Active Resistive Summer For A Transformer Hybrid

  *US07536162B1*
  US007536162B1                                 
(12)United States Patent(10)Patent No.: US 7,536,162 B1
 Roo (45) Date of Patent:May  19, 2009

(54)Active resistive summer for a transformer hybrid 
    
(75)Inventor: Pierte Roo,  Sunnyvale, CA (US) 
(73)Assignee:Marvell International Ltd.,  Hamilton (BM), Type: Foreign Company 
(*)Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. 
(21)Appl. No.: 11/821,637 
(22)Filed: Jun.  25, 2007 
 Related U.S. Patent Documents 
(60) .
Continuation of application No. 11/523,169, filed on Sep.  19, 2006, now Pat. No. 7,327,995 , which is a division of application No. 10/786,010, filed on Feb.  26, 2004 , which is a continuation of application No. 09/629,092, filed on Jul.  31, 2000, now Pat. No. 6,775,529 .
 
(51)Int. Cl. H04B 001/10 (20060101); H04B 003/20 (20060101); H04B 001/38 (20060101)
(52)U.S. Cl. 455/296; 455/295; 455/278.1; 455/63.1; 455/67.13
(58)Field of Search  455/296, 295, 278.1, 63.1, 67.13, 570, 78; 370/286, 289

 
(56)References Cited
 
 U.S. PATENT DOCUMENTS
 3,297,951  A  1/1967    Blasbalg     
 3,500,215  A  3/1970    Leuthold et al.     
 3,521,170  A  7/1970    Leuthold et al.     
 3,543,009  A  11/1970    Voelcher, Jr.     
 3,793,589  A  2/1974    Puckette     
 3,973,089  A  8/1976    Puckett     
 4,071,842  A  1/1978    Tewksbury     
 4,112,253  A  9/1978    Wilhelm     
 4,131,767  A  12/1978    Weinstein     
 4,152,541  A  5/1979    Yuen     
 RE30,111  E  10/1979    Blood, Jr.     
 4,309,673  A  1/1982    Norberg et al.     
 4,321,753  A  3/1982    Fusari     
 4,362,909  A  12/1982    Snijders et al.     
 4,393,370  A  7/1983    Hareyama     
 4,393,494  A  7/1983    Belforte et al.     
 4,408,190  A  10/1983    Nagano     
 4,464,545  A  8/1984    Werner     
 4,503,421  A  3/1985    Hareyama et al.     
 4,527,126  A  7/1985    Petrich et al.     
 4,535,206  A  8/1985    Falconer     
 4,591,832  A  5/1986    Fling et al.     
 4,605,826  A  8/1986    Kanemasa     
 4,621,172  A  11/1986    Kanemasa et al.     
 4,621,356  A  11/1986    Scipione     
 4,626,803  A  12/1986    Holm     
 4,715,064  A  12/1987    Claessen     
 4,727,566  A  2/1988    Dahlqvist     
 4,746,903  A  5/1988    Czarniak et al.     
 4,816,830  A  3/1989    Cooper     
 4,817,081  A  3/1989    Wouda et al.     
 4,868,571  A  9/1989    Inamasu     
 4,878,244  A  10/1989    Gawargy     
 4,888,762  A  12/1989    Arai     
 4,894,820  A  1/1990    Miyamoto     
 4,935,919  A  6/1990    Hiraguchi     
 4,947,171  A  8/1990    Pfiefer et al.     
 4,970,715  A  11/1990    McMahan     
 4,972,360  A  11/1990    Cukier et al.     
 4,988,960  A  1/1991    Tomisawa     
 4,993,045  A  2/1991    Alfonso     
 4,999,830  A  3/1991    Agazzi     
 5,018,134  A  5/1991    Kokubo et al.     
 5,043,730  A  8/1991    Obinnata     
 5,084,865  A  1/1992    Koike     
 5,119,365  A  6/1992    Warner et al.     
 5,136,260  A  8/1992    Yousefi-Elezei     
 5,148,427  A  9/1992    Buttle et al.     
 5,153,450  A  10/1992    Ruetz     
 5,164,725  A  11/1992    Long     
 5,175,764  A*12/1992    Patel et al. 379/412
 5,185,538  A  2/1993    Kondoh et al.     
 5,202,528  A  4/1993    Iwaooji     
 5,204,880  A  4/1993    Wurster et al.     
 5,212,659  A  5/1993    Scott et al.     
 5,222,084  A  6/1993    Takahashi     
 5,243,346  A  9/1993    Inami     
 5,243,347  A  9/1993    Jackson et al.     
 5,245,231  A  9/1993    Kocis et al.     
 5,245,654  A  9/1993    Wilkison et al.     
 5,248,956  A  9/1993    Himes     
 5,253,249  A  10/1993    Fitzgerald et al.     
 5,253,272  A  10/1993    Jaeger et al.     
 5,254,994  A  10/1993    Takakura et al.     
 5,267,269  A  11/1993    Shih et al.     
 5,269,313  A  12/1993    DiPinto     
 5,272,453  A  12/1993    Traynor et al.     
 5,280,526  A  1/1994    Latureli     
 5,282,157  A  1/1994    Murphy et al.     
 5,283,582  A  2/1994    Krenik     
 5,305,379  A  4/1994    Takeuchi     
 5,307,064  A  4/1994    Kudoh     
 5,307,405  A  4/1994    Sih     
 5,323,157  A  6/1994    Ledzius et al.     
 5,325,400  A  6/1994    Co et al.     
 5,357,145  A  10/1994    Segaram     
 5,365,935  A  11/1994    Righter et al.     
 5,367,540  A  11/1994    Kakushi et al.     
 5,373,147  A  12/1994    Noda     
 5,375,147  A  12/1994    Awata et al.     
 5,388,092  A  2/1995    Koyama et al.     
 5,388,123  A  2/1995    Uesugi et al.     
 5,392,042  A  2/1995    Pelton     
 5,399,996  A  3/1995    Yates et al.     
 5,418,478  A  5/1995    Van Brunt et al.     
 5,440,514  A  8/1995    Flannagan et al.     
 5,440,515  A  8/1995    Chang et al.     
 5,444,739  A  8/1995    Uesegi et al.     
 5,465,272  A  11/1995    Smith     
 5,471,665  A  11/1995    Pace et al.     
 5,479,124  A  12/1995    Pun et al.     
 5,489,873  A  2/1996    Kamata et al.     
 5,507,036  A  4/1996    Vagher     
 5,508,656  A  4/1996    Jaffard et al.     
 5,517,141  A  5/1996    Abdi et al.     
 5,517,435  A  5/1996    Sugiyama     
 5,521,540  A  5/1996    Marbot     
 5,537,113  A  7/1996    Kawabata     
 5,539,403  A  7/1996    Tani et al.     
 5,539,405  A  7/1996    Norsworthy     
 5,539,773  A  7/1996    Knee et al.     
 5,559,476  A  9/1996    Zhang et al.     
 5,568,064  A  10/1996    Beers et al.     
 5,568,142  A  10/1996    Velazquex et al.     
 5,572,158  A  11/1996    Lee et al.     
 5,572,159  A  11/1996    McFarland     
 5,577,027  A  11/1996    Cheng     
 5,579,004  A  11/1996    Linz     
 5,585,795  A  12/1996    Yuasa et al.     
 5,585,802  A  12/1996    Cabler et al.     
 5,587,681  A  12/1996    Fobbester     
 5,589,788  A  12/1996    Goto     
 5,596,439  A  1/1997    Dankberg et al.     
 5,600,321  A  2/1997    Winen     
 5,613,233  A  3/1997    Vagher     
 5,625,357  A  4/1997    Cabler     
 5,629,652  A  5/1997    Weiss     
 5,648,738  A  7/1997    Welland et al.     
 5,651,029  A  7/1997    Yang     
 5,659,609  A  8/1997    Koizumi et al.     
 5,663,728  A  9/1997    Essenwanger     
 5,666,354  A  9/1997    Cecchi et al.     
 5,684,482  A  11/1997    Galton     
 5,687,330  A  11/1997    Gist et al.     
 5,696,796  A  12/1997    Poklemba     
 5,703,541  A  12/1997    Nakashima     
 5,719,515  A  2/1998    Danger     
 5,726,583  A  3/1998    Kaplinsky     
 5,745,564  A  4/1998    Meek     
 5,745,839  A  4/1998    Lieberman     
 5,757,219  A  5/1998    Weedon et al.     
 5,757,298  A  5/1998    Manley et al.     
 5,760,726  A  6/1998    Koifman et al.     
 5,790,060  A  8/1998    Tesche     
 5,790,658  A*8/1998    Yip et al. 379/406.09
 5,796,725  A  8/1998    Muraoka     
 5,798,661  A  8/1998    Runaldue et al.     
 5,798,664  A  8/1998    Nagahori et al.     
