Methods For Improving Asthma Symptoms Using Benralizumab

  *US09441047B2*
  US009441047B2                                 
(12)United States Patent(10)Patent No.: US 9,441,047 B2
  et al. (45) Date of Patent:Sep.  13, 2016

(54)Methods for improving asthma symptoms using benralizumab 
    
(75)Inventor: MedImmune, LLC,  Gaithersburg, MD (US) 
(73)Assignee:ASTRAZENECA AB,  Södertäje (SE), Type: Foreign Company 
(*)Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. 
(21)Appl. No.: 14/454,149 
(22)Filed: Aug.  7, 2014 
(65)Prior Publication Data 
 US 2015/0044204 A1 Feb.  12, 2015 
 Related U.S. Patent Documents 
(60)Provisional application No. 61/864,950, filed on Aug.  12, 2013.
 
Jan.  1, 2013 C 07 K 16 2866 F I Sep.  13, 2016 US B H C Jan.  1, 2013 A 61 K 2039 505 L A Sep.  13, 2016 US B H C Jan.  1, 2013 C 07 K 2317 76 L A Sep.  13, 2016 US B H C
(51)Int. Cl. C07K 016/28 (20060101); A61K 045/06 (20060101); A61K 039/395 (20060101); A61K 039/00 (20060101)
(58)Field of Search  None

 
(56)References Cited
 
 U.S. PATENT DOCUMENTS
 6,018,032  A  1/2000    Koike et al.     
 6,538,111  B1  3/2003    Koike et al.     
 6,746,839  B1*6/2004    Duff et al. 435/6.14
 6,946,292  B2  9/2005    Kanda et al.     
 7,179,464  B2  2/2007    Koike et al.     
 7,214,775  B2  5/2007    Hanai et al.     
 7,238,354  B2  7/2007    Koike et al.     
 7,393,683  B2  7/2008    Kanda et al.     
 7,404,953  B2  7/2008    Hosaka et al.     
 7,425,446  B2  9/2008    Kanda et al.     
 7,662,925  B2  2/2010    Lazar et al.     
 7,708,992  B2  5/2010    Hanai et al.     
 7,718,175  B2  5/2010    Hanai et al.     
 7,737,325  B2  6/2010    Kanda et al.     
 7,741,442  B2  6/2010    Kanda et al.     
 7,846,725  B2  12/2010    Kanda et al.     
 8,501,176  B2*8/2013    Koike et al. 424/133.1
 2006//0014680  A1  1/2006    Xu et al.     
 2006//0063254  A1  3/2006    Kanda et al.     
 2007//0003546  A1  1/2007    Lazar et al.     
 2010//0291073  A1*11/2010    Koike et al. 424/133.1
 2012//0156194  A1  6/2012    Arron et al.     
 2012//0328606  A1  12/2012    Gossage et al.     
 2014//0004109  A1  1/2014    Koike et al.     
 2014//0328839  A1  11/2014    Molfino et al.     
 2015//0044202  A1  2/2015    Ward et al.     
 2015//0044203  A1  2/2015    Ward et al.     

 
 FOREIGN PATENT DOCUMENTS 
 
       EP       1266663       A1                12/2002      
       EP       1688437       A1                9/2006      
       WO       WO97/10354                         3/1997      
       WO       WO00/61739                         10/2000      
       WO       WO01/60405       A1                8/2001      
       WO       WO20/07/041635       A2                12/2007      
       WO       WO20/13/066780       A2                10/2013      

