,470  A  3/1993    Helfer et al.     
 5,202,745  A  4/1993    Sorin et al.     
 5,202,931  A  4/1993    Bacus et al.     
 5,208,651  A  5/1993    Buican     
 5,212,667  A  5/1993    Tomlinson et al.     
 5,214,538  A  5/1993    Lobb     
 5,217,456  A  6/1993    Narciso, Jr.     
 5,228,001  A  7/1993    Birge et al.     
 5,241,364  A  8/1993    Kimura et al.     
 5,248,876  A  9/1993    Kerstens et al.     
 5,250,186  A  10/1993    Dollinger et al.     
 5,251,009  A  10/1993    Bruno     
 5,262,644  A  11/1993    Maguire     
 5,275,594  A  1/1994    Baker et al.     
 5,281,811  A  1/1994    Lewis     
 5,283,795  A  2/1994    Fink     
 5,291,885  A  3/1994    Taniji et al.     
 5,293,872  A  3/1994    Alfano et al.     
 5,293,873  A  3/1994    Fang     
 5,302,025  A  4/1994    Kleinerman     
 5,304,173  A  4/1994    Kittrell et al.     
 5,304,810  A  4/1994    Amos     
 5,305,759  A  4/1994    Kaneko et al.     
 5,317,389  A  5/1994    Hochberg et al.     
 5,318,024  A  6/1994    Kittrell et al.     
 5,321,501  A  6/1994    Swanson et al.     
 5,333,144  A  7/1994    Liedenbaum et al.     
 5,348,003  A  9/1994    Caro     
 5,353,790  A  10/1994    Jacques et al.     
 5,383,467  A  1/1995    Auer et al.     
 5,394,235  A  2/1995    Takeuchi et al.     
 5,400,771  A  3/1995    Pirak et al.     
 5,404,415  A  4/1995    Mori et al.     
 5,411,016  A  5/1995    Kume et al.     
 5,414,509  A  5/1995    Veligdan     
 5,419,323  A  5/1995    Kittrell et al.     
 5,424,827  A  6/1995    Horwitz et al.     
 5,439,000  A  8/1995    Gunderson et al.     
 5,441,053  A  8/1995    Lodder et al.     
 5,450,203  A  9/1995    Penkethman     
 5,454,807  A  10/1995    Lennox et al.     
 5,459,325  A  10/1995    Hueton et al.     
 5,459,570  A  10/1995    Swanson et al.     
 5,465,147  A  11/1995    Swanson     
 5,486,701  A  1/1996    Norton et al.     
 5,491,524  A  2/1996    Hellmuth et al.     
 5,491,552  A  2/1996    Knuttel     
 5,502,466  A*3/1996    Kato et al. 356/499
 5,522,004  A  5/1996    Djupsjobacka et al.     
 5,526,338  A  6/1996    Hasman et al.     
 5,555,087  A  9/1996    Miyagawa et al.     
 5,562,100  A  10/1996    Kittrell et al.     
 5,565,983  A  10/1996    Barnard et al.     
 5,565,986  A  10/1996    Knüttel     
 5,566,267  A  10/1996    Neuberger     
 5,583,342  A  12/1996    Ichie     
 5,590,660  A  1/1997    MacAulay et al.     
 5,600,486  A  2/1997    Gal et al.     
 5,601,087  A  2/1997    Gunderson et al.     
 5,621,830  A  4/1997    Lucey et al.     
 5,623,336  A  4/1997    Raab et al.     
 5,635,830  A  6/1997    Itoh     
 5,649,924  A  7/1997    Everett et al.     
 5,697,373  A  12/1997    Richards-Kortum et al.     
 5,698,397  A  12/1997    Zarling et al.     
 5,710,630  A  1/1998    Essenpreis et al.     
 5,716,324  A  2/1998    Toida     
 5,719,399  A  2/1998    Alfano et al.     
 5,730,731  A  3/1998    Mollenauer et al.     
 5,735,276  A  4/1998    Lemelson     
 5,740,808  A  4/1998    Panescu et al.     
 5,748,318  A  5/1998    Maris et al.     
 5,748,598  A  5/1998    Swanson et al.     
 5,752,518  A  5/1998    McGee et al.     
 5,784,352  A  7/1998    Swanson et al.     
 5,785,651  A  7/1998    Kuhn et al.     
 5,795,295  A  8/1998    Hellmuth et al.     
 5,801,826  A  9/1998    Williams     
 5,801,831  A  9/1998    Sargoytchev et al.     
 5,803,082  A  9/1998    Stapleton et al.     
 5,807,261  A  9/1998    Benaron et al.     
 5,810,719  A  9/1998    Toida     
 5,817,144  A  10/1998    Gregory     
 5,836,877  A  11/1998    Zavislan et al.     
 5,840,023  A  11/1998    Oraevsky et al.     
 5,840,031  A  11/1998    Crowley     
 5,840,075  A  11/1998    Mueller et al.     
 5,842,995  A  12/1998    Mahadevan-Jansen et al.     
 5,843,000  A  12/1998    Nishioka et al.     
 5,843,052  A  12/1998    Benja-Athon     
 5,847,827  A  12/1998    Fercher     
 5,862,273  A  1/1999    Pelletier     
 5,865,754  A  2/1999    Sevick-Muraca et al.     
 5,867,268  A  2/1999    Gelikonov et al.     
 5,871,449  A  2/1999    Brown     
 5,872,879  A  2/1999    Hamm     
 5,877,856  A  3/1999    Fercher     
 5,887,009  A  3/1999    Mandella et al.     
 5,892,583  A  4/1999    Li     
 5,910,839  A  6/1999    Erskine et al.     
 5,912,764  A  6/1999    Togino     
 5,920,373  A  7/1999    Bille     
 5,920,390  A  7/1999    Farahi et al.     
 5,921,926  A  7/1999    Rolland et al.     
 5,926,592  A  7/1999    Harris et al.     
 5,949,929  A  9/1999    Hamm     
 5,951,482  A  9/1999    Winston et al.     
 5,955,737  A  9/1999    Hallidy et al.     
 5,956,355  A  9/1999    Swanson et al.     
 5,968,064  A  10/1999    Selmon et al.     
 5,975,697  A  11/1999    Podoleanu et al.     
 5,983,125  A  11/1999    Alfano et al.     
 5,987,346  A  11/1999    Benaron et al.     
 5,991,697  A  11/1999    Nelson et al.     
 5,994,690  A  11/1999    Kulkarni et al.     
 5,995,223  A  11/1999    Power     
 6,002,480  A  12/1999    Izatt et al.     
 6,004,314  A  12/1999    Wei et al.     
 6,006,128  A  12/1999    Izatt et al.     
 6,007,996  A  12/1999    McNamara et al.     
 6,010,449  A  1/2000    Selmon et al.     
 6,014,214  A  1/2000    Li     
 6,016,197  A  1/2000    Krivoshlykov     
 6,020,963  A  2/2000    DiMarzio et al.     
 6,025,956  A  2/2000    Nagano et al.     
 6,033,721  A  3/2000    Nassuphis     
 6,037,579  A  3/2000    Chan et al.     
 6,044,288  A  3/2000    Wake et al.     
 6,045,511  A  4/2000    Ott et al.     
 6,048,742  A  4/2000    Weyburne et al.     
 6,053,613  A  4/2000    Wei et al.     
 6,069,698  A  5/2000    Ozawa et al.     
 6,078,047  A  6/2000    Mittleman et al.     
 6,091,496  A  7/2000    Hill     
 6,091,984  A  7/2000    Perelman et al.     
 6,094,274  A  7/2000    Yokoi     
 6,107,048  A  8/2000    Goldenring et al.     
 6,111,645  A  8/2000    Tearney et al.     
 6,117,128  A  9/2000    Gregory     
 6,120,516  A  9/2000    Selmon et al.     
 6,134,003  A  10/2000    Tearney et al.     
 6,134,010  A  10/2000    Zavislan     
 6,134,033  A  10/2000    Bergano et al.     
 6,141,577  A  10/2000    Rolland et al.     
 6,151,522  A  11/2000    Alfano et al.     
 6,159,445  A  12/2000    Klaveness et al.     
 6,160,826  A  12/2000    Swanson et al.     
 6,161,031  A  12/2000    Hochmann et al.     
 6,166,373  A  12/2000    Mao     
 6,174,291  B1  1/2001    McMahon et al.     
 6,175,669  B1  1/2001    Colston et al.     
 6,185,271  B1  2/2001    Kinsinger     
 6,191,862  B1  2/2001    Swanson et al.     
 6,193,676  B1  2/2001    Winston et al.     
 6,198,956  B1  3/2001    Dunne     
 6,201,989  B1  3/2001    Whitehead et al.     
 6,208,415  B1  3/2001    De Boer et al.     
 6,208,887  B1  3/2001    Clarke     
 6,245,026  B1  6/2001    Campbell et al.     
 6,249,349  B1  6/2001    Lauer     
 6,249,381  B1  6/2001    Suganuma     
 6,249,630  B1  6/2001    Stock et al.     
 6,263,234  B1  7/2001    Engelhardt et al.     
 6,264,610  B1  7/2001    Zhu     
 6,272,268  B1  8/2001    Miller et al.     
 6,272,376  B1  8/2001    Marcu et al.     
 6,274,871  B1  8/2001    Dukor et al.     
 6,282,011  B1  8/2001    Tearney et al.     
 6,297,018  B1  10/2001    French et al.     
 6,301,048  B1  10/2001    Cao et al.     
 6,308,092  B1  10/2001    Hoyns     
 6,324,419  B1  11/2001    Guzelsu et al.     
 6,341,036  B1  1/2002    Tearney et al.     
 6,353,693  B1  3/2002    Kano et al.     
 6,359,692  B1  3/2002    Groot     
 6,374,128  B1  4/2002    Toida et al.     
 6,377,349  B1  4/2002    Fercher     
 6,384,915  B1  5/2002    Everett et al.     
 6,393,312  B1  5/2002    Hoyns     
 6,394,964  B1  5/2002    Sievert, Jr. et al.     
 6,396,941  B1  5/2002    Bacus et al.     
 6,421,164  B2  7/2002    Tearney et al.     
 6,437,867  B2  8/2002    Zeylikovich et al.     
 6,441,892  B2  8/2002    Xiao et al.     
 6,441,959  B1  8/2002    Yang et al.     
 6,445,485  B1  9/2002    Frigo et al.     
 6,445,939  B1  9/2002    Swanson et al.     
 6,445,944  B1  9/2002    Ostrovsky     
 6,459,487  B1  10/2002    Chen et al.     
 6,463,313  B1  10/2002    Winston et al.     
 6,469,846  B2  10/2002    Ebizuka et al.     
 6,475,159  B1  11/2002    Casscells et al.     
 6,475,210  B1  11/2002    Phelps et al.     
 6,477,403  B1  11/2002    Eguchi et al.     
 6,485,413  B1  11/2002    Boppart et al.     
 6,485,482  B1  11/2002    Belef     
 6,501,551  B1  12/2002    Tearney et al.     
 6,501,878  B2  12/2002    Hughes et al.     
 6,516,014  B1  2/2003    Sellin et al.     
 6,517,532  B1  2/2003    Altshuler et al.     
 6,532,061  B2*3/2003    Ortyn et al. 356/28
 6,538,817  B1  3/2003    Farmer et al.     
 6,540,391  B2  4/2003    Lanzetta et al.     
 6,549,801  B1  4/2003    Chen et al.     
 6,552,796  B2  4/2003    Magnin et al.     
 6,556,305  B1  4/2003    Aziz et al.     
 6,556,853  B1  4/2003    Cabib et al.     
 6,558,324  B1  5/2003    Von Behren et al.     
 6,560,259  B1  5/2003    Hwang et al.     
 6,564,087  B1  5/2003    Pitris et al.     
 6,564,089  B2  5/2003    Izatt et al.     
 6,567,585  B2  5/2003    Harris     
 6,593,101  B2  7/2003    Richards-Kortum et al.     
 6,611,833  B1  8/2003    Johnson et al.     
 6,615,071  B1  9/2003    Casscells, III et al.     
 6,622,732  B2  9/2003    Constantz     
 6,654,127  B2  11/2003    Everett et al.     
 6,657,730  B2  12/2003    Pfau et al.     
 6,658,278  B2  12/2003    Gruhl     
 6,680,780  B1  1/2004    Fee     
 6,685,885  B2  2/2004    Nolte et al.     
 6,687,007  B1  2/2004    Meigs     
 6,687,010  B1  2/2004    Horii et al.     
 6,687,036  B2  2/2004    Riza     
 6,692,430  B2  2/2004    Adler     
 6,701,181  B2  3/2004    Tang et al.     
 6,721,094  B1  4/2004    Sinclair et al.     
 6,725,073  B1  4/2004    Motamedi et al.     
 6,738,144  B1  5/2004    Dogariu et al.     
 6,741,355  B2  5/2004    Drabarek     
 6,757,467  B1  6/2004    Rogers     
 6,790,175  B1  9/2004    Furusawa et al.     
 6,806,963  B1  10/2004    Wälti et al.     
 6,816,743  B2  11/2004    Moreno et al.     
 6,831,781  B2  12/2004    Tearney et al.     
 6,839,496  B1  1/2005    Mills et al.     
 6,882,432  B2  4/2005    Deck     
 6,900,899  B2  5/2005    Nevis     
 6,903,820  B2  6/2005    Wang     
 6,909,105  B1  6/2005    Heintzmann et al.     
 6,949,072  B2  9/2005    Furnish et al.     
 6,961,123  B1  11/2005    Wang et al.     
 6,980,299  B1  12/2005    de Boer     
 6,996,549  B2  2/2006    Zhang et al.     
 7,006,231  B2  2/2006    Ostrovsky et al.     
 7,006,232  B2  2/2006    Rollins et al.     
 7,019,838  B2  3/2006    Izatt et al.     
 7,027,633  B2  4/2006    Foran et al.     
 7,061,622  B2  6/2006    Rollins et al.     
 7,072,047  B2  7/2006    Westphal et al.     
 7,075,658  B2  7/2006    Izatt et al.     
 7,099,358  B1  8/2006    Chong et al.     
 7,113,288  B2  9/2006    Fercher     
 7,113,625  B2  9/2006    Watson et al.     
 7,130,320  B2  10/2006    Tobiason et al.     
 7,139,598  B2  11/2006    Hull et al.     
 7,142,835  B2  11/2006    Paulus     
 7,148,970  B2  12/2006    De Boer     
 7,177,027  B2  2/2007    Hirasawa et al.     
 7,190,464  B2  3/2007    Alphonse     
 7,230,708  B2  6/2007    Lapotko et al.     
 7,231,243  B2  6/2007    Tearney et al.     
 7,236,637  B2  6/2007    Sirohey et al.     
 7,242,480  B2  7/2007    Alphonse     
 7,267,494  B2  9/2007    Deng et al.     
 7,272,252  B2  9/2007    De La Torre-Bueno et al.     
 7,304,798  B2  12/2007    Izumi et al.     
 7,330,270  B2  2/2008    O'Hara et al.     
 7,336,366  B2  2/2008    Choma et al.     
 7,342,659  B2  3/2008    Horn et al.     
 7,355,716  B2  4/2008    de Boer et al.     
 7,355,721  B2  4/2008    Quadling et al.     
 7,359,062  B2  4/2008    Chen et al.     
 7,365,858  B2  4/2008    Fang-Yen et al.     
 7,366,376  B2*4/2008    Shishkov et al. 385/35
 7,382,809  B2  6/2008    Chong et al.     
 7,391,520  B2  6/2008    Zhou et al.     
 7,458,683  B2  12/2008    Chernyak et al.     
 7,530,948  B2  5/2009    Seibel et al.     
 7,539,530  B2  5/2009    Caplan et al.     
 7,609,391  B2  10/2009    Betzig     
 7,630,083  B2  12/2009    de Boer et al.     
 7,643,152  B2  1/2010    de Boer et al.     
 7,643,153  B2  1/2010    de Boer et al.     
 7,646,905  B2  1/2010    Guittet et al.     
 7,649,160  B2  1/2010    Colomb et al.     
 7,664,300  B2  2/2010    Lange et al.     
 7,705,972  B2*4/2010    Holton et al. 356/28.5
 7,733,497  B2  6/2010    Yun et al.     
 7,782,464  B2  8/2010    Mujat et al.     
 7,805,034  B2  9/2010    Kato et al.     
 7,911,621  B2  3/2011    Motaghiannezam et al.     
 7,969,578  B2  6/2011    Yun et al.     
 7,973,936  B2  7/2011    Dantus     
 2001//0020126  A1  9/2001    Swanson     
 2001//0036002  A1  11/2001    Tearney et al.     
 2001//0047137  A1  11/2001    Moreno et al.     
 2002//0016533  A1  2/2002    Marchitto et al.     
 2002//0024015  A1  2/2002    Hoffmann et al.     
 2002//0048025  A1  4/2002    Takaoka     
 2002//0048026  A1  4/2002    Isshiki et al.     
 2002//0052547  A1  5/2002    Toida     
 2002//0057431  A1  5/2002    Fateley et al.     
 2002//0064341  A1  5/2002    Fauver et al.     
 2002//0076152  A1  6/2002    Hughes et al.     
 2002//0085209  A1  7/2002    Mittleman et al.     
 2002//0086347  A1  7/2002    Johnson et al.     
 2002//0091322  A1  7/2002    Chaiken et al.     
 2002//0093662  A1  7/2002    Chen et al.     
 2002//0109851  A1  8/2002    Deck     
 2002//0113965  A1  8/2002    Roche et al.     
 2002//0122182  A1  9/2002    Everett et al.     
 2002//0122246  A1  9/2002    Tearney et al.     
 2002//0140942  A1  10/2002    Fee et al.     
 2002//0158211  A1  10/2002    Gillispie     
 2002//0161357  A1  10/2002    Anderson et al.     
 2002//0163622  A1  11/2002    Magnin et al.     
 2002//0166946  A1  11/2002    Iizuka et al.     
 2002//0168158  A1  11/2002    Furusawa et al.     
 2002//0172485  A1  11/2002    Keaton et al.     
 2002//0183623  A1  12/2002    Tang et al.     
 2002//0188204  A1  12/2002    McNamara et al.     
 2002//0196446  A1  12/2002    Roth et al.     
 2002//0198457  A1  12/2002    Tearney et al.     
 2003//0001071  A1  1/2003    Mandella et al.     
 2003//0013973  A1  1/2003    Georgakoudi et al.     
 2003//0023153  A1  1/2003    Izatt et al.     
 2003//0026735  A1  2/2003    Nolte et al.     
 2003//0028114  A1  2/2003    Casscells, III et al.     
 2003//0030816  A1  2/2003    Eom et al.     
 2003//0043381  A1  3/2003    Fercher     
 2003//0053673  A1  3/2003    Dewaele et al.     
 2003//0067607  A1  4/2003    Wolleschensky et al.     
 2003//0082105  A1  5/2003    Fischman et al.     
 2003//0097048  A1  5/2003    Ryan et al.     
 2003//0108911  A1  6/2003    Klimant et al.     
 2003//0120137  A1  6/2003    Pawluczyk et al.     
 2003//0135101  A1  7/2003    Webler     
 2003//0137669  A1  7/2003    Rollins et al.     
 2003//0164952  A1  9/2003    Deichmann et al.     
 2003//0165263  A1  9/2003    Hamer et al.     
 2003//0171691  A1  9/2003    Casscells, III et al.     
 2003//0174339  A1  9/2003    Feldchtein et al.     
 2003//0199769  A1  10/2003    Podoleanu et al.     
 2003//0216719  A1  11/2003    Debenedictis et al.     
 2003//0220749  A1  11/2003    Chen et al.     
 2003//0236443  A1  12/2003    Cespedes et al.     
 2004//0002650  A1  1/2004    Mandrusov et al.     
 2004//0039252  A1  2/2004    Koch     
 2004//0039298  A1  2/2004    Abreu     
 2004//0054268  A1  3/2004    Esenaliev et al.     
 2004//0072200  A1  4/2004    Rigler et al.     
 2004//0075841  A1  4/2004    Van Neste et al.     
 2004//0076940  A1  4/2004    Alexander et al.     
 2004//0077949  A1  4/2004    Blofgett et al.     
 2004//0085540  A1  5/2004    Lapotko et al.     
 2004//0086245  A1  5/2004    Farroni et al.     
 2004//0100631  A1  5/2004    Bashkansky et al.     
 2004//0100681  A1  5/2004    Bjarklev et al.     
 2004//0110206  A1  6/2004    Wong et al.     
 2004//0126048  A1  7/2004    Dave et al.     
 2004//0126120  A1  7/2004    Cohen et al.     
 2004//0133191  A1  7/2004    Momiuchi et al.     
 2004//0150829  A1  8/2004    Koch et al.     
 2004//0150830  A1  8/2004    Chan     
 2004//0152989  A1  8/2004    Puttappa et al.     
 2004//0165184  A1  8/2004    Mizuno     
 2004//0166593  A1  8/2004    Nolte et al.     
 2004//0189999  A1  9/2004    De Groot et al.     
 2004//0212808  A1  10/2004    Okawa et al.     
 2004//0239938  A1  12/2004    Izatt et al.     
 2004//0246490  A1  12/2004    Wang     
 2004//0246583  A1  12/2004    Mueller et al.     
 2004//0247268  A1  12/2004    Ishihara et al.     
 2004//0254474  A1  12/2004    Seibel et al.     
 2004//0258106  A1  12/2004    Araujo et al.     
 2004//0263843  A1  12/2004    Knopp et al.     
 2005//0004453  A1  1/2005    Tearney et al.     
 2005//0018133  A1  1/2005    Huang et al.     
 2005//0018201  A1  1/2005    De Boer     
 2005//0035295  A1  2/2005    Bouma et al.     
 2005//0036150  A1  2/2005    Izatt et al.     
 2005//0046837  A1  3/2005    Izumi et al.     
 2005//0057680  A1  3/2005    Agan     
 2005//0057756  A1  3/2005    Fang-Yen et al.     
 2005//0059894  A1  3/2005    Zeng et al.     
 2005//0065421  A1  3/2005    Burckhardt et al.     
 2005//0075547  A1  4/2005    Wang     
 2005//0083534  A1  4/2005    Riza et al.     
 2005//0119567  A1  6/2005    Choi     
 2005//0128488  A1  6/2005    Yelin et al.     
 2005//0162637  A1*7/2005    Kameyama et al. 356/4.01
 2005//0165303  A1  7/2005    Kleen et al.     
 2005//0171438  A1  8/2005    Chen et al.     
 2005//0190372  A1  9/2005    Dogariu et al.     
 2005//0197530  A1  9/2005    Wallace et al.     
 2005//0221270  A1  10/2005    Connelly et al.     
 2005//0254061  A1  11/2005    Alphonse et al.     
 2006//0033923  A1  2/2006    Hirasawa et al.     
 2006//0039004  A1  2/2006    De Boer et al.     
 2006//0072102  A1*4/2006    Jianping et al. 356/28.5
 2006//0093276  A1  5/2006    Bouma et al.     
 2006//0103850  A1  5/2006    Alphonse et al.     
 2006//0106375  A1  5/2006    Werneth et al.     
 2006//0146339  A1  7/2006    Fujita et al.     
 2006//0155193  A1  7/2006    Leonardi et al.     
 2006//0164639  A1  7/2006    Horn et al.     
 2006//0167363  A1  7/2006    Bernstein et al.     
 2006//0171503  A1  8/2006    O'Hara et al.     
 2006//0184048  A1  8/2006    Saadat et al.     
 2006//0193352  A1  8/2006    Chong et al.     
 2006//0224053  A1  10/2006    Black et al.     
 2006//0244973  A1  11/2006    Yun et al.     
 2006//0279742  A1  12/2006    Tearney     
 2007//0002435  A1  1/2007    Ye et al.     
 2007//0019208  A1  1/2007    Toida et al.     
 2007//0038040  A1  2/2007    Cense et al.     
 2007//0070496  A1  3/2007    Gweon et al.     
 2007//0076217  A1  4/2007    Baker et al.     
 2007//0086013  A1  4/2007    De Lega et al.     
 2007//0086017  A1  4/2007    Buckland et al.     
 2007//0091317  A1  4/2007    Freischlad et al.     
 2007//0133002  A1  6/2007    Wax et al.     
 2007//0188855  A1  8/2007    Shishkov et al.     
 2007//0203404  A1  8/2007    Zysk et al.     
 2007//0223006  A1  9/2007    Tearney et al.     
 2007//0233056  A1  10/2007    Yun     
 2007//0236700  A1  10/2007    Yun et al.     
 2007//0258094  A1  11/2007    Izatt et al.     
 2007//0291277  A1  12/2007    Everett et al.     
 2008//0002197  A1  1/2008    Sun et al.     
 2008//0007734  A1  1/2008    Park et al.     
 2008//0021275  A1  1/2008    Tearney et al.     
 2008//0049220  A1  2/2008    Izzia et al.     
 2008//0070323  A1  3/2008    Hess et al.     
 2008//0094613  A1  4/2008    de Boer et al.     
 2008//0094637  A1  4/2008    de Boer et al.     
 2008//0097225  A1  4/2008    Tearney et al.     
 2008//0097709  A1  4/2008    de Boer et al.     
 2008//0100837  A1  5/2008    de Boer et al.     
 2008//0139906  A1  6/2008    Bussek et al.     
 2008//0152353  A1  6/2008    de Boer et al.     
 2008//0154090  A1  6/2008    Hashimshony     
 2008//0204762  A1  8/2008    Izatt et al.     
 2008//0218696  A1  9/2008    Mir     
 2008//0228086  A1  9/2008    Ilegbusi     
 2008//0234560  A1  9/2008    Nomoto et al.     
 2008//0265130  A1  10/2008    Colomb et al.     
 2008//0308730  A1  12/2008    Vizi et al.     
 2009//0005691  A1  1/2009    Huang     
 2009//0011948  A1  1/2009    Uniu et al.     
 2009//0044799  A1  2/2009    Qiu     
 2009//0051923  A1  2/2009    Zuluaga et al.     
 2009//0131801  A1  5/2009    Suter et al.     
 2009//0192358  A1  7/2009    Jaffer et al.     
 2009//0196477  A1  8/2009    Cense et al.     
 2009//0209834  A1  8/2009    Fine     
 2009//0273777  A1  11/2009    Yun et al.     
 2009//0290156  A1  11/2009    Popescu et al.     
 2009//0305309  A1  12/2009    Chien et al.     
 2009//0323056  A1  12/2009    Yun et al.     
 2010//0086251  A1  4/2010    Xu et al.     
 2010//0094576  A1  4/2010    de Boer et al.     
 2010//0150467  A1  6/2010    Zhao et al.     
 2010//0261995  A1  10/2010    Mckenna et al.     