 5,812,597  A  9/1998    Graham et al.     
 5,821,892  A  10/1998    Smith     
 5,822,426  A  10/1998    Rasmus et al.     
 5,825,819  A  10/1998    Cogburn     
 5,834,860  A  11/1998    Parsons et al.     
 5,838,177  A  11/1998    Keeth     
 5,838,186  A  11/1998    Inoue et al.     
 5,841,386  A  11/1998    Leduc     
 5,841,809  A  11/1998    Koizumi et al.     
 5,844,439  A  12/1998    Zortea     
 5,859,552  A  1/1999    Do et al.     
 5,864,587  A  1/1999    Hunt     
 5,880,615  A  3/1999    Bazes     
 5,887,059  A  3/1999    Xie et al.     
 5,894,496  A  4/1999    Jones     
 5,898,340  A  4/1999    Chatterjee et al.     
 5,930,686  A  7/1999    Devline et al.     
 5,936,450  A  8/1999    Unger     
 5,940,442  A  8/1999    Wong et al.     
 5,940,498  A  8/1999    Bardl     
 5,949,362  A  9/1999    Tesche et al.     
 5,963,069  A  10/1999    Jefferson et al.     
 5,982,317  A  11/1999    Steensgaard-Madsen     
 5,999,044  A  12/1999    Wohlfarth et al.     
 6,005,370  A  12/1999    Gustavson     
 6,014,048  A  1/2000    Talaga et al.     
 6,037,812  A  3/2000    Gaudet     
 6,038,266  A  3/2000    Lee et al.     
 6,043,766  A  3/2000    Hee et al.     
 6,044,489  A  3/2000    Hee et al.     
 6,046,607  A  4/2000    Kohdaka     
 6,047,346  A  4/2000    Lau et al.     
 6,049,706  A  4/2000    Cook et al.     
 6,052,076  A  4/2000    Patton, III et al.     
 6,057,716  A  5/2000    Dinteman et al.     
 6,067,327  A  5/2000    Creigh et al.     
 6,087,968  A  7/2000    Roza     
 6,094,082  A  7/2000    Gaudet     
 6,100,830  A  8/2000    Dedic     
 6,121,831  A  9/2000    Mack     
 6,137,328  A  10/2000    Sung     
 6,140,857  A  10/2000    Bazes     
 6,148,025  A  11/2000    Shirani et al.     
 6,150,856  A  11/2000    Morzano     
 6,154,784  A  11/2000    Liu     
 6,163,283  A  12/2000    Schofield     
 6,163,289  A  12/2000    Ginetti     
 6,163,579  A  12/2000    Harrington et al.     
 6,166,572  A  12/2000    Yamaoka     
 6,172,634  B1  1/2001    Leonowich et al.     
 6,173,019  B1  1/2001    Hee et al.     
 6,177,896  B1  1/2001    Min     
 6,185,263  B1  2/2001    Chan     
 6,188,282  B1  2/2001    Montalvo     
 6,191,719  B1  2/2001    Bult et al.     
 6,192,226  B1  2/2001    Fang     
 6,201,490  B1  3/2001    Kawano et al.     
 6,201,831  B1  3/2001    Agazzi et al.     
 6,201,841  B1  3/2001    Iwamatsu et al.     
 6,204,788  B1  3/2001    Tani     
 6,211,716  B1  4/2001    Nguyen et al.     
 6,215,429  B1  4/2001    Fischer et al.     
 6,223,061  B1  4/2001    Dacus et al.     
 6,236,345  B1  5/2001    Dagnachew et al.     
 6,236,346  B1  5/2001    Schofield     
 6,236,645  B1  5/2001    Agazzi     
 6,249,164  B1  6/2001    Cranford, Jr. et al.     
 6,249,249  B1  6/2001    Obayashi et al.     
 6,259,680  B1  7/2001    Blackwell et al.     
 6,259,745  B1  7/2001    Chan     
 6,259,957  B1  7/2001    Alexander et al.     
 6,266,367  B1  7/2001    Strait     
 6,271,782  B1  8/2001    Steensgaard-Madsen     
 6,275,098  B1  8/2001    Uehara et al.     
 6,288,604  B1  9/2001    Shih et al.     
 6,289,068  B1  9/2001    Hassoun et al.     
 6,295,012  B1  9/2001    Greig     
 6,298,046  B1  10/2001    Thiele     
 6,307,490  B1  10/2001    Litfin et al.     
 6,309,077  B1  10/2001    Saif et al.     
 6,313,775  B1  11/2001    Lindfors et al.     
 6,332,004  B1  12/2001    Chang     
 6,333,959  B1  12/2001    Lai et al.     
 6,339,390  B1  1/2002    Velazquez et al.     
 6,340,940  B1  1/2002    Melanson     
 6,346,899  B1  2/2002    Hadidi     
 6,351,229  B1  2/2002    Wang     
 RE37,619  E  4/2002    Mercer et al.     
 6,369,734  B2  4/2002    Volk     
 6,370,190  B1  4/2002    Young et al.     
 6,373,417  B1  4/2002    Melanson     
 6,373,908  B2  4/2002    Chan     
 6,377,640  B2  4/2002    Trans     
 6,377,683  B1  4/2002    Dobson et al.     
 6,385,238  B1  5/2002    Nguyen et al.     
 6,385,442  B1  5/2002    Vu et al.     
 6,389,077  B1  5/2002    Chan     
 6,408,032  B1  6/2002    Lye et al.     
 6,411,647  B1  6/2002    Chan     
 6,415,003  B1  7/2002    Raghavan     
 6,421,377  B1  7/2002    Langberg et al.     
 6,421,534  B1  7/2002    Cook et al.     
 6,433,608  B1  8/2002    Huang     
 6,441,761  B1  8/2002    Viswanathan     
 6,452,428  B1  9/2002    Mooney et al.     
 6,462,688  B1  10/2002    Sutardja     
 6,476,476  B1  11/2002    Glenn     
 6,476,746  B2  11/2002    Viswanathan     
 6,476,749  B1  11/2002    Yeap et al.     
 6,477,200  B1  11/2002    Agazzi et al.     
 6,492,922  B1  12/2002    New     
 6,501,402  B2  12/2002    Boxho     
 6,509,854  B1  1/2003    Morita et al.     
 6,509,857  B1  1/2003    Nakao     
 6,531,973  B2  3/2003    Brooks et al.     
 6,535,987  B1  3/2003    Ferrant     
 6,539,072  B1  3/2003    Donnelly et al.     
 6,556,677  B1  4/2003    Hardy     
 6,563,742  B1  5/2003    Lee et al.     
 6,563,870  B1  5/2003    Schenk     
 6,570,931  B1  5/2003    Song     
 6,576,746  B2  6/2003    McBride et al.     
 6,577,114  B1  6/2003    Roo     
 6,594,304  B2  7/2003    Chan     
 6,606,489  B2  8/2003    Razavi et al.     
 6,608,743  B1  8/2003    Suzuki     
 6,633,178  B2  10/2003    Wilcox et al.     
 6,687,286  B1  2/2004    Leonowich et al.     
 6,690,742  B2  2/2004    Chan     
 6,714,825  B1  3/2004    Tanaka     
 6,721,379  B1  4/2004    Cranford, Jr. et al.     
 6,731,748  B1  5/2004    Edgar, III et al.     
 6,744,831  B2  6/2004    Chan     
 6,744,931  B2  6/2004    Kormiya et al.     
 6,751,202  B1  6/2004    Henrie     
 6,765,931  B1  7/2004    Rabenko et al.     
 6,775,529  B1  8/2004    Roo     
 6,816,097  B2  11/2004    Brooks et al.     
 6,823,028  B1  11/2004    Phanse     
 6,844,837  B1  1/2005    Sutardja     
 6,864,726  B2  3/2005    Levin et al.     
 6,870,881  B1  3/2005    He     
 6,882,216  B2  4/2005    Kang     
 6,975,674  B1  12/2005    Phanse et al. 375/219
 6,980,644  B1  12/2005    Sallaway et al.     
 7,050,517  B1  5/2006    Sallaway et al.     
 7,327,995  B1  2/2008    Roo     
 2001//0050585  A1  12/2001    Carr     
 2002//0009057  A1  1/2002    Blackwell et al.     
 2002//0061087  A1  5/2002    Williams     
 2002//0084857  A1  7/2002    Kim     
 2002//0136321  A1  9/2002    Chan     
 2002//0181601  A1  12/2002    Huang et al.     
 2003//0002570  A1  1/2003    Chan     
 2003//0174660  A1  9/2003    Blon et al.     
 2004//0005015  A1  1/2004    Chan     
 2004//0090981  A1  5/2004    Lin et al.     
 2004//0091071  A1  5/2004    Lin et al.     
 2004//0105504  A1  6/2004    Chan     
 2004//0141569  A1  7/2004    Agazzi     
 2004//0208312  A1  10/2004    Okuda     
 2005//0025266  A1  2/2005    Chan     