 OTHER PUBLICATIONS
  
  Kolbeck et al. (2010), J. Allergy Clin Immunol., vol. 125, pp. 1344-1353. *
  Busse et al. (2010), J. Allergy Clin Immunol., vol. 125, pp. 1237-1244. *
  NCT0076879 (2008), p. 1-4. *
  Juniper et al. (2006), Res. Medicine , vol. 100, p. 616-621. *
  Busse, William W. et al., 2010, “Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor α antibody, in a phase I study of subjects with mild asthma”, J. Allergy Clin. Immunol. 125:1237-1244.
  Chihara, Junichi et al., 1990, “Characterization of a Receptor for Interleukin 5 on Human Eosinophils: Variable Expression and Induction by Granulocyte/Macrophage Colony-stimulating Factor”, J. Exp. Med., 172:1347-1351.
  Corrigan, C.J. et al., 1992, “T cells and eosinophils in the pathogenesis of asthma”, Immunology Today, 13(12): 501-506.
  Ema , Hideo et al., 1990, “Target Cells for Granulocyte Colony-Stimulating Factor, Interleukin-3, and Interleukin-5 in Differentation Pathways of Neutrophils and Eosinophils”, 76(10): 1956-1961.
  Farinacci, Charles J. et al., 1951, “Eosinophilic Granuloma of the Lung”, United States Armed Forces Medical Journal, vol. 11(7):1085-1093.
  Fauci, Anthony S. et al., 1982, “The Idiopathic Hypereosinophilic Syndrome”, Annals of Internal Medicine, 97:78-92.
  Fukuda, Takeshi et al., 1985, “Increased Nos. Of Hypodense Eosinophils in the Blood of Patients with Bronchial Asthma”, Am. Rev. Respir. Dis. 132:981-985.
  Garrett, Jennifer K. Et al., 2004, “Anti-interleukin-5 (mepolizumab) therapy for hypereosinophilic syndromes”, J. Allergy Clin. Immunol. 113:115-119.
  Gleich, Gerald J. et al., 1986, “The Eosinophilic Leukocyte: Structure and Function”, Advances in Immunology, 39:177-253.
  Green, Ruth H. et al., 2002, “Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial”, Lancet, 360:1715-1721.
  Gruart, Valerie et al., 1989, “Variations in Protein Expression Related to Human Eosinophil Heterogeneity”, The Journal of Immunology, 142:4416-4421.
  Haldar, Pranabashis et al., 2009, “Mepolizumab and Exacerbations of Refractory Eosinophilic Asthma”, The New England Journal of Medicine, 360:973-984.
  Harley, John B. et al., 1983, “Noncardiovascular Findings Associated With Heart Disease in the Idiopathic Hypereosinophilic Syndrome”, Am. J. Cardiol., 52:321-324.
  Ishino, Tetsuya et al., 2004, “Kinetic Interaction Analysis of Human Interleukin 5 Receptor α Mutants Reveals a Unique Binding Topology and Charge Distribution for Cytokine Recognition”, J. Biol. Chem., 279(10):9547-9556.
  International Search Report corresponding to PCT/US2008/06156 mailed Sep. 25, 2008.
  International Search Report corresponding to corresponding to PCT/US2014/050122 mailed Jan. 29, 2015.
  Juniper, Elizabeth F. et al., 2006, “Identifying ‘well-controlled’ and ‘not well-controlled’ asthma using the Asthma Control Questionnaire”, Respiratory Medicine, 100 616-621.
  Kolbeck, Roland, 2010, “MEDI-563, a humanized anti-IL-5 receptor α mAb with enhanced antibody-dependent cell-mediated cytotoxicity function”, J. Allergy Clin. Immunol. 125:1344-1353.
  Owen, William F. et al., 1989, “Interleukin 5 and Phenotypically Altered Eosinophils in the Blood of Patients With the Idiopathicf Hypereosinophilic Syndrome”, J. Exp. Med., 170:343-348.
  Rothenberg, Marc. E. et al., 1988, “Human Eosinophils Have Prolonged Survival, Enhanced Functional Properties, and Become Hypodense When Exposed to Human Interleukin 3”, J. Clin. Invest., 81:1986-1992.
  Saito, Hirohisa et al., 1988, “Selective differentiation and proliferation of hematopoietic cells induced by recombinant human interleukins”, Proc. Natl. Acad. Sci. USA, 85:2288-2292.
  Saita, Naoki et al., 1999, “Difference in Apoptotic Function between Eosinophils from Peripheral Blood and Bronchoalveolar Lavage in Chronic Eosinophilic Pneumonia”, Int. Arch. Allergy Immunol., 120:91-94.
  Spry, C.J.F. et al., 1976, “Studies on blood eosinophils”, Clin. Exp. Immunol. 24:423-434.
  Tai, P.C., et al., 1991, “Effects of IL-5, granulocyte/macrophage colony-stimulating factor (GM-CSF) and IL-3 on the survival of human blood eosinophils in vitro”, Clin. Exp. Immunol., 85:312-316.
  Teran, L. M., et al., 1996, “The chemokines: their potential role in allergic inflammation”, Clinical and Experimental Allergy, 26:1005-1019.
  Winqvist, I. et al., 1982, “Altered density, metabolism and surface receptors of eosinophils in eosinophilia”, Immunology, 47:531-539.
  Lazar, GA et al., 2006 “Engineered antibody Fc variants with enhanced effector function”, Proceedings of the National Academy of Sciences, vol. 103, No. 11, pp. 4005-4010.
  Siberil, Sophie et al.., 2007, “FcgammaR: The Key to Optimize Therapeutic Antibodies?”, Critical Reviews in Oncology/Hematology, Elsevier Science Ireland Ltd., Limerick, Ie., vol. 62, No. 1, pp. 26-33.
  Supplementary European Search Report for EP 08779619 dated May 12, 2012.
  English Translation of Kyowa Hakko, Clinical study on an antibody medicinal product for treating asthma, over 6 years by the US subsidiary, Chemical Daily, Nov. 2, 2005, Chemical Daily p. 6, (No. 378).
  English Translation of Official Action dated Apr. 2, 2013 for corresponding Japanese Application No. 2010-508412.
 
 
     * cited by examiner
 
     Primary Examiner —Christine J Saoud
     Assistant Examiner —Jegatheesan Seharaseyon
     Art Unit — 1646
     Exemplary claim number — 1

(57)

Abstract

Provided herein are methods of improving asthma symptoms, e.g., as measured by an asthma control questionnaire, comprising administering to the patient an effective amount of benralizumab or an antigen-binding fragment thereof.
9 Claims, 11 Drawing Sheets, and 11 Figures


CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/864,950 filed Aug. 12, 2013. The above listed application is incorporated by reference herein in its entirety for all purposes.

REFERENCE TO THE SEQUENCE LISTING

[0002] This application incorporates by reference a Sequence Listing submitted with this application as text file entitled IL5R-605US1_SL.txt created on Jul. 16, 2014 and having a size of 16,002 bytes.

BACKGROUND

[0003] More than 300 million people around the world have asthma. Despite the use of long-acting bronchodilators and inhaled corticosteroids, asthma continues to be a major source of morbidity worldwide. (Masoli M, et al. Allergy 59: 469-78 (2004)).
[0004] Relapse following acute asthma exacerbation has been reported to range from 41 to 52% at 12 weeks despite the use of systemic steroids upon discharge (Lederle F, et al. Arch Int Med 147:2201-03 (1987)). Management of these patients has proved problematic due either to severe refractory disease or inability and/or unwillingness to comply with medical treatment. In one study of patients admitted to the hospital, some with near fatal asthma, 50% were non-compliant with systemic corticosteroids at 7 days following discharge (Krishnan J, et al. AJRCCM 170: 1281-85 (2004)). Many factors may contribute to non-compliance including poor access to routine quality healthcare (particularly in the inner city), lack of education or understanding of their disease, unwillingness to accept the chronic nature of their disease, or inability to obtain medications.
[0005] Many lines of evidence implicate eosinophils as one of the main causative cells of asthmatic airway inflammation (James A. Curr Opin Pulm Med 11 (1):1-6 (2005)). Peripheral blood (PB) eosinophilia is a risk factor for relapse of acute asthma (Janson C and Herala M. Resp Med 86 (2):101-104 (1992)). In subjects with peripheral blood eosinophilia, the risk of dying from asthma was 7.4 (confidence interval, 2.8-19.7) times greater than in those without eosinophilia (Ulrik C and Fredericksen J. Chest 108:10-15 (1995)). Necropsy results have identified 2 distinct pathogenic inflammatory mechanisms of fatal asthma (Restrepo R and Peters J. Curr Opin Pulm Med 14: 13-23 (2008)). A neutrophilic infiltrate is more prominent in those dying suddenly (approximately within 2 hours on onset of symptoms), while an eosinophilic infiltrate is more common in those dying from more protracted asthma crises. Sputum and blood eosinophils can also be increased in patients presenting to the ED with rapid onset of asthma symptoms (Bellido-Casado J, et al. Arch Bronconeumol 46 (11): 587-93 (2010)). Therapies that target eosinophils lead to a reduction in the number and severity of asthma exacerbations as compared to the use of clinical guidelines (Green R, et al. Lancet 360:1715-21 (2002); Haldar P, et al. NEJM 360:973-84 (2009)).
[0006] Benralizumab (MEDI-563) is a humanized monoclonal antibody (mAb) that binds to the alpha chain of the interleukin-5 receptor alpha (IL-5Rα), which is expressed on eosinophils and basophils. It induces apoptosis of these cells via antibody-dependent cell cytotoxicity. A single intravenous (IV) dose of benralizumab administered to adults with mild asthma provoked prolonged PB eosinopenia likely due to the effects on eosinophil/basophil bone marrow progenitors that express the target (Busse W, et al. JACI 125: 1237-1244 e2 (2010)). In addition, a single dose of benralizumab significantly reduced the blood eosinophil count in subjects who presented to the emergency department with a severe asthma exacerbation, but did not impact Asthma Control Questionnaire (ACQ) scores, which provide an assessment of asthma symptoms (WO 2013/066780).
[0007] The ACQ is a patient-reported questionnaire assessing asthma symptoms (night-time waking, symptoms on waking, activity limitation, shortness of breath, wheezing) and daily rescue bronchodilator use and forced expiratory volume in one second (FEV1). Juniper et al., Eur. Respir. J. 14:902-7 (1999) and Juniper et al., Chest 115:1265-70 (1999). Questions are weighted equally and scored from 0 (totally controlled) to 6 (severely uncontrolled). The mean ACQ score is the mean of the responses. Mean scores of ≦0.75 indicate well-controlled asthma; scores between 0.75 and ≦1.5 indicate partly controlled asthma; and a score >1.5 indicates uncontrolled asthma. Juniper et al., Respir. Med. 100:616-21 (2006). Individual changes of at least 0.5 are considered to be clinically meaningful. Juniper et al., Respir. Med. 99:553-8 (2005). The ACQ-6 is a shortened version of the ACQ that assesses asthma symptoms (night-time waking, symptoms on waking, activity limitation, shortness of breath, wheezing, and short-acting β2 agonist use) omitting the FEV1 measurement from the original ACQ score. Other questionnaires, such as the Asthma Therapy Assessment Questionnaire (ATAQ), the Asthma Control Test (ACT), the Asthma Quality of Life Questionnaire (AQLQ), and asthma diaries can also be used to assess asthma symptoms.
[0008] Thus, given the high unmet need of improving asthma symptoms, e.g., as measured using the ACQ, and that some patients with asthma have an eosinophilic component, the effect of benralizumab on the asthma questionnaires in adult subjects were examined.