 
 FOREIGN PATENT DOCUMENTS 
 
       CN       1550203                         12/2004      
       DE       4105221                         9/1991      
       DE       4309056                         9/1994      
       DE       19542955                         5/1997      
       DE       10351319                         6/2005      
       DE       102005034443                         2/2007      
       EP       0110201                         6/1984      
       EP       0251062                         1/1988      
       EP       0617286                         2/1994      
       EP       0590268                         4/1994      
       EP       0728440                         8/1996      
       EP       0933096                         8/1999      
       EP       1324051                         7/2003      
       EP       1426799                         6/2004      
       FR       2738343                         8/1995      
       GB       1257778                         12/1971      
       GB       2030313                         4/1980      
       GB       2209221                         5/1989      
       GB       2298054                         8/1996      
       JP       6073405                         4/1985      
       JP       20040056907                         2/1992      
       JP       4135550                         5/1992      
       JP       4135551                         5/1992      
       JP       5509417                         11/1993      
       JP       H8-136345                         5/1996      
       JP       10-213485                         8/1998      
       JP       10-267830                         8/1998      
       JP       2259617                         10/1999      
       JP       2000-023978                         1/2000      
       JP       2000-126116                         5/2000      
       JP       2001-4447                         1/2001      
       JP       2001-500026                         1/2001      
       JP       2008-533712                         8/2001      
       JP       2001-264246                         9/2001      
       JP       2002-503134                         1/2002      
       JP       2002-035005                         2/2002      
       JP       2002-113017                         4/2002      
       JP       2002-148185                         5/2002      
       JP       2002214127                         7/2002      
       JP       20030035659                         2/2003      
       JP       2003-516531                         5/2003      
       JP       2002-214128                         2/2004      
       JP       2004-037165                         2/2004      
       JP       2004-057652                         2/2004      
       JP       2004-258144                         9/2004      
       JP       2004-317437                         11/2004      
       JP       2005-241872                         9/2005      
       JP       2006-237359                         9/2006      
       JP       20077271761                         10/2007      
       JP       2003-102672                         4/2012      
       WO       7900841                         10/1979      
       WO       9201966                         2/1992      
       WO       9216865                         10/1992      
       WO       9219930                         11/1992      
       WO       9303672                         3/1993      
       WO       9216865                         10/1993      
       WO       9533971                         12/1995      
       WO       96-02184                         2/1996      
       WO       9628212                         9/1996      
       WO       9732182                         9/1997      
       WO       9800057                         1/1998      
       WO       9801074                         1/1998      
       WO       9814132                         4/1998      
       WO       9835203                         8/1998      
       WO       9838907                         9/1998      
       WO       9846123                         10/1998      
       WO       9848838                         11/1998      
       WO       9848846                         11/1998      
       WO       9905487                         2/1999      
       WO       9944089                         2/1999      
       WO       9944089                         9/1999      
       WO       9957507                         11/1999      
       WO       00-43730                         7/2000      
       WO       0058766                         10/2000      
       WO       0101111                         1/2001      
       WO       0108579                         2/2001      
       WO       0127679                         4/2001      
       WO       0138820                         5/2001      
       WO       2001-42735                         6/2001      
       WO       0142735                         6/2001      
       WO       0236015                         5/2002      
       WO       0237075                         5/2002      
       WO       0238040                         5/2002      
       WO       02-068853                         6/2002      
       WO       0254027                         7/2002      
       WO       02053050                         7/2002      
       WO       02084263                         10/2002      
       WO       03-003903                         1/2003      
       WO       03013624                         2/2003      
       WO       03020119                         3/2003      
       WO       03046495                         6/2003      
       WO       03046636                         6/2003      
       WO       03052478                         6/2003      
       WO       03053226                         7/2003      
       WO       03062802                         7/2003      
       WO       03105678                         12/2003      
       WO       2004034869                         4/2004      
       WO       2004-037068                         5/2004      
       WO       2004057266                         7/2004      
       WO       2004066824                         8/2004      
       WO       2004088361                         10/2004      
       WO       2004-100789                         11/2004      
       WO       2004105598                         12/2004      
       WO       2005000115                         1/2005      
       WO       2005-047813                         5/2005      
       WO       2005047813                         5/2005      
       WO       2005054780                         6/2005      
       WO       2005082225                         9/2005      
       WO       2006004743                         1/2006      
       WO       2006-020605                         2/2006      
       WO       2006014392                         2/2006      
       WO       2006038876                         4/2006      
       WO       2006039091                         4/2006      
       WO       2006-058187                         6/2006      
       WO       2006059109                         6/2006      
       WO       2006124860                         11/2006      
       WO       2006130797                         12/2006      
       WO       2007-030835                         3/2007      
       WO       2007028531                         3/2007      
       WO       2007038787                         4/2007      
       WO       2007083138                         7/2007      
       WO       2007084995                         7/2007      
       WO       2009-033064                         3/2009      