 
 FOREIGN PATENT DOCUMENTS 
 
       DE       10 2004 017 497                         11/2004      
       EP       0800 278                         8/1997      
       EP       WO 00/28691                         5/2000      
       JP       57-48827                         3/1982      
       JP       58-111415                         7/1983      
       JP       62-159925                         7/1987      
       JP       63-300700                         7/1988      
       JP       204527                         8/1989      
       JP       3-273704                         12/1991      
       JP       4-293306                         10/1992      
       JP       4-351109                         12/1992      
       JP       05-064231                         3/1993      
       JP       06-029853                         2/1994      
       JP       06-98731                         4/1994      
       JP       6-276182                         9/1994      
       JP       7-131260                         5/1995      
       JP       09-55770                         8/1995      
       JP       09-270707                         3/1996      
       JP       10-126183                         5/1998      
       JP       2001-177409                         12/1999      
       JP       06-97831                         4/2005      
       JP       09-270707                         4/2005      
       JP       2001-177409                         4/2005      
       TW       0497334                         8/2002      
       TW       0512606                         12/2002      
       TW       0545016                         8/2003      
       WO       WO 99/46867                         9/1999      
       WO       WO 00/27079                         5/2000      
       WO       WO 00/28663                         5/2000      
       WO       WO 00/28663       A2                5/2000      
       WO       WO 00/28663       A3                5/2000      
       WO       WO 00/28668                         5/2000      
       WO       WO 00/28691       A2                5/2000      
       WO       WO 00/28691       A3                5/2000      
       WO       WO 00/28712                         5/2000      
       WO       WO 00/35094                         6/2000      