BRIEF SUMMARY

[0009] Methods of improving an asthma questionnaire score in an asthmatic patient are provided herein. In certain aspects, a method of improving an asthma questionnaire score in an asthmatic patient comprises administering to the patient an effective amount of benralizumab or an antigen-binding fragment thereof. In certain aspects, the questionnaire assesses at least one symptom selected from the group consisting of night-time waking, symptoms on waking, activity limitation, shortness of breath, wheezing, rescue medication use, daytime symptom frequency and severity, nighttime symptom frequency and severity, activity avoidance and limitation, asthma-related anxiety, and fatigue. In certain aspects, the questionnaire assesses night-time waking, symptoms on waking, activity limitation, shortness of breath, wheezing, and rescue medication use. In certain aspects, the questionnaire assess daytime symptom frequency, daytime symptom severity, and nighttime severity. In certain aspects, the questionnaire is the asthma control questionnaire (ACQ). In certain aspects, the asthma questionnaire is the asthma control questionnaire-6 (ACQ-6). In certain aspects, the asthma questionnaire is the asthma quality of life questionnaire (AQLQ).
[0010] Methods of treating asthma are also provided herein. In certain aspects, a method of treating asthma comprises administering to an asthma patient an effective amount of an anti-interleukin-5 receptor (IL-5R) benralizumab or an antigen-binding fragment thereof, wherein the patient has an blood eosinophil count of at least 300 cells/μl prior to the administration.
[0011] In certain aspects, a method of treating asthma comprises administering to an asthma patient an effective amount of benralizumab or an antigen-binding fragment thereof, wherein the patient has a forced expiratory volume in one second (FEV1) of at least 75% predicted value prior to the administration.
[0012] In certain aspects, a method of treating asthma comprises administering at least two doses of benralizumab or an antigen-binding fragment thereof to an asthma patient.
[0013] In certain aspects of the methods provided herein, the administration improves an asthma symptom in the patient. In certain aspects, the asthma symptom is selected from the group consisting of night-time waking, symptoms on waking, activity limitation, shortness of breath, wheezing, rescue medication use, daytime symptom frequency and severity, nighttime symptom frequency and severity, activity avoidance and limitation, asthma-related anxiety, and fatigue.
[0014] In certain aspects of the methods provided herein, the patient's ACQ score decreases. In certain aspects, the patient's ACQ-6 score decreases. In certain aspects, the patient's ACQ-6 decreases within 7 weeks of the first administration. In certain aspects, the ACQ-6 score is decreased by at least 0.5. In certain aspects, the ACQ-6 score is decreased by at least 1. In certain aspects, the ACQ-6 score is decreased by at least 2.
[0015] In certain aspects of the methods provided herein, the asthma is eosinophilic asthma. In certain aspects, the patient has a blood eosinophil count of at least 300 cells/μl.
[0016] In certain aspects of the methods provided herein, the patient has a forced expiratory volume in one second (FEV1) of at least 75% predicted value prior to the administration. In certain aspects, the patient uses high-dose inhaled corticosteroids (ICS). In certain aspects, the patient has an asthma control questionnaire score of at least 1.5 prior to the administration. In certain aspects, the patient uses long-acting β2 agonists (LABA). In certain aspects, the patient has a history of exacerbations. In certain aspects, the history of exacerbations comprises at least two exacerbations in the year prior to the administration of benralizumab or an antigen-binding fragment thereof. In certain aspects, the history of exacerbations comprises no more than six exacerbations in the year prior to the administration of benralizumab or an antigen-binding fragment thereof
[0017] In certain aspects of the methods provided herein, at least two doses of benralizumab or an antigen-binding fragment thereof are administered to the patient.
[0018] In certain aspects of the methods provided herein, benralizumab or an antigen-binding fragment thereof is administered at about 2 mg to about 100 mg per dose. In certain aspects, benralizumab or an antigen-binding fragment thereof is administered at about 20 mg per dose. In certain aspects, benralizumab or an antigen-binding fragment thereof is administered at about 30 mg per dose. In certain aspects, benralizumab or an antigen-binding fragment thereof is administered at about 100 mg per dose.
[0019] In certain aspects of the methods provided herein, benralizumab or an antigen-binding fragment thereof is administered once every four weeks to once every twelve weeks. In certain aspects, benralizumab or an antigen-binding fragment thereof is administered once every four weeks. In certain aspects, benralizumab or an antigen-binding fragment thereof is administered once every eight weeks. In certain aspects, the benralizumab or an antigen-binding fragment thereof is administered once every four weeks for twelve weeks and then once every eight weeks.
[0020] In certain aspects of the methods provided herein, benralizumab or an antigen-binding fragment thereof is administered parenterally. In certain aspects, benralizumab or an antigen-binding fragment thereof is administered subcutaneously.
[0021] In certain aspects of the methods provided herein, benralizumab or an antigen-binding fragment thereof is administered in addition to corticosteroid therapy.
[0022] In certain aspects, a method of improving an asthma questionnaire score in an asthmatic patient comprises administering to an asthma patient 20-100 mg of benralizumab or an antigen-binding fragment thereof, wherein the patient has an blood eosinophil count of at least 300 cells/μl prior to the administration. In certain aspects, the method comprises administering 20 mg of benralizumab or an antigen-binding fragment thereof. In certain aspects, the 20 mg of benralizumab is administered once every four weeks for twelve weeks and then once every eight weeks. In certain aspects, the method comprises administering 30 mg of benralizumab or an antigen-binding fragment thereof. In certain aspects, the 30 mg of benralizumab is administered once every four weeks for eight weeks and then once every eight weeks. In certain aspects, the 30 mg of benralizumab is administered once every four weeks. In certain aspects, the method comprises administering 100 mg of benralizumab or an antigen-binding fragment thereof. In certain aspects, the 100 mg of benralizumab is administered once every four weeks for twelve weeks and then once every eight weeks.
[0023] In certain aspects, a method of treating asthma in an asthma patient comprises administering to the patient a dose of at least 2 and less than 100 mg of benralizumab or an antigen-binding fragment thereof. In certain aspects, the method comprises administering 20 mg of benralizumab or an antigen-binding fragment thereof. In certain aspects, the method comprises administering 30 mg of benralizumab or an antigen-binding fragment thereof. In certain aspects, the method comprises administering a dose of at least 20 and less than 100 mg of benralizumab or an antigen-binding fragment thereof. In certain aspects, the method comprises administering a dose of at least 30 and less than 100 mg of benralizumab or an antigen-binding fragment thereof. In certain aspects, the method decreases exacerbation rates of asthma. In certain aspects, the method decreases annual exacerbation rates of asthma. In certain aspects, the administration is subcutaneous.
[0024] In certain aspects of the provided methods, administration of benralizumab or an antigen-binding fragment thereof results in the improvement in asthma symptoms as shown in FIGS. 2-10.
[0025] In certain aspects of the provided methods, administration of benralizumab or an antigen-binding fragment thereof results in improvement in asthma symptoms as shown in Examples 1-2.

BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

[0026] FIG. 1 shows the study flow diagram.
[0027] FIG. 2 shows the change from baseline ACQ-6 at 24-weeks after treatment with placebo, 2 mg benralizumab, 20 mg benralizumab, or 100 mg benralizumab in patients with fewer than 300 eosinophils/μl and patients with at least 300 eosinophils/μl.
[0028] FIG. 3 shows the interim (24 weeks) and Stage I (52 weeks) change from baseline ACQ-6 after treatment with placebo, 2 mg benralizumab, 20 mg benralizumab, or 100 mg benralizumab in patients with fewer than 300 eosinophils/μl and patients with at least 300 eosinophils/μl
[0029] FIG. 4 shows the interim (24 weeks) and Stage I (52 weeks) change from baseline ACQ-6 after treatment with placebo, 2 mg benralizumab, 20 mg benralizumab, or 100 mg benralizumab in patients with medium or high use of inhaled corticosteroids (ICS).
[0030] FIG. 5 shows the interim (24 weeks) and Stage I (52 weeks) change from baseline ACQ-6 after treatment with placebo, 2 mg benralizumab, 20 mg benralizumab, or 100 mg benralizumab in patients with fewer than 300 eosinophils/μl and (i) medium use of ICS or (ii) high use of ICS.
[0031] FIG. 6 shows the interim (24 weeks) and Stage I (52 weeks) change from baseline ACQ-6 after treatment with placebo, 2 mg benralizumab, 20 mg benralizumab, or 100 mg benralizumab in patients with at least 300 eosinophils/μl and (i) medium use of ICS or (ii) high use of ICS.
[0032] FIGS. 7A and 7B show the changes from baseline ACQ-6 in patients with various eosinophil counts.
[0033] FIG. 8 shows the time course of mean ACQ-6 change in patients with at least 300 eosinophils/μl.
[0034] FIG. 9 shows the time course of mean overall diary symptom score change in patients with at least 300 eosinophils/μl.
[0035] FIG. 10 shows the mean AQLQ change in patients with at least 300 eosinophils/μl.