 OTHER PUBLICATIONS
  
  R. Haggitt et al., “Barrett's Esophagus Correlation Between Mucin Histochemistry, Flow Cytometry, and Histological Diagnosis for Predicting Increased Cancer Risk”, Apr. 1988, American Journal of Pathology, vol. 131, No. 1, pp. 53-61.
  R.H. Hardwick et al., (1995) “c-erB-2 Overexpression in the Dysplasia/Carcinoma Sequence of Barrett's Oesophagus,” Journal of Clinical Pathology, vol. 48, No. 2, pp. 129-132.
  W. Polkowski et al, (1998) Clinical Decision making in Barrett's Oesophagus can be supported by Computerized Immunoquantitation and Morphometry of Features Associated with Proliferation and Differentiation, Journal of pathology, vol. 184, pp. 161-168.
  J.R. Turner et al., MN Antigen Expression in Normal Preneoplastic, and Neoplastic Esophagus: A Clinicopathological Study of a New Cancer-Associated Biomarker.: Jun. 1997, Human Pathology, vol. 28, No. 6, pp. 740-744.
  D.J. Bowery et al., (1999) “Patterns of Gastritis in Patients with Gastro-Oesophageal Reflux Disease,”, Gut, vol. 45, pp. 798-803.
  O'Reich et al., (2000) “Expresion of Oestrogen and Progesterone Receptors in Low-Grade Endometrial Stromal Sarcomas,”, British Journal of cancer, vol. 82, No. 5, pp. 1030-1034.
  M.I. Canto et al., (1999) “Vital Staining and Barrett's Esophagus,” Gastrointestinal Endoscopy, vol. 49, No. 3, Part 2, pp. S12-S16.
  S. Jackle et al., (2000) “In Vivo Endoscopic Optical Coherence Tomography of the Human Gastrointestinal Tract-Toward Optical Biopsy,” Encoscopy, vol. 32, No. 10, pp. 743-749.
  E. Montgomery et al., “Reproducibility of the Diagnosis of Dysplasia in Barrett Esophagus: A Reaffirmation,” Apr. 2001, Human Pathology, vol. 32, No. 4, pp. 368-378.
  H. Geddert et al., “Expression of Cyclin B1 in the Metaplasia-Dysphasia-Carcinoma Sequence of Barrett Esophagus,” Jan. 2002, Cancer, vol. 94, No. 1, pp. 212-218.
  P. Pfau et al., (2003) “Criteria for the Diagnosis of Dysphasia by Endoscopic Optical Coherence Tomography,” Gastrointestinal Endoscopy, vol. 58, No. 2, pp. 196-2002.
  R. Kiesslich et al., (2004) “Confocal Laser Endoscopy for Diagnosing Intraepithelial Neoplasias and Colorectal Cancer in Vivo,” Gastroenterology, vol. 127, No. 3, pp. 706-713.
  X. Qi et al., (2004) “Computer Aided Diagnosis of Dysphasia in Barrett's Esophagus Using Endoscopic Optical Coherence Tomography,” SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VIII. Proc. of Conference on., vol. 5316, pp. 33-40.
  Seltzer et al., (1991) “160 nm Continuous Tuning of a MQW Laser in an External Cavity Across the Entire 1.3 μm Communications Window,” Electronics Letters, vol. 27, pp. 95-96.
  Office Action dated Jan. 25, 2010 for U.S. Appl. No. 11/537,048.
  International Search Report dated Jan. 27, 2010 for PCT/US2009/050553.
  International Search Report dated Jan. 27, 2010 for PCT/US2009/047988.
  International Search Report dated Feb. 23, 2010 for U.S. Appl. No. 11/445,131.
  Office Action dated Mar. 18, 2010 of U.S. Appl. No. 11/844,454.
  Office Action dated Apr. 8, 2010 of U.S. Appl. No. 11/414,564.
  Japanese Office Action dated Apr. 13, 2010 for Japanese Patent application No. 2007-515029.
  International Search Report dated May 27, 2010 for PCT/US2009/063420.
  Office Action dated May 28, 2010 for U.S. Appl. No. 12/015,642.
  Office Action dated Jun. 2, 2010 for U.S. Appl. No. 12/112,205.
  Office Action dated Jul. 7, 2010 for U.S. Appl. No. 11/624,277.
  Montag Ethan D., “Parts of the Eye” online textbook for JIMG 774: Vision & Psycophysics, download on Jun. 23, 2010 from http://www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap8/ch8p3.html.
  Office Action dated Jul. 16, 2010 for U.S. Appl. No. 11/445,990.
  Office Action dated Jul. 20, 2010 for U.S. Appl. No. 11/625,135.
  Office Action dated Aug. 5, 2010 for U.S. Appl. No. 11/623,852.
  Chinese office action dated Aug. 4, 2010 for CN 200780005949.9.
  Chinese office action dated Aug. 4, 2010 for CN 200780016266.3.
  Zhang et al., “Full Range Polarization-Sensitive Fourier Domain Optical Coherence Tomography” Optics Express, Nov. 28, 2004, vol. 12, No. 24.
  Office Action dated Aug. 27, 2010 for U.S. Appl. No. 11/569,790.
  Office Action dated Aug. 31, 2010 for U.S. Appl. No. 11/677,278.
  Office Action dated Sep. 3, 2010 for U.S. Appl. No. 12/139,314.
  Yong Zhao et al: “Virtual Data Grid Middleware Services for Data-Intensive Science”, Concurrency and Computation: Practice and Experience, Wiley, London, GB, Jan. 1, 2000, pp. 1-7, pp. 1532-0626.
  Swan et al., “Toward Nanometer-Scale Resolution in Fluorescence Microscopy using Spectral Self-Inteference” IEEE Journal. Selected Topics in Quantum Electronics 9 (2) 2003, pp. 294-300.
  Moiseev et al., “Spectral Self-Interfence Fluorescence Microscopy”, J. Appl. Phys. 96 (9) 2004, pp. 5311-5315.
  Hendrik Verschueren, “Interference Reflection Microscopy in Cell Biology”, J. Cell Sci. 75, 1985, pp. 289-301.
  Park et al., “Diffraction Phase and Fluorescence Microscopy”, Opt. Expr. 14 (18) 2006, pp. 8263-8268.
  Swan et al., “High Resolution Spectral Self-Interference Fluorescence Microscopy”, Proc. SPIE 4621, 2002, pp. 77-85.
  Sanchez et al., “Near-Field Fluorscence Microscopy Based on Two-Photon Excvitation with Metal Tips”, Phys. Rev. Lett. 82 (20) 1999, pp. 4014-4017.
  Wojtkowski, Maciej, Ph.D. “Three-Dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography” Ophthalmology, Oct. 2005, 112(10):1734-1746.
  Vaughan, J.M. et al., “Brillouin Scattering, Density and Elastic Properties of the Lens and Cornea of the Eye”, Nature, vol. 284, Apr. 3, 1980, pp. 489-491.
  Hess, S.T. et al. “Ultra-high Resolution Imaging by Fluorescence Photoactiviation Localization Microscopy” Biophysical Journal vol. 91, Dec. 2006, 4258-4272.
  Fernandez-Suarez, M. et al., “Fluorescent Probes for Super-Resolution Imaging in Living Cells” Nature Reviews Molecular Cell Biology vol. 9, Dec. 2008.
  Extended European Search Report mailed Dec. 14, 2010 for EP 10182301.1.
  S. Hell et al., “Breaking the diffraction resolution limit by stimulated-emission—stimulated-emission-depletion fluorescence microscopy,” Optics Letters. 19:495 (1995) and Ground State Depletion (GSD).
  S. Hell et al. “Ground-State-Depletion fluorescence microscopy—a concept for breaking the diffraction resolution limit,” Applied Physics B. 60:780 (1994)) fluorescence microscopy, photo-activated localization microscopy (PALM).
  E. Betzig et al. “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313:1642 (2006), stochastic optical reconstruction microscopy (STORM).
  M. Rust et al. “Sub-diffraction-limited imaging by stochastic otpical reconstruction microscopy (STORM),” Nature Methods 3:783 (2006), and structured illumination microscopy (SIM).
  B. Bailey et al. “Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation,” Nature 366:44 (1993).
  M. Gustafsson “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” Journal of Microscopy 198:82 (2000).
  M. Gustafsson “Nonlinear structured illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” PNAS 102:13081 (2005)).
  R. Thompson et al. “Precise nanometer localization analysis for individual fluorescent probes,” Biophysical Journal 82:2775 (2002).
  K. Drabe et al. “Localization of Spontaneous Emission in front of a mirror,” Optics Communications 73:91 (1989).
  Swan et al. “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE Quantum Electronics 9:294 (2003).
  C. Joo, et al. “Spectral Domain optical coherence phase and multiphoton microscopy,” Optics Letters 32:623 (2007).
  Virmani et al., “Lesions from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions,” Arterioscler. Thromb. Vase. Bio., 20:1262-75 (2000).
  Gonzalez, R.C. and Wintz, P., “Digital Image Processing” Addison-Wesley Publishing Company, Reading MA, 1987.
  V. Tuchin et al., “Speckle interferometry in the measurements ofbiotissues vibrations,” SPIE, 1647:125 (1992).
  A.A. Bednov et al., “Investigation of Statistical Properties of Lymph Flow Dynamics Using Speckle-Microscopy,” SPIE, 2981: 181-90 (1997).
  Feng et al., “Mesocopic Conductors and Correlations in Laser Speckle Patters” Science, New Series, vol. 251, No. 4994, pp. 633-639 (Feb. 8, 1991).
  Lee et al., “The Unstable Atheroma,” Arteriosclerosis, Thrombosis & Vascular Biology, 17:1859-67 (1997).
  International Search report dated Apr. 29, 2011 for PCT/US2010/051715.
  International Search report dated Sep. 13, 2010 for PCT/US2010/023215.
  Fujimoto et al., “High Resolution in Vivo Intra-Arterial Imaging with Optical Coherence Tomography,” Official Journal of the British Cardiac Society, vol. 82, pp. 128-133 Heart, 1999.
  D. Huang et al., “Optical Coherence Tomography,” Science, vol. 254, pp. 1178-1181, Nov. 1991.
  Tearney et al., “High-Speed Phase-and Group Delay Scanning with a Grating Based Phase Control Delay Line,” Optics Letters, vol. 22, pp. 1811-1813, Dec. 1997.
  Rollins, et al., “In Vivo Video Rate Optical Coherence Tomography,” Optics Express, vol. 3, pp. 219-229, Sep. 1998.
  Saxer, et al., High Speed Fiber-Based Polarization-Sensitive Optical Coherence Tomography of in Vivo Human Skin, Optical Society of America, vol. 25, pp. 1355-1357, Sep. 2000.
  Oscar Eduardo Martinez, “3000 Times Grating Compress or with Positive Group Velocity Dispersion,” IEEE, vol. QE-23, pp. 59-64, Jan. 1987.
  Kulkarni, et al., “Image Enhancement in Optical Coherence Tomography Using Deconvolution,” Electronics Letters, vol. 33, pp. 1365-1367, Jul. 1997.
  Bashkansky, et al., “Signal Processing for Improving Field Cross-Correlation Function in Optical Coherence Tomography,” Optics & Photonics News, vol. 9, pp. 8137-8138, May 1998.
  Yung et al., “Phase-Domain Processing of Optical Coherence Tomography Images,” Journal of Biomedical Optics, vol. 4, pp. 125-136, Jan. 1999.
  Tearney, et al., “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science, vol. 276, Jun. 1997.
  W. Drexler et al., “In Vivo Ultrahigh-Resolution Optical Coherence Tomography,” Optics Letters vol. 24, pp. 1221-1223, Sep. 1999.
  Nicusor V. Iftimia et al., “A Portable, Low Coherence Interferometry Based Instrument for Fine Needle Aspiration Biopsy Guidance,” Accepted to Review of Scientific Instruments, 2005.
  Abbas, G.L., V.W.S. Chan et al., “Local-Oscillator Excess-Noise Suppression for Homodyne and Heterodyne-Detection,” Optics Letters, vol. 8, pp. 419-421, Aug. 1983 issue.
  Agrawal, G.P., “Population Pulsations and Nondegenerate 4-Wave Mixing in Semiconductor-Lasers and Amplifiers,” Journal of the Optical Society of America B-Optical Physics, vol. 5, pp. 147-159, Jan. 1998.
  Andretzky, P. et al., “Optical Coherence Tomography by Spectral Radar: Improvement of Signal-to-Noise Ratio,” The International Society for Optical Engineering, USA, vol. 3915, 2000.
  Ballif, J. et al., “Rapid and Scalable Scans at 21 m/s in optical Low-Coherence Reflectometry,” Optics Letters, vol. 22, pp. 757-759, Jun. 1997.
  Barfuss H. et al., “Modified Optical Frequency-Domain Reflectometry with High Spatial-Resolution for Components of Integrated Optic Systems,” Journal of Lightwave Technology, vol. 7, pp. 3-10, Jan. 1989.
  Beaud, P. et al., “Optical Reflectometry with Micrometer Resolution for the Investigation of Integrated Optical-Devices,” Leee Journal of Quantum Electronics, vol. 25, pp. 755-759, Apr. 1989.
  Bouma, Brett et al., “Power-Efficient Nonreciprocal Interferometer and Linear-Scanning Fiber-Optic Catheter for Optical Coherence Tomography,” Optics Letters, vol. 24, pp. 531-533, Apr. 1999.
  Brinkmeyer, E. et al., “Efficient Algorithm for Non-Equidistant Interpolation of Sampled Data,” Electronics Letters, vol. 28, p. 693, Mar. 1992.
  Brinkmeyer, E. et al., “High-Resolution OCDR in Dispersive Wave-Guides,” Electronics Letters, vol. 26, pp. 413-414, Mar. 1990.
  Chinn, S.R. et al., “Optical Coherence Tomography Using a Frequency-Tunable Optical Source,” Optics Letters, vol. 22, pp. 340-342, Mar. 1997.
  Danielson, B.L. et al., “Absolute Optical Ranging Using Low Coherence Interferometry,” Applied Optics, vol. 30, p. 2975, Jul. 1991.
  Dorrer, C. et al., “Spectral Resolution and Sampling Issues in Fourier-Transform Spectral Interferometry,” Journal of the Optical Society of America B-Optical Physics, vol. 17, pp. 1795-1802, Oct. 2000.
  Dudley, J.M. et al., “Cross-Correlation Frequency Resolved Optical Gating Analysis of Broadband Continuum Generation in Photonic Crystal Fiber: Simulations and Experiments,” Optics Express, vol. 10, p. 1215, Oct. 2002.
  Eickhoff, W. et al., “Optical Frequency-Domain Reflectometry in Single-Mode Fiber,” Applied Physics Letters, vol. 39, pp. 693-695, 1981.
  Fercher, Adolf “Optical Coherence Tomography,” Journal of Biomedical Optics, vol. 1, pp. 157-173, Apr. 1996.
  Ferreira, L.A. et al., “Polarization-Insensitive Fiberoptic White-Light Interferometry,” Optics Communications, vol. 114, pp. 386-392, Feb. 1995.
  Fujii, Yohji, “High-Isolation Polarization-Independent Optical Circulator”, Journal of Lightwave Technology, vol. 9, pp. 1239-1243, Oct. 1991.
  Glance, B., “Polarization Independent Coherent Optical Receiver,” Journal of Lightwave Technology, vol. LT-5, p. 274, Feb. 1987.
  Glombitza, U., “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Wave-Guides,” Journal of Lightwave Technology, vol. 11, pp. 1377-1384, Aug. 1993.
  Golubovic, B. et al., “Optical Frequency-Domain Reflectometry Using Rapid Wavelength Tuning of a Cr4+:Forsterite Laser,” Optics Letters, vol. 11, pp. 1704-1706, Nov. 1997.
  Haberland, U. H. P. et al., “Chirp Optical Coherence Tomography of Layered Scattering Media,” Journal of Biomedical Optics, vol. 3, pp. 259-266, Jul. 1998.
  Hammer, Daniel X. et al., “Spectrally Resolved White-Light Interferometry for Measurement of Ocular Dispersion,” Journal of the Optical Society of America A—Optics Image Science and Vision, vol. 16, pp. 2092-2102, Sep. 1999.
  Harvey, K. C. et al., “External-Cavity Diode-Laser Using a Grazing-Incidence Diffraction Grating,” Optics Letters, vol. 16, pp. 910-912, Jun. 1991.
  Hausler, Gerd et al., “ ‘Coherence Radar’ and ‘Spectral Radar’ New Tools for Dermatological Diagnosis,” Journal of Biomedical Optics, vol. 3, pp. 21-31, Jan. 1998.
  Hee, Michael R. et al., “Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging,” Journal of the Optical Society of America B (Optical Physics), vol. 9, p. 903-908, Jun. 1992.
  Hotate Kazuo et al., “Optical Coherence Domain Reflectometry by Synthesis of Coherence Function,” Journal of Lightwave Technology, vol. 11, pp. 1701-1710, Oct. 1993.
  Inoue, Kyo et al., “Nearly Degenerate 4-Wave-Mixing in a Traveling-Wave Semiconductor-Laser Amplifier,” Applied Physics Letters, vol. 51, pp. 1051-1053, 1987.
  Ivanov, A. P. et al., “New Method for High-Range Resolution Measurements of Light Scattering in Optically Dense Inhomogeneous Media,” Optics Letters, vol. 1, pp. 226-228, Dec. 1977.
  Ivanov, A. P. et al., “Interferometric Study of the Spatial Structure of a Light-Scattering Medium,” Journal of Applied Spectroscopy, vol. 28, pp. 518-525, 1978.
  Kazovsky, L. G. et al., “Heterodyne Detection Through Rain, Snow, and Turbid Media: Effective Receiver Size at Optical Through Millimeter Wavelenghths,” Applied Optics, vol. 22, pp. 706-710, Mar. 1983.
  Kersey, A. D. et al., “Adaptive Polarization Diversity Receiver Configuration for Coherent Optical Fiber Communications,” Electronics Letters, vol. 25, pp. 275-277, Feb. 1989.
  Kohlhaas, Andreas et al., “High-Resolution OCDR for Testing Integrated-Optical Waveguides: Dispersion-Corrupted Experimental Data Corrected by a Numerical Algorithm,” Journal of Lightwave Technology, vol. 9, pp. 1493-1502, Nov. 1991.
  Larkin, Kieran G., “Efficient Nonlinear Algorithm for Envelope Detection in White Light Interferometry,” Journal of the Optical Society of America A—Optics Image Science and Vision, vol. 13, pp. 832-843, Apr. 1996.
  Leitgeb, R. et al., “Spectral measurement of Absorption by Spectroscopic Frequency-Domain Optical Coherence Tomography,” Optics Letters, vol. 25, pp. 820-822, Jun. 2000.
  Lexer, F. et al., “Wavelength-Tuning Interferometry of Intraocular Distances,” Applied Optics,vol. 36, pp. 6548-6553, Sep. 1997.
  Mitsui, Takahisa, “Dynamic Range of Optical Reflectometry with Spectral Interferometry,” Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers, vol.38, pp. 6133-6137, 1999.
  Naganuma, Kazunori et al., “Group-Delay Measurement Using the Fourier-Transform of an Interferometric Cross-Correlation Generated by White Light,” Optics Letters, vol. 15, pp. 393-395, Apr. 1990.
  Okoshi,Takanori, “Polarization-State Control Schemes for Heterodyne or Homodyne Optical Fiber Communications,” Journal of Lightwave Technology, vol. LT-3, pp. 1232-1237, Dec. 1995.
  Passy, R. et al., “Experimental and Theoretical Investigations of Coherent OFDR with Semiconductor-Laser Sources,” Journal of Lightwave Technology, vol. 12, pp. 1622-1630, Sep. 1994.
  Podoleanu, Adrian G., “Unbalanced Versus Balanced Operation in an Optical Coherence Tomography System,” Applied Optics, vol. 39, pp. 173-182, Jan. 2000.
  Price, J. H. V. et al., “Tunable, Femtosecond Pulse Source Operating in the Range 1.06-1.33 mu m Based on an Yb3+-doped Holey Fiber Amplifier,” Journal of the Optical Society of America B—Optical Physics, vol. 19, pp. 1286-1294, Jun. 2002.
  Schmitt, J. M. et al, “Measurement of Optical-Properties of Biological Tissues By Low-Coherence Reflectometry,” Applied Optics, vol. 32, pp. 6032-6042, Oct. 1993.
  Silberberg, Y. et al., “Passive-Mode Locking of a Semiconductor Diode-Laser,” Optics Letters, vol. 9, pp. 507-509, Nov. 1984.
  Smith, L. Montgomery et al., “Absolute Displacement Measurements Using Modulation of the Spectrum of White-Light in a Michelson Interferometer,” Applied Optics, vol. 28, pp. 3339-3342, Aug. 1989.
  Sonnenschein, C. M. et al., “Signal-to-Noise Relationships for Coaxial Systems that Heterodyne Backscatter from Atmosphere,” Applied Optics, vol. 10, pp. 1600-1604, Jul. 1971.
  Sorin, W. V. et al., “Measurement of Rayleigh Backscattering at 1.55 mu m with 32 mu m Spatial Resolution,” IEEE Photonics Technology Letters, vol. 4, pp. 374-376, Apr. 1992.
  Sorin, W. V. et al., “A Simple Intensity Noise-Reduction Technique for Optical Low-Coherence Reflectometry,” IEEE Photonics Technology Letters, vol. 4, pp. 1404-1406, Dec. 1992.
  Swanson, E. A. et al., “High-Speed Optical Coherence Domain Reflectometry,” Optics Letters, vol. 17, pp. 151-153, Jan. 1992.
  Takada, K. et al., “High-Resolution OFDR with Incorporated Fiberoptic Frequency Encoder,” IEEE Photonics Technology Letters, vol. 4, pp. 1069-1072, Sep. 1992.
  Takada, Kazumasa et al., “Narrow-Band light Source with Acoustooptic Tunable Filter for Optical Low-Coherence Reflectometry,” IEEE Photonics Technology Letters, vol. 8, pp. 658-660, May 1996.
  Takada, Kazumasa et al., “New Measurement System for Fault Location in Optical Wave-Guide Devices Based on an Interometric-Technique,” Applied Optics, vol. 26, pp. 1603-1606, May 1987.
  Tateda, Mitsuhiro et al., “Interferometric Method for Chromatic Dispersion Measurement in a Single-Mode Optical Fiber,” IEEE Journal of Quantum Electronics, vol. 17, pp. 404-407, Mar. 1981.
  Toide, M. et al., “Two-Dimensional Coherent Detection Imaging in Multiple Scattering Media Based the Directional Resolution Capability of the Optical Heterodyne Method,” Applied Physics B (Photophysics and Laser Chemistry), vol. B52, pp. 391-394, 1991.
  Trutna, W. R. et al., “Continuously Tuned External-Cavity Semiconductor-Laser,” Journal of Lightwave Technology, vol. 11, pp. 1279-1286, Aug. 1993.
  Uttam, Deepak et al., “Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique,” Journal of Lightwave Technology, vol. 3, pp. 971-977, Oct. 1985.
  Von Der Weid, J. P. et al., “On the Characterization of Optical Fiber Network Components with Optical Frequency Domain Reflectometry,” Journal of Lightwave Technology, vol. 15, pp. 1131-1141, Jul. 1997.
  Wysocki, P.F. et al., “Broad-Spectrum, Wavelength-Swept, Erbium-Doped Fiber Laser at 1.55-Mu-M,” Optics Letters, vol. 15, pp. 879-881, Aug. 1990.
  Youngquist, Robert C. et al., “Optical Coherence-Domain Reflectometry—A New Optical Evaluation Technique,” Optics Letters, vol. 12, pp. 158-160, Mar. 1987.
  Yun, S. H. et al., “Wavelength-Swept Fiber Laser with Frequency Shifted Feedback and Resonantly Swept Intra-Cavity Acoustooptic Tunable Filter,” IEEE Journal of Selected Topicsin Quantum Electronics, vol. 3, pp. 1087-1096, Aug. 1997.
  Yun, S. H. et al., “Interrogation of Fiber Grating Sensor Arrays with a Wavelength-Swept Fiber Laser,” Optics Letters, vol. 23, pp. 843-845, Jun. 1998.
  Yung, K. M., “Phase-Domain Processing of Optical Coherence Tomography Images,” Journal of Biomedical Optics, vol. 4, pp. 125-136, Jan. 1999.
  Zhou, Xiao-Qun et al., “Extended-Range FMCW Reflectometry Using an optical Loop with a Frequency Shifter,” IEEE Photonics Technology Letters, vol. 8, pp. 248-250, Feb. 1996.
  Zorabedian, Paul et al., “Tuning Fidelity of Acoustooptically Controlled External Cavity Semiconductor-Lasers,” Journal of Lightwave Technology, vol. 13, pp. 62-66, Jan. 1995.
  Victor S. Y. Lin et al., “A Porous Silicon-Based Optical Interferometric Biosensor,” Science Magazine, vol. 278, pp. 840-843, Oct. 31, 1997.
  De Boer, Johannes F. et al., “Review of Polarization Sensitive Optical Coherence Tomography and Stokes Vector Determination,” Journal of Biomedical Optics, vol. 7, No. 3, Jul. 2002, pp. 359-371.
  Jiao, Shuliang et al., “Depth-Resolved Two-Dimensional Stokes Vectors of Backscattered Light and Mueller Matrices of Biological Tissue Measured with Optical Coherence Tomography,” Applied Optics, vol. 39, No. 34, Dec. 1, 2000, pp. 6318-6324.
  Park, B. Hyle et al., “In Vivo Burn Depth Determination by High-Speed Fiber-Based Polarization Sensitive Optical Coherence Tomography,” Journal of Biomedical Optics, vol. 6 No. 4, Oct. 2001, pp. 474-479.
  Roth, Jonathan E. et al., “Simplified Method for Polarization-Sensitive Optical Coherence Tomography,” Optics Letters, vol. 26, No. 14, Jul. 15, 2001, pp. 1069-1071.
  Hitzenberger, Christopher K. et al., “Measurement and Imaging of Birefringence and Optic Axis Orientation by Phase Resolved Polarization Sensitive Optical Coherence Tomography,” Optics Express, vol. 9, No. 13, Dec. 17, 2001, pp. 780-790.
  Wang, Xuedong et al., (2001) “Propagation of Polarized Light in Birefringent Turbid Media: Time-Resolved Simulations,” Optical Imaging Laboratory, Biomedical Engineering Program, Texas A&M University, Aug. 27, 2001, pp. 254-259.
  Wong, Brian J.F. et al., “Optical Coherence Tomography of the Rat Cochlea,” Journal of Biomedical Optics, vol. 5, No. 4, Oct. 2000, pp. 367-370.
  Yao, Gang et al., “Propagation of Polarized Light in Turbid Media: Simulated Animation.Sequences,” Optics Express, vol. 7, No. 5, Aug. 28, 2000, pp. 198-203.
  Wang, Xiao-Jun et al., “Characterization of Dentin and Enamel by Use of Optical Coherence Tomography,” Applied Optics, vol. 38, No. 10, Apr. 1, 1999, pp. 2092-2096.
  De Boer, Johannes F. et al., “Determination of the Depth-Resolved Stokes Parameters of Light Backscattered from Turbid Media by use of Polarization-Sensitive Optical Coherence Tomography,” Optics Letters, vol. 24, No. 5, Mar. 1, 1999, pp. 300-302.
  Ducros, Mathieu G. et al., “Polarization Sensitive Optical Coherence Tomography of the Rabbit Eye,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, No. 4, Jul./Aug. 1999, pp. 1159-1167.
  Groner, Warren et al., “Orthogonal Polarization Spectral Imaging: A New Method for Study of the Microcirculation,” Nature Medicine Inc., vol. 5 No. 10, Oct. 1999, pp. 1209-1213.
  De Boer, Johannes F. et al., “Polarization Effects in Optical Coherence Tomography of Various Viological Tissues,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, No. 4, Jul./Aug. 1999, pp. 1200-1204.
  Yao, Gang et al., “Two-Dimensional Depth-Resolved Mueller Matrix Characterization of Biological Tissue by Optical Coherence Tomography,” Optics Letters, Apr. 15, 1999, vol. 24, No. 8, pp. 537-539.
  Lu, Shih-Yau et al., “Homogeneous and Inhomogeneous Jones Matrices,” J. Opt. Soc. Am. A., vol. 11, No. 2, Feb. 1994, pp. 766-773.
  Bickel, S. William et al., “Stokes Vectors, Mueller Matrices, and Polarized Scattered Light,” Am. J. Phys., vol. 53, No. 5, May 1985 pp. 468-478.
  Bréhonnet, F. Le Roy et al., “Optical Media and Target Characterization by Mueller Matrix Decomposition,” J. Phys. D: Appl. Phys. 29, 1996, pp. 34-38.
  Cameron, Brent D. et al., “Measurement and Calculation of the Two-Dimensional Backscattering Mueller Matrix of a Turbid Medium,” Optics Letters, vol. 23, No. 7, Apr. 1, 1998, pp. 485-487.
  De Boer, Johannes F. et al., “Two-Dimensional Birefringence Imaging in Biological Tissue by Polarization-Sensitive Optical Coherence Tomography,” Optics Letters, vol. 22, No. 12, Jun. 15, 1997, pp. 934-936.
  De Boer, Johannes F. et al., “Imaging Thermally Damaged Tissue by Polarization Sensitive Optical Coherence Tomography,” Optics Express, vol. 3, No. 6, Sep. 14, 1998, pp. 212-218.
  Everett, M.J. et al., “Birefringence Characterization of Biological Tissue by Use of Optical Coherence Tomography,” Optics Letters, vol. 23, No. 3, Feb. 1, 1998, pp. 228-230.
  Hee, Michael R. et al., “Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging,” J. Opt. Soc. Am. B., vol. 9, No. 6, Jun. 1992, pp. 903-908.
  Barakat, Richard, “Statistics of the Stokes Parameters,” J. Opt. Soc. Am. B., vol. 4, No. 7, Jul. 1987, pp. 1256-1263.
  Schmitt, J.M. et al., “Cross-Polarized Backscatter in Optical Coherence Tomography of Biological Tissue,” Optics Letters, vol. 23, No. 13, Jul. 1, 1998, pp. 1060-1062.
  Schoenenberger, Klaus et al., “Mapping of Birefringence and Thermal Damage in Tissue by use of Polarization-Sensitive Optical Coherence Tomography,” Applied Optics, vol. 37, No. 25, Sep. 1, 1998, pp. 6026-6036.
  Pierce, Mark C. et al., “Simultaneous Intensity, Birefringence, and Flow Measurements with High-Speed Fiber-Based Optical Coherence Tomography,” Optics Letters, vol. 27, No. 17, Sep. 1, 2002, pp. 1534-1536.
  De Boer, Johannes F. et al., “Review of Polarization Sensitive Optical Coherence Tomography and Stokes Vector Determination,” Journal of Biomedical Optics, Jul. 2002, vol. 7, No. 3, pp. 359-371.
  Fried, Daniel et al., “Imaging Caries Lesions and Lesion Progression with Polarization Sensitive Optical Coherence Tomography,” Journal of Biomedical Optics, vol. 7, No. 4, Oct. 2002, pp. 618-627.
  Jiao, Shuliang et al., “Two-Dimensional Depth-Resolved Mueller Matrix of Biological Tissue Measured with Double-Beam Polarization-Sensitive Optical Coherence Tomography,” Optics Letters, vol. 27, No. 2, Jan. 15, 2002, pp. 101-103.
  Jiao, Shuliang et al., “Jones-Matrix Imaging of Biological Tissues with Quadruple-Channel Optical Coherence Tomography,” Journal of Biomedical Optics, vol. 7, No. 3, Jul. 2002, pp. 350-358.
  Kuranov, R.V. et al., “Complementary Use of Cross-Polarization and Standard OCT for Differential Diagnosis of Pathological Tissues,” Optics Express, vol. 10, No. 15, Jul. 29, 2002, pp. 707-713.
  Cense, Barry et al., “In Vivo Depth-Resolved Birefringence Measurements of the Human Retinal Nerve Fiber Layer by Polarization-Sensitive Optical Coherence Tomography,” Optics Letters, vol. 27, No. 18, Sep. 15, 2002, pp. 1610-1612.
  Ren, Hongwu et al., “Phase-Resolved Functional Optical Coherence Tomography: Simultaneous Imaging of In Situ Tissue Structure, Blood Flow Velocity, Standard Deviation, Birefringence, and Stokes Vectors in Human Skin,” Optics Letters, vol. 27, No. 19, Oct. 1, 2001, pp. 1702-1704.
  Tripathi, Renu et al., “Spectral Shaping for Non-Gaussian Source Spectra in Optical Coherence Tomography,” Optics Letters, vol. 27, No. 6, Mar. 15, 2002, pp. 406-408.
  Yasuno, Y. et al., “Birefringence Imaging of Human Skin by Polarization-Sensitive Spectral Interferometric Optical Coherence Tomography,” Optics Letters, vol. 27, No. 20, Oct. 15, 2002 pp. 1803-1805.
  White, Brian R. et al., “In Vivo Dynamic Human Retinal Blood Flow Imaging Using Ultra-High-Speed Spectral Domain Optical Doppler Tomography,” Optics Express, vol. 11, No. 25, Dec. 15, 2003, pp. 3490-3497.
  De Boer, Johannes F. et al., “Improved Signal-to-Noise Ratio in Spectral-Domain Compared with Time-Domain Optical Coherence Tomography,” Optics Letters, vol. 28, No. 21, Nov. 1, 2003, pp. 2067-2069.
  Jiao, Shuliang et al., “Optical-Fiber-Based Mueller Optical Coherence Tomography,” Optics Letters, vol. 28, No. 4, Jul. 15, 2003, pp. 1206-1208.
  Jiao, Shuliang et al., “Contrast Mechanisms in Polarization-Sensitive Mueller-Matrix Optical Coherence Tomography and Application in Burn Imaging,” Applied Optics, vol. 42, No. 25, Sep. 1, 2003, pp. 5191-5197.
  Moreau, Julien et al., “Full-Field Birefringence Imaging by Thermal-Light Polarization-Sensitive Optical Coherence Tomography. I. Theory,” Applied Optics, vol. 42, No. 19, Jul. 1, 2003, pp. 3800-3810.
  Moreau, Julien et al., “Full-Field Birefringence Imaging by Thermal-Light Polarization-Sensitive Optical Coherence Tomography. II. Instrument and Results,” Applied Optics, vol. 42, No. 19, Jul. 1, 2003, pp. 3811-3818.
  Morgan, Stephen P. et al., “Surface-Reflection Elimination in Polarization Imaging of Superficial Tissue,” Optics Letters, vol. 28, No. 2, Jan. 15, 2003, pp. 114-116.
  Oh, Jung-Taek et al., “Polarization-Sensitive Optical Coherence Tomography for Photoelasticity Testing of Glass/Epoxy Composites,” Optics Express, vol. 11, Nov. 14, Jul. 14, 2003, pp. 1669-1676.
  Park, B. Hyle et al., “Real-Time Multi-Functional Optical Coherence Tomography,” Optics Express, vol. 11, No. 7, Apr. 7, 2003, 782-793.
  Shribak, Michael et al., “Techniques for Fast and Sensitive Measurements of Two-Dimensional Birefringence Distributions,” Applied Optics, vol. 42, No. 16, Jun. 1, 2003, pp. 3009-3017.
  Somervell, A.R.D. et al., “Direct Measurement of Fringe Amplitude and Phase Using a Heterodyne Interferometer Operating in Broadband Light,” Elsevier, Optics Communications, Oct. 2003.
  Stifter, D. et al., “Polarisation-Sensitive Optical Coherence Tomography for Material Characterisation and Strain-Field Mapping,” Applied Physics A 76, Materials Science & Processing, Jan. 2003, pp. 947-951.
  Davé, Digant P. et al., “Polarization-Maintaining Fiber-Based Optical Low-Coherence Reflectometer for Characterization and Ranging of Birefringence,” Optics Letters, vol. 28, No. 19, Oct. 1, 2003, pp. 1775-1777.
  Yang, Ying et al., “Observations of Birefringence in Tissues from Optic-Fibre-Based Optical Coherence Tomography,” Measurement Science and Technology, Nov. 2002, pp. 41-46.
  Yun, S.H. et al., “High-Speed Optical Frequency-Domain Imaging,” Optics Express, vol. 11, No. 22, Nov. 3, 2003, pp. 2953-2963.
  Yun, S.H. et al., “High-Speed Spectral-Domain Optical Coherence Tomography at 1.3 μm Wavelength,” Optics Express, vol. 11, No. 26, Dec. 29, 2003, pp. 3598-3604.
  Zhang, Jun et al., “Determination of Birefringence and Absolute Optic Axis Orientation Using Polarization-Sensitive Optical Coherence Tomography with PM Fibers,” Optics Express, vol. 11, No. 24, Dec. 1, 2003, pp. 3262-3270.
  Pircher, Michael et al., “Three Dimensional Polarization Sensitive OCT of Human Skin in Vivo,” 2004, Optical Society of America.
  Götzinger, Erich et al., “Measurement and Imaging of Birefringent Properties of the Human Cornea with Phase-Resolved, Polarization-Sensitive Optical Coherence Tomography,” Journal of Biomedical Optics, vol. 9, No. 1, Jan./Feb. 2004, pp. 94-102.
  Guo, Shuguang et al., “Depth-Resolved Birefringence and Differential Optical Axis Orientation Measurements with Finer-based Polarization-Sensitive Optical Coherence Tomography,” Optics Letters, vol. 29, No. 17, Sep. 1, 2004, pp. 2025-2027.
  Huang, Xiang-Run et al.,“Variation of Peripapillary Retinal Nerve Fiber Layer Birefringence in Normal Human Subjects,” Investigative Ophthalmology & Visual Science, vol. 45, No. 9, Sep. 2004, pp. 3073-3080.
  Matcher, Stephen J. et al., “The Collagen Structure of Bovine Intervertebral Disc Studied Using Polarization-Sensitive Optical Coherence Tomography,” Physics in Medicine and Biology, 2004, pp. 1295-1306.
  Nassif, Nader et al., “In Vivo Human Retinal Imaging by Ultrahigh-Speed Spectral Domain Optical Coherence Tomography,” Optics Letters, vol. 29, No. 5, Mar. 1, 2004, pp. 480-482.
  Nassif, N.A. et al., “In Vivo High-Resolution Video-Rate Spectral-Domain Optical Coherence Tomography of the Human Retina and Optic Nerve,” Optics Express, vol. 12, No. 3, Feb. 9, 2004, pp. 367-376.
  Park, B. Hyle et al., “Comment on Optical-Fiber-Based Mueller Optical Coherence Tomography,” Optics Letters, vol. 29, No. 24, Dec. 15, 2004, pp. 2873-2874.
  Park, B. Hyle et al., “Jones Matrix Analysis for a Polarization-Sensitive Optical Coherence Tomography System Using Fiber-Optic Components,” Optics Letters, vol. 29, No. 21, Nov. 1, 2004, pp. 2512-2514.
  Pierce, Mark C. et al., “Collagen Denaturation can be Quantified in Burned Human Skin Using Polarization-Sensitive Optical CoherenceTomography,” Elsevier, Burns, 2004, pp. 511-517.
  Pierce, Mark C. et al., “Advances in Optical Coherence Tomography Imaging for Dermatology,” The Society for Investigative Dermatology, Inc. 2004, pp. 458-463.
  Pierce, Mark C. et al., “Birefringence Measurements in Human Skin Using Polarization-Sensitive Optical Coherence Tomography,” Journal of Biomedical Optics, vol. 9, No. 2, Mar./Apr. 2004, pp. 287-291.
  Cense, Barry et al., “In Vivo Birefringence and Thickness Measurements of the Human Retinal Nerve Fiber Layer Using Polarization-Sensitive Optical Coherence Tomography,” Journal of Biomedical Optics, vol. 9, No. 1, Jan./Feb. 2004, pp. 121-125.
  Pircher, Michael et al., “Imaging of Polarization Properties of Human Retina in Vivo with Phase Resolved Transveral PS-OCT,” Optics Express, vol. 12, No. 24, Nov. 29, 2004, pp. 5940-5951.
  Pircher, Michael et al., “Transversal Phase Resolved Polarization Sensitive Optical Coherence Tomography,” Physics in Medicine & Biology, 2004, pp. 1257-1263.
  Srinivas, Shyam M. et al., “Determination of Burn Depth by Polarization-Sensitive Optical Coherence Tomography,” Journal of Biomedical Optics, vol. 9, No. 1, Jan./Feb. 2004, pp. 207-212.
  Strasswimmer, John et al., “Polarization-Sensitive Optical Coherence Tomography of Invasive Basal Cell Carcinoma,” Journal of Biomedical Optics, vol. 9, No. 2, Mar./Apr. 2004, pp. 292-298.
  Todorovid, Milos et al., “Determination of Local Polarization Properties of Biological Samples in the Presence of Diattentuation by use of Mueller Optical Coherence Tomography,” Optics Letters, vol. 29, No. 20, Oct. 15, 2004, pp. 2402-2404.
  Yasuno, Yoshiaki et al., “Polarization-Sensitive Complex Fourier Domain Optical Coherence Tomography for Jones Matrix Imaging of Biological Samples,” Applied Physics Letters, vol. 85, No. 15, Oct. 11, 2004, pp. 3023-3025.
  Acioli, L. H., M. Ulman, et al. (1991). “Femtosecond Temporal Encoding in Barium-Titanate.” Optics Letters 16(24): 1984-1986.
  Aigouy, L., A. Lahrech, et al. (1999). “Polarization effects in apertureless scanning near-field optical microscopy: an experimental study.” Optics Letters 24(4): 187-189.
  Akiba, M., K. P. Chan, et al. (2003). “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras.” Optics Letters 28(10): 816-818.
  Akkin, T., D. P. Dave, et al. (2004). “Detection of neural activity using phase-sensitive optical low-coherence reflectometry.” Optics Express 12(11): 2377-2386.
  Akkin, T., D. P. Dave, et al. (2003). “Surface analysis using phase sensitive optical low coherence reflectometry.” Lasers in Surgery and Medicine: 4-4.
  Akkin, T., D. P. Dave, et al. (2003). “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity.” Lasers in Surgery and Medicine 33(4): 219-225.
  Akkin, T., T. E. Milner, et al. (2002). “Phase-sensitive measurement of birefringence change as an indication of neural functionality and diseases.” Lasers in Surgery and Medicine: 6-6.
  Andretzky, P., Lindner, M.W., Herrmann, J.M., Schultz, A., Konzog, M., Kiesewetter, F., Haeusler, G. (1999). “Optical coherence tomography by ‘spectral radar’: Dynamic range estimation and in vivo measurements of skin.” Proceedings of SPIE—The International Society for Optical Engineering 3567: pp. 78-87.
  Antcliff, R. J., T. J. ffytche, et al. (2000). “Optical coherence tomography of melanocytoma.” American Journal of Ophthalmology 130(6): 845-7.