 OTHER PUBLICATIONS
  
  Stonick et al; An Adaptive PAM-4 5-Gb/s Backplane Transceiver in 0.25-μm CMOS; IEEE Journal of Solid-State Circuits, vol. 38, No. 3, Mar. 2003; pp. 436-443.
  U.S. Appl. No. 09/737,743, Sutardja, filed Dec. 2000.
  U.S. Appl. No. 09/920,241, Roo, Pierte, filed Aug. 2001.
  U.S. Appl. No. 60/106,265, filed Oct. 1998, Chan.
  U.S. Appl. No. 60/107,105, filed Nov. 1998, Chan.
  U.S. Appl. No. 60/107,702, filed Nov. 1998, Chan.
  U.S. Appl. No. 60/108,001, filed Nov. 1998, Chan.
  Abidi et al; “FA 7.2: The Future of CMOS Wireless Transceivers”; Feb. 7, 1997, pp. 118-119, 440.
  Abidi, “TP 11.1: Direct-Conversion Radio Transceivers for Digital Communications” 1995.
  American National Standard, “Fibre Distributed Data Interface (FDDI)—Token Ring Twisted Pair Layer Medium Dependent (TP-PMD)”, Sep. 25, 1995.
  Azadet et al; “A Gigabit Transceiver Chip Set for UTP CA-6 Cables in Digital CMOS Technology”; Feb. 2000.
  Azadet, Kamran Nicole, Chris; “Low-Power Equalizer Architectures for High-Speed Modems”; Oct. 1998; pp. 118-126.
  Baker, “An Adaptive Cable Equalizer for Serial Digital Rates to 400Mb/s”, 1996.
  Banu et al; “A BiCMOS Double-Low-IF Receiver for GSM”, 1997, pp. 521-524.
  Bertolaccini, Mario et al; “A Precision Baseline Offset and Drift Corrector for Low-Frequency Applications”, IEEE Transactions on Instrumentation and Measurement, vol. IM-34, No. 3, Sep. 1985, pp. 405-412.
  Chan et al; A 100 Mb/s CMOS 100Base-T4 Fast Ethernet Transceiver for Category 3, 4 and 5 UTP, 1998.
  Chang et al; “A CMOS Channel-Select Filter for a Direct-Conversion Wireless Receiver”, 1996, pp. 62-63.
  Chang et al; Large Suspended Inductors on Silicon and Their Use in a 1-μm CMOS RF Amplifier, May 1993, pp. 246-248.
  Chien et al; “TP 12.4: A 900-MHz Local Oscillator using a DLL-based Frequency Multiplier Technique for PCS Applications”; Feb. 8, 2000; 3 pages.
  Chien, “Delay Based Monolithic CMOS Frequency Synthesizer for Portable Wireless Applications”, May 20, 1998.
  Chien, “Monolithic CMOS Frequency Synthesizer for Cellular Applications”, Mar. 12-13, 1997; 9 pages.
  Chin et al; “A 10-b 125 MHz CMOS digital-to-analog (DAC) with threshold-voltage compensated current sources”, Nov. 1994, pp. 1374-1380.
  Craninckx et al; “A 1.8-GHz Low-Phase-Noise CMOS VCO Using Optimized Hollow Spiral Inductors”; 1997, pp. 736-744.
  Craninckx et al; “A 1.8-GHz Low-Phase-Noise Voltage-Controlled Oscillator with Prescaler”; 1995, pp. 1474-1482.
  Dally et al; “Digital Systems Engineering”, Jun. 1998; cover page and pp. 390-391.
  Dally et al; “High Performance Electrical Signaling”; Jun. 1998; 6 pages.
  Dauphinee et al; “SP 23.7: A Balanced 1.5 GHz Voltage Controlled Oscillator with an Integrated LC Resonator”, 1997, pp. 390-391, 491.
  Davies; “Digital Generation of Low-Frequency Sine Waves”, Jun. 1969, pp. 97-105.
  Dehng et al; “A Fast-Lock Mixed-Mode DLL Using a 2-b SAR Algorithm”; Oct. 2001; pp. 1464-1471.
  Dehng et al; “Clock-Deskaw Buffer Using a SAR-Controlled Delay-Locked Loop”; Aug. 2000; pp. 1128-1136.
  Dolle, “A Dynamic Line-Termiantion Circuit for Multireceiver Nets”, Dec. 1993, pp. 1370-1373.
  DP83220 CDL “Twisted Pair FDDI Transceiver Device”, Oct. 1992.
  Dunning, Jim, “An All-Digital Phase-Locked Loop with 50-Cycle Lock Time Suitable for High-Performance Microprocessors”, IEEE Journal of Solid-State Circuits, vol. 30, No. 4, Apr. 1995, pp. 412-422.
  Efendovich et al; “Multifrequency Zero-Jitter Delay-Locked Loop”, Jan. 1994, 67-70.
  Eto et al; “A 333 MHz, 20mW, 18ps Resolution Digital DLL using Current-controlled Delay with Parallel Variables Resistor DAC (PVR-DAC)”; Aug. 28-30, 2000, pp. 349-350.
  Everitt et al; “A 10/100Mb/s CMOS Ethernet Transceiver for 10BaseT, 10BaseTX and 100BaseFX”, 1998.
  Everitt, James et al; “A CMOS Transceiver for 10-Mb/s and 100-Mb/s Ethernet”, IEEE Journal of Solid-State Circuits, vol. 33, No. 12, Dec. 1998, pp. 2169-2177.
  Falconer; “Echo Cancellation in Two Wire Full Duplex With Estimation of Far-End Data Components”; Aug. 13, 1985.
  Fournier et al; “A 130-MHz 8-b CMOS video DAC for HDTV applications”; Jul. 1991, pp. 1073-1077.
  Fuad Surial Atiya et al; “An Operational Amplifier Circulator Based on the Weighted Summer”, Jun. 1975.
  Gabara; “On-Chip Terminating Registers for High Speed ECL-CMOS Interfaces”, 1992, pp. 292-295.
  Gardner, “Charge-Pump Phase-Lock Loops”, Nov. 1980, pp. 1849-1858.
  Garlepp et al; “A Portable Digital DLL Architecture for CMOS Interface Circuits”, 1998 Symposium on VLSI Circuits Digest of Technical Papers, pp. 214-215.
  Gawargy; “Electronic Hybrid Circuit”; Oct. 31, 1989.
  Gharpurey et al; Modeling and Analysis of Substrate Coupling in Integrated Circuits, Mar. 1996, pp. 344-353.
  Gigabit Ethernet Alliance; “Gigabit Ethernet 1000Base-T”, copyright 1997.
  Goldberg, Lee; “Gigabit Ethernet PHY Chip Sets LAN Speed Record for CopperStory”, Tech Insights, Nov. 16, 1998.
  Gotoh et al; “All-Digital Multi-Phase Delay Locked Loop for Internal Timing Generation in Embedded and/or High-Speed DRAMS”; 1997; pp. 107-108.
  Gray et al, “Analysis and Design of Analog Integrated Circuits”, Fourth Edition, Jun. 2005; pp. 217-221.
  Gray et al; “Analysis and Design of Analog Integrated Circuits”, 1997.
  Gray et al; “Analysis and Design of Analog Integrated Circuits”, 1993; pp. 270 and 274.
  Gray et al; “Future Directions in Silicon ICs for RF Personal Communications”, 1995, pp. 83-90.
  H4000 Digital Ethernet Transceiver Technical Manual, Distributed Systems, Chapter 3, pp. 3-1 to 3-11, copyright 1982 by Digital Equipment Corporation.
  Hajimiri et al; “Phase Noise in Multi-Gigahertz CMOS Ring Oscillators”, 1998, 49-52.
  Hamasaki et al; “A 3-V, 22-mV Multibit Current Mode ΣΔ DAC with 100 dB Dynamic Range”; Dec. 1996, pp. 1888-1894.
  Harald et al; “Design of a 10-bit 100 MSamples/s BiCMOS D/A/ Converter”, 1996, pp. 730-733.
  Hellums et al; “An ADSl Integrated Active Hybrid Circuit”; Solid States Circuits Conference; Sep. 2003; 23 pages.
  Hellwarth et al; “Digital-to-analog Converter having Common-mode Isolation and Differential Output”; Jul. 1972; pp. 54-60.
  Henriques et al; “A CMOS Steering-Current Multiplying Digital-to-Analog Converter”; 1995, pp. 145-155.
  Hester et al; “CODEC for Echo-Canceling Full-Rate ADSL Modems”; Dec. 1999.
  Horowitz et al; “High-Speed Electrical Signaling: Overview and Limitations”, 1998, p. 12-24.
  Hu et al; “A Monolithic 480 Mb/s Parallel AGC/Decision/Clock-Recovery Circuit in 1.2-μm CMOS”; Dec. 1993, pp. 1314-1320.
  IEEE Standards 802.3: part 3 Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Detection; Mar. 8, 2002, pp. 1-1538.
  Intersil, HC-5509B ITU CO/Loop Carrier SLIC, Aug. 2003.
  Ivan Jorgensen et al; “Design of a 10-bit 100 MSamples/s BICMOS D/A Converter”, 1996, pp. 730-733.
  Jansen et al; SP23.8: Silicon Bipolar VCO Family for 1.1 to 2.2 GHz with Fully-Integrated Tank and Tuning Circuits, Feb. 8, 1997, 392-393, 492.
  Johns et al; “Integrated Circuits for Data Transmission Over Twisted Pair Channels”, Mar. 1997, pp. 398-406.
  Johnson et al; “THAM 11.2: A Variable Delay Line Phase Locked Loop for CPU-Coprocessor Synchronization”; Feb. 18, 1988; 4 pages.
  Kim et al; “A 30-MHz Hybrid Analog/Digital Clock Recovery Circuit in 2-um CMOS”, 1990, pp. 1385-1394.
  Kim et al; “A Low-Power Small-Area 7.28-ps-Jitter 1-GHz DLL-Based Clock Generator”; Nov. 2002; pp. 1414-1420.
  Kim et al; PLL/DLL System Noise Analysis for Low Jitter Clock Synthesizer Design, ISCAS 1994; pp. 31-34.
  Kinget, FP 14.7: A Fully Integrated 2.7V 0.35 μm CMOS VCO for 5 GHz Wireless Applications, Feb. 5, 1998.
  Knight, Jr. et al; A Self-Terminating Low-Voltage Swing CMOS Output Driver, 1988, 457-464.
  Koullias et al; “TP 9.2: A 900 MHz Transceiver Chip Set for Dual-Mode Cellular Radio Mobile Terminals”, 1993, pp. 140-141, 278.
  Lee et al; “A 2.5 V CMOS Delay-Locked Loop for an 18 Mbit, 5000 Megabytes/s DRAM”; 1994, pp. 1491-1496.
  Lee et al; “A 3V 10b 100 MS/s Digital-to-Analog Converter for Cable Modem Applications”, Aug. 28-30, 2000; pp. 203-205.
  Lee et al; “A CMOS Serial Link for Fully Duplexed Data Communication”, Apr. 1995.
  Lee et al; “A Fully Integrated Low-Noise 1-GHz Frequency Synthesizer Design for Mobile Communication Application”; May 1997, pp. 760-765.
  Letham et al; “A high-performance CMOS 70-Mhzpalette/DAC”, Dec. 1987, pp. 1041-1047.
  Liberali et al; “Progress in High-Speed and High-Resolution CMOS Data Converters”, Sep. 12-14, 1995, pp. 19-28.
  Lin et al; “A 10-b, 500-Msample/s CMOS DAC in 0.6mm2”; Dec. 1996; pp. 1948-1958.
  Lin et al; A Register-Controller Symmetrical DLL for Double-Data-Rate DRAM; Apr. 1999; pp. 565-568.
  Linear Technology, “High Speed Modem Solutions”, InfoCard 20, Linear Technology Corporation; Mar. 12-13, 1997; 6 pages.
  Linear Technology, LT1355/LT1356, Dual and Quad 12MHz, 400V/us Op Amps, Linear Technology Corporation; 1994; pp. 1-16.
  Linear Technology, LT1361/LT1362, Dual and Quad 50MHz, 800V/us Op Amps, Linear Technology Corporation; 1994; pp. 1-12.
  Linear Technology, LT1364/LT1365, Dual and Quad 70MHz, 1000V/us Op Amps, Linear Technology Corporation; 1994; pp. 1-12.
  Maneatis, John G., FA 8.1: Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques, Nov. 1996, 1723-1732.
  Mano, “Digital Logic and Computer Design”; 1979; 627 pages.
  Marshall et al; “TA 8.7: A 2.7V GSM Transceiver ICs with On-Chip Filtering”, 1995.
  Miki et al; “An 80-MHz 8-bit CMOS D/A Converter”, Dec. 1986, pp. 983-988.
  Millman et al; “Pulse, Digital, and Switching Waveforms”; 1965; pp. 674-675.
  Moon, Yongsam et al; “An All-Analog Multiphase Delay-Locked Loop Using a Replica Delay Line for Wide-Range Operation and Low-Jitter Performance”, IEEE Journal of Solid-State Circuits, vol. 35, No. 3, Mar. 2000, pp. 377-384.
  Mueller, K.H.; “Combining Echo Cancellation and Decision Feedback Equalization”, The Bell System Technical Journal, vol. 58, No. 2, Feb. 1979, pp. 491-500.
  Munshi et al; “Adaptive Impedance Matching”; ISCAS 1994; pp. 69-72.