DETAILED DESCRIPTION

[0036] It is to be noted that the term “a” or “an” entity refers to one or more of that entity; for example, “an anti-IL-5α antibody” is understood to represent one or more anti-IL-5α antibodies. As such, the terms “a” (or “an”), “one or more,” and “at least one” can be used interchangeably herein.
[0037] Provided herein are methods for improving asthma symptoms, e.g., as assessed using an asthma questionnaire such as the Asthma Control Questionnaire, (ACQ), the ACQ-6, the Asthma Therapy Assessment Questionnaire (ATAQ), the Asthma Control Test (ACT), the Asthma Quality of Life Questionnaire (AQLQ), or an asthma symptom diary. The symptom can be, for example, night-time waking, symptoms on waking, activity limitation, shortness of breath, wheezing and/or rescue medication (e.g., bronchodilator) use. The symptom can also be, for example, daytime symptom frequency and severity, nighttime symptom frequency and severity, activity avoidance and limitation, asthma-related anxiety, fatigue and/or rescue medication use. The symptoms can also be, for example, daytime symptom frequency, daytime symptom severity, and/or nighttime symptom severity. The methods provided include administering an effective amount of benralizumab or an antigen-binding fragment thereof.
[0038] Information regarding benralizumab (or fragments thereof) for use in the methods provided herein can be found in U.S. Patent Application Publication No. US 2010/0291073 A1, the disclosure of which is incorporated herein by reference in its entirety. Benralizumab and antigen-binding fragments thereof for use in the methods provided herein comprises a heavy chain and a light chain or a heavy chain variable region and a light chain variable region. In a further aspect, benralizumab or an antigen-binding fragment thereof for use in the methods provided herein includes any one of the amino acid sequences of SEQ ID NOs: 1-4. In a specific aspect, benralizumab or an antigen-binding fragment thereof for use in the methods provided herein comprises a light chain variable region comprising the amino acid sequence of SEQ ID NO:1 and a heavy chain variable region comprising the amino acid sequence of SEQ ID NO:3. In a specific aspect, benralizumab or an antigen-binding fragment thereof for use in the methods provided herein comprises a light chain comprising the amino acid sequence of SEQ ID NO: 2 and heavy chain comprising the amino acid sequence of SEQ ID NO:4. In a specific aspect, benralizumab or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises the Kabat-defined CDR1, CDR2, and CDR3 sequences of SEQ ID NOs: 7-9, and wherein the light chain variable region comprises the Kabat-defined CDR1, CDR2, and CDR3 sequences of SEQ ID NOs: 10-12. Those of ordinary skill in the art would easily be able to identify Chothia-defined, Abm-defined or other CDRs. In a specific aspect, benralizumab or an antigen-binding fragment thereof for use in the methods provided herein comprises the variable heavy chain and variable light chain CDR sequences of the KM1259 antibody as disclosed in U.S. Pat. No. 6,018,032, which is herein incorporated by reference in its entirety.
[0039] In certain aspects, a patient presenting at a physician's office or ED with asthma is administered benralizumab or an antigen-binding fragment thereof. Given the ability of benralizumab to reduce or deplete eosinophil counts for up to 12 weeks or more (see US 2010/0291073), benralizumab or an antigen-binding fragment thereof can be administered only once or infrequently while still providing benefit to the patient in improving ACQ and/or ACQ-6. In further aspects the patient is administered additional follow-on doses. Follow-on doses can be administered at various time intervals depending on the patient's age, weight, ability to comply with physician instructions, clinical assessment, eosinophil count (blood or sputum eosinophils), Eosinophilic Cationic Protein (ECP) measurement, Eosinophil-derived neurotoxin measurement (EDN), Major Basic Protein (MBP) measurement and other factors, including the judgment of the attending physician. The intervals between doses can be every four weeks, every five weeks, every 6 weeks, every 8 weeks, every 10 weeks, every 12 weeks, or longer intervals. In certain aspects the intervals between doses can be every 4 weeks, every 8 weeks or every 12 weeks. In certain aspects, the single dose or first dose is administered to the asthma patient shortly after the patient presents with an acute exacerbation, e.g., a mild, moderate or severe exacerbation. For example, the single or first dose of benralizumab or an antigen-binding fragment thereof can be administered during the presenting clinic or hospital visit, or in the case of very severe exacerbations, within 1, 2, 3, 4, 5, 6, 7, or more days, e.g., 7 days of the acute exacerbation, allowing the patient's symptoms to stabilize prior to administration of benralizumab.
[0040] In some embodiments, at least two doses of benralizumab or an antigen-binding fragment thereof are administered to the patient. In some embodiments, at least three doses, at least four doses, at least five doses, at least six doses, or at least seven doses are administered to the patient. In some embodiments, benralizumab or an antigen-binding fragment thereof is administered over the course of four weeks, over the course of eight weeks, over the course of twelve weeks, over the course of twenty-four weeks, or over the course of a year.
[0041] The amount of benralizumab or an antigen-binding fragment thereof to be administered to the patient will depend on various parameters such as the patient's age, weight, clinical assessment, eosinophil count (blood or sputum eosinophils), Eosinophilic Cationic Protein (ECP) measurement, Eosinophil-derived neurotoxin measurement (EDN), Major Basic Protein (MBP) measurement and other factors, including the judgment of the attending physician. In certain aspects, the dosage or dosage interval is not dependent on the sputum eosinophil level.
[0042] In certain aspects the patient is administered one or more doses of benralizumab or an antigen-binding fragment thereof wherein the dose is about 2 mg to about 100 mg, for example about 20 mg to about 100 mg, or about 30 mg to about 100 mg. In certain specific aspects, the patient is administered one or more doses of benralizumab or an antigen-binding fragment thereof where the dose is about 20 mg, about 30 mg, about 40 mg, about 50 mg, about 60 mg, about 70 mg, about 80 mg, about 90 mg, or about 100 mg. In some embodiments, the dose is about 20 mg. In some embodiments the dose is about 30 mg. In some embodiments, the dose is about 100 mg.
[0043] In certain aspects, administration of benralizumab or an antigen-binding fragment thereof according to the methods provided herein is through parenteral administration. For example, benralizumab or an antigen-binding fragment thereof can be administered by intravenous infusion or by subcutaneous injection.
[0044] In certain aspects, benralizumab or an antigen-binding fragment thereof is administered according to the methods provided herein in combination or in conjunction with additional asthma therapies. Such therapies include, without limitation, inhaled corticosteroid therapy, long- or short-term bronchodilator treatment, oxygen supplementation, or other standard therapies as described, e.g., in the NAEPP Guidelines. In certain aspects, use of the methods provided herein, i.e., administration of benralizumab or an antigen-binding fragment thereof to an asthma patient with a history of acute exacerbations serves as adjunct therapy in situations of poor compliance with standard forms of asthma management.