  Antcliff, R. J.,.M. R. Stanford, et al. (2000). “Comparison between optical coherence tomography and fundus fluorescein angiography for the detection of cystoid macular edema in patients with uveitis.” Ophthalmology 107(3): 593-9.
  Anvari, B., T. E. Milner, et al. (1995). “Selective Cooling of Biological Tissues—Application for Thermally Mediated Therapeutic Procedures.” Physics in Medicine and Biology 40(2): 241-252.
  Anvari, B., B. S. Tanenbaum, et al. (1995). “A Theoretical-Study of the Thermal Response of Skin to Cryogen Spray Cooling and Pulsed-Laser Irradiation—Implications for Treatment of Port-Wine Stain Birthmarks.” Physics in Medicine and Biology 40(9): 1451-1465.
  Arend, O., M. Ruffer, et al. (2000). “Macular circulation in patients with diabetes mellitus with and without arterial hypertension.” British Journal of Ophthalmology 84(12): 1392-1396.
  Arimoto, H. and Y. Ohtsuka (1997). “Measurements of the complex degree of spectral coherence by use of a wave-front-folded interferometer.” Optics Letters 22(13): 958-960.
  Azzolini, C., F. Patelli, et al. (2001). “Correlation between optical coherence tomography data and biomicroscopic interpretation of idiopathic macular hole.” American Journal of Ophthalmology 132(3): 348-55.
  Baba, T., K. Ohno-Matsui, et al. (2002). “Optical coherence tomography of choroidal neovascularization in high myopia.” Acta Ophthalmoloqica Scandinavica 80(1): 82-7.
  Bail, M. A. H., Gerd; Herrmann, Juergen M.; Lindner, Michael W.; Ringler, R. (1996). “Optical coherence tomography with the “spectral radar”: fast optical analysis in volume scatterers by short-coherence interferometry.” Proc. SPIE, 2925: p. 298-303.
  Baney, D. M. and W. V. Sorin (1993). “Extended-Range Optical Low-Coherence Reflectometry Using a Recirculating Delay Technique.” Ieee Photonics Technology Letters 5(9): 1109-1112.
  Baney, D. M., B. Szafraniec, et al. (2002). “Coherent optical spectrum analyzer.” Ieee Photonics Technology Letters 14(3): 355-357.
  Barakat, R. (1981). “Bilinear Constraints between Elements of the 4by4 Mueller-Jones Transfer—Matrix of Polarization Theory.” Optics Communications 38(3): 159-161.
  Barakat, R. (1993). “Analytic Proofs of the Arago-Fresnel Laws for the Interference of Polarized-Light.” Journal of the Optical Society of America a—Optics Image Science and Vision 10(1): 180-185.
  Barbastathis, G. and D. J. Brady (1999). “Multidimensional tomographic imaging using volume holography.” Proceedings of the Ieee 87(12):2098-2120.
  Bardal, S., A. Kamal, et al. (1992). “Photoinduced Birefringence in Optical Fibers—a Comparative-Study of Low-Birefringence and High-Birefringence Fibers.” Optics Letters 17(6): 411-413.
  Barsky, S. H., S. Rosen, et al. (1980). “Nature and Evolution of Port Wine Stains—Computer-Assisted Study.” Journal of Investigative Dermatology 74(3): 154-157.
  Barton, J. K., J. A. Izatt, et al. (1999). “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images.” Dermatology 198(4): 355-361.
  Barton, J. K., A. Rollins, et al. (2001). “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling.” Physics in Medicine and Biology 46.
  Barton, J. K., A. J. Welch, et al. (1998). “Investigating pulsed dye laser-blood vessel interaction with color Doppler optical coherence tomography.” Optics Express 3.
  Bashkansky, M., M. D. Duncan, et al. (1997). “Subsurface defect detection in ceramics by high-speed high-resolution optical coherent tomography.” Optics Letters 22 (1): 61-63.
  Bashkansky, M. and J. Reintjes (2000). “Statistics and reduction of speckle in optical coherencetomography.” Optics Letters 25(8): 545-547.
  Baumgartner, A., S. Dichtl, et al. (2000). “Polarization-sensitive optical coherence tomography of dental structures.” Caries Research 34(1): 59-69.
  Baumgartner, A., C. K. Hitzenberger, et al. (2000). “Resolution-improved dual-beam and standard optical coherence tomography: a comparison.” Graefes Archive for Clinical and Experimental Ophthalmology 238(5): 385-392.
  Baumgartner, A., C. K. Hitzenberger, et al. (1998). “Signal and resolution enhancements in dual beam optical coherence tomography of the human eye.” Journal of Biomedical Optics 3(1): 45-54.
  Beaurepaire, E., P. Gleyzes, et at. (1998). Optical coherence microscopy for the in-depth study of biological structures: System based on a parallel detection scheme, Proceedings of SPIE—The International Society for Optical Engineering.
  Beaurepaire, E., L. Moreaux, et al. (1999). “Combined scanning optical coherence and two-photon-excited fluorescence microscopy.” Optics Letters 24(14): 969-971.
  Bechara, F. G., T. Gambichler, et al. (2004). “Histomorphologic correlation with routine histology and optical coherence tomography.” Skin Research and Technology 10 (3): 169-173.
  Bechmann, M., M. J. Thiel, et al. (2000). “Central corneal thickness determined with optical coherence tomography in various types of glaucoma. [see comments].” British Journal of Ophthalmology 84(11): 1233-7.
  Bek, T. and M. Kandi (2000). “Quantitative anomaloscopy and optical coherence tomography scanning in central serous chorioretinopathy.” Acta Ophthalmologica Scandinavica 78(6): 632-7.
  Benoit, A. M., K. Naoun, et al. (2001). “Linear dichroism of the retinal nerve fiber layer expressed with Mueller matrices.” Applied Optics 40(4): 565-569.
  Bicout, D., C. Brosseau, et al. (1994). “Depolarization of Multiply Scattered Waves by Spherical Diffusers—Influence of the Size Parameter.” Physical Review E 49(2): 1767-1770.
  Blanchot, L., M. Lebec, et al. (1997). Low-coherence in depth microscopy for biological tissues imaging: Design of a real time control system. Proceedings of SPIe—The International Society for Optical Engineering.
  Blumenthal, E. Z. and R. N. Weinreb (2001). “Assessment of the retinal nerve fiber layer in clinical trials of glaucoma neuroprotection. [Review] [36 refs].” Survey of Ophthalmology 45(Suppl 3): S305-12; discussion S332-4.
  Blumenthal, E. Z., J. M. Williams, et al. (2000). “Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography.” Ophthalmology 107(12): 2278-82.
  Boppart, S. A., B. E. Bouma, et al. (1996). “Imaging developing neural morphology using optical coherence tomography.” Journal of Neuroscience Methods 70.
  Boppart, S. A., B. E. Bouma, et al. (1997). “Forward-imaging instruments for optical coherence tomography.” Optics Letters 22.
  Boppart, S. A., B. E. Bouma, et al. (1998). “Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography.” Radiology 208: 81-86.
  Boppart, S. A., J. Herrmann, et al. (1999). “High-resolution optical coherence tomography-guided laser ablation of surgical tissue.” Journal of Surgical Research 82(2): 275-84.
  Bouma, B. E. and J. G. Fujimoto (1996). “Compact Kerr-lens mode-locked resonators.” Optics Letters 21. 134-136.
  Bouma, B. E., L. E. Nelson, et al. (1998). “Optical coherence tomographic imaging of human tissue at 1.55 mu m and 1.81 mu m using Er and Tm-doped fiber sources.” Journal of Biomedical Optics 3. 76-79.
  Bouma, B. E., M. Ramaswamy-Paye, et al. (1997). “Compact resonator designs for mode-locked solid-state lasers.” Applied Physics B (Lasers and Optics) B65. 213-220.
  Bouma, B. E. and G. J. Tearney (2002). “Clinical imaging with optical coherence tomography.” Academic Radiology 9(8): 942-953.
  Bouma, B. E., G. J. Tearney, et al. (1996). “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography.” Optics Letters 21(22): 1839.
  Bouma, B. E., G. J. Tearney, et al. (2000). “High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography.” Gastrointestinal Endoscopy 51(4): 467-474.
  Bouma, B. E., G. J. Tearney, et al. (2003). “Evaluation of intracoronary stenting by intravascular optical coherence tomography.” Heart 89(3): 317-320.
  Bourquin, S., V. Monterosso, et al. (2000). “Video-rate optical low-coherence reflectometry based on a linear smart detector array.” Optics Letters 25(2): 102-104.
  Bourquin, S., P. Seitz, et al. (2001). “Optical coherence topography based on a two-dimensional smart detector array.” Optics Letters 26(8): 512-514.
  Bouzid, A., M. A. G. Abushagur, et al. (1995). “Fiber-optic four-detector polarimeter.” Optics Communications 118(3-4): 329-334.
  Bowd, C., R. N. Weinreb, et al. (2000). “The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography.” Archives of Ophthalmology 118(1): 22-6.
  Bowd, C., L. M. Zangwill, et al. (2001). “Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function.” Investigative Ophthalmology & Visual Science 42(9): 1993-2003.
  Bowd, C., L. M. Zangwill, et al. (2002). “Imaging of the optic disc and retinal nerve fiber layer: the effects of age, optic disc area, refractive error, and gender.” Journal of the Optical Society of America, A, Optics, Image Science, & Vision 19(1): 197-207.
  Brand, S., J. M. Poneros, et al. (2000). “Optical coherence tomography in the gastrointestinal tract.” Endoscopy 32(10): 796-803.
  Brezinski, M. E. and J. G. Fujimoto (1999). “Optical coherence tomography: high-resolution imaging in nontransparent tissue.” IEEE Journal of Selected Topics in Quantum Electronics 5(4): 1185-1192.
  Brezinski, M. E., G. J. Tearney, et al. (1996). “Imaging of coronary artery microstructure (in vitro) with optical coherence tomography.” American Journal of Cardiology 77 (1): 92-93.
  Brezinski, M. E., G. J. Tearney, et al. (1996). “Optical coherence tomography for optical biopsy—Properties and demonstration of vascular pathology.” Circulation 93(6): 1206-1213.
  Brezinski, M. E., G. J. Tearney, et al. (1997). “Assessing atherosclerotic plaque morphology: Comparison of optical coherence tomography and high frequency intravascular ultrasound.” Heart 77(5): 397-403.
  Brink, H. B. K. and G. J. Vanblokland (1988). “Birefringence of the Human Foveal Area Assessed Invivo with Mueller-Matrix Ellipsometry.” Journal of the Optical Society of America a—Optics Image Science and Vision 5(1): 49-57.
  Brosseau, C. and D. Bicout (1994). “Entropy Production in Multiple-Scattering of Light by a Spatially Random Medium.” Physical Review E 50(6): 4997-5005.
  Burgoyne, C. F., D. E. Mercante, et al. (2002). “Change detection in regional and volumetric disc parameters using longitudinal confocal scanning laser tomography.” Ophthalmology 109(3): 455-66.
  Candido, R. and T. J. Allen (2002). “Haemodynamics in microvascular complications in type 1 diabetes.” Diabetes—Metabolism Research and Reviews 18(4): 286-304.
  Cense, B., T. C. Chen, et al. (2004). “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography.” Investigative Ophthalmology & Visual Science 45(8): 2606-2612.
  Cense, B., N. Nassif, et al. (2004). “Ultrahigh-Resolution High-Speed Retinal Imaging Using Spectral-Domain Optical Coherence Tomography.” Optics Express 12(11): 2435-2447.
  Chance, B., J. S. Leigh, et al. (1988). “Comparison of Time-Resolved and Time-Unresolved Measurements of Deoxyhemoglobin in Brain.” Proceedings of the National Academy of Sciences of the United States of America 85(14): 4971-4975.
  Chang, E. P., D. A. Keedy, et al. (1974). “Ultrastructures of Rabbit Corneal Stroma—Mapping of Optical and Morphological Anisotropies.” Biochimica Et Biophysica Acta 343(3): 615-626.
  Chartier, T., A. Hideur, et al. (2001). “Measurement of the elliptical birefringence of single-mode optical fibers.” Applied Optics 40(30): 5343-5353.
  Chauhan, B. C., J. W. Blanchard, et al. (2000). “Technique for Detecting Serial Topographic Changes in the Optic Disc and Peripapillary Retina Using Scanning Laser Tomograph.” Invest Ophthalmol Vis Sci 41: 775-782.
  Chen, Z. P., T. E. Milner, et al. (1997). “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media.” Optics Letters 22(1): 64-66.
  Chen, Z. P., T. E. Milner, et al. (1997). “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography.” Optics Letters 22(14): 1119-1121.
  Chen, Z. P., Y. H. Zhao, et al. (1999). “Optical Doppler tomography.” Ieee Journal of Selected Topics in Quantum Electronics 5(4): 1134-1142.
  Cheong, W. F., S. A. Prahl, et al. (1990). “A Review of the Optical-Properties of Biological Tissues.” Ieee Journal of Quantum Electronics 26(12): 2166-2185.
  Chernikov, S. V., Y. Zhu, et al. (1997). “Supercontinuum self-Q-switched ytterbium fiber laser.” Optics Letters 22(5): 298-300.
  Cho, S. H., B. E. Bouma, et al. (1999). “Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:AI/sub 2/0/sub 3/ laser with a multiple-pass cavity.” Optics Letters 24(6): 417-419.
  Choma, M. A., M. V. Sarunic, et al. (2003). “Sensitivity advantage of swept source and Fourier domain optical coherence tomography.” Optics Express 11(18): 2183-2189.
  Choma, M. A., C. H. Yang, et al. (2003). “Instantaneous quadrature low-coherence interferometry with 3 x 3 fiber-optic couplers.” Optics Letters 28(22): 2162-2164.
  Choplin, N. T. and D. C. Lundy (2001). “The sensitivity and specificity of scanning laser polarimetry in the detection of glaucoma in a clinical setting.” Ophthalmology 108 (5): 899-904.
  Christens Barry, W. A., W. J. Green, et al. (1996). “Spatial mapping of polarized light transmission in the central rabbit cornea.” Experimental Eye Research 62(6): 651-662.
  Chvapil, M., D. P. Speer, et al. (1984). “Identification of the depth of burn injury by collagen stainability.” Plastic & Reconstructive Surgery 73(3): 438-41.
  Cioffi, G. A. (2001). “Three common assumptions about ocular blood flow and glaucoma.” Survey of Ophthalmology 45: S325-S331.
  Coleman, A. L. (1999). “Glaucoma.” Lancet 354(9192): 1803-10.
  Collaborative Normal-Tension Glaucoma Study Group (1998). “Comparison of Glaucomatous Progression Between Untreated Patients With Normal Tension Glaucoma and Patients with Therapeutically Reduced Intraocular Pressures.” Am J Ophthalmol 126: 487-97.
  Collaborative Normal-Tension Study Group (1998). “The effectiveness of intraocular Glaucoma pressure reduction in the treatment of normal-tension glaucoma.” Am J Ophthalmol 126: 498-505.
  Collaborative Normal-Tension Glaucoma Study Group (2001). “Natural History of Normal-TensionGlaucoma.” Ophthalmology 108: 247-253.
  Colston, B. W., M. J. Everett, et al. (1998). “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography.” Applied Optics 37(16): 3582-3585.
  Colston, B. W., U. S. Sathyam, et al. (1998). “Dental OCT.” Optics Express 3(6): 230-238.
  Congdon, N. G., D. S. Friedman, et al. (2003). “Important causes of visual impairment in the world today.” JAMA—Journal of the American Medical Association 290(15): 2057-2060.
  Cregan, R. F., B. J. Mangan, et al. (1999). “Single-mode photonic band gap guidance of light in air.” Science 285(5433): 1537-1539.
  DalMolin, M., A. Galtarossa, et al. (1997). “Experimental investigation of linear polarization in high-birefringence single-mode fibers.” Applied Optics 36(12): 2526-2528.
  Danielson, B. L. and C. D. Whittenberg (1987). “Guided-Wave Reflectometry with MicrometerResolution.” Applied Optics 26(14): 2836-2842.
  Dave, D. P. and T. E. Milner (2000). “Doppler-angle measurement in highly scattering media.” Optics Letters 25(20): 1523-1525.
  de Boer, J. F., T. E. Milner, et al. (1998). Two dimensional birefringence imaging in biological tissue using phase and polarization sensitive optical coherence tomography. Trends in Optics and Photonics (TOPS): Advances in Optical Imaging and Photon Migration, Orlando, USA, Optical Society of America, Washington, DC 1998.
  de Boer, J. F., C. E. Saxer, et al. (2001). “Stable carrier generation and phase-resolved digital data processing in optical coherence tomography.” Applied Optics 40(31): 5787-5790.
  Degroot, P. and L. Deck (1993). “3-Dimensional Imaging by Sub-Nyquist Sampling of White-Light Interferograms.” Optics Letters 18(17): 1462-1464.
  Denk, W., J. H. Strickler, et al. (1990). “2-Photon Laser Scanning Fluorescence Microscopy.” Science 248(4951): 73-76.
  Descour, M. R., A. H. O. Karkkainen, et al. (2002). “Toward the development of miniaturized Imaging systems for detection of pre-cancer.” Ieee Journal of Quantum Electronics 38(2): 122-130.
  Dettwiller, L. (1997). “Polarization state interference: A general investigation.” Pure and Applied Optics 6(1): 41-53.
  DiCarlo, C. D., W. P. Roach, et al. (1999). “Comparison of optical coherence tomography imaging of cataracts with histopathology.” Journal of Biomedical Optics 4.
  Ding, Z., Y. Zhao, et al. (2002). “Real-time phase-resolved optical coherence tomography and optical Doppler tomography.” Optics Express 10(5): 236-245.
  Dobrin, P. B. (1996). “Effect of histologic preparation on the cross-sectional area of arterial rings.” Journal of Surgical Research 61(2): 413-5.
  Donohue, D. J., B. J. Stoyanov, et al. (1995). “Numerical Modeling of the Corneas Lamellar Structure and Birefringence Properties.” Journal of the Optical Society of America a—Optics Image Science and Vision 12(7): 1425-1438.
  Doornbos, R. M. P., R. Lang, et al. (1999). “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy.” Physics in Medicine and Biology 44(4): 967-981.
  Drexler, W., A. Baumgartner, et al. (1997). “Biometric investigation of changes in the anterior eye segment during accommodation.” Vision Research 37(19): 2789-2800.
  Drexler, W., A. Baumgartner, et al. (1997). “Submicrometer precision biometry of the anterior segment of the human eye.” Investigative Ophthalmology & Visual Science 38(7): 1304-1313.
  Drexler, W., A. Baumgartner, et al. (1998). “Dual beam optical coherence tomography: signal identification for ophthalmologic diagnosis.” Journal of Biomedical Optics 3 (1): 55-65.
  Drexler, W., O. Findl, et al. (1998). “Partial coherence interferometry: A novel approach to biometry in cataract surgery.” American Journal of Ophthalmology 126(4): 524-534.
  Drexler, W., O. Findl, et al. (1997). “Clinical feasibility of dual beam optical coherence topography and tomography for ophthalmologic diagnosis.” Investigative Ophthalmology & Visual Science 38(4): 1038-1038.
  Drexler, W., C. K. Hitzenberger, et al. (1998). “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry.” Experimental Eye Research 66(1): 25-33.
  Drexler, W., C. K. Hitzenberger, et al. (1996). “(Sub)micrometer precision biometry of the human eye by optical coherence tomography and topography.” Investigative Ophthalmology & Visual Science 37(3): 4374-4374.
  Drexler, W., C. K. Hitzenberger, et al. (1995). “Measurement of the Thickness of Fundus Layers by Partial Coherence Tomography.” Optical Engineering 34(3): 701-710.
  Drexler, W., U. Morgner, et al. (2001). “Ultrahigh-resolution ophthalmic optical coherence tomography.” Nature Medicine 7(4): 502-507.
  Drexler, W., U. Morgner, et al. (2001). “Ultrahigh-resolution ophthalmic optical coherence tomography. [erratum appears in Nat Med May 2001;7(5):636.].” Nature Medicine 7(4): 502-7.
  Drexler, W., H. Sattmann, et al. (2003). “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography.” Archives of Ophthalmology 121(5): 695-706.
  Drexler, W., D. Stamper, et al. (2001). “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis.” Journal of Rheumatology 28(6): 1311-8.
  Droog, E. J., W. Steenbergen, et al. (2001). “Measurement of depth of burns by laser Doppler perfusion imaging.” Burns 27(6): 561-8.
  Dubois, A., K. Grieve, et al. (2004). “Ultrahigh-resolution full-field optical coherence tomography.” Applied Optics 43(14): 2874-2883.
  Dubois, A., L. Vabre, et al. (2002). “High-resolution full-field optical coherence tomography with a Linnik microscope.” Applied Optics 41(4): 805-812.
  Ducros, M., M. Laubscher, et al. (2002). “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array.” Optics Communications 202(1-3): 29-35.
  Ducros, M. G., J. D. Marsack, et al. (2001). “Primate retina imaging with polarization-sensitive optical coherence tomography.” Journal of the Optical Society of America a—Optics Image Science and Vision 18(12): 2945-2956.
  Duncan, A., J. H. Meek, et al. (1995). “Optical Pathlength Measurements on Adult Head, Calf and Forearm and the Head of the Newborn-Infant Using Phase-Resolved Optical Spectroscopy.” Physics in Medicine and Biology 40(2): 295-304.
  Eigensee, A., G. Haeusler, et al. (1996). “New method of short-coherence interferometry in human skin (in vivo) and in solid volume scatterers.” Proceedings of SPIE—The International Society for Optical Engineering 2925: 169-178.
  Eisenbeiss, W., J. Marotz, et al. (1999). “Reflection-optical multispectral imaging method for objective determination of burn depth.” Burns 25(8): 697-704.
  Elbaum, M., M. King, et al. (1972). “Wavelength-Diversity Technique for Reduction of Speckle Size.” Journal of the Optical Society of America 62(5): 732-&.
  Ervin, J. C., H. G. Lemij, et al. (2002). “Clinician change detection viewing longitudinal stereophotographs compared to confocal scanning laser tomography in the LSU Experimental Glaucoma (LEG) Study.” Ophthalmology 109(3): 467-81.
  Essenpreis, M., C. E. Elwell, et al. (1993). “Spectral Dependence of Temporal Point Spread Functions in Human Tissues.” Applied Optics 32(4): 418-425.
  Eun, H. C. (1995). “Evaluation of skin blood flow by laser Doppler flowmetry. [Review] [151 refs].” Clinics in Dermatology 13(4): 337-47.
  Evans, J. A., J. M. Poneros, et al. (2004). “Application of a histopathologic scoring system to optical coherence tomography (OCT) images to identify high-grade dysplasia in Barrett's esophagus.” Gastroenterology 126(4): A51-A51.
  Feldchtein, F. I., G. V. Gelikonov, et al. (1998). “In vivo OCT imaging of hard and soft tissue of the oral cavity.” Optics Express 3(6): 239-250.
  Feldchtein, F. I., G. V. Gelikonov, et al. (1998). “Endoscopic applications of optical coherence tomography.” Optics Express 3(6): 257-270.
  Fercher, A. F., W. Drexler, et al. (1997). “Optical ocular tomography.” Neuro-Ophthalmology 18(2): 39-49.
  Fercher, S. F., W. Drexler, et al. (1994). Measurement of optical distances by optical spectrum modulation. Proceedings of SPIE—The International Society for Optical Engineering.
  Fercher, A. F., W. Drexler, et al. (2003). “Optical coherence tomography—principles and applications.” Reports on Progress in Physics 66(2): 239-303.
  Fercher, A. F., C. Hitzenberger, et al. (1991). “Measurement of Intraocular Optical Distances Using Partially Coherent Laser-Light.” Journal of Modern Optics 38(7): 1327-1333.
  Fercher, A. F., C. K. Hitzenberger, et al. (1996). Ocular partial coherence interferometry. Proceedings of SPIE—The International Society for Optical Engineering.
  Fercher, A. F., C. K. Hitzenberger, et al. “In-Vivo Optical Coherence Tomography.” American Journal of Ophthalmology 116(1): (1993). 113-115.
  Fercher, A. F., C. K. Hitzenberger, et al. (1994). In-vivo dual-beam optical coherence tomography. Proceedings of SPIE—The International Society for Optical Engineering.
  Fercher, A. F., C. K. Hitzenberger, et al. (1995). “Measurement of Intraocular Distances by Backscattering Spectral Interferometry.” Optics Communications 117(1-2): 43-48.
  Fercher, A. F., C. K. Hitzenberger, et al. (2000). “A thermal light source technique for optical coherence tomography.” Optics Communications 185(1-3): 57-64.
  Fercher, A. F., C. K. Hitzenberger, et al. (2001). “Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography.” Optics Express 9(12): 610-615.
  Fercher, A. F., C. K. Hitzenberger, et al. (2002). “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique.” Optics Communications 204(1-6): 67-74.
  Fercher, A. F., H. C. Li, et al. (1993). “Slit Lamp Laser-Doppler Interferometer.” Lasers in Surgery and Medicine 13(4): 447-452.
  Fercher, A. F., K. Mengedoht, et at. (1988). “Eye-Length Measurement by Interferometry with Partially Coherent-Light.” Optics Letters 13(3): 186-188.
  Ferro, P., M. Haelterman, et al. (1991). “All-Optical Polarization Switch with Long Low-Birefringence Fiber.” Electronics Letters 27(16): 1407-1408.
  Fetterman, M. R., D. Goswami, et al. (1998). “Ultrafast pulse shaping: amplification and characterization.” Optics Express 3(10):366-375.
  Findl, O., W. Drexler, et al. (2001). “Improved prediction of intraocular lens power using partial coherence interferometry.” Journal of Cataract and Refractive Surgery 27 (6): 861-867.
  Fork, R. L., C. H. B. Cruz, et al. (1987). “Compression of Optical Pulses to 6 Femtoseconds by Using Cubic Phase Compensation.” Optics Letters 12(7): 483-485.
  Foschini, G. J. and C. D. Poole (1991). “Statistical-Theory of Polarization Dispersion in Single-Mode Fibers.” Journal of Lightwave Technology 9(11): 1439-1456.
  Francia, C., F. Bruyere, et al. (1998). “PMD second-order effects on pulse propagation in single-mode optical fibers.” Ieee Photonics Technology Letters 10(12): 1739-1741.
  Fried, D., R. E. Glena, et al. (1995). “Nature of Light-Scattering in Dental Enamel and Dentin at Visible and near-Infrared Wavelengths.” Applied Optics 34(7): 1278-1285.
  Fujimoto, J. G., M. E. Brezinski, et al. (1995). “Optical Biopsy and Imaging Using Optical Coherence Tomography.” Nature Medicine 1(9): 970-972.
  Fukasawa, A. And H. Iijima (2002). “Optical coherence tomography of choroidal osteoma.” American Journal of Ophthalmology 133(3): 419-21.
  Fymat, A. L. (1981). “High-Resolution Interferometric Spectrophotopolarimetry.” Optical Engineering 20(1): 25-30.
  Galtarossa, A., L. Palmieri, et al. (2000). “Statistical characterization of fiber random birefringence.” Optics Letters 25(18): 1322-1324.
  Galtarossa, A., L. Palmieri, et al. (2000). “Measurements of beat length and perturbation length in long single-mode fibers.” Optics Letters 25(6): 384-386.
  Gandjbakhche, A. H., P. Mills, et al. (1994). “Light-Scattering Technique for the Study of Orientation and Deformation of Red-Blood-Cells in a Concentrated Suspension.” Applied Optics 33(6): 1070-1078.
  Garcia, N. and M. Nieto-Vesperinas (2002). “Left-handed materials do not make a perfect lens.” Physical Review Letters 88(20).
  Gelikonov, V. M., G. V. Gelikonov, et al. (1995). “Coherent Optical Tomography of Microscopic Inhomogeneities in Biological Tissues.” Jetp Letters 61(2): 158-162.
  George, N. and A. Jain (1973). “Speckle Reduction Using Multiple Tones of Illumination.” Applied Optics 12(6): 1202-1212.
  Gibson, G. N., R. Klank, et al. (1996). “Electro-optically cavity-dumped ultrashort-pulse Ti:sapphire oscillator.” Optics Letters 21(14): 1055.
  Gil, J. J. (2000). “Characteristic properties of Mueller matrices.” Journal of the Optical Society of America a—Optics Image Science and Vision 17(2): 328-334.
  Gil, J. J. and E. Bernabeu (1987). “Obtainment of the Polarizing and Retardation Parameters of a Nondepolarizing Optical-System from the Polar Decomposition of Its Mueller Matrix.” Optik 76(2): 67-71.
  Gladkova, N. D., G. A. Petrova, et al. (2000). “In vivo optical coherence tomography imaging of human skin: norm and pathology.” Skin Research and Technology 6 (1): 6-16.
  Glaessl, A., A. G. Schreyer, et al. (2001). “Laser surgical planning with magnetic resonance imaging-based 3-dimensional reconstructions for intralesional Nd : YAG laser therapy of a venous malformation of the neck.” Archives of Dermatology 137(10): 1331-1335.
  Gloesmann, M., B. Hermann, et al. (2003). “Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography.” Investigative Ophthalmology & Visual Science 44(4): 1696-1703.
  Goldberg, L. and D. Mehuys (1994). “High-Power Superluminescent Diode Source.” Electronics Letters 30(20): 1682-1684.
  Goldsmith, J. A., Y. Li, et al. (2005). “Anterior chamber width measurement by high speed optical coherence tomography.” Ophthalmology 112(2): 238-244.
  Goldstein, L. E., J. A. Muffat, et al. (2003). “Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer's disease.” Lancet 361(9365): 1258-1265.
  Golubovic, B., B. E. Bouma, et al. (1996). “Thin crystal, room-temperature Cr/sup 4 +/:forstefite laser using near-infrared pumping.” Optics Letters 21(24): 1993-1995.
  Gonzalez, S. and Z. Tannous (2002). “Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma.” Journal of the American Academy of Dermatology 47(6): 869-874.
  Gordon, M. O. and M. A. Kass (1999). “The Ocular Hypertension Treatment Study: design and baseline description of the participants.” Archives of Ophthalmology 117(5): 573-83.
  Grayson, T. P., J. R. Torgerson, et al. (1994). “Observation of a Nonlocal Pancharatnam Phase-Shift in the Process of Induced Coherence without Induced Emission.” Physical Review A 49(1): 626-628.
  Greaney, M. J., D. C. Hoffman, et al. (2002). “Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma.” Investigative Ophthalmology & Visual Science43(1): 140-5.
  Greenfield, D. S., H. Bagga, et al. (2003). “Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography.” Archives of Ophthalmology 121(1): 41-46.
  Greenfield, D. S., R. W. Knighton, et al. (2000). “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry.” American Journal of Ophthalmology 129(6): 715-722.
  Griffin, R. A., D. D. Sampson, et al. (1995). “Coherence Coding for Photonic Code-Division Multiple-Access Networks.” Journal of Lightwave Technology 13(9): 1826-1837.
  Guedes, V., J. S. Schuman, et al. (2003). “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes.” Ophthalmology 110(1): 177-189.
  Gueugniaud, P. Y., H. Carsin, et al. (2000). “Current advances in the initial management of major thermal burns. [Review] [76 refs].” Intensive Care Medicine 26(7): 848-56.
  Guido, S. and R. T. Tranquillo (1993). “A Methodology for the Systematic and Quantitative Study of Cell Contact Guidance in Oriented Collagen Gels—Correlation of Fibroblast Orientation and Gel Birefringence.” Journal of Cell Science 105: 317-331.
  Gurses-Ozden, R., H. Ishikawa, et al. (1999). “Increasing sampling density improves reproducibility of optical coherence tomography measurements.” Journal of Glaucoma 8(4): 238-41.
  Guzzi, R. (1998). “Scattering Theory from Homogeneous and Coated Spheres.” 1-11.
  Haberland, U. B., Vladimir; Schmitt, Hans J. (1996). “Optical coherent tomography of scattering media using electrically tunable near-infrared semiconductor laser.” Applied Optics Draft Copy.
  Haberland, U. R., Walter; Blazek, Vladimir; Schmitt, Hans J. (1995). “Investigation of highly scattering media using near-infrared continuous wave tunable semiconductor laser.” Proc. SPIE , 2389: 503-512.
  Hale, G. M. and M. R. Querry (1973). “Optical-Constants of Water in 200-Nm to 200-Mum Wavelength Region.” Applied Optics 12(3): 555-563.
  Hammer, D. X., R. D. Ferguson, et al. (2002). “Image stabilization for scanning laser ophthalmoscopy.” Optics Express 10(26): 1542.
  Hara, T., Y. Ooi, et al. (1989). “Transfer Characteristics of the Microchannel Spatial Light-Modulator.” Applied Optics 28(22): 4781-4786.
  Harland, C. C., S. G. Kale, et al. (2000). “Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound.” British Journal of Dermatology 143(2): 281-289.
  Hartl, I., X. D. Li, et al. (2001). “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber.” Optics Letters 26(9): 608-610.
  Hassenstein, A., A. A. Bialasiewicz, et al. (2000). “Optical coherence tomography in uveitis patients.” American Journal of Ophthalmologv 130(5): 669-70.
  Hattenhauer, M. G., D. H. Johnson, et al. (1998). “The probability of blindness from open-angle glaucoma. [see comments].” Ophthalmology 105(11): 2099-104.
  Hausler, G., J. M. Herrmann, et al. (1996). “Observation of light propagation in volume scatterers with 10(11)-fold slow motion.” Optics Letters 21(14): 1087-1089.
  Hazebroek, H. F. and A. A. Holscher (1973). “Interferometric Ellipsometry.” Journal of Physics E-Scientific Instruments 6(9): 822-826.
  Hazebroek, H. F. and W. M. Visser (1983). “Automated Laser Interferometric Ellipsometry and Precision Reflectometry.” Journal of Physics E-Scientific Instruments 16(7): 654-661.
  He, Z. Y., N. Mukohzaka, et al. (1997). “Selective image extraction by synthesis of the coherence function using two-dimensional optical lock-in amplifier with microchannel spatial light modulator.” Ieee Photonics Technology Letters 9(4): 514-516.
  Hee, M. R., J. A. Izatt, et al. (1993). “Femtosecond Transillumination Optical Coherence Tomography.” Optics Letters 18(12): 950-952.
  Hee, M. R., J. A. Izatt, et al. (1995). “Optical coherence tomography of the human retina.” Archives of Ophthalmology 113(3): 325-32.
  Hee, M. R., C. A. Puliafito, et al. (1998). “Topography of diabetic macular edema with optical coherence tomography.” Ophthalmology 105(2): 360-70.
  Hee, M. R., C. A. Puliafito, et al. (1995). “Quantitative assessment of macular edema with optical coherence tomography.” Archives of Ophthalmology 113(8): 1019-29.
  Hellmuth, T. and M. Welle (1998). “Simultaneous measurement of dispersion, spectrum, and distance with a fourier transform spectrometer.” Journal of Biomedical Optics 3(1): 7-11.
  Hemenger, R. P. (1989). “Birefringence of a medium of tenuous parallel cylinders.” Applied Optics 28(18): 4030-4034.
  Henry, M. (1981). “Fresnel-Arago Laws for Interference in Polarized-Light—Demonstration Experiment.” American Journal of Physics 49(7): 690-691.
  Herz, P. R., Y. Chen, et al. (2004). “Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography.” Optics Letters 29(19): 2261-2263.
  Hirakawa, H., H. Iijima, et al. (1999). “Optical coherence tomography of cystoid macular edema associated with retinitis pigmentosa.” American Journal of Ophthalmology 128(2): 185-91.
  Hitzenberger, C. K., A. Baumgartner, et al. (1994). “Interferometric Measurement of Corneal Thickness with Micrometer Precision.” American Journal of Ophthalmology 118(4): 468-476.
  Hitzenberger, C. K., A. Baumgartner, et al. (1999). “Dispersion effects in partial coherence interferometry: Implications for intraocular ranging.” Journal of Biomedical Optics 4(1): 144-151.
  Hitzenberger, C. K., A. Baumgartner, et al. (1998). “Dispersion induced multiple signal peak splitting in partial coherence interferometry.” Optics Communications 154 (4): 179-185.
  Hitzenberger, C. K., M. Danner, et al. (1999). “Measurement of the spatial coherence of superluminescent diodes.” Journal of Modern Optics 46(12): 1763-1774.
  Hitzenberger, C. K. and A. F. Fercher (1999). “Differential phase contrast in optical coherence tomography.” Optics Letters 24(9): 622-624.
  Hitzenberger, C. K., M. Sticker, et al. (2001). “Differential phase measurements in low-coherence interferometry without 2 pi ambiguity.” Optics Letters 26(23): 1864-1866.
  Hoeling, B. M., A. D. Fernandez, et al. (2000). “An optical coherence microscope for 3-dimensional imaging in developmental biology.” Optics Express 6(7): 136-146.
  Hoerauf, H., C. Scholz, et al. (2002). “Transscleral optical coherence tomography: a new imaging method for the anterior segment of the eye.” Archives of Ophthalmology 120(6): 816-9.
  Hoffmann, K., M. Happe, et al. (1998). “Optical coherence tomography (OCT) in dermatology.” Journal of Investigative Dermatology 110(4): 583-583.
  Hoh, S. T., D. S. Greenfield, et al. (2000). “Optical coherence tomography and scanning laser polarimetry in normal, ocular hypertensive, and glaucomatous eyes.” American Journal of Ophthalmology 129(2): 129-35.
  Hohenleutner, U., M. Hilbert, et al. (1995). “Epidermal Damage and Limited Coagulation Depth with the Flashlamp-Pumped Pulsed Dye-Laser—a Histochemical-Study.” Journal of Investigative Dermatology 104(5): 798-802.
  Holland, A. J. A., H. C. O. Martin, et al. (2002). “Laser Doppler imaging prediction of burn wound outcome in children.” Burns 28(1): 11-17.
  Hotate, K. and T. Okugawa (1994). “Optical Information-Processing by Synthesis of the Coherence Function.” Journal of Lightwave Technology 12(7): 1247-1255.
  Hourdakis, C. J. and A. Perris (1995). “A Monte-Carlo Estimation of Tissue Optical-Properties for Use in Laser Dosimetry.” Physics in Medicine and Biology 40(3): 351-364.
  Hu, Z., F. Li, et al. (2000). “Wavelength-tunable narrow-linewidth semiconductor fiber-ring laser.” IEEE Photonics Technology Letters 12(8): 977-979.
  Huang, F., W. Yang, et al. (2001). “Quadrature spectral interferometric detection and pulse shaping.” Optics Letters 26(6): 382-384.
  Huang, X. R. and R. W. Knighton (2002). “Linear birefringence of the retinal nerve fiber layer measured in vitro with a multispectral imaging micropolarimeter.” Journal of Biomedical Optics 7(2): 199-204.
  Huber, R., M. Wojtkowski, et al. (2005). “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles.” Optics Express 13(9): 3513-3528.
  Hunter, D. G., J. C. Sandruck, et al. (1999). “Mathematical modeling of retinal birefringence scanning.” Journal of the Optical Society of America a—Optics Image Science and Vision 16(9): 2103-2111.