  Myson Technology; “MTD214—Ethernet Encoder/Decoder and 10BaseT Transceiver with Built-in Waveform Shaper”; 1997, pp. 1-11.
  Myson Technology; “MTD972 (Preliminary) 100BaseTX PCS/PMA”, 1997, pp. 1-21.
  Nack et al; “A Constant Slew Rate Ethernet Line Driver”, May 2001.
  Nakamura et al; “A 10-b 70-MS/s CMOS D/A/ converter”, Apr. 1991, pp. 637-642.
  Narayanan et al; “Doppler Estimation Using a Coherent Ultrawide-Band Random Noise Radar”, Jun. 2000.
  Nguyen et al; “Si IC-Compatible Inductors and LC Passive Filters”, Aug. 1990, pp. 1028-1031.
  Niknejad et al; “Analysis and Optimation of Monolithic Inductors and Transformers for RF ICs”, 1997, pp. 375-378.
  Niknejad et al; “Analysis, Design, and Optimization of Spiral Inductors and Transformers for Si RF IC's”, Oct. 1998, pp. 1470-1481.
  Niknejad et al; Numerically Stable Green Function for Modeling and Analysis of Substrate Coupling in Integrated Circuits, Apr. 1998, 305-315.
  Parameswaran et al; “A New Approach for the Fabrication of Micromechanical Structures”, Dec. 6, 1998, pp. 289-307.
  Park et al; “A Low-Noise, 900 MHz VCO in 0.6 μm CMOS”; May 1999, pp. 586-591.
  Parker et al; “A Low-Noise 1.6-GHz CMOS PLL with On-Chip Loop Filter”; 1997, pp. 407, 409-410.
  Phillips, The HC-5502X14X Telephone Subscriber Line Interface Circuits (SLIC), Jan. 1997.
  Radke et al; “A 14-Bit Current-Mode ΣΔ DAC Based Upon Rotated Data Weighted Averaging”; Aug. 2000, pp. 1074-1084.
  Rao, Sailesh; Short Course: Local Area Networks, International Solid State Circuits Conference; Sailesh Rao; Outline Implementing Gigabit Ethernet over Cat-5 Twisted-Pair Cabling; Jack Kenny; Signal Processing and Detection in Gigabit Ethernet; Feb. 1999; 3 pages.
  Razavi; “Principles of Data Conversion System Design”; 1995; 139 pages.
  Razavi; “SP 23.6: A 1.8 GHz CMOS Voltage-Controlled Oscillator”; 1997, pp. 388-389.
  Regan, “ADSL Line Driver/Receiver Design Guide”, Part 1, Feb. 2000.
  Reynolds, “A 320 MHz CMOS triple 8b DAC with on-chip PLL and hardware cursor”, Feb. 1994, pp. 50-51.
  Rofougaran et al; “SP 24.6: A 900 MHz CMOS LC-Oscillator with Quadrature Outputs”, 1996.
  Rudell et al; “A 1.9-GHz Wide-Band IF Double Conversion CMOS Receiver for Cordless Telephone Applications”, 1997, pp. 2071-2088.
  Rudell et al; Recent Developments in High Integration Multi-Standard CMOS Transceivers for Personal Communication Systems, 1998, 149-154.
  Rudell et al; “SA 18.3: A 1.9 GHz Wide-band IF Double Conversion CMOS Integrated Receiver for Cordless Telephone Applications”, 1997, pp. 304-305, 476.
  Sato et al; “SP 21.2: A 1.9 GHz Single-Chip IF Transceiver for Digital Cordless Phones”, Feb. 10, 1996.
  Sedra et al, “Microelectronic Circuits”, 3rd Edition, 1991.
  Sedra et al; “Micro-Electronic Circuits”,1982, pp. 95-97 and 243-247.
  Sedra et al; “Microelectronic Circuits”, Third Edition, 1991, pp. 48-115.
  Sedra et al; “Microelectronic Circuits”, Third Edition, 1991, pp. 86-92.
  Sedra et al; “Microelectronic Circuits,” Third Edition, Chapter 2: Operational Amplifiers, Section 2.4; pp. 61-63, 1991.
  Shoval et al; A 100 Mb/s BiCMOS Adaptive Pulse-Shaping Filter, Dec. 1995, 1692-1702.
  Shui et al; “Mismatch Shaping for a Current-Mode Multibit Delta-Sigma DAC”, Mar. 1999; pp. 331-338.
  Song et al; “FP 12.1: NRZ Timing Recovery Technique for Band-Limited Channels” (Slide Supplement), 1996.
  Song et al; FP 12.1: NRZ Timing Recovery Technique for Band-Limited channels, 1996.
  Song, Bang-Sup et al; “FP 12.1: NRZ Timing Recovery Technique for Band-Limited Channels”, ISSCC 96/Session 12/Serial Data Communications/Paper FP 12.1, 1996 IEEE International Solid State Conference, pp. 194-196.
  Sonntag et al; “FAM: 11.5: A Monolithic CMOS 10MHz DPLL for Burse-Mode”; Feb. 1990; pp. 194-195, 294.
  Soyuer et al; “A Monolithic 2.3-Gb/s 100-mW Clock and Data Recovery Circuit in Silicon Bipolar Technology”, Dec. 1993, pp. 1310-1313.
  Stephens, “Active Output Impedance for ADLS Line Drivers”, Nov. 2002.
  Su et al; “A CMOS OVersampling D/A Converter with a Current-Mode Semidigital Reconstruction Filter”, Dec. 1993, pp. 1224-1233.
  Su et al; “Experimental Results and Modeling Techniques for Substrate Noise in Mixed-Signal Integrated Circuits”, Apr. 1993, pp. 420-430.
  Takakura et al; “A 10 bit 80 MHz glitchless CMOS D/A/ converter”, May 1991, pp. 26.5.1-26.5.4.
  The Authoritative Dictionary of IEEE Standards Sterns 7th Edition, Jan. 2000; p. 280.
  The Electrical Engineering Handbook, Chapter 31, “D/A and A/D Converters”, Richard C. Dorf, editor, CRC Press, 1993.
  Tsutomu Kamoto; “An 8-bit 2-ns Monolithic DAC”, Feb. 1988.
  Uda et al; “125Mbit/s Fiber Optic Transmitter/Receiver with Duplex Connector”, Fiber Optic Communications Development Div., NEC Corporation, NEC Engineering, Ltd. and English Language Translation; 1988; 12 pages.
  Van de Plassche; “Integrated Analog-to-Digital and Digital-to-Analog Converters—Chapter 6”; Dec. 1999; pp. 211-271.
  Van der Plas et al; “A 14-Bit Intrinsic Accuracy Q2 Random Walk CMOS DAC”, Dec. 1999, pp. 1708-1718.
  Waizman; “FA 18.5: A Delay Line Loop for Frequency Synthesis of De-Skewed Clock”; Feb. 18, 1994, pp. 298-299.
  Walker et al; A Two Chip 1.5 GBd Serial Link Interface, Dec. 1992.
  Wang et al; A 1.2 GHz programmable DLL-Based Frequency Multiplier for Wireless Applications; Dec. 2004.
  Weaver, Jr.; “A Third Method of Generation and Detection of Single-Sideband Signals”, Dec. 1956, pp. 1703-1705.
  Weigandt et al; “Analysis of Timing Jitters in CMOS Ring Oscillators”; ISCAS 1994; pp. 27-30.
  Wikner et al; “Modeling of CMOS Digital-to Analog Converters for Telecommunication”; May 1999, pp. 489-499.
  Wu et al; “A low glitch 10-bit 75 MHz CMOS video D/A converter”, Jan. 1995, pp. 68-72.
  Yamaguchi et al; “400Mbit/s Submarine Optical Repeater Using Integrated Circuits”, Fujitsu Laboratories Ltd. and English Language Translation; 1988; 16 pages.
  Young et al; “A Low-Noise RF Voltage-Controlled Oscillator Using On-Chip High-Q Three-Dimensional Coil Inductor and Micromachined Variable Capacitor”; Jun. 8-11, 1998, pp. 128-131.
  Young et al; “A Micromachined Variable Capacitor for Monolithic Low-Noise VCOS”; 1996, pp. 86-89.
  Young et al; “Monlithic High-Performance three-Dimensional Coil Inductors for Wireless Communications”, 1997.
  Baird et al; “A Mixed Sample 120M s PRML Solution for DVD Systems”, 1999 IEEE International Solid-State Circuits Conference, Feb. 1999.
  Chien, “Low-Noise Local Oscillator Design Techniques using DLL-based Frequency Multiplier for Wireless Applications”, Spring, 2000.
  Cho et al; “A Single-Chip CMOS Direct Conversion Transceiver for 900 MHz Spread-Spectrum Digital Cordless Telephones”; IEEE International Solid State Circuits Conference, Feb. 1999, pp. 228-229, 464.
  Dec et al; “MP 4.8: A 1.9 GHz Micromachine-Based Low-Phase-Noise CMOS VCO”; Aug. 2000, pp. 80-81, 449.
  Goldberg, “Gigabit Ethernet PHY Chip Sets LAN Speed Record for Copper Story”, Nov. 1998, 6 pages.
  He et al; “A DSP Receiver for 1000 Base-T PHY”, Feb. 2001.
  Hung et al; “A 1.24-GHz Monolithic CMOS VCO with Phase Noise of 137 dBc/Hz at a 3-MHz Offset”; IEE Microwave and Guided Wave Letters, vol. 9, No. 3, Mar. 1999, pp. 111-113.
  IEEE Standards 802.3ab-2002, “Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications”, Mar. 2002, pp. 147-249.
  Kelly, N. Patrick et al; “WA 18.5—A Mixed-Signal DFE/FFE Receiver for 100Base-TX Applications”, ISSCC 2000/Session 18/Wireline Communications/Paper WA 18.5, Feb. 2000 IEEE International Solid-State Circuits Conference, pp. 310-311.
  Lam et al; “WP 23.6: A 2.6 GHz/5.2 GHz CMOS Voltage-Controlled Oscillator”, Feb. 1999, pp. 402-403, 484.
  Lin et al; “TP 12.5: A 1.4 GHz Differential Low-Noise CMOS Frequency Synthesizer using a Wideband PLL Architecture”; Feb. 2000, pp. 204-205, 458.
  Linear Technology, LT1358/LT1359, Dual and Quad 25MHz, 600V/us Op Amps, Linear Technology Corporation, Dec. 1994, pp. 1-12.
  Linear Technology, LT1813/LT1814, Dual and Quad 3mA, 100MHz, 750V/us Op Amps, Linear Technology Corporation, Dec. 1994, pp. 1-16.
  Liu et al; “WP 23.7: A 6.5 GHz Monolithic CMOS Voltage-Controlled Oscillator”, Solid-State Circuits Conference, 1999. Digest of Technical Papers. ISSCC. 1999 IEEE International, Feb. 1999, pp. 404-405, 484.
  Roo et al; “A CMOS Transceiver Analog Front-end for Gigabit Ethernet over Cat-5 Cables”, Solid-State Circuits Conference, 2001. Digest of Technical Papers. ISSCC. 2001 IEEE International, Feb. 2001, pp. 310-311, 458.
  Shoael et al; “A 3V Low Power 0.25 μm CMOS 100Mb/s Receiver for Fast Ethernet”, Feb. 2000, pp. 308-309.
  Shoval et al; “A CMOS Mixed-Signal 100Mb/s Receive Architecture for Fast Ethernet”, Custom Integrated Circuits, 1999. Proceedings of the IEEE 1999, May 1999, pp. 253-256.
  Shoval et al; “WA 18.7—A Combined 10/125 Mbaud Twisted-Pair Line Driver with Programmable Performance/Power Features,” Feb. 2000, pp. 314-315.
  Song, “Dual Mode Transmitter with Adaptively Controlled Slew Rate and Impedance Supporting Wide Range Data Rates,” Sep. 2001, pp. 321-324.
  Tham, Joo Leong et al; “A 2.7-V 900 MHz/1.9-GHz Dual-Band Transceiver IC for Digital Wireless Communication”, May 1998, pp. 559-562.
  Wang, HongMo; “WP 23.8: A 9.8 GHz Back-Gate Tuned VCO in 0.35 μm CMOS”, ISSCC99, Session 23, Paper WP 23.8 1999 IEEE International Solid-State Circuits Conference, Feb. 1999 , pp. 406-407, 484.
  Yee et al; “An Integratable 1-2.5 Gbps Low Jitter CMOS Transceiver with Built in Self Test Capability”, Jun. 1999, pp. 45-46.
  Baker, “An Adaptive Cable Equalizer for Serial Digital Rates to 400Mb/s,” 1996.
  Banu et al; “A BiCMOS Double-Low-IF Receiver for GSM,” 1997, pp. 521-524.
  Bertolaccini, Mario et al; “A Precision Baseline Offset and Drift Corrector for Low-Frequency Applications,” IEEE Transactions on Instrumentation and Measurement, vol. IM-34, No. 3, Sep. 1985, pp. 405-412.
  Goldberg, “Gigabit Ethernet PHY Chip Sets LAN Speed Record for Copper Story”, Nov. 1998, 6 pages.
  Wang et al; “WP 23.8: A 9.8 GHz Back-Gate Tuned VCO in 0.35 um CMOS,” 1999, pp. 406-407, 484.
 