[0045] The methods provided herein can significantly decrease ACQ or ACQ-6 scores in asthmatics. A change in ACQ or ACQ-6 can be measured against an expected ACQ or ACQ-6 based on a large patient population, on the ACQ or ACQ-6 measured in a control population, or on the individual patient's ACQ or ACQ-6 prior to administration. In certain aspects, the patient population is those patients who had ≧2 exacerbations requiring oral systemic corticosteroids in the past year. In certain aspects, the patient population is those patients who had ≧2 exacerbations requiring systemic corticosteroid bursts in the past year and ≦6 exacerbations requiring systemic corticosteroid bursts in the past year. In certain aspects, the patient population is patients having an eosinophil count of at least 300 cells/μl.
[0046] In certain aspects, use of the methods provided herein, i.e., administration of benralizumab or an antigen-binding fragment thereof improves ACQ or ACQ-6 scores over a 24-week period following administration of benralizumab or an antigen-binding fragment thereof, as compared to the patient's baseline ACQ or ACQ-6. In certain aspects, the patient can receive follow on doses of benralizumab or an antigen-binding fragment thereof at periodic intervals, e.g., every 4 weeks, every 5 weeks, every 6 weeks, every 8 weeks, every 12 weeks, or as scheduled based on patient's age, weight, ability to comply with physician instructions, clinical assessment, eosinophil count (blood or sputum eosinophils), Eosinophilic Cationic Protein (ECP) measurement, Eosinophil-derived neurotoxin measurement (EDN), Major Basic Protein (MBP) measurement and other factors, including the judgment of the attending physician. Use of the methods provided herein can decrease ACQ or ACQ-6 scores by at least 0.4, at least 0.5, at least 0.6, at least 0.7, at least 0.8, at least 0.9, at least 1.0, at least 1.1, at least 1.2, at least 1.3, at least 1.4, at least 1.5, at least 1.6, at least 1.7, at least 1.8, at least 1.9, at least 2.0, at least 2.1, at least 2.2, at least 2.3, at least 2.4, at least 2.5, at least 2.6, at least 2.7, at least 2.8, at least 2.9, or at least 3.0 over the 24-week period.
[0047] In other aspects, use of the methods provided herein, i.e., administration of benralizumab or an antigen-binding fragment thereof to an asthma patient, improves ACQ or ACQ-6 scores over a 52-week period following administration of the benralizumab or antigen-binding fragment thereof. In certain aspects, the patient can receive follow on doses of benralizumab or an antigen-binding fragment thereof at periodic intervals, e.g., every 4 weeks, every 5 weeks, every 6 weeks, every 8 weeks, every 12 weeks, or as scheduled based on patient's age, weight, ability to comply with physician instructions, clinical assessment, eosinophil count (blood or sputum eosinophils), Eosinophilic Cationic Protein (ECP) measurement, Eosinophil-derived neurotoxin measurement (EDN), Major Basic Protein (MBP) measurement and other factors, including the judgment of the attending physician. In certain aspects, the interval is every 4 weeks, every 8 weeks or every 12 weeks. Use of the methods provided herein can decrease ACQ or ACQ-6 scores by at least 0.4, at least 0.5, at least 0.6, at least 0.7, at least 0.8, at least 0.9, at least 1.0, at least 1.1, at least 1.2, at least 1.3, at least 1.4, at least 1.5, at least 1.6, at least 1.7, at least 1.8, at least 1.9, at least 2.0, at least 2.1, at least 2.2, at least 2.3, at least 2.4, at least 2.5, at least 2.6, at least 2.7, at least 2.8, at least 2.9, or at least 3.0.
[0048] In certain aspects, use of the methods provided herein, i.e., administration of benralizumab or an antigen-binding fragment thereof decreases ACQ or ACQ-6 scores within 4 weeks, within 7 weeks, within 8 weeks, within 9 weeks, within 10 weeks, within 12 weeks, within 16 weeks, within 20 weeks, within 24 weeks, within 28 weeks, within 32 weeks, within 36 weeks, within 40 weeks, within 44 weeks, within 48 weeks, or within 52 weeks.
[0049] The methods provided herein can also significantly improve scores in asthma symptom diary scores measuring daytime symptom frequency, daytime symptom severity, and nighttime symptom severity. A change in such diary symptom scores can be measured against an expected diary symptom score based on a large patient population, on the diary symptom score measured in a control population, or on the individual patient's diary symptom score prior to administration. In certain aspects, the patient population is those patients who had ≧2 exacerbations requiring oral systemic corticosteroids in the past year. In certain aspects, the patient population is those patients who had ≧2 exacerbations requiring systemic corticosteroid bursts in the past year and ≦6 exacerbations requiring systemic corticosteroid bursts in the past year. In certain aspects, the patient population is patients having an eosinophil count of at least 300 cells/μl.
[0050] In certain aspects, use of the methods provided herein, i.e., administration of benralizumab or an antigen-binding fragment thereof improves diary symptom scores over a 24-week period following administration of the benralizumab or antigen-binding fragment thereof, as compared to the patient's baseline diary symptom score. In certain aspects, the patient can receive follow on doses of benralizumab or an antigen-binding fragment thereof at periodic intervals, e.g., every 4 weeks, every 5 weeks, every 6 weeks, every 8 weeks, every 12 weeks, or as scheduled based on patient's age, weight, ability to comply with physician instructions, clinical assessment, eosinophil count (blood or sputum eosinophils), Eosinophilic Cationic Protein (ECP) measurement, Eosinophil-derived neurotoxin measurement (EDN), Major Basic Protein (MBP) measurement and other factors, including the judgment of the attending physician. Use of the methods provided herein can decrease diary symptom scores by at least 0.5 over the 24-week period.
[0051] In other aspects, use of the methods provided herein, i.e., administration of benralizumab or an antigen-binding fragment thereof to an asthma patient, improves diary symptom scores over a 52-week period following administration of the benralizumab or antigen-binding fragment thereof. In certain aspects, the patient can receive follow on doses of benralizumab or an antigen-binding fragment thereof at periodic intervals, e.g., every 4 weeks, every 5 weeks, every 6 weeks, every 8 weeks, every 12 weeks, or as scheduled based on patient's age, weight, ability to comply with physician instructions, clinical assessment, eosinophil count (blood or sputum eosinophils), Eosinophilic Cationic Protein (ECP) measurement, Eosinophil-derived neurotoxin measurement (EDN), Major Basic Protein (MBP) measurement and other factors, including the judgment of the attending physician. In certain aspects, the interval is every 4 weeks, every 8 weeks or every 12 weeks. Use of the methods provided herein can decrease diary symptom scores by at least 0.5.
[0052] In certain aspects, use of the methods provided herein, i.e., administration of benralizumab or an antigen-binding fragment thereof decreases diary symptom scores within 4 weeks, 5 weeks, within 6 weeks, within 7 weeks, within 8 weeks, within 9 weeks, within 10 weeks, within 12 weeks, within 16 weeks, within 20 weeks, within 24 weeks, within 28 weeks, within 32 weeks, within 36 weeks, within 40 weeks, within 44 weeks, within 48 weeks, or within 52 weeks.