  Hurwitz, H. H. and R. C. Jones (1941). “A new calculus for the treatment of optical systems II. Proof of three general equivalence theorems.” Journal of the Optical Society of America 31(7): 493-499.
  Huttner, B., C. De Barros, et al. (1999). “Polarization-induced pulse spreading in birefringent optical fibers with zero differential group delay.” Optics Letters 24(6): 370-372.
  Huttner, B., B. Gisin, et al. (1999). “Distributed PMD measurement with a polarization—OTDR in optical fibers.” Journal of Lightwave Technology 17(10): 1843-1848.
  Huttner, B., J. Reecht, et al. (1998). “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry.” Ieee Photonics Technology Letters 10(10): 1458-1460.
  Hyde, S. C. W., N. P. Barry, et al. (1995). “Sub-100-Mu-M Depth-Resolved Holographic Imaging through Scattering Media in the near-Infrared.” Optics Letters 20(22): 2330-2332.
  Hyde, S. C. W., N. P. Barry, et al. (1995). “Depth-Resolved Holographic Imaging through Scattering Media by Photorefraction.” Optics Letters 20(11): 1331-1333.
  Iftimia, N. V., B. E. Bouma, et al. (2004). “Adaptive ranging for optical coherence tomography.” Optics Express 12(17): 4025-4034.
  Iida, T., N. Hagimura, et al. (2000). “Evaluation of central serous chorioretinopathy with optical coherence tomography.” American Journal of Ophthalmology 129(1): 16-20.
  Imai, M., H. Iijima, et al. (2001). “Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy. [republished in Am J Ophthalmol. Sep. 2001;132(3):458-61 ; 11530091.].” American Journal of Ophthalmology 132(1): 81-4.
  Indebetouw, G. and P. Klysubun (2000). “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography.” Optics Letters 25(4): 212-214.
  Ip, M. S., B. J. Baker, et al. (2002). “Anatomical outcomes of surgery for idiopathic macular hole as determined by optical coherence tomography.” Archives of Ophthalmology 120(1): 29-35.
  Ismail, R., V. Tanner, et al. (2002). “Optical coherence tomography imaging of severe commotio retinae and associated macular hole.” British Journal of Ophthalmology 86(4): 473-4.
  Izatt, J. A., M. R. Hee, et al. (1994). “Optical Coherence Microscopy in Scattering Media.” Optics Letters 19(8): 590-592.
  Izatt, J. A., M. R. Hee, et al. (1994). “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography.” Archives of Ophthalmology 112 (12): 1584-9.
  Izatt, J. A., M. D. Kulkami, et al. (1997). “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography.” Optics Letters 22(18): 1439-1441.
  Izatt, J. A., M. D. Kulkarni, et al. (1996). “Optical coherence tomography and microscopy in gastrointestinal tissues.” IEEE Journal of Selected Topics in Quantum Electronics 2(4): 1017.
  Jacques, S. L., J. S. Nelson, et al. (1993). “Pulsed Photothermal Radiometry of Port-Wine-Stain Lesions.” Applied Optics 32(13): 2439-2446.
  Jacques, S. L., J. R. Roman, et al. (2000). “Imaging superficial tissues with polarized light.” Lasers in Surgery and Medicine 26(2): 119-129.
  Jang, I. K., B. E. Bouma, et al. (2002). “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound.” Journal of the American College of Cardiology 39(4): 604-609.
  Jang, I. K., B. D. MacNeill, et al. (2002). “In-vivo characterization of coronary plaques in patients with ST elevation acute myocardial infarction using optical coherence tomography (Oct).” Circulation 106(19): 698-698 3440 Suppl. S,.
  Jang, I. K., G. J. Tearney, et al. (2000). “Comparison of optical coherence tomography and intravascular ultrasound for detection of coronary plaques with large lipid-core in living patients.” Circulation 102(18): 509-509.
  Jeng, J. C., A. Bridgeman, et al. (2003). “Laser Doppler imaging determines need for excision and grafting in advance of clinical judgment: a prospective blinded trial.” Burns 29(7): 665-670.
  Jesser, C. A., S. A. Boppart, et al. (1999). “High resolution imaging of transitional cell carcinoma with optical coherence tomography: feasibility for the evaluation of bladder pathology.” British Journal of Radiology 72: 1170-1176.
  Johnson, C. A., J. L. Keltner, et al. (2002). “Baseline visual field characteristics in the ocular hypertension treatment study.” Ophthalmology 109(3): 432-7.
  Jones, R. C. (1941). “A new calculus for the treatment of optical systems III. The Sohncke theory of optical activity.” Journal of the Optical Society of America 31 (7): 500-503.
  Jones, R. C. (1941). “A new calculus for the treatment of optical systems I. Description and discussion of the calculus.” Journal of the Optical Society of America 31(7): 488-493.
  Jones, R. C. (1942). “A new calculus for the treatment of optical systems. IV.” Journal of the Optical Society of America 32(8): 486-493.
  Jones, R. C. (1947). “A New Calculus for the Treatment of Optical Systems .6. Experimental Determination of the Matrix.” Journal of the Optical Society of America 37(2): 110-112.
  Jones, R. C. (1947). “A New Calculus for the Treatment of Optical Systems .5. A More General Formulation, and Description of Another Calculus.” Journal of the Optical Society of America 37(2): 107-110.
  Jones, R. C. (1948). “A New Calculus for the Treatment of Optical Systems .7. Properties of the N-Matrices.” Journal of the Optical Society of America 38(8): 671-685.
  Jones, R. C. (1956). “New Calculus for the Treatment of Optical Systems .8. Electromagnetic Theory.” Journal of the Optical Society of America 46(2): 126-131.
  Jopson, R. MThe ., L. E. Nelson, et al. (1999). “Measurement of second-order polarization-mode dispersion vectors in optical fibers.” Ieee Photonics Technology Letters 11 (9): 1153-1155.
  Jost, B. M., A. V. Sergienko, et al. (1998). “Spatial correlations of spontaneously down-converted photon pairs detected with a single-photon-sensitive CCD camera.” Optics Express 3(2): 81-88.
  Kaplan, B., E. Compain, et al. (2000). “Phase-modulated Mueller ellipsometry characterization of scattering by latex sphere suspensions.” Applied Optics 39 (4): 629-636.
  Kass, M. A., D. K. Heuer, et al. (2002). “The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma.” Archives of Ophthalmology 120(6): 701-13; discussion 829-30.
  Kasuga, Y., J. Arai, et al. (2000). “Optical coherence tomograghy to confirm early closure of macular holes.” American Journal of Ophthalmology 130(5): 675-6.
  Kaufman, T., S. N. Lusthaus, et al. (1990). “Deep Partial Skin Thickness Burns—a Reproducible Animal-Model to Study Burn Wound-Healing.” Burns 16(1): 13-16.
  Kemp, N. J., J. Park, et al. (2005). “High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography.” Journal of the Optical Society of America a—Optics Image Science and Vision 22(3): 552-560.
  Kerrigan-Baumrind, L. A., H. A. Quigley, et al. (2000). “Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons.” Investigative Ophthalmology & Visual Science 41(3): 741-8.
  Kesen, M. R., G. L. Spaeth, et al. (2002). “The Heidelberg Retina Tomograph vs clinical impression in the diagnosis of glaucoma.” American Journal of Ophthalmology 133(5): 613-6.
  Kienle, A. and R. Hibst (1995). “A New Optimal Wavelength for Treatment of Port-Wine Stains.” Physics in Medicine and Biology 40(10): 1559-1576.
  Kienle, A., L. Lilge, et al. (1996). “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue.” Applied Optics 35(13): 2304-2314.
  Kim, B. Y. and S. S. Choi (1981). “Analysis and Measurement of Birefringence in Single-Mode Fibers Using the Backscattering Method.” Optics Letters 6(11): 578-580.
  Kimel, S., L. O. Svaasand, et al. (1994). “Differential Vascular-Response to Laser Photothermolysis.” Journal of Investigative Dermatology 103(5): 693-700.
  Kloppenberg, F. W. H., G. Beerthuizen, et al. (2001). “Perfusion of burn wounds assessed by Laser Doppler Imaging is related to burn depth and healing time.” Burns 27(4): 359-363.
  Knighton, R. W. and X. R. Huang (2002). “Analytical methods for scanning laser polarimetry.” Optics Express 10(21): 1179-1189.
  Knighton, R. W., X. R. Huang, et al. (2002). “Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment.” Investigative Ophthalmology & Visual Science 43(2): 383-392.
  Knuettel, A. R. S., Joseph M.: Shay, M.; Knutson, Jay R. (1994). “Stationary low-coherence light imaging and spectroscopy using a CCD camera.” Proc. SPIE, vol. 2135: p. 239-250.
  Knuttel, A. and M. Boehlau-Godau (2000). “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography.” Journal of Biomedical Optics 5(1): 83-92.
  Knuttel, A. and J. M. Schmitt (1993). “Stationary Depth-Profiling Reflectometer Based on Low-Coherence Interferometry.” Optics Communications 102(3-4): 193-198.
  Knuttel, A., J. M. Schmitt, et al. (1994). “Low-Coherence Reflectometry for Stationary Lateral and and Depth Profiling with Acoustooptic Deflectorsa Ccd Camera.” Optics Letters 19(4): 302-304.
  Kobayashi, M., H. Hanafusa, et al. (1991). “Polarization-Independent Interferometric Optical-Time-Domain Reflectometer.” Journal of Lightwave Technology 9(5): 623-628.
  Kolios, M. C., M. D. Sherar, et al. (1995). “Large Blood-Vessel Cooling in Heated Tissues—a Numerical Study.” Physics in Medicine and Biology 40(4): 477-494.
  Koozekanani, D., K. Boyer, et al. (2001). “Retinal thickness measurements from optical coherence tomography using a Markov boundary model.” Ieee Transactions on Medical Imaging 20(9): 900-916.
  Kop, R. H. J. and R. Sprik (1995). “Phase-sensitive interferometry with ultrashort optical pulses.” Review of Scientific Instruments 66(12): 5459-5463.
  Kramer, R. Z., J. Bella, et al. (1999). “Sequence dependent conformational variations of collagen triple-helical structure.” Nature Structural Biology 6(5): 454-7.
  Kulkarni, M. D., T. G. van Leeuwen, et al. (1998). “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography.” Optics Letters 23(13): 1057-1059.
  Kwon, Y. H., C. S. Kim, et al. (2001). “Rate of visual field loss and long-term visual outcome in primary open-angle glaucoma.” American Journal of Ophthalmology 132(1): 47-56.
  Kwong, K. F., D. Yankelevich, et al. (1993). “400-Hz Mechanical Scanning Optical Delay-Line.” Optics Letters 18(7): 558-560.
  Landers, J., I. Goldberg, et al. (2002). “Analysis of risk factors that may be associated with progression from ocular hypertension to primary open angle glaucoma.” Clin Experiment Ophthalmogy 30(4): 242-7.
  Laszlo, A. and A. Venetianer (1998). Heat resistance in mammalian cells: Lessons and challenges. Stress of Life. 851: 169-178.
  Laszlo, A. and A. Venetianer (1998). “Heat resistance in mammalian cells: lessons and challenges [Review] [52 refs].” Annals of the New York Academy of Sciences 851: 169-78.
  Laufer, J., R. Simpson, et al. (1998). “Effect of temperature on the optical properties of ex vivo human dermis and subdermis.” Physics in Medicine and Biology 43(9): 2479-2489.
  Lederer, D. E., J. S. Schuman, et al. (2003). “Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography.” American Journal of Ophthalmology 135(6): 838-843.
  Lee, P. P., Z. W. Feldman, et al. (2003). “Longitudinal prevalence of major eye diseases.” Archives of Ophthalmology 121(9): 1303-1310.
  Lehrer, M. S., T. T. Sun, et al. (1998). “Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation.” Journal of Cell Science 111(Pt 19): 2867-75.
  Leibowitz, H. M., D. E. Krueger, et al. (1980). “The Framingham Eye Study monograph: An ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973-1975.” Survey of Ophthalmology 24(Suppl): 335-610.
  Leitgeb, R., C. K. Hitzenberger, et al. (2003). “Performance of fourier domain vs. time domain optical coherence tomography.” Optics Express 11(8): 889-894.
  Leitgeb, R., L. F. Schmetterer, et al. (2002). “Flow velocity measurements by frequency domain short coherence interferometry.” Proc. SPIE 4619: 16-21.
  Leitgeb, R. A., W. Drexler, et al. (2004). “Ultrahigh resolution Fourier domain optical coherence tomography.” Optics Express 12(10): 2156-2165.
  Leitgeb, R. A., C. K. Hitzenberger, et al. (2003). “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography.” Optics Letters 28(22): 2201-2203.
  Leitgeb, R. A., L. Schmetterer, et al. (2003). “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography.” Optics Express 11(23): 3116-3121.
  Leitgeb, R. A., L. Schmetterer, et al. (2004). “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography.” Optics Letters 29 (2): 171-173.
  LeRoyBrehonnet, F. and B. LeJeune (1997). “Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties.” Progress in Quantum Electronics 21(2): 109-151.
  Leske, M. C., A. M. Connell, et al. (1995). “Risk factors for open-angle glaucoma. The Barbados Eye Study. [see comments].” Archives of Ophthalmology 113(7): 918-24.
  Leske, M. C., A. M. Connell, et al. (2001). “Incidence of open-angle glaucoma: the Barbados Eye Studies. The Barbados Eye Studies Group. [see comments].” Archives of Ophthalmology 119(1): 89-95.
  Leske, M. C., A. Heij I, et al. (1999). “Early Manifest Glaucoma Trial. Design and Baseline Data.” Ophthalmology 106(11): 2144-2153.
  Lewis, S. E., J. R. DeBoer, et al. (2005). “Sensitive, selective, and analytical improvements to a porous silicon gas sensor.” Sensors and Actuators B: Chemical 110(1): 54-65.
  Lexer, F., C. K. Hitzenberger, et al. (1999). “Dynamic coherent focus OCT with depth-independent transversal resolution.” Journal of Modem Optics 46(3): 541-553.
  Li, X., C. Chudoba, et al. (2000). “Imaging needle for optical coherence tomography.” Optics Letters 25: 1520-1522.
  Li, X., T. H. Ko, et al. (2001). “Intraluminal fiber-optic Doppler imaging catheter for structural and functional optical coherence tomography.” Optics Letters 26: 1906-1908.
  Liddington, M. I. and P. G. Shakespeare (1996). “Timing of the thermographic assessment of burns.” Burns 22(1): 26-8.
  Lindmo, T., D. J. Smithies, et al. (1998). “Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation.” Physics in Medicine and Biology 43(10): 3045-3064.
  Liu, J., X. Chen, et al. (1999). “New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating.” IEEE Transactions on Biomedical Engineering 46(4): 420-8.
  Luke, D. G., R. McBride, et al. (1995). “Polarization mode dispersion minimization in fiber-wound piezoelectric cylinders.” Optics Letters 20(24): 2550-2552.
  MacNeill, B. D., I. K. Jang, et al. (2004). “Focal and multi-focal plaque distributions in patients with macrophage acute and stable presentations of coronary artery disease.” Journal of the American College of Cardiology 44(5): 972-979.
  Mahgerefteh, D. and C. R. Menyuk (1999). “Effect of first-order PMD compensation on the statistics of pulse broadening in a fiber with randomly varying birefringence.” Ieee Photonics Technology Letters 11(3): 340-342.
  Maitland, D. J. and J. T. Walsh, Jr. (1997). “Quantitative measurements of linear birefringence during heating of native collagen.” Lasers in Surgery & Medicine 20 (3): 310-8.
  Majaron, B., S. M. Srinivas, et al. (2000). “Deep coagulation of dermal collagen with repetitive Er : YAG laser irradiation.” Lasers in Surgery and Medicine 26(2): 215-222.
  Mansuripur, M. (1991). “Effects of High-Numerical-Aperture Focusing on the State of Polarization in Optical and Magnetooptic Data-Storage Systems.” Applied Optics 30(22): 3154-3162.
  Marshall, G. W., S. J. Marshall, et al. (1997). “The dentin substrate: structure and properties related to bonding.” Journal of Dentistry 25(6):441-458.
  Martin, P. (1997). “Wound healing—Aiming for perfect skin regeneration.” Science 276 (5309): 75-81.
  Martinez, O. E. (1987). “3000 Times Grating Compressor with Positive Group-Velocity Dispersion—Application to Fiber Compensation in 1.3-1.6 Mu-M Region.” Ieee Journal of Quantum Electronics 23(1): 59-64.
  Martinez, O. E., J. P. Gordon, et al. (1984). “Negative Group-Velocity Dispersion Using Refraction.” Journal of the Optical Society of America a—Optics Image Science and Vision 1(10): 1003-1006.
  McKinney, J. D., M. A. Webster, et al. (2000). “Characterization and imaging in optically scattering media by use of laser speckle and a variable-coherence source.” Optics Letters 25(1): 4-6.
  Miglior, S., M. Casula, et al. (2001). “Clinical ability of Heidelberg retinal tomograph examination to detect glaucomatous visual field changes.” Ophthalmology 108 (9): 1621-7.
  Milner, T. E., D. M. Goodman, et al. (1996). “Imaging laser heated subsurface chromophores in biological materials: Determination of lateral physical dimensions.” Physics in Medicine and Biology 41(1): 31-44.
  Milner, T. E., D. M. Goodman, et al. (1995). “Depth Profiling of Laser-Heated Chromophores in Biological Tissues by Pulsed Photothermal Radiometry.” Journal of the Optical Society of America a—Optics Image Science and Vision 12 (7): 1479-1488.
  Milner, T. E., D. J. Smithies, et al. (1996). “Depth determination of chromophores in human skin by pulsed photothermal radiometry.” Applied Optics 35(19): 3379-3385.
  Mishchenko, M. I. and J. W. Hovenier (1995). “Depolarization of Light Backscattered by Randomly Oriented Nonspherical Particles.” Optics Letters 20(12): 1356-&.
  Mistlberger, A., J. M. Liebmann, et al. (1999). “Heidelberg retina tomography and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes.” Ophthalmology 106(10): 2027-32.
  Mitsui, T. (1999). “High-speed detection of ballistic photons propagating through suspensions using spectral interferometry.” Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers 38(5A): 2978-2982.
  Molteno, A. C., N. J. Bosma, et al. (1999). “Otago glaucoma surgery outcome study: long-term results of trabeculectomy—1976 to 1995.” Ophthalmology 106(9): 1742-50.
  Morgner, U., W. Drexler, et al. (2000). “Spectroscopic optical coherence tomography.” Optics Letters 25(2): 111-113.
  Morgner, U., F. X. Kartner, et al. (1999). “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti :sapphire laser (vol. 24, p. 411, 1999).” Optics Letters 24(13): 920-920.
  Mourant, J. R., A. H. Hielscher, et al. (1998). “Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells.” Cancer Cytopathology 84(6): 366-374.
  Muller, M., J. Squier, et al. (1998). “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives.” Journal of Microscopy-Oxford 191: 141-150.
  Muscat, S., N. McKay, et al. (2002). “Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography.” Investigative Ophthalmology & Visual Science 43(6): 1791-5.
  Musch, D. C., P. R. Lichter, et al. (1999). “The Collaborative Initial Glaucoma Treatment Study. Study Design, MethodsR, and Baseline Characteristics of Enrolled Patients.” Ophthalmology 106: 653-662.
  Neerken, S., Lucassen, G.W., Bisschop, M.A., Lenderink, E., Nuijs, T.A.M. (2004). “Characterization of age-related effects in human skin: a comparative study that applies confocal laser scanning microscopy and optical coherence tomography.” Journal of Biomedical Optics 9(2): 274-281.
  Nelson, J. S., K. M. Kelly, et al. (2001). “Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography.” Archives of Dermatology 137(6): 741-744.
  Newson, T. P., F. Farahi, et al. (1988). “Combined Interferometric and Polarimetric Fiber Optic Temperature Sensor with a Short Coherence Length Source.” Optics Communications 68(3): 161-165.
  November, L. J. (1993). “Recovery of the Matrix Operators in the Similarity and Congruency Transformations—Applications in Polarimetry.” Journal of the Optical Society of America a—Optics Image Science and Vision 10(4): 719-739.
  Oh, W. Y., S. H. Yun, et al. (2005). “Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers.” Ieee Photonics Technology Letters 17(3): 678-680.
  Oka, K. and T. Kato (1999). “Spectroscopic polarimetry with a channeled spectrum.” Optics Letters 24(21): 1475-1477.
  Okugawa, T. and K. Rotate (1996). “Real-time optical image processing by synthesis of the coherence function using real-time holography.” Ieee Photonics Technology Letters 8(2): 257-259.
  Oshima, M., R. Toth, et al. (2001). “Finite element simulation of blood flow in the cerebral artery.” Computer Methods in Applied Mechanics and Engineering 191 (6-7): 661-671.
  Pan, Y. T., H. K. Xie, et al. (2001). “Endoscopic optical coherence tomography based on a microelectromechanical mirror.” Optics Letters 26(24): 1966-1968.
  Parisi, V., G. Manni, et al. (2001). “Correlation between optical coherence tomography, pattern electroretinogram, and visual evoked potentials in open-angle glaucoma patients.” Ophthalmology 108(5): 905-12.
  Park, B. H., M. C. Pierce, et al. (2005). “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 mu m.” Optics Express 13(11): 3931-3944.
  Park, D. H., J. W. Hwang, et al. (1998). “Use of laser Doppler flowmetry for estimation of the depth of burns.” Plastic and Reconstructive Surgery 101(6): 1516-1523.
  Pendry, J. B., A. J. Holden, et al. (1999). “Magnetism from conductors and enhanced nonlinear phenomena.” Ieee Transactions on Microwave Theory and Techniques 47(11): 2075-2084.
  Penninckx, D. and V. Morenas (1999). “Jones matrix of polarization mode dispersion.” Optics Letters 24(13): 875-877.
  Pierce, M. C., M. Shishkov, et al. (2005). “Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography.” Optics Express 13(15): 5739-5749.
  Pircher, M., E. Gotzinger, et al. (2003). “Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography.” Optics Express 11(18): 2190-2197.
  Pircher, M., E. Gotzinger, et al. (2003). “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics 8(3): 565-569.
  Podoleanu, A. G., G. M. Dobre, et al. (1998). “En-face coherence imaging using galvanometer scanner modulation.” Optics Letters 23(3): 147-149.
  Podoleanu, A. G. and D. A. Jackson (1999). “Noise analysis of a combined optical coherence tomograph and a confocal scanning ophthalmoscope.” Applied Optics 38(10):2116-2127.
  Podoleanu, A. G., J. A. Rogers, et al. (2000). “Three dimensional OCT images from retina and skin.” Optics Express 7(9): 292-298.
  Podoleanu, A. G., M. Seeger, et al. (1998). “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry.” Journal of Biomedical Optics 3(1): 12-20.
  Poole, C. D. (1988). “Statistical Treatment of Polarization Dispersion in Single-Mode Fiber.” Optics Letters 13(8): 687-689.
  Povazay, B., K. Bizheva, et al. (2002). “Submicrometer axial resolution optical coherence tomography.” Optics Letters 27(20): 1800-1802.
  Qi, B., A. P. Himmer, et al. (2004). “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror.” Optics Communications 232(1-6): 123-128.
  Radhakrishnan, S., A. M. Rollins, et al. (2001). “Real-time optical coherence tomography of the anterior segment at 1310 nm.” Archives of Ophthalmology 119(8): 1179-1185.
  Rogers, A. J. (1981). “Polarization-Optical Time Domain Reflectometry—a Technique for the Measurement of Field Distributions.” Applied Optics 20(6): 1060-1074.
  Rollins, A. M. and J. A. Izatt (1999). “Optimal interferometer designs for optical coherence tomography.” Optics Letters 24(21): 1484-1486.
  Rollins, A. M., R. Ung-arunyawee, et al. (1999). “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design.” Optics Letters 24(19): 1358-1360.
  Rollins, A. M., S. Yazdanfar, et al. (2002). “Real-time in vivo colors Doppler optical coherence tomography.” Journal of Biomedical Optics 7(1): 123-129.
  Rollins, A. M., S. Yazdanfar, et al. (2000). “Imaging of human retinal hemodynamics using color Doppler optical coherence tomography.” Investigative Ophthalmology & Visual Science 41(4): S548-S548.
  Sandoz, P. (1997). “Wavelet transform as a processing tool in white-light interferometry.” Optics Letters 22(14): 1065-1067.
  Sankaran, V., M. J. Everett, et al. (1999). “Comparison of polarized-light propagation in biological tissue and phantoms.” Optics Letters 24(15):1044-1046.
  Sankaran, V.,.J. T. Walsh, et al. (2000). “Polarized light propagation through tissue phanto, ehms containing densely packed scatterers.” Optics Letters 25(4): 239-241.
  Sarunic, M. V., M. A. Choma, et al. (2005). “Instantaneous complex conjugate resolved spectral fiber domain and swept-source OCT using 3x3 couplers.” Optics Express 13(3): 957-967.
  Sathyam, U. S., B. W. Colston, et al. (1999). “Evaluation of optical coherence quantitation of analytes in turbid media by use of two wavelengths.” Applied Optics 38(10): 2097-2104.
  Schmitt, J. M. (1997). “Array detection for speckle reduction in optical coherence microscopy.” Physics in Medicine and Biology 42(7): 1427-1439.
  Schmitt, J. M. (1999). “Optical coherence tomography (OCT): A review.” Ieee Journal of Selected Topics in Quantum Electronics 5(4): 1205-1215.
  Schmitt, J. M. and A. Knuttel (1997). “Model of optical coherence tomography of heterogeneous tissue.” Journal of the Optical Society of America a—Optics Image Science and Vision 14(6): 1231-1242.
  Schmitt, J. M., S. L. Lee, et al. (1997). “An optical coherence microscope with enhanced resolving power in thick tissue.” Optics Communications 142(4-6): 203-207.
  Schmitt, J. M., S. H. Xiang, et al. (1998). “Differential absorption imaging with optical coherence tomography.” Journal of the Optical Society of America a—Optics Image Science and Vision 15(9): 2288-2296.
  Schmitt, J. M., S. H. Xiang, et aI. (1999). “Speckle in optical coherence tomography.” Journal of Biomedical Optics 4(1): 95-105.
  Schmitt, J. M., M. J. Yadlowsky, et al. (1995). “Subsurface Imaging of Living Skin with Optical Coherence Microscopy.” Dermatology 191(2): 93-98.
  Shi, H., J. Finlay, et al. (1997). “Multiwavelength 10-GHz picosecond pulse generation from a single-stripe semiconductor diode laser.” Ieee Photonics Technology Letters 9(11): 1439-1441.
  Shi, H., I. Nitta, et al. (1999). “Demonstration of phase correlation in multiwavelength mode-locked semiconductor diode lasers.” Optics Letters 24(4): 238-240.
  Simon, R. (1982). “The Connection between Mueller and Jones Matrices of Polarization Optics.” Optics Communications 42(5): 293-297.
  Smith, P. J. M., E.M.; Taylor, C.M.; Selviah, D.R.; Day, S.E.; Commander, L.G. (2000) “Variable-Focus Microlenses as a Potential Technology for Endoscopy.” SPIE (vol. 3919), USA pp. 187-192.
  Smithies, D. J., T. Lindmo, et al. (1998). “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation.” Physics in Medicine and Biology 43(10): 3025-3044.
  Sorin, W. V. and D. F. Gray (1992). “Simultaneous Thickness and Group Index Measurement Using Optical Low-Coherence Reflectometry.” Ieee Photonics Technology Letters 4(1): 105-107.
  Sticker, M., C. K. Hitzenberger, et al. (2001). “Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography.” Optics Letters 26(8): 518-520.
  Sticker, M., M. Pircher, et al. (2002). “En face imaging of single cell layers by differential phase-contrast optical coherence microscopy.” Optics Letters 27(13): 1126-1128.
  Stoller, P., B. M. Kim, et al. (2002). “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon.” Journal of Biomedical Optics 7(2): 205-214.
  Sun, C. S. (2003). “Multiplexing of fiber-optic acoustic sensors in a Michelson interferometer configuration.” Optics Letters 28(12): 1001-1003.
  Swanson, E. A., J. A. Izatt, et al. (1993). “In-Vivo Retinal Imaging by Optical Coherence Tomography.” Optics Letters 18(21): 1864-1866.
  Takada, K., A. Himeno, et al. (1991). “Phase-Noise and Shot-Noise Limited Operations of Low Coherence Optical-Time Domain Reflectometry.” Applied Physics Letters 59(20): 2483-2485.
  Takenaka, H. (1973). “Unified Formalism for Polarization Optics by Using Group-Theory I (Theory).” Japanese Journal of Applied Physics 12(2): 226-231.
  Tanno, N., T. Ichimura, et al. (1994). “Optical Multimode Frequency-Domain Reflectometer.”. Optics Letters 19(8): 587-589.
  Tan-no, N., T. Ichimura, et al. (1994). “Optical Multimode Frequency-Domain Reflectometer.” Optics Letters 19(8): 587-589.
  Targowski, P., M. Wojtkowski, et al. (2004). “Complex spectral OCT in human eye imaging in vivo.” Optics Communications 229(1-6): 79-84.
  Tearney, G. J., S. A. Boppart, et al. (1996). “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography (vol. 21, p. 543, 1996).” Optics Letters 21(12): 912-912.
  Tearney, G. J., B. E. Bouma, et al. (1996). “Rapid acquisition of in vivo biological images by use of optical coherence tomography.” Optics Letters 21(17): 1408-1410.
  Tearney, G. J., B. E. Bouma, et al. (1997). “In vivo endoscopic optical biopsy with optical coherence tomography.” Science 276(5321):2037-2039.
  Tearney, G. J., M. E. Brezinski, et al. (1996). “Catheter-based optical imaging of a human coronary artery.” Circulation 94(11): 3013-3013.
  Tearney, G. J., M. E. Brezinski, et al. (1997). “In vivo endoscopic optical biopsy with optical coherence tomography.” Science 276(5321):2037-9.
  Tearney, G. J., M. E. Brezinski, et al. (1997). “Optical biopsy in human gastrointestinal tissue using optical coherence tomography.” American Journal of Gastroenterology 92(10): 1800-1804.
  Tearney, G. J., M. E. Brezinski, et al. (1995). “Determination of the refractive index of highly scattering human tissue by optical coherence tomography.” Optics Letters 20(21): 2258-2260.
  Tearney, G. J., I. K. Jang, et al. (2000). “Porcine coronary imaging in vivo by optical coherence tomography.” Acta Cardiologica 55(4):233-237.
  Tearney, G. J., R. H. Webb, et al. (1998). “Spectrally encoded confocal microscopy.” Optics Letters 23(15): 1152-1154.
  Tearney, G. J., H. Yabushita, et al. (2003). “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography.” Circulation 107(1): 113-119.
  Tower, T. T. and R. T. Tranquillo (2001). “Alignment maps of tissues: I. Microscopic elliptical polarimetry.” Biophysical Journal 81(5):2954-2963.
  Tower, T. T. and R. T. Tranquillo (2001). “Alignment maps of tissues: II. Fast harmonic analysis for imaging.” Biophysical Journal 81(5): 2964-2971.
  Troy, T. L. and S. N. Thennadil (2001). “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm.” Journal of Biomedical Optics 6 (2): 167-176.
  Vabre, L., A. Dubois, et al. (2002). “Thermal-light full-field optical coherence tomography.” Optics Letters 27(7): 530-532.
  Vakhtin, A. B., D. J. Kane, et al. (2003). “Common-path interferometer for frequency-domain optical coherence tomography.” Applied Optics 42(34): 6953-6958.
  Vakhtin, A. B., K. A. Peterson, et al. (2003). “Differential spectral interferometry: an imaging technique for biomedical applications.” Optics Letters 28(15): 1332-1334.
  Vakoc, B. J., S. H. Yun, et al. (2005). “Phase-resolved optical frequency domain imaging.” Optics Express 13(14): 5483-5493.
  van Leeuwen, T. G., M. D. Kulkarni, et al. (1999). “High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography.” Optics Letters 24(22): 1584-1586.
  Vansteenkiste, N., P. Vignolo, et al. (1993). “Optical Reversibility Theorems for Polarization—Application to Remote-Control of Polarization.” Journal of the Optical Society of America A—Optics Image Science and Vision 10(10): 2240-2245.
  Vargas, O., E. K. Chan, et al. (1999). “Use of an agent to reduce scattering in skin.” Lasers in Surgery and Medicine 24(2): 133-141.
  Wang, R. K. (1999). “Resolution improved optical coherence-gated tomography for imaging through biological tissues.” Journal of Modern Optics 46(13): 1905-1912.
  Wang, X. J., T. E. Milner, et al. (1997). “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography.” Applied Optics 36(1): 144-149.
  Wang, X. J., T. E. Milner, et al. (1995). “Characterization of Fluid-Flow Velocity by Optical Doppler Tomography.” Optics Letters 20(11): 1337-1339.
  Wang, Y. M., J. S. Nelson, et al. (2003). “Optimal wavelength for ultrahigh-resolution optical coherence tomography.” Optics Express 11(12): 1411-1417.
  Wang, Y. M., Y. H. Zhao, et al. (2003). “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber.” Optics Letters 28(3): 182-184.
  Watkins, L. R., S. M. Tan, et al. (1999). “Determination of interferometer phase distributions by use of wavelets.” Optics Letters 24(13): 905-907.
  Wetzel, J. (2001). “Optical coherence tomography in dermatology: a review.” Skin Research and Technology 7(1): 1-9.
  Wentworth, R. H. (1989). “Theoretical Noise Performance of Coherence-Multiplexed Interferometric Sensors.” Journal of Lightwave Technology 7(6): 941-956.
  Westphal, V., A. M. Rollins, et al. (2002). “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle.” Optics Express 10(9): 397-404.
  Westphal, V., S. Yazdanfar, et al. (2002). “Real-time, high velocity-resolution color Doppler optical coherence tomography.” Optics Letters 27(1): 34-36.
  Williams, P. A. (1999). “Rotating-wave-plate Stokes polarimeter for differential group delay measurements of polarization-mode dispersion.” Applied Optics 38(31): 6508-6515.
  Wojtkowski, M., T. Bajraszewski, et al. (2003). “Real-time in vivo imaging by high-speed spectral optical coherence tomography.” Optics Letters 28(19): 1745-1747.
  Wojtkowski, M., A. Kowalczyk, et al. (2002). “Full range complex spectral optical coherence tomography technique in eye imaging.” Optics Letters 27(16): 1415-1417.
  Wojtkowski, M., R. Leitgeb, et al. (2002). “In vivo human retinal imaging by Fourier domain optical coherence tomography.” Journal of Biomedical Optics 7(3): 457-463.
  Wojtkowski, M., R. Leitgeb, et al. (2002). “Fourier domain OCT imaging of the human eye in vivo.” Proc. SPIE 4619: 230-236.
  Wojtkowski, M., V. J. Srinivasan, et al. (2004). “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.” Optics Express 12(11): 2404-2422.
  Wong, B. J. F., Y. H. Zhao, et al. (2004). “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 mu m and 1.3 mu m.” Otolaryngology—Head and Neck Surgery 130(3): 334-338.
  Yabushita, H. B., et al. (2002) “Measurement of Thin Fibrous Caps in Atherosclerotic Plaques by Optical Coherence Tomography.” American Heart Association, INC, Circulation 2002;106;1640.
  Yang, C., A. Wax, et al. (2001). “Phase-dispersion optical tomography.” Optics Letters 26(10): 686-688.
  Yang, C., A. Wax, et al. (2001). “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics.” Optics Letters 26(16): 1271-1273.
  Yang, C. H., A. Wax, et al. (2001). “Phase-dispersion optical tomography.” Optics Letters 26(10): 686-688.
  Yang, C. H., A. Wax, et al. (2000). “Interferometric phase-dispersion microscopy.” Optics Letters 25(20): 1526-1528.
  Yang, V. X. D., M. L. Gordon, et al. (2002). “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation.” Optics Communications 208(4-6): 209-214.
  Yang, V. X. D., M. L. Gordon, et al. (2003). “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance.” Optics Express 11(7): 794-809.
  Yang, V. X. D., M. L. Gordon, et al. (2003). “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis.” Optics Express 11(14): 1650-1658.
  Yang, V. X. D., M. L. Gordon, et al. (2003). “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts.” Optics Express 11(19): 2416-2424.
  Yang, V. X. D., B. Qi, et al. (2003). “In vivo feasibility of endoscopic catheter-based Doppler optical coherence tomography.” Gastroenterology 124(4): A49-A50.
  Yao, G. and L. H. V. Wang (2000). “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue.” Applied Optics 39(4): 659-664.
  Yazdanfar, S. and J. A. Izatt (2002). “Self-referenced Doppler optical coherence tomography.” Optics Letters 27(23): 2085-2087.
  Yazdanfar, S., M. D. Kulkarni, et al. (1997). “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography.” Optics Express 1 (13) : 424-431.
  Yazdanfar, S., A. M. Rollins, et al. (2000). “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography.” Optics Letters 25(19): 1448-1450.
  Yazdanfar, S., A. M. Rollins, et al. (2000). “Noninvasive imaging and velocimetry of human retinal blood flow using color Doppler optical coherence tomography.” Investigative Ophthalmology & Visual Science 41(4): S548-S548.
  Yazdanfar, S., A. M. Rollins, et al. (2003). “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography.” Archives of Ophthalmology 121(2): 235-239.
  Yazdanfar, S., C. H. Yang, et al. (2005). “Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound.” Optics Express 13(2): 410-416.
  Yun, S. H., C. Boudoux, et al. (2004). “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging.” Ieee Photonics Technology Letters 16(1): 293-295.
  Yun, S. H., C. Boudoux, et al. (2003). “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter.” Optics Letters 28(20): 1981-1983.
  Yun, S. H., G. J. Tearney, et al. (2004). “Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts.” Optics Express 12(23): 5614-5624.
  Yun, S. H., G. J. Tearney, et al. (2004). “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting.” Optics Express 12(20): 4822-4828.
  Yun, S. H., G. J. Tearney, et al. (2004). “Motion artifacts in optical coherence tomography with frequency-domain ranging.” Optics Express 12(13): 2977-2998.