 
     * cited by examiner
 
     Primary Examiner —Eugene Yun
     Art Unit — 2618
     Exemplary claim number — 1

(57)

Abstract

A transmit canceller comprises an amplifier having a first polarity input terminal, a second polarity input terminal, and an output terminal. A feedback element communicates with the second polarity input terminal and the output terminal. A first input resistor communicates with the second polarity input terminal and a composite signal that is based on a near end transmission signal and a received signal from a far end. A second input resistor communicates with the second polarity input terminal and a replica transmitter signal. A voltage source communicates with the first polarity input terminal. The received signal is output by the output terminal.
17 Claims, 5 Drawing Sheets, and 14 Figures


CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. patent application Ser. No. 11/523,169, filed Sep. 19, 2006, which is a divisional of U.S. patent application Ser. No. 10/786,010 filed on Feb. 26, 2004, which is a Continuation of U.S. patent application Ser. No. 09/629,092 filed Jul. 31, 2000. The disclosures of the above applications are incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention
[0003] The present invention relates generally to transmitting and receiving electrical signals through communication channels, such as a gigabit channel. In particular, the present invention relates to a transmit canceller that removes transmit signals from receive signals in such communication channels.
[0004] 2. Background and Related Art
[0005] A gigabit channel is a communications channel with a total data throughput of one gigabit per second. A gigabit channel typically includes four (4) unshielded twisted pairs (hereinafter “UTP”) of cables (e.g., category 5 cables) to achieve this data rate. IEEE Standard 802.3ab, herein incorporated by reference, specifies the physical layer parameters for a 1000BASE-T channel (e.g., a gigabit channel).
[0006] As will be appreciated by those skilled in the art, a UTP becomes a transmission line when transmitting high frequency signals. A trans-mission line can be modeled as a network of inductors, capacitors and resistors, as shown in FIG. 1. With reference to FIG. 1, G is normally zero and R(T) is complex due to skin effect. R(T) can be defined by:
          R(ω)=kR(1+j)√{square root over (ω,)}  (1)
where kR is a function of the conductor diameter, permeability, and conductivity. The characteristic impedance of the line is defined by:
[0007]  [see pdf for image]
[0008] and at high frequencies, Z0 becomes approximately √{square root over (L/C)} or approximately 100 ohms in a typical configuration. When properly terminated, a UTP of length d has a transfer function H that is a function of both length (d) and frequency (ω):
          H(d,ω)=edγ(ω),  (3)
          where
          γω=√{square root over ((R(ω)+jωL)(G+jωC))}{square root over ((R(ω)+jωL)(G+jωC))},  (4)
[0009] and substituting Equations 1 and 4 into Equation 3, and simplifying, approximately yields:
[0010]  [see pdf for image]
Equation 5 shows that attenuation and delay are a function of the cable length d.
[0011] A transmission path for a UTP typically includes a twisted pair of cables that are coupled to transformers at both a near and far end, as shown in FIG. 2. A transceiver at each end of the transmission path transmits and receives via the same twisted pair. A cable typically includes two patch cords totaling less than 10 m, and a main section of 100 m or even longer. The transmitters shown in FIG. 2 are modeled as current sources. The near end current source supplies a current Itx. The near end transmit voltage (e.g., ItxRtx) is detected and measured across resistor Rtx. A receive signal Vrcv (e.g., a signal transmitted from the far-end transceiver) is also detected and measured across resistor Rtx. Hence, Vtx includes both transmit (ItxRtx) and receive (Vrcv) signals. Accordingly, the signal Vrcv (e.g., the signal from Transceiver B) received at Transceiver A can be obtained by taking the difference between the transmit voltage and the measured voltage Vtx, as follows:
          i. Vrcv=Vtx−ItxRtx.  (6)
[0012] Conventional solutions for removing transmit signals from receive signals often employ known transconductor (“Gm”) summing stages or other current based methods. As will be appreciated, these methods often introduce signal distortion into the receive signal. Also, some transconductors have a limited signal dynamic range. Accordingly, conventional methods are often inadequate for applications requiring signal recovery. Additionally, known summing circuits, such as weighted summers using operational amplifiers, have not heretofore been modified to accommodate the intricacies associated with canceling transmit signals or regulating baseline wander (described below). A known weighted summer is discussed in Chapter 2 of “Microelectronic Circuits, Third Edition,” by A. S. Sedra and K. C. Smith, 1991, incorporated herein by reference.
[0013] As will be appreciated by those skilled in the art, the receive signal Vrcv typically contains additional components, due to baseline wander, echoes and crosstalk, for example.
[0014] Baseline wander is preferably corrected for when transmitting and receiving signals over transmission lines. Removing DC components from a receive signal using transformer coupling can cause baseline wander. As will be appreciated by those skilled in the art, baseline wander represents a deviation from an initial DC potential of a signal.
[0015] “Echoes” typically represent a residual transmit signal caused by reflections that appear in the receive signal. Echoes can cause undue interference depending on the size of the reflection.
[0016] Capacitive coupling between the channels, as shown in FIG. 3, causes crosstalk. Four channels TX1-TX4 are shown in FIG. 3. The capacitive coupling between TX1 and each of TX2, TX3 and TX4 are modeled by capacitors C1-2, C1-3, C1-4, respectively. The capacitive coupling forms a high-pass filter between channels and therefore crosstalk contains mostly high frequency components. As will be appreciated by those skilled in the art, normally only the near-end crosstalk (NEXT) needs to be considered, since crosstalk is usually small and the transmission line provides further attenuation of the far-end crosstalk (FEXT).
[0017] Accordingly, there are many signal-to-noise problems to be solved in the art. Hence, an efficient transmission canceller is needed to remove a transmit signal from a receive signal without introducing excess signal distortion. An electrical circuit is also needed to subtract a transmit signal from a receive signal. There is a further need of an electrical circuit to correct baseline wander.

SUMMARY OF THE INVENTION

[0018] The present invention relates to a transmit signal canceller for use in a transformer hybrid. Such a hybrid includes a junction for transmitting and receiving signals. In the present invention, an active resistive summer can be used to cancel a transmit signal from a receive signal.
[0019] According to the invention, an electrical circuit in a communications channel is provided. The electrical circuit includes an active resistive summer having: (i) an input for a composite signal, the composite signal including a transmission signal component and a receive signal component, (ii) an input for a replica transmission signal, and (iii) an output for a receive signal which includes the composite signal minus the replica signal.
[0020] According to an another aspect of the present invention, a transmit signal canceller in a communication channel is provided. The channel includes a first transceiver for transmitting and receiving signals and a replica transmitter for generating a replica transmission signal input. A composite signal at a rear end includes a transmission signal of the first transceiver and a received signal of a second transceiver. The transmit canceller includes: (i) an operational amplifier having a positive input terminal, a negative input terminal, and an output terminal; (ii) a feedback element in communication with the negative input terminal and the output terminal; (iii) a first input resistor in communication with the negative input terminal and the measured signal input; (iv) a second input resistor in communication with the negative input terminal and the replica signal input; and (v) a predetermined voltage source in communication with the positive terminal of the operational amplifier. The receive signal is an output at the output terminal of the operational amplifier.
[0021] According to still another aspect of the present invention, a communication system including a first transmission channel with a first end and a second end is provided. The first end couples to a first transformer and the second end couples to a second transformer. A first transceiver transmits and receives signals via the first transformer and a second transceiver transmits and receives signals via the second transformer. A first signal is supplied at the near end. The first signal includes a transmission signal component of the first transceiver and a receive signal component of the second transceiver. The communications system includes: (i) a replica transmitter that generates a replica of the transmission signal component of the first transceiver; (ii) a filter to filter the replica signal; (iii) an active resistive summer receiving the first signal, and the filtered replica signal as inputs to reduce the transmission signal component at an output of the active resistive summer.
[0022] According to still another aspect of the present invention, a method of correcting baseline wander in a receive signal in a communications channel having a near and far end is provided. The channel includes a first transceiver at the near end and a second transceiver at the far end, each to transmit and receive signals. The method includes the steps of: (i) providing a composite signal, the composite signal including a transmission signal of the first transceiver and a receive signal of the second transceiver; (ii) generating a replica of the transmission signal; (iii) subtracting the replica signal from the composite signal through an active resistive summer; and (iv) providing a baseline correction current into the active resistive summer.
[0023] These and other objects, features, and advantages of the present invention will be apparent from the following description of the preferred embodiments of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] The details of the present invention will be more readily understood from a detailed description of the preferred embodiments taken in conjunction with the following figures.
[0025] FIG. 1 is a circuit diagram illustrating a transmission line model.
[0026] FIG. 2 is a circuit diagram illustrating a transmission path across a twisted pair of cables, the cables being coupled to transformers at each end.
[0027] FIG. 3 is a diagram-illustrating crosswalk between channels in a gigabit channel.
[0028] FIG. 4 is a block diagram illustrating a system overview of a communications channel.
[0029] FIG. 5 is a circuit diagram illustrating a transmitter.
[0030] FIG. 6 is a graph illustrating a transmit signal.
[0031] FIG. 7 is a graph illustrating a composite signal with echoes.
[0032] FIG. 8 is a circuit diagram illustrating a replica transmitter.
[0033] FIG. 9 is a graph illustrating a receive signal.
[0034] FIG. 10 is block diagram illustrating a low-pass filter.
[0035] FIG. 11 is a circuit diagram illustrating an active resistive summer.
[0036] FIG. 12 is a circuit diagram illustrating an error detection circuit.
[0037] FIG. 13 is a circuit diagram illustrating a low-pass filter.
[0038] FIG. 14 is a circuit diagram illustrating a conventional voltage controlled current source.

DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS

[0039] The preferred embodiments will be described with respect to a gigabit channel, as used, for example, in an Ethernet network; and to electrical circuits associated with separating transmit and receive signals in such a gigabit channel. The preferred embodiments will also be described with respect to baseline wander correction in such a gigabit channel. However, as will be appreciated by those skilled in the art, the present invention is also applicable to other transmission channels, and to other electrical circuits having applications requiring cancellation of transmit signals, for example.
[0040] FIG. 4 is a block diagram illustrating principle components for one of the four channels in a preferred gigabit channel configuration for use in an Ethernet network. As illustrated in FIG. 4, a vertical dashed line divides analog and digital processing components. The analog components preferably include a transmitter (“XMTR”) 1, replica transmitter (“Replica XMTR”) 2, transmit canceller 3, baseline correction module 4, low pass filter (“LPF”) 5, analog-to-digital converter (“ADC”) 6, and phase-lock loop (“PLL”) 7. A known PLL can be used with the present invention.
[0041] Digital processing components preferably include a transmitter encoder 10, echo module 11, NEXT cancellers 12-14 to assist in removing echoes, synchronization module 15, FIR (Finite Impulse Response) equalizer 16 and a DFE (Decision Feedback Equalizer) 17 to equalize a receive signal, and a Viterbi module 18. The digital processing components also include baseline correction modules 19 and 20 to correct residual baseline wander. A timing recovery module 21, an error correction detector 22 (described in further detail below), and summing junction 23 are also shown. The individual digital components designated by blocks in FIG. 3 are all well known in the communication arts, and their specific construction and operation are not critical to the operation or best mode for carrying out the present invention.
[0042] The analog “front-end” components shown in FIG. 4 will now be described in even further detail. The front-end analog components are preferably designed and constructed via customized integrated circuits. However, as will be appreciated by those skilled in the art, the inventive circuits and corresponding configuration could also be realized using discrete components as well.
[0043] As illustrated in FIG. 5, transmitter 1 preferably includes a current-source Itx that generates a transmit signal over a resistor Rtx. An appropriated value for resistor Rtx can be selected to match the line impedance, for example. In one preferred embodiment, a resistor center tap is set to 2.5 volts so the transmitter 1 effectively sees a differential impedance of 25 ohms. Preferred performance specifications for the transmitter 1 are further detailed in Table 1, below.
[0044] An impulse transmit signal can be generated from a unit square pulse of 1T width filtered by a one-pole, low-pass filter (not shown) with a cutoff frequency between 85 MHz and 125 MHz. Slew-rate control can also be used to limit the rise and fall times and thus reduce the high frequency components of a transmit signal. Of course, any transmit signal preferably fits into the transmit template provided by the IEEE 802.3ab Standard. An ideal transmit pulse is shown in FIG. 6.
[0045] A measured voltage Vtx across Rtx (FIG. 5) is shown in FIG. 7. The measured signal Vtx contains interference caused by line reflections (e.g., echoes). The reflections are caused by impedance discontinuity due to impedance mismatch between different cables. For example, a large reflection pulse at 60 ns as shown in FIG. 7 corresponds to a reflection from the impedance discontinuity at an adapter connecting a 5 m patch cord to a 100 m cable. The magnitude of the echoes can be significant when compared to the magnitude of the receive signal at a long line length, and therefore, echo cancellation, as provided by the NEXT cancellers 12-14 shown in FIG. 4, is employed.
[0046] A receive signal Vrcv (e.g., a signal received from a far-end transceiver) is also measured across resistor Rtx, as shown in FIG. 5. Accordingly, the near end transmit signal (ItxRtx) is preferably canceled or reduced from the composite signal Vtx in order to effectively recover the far-end received signal Vrcv. This type of active cancellation can be accomplished with a replica transmit signal Vtxr. Accordingly, a replica transmitter 2 (to be described below) is provided to generate a signal Vtxr to be subtracted from the measured signal Vtx, thus, effectively reducing the transmit signal (ItxRtx).
[0047] A receive signal x(t) transmitted with pulse amplitude modulation (“PAM”) is define by:
[0048]  [see pdf for image]
[0049] where an is the transmit symbols and p(t) is the channel pulse derived by convoluting an impulse transmit pulse with a channel response defined by Equation 5. The receive signal for a 100 m cable is heavily attenuated by the transmission line and the pulse width is dispersed, as shown in FIG. 9. A 100 m UTP delays the signal by about 550 ns. Signal equalization preferably uses high frequency boosting via the FIR 16 to remove precursor intersymbol interference (“ISI”) and to insert a zero crossing for timing recovery 21. The DFE 17 is used to remove postcursor ISI.
[0050] The receive signal's elongated tail results from transformer coupling (e.g., a high-pass filter) with a time constant (e.g., L/R) typically on the order of micro-seconds. Since the receive signal contains little or no average DC energy, the negative tail has the same amount of energy as the positive pulse. In this regard, the signal's area integral is zero. In a typical example, a tail can last over 10 μs with a magnitude of no more than 0.5 mV. The long tail causes any DC bias to drift back toward zero, which can lead to baseline wander. As will be appreciated, this response time is too long to be practically removed by a digital equalizer, but the response is slow enough to be cancelled using a slow integrator, for example. The baseline wander canceller 4 is preferably decision directed to minimize the error defined by the difference between the equalized value and it's sliced value, as discussed below.
[0051] As illustrated in FIG. 8, the replica transmitter 2 includes a current source Itxr. Itxr is coupled to a voltage V through resistors R, as shown in FIG. 8. In a preferred embodiment, R is 100 ohms and V is about 2.5 volts. The replica signal Vtxr is preferably filtered through a known low-pass filter to obtain a low-pass replica signal (“Vtxrl”), as shown in FIG. 10. Replica signal Vtxr can also be inverted in a known manner to produce −Vtxr. The preferred performance specifications for the transmitter 1 and replica transmitter 2 are shown in Table 1.
[0052] 
[00001] [TABLE-US-00001]
  TABLE 1
 
  Transmitter and Replica Performance Specifications
    Parameters   Specifications
   
    Transmit Current   +/−40 mA
    Replica Transmit   ¼ of transmit current
    Current
    Number of levels   16 (not including 0)
    Number of sub-   8 (sequentially delayed)
    units
    Transmit Profile   [1 1 2 2 1 1], w/~1 ns delay
    Replica Transmit   [1 1 3 3], w/~1 ns delay
    Profile
  Rtx   100 Ω
   
[0053] A transmit signal canceller 4 is illustrated in FIG. 11. The transmit canceller 4 removes the transmission signal (ItxRtx) from the measured (or detected) transmit Vtx signal. In particular, the transmit canceller includes an active resistive summer that provides a large input dynamic range and stable linearity characteristics, while removing (e.g., reducing or canceling) the unwanted transmit signal component.
[0054] As illustrated in FIG. 11, the active summer includes an operational amplifier (“op-amp”) with inverting feedback. The op-amp is preferably constructed using integrated circuits in a known manner. The summer receives Vtxrl, Vtx, −Vtxr, Icms, and Ibl as input signals. Ibl is a baseline wander control current, and Icms is a common-mode shift current, each as further discussed below.
[0055] As will be appreciated by those skilled in the art, a transformer typically has high-pass characteristics. Accordingly, replica signal −Vtxr is combined (e.g., subtracted via the active resistive summer) with the low pass replica signal Vtxrl to produce a high-pass replica signal. As an alternative configuration, Vtxr could be filtered through a known high-pass filter prior to the transmit canceller 3 stage.
[0056] Returning to FIG. 11, receive signal Vrcv is determined from the following relationships.
[0057] Let:
[0058] Vi=voltage for the op-amp's positive terminal;
[0059] V1=Vtxrl;
[0060] V2=Vtx;
[0061] −V3=−Vtxr;
[0062] i4=Icms; and
[0063] i5=Ibl.
[0064] Then:
          i1+i2−i3−i4−i5=i0; and  (i)
[0065]  [see pdf for image]
[0066] Substituting the input signals for their placeholders yields the definition for Vrcv, as follows:
[0067]  [see pdf for image]
[0068] The gain is preferably set between 0.75 and 1 (e.g., RF/R1 equals 0.75 to 1). For a small signal analysis, Vi can be set to zero (0). Also, as will be appreciated by those skilled in the art, in a fully differential circuit, Vi effectively drops out of the equations since Vrcv=Vrcv(+)−Vrcv(−). As discussed, Vtxrl and −Vtxr are combined through the active summer to provide a high-pass replica signal (“Vtxrh”). The receive signal Vrcv can then be recovered as shown by Equation 9.
[0069] Preferred transmit canceller specifications are detailed in Table 2, below.
[0070] 
[00002] [TABLE-US-00002]
  TABLE 2
 