[0053] The methods provided herein can significantly increase AQLQ scores in asthmatics. A change in AQLQ can be measured against an expected AQLQ based on a large patient population, the AQLQ measured in a control population, or on the individual patient's AQLQ prior to administration. In certain aspects, the patient population is those patients who had ≧2 exacerbations requiring oral systemic corticosteroids in the past year. In certain aspects, the patient population is those patients who had ≧2 exacerbations requiring systemic corticosteroid bursts in the past year and ≦6 exacerbations requiring systemic corticosteroid bursts in the past year. In certain aspects, the patient population is patients having an eosinophil count of at least 300 cells/μl.
[0054] In certain aspects, use of the methods provided herein, i.e., administration of benralizumab or an antigen-binding fragment thereof improves AQLQ scores over a 24-week period following administration of the benralizumab or antigen-binding fragment thereof, as compared to the patient's baseline AQLQ. In certain aspects, the patient can receive follow on doses of benralizumab or an antigen-binding fragment thereof at periodic intervals, e.g., every 4 weeks, every 5 weeks, every 6 weeks, every 8 weeks, every 12 weeks, or as scheduled based on patient's age, weight, ability to comply with physician instructions, clinical assessment, eosinophil count (blood or sputum eosinophils), Eosinophilic Cationic Protein (ECP) measurement, Eosinophil-derived neurotoxin measurement (EDN), Major Basic Protein (MBP) measurement and other factors, including the judgment of the attending physician. Use of the methods provided herein can increase AQLQ scores by at least 0.5, at least 0.6, at least 0.7, at least 0.8, at least 0.9, at least 1.0, at least 1.1, at least 1.2, or at least 1.3 over the 24-week period.
[0055] In other aspects, use of the methods provided herein, i.e., administration of benralizumab or an antigen-binding fragment thereof to an asthma patient, improves AQLQ scores over a 52-week period following administration of the benralizumab or antigen-binding fragment thereof. In certain aspects, the patient can receive follow on doses of benralizumab or an antigen-binding fragment thereof at periodic intervals, e.g., every 4 weeks, every 5 weeks, every 6 weeks, every 8 weeks, every 12 weeks, or as scheduled based on patient's age, weight, ability to comply with physician instructions, clinical assessment, eosinophil count (blood or sputum eosinophils), Eosinophilic Cationic Protein (ECP) measurement, Eosinophil-derived neurotoxin measurement (EDN), Major Basic Protein (MBP) measurement and other factors, including the judgment of the attending physician. In certain aspects, the interval is every 4 weeks, every 8 weeks or every 12 weeks. Use of the methods provided herein can increase AQLQ scores by at least 0.4, at least 0.5, at least 0.6, at least 0.7, at least 0.8, at least 0.9, at least 1.0, at least 1.1, at least 1.2, or at least 1.3.
[0056] In certain aspects, use of the methods provided herein, i.e., administration of benralizumab or an antigen-binding fragment thereof increases AQLQ scores within 4 weeks, within 8 weeks, within 9 weeks, within 10 weeks, within 12 weeks, within 16 weeks, within 20 weeks, within 24 weeks, within 28 weeks, within 32 weeks, within 36 weeks, within 40 weeks, within 44 weeks, within 48 weeks, or within 52 weeks.
[0057] In certain aspects, use of the methods provided herein, i.e., administration of benralizumab or an antigen-binding fragment thereof to an asthma patient, improves an asthma questionnaire score (e.g., the asthma control questionnaire (ACQ)), reduces an annual exacerbation rate and/or increases forced expiratory volume in one second (FEV1).
[0058] In certain aspects, the patient is “eosinophilic positive” meaning the patient is one whose asthma is likely to be eosinophilic.
[0059] In certain aspects, the asthma patient has a particular blood eosinophil count, e.g., prior to the administration of benralizumab or an antigen-binding fragment thereof. Blood eosinophil counts can be measured, for example, using a complete blood count (CBC) with cell differential.
[0060] In certain aspects, the asthma patient has a blood eosinophil count of at least 300 cells/μl prior to the administration of benralizumab or an antigen-binding fragment thereof. In certain aspects, the asthma patient has a blood eosinophil count of at least 350 cells/μl, at least 400 cells/μl, at least 450 cells/μl, or at least 500 cells/μl prior to the administration of benralizumab or an antigen-binding fragment thereof.
[0061] In certain aspects, the asthma patient has a blood eosinophil count of less than 300 cells/μl prior to the administration of benralizumab or an antigen-binding fragment thereof. In certain aspects, the asthma patient has a blood eosinophil count of at least 100 cells/μl, at least 150 cells/μl, at least 180 cells/μl, at least 200 cells/μl, or at least 250 cells/μl prior to the administration of benralizumab or an antigen-binding fragment thereof.
[0062] In certain aspects, the asthma patient was prescribed or has been using a medium-dose of inhaled corticosteroids (ICS) use prior to the administration of benralizumab or an antigen-binding fragment thereof. A medium-dose of ICS can be a dose of at least 600 μg to 1,200 μg budesonide daily or an equivalent dose of another ICS.
[0063] In certain aspects, the asthma patient was prescribed or had been using a high-dose of ICS use prior to the administration of benralizumab or an antigen-binding fragment thereof. A high-dose of ICS can be a dose of at least 1,200 μg budesonide daily or an equivalent dose of another ICS. A high dose of ICS can also be a dose of greater than 1,200 μg to 2000 μg budesonide daily or an equivalent dose of another ICS.
[0064] In certain aspects, the asthma patient was prescribed or has been using oral corticosteroids prior to the administration of benralizumab or an antigen-binding fragment thereof. In certain aspects, administration of benralizumab or an antigen-binding fragment thereof decreases the use of oral corticosteroids in an asthma patient. In certain aspects, the administration decreases the use of oral corticosteroids in an asthma patient by at least 50%.
[0065] In certain aspects, the asthma patient was prescribed or had been using a long-acting beta agonist (LAB A) prior to the administration of benralizumab or an antigen-binding fragment thereof.
[0066] In certain aspects, the asthma patient was prescribed or had been using both ICS and LABA prior to the administration of benralizumab or an antigen-binding fragment thereof.
[0067] In certain aspects, the asthma patient has a blood eosinophil count of at least 300 cells/μl and high ICS use prior to the administration of benralizumab or an antigen-binding fragment thereof.
[0068] In certain aspects, the asthma patient had an ACQ or ACQ-6 score of at least 1.5, at least 2.0, at least 2.5, at least 3.0, or at least 3.5 prior to the administration of benralizumab or an antigen-binding fragment thereof. In certain aspects, the asthma patient had an ACQ or ACQ-6 score of no more than 3.2, no more than 3.0, no more than 2.9, or no more than 2.8 prior to the administration of benralizumab or an antigen-binding fragment thereof.