  Zhang, J., J. S. Nelson, et al. (2005). “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator.” Optics Letters 30(2): 147-149.
  Zhang, Y., M. Sato, et al. (2001). “Numerical investigations of optimal synthesis of several low coherence sources for resolution improvement.” Optics Communications 192(3-6): 183-192.
  Zhang, Y., M. Sato, et al. (2001). “Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes.” Optics Letters 26(4): 205-207.
  Zhao, Y., Z. Chen, et al. (2002). “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation.” Optics Letters 27(2): 98-100.
  Zhao, Y. H., Z. P. Chen, et al. (2000). “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow.” Optics Letters 25(18): 1358-1360.
  Zhao, Y. H., Z. P. Chen, et al. (2000). “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity.” Optics Letters 25(2): 114-116.
  Zhou, D., P. R. Prucnal, et al. (1998). “A widely tunable narrow linewidth semiconductor fiber ring laser.” IEEE Photonics Technology Letters 10(6): 781-783.
  Zuluaga, A. F. and R. Richards-Kortum (1999). “Spatially resolved spectral interferometry for determination of subsurface structure.” Optics Letters 24(8): 519-521.
  Zvyagin, A. V., J. B. FitzGerald, et al. (2000). “Real-time detection technique for Doppler optical coherence tomography.” Optics Letters 25(22): 1645-1647.
  Marc Nikles et al., “Brillouin gain spectrum characterization in single-mode optical fibers”, Journal of Lightwave Technology 1997, 15 (10): 1842-1851.
  Tsuyoshi Sonehara et al., “Forced Brillouin Spectroscopy Using Frequency-Tunable Continuous-Wave Lasers”, Physical Review Letters 1995, 75 (23): 4234-4237.
  Hajime Tanaka et al., “New Method of Superheterodyne Light Beating Spectroscopy for Brillouin-Scattering Using Frequency-Tunable Lasers”, Physical Review Letters 1995, 74 (9): 1609-1612.
  Webb RH et al. “Confocal Scanning Laser Ophthalmoscope”, Applied Optics 1987, 26 (8): 1492-1499.
  Andreas Zumbusch et al. “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering”, Physical Review Letters 1999, 82 (20): 4142-4145.
  Katrin Kneipp et al., “Single molecule detection using surface-enhanced Raman scattering (SERS)”, Physical Review Letters 1997, 78 (9): 1667-1670.
  K.J. Koski et al., “Brillouin imaging” Applied Physics Letters 87, 2005.
  Boas et al., “Diffusing temporal light correlation for burn diagnosis”, SPIE, 1999, 2979:468-477.
  David J. Briers, “Speckle fluctuations and biomedical optics: implications and applications”, Optical Engineering, 1993, 32(2):277-283.Clark et al., “Tracking Speckle Patterns with Optical Correlation”, SPIE, 1992, 1772:77-87.
  Clark et al., “Tracking Speckle Patterns with Optical Correlation”, SPIE, 1992, 1772:77-87.
  Facchini et al., “An endoscopic system for DSPI”, Optik, 1993, 95(1):27-30.
  Hrabovsky, M., “Theory of speckle dispacement and decorrelation: application in mechanics”, SPIE, 1998, 3479:345-354.
  Sean J. Kirkpatrick et al., “Micromechanical behavior of cortical bone as inferred from laser speckle data”, Journal of Biomedical Materials Research, 1998, 39(3):373-379.
  Sean J. Kirkpatrick et al., “Laser speckle microstrain measurements in vascular tissue”, SPIE, 1999, 3598:121-129.
  Loree et al., “Mechanical Properties of Model Atherosclerotic Lesion Lipid Pools”, Arteriosclerosis and Thrombosis, 1994, 14(2):230-234.
  Podbielska, H. “Interferometric Methods and Biomedical Research”, SPIE, 1999, 2732:134-141.
  Richards-Kortum et al., “Spectral diagnosis of atherosclerosis using an optical fiber laser catheter”, American Heart Journal, 1989, 118(2):381-391.
  Ruth, B. “blood flow determination by the laser speckle method”, Int J Microcirc: Clin Exp, 1990, 9:21-45.
  Shapo et al., “Intravascular strain imaging: Experiments on an Inhomogeneous Phantom”, IEEE Ultrasonics Symposium 1996, 2:1177-1180.
  Shapo et al., “Ultrasonic displacement and strain imaging of coronary arteries with a catheter array”, IEEE Ultrasonics Symposium 1995, 2:1511-1514.
  Thompson et al., “Imaging in scattering media by use of laser speckle”, Opt. Soc. Am. A., 1997, 14(9):2269-2277.
  Thompson et al., “Diffusive media characterization with laser speckle”, Applied Optics, 1997, 36(16):3726-3734.
  Tuchin, Valery V., “Coherent Optical Techniques for the Analysis of Tissue Structure and Dynamics,” Journal of Biomedical Optics, 1999, 4(1):106-124.
  M. Wussling et al., “Laser diffraction and speckling studies in skeletal and heart muscle”, Biomed, Biochim, Acta, 1986, 45(1/2):S 23- S 27.
  T. Yoshimura et al., “Statistical properties of dynamic speckles”, J. Opt. Soc. Am A. 1986, 3(7):1032-1054.
  Zimnyakov et al., “Spatial speckle correlometry in applications to tissue structure monitoring”, Applied Optics 1997, 36(22): 5594-5607.
  Zimnyakov et al., “A study of statistical properties of partially developed speckle fields as applied to the diagnosis of structural changes in human skin”, Optics and Spectroscopy, 1994, 76(5): 747-753.
  Zimnyakov et al., “Speckle patterns polarization analysis as an approach to turbid tissue structure monitoring”, SPIE 1999, 2981:172-180.
  Ramasamy Manoharan et al., “Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy”, Atherosclerosis, May 1993, 181-1930.
  N.V. Salunke et al., “Biomechanics of Atherosclerotic Plaque” Critical Reviews™ in Biomedical Engineering 1997, 25(3):243-285.
  D. Fu et al., “Non-invasive quantitative reconstruction of tissue elasticity using an iterative forward approach”, Phys. Med. Biol. 2000 (45): 1495-1509.
  S.B. Adams Jr. et al., “The use of polarization sensitive optical coherence tomography and elastography to assess connective tissue”, Optical Soc. of American Washington 2002, p. 3.
  International Search Report for International Patent application No. PCT/US2005/039740.
  International Written Opinion for International Patent application No. PCT/US2005/039740.
  International Search Report for International Patent application No. PCT/US2005/030294.
  International Written Opinion for International Patent application No. PCT/US2005/043951.
  International Search Report for International Patent application No. PCT/US2005/043951.
  Erdelyi et al. “Generation of diffraction-free beams for applications in optical microlithography”, J. Vac. Sci. Technol. B 15 (12), Mar./Apr. 1997, pp. 287-292.
  International Search Report for International Patent application No. PCT/US2005/023664.
  International Written Opinion for International Patent application No. PCT/US2005/023664.
  Tearney et al., “Spectrally encoded miniature endoscopy” Optical Society of America; Optical Letters vol. 27, No. 6, Mar. 15, 2002; pp. 412-414.
  Yelin et al., “Double-clad Fiber for Endoscopy” Optical Society of America; Optical Letters vol. 29, No. 20, Oct. 16, 2005; pp. 2408-2410.
  International Search Report for International Patent application No. PCT/US2001/049704.
  International Search Report for International Patent application No. PCT/US2004/039454.
  International Written Opinion for International Patent application No. PCT/US2004/039454.
  PCT International Preliminary Report on Patentability for International Application No. PCT/US2004/038404 dated Jun. 2, 2006.
  Notice of Reasons for Rejection and English translation for Japanese Patent Application No. 2002-538830 dated May 12, 2008.
  Office Action dated Aug. 24, 2006 for U.S. Appl. No. 10/137,749.
  Barry Cense et al., “Spectral-domain polarization-sensitive optical coherence tomography at 850nm”, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, 2005, pp. 159-162.
  A. Ymeti et al., “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor”, Biosensors and Bioelectronics, Elsevier Science Publishers, 2005, pp. 1417-1421.
  PCT International Search Report for Application No. PCT/US2006/018865 filed May 5, 2006.
  International Written Opinion for International Patent application No. PCT/US2006/018865 filed May 5, 2006.
  John M. Poneros, “Diagnosis of Barrett's esophagus using optical coherence tomography”, Gastrointestinal Endoscopy clinics of North America, 14 (2004) pp. 573-588.
  P.F. Escobar et al., “Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive cancer of uterine cervix and vulva”, Int. Journal of Gynecological Cancer 2004, 14, pp. 470-474.
  Ko T et al., “Ultrahigh resolution in vivo versus ex vivo OCT imaging and tissue preservation”, Conference on Lasers and electro-optics, 2001, pp. 252-253.
  Paul M. Ripley et al., “A comparison of Artificial Intelligence techniques for spectral classification in the diagnosis of human pathologies based upon optical biopsy”, Journal of Optical Society of America, 2000, pp. 217-219.
  Wolfgang Drexler et al., “Ultrahigh-resolution optical coherence tomography”, Journal of Biomedical Optics Spie USA, 2004, pp. 47-74.
  PCT International Search Report for Application No. PCT/US2006/016677 filed Apr. 28, 2006.
  International Written Opinion for International Patent application No. PCT/US2006/016677 filed Apr. 28, 2006.
  Office Action dated Nov. 13, 2006 for U.S. Appl. No. 10/501,268.
  Office Action dated Nov. 20, 2006 for U.S. Appl. No. 09/709,162.
  PCT International Search Report and Written Opinion for Application No. PCT/US2004/023585 filed Jul. 23, 2004.
  Office Action dated Dec. 6, 2006 for U.S. Appl. No. 10/997,789.
  Elliott, K. H. “The use of commercial CCD cameras as linear detectors in the physics undergraduate teaching laboratory”, European Journal of Physics, 1998, pp. 107-117.
  Lauer, V. “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope”, Journal of Microscopy vol. 205, Issue 2, 2002, pp. 165-176.
  Yu, P. et al. “Imaging of tumor necroses using full-frame optical coherence imaging”, Proceedings of SPIE vol. 4956, 2003, pp. 34-41.
  Zhao, Y. et al. “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography”, IEEE Journal of Selected Topics in Quantum Electronics 7.6 (2001): 931-935.
  Office Action dated Dec. 18, 2006 for U.S. Appl. No. 10/501,276.
  Devesa, Susan S. et al. (1998) “Changing Patterns in the Incidence of Esophegeal and Gastric Carcinoma in the United States.” American Cancer Society vol. 83, No. 10 pp. 2049-2053.
  Barr, H et al. (2005) “Endoscopic Therapy for Barrett's Oesophaugs” Gut vol. 54:875-884.
  Johnston, Mark H.(2005) “Technology Insight: Ablative Techniques for Barrett's Esophagus—Current and Emerging Trends” www.Nature.com/clinicalpractice/gasthep.
  Falk, Gary W. et al. (1997) “Surveillance of Patients with Barrett's Esophagus for Dysplasia and Cancer with Ballon Cytology” Gastrorenterology vol. 112, pp. 1787-1797.
  Sepchler, Stuart Jon. (1997) “Barrett's Esophagus: Should We Brush off this Balloning Problem?” Gastroenterology vol. 112, pp. 2138-2152.
  Froehly, J. et al. (2003) “Multiplexed 3D Imaging Using Wavelength Encoded Spectral Interferometry: A Proof of Principle” Optics Communications vol. 222, pp. 127-136.
  Kubba A.K. et al. (1999) “Role of p53 Assessment in Management of Barrett's Esophagus” Digestive Disease and Sciences vol. 44, No. 4. pp. 659-667.
  Reid, Brian J. (2001) “p53 and Neoplastic Progression in Barrett's Esophagus” The American Journal of Gastroenterology vol. 96, No. 5, pp. 1321-1323.
  Sharma, P. et al.(2003) “Magnification Chromoendoscopy for the Detection of Intestinal Metaplasia and Dysplasia in Barrett's Oesophagus” Gut vol. 52, pp. 24-27.
  Kuipers E.J et al. (2005) “Diagnostic and Therapeutic Endoscopy” Journal of Surgical Oncology vol. 92, pp. 203-209.
  Georgakoudi, Irene et al. (2001) “Fluorescence, Reflectance, and Light-Scattering Spectroscopy for Evaluating Dysplasia in Patients with Barrett's Esophagus” Gastroenterology vol. 120, pp. 1620-1629.
  Adrain, Alyn L. et al. (1997) “High-Resolution Endoluminal Sonography is a Sensitive Modality for the Identification of Barrett's Meaplasia” Gastrointestinal Endoscopy vol. 46, No. 2, pp. 147-151.
  Canto, Marcia Irene et al (1999) “Vital Staining and Barrett's Esophagus” Gastrointestinal Endoscopy vol. 49, No. 3, part 2, pp. 12-16.
  Evans, John A. et al. (2006) “Optical Coherence Tomography to Identify Intramucosal Carcinoma and High-Grade Dysplasia in Barrett's Esophagus” Clinical Gastroenterology and Hepatology vol. 4, pp. 38-43.
  Poneros, John M. et al. (2001) “Diagnosis of Specialized Intestinal Metaplasia by Optical Coherence Tomography” Gastroenterology vol. 120, pp. 7-12.
  Ho, W. Y. et al. (2005) “115 KHz Tuning Repetition Rate Ultrahigh-Speed Wavelength-Swept Semiconductor Laser” Optics Letters Col. 30, No. 23, pp. 3159-3161.
  Brown, Stanley B. et al. (2004) “The Present and Future Role of Photodynamic Therapy in Cancer Treatment” The Lancet Oncology vol. 5, pp. 497-508.
  Boogert, Jolanda Van Den et al. (1999) “Endoscopic Ablation Therapy for Barrett's Esophagua with High-Grade Dysplasia: A Review” The American Journal of Gastroenterology vol. 94, No. 5, pp. 1153-1160.
  Sampliner, Richard E. et al. (1996) “Reversal of Barrett's Esophagus with Acid Suppression and Multipolar Electrocoagulation: Preliminary Results” Gastrointestinal Endoscopy vol. 44, No. 5, pp. 532-535.
  Sampliner, Richard E. (2004) “Endoscopic Ablative Therapy for Barrett's Esophagus: Current Status” Gastrointestinal Endoscopy vol. 59, No. 1, pp. 66-69.
  Soetikno, Roy M. et al. (2003) “Endoscopic Mucosal resection” Gastrointestinal Endoscopy vol. 57, No. 4, pp. 567-579.
  Ganz, Robert A. et al. (2004) “Complete Ablation of Esophageal Epithelium with a Balloon-based Bipolar Electrode: A Phased Evaluation in the Porcine and in the Human Esophagus” Gastrointestinal Endoscopy vol. 60, No. 6, pp. 1002-1010.
  Pfefer, Jorje at al. (2006) “Performance of the Aer-O-Scope, A Pneumatic, Self Propelling, Self Navigating Colonoscope in Animal Experiments” Gastrointestinal Endoscopy vol. 63, No. 5, pp. AB223.
  Overholt, Bergein F. et al. (1999) “Photodynamic Therapy for Barrett's Esophagus: Follow-Up in 100 Patients” Gastrointestinal Endoscopy vol. 49, No. 1, pp. 1-7.
  Vogel, Alfred et al. (2003) “Mechanisms of Pulsed Laser Ablation of Biological Tissues” American Chemical Society vol. 103, pp. 577-644.
  McKenzie, A. L. (1990) “Physics of Thermal Processes in Laser-Tissue Interaction” Phys. Med. Biol vol. 35, No. 9, pp. 1175-1209.
  Anderson, R. Rox et al. (1983) “Selective Photothermolysis Precise Microsurgery by Selective Absorption of Pulsed Radiation” Science vol. 220, No. 4596, pp. 524-527.
  Jacques, Steven L. (1993) “Role of Tissue Optics and Pulse Duration on Tissue Effects During High-Power Laser Irradiation” Applied Optics vol. 32, No. 13, pp. 2447-2454.
  Nahen, Kester et al. (1999) “Investigations on Acosustic On-Line Monitoring of IR Laser Ablation of burned Skin” Lasers in Surgery and Medicine vol. 25, pp. 69-78.
  Jerath, Maya R. et al. (1993) “Calibrated Real-Time Control of Lesion Size Based on Reflectance Images” Applied Optics vol. 32, No. 7, pp. 1200-1209.
  Jerath, Maya R. et al (1992) “Dynamic Optical Property Changes: Implications for Reflectance Feedback Control of Photocoagulation” Journal of Photochemical,.Photobiology. B: Biol vol. 16, pp. 113-126.
  Deckelbaum, Lawrence I. (1994) “Coronary Laser Angioplasty” Lasers in Surgery and Medicine vol. 14, pp. 101-110.
  Kim, B.M. et al. (1998) “Optical Feedback Signal for Ultrashort Laser Pulse Ablation of Tissue” Applied Surface Science vol. 127-129, pp. 857-862.
  Brinkman, Ralf et al. (1996) “Analysis of Cavitation Dynamics During Pulsed Laser Tissue Ablation by Optical On-Line Monitoring” IEEE Journal of Selected Topics in Quantum Electronics vol. 2, No. 4, pp. 826-835.
  Whelan, W.M. et al. (2005) “A novel Strategy for Monitoring Laser Thermal Therapy Based on Changes in Optothermal Properties of Heated Tissues” International Journal of Thermophysics vol. 26., No. 1, pp. 233-241.
  Thomsen, Sharon et al. (1990) “Microscopic Correlates of Macroscopic Optical Property Changes During Thermal Coagulation of Myocardium” SPIE vol. 1202, pp. 2-11.
  Khan, Misban Huzaira et al. (2005) “Intradermally Focused Infrared Laser Pulses: Thermal Effects at Defined Tissue Depths” Lasers in Surgery and Medicine vol. 36, pp. 270-280.
  Neumann, R.A. et al. (1991) “Enzyme Histochemical Analysis of Cell Viability After Argon Laser-Induced Coagulation Necrosis of the Skin” Journal of the American Academy of Dermatology vol. 25, No. 6, pp. 991-998.
  Nadkarni, Seemantini K. et at (2005) “Charaterization of Atherosclerotic Plaques by Laser Speckle Imaging” Circulation vol. 112, pp. 885-892.
  Zimnyakov, Dmitry A. et al (2002) “Speckle-Contrast Monitoring of Tissue Thermal Modification” Applied Optics vol. 41, No. 28, pp. 5989-5996.
  Morelli, J.G., et al (1986) “Tunable Dye Laser (577 nm) Treatment of Port Wine Stains” Lasers in Surgery and Medicine vol. 6, pp. 94-99.
  French, P.M.W. et al. (1993) “Continuous-wave Mode-Locked Cr4+: YAG Laser” Optics Letters vol. 18, No. 1, pp. 39-41.
  Sennaroglu, Alphan et al. (1995) “Efficient Continuous-Wave Chromium-Doped YAG Laser” Journal of Optical Society of America vol. 12, No. 5, pp. 930-937.
  Bouma, B et al. (1994) “Hybrid Mode Locking of a Flash-Lamp-Pumped Ti: Al2O3 Laser” Optics Letters vol. 19, No. 22, pp. 1858-1860.
  Bouma, B et al. (1995) “High Resolution Optical Coherence Tomography Imaging Using a Mode-Locked Ti: Al2O3 Laser Source” Optics Letters vol. 20, No. 13, pp. 1486-1488.
  Fernandez, Cabrera Delia et al. “Automated detection of retinal layer structures on optical coherence tomography images”, Optics Express vol. 13, No. 25, Oct. 4, 2005, pp. 10200-10216.
  Ishikawa, Hiroshi et al. “Macular Segmentation with optical coherence tomography”, Investigative Ophthalmology & Visual Science, vol. 46, No. 6, Jun. 2005, pp. 2012-2017.
  Hariri, Lida P. et al. “Endoscopic Optical Coherence Tomography and Laser-Induced Fluorescence Spectroscopy in a Murine Colon Cancer Model”, Laser in Surgery and Medicine, vol. 38, 2006, pp. 305-313.
  PCT International Search Report and Written Opinion for Application No. PCT/US2006/031905 dated May 3, 2007.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/060481 dated May 23, 2007.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/060717 dated May 24, 2007.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/060319 dated Jun. 6, 2007.
  D. Yelin et al., “Three-dimensional imaging using spectral encoding heterodyne interferometry”, Optics Letters, Jul. 15, 2005, vol. 30, No. 14, pp. 1794-1796.
  Akiba, Masahiro et al. “En-face optical coherence imaging for three-dimensional microscopy”, SPIE, 2002, pp. 8-15.
  Office Action dated Aug. 10, 2007 for U.S. Appl. No. 10/997,789.
  Office Action dated Feb. 2, 2007 for U.S. Appl. No. 11/174,425.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/060657 dated Aug. 13, 2007.
  Lewis, Neil E. et al., (2006) “Applications of Fourier Transform Infrared Imaging Microscopy in Neurotoxicity”, Annals New York Academy of Sciences, Dec. 17, 2006, vol. 820, pp. 234-746.
  Joo, Chulmin et al., Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging Optics Letters, Aug. 15, 2005, vol. 30, No. 16, pp. 2131-2133.
  Guo, Bujin et al., “Laser-based mid-infrared reflectance imaging of biological tissues”, Optics Express, Jan. 12, 2004, vol. 12, No. 1, pp. 208-219.
  Office Action dated Mar. 28, 2007 for U.S. Appl. No. 11/241,907.
  Office Action dated May 23, 2007 for U.S. Appl. No. 10/406,751.
  Office Action dated May 23, 2007 for U.S. Appl. No. 10/551,735.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/061815 dated Aug. 2, 2007.
  Sir Randall, John et al., “Brillouin scattering in systems of biological significance”, Phil. Trans. R. Soc. Lond. A 293, 1979, pp. 341-348.
  Takagi, Yasunari, “Application of a microscope to Brillouin scattering spectroscopy”, Review of Scientific Instruments, No. 12, Dec. 1992, pp. 5552-5555.
  Lees, S. et al., “Studies of Compact Hard Tissues and Collagen by Means of Brillouin Light Scattering”, Connective Tissue Research, 1990, vol. 24, pp. 187-205.
  Berovic, N. “Observation of Brillion scattering from single muscle fibers”, European Biophysics Journal, 1989, vol. 17, pp. 69-74.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/062465 dated Aug. 8, 2007.
  Pythila John W. et al., “Rapid, depth-resolved light scattering measurements using Fourier domain, angle-resolved low coherence interferometry”, Optics Society of America, 2004.
  Pyhtila John W. et al., “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system”, Optics Express, Dec. 15, 2003, vol. 11, No. 25, pp. 3473-3484.
  Desjardins A.E., et al., “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging”, Optics Express, May 15, 2006, vol. 14, No. 11, pp. 4736-4745.
  Nadkarni, Seemantini K., et al., “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images”, Journal of Biomedical Optics, vol. 11 Marsh/Apr. 2006, pp. 021006-1-021006-8.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/066017 dated Aug. 30, 2007.
  Yamanari M. et al., “Polarization sensitive Fourier domain optical coherence tomography with continuous polarization modulation”, Proc. of SPIE, vol. 6079, 2006.
  Zhang Jun et al., “Full range polarization-sensitive Fourier domain optical coherence tomography”, Optics Express, Nov. 29, 2004, vol. 12, No. 24, pp. 6033-6039.
  European Patent Office Search report for Application No. 01991092.6-2305 dated Jan. 12, 2006.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/060670 dated Sep. 21, 2007.
  J. M. Schmitt et al., (1999) “Speckle in Optical Coherence Tomography: An Overview”, SPIE vol. 3726, pp. 450-461.
  Office Action dated Oct. 11, 2007 for U.S. Appl. No. 11/534,095.
  Office Action dated Oct. 9, 2007 for U.S. Appl. No. 09/709,162.
  Notice of Allowance dated Oct. 3, 2007 for U.S. Appl. No. 11/225,840.
  Siavash Yazdanfar et al., “In Vivo imaging in blood flow in human retinal vessels using color Doppler optical coherence tomography”, SPIE, 1999 vol. 3598, pp. 177-184.
  Office Action dated Oct. 30, 2007 for U.S. Appl. No. 11/670,069.
  Tang C. L. et al., “Wide-band electro-optical tuning of semiconductor lasers”, Applied Physics Letters, vol. 30, No. 2, Jan. 15, 1977, pp. 113-116.
  Tang C. L. et al., “Transient effects in wavelength-modulated dye lasers”, Applied Physics Letters, vol. 26, No. 9, May 1, 1975, pp. 534-537.
  Telle M. John, et al., “Very rapid tuning of cw dye laser”, Applied Physics Letters, vol. 26, No. 10, May 15, 1975, pp. 572-574.
  Telle M. John, et al., “New method for electro-optical tuning of tunable lasers”, Applied Physics Letters, vol. 24, No. 2, Jan. 15, 1974, pp. 85-87.
  Schmitt M. Joseph et al. “OCT elastography: imaging microscopic deformation and strain of tissue”, Optics Express, vol. 3, No. 6, Sep. 14, 1998, pp. 199-211.
  M. Gualini Muddassir et al., “Recent Advancements of Optical Interferometry Applied to . Medicine”, IEEE Transactions on Medical Imaging, vol. 23, No. 2, Feb. 2004, pp. 205-212.
  Maurice L. Roch et al. “Noninvasive Vascular Elastography: Theoretical Framework”, IEEE Transactions on Medical Imaging, vol. 23, No. 2, Feb. 2004, pp. 164-180.
  Kirkpatrick J. Sean et al. “Optical Assessment of Tissue Mechanical Properties”, Proceedings of the SPIE—The International Society for Optical Engineering SPIE—vol. 4001, 2000, pp. 92-101.
  Lisauskas B. Jennifer et al., “Investigation of Plaque Biomechanics from Intravascular Ultrasound Images using Finite Element Modeling”, Proceedings of the 19th International. Conference—IEEE Oct. 30-Nov. 2, 1997, pp. 887-888.
  Parker K. J. et al., “Techniques for Elastic Imaging: A Review”, IEEE Engineering in Medicine and Biology, Nov./Dec. 1996, pp. 52-59.
  European Patent Office Search Report dated Nov. 20, 2007 for European Application No. 05791226.3.
  Dubois Arnaud et al., “Ultrahigh-resolution OCT using white-light interference microscopy”, Proceedings of SPIE, 2003, vol. 4956, pp. 14-21.
  Office Action dated Jan. 3, 2008 for U.S. Appl. No. 10/997,789.
  Office Action dated Dec. 21, 2007 for U.S. Appl. No. 11/264,655.
  Office Action dated Dec. 18, 2007 for U.S. Appl. No. 11/288,994.
  Office Action dated Jan. 10, 2008 for U.S. Appl. No. 11/435,228.
  Office Action dated Jan. 10, 2008 for U.S. Appl. No. 11/410,937.
  Office Action dated Jan. 11, 2008 for U.S. Appl. No. 11/445,990.
  Office Action dated Feb. 4, 2008 for U.S. Appl. No. 10/861,179.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/061463 dated Jan. 23, 2008.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/061481 dated Mar. 17, 2008.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/078254 dated Mar. 28, 2008.
  Sadhwani, Ajay et al., “Determination of Teflon thickness with laser speckle I. Potential for burn depth diagnosis”, Optical Society of America, 1996, vol. 35, No. 28, pp. 5727-5735.
  C.J. Stewart et al., “A comparison of two laser-based methods for determination of burn scar perfusion: Laser Doppler versus laser speckle imaging”, Elsevier Ltd., 2005, vol. 31, pp. 744-752.
  G. J. Tearney et al., “Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis”, CLEO 2001, vol. 56, pp. 307-307.
  PCT International Search Report for Application No. PCT/US2007/068233 dated Feb. 21, 2008.
  PCT International Search Report for Application No. PCT/US2007/060787 dated Mar. 18, 2008.
  Statement under Article 19 and Reply to PCT Written Opinion for PCT International Application No. PCT/US2005/043951 dated Jun. 6, 2006.
  PCT International Preliminary Report on Patentability for Application No. PCT/US2005/043951 dated Jun. 7, 2007.
  Liptak David C. et al., (2007) “On the Development of a Confocal Rayleigh-Brillouin Microscope” American Institute of Physics vol. 78, 016106.
  Office Action mailed Oct. 1, 2008 for U.S. Appl. No. 11/955,986.
  Invitation of Pay Additional Fees mailed Aug. 7, 2008 for International Application No. PCT/US2008/062354.
  Invitation of Pay Additional Fees mailed Jul. 20, 2008 for International Application No. PCT/US2007/081982.
  International Search Report and Written Opinion mailed Mar. 7, 2006 for PCT/US2005/035711.
  International Search Report and Written Opinion mailed Jul. 18, 2008 for PCT/US2008/057533.
  Aizu, Y et al. (1991) “Bio-Speckle Phenomena and Their Application to the Evaluation of Blood Flow” Optics and Laser Technology, vol. 23, No. 4, Aug. 1, 1991.
  Richards G.J. et al. (1997) “Laser Speckle Contrast Analysis (LASCA): A Technique for Measuring Capillary Blood Flow Using the First Order Statistics of Laser Speckle Patterns” Apr. 2, 1997.
  Gonick, Maria M., et al (2002) “Visualization of Blood Microcirculation Parameters in Human Tissues by Time Integrated Dynamic Speckles Analysis” vol. 972, No. 1, Oct. 1, 2002.
  International Search Report and Written Opinion mailed Jul. 4, 2008 for PCT/US2008/051432.
  Jonathan, Enock (2005) “Dual Reference Arm Low-Coherence Interferometer-Based Reflectometer for Optical Coherence Tomography (OCT) Application” Optics Communications vol. 252.
  Motaghian Nezam, S.M.R. (2007) “increased Ranging Depth in optical Frequency Domain Imaging by Frequency Encoding” Optics Letters, vol. 32, No. 19, Oct. 1, 2007.
  Office Action dated Jun. 30, 2008 for U.S. Appl. No. 11/670,058.
  Office Action dated Jul. 7, 2008 for U.S. Appl. No. 10/551,735.
  Australian Examiner's Report mailed May 27, 2008 for Australian patent application No. 2003210669.
  Notice of Allowance mailed Jun. 4, 2008 for U.S. Appl. No. 11/174,425.
  European communication dated May 15, 2008 for European patent application No. 05819917.5.
  International Search Report and Written Opinion mailed Jun. 10, 2008 for PCT/US2008/051335.
  Oh. W.Y. et al (2006) “Ultrahigh-Speed Optical Frequency Domain Imaging and Application to laser Ablation Monitoring” Applied Physics Letters, vol. 88.
  Office Action dated Aug. 21, 2008 for U.S. Appl. No. 11/505,700.
  Sticker, Markus (2002) En Face Imaging of Single Cell layers by Differential Phase-Contrast Optical Coherence Microscopy) Optics Letters, Col. 27, No. 13, Jul. 1, 2002.
  International Search Report and Written Opinion dated Jul. 17, 2008 for International Application No. PCT/US2008/057450.
  International Search Report and Written Opinion dated Aug. 11, 2008 for International Application No. PCT/US2008/058703.
  US National Library of Medicine (NLM), Bethesda, MD, US; Oct. 2007, “Abstracts of the 19th Annual Symposium of Transcatheter Cardiovascular Therapeutics, Oct. 20-25, 2007, Washington, DC, USA.”.
  International Search Report and Written Opinion dated May 26, 2008 for International Application No. PCT/US2008/051404.
  Office Action dated Aug. 25, 2008 for U.S. Appl. No. 11/264,655.
  Office Action dated Sep. 11, 2008 for U.S. Appl. No. 11/624,334.
  Office Action dated Aug. 21, 2008 for U.S. Appl. No. 11/956,079.
  Gelikono, V. M. et al. Oct. 1, 2004 “Two-Wavelength Optical Coherence Tomography” Radio physics and Quantum Electronics, Kluwer Academic Publishers-Consultants. vol. 47, No. 10-1.
  International Search Report and Written Opinion for PCT/US2007/081982 dated Oct. 19, 2007.
  Database Compendex Engineering Information, Inc., New York, NY, US; Mar. 5, 2007, Yelin, Dvir et al: “Spectral-Domain Spectrally-Encoded Endoscopy”.
  Database Biosis Biosciences Information Service, Philadelphia, PA, US; Oct. 2006, Yelin D. et al: “Three-Dimensional Miniature Endoscopy”.
  International Search Report and Written Opinion mailed Mar. 14, 2005 for PCT/US2004/018045.
  Notification of the international Preliminary Report on Patentability mailed Oct. 21, 2005.
  Shim M.G. et al., “Study of Fiber-Optic Probes for In vivo Medical Raman Spectroscopy” Applied Spectroscopy. vol. 53, No. 6, Jun. 1999.
  Bingid U. et al., “Fibre-Optic Laser-Assisted Infrared Tumour Diagnostics (FLAIR); Infrared Tomour Diagnostics” Journal of Physics D. Applied Physics, vol. 38, No. 15, Aug. 7, 2005.
  Jun Zhang et al. “Full Range Polarization-Sensitive Fourier Domain Optical Coherence Tomography” Optics Express, vol. 12, No. 24. Nov. 29, 2004.
  Yonghua et al., “Real-Time Phase-Resolved Functional Optical Hilbert Transformation” Optics Letters, vol. 27, No. 2, Jan. 15, 2002.
  Siavash et al., “Self-Referenced Doppler Optical Coherence Tomography” Optics Letters, vol. 27, No. 23, Dec. 1, 2002.
  International Search Report and Written Opinion dated Dec. 20, 2004 for PCT/US04/10152.
  Notification Concerning Transmittal of International Preliminary Report on Patentability dated Oct. 13, 2005 for PCT/US04/10152.
  International Search Report and Written Opinion dated Mar. 23, 2006 for PCT/US2005/042408.
  International Preliminary Report on Patentability dated Jun. 7, 2007 for PCT/US2005/042408.
  International Search Report and Written Opinion dated Feb. 28, 2007 for International Application No. PCT/US2006/038277.
  International Search Report and Written Opinion dated Jan. 30, 2009 for International Application No. PCT/US2008/081834.
  Fox, J.A. et al; “A New Galvanometric Scanner for Rapid tuning of C02 Lasers” New York, IEEE, US vol. Apr. 7, 1991.
  Motaghian Nezam, S.M. et al: “High-speed Wavelength-Swept Semiconductor laser using a Diffrection Grating and a Polygon Scanner in Littro Configuration” Optical Fiber Communication and the National Fiber Optic Engineers Conference Mar. 29, 2007.
  International Search Report and Written Opinion dated Feb. 2, 2009 for International Application No. PCT/US2008/071786.
  Bilenca A et al: “The Role of Amplitude and phase in Fluorescence Coherence Imaging: From Wide Filed to Nanometer Depth Profiling”, Optics IEEE, May 5, 2007.
  Inoue, Yusuke et al: “Variable Phase-Contrast Fluorescence Spectrometry for Fluorescently Strained Cells”, Applied Physics Letters, Sep. 18, 2006.
  Bernet, S et al: “Quantitative Imaging of Complex Samples by Spiral Phase Contrast Microscopy”, Optics Express, May 9, 2006.
  International Search Report and Written Opinion dated Jan. 15, 2009 for International Application No. PCT/US2008/074863.
  Office Action dated Feb. 17, 2009 for U.S. Appl. No. 11/211,483.
  Notice of Reasons for Rejection mailed Dec. 2, 2008 for Japanese patent application No. 2000-533782.
  International Search Report and Written Opinion dated Feb. 24, 2009 for PCT/US2008/076447.
  European Official Action dated Dec. 2, 2008 for EP 07718117.0.
  Barfuss et al (1989) “Modified Optical Frequency Domain Reflectometry with High spatial Resolution for Components of integrated optic Systems”, Journal of Lightwave Technology, IEEE vol. 7., No. 1.
  Yun et al., (2004) “Removing the Depth-Degeneracy in Optical Frequency Domain Imaging with Frequency Shifting”, Optics Express, vol. 12, No. 20.
  International Search Report and Written Opinion dated Jun. 10, 2009 for PCT/US08/075456.
  European Search Report issued May 5, 2009 for European Application No. 01991471.2.
  Motz, J.T. et al: “Spectral-and Frequency-Encoded Fluorescence Imaging” Optics Letters, OSA, Optical Society of America, Washington, DC, US, vol. 30, No. 20, Oct. 15, 2005, pp. 2760-2762.
  Japanese Notice of Reasons for Rejection dated Jul. 14, 2009 for Japanese Patent application No. 2006-503161.
  Office Action dated Aug. 18, 2009 for U.S. Appl. No. 12/277,178.
  Office Action dated Aug. 13, 2009 for U.S. Appl. No. 10/136,813.
  Office Action dated Aug. 6, 2009 for U.S. Appl. No. 11/624,455.
  Office Action dated May 15, 2009 for U.S. Appl. No. 11/537,123.
  Office Action dated Apr. 17, 2009 for U.S. Appl. No. 11/537,343.
  Office Action dated Apr. 15, 2009 for U.S. Appl. No. 12/205,775.
  Office Action dated Dec. 9, 2008 for U.S. Appl. No. 09/709,162.
  Office Action dated Dec. 23, 2008 for U.S. Appl. No. 11/780,261.
  Office Action dated Jan. 9, 2010 for U.S. Appl. No. 11/624,455.
  Office Action dated Feb. 18, 2009 for U.S. Appl. No. 11/285,301.
  Beddow et al, (May 2002) “Improved Performance Interferomater Designs for Optical Coherence Tomography”, IEEE Optical Fiber Sensors Conference, pp. 527-530.
  Yaqoob et al., (Jun. 2002) “High-Speed Wavelength-Multiplexed Fiber-Optic Sensors for Biomedicine,” Sensors Proceedings of the IEEE, pp. 325-330.
  Office Action dated Feb. 18, 2009 for U.S. Appl. No. 11/697,012.
  Zhang et al, (Sep. 2004), “Fourier Domain Functional Optical Coherence Tomography”, Saratov Fall Meeting 2004, pp. 8-14.
  Office Action dated Feb. 23, 2009 for U.S. Appl. No. 11/956,129.
  Office Action dated Mar. 16, 2009 for U.S. Appl. No. 11/621,694.
  Office Action dated Oct. 1, 2009 for U.S. Appl. No. 11/677,278.
  Office Action dated Oct. 6, 2009 for U.S. Appl. No. 12/015,642.
  Lin, Stollen et al., (1977) “A CW Tunable Near-infrared (1.085-1.175-um) Raman Oscillator,” Optics Letters, vol. 1, 96.
  Summons to attend Oral Proceedings dated Oct. 9, 2009 for European patent application No. 06813365.1.
  Office Action dated Dec. 15, 2009 for U.S. Appl. No. 11/549,397.
  Japanese Notice of Reasons for Rejection dated Mar. 27, 2012 for JP 2003-102672.
  Japanese Notice of Reasons for Rejection dated May 8, 2012 for JP 2008-533727.
  Korean Office Action dated May 25, 2012 for KR 10-2007-7008116.
  Japanese Notice of Reasons for Rejection dated May 21, 2012 for JP 2008-551523.
  Japanese Notice of Reasons for Rejection dated Jun. 20, 2012 for JP 2009-546534.
  European Official Communication dated Aug. 1, 2012 for EP 10193526.0.
  European Search Report dated Jun. 25, 2012 for EP 10733985.5.
  Wieser, Wolfgang et al., “Multi-Megahertz OCT: High Quality 3D Imaging at 20 million A-Scans and 4.5 Gvoxels Per Second” Jul. 5, 2010, vol. 18, No. 14, Optics Express.
  European Communication Pursuant to EPC Article 94(3) for EP 07845206.7 dated Aug. 30, 2012.
  International Search Report and Written Opinion mailed Aug. 30, 2012 for PCT/US2012/035234.
  Giuliano Scarcelli et al., “Three-Dimensional Brillouin Confocal Microscopy”. Optical Society of American, 2007, CtuV5.
  Giuliano, Scarcelli et al., “Confocal Brillouin Microscopy for Three-Dimensional Mechanical Imaging,” Nat Photonis, Dec. 9, 2007.
  Japanese Notice of Reasons for Rejections dated Oct. 10, 201 for JP 2008-553511.
  Japanese Notice of Reasons for Rejections dated Oct. 2, 2012 for 2007-543626.
  Canadian Office Action dated Oct. 10, 2012 for 2,514,189.
  Japanese Notice of Reasons for Rejections dated Nov. 9, 2012 for JP 2007-530134.
  Japanese Notice of Reasons for Rejections dated Nov. 27, 2012 for JP 2009-554772.
  Japanese Notice of Reasons for Rejections dated Oct. 11, 2012 for JP 2008-533712.
  Yoden, K. et al. “An Approach to Optical Reflection Tomography Along the Geometrial Thickness,” Optical Review, vol. 7, No. 5, Oct. 1, 2000.
  International Search Report and Written Opinion mailed Oct. 25, 2012 for PCT/US2012/047415.
 