  Transmit Canceller Performance Specifications
    Parameters   Specifications
   
    Input Dynamic   +/−2.5 V(diff.) for transmit signal
    Range
    Output Dynamic   +/−1 V(diff.)
    Range
    Input impedance   High, ~10 k.
    Output impedance   Low
    Cutoff frequency   Greater than 31.5 Mhz
    DC Gain   0.85 -dependent on the LPF 5 and ADC
      6 characteristics (FIG. 4)
    Power   25 mw, including LPF 5 (FIG. 4)
  Rf   8.5 KΩ; or 7.5Ω for increased
      attenuation
    Vi   2.0 volts
  R1   10 KΩ
   
[0071] A known current mode circuit, e.g., a voltage controlled current source (VCCS) as shown in FIG. 14, with feedback preferably sets the summer input current-mode voltage (Vcm). Of course, other known current mode circuits could be employed with the present invention. This current-mode circuit shifts the common-mode of both the transmit and replica transmit signals. The input to the op amp (Vaip, Vain) is compared against the desired op amp output common-mode voltage (Vd):
          Vd=(Vaip−Vcm)+(Vain−Vcm)  (10)
[0072] Then, the common-mode shift current can be determined from:
          Icms=Vdgm+I0,  (11)
where gm is a transconductance and I0 is an offset current. An appropriate transconductance and offset current can be selected by setting Vcm=IcmsRF=VdgmRF+I0RF, to ensure a proper common-mode voltage seen by the op amp inputs. In this manner, the common mode shift current Icms can be regulated to pull down the common mode voltage of the operational amplifier as needed.
[0073] Baseline wander current Ibl is also “summed” by the active resistive summer, as shown in FIG. 11, to correct baseline wander. Approximately ninety percent (90%) of all system baseline correction can be obtained through the active summer. The remaining baseline residual can be digitally corrected through an equalizer, for example. As will be appreciated, the FIG. 11 topology allows the current sources (Ibl and Icms) to each have a fixed output voltage, thus, minimizing current deviation due to finite output resistance.
[0074] The baseline wander correction module 4 preferably corrects for baseline wander using a decision-directed method, such as a discrete integrator. The decision-directed method can be implemented with a known charge pump, where the pump sign (e.g., +1/−1) is determined digitally using an error between the equalized baseline signal (yk) and a sliced baseline signal (y^k), as shown in FIG. 12. As will be appreciated by those skilled in the art, the expected error value (e.g., E[ek]) is ideally driven to zero. The charge pump is preferably pumped up or down based on the error value. For example, a positive error implies that a negative value should be input into the charge pump. For a negative error, a positive value should be input into the charge pump. The charge pump preferably has at least two current settings to regulate Ibl. Of course, a charge pump with many current settings could be used to obtain finer baseline correction control.
[0075] The preferred baseline wander correction performance specifications are further detailed in Table 3, below.
[0076] 
[00003] [TABLE-US-00003]
  TABLE 3
 
  Baseline Wander Correction Specification
  Parameters   Specifications
 
  Output Dynamic+/−100 uA (diff.), (+/−1 V/R1, R1 = 10 kΩ)
  Range
  Output impedance   High
  Integration Factors   2 mV/T, 4 mV/T
  Bandwidth   >100 MHz
 
[0077] A second-order low-pass filter, as shown in FIG. 13, is cascaded after the summer to preferably flatten the frequency response out to about 31.25 MHz (<1 dB). A minimum overall attenuation of 20 dB at 125 MHz is desirable for the low pass filter. In a sampled system, some aliasing beyond Nyquist frequency (or excess bandwidth) is acceptable, but minimum aliasing is allowed at the sampling frequency. The transmitted data is preferably band-limited to the Nyquist rate.
[0078] Preferred performance characteristics of the low pass filter 5 are further detailed in Table 4, below.
[0079] 
[00004] [TABLE-US-00004]
  TABLE 4
 
  LPF Performance Specification
    Parameters   Specifications
   
    Input Dynamic   +/−1 V(diff.)
    Range
    Output Dynamic   +/−1 V(diff.)
    Range
    Input impedance   High, ~10 k.
    Output impedance   Low
    Cutoff frequency   50-60 Mhz.
    Q (2nd order)   ~1
    Input impedance   High, ~10 k.
    Output impedance   Low, <100
    DC gain   1
   
[0080] As an alternative arrangement, a third-order Sallen and Key low pass filter as disclosed in a co-pending application by the same inventor of this application, titled “CALIBRATION CIRCUIT,” filed concurrently herewith, and hereby incorporated by reference, could be used as filter 5. Similarly, the calibration circuit disclosed therein could also be used to calibrate the low pass filter 5.
[0081] Analog-to-digital converters are well know in the art. As will be appreciated, the ADC 6 resolution is often determined by system digital processing requirements. In a preferred embodiment, the Viterbi detector 18 requires an effective 7-bit resolution. Residual baseline wander, echoes, and crosstalk increase the dynamic range by about 200-300 mV, which increases the required resolution. The reduction in dynamic range due to insertion loss for a 100 m cable is approximately 40%. Accordingly, an 8-bit resolution is preferred.
[0082] The preferred ADC performance specifications are further detailed in Table 5, below.
[0083] 
[00005] [TABLE-US-00005]
  TABLE 5
 
  ADC Performance Specification
    Parameters   Specifications
   
    Resolution   8-bits minimum.
    Sampling frequency   125 MS/s
    Source Output   Low, ~200-400Ω
    Impedance
   
[0084] Thus, a transmit canceller including an active resistive summer has been described. Such an active resistive summer has not heretofore been developed for applications such as canceling signals in gigabit channels. Correcting baseline wander through such an active resistive summer has also been described herein.
[0085] While the present invention has been described with respect to what is presently considered to be the preferred embodiments, it will be understood that the invention is not limited to the disclosed embodiments. To the contrary, the invention covers various modifications and equivalent arrangements included within the spirit and scope of the appended claims. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
[0086] For example, while preferred circuit configurations and component values have been described, it will be understood that modifications could be made without deviating from the inventive structures. For example, values for the feedback and input resistors Rf and R1 could be changed to obtain higher or lower gains. Also, an active resistive summer could be constructed to sum only the measured signal Vtx and the replica signal Vtxr (or a high-pass version of the replica), for example. Additionally, while the communication channel has been described with respect to a twisted pair of cables, the invention may also be practiced with other communication channels such as optical and wireless channels. Moreover, this invention should not be limited to gigabit transmission rates and can be practiced at any transmission rate requiring the signal processing characteristics of the invention. Of course, these and other such modifications are covered by the present invention.
(57)

Claims

1. A transmit canceller comprising:
an amplifier having a first polarity input terminal, a second polarity input terminal, and an output terminal;
a feedback element in communication with the second polarity input terminal and the output terminal;
a first input resistor in communication with the second polarity input terminal and a composite signal that is based on a near end transmission signal and a received signal from a far end;
a second input resistor in communication with the second polarity input terminal and a replica transmitter signal; and
a voltage source in communication with the first polarity input terminal,
wherein the received signal is output by the output terminal.
2. The transmit canceller of claim 1 wherein a baseline correction current is input to the second polarity input terminal.
3. The transmit canceller of claim 2 further comprising a charge pump that generates the baseline correction current.
4. The transmit canceller of claim 2 further comprising a baseline correction circuit that generates the baseline correction current based on a difference between an equalized baseline signal and a sliced baseline signal.
5. The transmit canceller of claim 2 wherein a common-mode shift current is input to the second polarity input terminal.
6. The transmit canceller of claim 5 further comprising a first circuit that generates a common-mode shift current.
7. The transmit canceller of claim 1 wherein the replica transmitter signal comprises a high pass signal.
8. The transmit canceller of claim 1 wherein the replica signal comprises a negative signal.
9. The transmit canceller of claim 1 wherein the transmit canceller further includes a third resistor in communication with the second polarity input terminal and a low pass positive replica signal.
10. The transmit canceller of claim 1 wherein the replica transmit signal is generated by a replica transmit circuit.
11. A method for providing a transmit canceller comprising:
providing an amplifier having a first polarity input terminal, a second polarity input terminal, and an output terminal;
feeding back the output terminal to the second polarity input terminal;
supplying a composite signal comprising a near end transmission signal and a received signal from a far end to a first input resistor that communicates with the second polarity input terminal;
supplying a replica transmitter signal via a second input resistor to the second polarity input terminal; and
supplying a predetermined voltage to the first polarity input terminal,
wherein the received signal is output by the output terminal of the operational amplifier.
12. The method of claim 11 further comprising supplying a baseline correction current to the second polarity input terminal.
13. The method of claim 12 further comprising generating a baseline correction signal based on a difference between an equalized baseline signal and a sliced baseline signal.
14. The method of claim 12 further comprising supplying a common-mode shift current to the second polarity input terminal.
15. The method of claim 11 wherein the replica transmitter signal comprises a high pass signal.
16. The method of claim 11 wherein the replica signal comprises a negative signal.
17. The method of claim 11 further comprising supplying a low pass positive replica signal to the second polarity input terminal.
*****

Download Citation


Sign in to the Lens

Feedback