 
     * cited by examiner
 
     Primary Examiner —Luke Ratcliffe
     Art Unit — 3645
     Exemplary claim number — 1
 
(74)Attorney, Agent, or Firm — Dorsey & Whitney LLP

(57)

Abstract

Exemplary embodiments of apparatus, method and computer accessible medium can be provided which can facilitate a determination of at least one characteristic of a structure. For example, it is possible to use at least one first arrangement which can be structured to provide at least one first transmitted radiation along a first axis and at least one second transmitted radiation along a second axis. The first and second transmitted radiations can impact the structure and generate respective first and second returned radiation. The first and second axis can be provided at a predetermined angle with respect with one another which is greater than 0. Further, at least one second arrangement can be provided which can be configured to receive data associated with the first and second returned radiations, and determine at least one relative velocity between the structure and the first arrangement along the first and second axes.
21 Claims, 6 Drawing Sheets, and 6 Figures


CROSS-REFERENCE TO RELATED APPLICATION(S)

[0001] This application is based upon and claims the benefit of priority from U.S. Patent Application Ser. No. 61/051,231, filed on May 7, 2008, the entire disclosure of which is incorporated herein by reference.

FIELD OF THE DISCLOSURE

[0002] The present disclosure relates to exemplary embodiments of systems, methods and computer-accessible medium for monitoring of relative spatial locations or motions between an instrument and a sample, and more particularly to exemplary embodiments of systems, methods and computer-accessible medium for tracking vessel motion during, e.g., a three-dimensional coronary artery microscopy procedure.

BACKGROUND INFORMATION

[0003] In certain applications, it can be desirable to monitor the relative location or motion between two objects. For example, in certain applications, it can be beneficial to precisely direct a well-defined beam or sensing vector along particular directions or at specific locations with respect to a sample. It can therefore be important to provide knowledge about the relative location or motion between the beam or sensing vector and the sample. In several laser procedures, for example, it can be desirable to scan a laser beam across a sample according to a predetermined scan pattern or at specific locations. In cases where the sample may undergo uncontrolled motion, the precision with which the predetermined scan pattern or specific location can be achieved can be compromised. In certain sensing or imaging applications, it can be important to control the sensing point or axis with respect to a sample. In order to generate two- or three-dimensional images, the sensing point or axis can be scanned with respect to the sample according to a predetermined pattern. For accurate imaging reproduction of the structure of the sample, it can be important that the predetermined scan pattern is precisely followed. In the presence of uncontrolled sample motion, the actual scan pattern on or within the sample can differ from the predetermined scan pattern and image fidelity can be compromised.
[0004] One general category of strategies that can be commonly followed for monitoring the spatial location or motion between two objects is to monitor the location or motion of each objects with respect to a known or controlled reference point. This type of strategy can be relevant in cases where one object and the reference point are persistently located with respect to one another. In medical catheter-based imaging applications, for example, the signal transducer can be placed at the distal end of a catheter, which can be inserted within an animal or human body. The transducer can be connected to an actuator at a proximal end of the catheter using an axially non-extensible, torque-conveying element such that as the actuator rotates or pushes or pulls the element, the actuator's motion is replicated accurately at the transducer. When the tissue or organ that is being imaged is not moving, and further, when the imaging system is not moving, then the constraint that one object and the reference point can be fixed with respect to one another is met. Therefore, the relative location and/or motion of the transducer with respect to the organ or tissue can be monitored and controlled. In some cases, however, the organ or tissue may undergo motion, e.g., due to respiration, cardiac function, peristalsis or patient motion, and this general category of strategy may not be applicable. Further, motion within the body, along the length of the catheter, can result in an uncontrolled motion of a distal end and of the transducer of the catheter with respect to the tissue of interest.
[0005] In certain medical procedures, it can be preferable to monitor the location and/or motion of an instrument with respect to a specific anatomical location or organ. An exemplary strategy to accomplish this objective can be to prepare the instrument so that it can be detected by an imaging modality that also facilitates a detection of the specific anatomical location or organ. In certain cases, however, the anatomical location or organ may not exhibit sufficient contrast for detection. For example, by fluoroscopy or X-ray computed tomography, the soft-tissues of the body can exhibit low relative contrast. For example, coronary arteries may not, therefore, be located with these techniques without the use of exogenous contrast agents. Furthermore, certain conventional imaging technologies may not have a sufficient resolution to precisely determine the relative location or motion of an instrument with respect to a specific anatomical location or organ.
[0006] The above-described issues and deficiencies are merely representative of a need for more precisely monitoring the relative location or motion between two objects. Indeed, it may be beneficial to address and/or overcome at least some of the deficiencies described herein above.

SUMMARY OF THE INVENTION

[0007] In order to overcome at least some of the deficiencies described above, exemplary embodiments according to the present disclosure can be provided for accurately monitoring the relative location and/or motion between two objects. In one exemplary embodiment, one object can be configured to emit an acoustic or electromagnetic radiation, which may be scattered by the second object. The first object can be further configured to collect at least a portion of the scattered acoustic or electromagnetic radiation and process this signal to determine the relative distance and/or relative velocity between the two objects. In another exemplary embodiment of the present disclosure, the first object can be facilitated to provide two or more distinct acoustic or electromagnetic radiations, which can be directed along distinct propagation axes having predetermined angles with respect to one another, and which can further scatter from the second object. In this embodiment, the first object may be further configured to collect two or more of the scattered acoustic or electromagnetic radiations and to process the corresponding signals in order to determine the relative motion of the two objects in two or more spatial dimensions.
[0008] According to still another exemplary embodiment of the present disclosure, a medical catheter can be provided which is configured to deliver at least one beam of light that may be reflected by a specific anatomical location or biological organ. The exemplary catheter can be further configured to detect the reflected light and to process this signal to determine the relative distance and/or relative velocity between the catheter and the biological site. Exemplary embodiments of methods for processing the signal can be based on the Doppler frequency shift imparted on the reflected light by the motion of the second object. By tracking the relative velocity over time, the distance between the two objects may be monitored. The medical catheter can be further configured to deliver multiple light beams, having distinct wavelength components and directed through distinct spatial angles with respect to one another so that the relative velocity vector between the catheter and the specific anatomical site or biological organ can be determined.
[0009] Thus, according to certain exemplary embodiments of the present disclosure, apparatus, method and computer accessible medium can be provided which can facilitate a determination of at least one characteristic of a structure. For example, it is possible to use at least one first arrangement which can be structured to provide at least one first transmitted radiation along a first axis and at least one second transmitted radiation along a second axis. The first and second transmitted radiations can impact the structure and generate respective first and second returned radiation. The first and second axis can be provided at a predetermined angle with respect with one another which is greater than 0. Further, at least one second arrangement can be provided which can be configured to receive data associated with the first and second returned radiations, and determine at least one relative velocity between the structure and the first arrangement along the first and second axes.
[0010] In another exemplary embodiment of the present disclosure, the first and second transmitted radiations can be electro-magnetic radiations and/or ultrasound radiations. Further, the first and second transmitted radiations can have different wavelengths. In addition, the data can correspond to a Doppler shift between the first and second transmitted radiations and the first and second returned radiations. The data can also correspond to, e.g., a time rate of change of a distance between the apparatus and the structure along the first and second axes.
[0011] According to still another exemplary embodiment of the present disclosure, the first arrangement can extend along a longitudinal axis, and a first velocity along the first axis and a second velocity along the second axis can be used to determine a further relative velocity between the apparatus and the structure at least approximately along the longitudinal axis. In addition, a position and/or a rotation of the apparatus can be determined based on the further relative velocity. Further, at least one third arrangement which can be configured to generate at least one image of at least one portion of the structure as a function of the relative velocity. For example, the third arrangement can generate the image using an optical frequency domain interferometric procedure, an optical coherence interferometric procedure and/or an ultrasound procedure. At least a portion of the third arrangement is provided in a catheter.
[0012] In yet another exemplary embodiment of the present disclosure, the first arrangement can include a portion having a section which is structured to reflect at least one of the first and/or second transmitted radiations and at least partially to allow to pass therethrough the other one of the first and/or second transmitted radiations based on respective wavelengths of the first and second transmitted radiations. For example, the reflected radiation and the pass through radiation can be provided at the predetermined angle. Further, the first arrangement can be structured to collimate and/or focus the first transmitted radiation and/or the second transmitted radiation. In addition, the first and second axes can impact the structure at positive and negative angles, respectively, with respect to an axis perpendicular to a surface of the structure. The second arrangement can be further configured to distinguish between a relative motion between the structure and the first arrangement in two dimensions based on the first and second returned radiations.
[0013] These and other objects, features and advantages of the exemplary embodiment of the present disclosure will become apparent upon reading the following detailed description of the exemplary embodiments of the present disclosure, when taken in conjunction with the appended claims.

BRIEF DESCRIPTION OF THE DRAWING(S)

[0014] Further objects, features and advantages of the present invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the present invention, in which:
[0015] FIG. 1 is a side cross-sectional view of a catheter which utilizes a conventional scanning technique for a three-dimensional imaging;
[0016] FIG. 2 is a side cross-sectional view of a catheter according to an exemplary embodiment of the present invention for tracking relative distance and/or motion between a conduit within the catheter and a lumen;
[0017] FIG. 3 is a diagram of an exemplary embodiment of a system/apparatus according to the present disclosure for processing signals returned from the exemplary catheter shown in FIG. 2;
[0018] FIG. 4 is a pair of graphs illustrating plots of data acquired by the exemplary system/apparatus shown in FIG. 3 for tracking the relative motion between a catheter conduit and a target (e.g., a lumen);
[0019] FIG. 5 is a side cross-sectional view of an exemplary embodiment of certain components of the exemplary catheter shown in FIG. 2, which can be used for monitoring the relative motion and/or velocity between the catheter conduit and the target; and
[0020] FIG. 6 is a flow diagram of an exemplary embodiment of a method according to the present disclosure for determining at least one characteristic of a structure.
[0021] Throughout the figures, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components or portions of the illustrated embodiments. Moreover, while the subject disclosure will now be described in detail with reference to the figures, it is done so in connection with the illustrative embodiments. It is intended that changes and modifications can be made to the described exemplary embodiments without departing from the true scope and spirit of the subject disclosure as defined by the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

[0022] FIG. 1 shows a side cross-sectional view of an example of a conventional catheter using which monitoring of relative spatial locations or motions between two objects would likely be beneficial. Turning to FIG. 1, when delivering light, e.g. for imaging or therapy, through such catheter or an endoscope to the lumen 100 of an internal organ 100, it is possible to utilize a catheter comprising an external sheath 110 and an internal conduit 120 that can be rotated and/or translated within the sheath. When the conduit 120 is configured to deliver light along a particular axis 130, the exposure of light to a predetermined portion of the lumen 100 can be achieved by rotating and longitudinally scanning the conduit while also controlling the irradiance delivered by the conduit. For example, this strategy can be utilized for imaging the lumen 100. In such cases, it can be important that the resulting helical scan pattern 140 exposes the entire surface area of the lumen 100.
[0023] Typically, the sheath may be held fixed with respect to the lumen 100, and the location and orientation of the conduit can be remotely monitored with respect to the sheath. In this manner, the scan pattern of the light on the lumen 100 can be controlled. However, in instances when the relative location or motion of the sheath with respect to the lumen may not be controlled, the accuracy of the scan pattern can no longer be assured. This can be due to, for example, from respiration, peristalsis, cardiac function, or other sources of motion. Although such representative example of delivering light to the lumen of an internal biological organ can instructive for understanding a context of the exemplary embodiments of the present disclosure, it by no means represents the only application for which monitoring of the relative spatial location or motion between two objects would be beneficial.
[0024] FIG. 2 shows a side cross-sectional view of a catheter according to an exemplary embodiment of the present invention for tracking relative distance and/or motion between a conduit within the catheter and a lumen. According to such exemplary embodiment as illustrated in FIG. 2, the exemplary catheter 250 can be provided which can be suitable for imaging internal biological organs. Such exemplary catheter 250 can be structured or configured to include an internal conduit 210, which can be provided within an external and at least partially transparent sheath 211. The conduit can be configured or designed to emit electromagnetic radiation (e.g., light) or ultrasound radiation along two distinct axes 220 and 230 in such a way that a relative orientation between the two axes 220, 230 can be quantified by a relative angle 240.
[0025] When reflected or scattered radiation is returned along each of the axes 220, 230, such returned radiation can be collected by the conduit 210, and conveyed proximally within the catheter to an attached or coupled receiver and/or a processing arrangement (e.g., which can include a processor). Through the measurement of the reflected and/or scattered radiation, the magnitude of the relative velocity and/or the relative distance between the conduit 210 and the lumen along the respective axis 220, 230 can be determined. Further, since the relative angle between the two axes 220, 230 can be known and/or determined, comparing the velocity magnitude measurements along each axis can further provide the direction of the relative velocity.
[0026] In certain exemplary embodiments of the present disclosure, measurements of the relative distance and or velocity along certain specified axes 220, 230 between the conduit 210 and the lumen may be used to correct for motion arising from, for example, peristalsis, cardiac function, respiration, or other sources of motion. Such exemplary measurements can be used, for example, to alter a scan pattern of the conduit 210 with respect to the sheath 211 so that a uniform, pre-determined scan pattern can result between the conduit and the lumen 100. Certain exemplary methods and/or techniques known in the field of medical imaging can be used for controlling the scan patterns of conduits within catheters, including, e.g., external motors, located at the proximal catheter end and attached to the conduit and sheath, internal motors located within the sheath for rotating and or translating the conduit with respect to the sheath, and miniature electromechanical, galvanometric, and/or magneto-mechanical actuators for rotating and or translating the conduit with respect to the sheath. Alternatively or in addition, such exemplary actuators can be used to control the orientation of the optical axes directly.
[0027] According to certain exemplary embodiments of the present disclosure, it is possible to apply methods of low-coherence interferometry to determine the distance between the conduit 210 and the lumen. Such exemplary measurements can include coherence-domain ranging, frequency-domain ranging, and time-domain ranging. In such exemplary embodiments of the present disclosure, further processing of distance measurements can be applied to determine a relative velocity between the conduit 210 and the lumen. For example, the distance measurements can be monitored over time to provide a derivative which can be proportional to the relative velocity.
[0028] According to further exemplary embodiments of the present disclosure, it is possible to utilize measurements that can provide a magnitude of the relative velocity along the specified axes 220, 230. Such exemplary measurements can be integrated to provide the relative distances and can include, but are certainly not limited to, exemplary measurements such as the rate of temporal decorrelation of a speckle pattern or the Doppler frequency shift imparted on the reflected or scattered light, etc. In the presence of relative motion between a conduit and a lumen, the radiation (e.g., light) reflected, for example, along the axes 220, 230 can be frequency shifted and/or Doppler shifted by an amount that can depend on the relative velocity, the incidence angle θ, and/or the tracking wavelength λ:
[0029]  [see pdf for image]
where vr and vz are, respectively, the relative radial and longitudinal velocities of the lumen with respect to the conduit. Because the exemplary radiation provided via the axes 220, 230 impact and/or illuminate the lumen at different angles, such exemplary beams and/or radiations can experience different Doppler shifts for the same velocities:
[0030]  [see pdf for image]
[0031] For example, if the first and second exemplary beams and/or radiations impact and/or illuminate the surface of the lumen at positive and negative angles, respectively, with respect to an axis perpendicular to the surface of the lumen, then the first and second exemplary beams and/or radiations can be used to distinguish relative motion between the lumen and the catheter in the longitudinal and radial directions. In certain exemplary embodiments employing such exemplary geometry, motion of the lumen in the +z direction (i.e., along the axis of the lumen) relative to the conduit 210 can cause the first exemplary beam and/or radiation to shift up in frequency, while simultaneously causing the second exemplary beam and/or radiation to shift down in frequency. For example, motion of the lumen in the −z direction can cause the first exemplary beam and/or radiation to shift down in frequency, while simultaneously causing the second exemplary beam and/or radiation to shift up in frequency.
[0032] At the same time, e.g., motion of the lumen in the +r direction (e.g., of the lumen towards the catheter) can cause both beams and/or radiations to shift up in frequency; whereas, motion in the −r direction can cause both beams and/or radiations to shift down in frequency. Thus, relative motion in the two dimensions can be resolved because the beams and/or radiations experience oppositely directed Doppler shifts for motion along a first dimension and Doppler shifts in the same direction for motion along the second dimension. Those having ordinary skill in the art will certainly understand that adding a third beam and/or radiation at an appropriate angle can facilitate a resolve relative motion in a third dimension (and/or improve the accuracy of measurements in the first and second dimensions).
[0033] Those having ordinary skill in the art will further certainly understand that a beam transmitted along an axis normal to the surface of the lumen would likely not experience a Doppler shift for relative longitudinal motion. Motion in the two directions can still be resolved according to certain exemplary embodiments employing such a geometry. This is because, for example, the other beam and/or radiation can still experience a Doppler shift for longitudinal motion. Thus, the radial motion can cause both beams and/or radiations to experience a Doppler shift; whereas, longitudinal motion can cause only one beam and/or radiation to experience a Doppler shift. This difference can facilitate the ability to distinguish the two directions of motion.
[0034] Equation (2) illustrates that the exemplary frequency shift measurements along the two axes 220, 230 can form a basis set (e.g., not an orthonormal set) for resolving the two relative velocity components of the lumen with respect to the conduit. Inverting the matrix in Eq. (2) can provide the relative velocities in terms of the incidence angles and the measured Doppler shifts:
[0035]  [see pdf for image]
[0036] In certain exemplary applications, it is possible to configure or provide the optical axes 220, 230 such that one of the axes 220, 230 can be approximately normal to the lumen, so that relative velocity or distance measurements along this axis represent radial relative motion. Further, it is possible to configure or provide the optical axes 220, 230 such that the relative angle 240 between them is greater than, e.g., approximately 45 degrees but less than, e.g., approximately 90 degrees. Exemplary measurements of Doppler frequency shifts can be facilitated by mixing light returning along the optical axes with light from a local oscillator, or heterodyne reference, which can be coherent with the radiation (e.g., the light) emitted from the conduit, along the axes 220, 230.
[0037] FIG. 3 illustrates an exemplary embodiment of a system/apparatus according to the present disclosure for processing signals returned from the exemplary catheter shown in FIG. 2. For example, a beam director 340, for example, a wavelength division multiplexer, can be provided at a proximal end of a conduit 320 that can transmit a returned radiation (e.g., light) so that it can be combined with the radiation (e.g., light) from a local oscillator using a coupler 380. Radiation (e.g., light) returned along each axis can be further separated and/or detected by separate receivers 390. The detected signal associated with radiation (e.g., light) returning along one of the first and second axes 220 can be subject to the following exemplary approximation,
          I(t)≈ILO+√{square root over (ILOI1)} cos [2π(fLO−f1)t],  (4)
where ILO is the local oscillator intensity, fLO is the local oscillator frequency, and I1 is the intensity of the returned light corresponding to axis 1. An exemplary knowledge and/or determination of the frequency of the local oscillator can therefore be utilized to determine the frequency of the returned light, and using Equation 3, to determine the corresponding relative velocity.
[0038] For example, a heterodyne reference beam can serve, e.g., two purposes: i) amplifying the signal, and/or ii) making it possible to distinguish the direction of motion. For example, if fLO=0, approximately equal but oppositely directed velocities may produce signals that oscillate at the same frequency. When fLO>f1, f2, approximately equal but oppositely directed velocities may cause the detected signal to shift away from the local oscillator frequency in opposite directions, removing this ambiguity.
[0039] The signal-to-noise ratio (SNR) of the detected signal can limit the precision of the frequency measurement, which, in turn, limits the precision of the velocity estimate. In addition, any difference between the actual angles of incidence from the assumed angles of incidence can result in errors in the velocity estimate. Because the tracking beam and/or radiation can refract through the facet over a small range of angles, however, the Doppler shift of the refracted beam and/or radiation can span a small range of frequencies centered at the nominal Doppler frequency, f2. If the angle of incidence changes, the angular spread can change as well, likely causing, e.g., the peak at f2 to become broader or narrower. Similarly, angular spread in the reflected beam and/or radiation can affect the shape of the peak at f1.
[0040] Alternatively or in addition, according to a further exemplary embodiment of the present disclosure, another optical element cantilevered from the probe tip or suspended in the sheath can be used to reflect and possibly collimate or focus the refracted beam and/or radiation towards the spot being imaged. Collimating the beam and/or radiation can sharpen the Doppler-shifted peak, as would likely focusing, provided that the angular spread of the focused beam and/or radiation is smaller the angular spread of the refracted beam and/or radiation alone.
[0041] In semi-rigid lumens, projecting both tracking beams and/or radiations onto the same spot can also improve the accuracy of velocity estimation as long as the interbeam angle (e.g., θ1−θ2) can remain large. In a semi-rigid vessel, e.g., different parts of the vessel can move at different velocities, e.g., likely degrading the velocity estimate made by measuring the Doppler shifts of beams and/or radiations illuminating different spots. Bringing the tracking beam/radiation spots close together while maintaining a large interbeam angle can reduce or eliminate such problem, while possibly preserving tolerance to angular misalignment.
[0042] In further exemplary embodiments of the present disclosure, additional optical axes (>2) can be utilized and reflected or scattered light corresponding to each axis may be processed to yield relative distance and or velocity using the exemplary methods and procedures described above. This additional information can be useful for decreasing sensitivity of measurements to noise or to improve the accuracy with which the relative distance, velocity or direction of velocity can be determined.
[0043] Further exemplary embodiments according to the present disclosure can be directed to techniques, apparatus and computer accessible medium that facilitate a unique identification of each optical axis. Such exemplary techniques, apparatus and computer-accessible medium can include, e.g., wavelength division multiplexing, time division multiplexing and frequency division multiplexing. For example, turning back to FIG. 3, this figures illustrates a wavelength-division multiplexing instrument 310 for determining the relative distance and or velocity of a catheter conduit 320 with respect to a lumen. For example, actuators 330 can be located at the proximal end of the catheter to control the rotation and or longitudinal location of the distal conduit end.
[0044] A wavelength division multiplexer 340 can be used to deliver radiation (e.g., light) from the instrument 310 into an imaging system, which can comprise a console 335, the actuators 330 and a catheter conduit 320. The exemplary instrument 310 can include multiple independent light sources 350 and 360, which can be combined into a single optical path using a wavelength division multiplexer 370. The radiation (e.g., light) sources can be uniquely identified by their wavelength or by frequency or amplitude modulation patterns incorporated into their emission. The single optical path can be subsequently divided into two paths, one path which can be in communication with the imaging system and another path representing a reference path.
[0045] The use of modulators 395, such as but not limited to acousto-optic, electro-optic or magneto-optic, can improve the sensitivity of detection of the desired relative velocity and or relative distance parameters. For example, radiation (e.g., light) from each path, including radiation/light returning from the lumen, can be recombined using the coupler 380, and directed to the receiver 390. The receiver 90 can be configured to separate the optical signals into paths corresponding to each independent light source and to measure, for example, the Doppler frequency shift or delay corresponding to the relative distance and or motion of the catheter conduit with respect to the lumen. The incorporation of the modulator or frequency shifter 395 into the reference path can be useful, e.g., for overcoming noise in the system.
[0046] FIG. 4 shows a pair of graphs illustrating plots of data acquired by the exemplary system/apparatus shown in FIG. 3 for tracking the relative motion between a catheter conduit and a target (e.g., a lumen). For example, a trace 410 represents data acquired by the exemplary embodiment of FIG. 3, and can display a time varying Doppler frequency, which can be proportional to the actual relative velocity between a conduit and a sample. A trace 420 depicts a theoretical Doppler shift, corresponding to the actual relative motion.
[0047] The combination of the exemplary embodiments of the present disclosure with techniques, such as ultrasonic imaging or therapy and optical imaging or therapy, be readily achieved as should be understood by those having ordinary skill in the art after reviewing the present disclosure. For example, in the exemplary embodiments, the axes 220, 230 that can be utilized to determine relative distance and or velocity can be delivered in a spatially co-registered orientation with respect to the imaging or therapy axes. Further, one of the axes 220, 230 can be one of the axes used for imaging or therapy. In this example, the axis 220 can represent both an imaging or therapy axis and an axis for determining relative distance and or velocity. For ultrasound and optical imaging techniques, this exemplary combination can be achieved.
[0048] Further exemplary embodiments of the present disclosure can be further configured to control the relative orientation of the axes 220, 230 along which relative distances or velocities may be determined. For example, as shown in one exemplary embodiment configured for registering the relative distance and or motion in conjunction with optical imaging as illustrated in FIG. 5, an optical transducer 510 can be configured to direct two or more optical axes in predetermined directions. An exemplary transducer 510 can include reflective, refractive and or diffractive surfaces. For example, one such exemplary dichroic reflective surface 520 can be configured to reflect radiation (e.g., light) of specific wavelengths and transmit radiation (e.g., light) having different wavelengths.
[0049] Dichroic filters can be constructed using dielectric coatings or facets at discontinuities of refractive indices, as is well known in the art. One exemplary configuration can include another exemplary dichroic surface 520 for which radiation (e.g., light) having wavelengths lower than a predetermined value may be reflected, and radiation (e.g., light) having a longer wavelength may be transmitted. This exemplary configuration can be utilized to produce two distinct axes 530, 540. Further, the optical transducer 510 can be configured to include a refractive facet 550 which can be distal to the dichroic surface such that radiation (e.g., light) transmitted through a facet 550 follows an axis 540 that is inclined in a forward direction. Alternatively or in addition, the facet 550 can be followed by a reflective surface, such as, e.g., a mirror, oriented to provide any directional orientation of axis 540. An optical transducer 510 can further be configured to focus light along one or more of the axes to a predetermined focal plane. In this exemplary embodiment, the axis 530 can include more than one optical beam. For example, the axis 530 can include light used for determining relative distance and or velocity according to the exemplary embodiment of the present disclosure, as well as light used for imaging or treating the biological lumen.
[0050] In further exemplary embodiments of the present disclosure, the exemplary techniques, apparatus and methods of the present disclosure can be implemented using other forms of propagating energy rather than light. Such exemplary embodiments can utilize, e.g., ultrasonic energy to determine the relative distance or the relative velocity between a transducer and lumen. FIG. 6 shows flow diagram of an exemplary embodiment of a method according to the present invention determining at least one characteristic of a structure which can be executed by a processing arrangement, and memorialized, e.g., using software stored or provided on a computer-accessible medium (e.g., hard drive, floppy disk, memory device such as a memory stick of other memory or storage device, or ac combination of one or more thereof).
[0051] In particular, as shown in FIG. 6, at least one first transmitted radiation can be provided along a first axis and at least one second transmitted radiation can be provided along a second axis using a particular arrangement (procedure 510). For example, the first and second transmitted radiations can impact the structure and generate at respective first and second returned radiation, and the first and second axis can be provided at a predetermined angle with respect with one another which is greater than 0. Further, as provided in procedure 520, data associated with the first and second returned radiations can be received. In addition, at least one relative velocity between the structure and the particular arrangement along the first and second axes can be determined (procedure 530).
[0052] The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. Indeed, the arrangements, systems and methods according to the exemplary embodiments of the present invention can be used with and/or implement any OCT system, OFDI system, SD-OCT system or other imaging systems, and for example with those described in International Patent Application PCT/US2004/029148, filed Sep. 8, 2004, U.S. patent application Ser. No. 11/266,779, filed Nov. 2, 2005, and U.S. patent application Ser. No. 10/501,276, filed Jul. 9, 2004, the disclosures of which are incorporated by reference herein in their entireties. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention. In addition, to the extent that the prior art knowledge has not been explicitly incorporated by reference herein above, it is explicitly being incorporated herein in its entirety. All publications referenced herein above are incorporated herein by reference in their entireties.
(57)

Claims

1. An apparatus for determining at least one characteristic of a structure, comprising:
at least one first arrangement which is structured to provide at least one first transmitted radiation along a first axis and at least one second transmitted radiation along a second axis, wherein the first and second transmitted radiations impact the structure and generate respective first and second returned radiation, and wherein the first and second axes are provided at a predetermined angle with respect with one another which is greater than 0;
at least one second arrangement which is configured to receive data associated with the first and second returned radiation, and determine at least one relative velocity between the structure and the at least one first arrangement along the first and second axes; and
at least one third arrangement which is configured to generate at least one image of at least one portion of the structure as a function of the at least one relative velocity.
2. The apparatus according to claim 1, wherein the first and second transmitted radiations are electro-magnetic radiations.
3. The apparatus according to claim 1, wherein the first and second transmitted radiations have different wavelengths.
4. The apparatus according to claim 1, wherein the data corresponds to a Doppler shift between the first and second transmitted radiations and the first and second returned radiations.
5. The apparatus according to claim 1, wherein the data corresponds to a time rate of change of a distance between the apparatus and the structure along the first and second axes.
6. The apparatus according to claim 1, wherein the at least one first arrangement extends along a longitudinal axis, and wherein a first velocity along the first axis and a second velocity along the second axis is used to determine a further relative velocity between the apparatus and the structure at least approximately along the longitudinal axis.
7. The apparatus according to claim 6, wherein at least one of a position or a rotation of the apparatus is determined based on the further relative velocity.
8. The apparatus according to claim 1, wherein the at least one third arrangement generates the at least one image using an optical frequency domain interferometry procedure.
9. The apparatus according to claim 1, wherein the at least one third arrangement generates the at least one image using an optical coherence interferometry procedure.
10. The apparatus according to claim 1, wherein the at least one third arrangement generates the at least one image using an ultrasound procedure.
11. The apparatus according to claim 1, wherein at least a portion of the at least one third arrangement is provided in a catheter.
12. An apparatus for determining at least one characteristic of a structure, comprising:
at least one first arrangement which is structured to provide at least one first transmitted radiation along a first axis and at least one second transmitted radiation along a second axis, wherein the first and second transmitted radiations impact the structure and generate respective first and second returned radiation, and wherein the first and second axes are provided at a predetermined angle with respect with one another which is greater than 0; and
at least one second arrangement which is configured to receive data associated with the first and second returned radiation, and determine at least one relative velocity between the structure and the at least one first arrangement along the first and second axes,
wherein the first and second transmitted radiations have different wavelengths, and
wherein the at least one first arrangement includes a portion having a section which is structured to reflect at least one of the first and second transmitted radiations and at least partially optically allow to pass therethrough the other one of the first and second transmitted radiations based on respective wavelengths of the first and second transmitted radiations.
13. The apparatus according to claim 12, wherein the reflected radiation and the pass through radiation are provided at the predetermined angle.
14. The apparatus according to claim 1, wherein the at least one first arrangement is structured to at least one of collimate or focus at least one of the at least one first transmitted radiation or the at least one second transmitted radiation.
15. The apparatus according to claim 1, wherein the first and second axes impact the structure at positive and negative angles, respectively, with respect to an axis perpendicular to a surface of the structure.
16. The method according to claim 15, wherein the at least one second arrangement is further configured to distinguish between a relative motion between the structure and the at least one first arrangement in two dimensions based on the first and second returned radiations.
17. A method for determining at least one characteristic of a structure, comprising:
providing at least one first transmitted radiation along a first axis and at least one second transmitted radiation along a second axis using a particular arrangement, wherein the first and second transmitted radiations impact the structure and generate respective first and second returned radiation, and wherein the first and second axis are provided at a predetermined angle with respect with one another which is greater than 0;
receiving data associated with the first and second returned radiations;
determining at least one relative velocity between the structure and the particular arrangement along the first and second axes; and
generating at least one image of at least one portion of the structure as a function of the at least one relative velocity.
18. A non-transitory computer accessible medium which provides software thereon for determining at least one characteristic of a structure, wherein, when a computer processing arrangement executes the software, the computer processing arrangement is configured to perform procedures comprising:
receiving data associated with first and second returned radiations which are provided from the structure and which are associated with third and fourth transmitted radiations, respectively, impacting the structure, wherein the third transmitted radiation is provided along a first axis and the fourth transmitted radiation is provided along a second axis using a particular arrangement, wherein the third and fourth transmitted radiations impact the structure and generate the respective first and second returned radiation, and wherein the first and second axis are provided at a predetermined angle with respect with one another which is greater than 0;
determining at least one relative velocity between the structure and the particular arrangement along the first and second axes; and
generating at least one image of at least one portion of the structure as a function of the at least one relative velocity.
19. An apparatus for determining at least one characteristic of a structure, comprising:
at least one first arrangement which is structured to provide at least one first transmitted radiation along a first axis and at least one second transmitted radiation along a second axis, wherein the first and second transmitted radiations impact the structure and generate respective first and second returned radiation, and wherein the first and second axes are provided at a predetermined angle with respect with one another which is greater than 0; and
at least one second arrangement which is configured to receive data associated with the first and second returned radiation, and determine at least one relative velocity between the structure and the at least one first arrangement along the first and second axes,
wherein at least one of the first transmitted radiation or the second transmitted radiation is provided through a catheter.
20. The apparatus according to claim 19, wherein the at least one second arrangement determines at least one further relative velocity between the catheter and the structure.
21. The apparatus according to claim 19, wherein the first and second transmitted radiations are provided through the catheter.
*****

Sign in to the Lens

Feedback