EXAMPLES

Example 1

Patients and Methods

[0069] (a) Subjects
[0070] Subjects in this study were required to be 18 to 75 years of age with a weight of greater than 45 kg and less than or equal to 150 kg (greater than 100 pounds, but less than or equal to 330 pounds). They also must have had a physician diagnosis of asthma for a minimum of 12 months prior to screening as well as physician prescribed daily use of medium-dose or high-dose inhaled corticosteroids (ICS) plus long-acting beta agonist (LABA) or any combination of sequential dosing of either medium-dose or high-dose ICS/LABA for at least 12 months prior to screening. Medium and high-doses of ICS as defined in this study are shown in Table 1 below.
[0071] 
[00001] [TABLE-US-00001]
  TABLE 1
 
  Estimated Comparative Daily Dosages for Inhaled Corticosteroids
    Medium Daily Dose   High Daily Dose
  Drug   (Adult)   (Adult)
 
  Beclamethazone HFA/MDI   >240-480   μg   >480   μg
  40 or 80 μg/puff        
  Budesonide DPI   >600-1,200   μg   >1,200   μg
  90, 180, or 200 μg/inhalation        
  Ciclesonide HFA/MDI   >160-320   μg   >320-1280   μg
  80 or 160 μg/inhalation        
  Flunisolide CFC/MDI   >1,000-2,000   μg   >2,000   μg
  250 μg/puff        
  Flunisolide HFA/MDI   >320-640   μg   >640   μg
  80 μg/puff        
  Fluticasone        
  HFA/MDI: 44, 110, or 220 μg/puff   >264-440   μg   >440   μg
  DPI: 50, 100, or 250 μg/puff   >300-500   μg   >500   μg
  Mometasone DPI   400   μg   >400   μg
  200 μg/inhalation        
  Triamcinolone acetonide CFC/MDI   >750-1,500   μg   >1,500   μg
  75 μg/puff
 
  CFC = chlorofluorocarbon;
  DPI = dry powder inhaler;
  HFA = hydrofluoroalkane;
  MDI = metered dose inhaler.
[0072] The dose of other asthma controller medications must have been stable in the subjects for at least 30 days prior to screening. Subjects must also have had at least 2, but no more than 6, documented asthma exacerbations in the 12 months prior to screening that required the use of a systemic corticosteroid burst. Subjects must also have had a morning pre-bronchodilator forced expiratory volume in 1 second (FEV1) of at least 40% and less than 90% predicted during the screening/run-in period (described below). Subjects must also have fulfilled one of the following criteria:
[0073] a) Proof of post-bronchodilator reversibility of airflow obstruction ≧12% and ≧200 mL documented within 36 months prior to randomization or proof of a positive response [PC20≦8 mg/mL] to a methacholine challenge documented within 36 months prior to randomization; OR
[0074] b) A post-bronchodilator increase in FEV1≧12% and ≧200 mL at Week-3 screening visit; OR
[0075] c) If a) and b) were not met and all other inclusion/exclusion criteria were met, subjects with a FEV1 of ≧1.5 L and ≧60% predicted on the Week-2 screening visit were eligible to undergo a methacholine challenge at the Week-2 screening visit at sites where methacholine testing was available. If the subject achieved a positive response, (PC20≦8 mg/mL), then this inclusion criterion was met.
[0076] Subjects must also have had an Asthma Control Questionnaire (ACQ) score of at least 1.5 at least twice during the screening/run-in period.
[0077] Subjects were not able to participate if they had a cigarette exposure of 10 pack-years or more or had been smoking within 12 months prior to screening or had any condition (e.g., any eosinophilic lower respiratory disease other than asthma, chronic obstructive pulmonary disease (COPD), or cystic fibrosis) that, in the opinion of the investigator or medical monitor, would interfere with the evaluation. Subjects were also not able to participate if they had received an oral corticosteroid burst or short-acting systemic corticosteroid within 30 days prior to screening or during the screening/run-in period.
[0078] (b) Design of the Study
[0079] The study was a phase 2b randomized, double-blind, placebo-controlled, dose-ranging, multicenter study (ClinicalTrials.gov number: NCT01238861) in which multiple doses of benralizumab were administered subcutaneously to asthma patients. Benralizumab was administered at 2, 20, or 100 mg doses, and patients were followed for 1 year. The study flow diagram is shown in FIG. 1.
[0080] A 3-week screening/run-in period preceded administration of benralizumab or placebo. During the 3-week period, subjects continued to use the same medium-dose or high-dose ICS/LABA combination product as prior to the participation in the study (doses of ICS/LABA were required to be stable for 30 days prior to the 3-week screening/run-in period). Subjects remained on the same dose of ICS/LABA throughout the study.
[0081] The administered benralizumab composition contained benralizumab (50 mg/mL), 10 mM histidine, 10 mM histidine HCl monohydrate, 9% (w/v) trehalose dihydrate, and 0.004% (w/v) polysorbate-20, pH 6. The administered placebo composition contained 10 mM histidine, 10 mM histidine hydrochloride monohydrate, 9% (w/v) trehalose dihydrate, and 0.02% (w/v) polysorbate-20, pH 6.
[0082] Subjects received two subcutaneous (SC) injections of 1 ml of benralizumab or placebo every four weeks for the first 3 doses on Weeks 1 (Day 1), 4, and 8 and then every 8 weeks thereafter for the last 4 doses on Weeks 16, 24, 32, and 40. After Week 40, subjects were followed for an additional 12 weeks (through Week 52). The day of receipt of the first dose of benralizumab or placebo was considered Day 1.
[0083] ACQ-6 was completed at each screening visit and weekly at home through the Week 52 visit. Sites checked subject adherence with the ACQ-6 at each visit through Week 52. Specifically, ACQ-6 was performed at the screening visit 1 (i.e., visit 1 on day −21) and was then completed weekly at home. ACQ-6 was reviewed at screening visit 2 (i.e., visit 2 on about day −14), if there was a visit 2, and at screening visit 3 (i.e., visit 3 on about day −7). The adherence to completing ACQ-6 at home was reviewed at week 1 (day 1), week 4, week 8, week 12, week 16, week 24, week 40, and week 52. Subjects were asked to recall how their asthma had been during the previous week by responding to one bronchodilator use question and 5 symptom questions.
[0084] The change from baseline (the last valid assessment prior to the first administration of investigational product on Day 1) in mean ACQ-6 was summarized by treatment and visit. The change from baseline in mean ACQ-6 at various visits can be analyzed by ANCOVA with treatment and baseline values as possible covariates.
[0085] Subjects also completed Asthma Symptom Diaries each morning at home. These diaries were reviewed at each screening visit (excluding the first screening visit) and weekly through Week 52. In these diaries, subjects were asked to recall their experience with daytime and nighttime symptom frequency and severity, activity avoidance and limitation, asthma-related anxiety and fatigue as well as rescue medication use. Daytime frequency, daytime severity, and night severity were each scored by the subject from 0 (no symptoms) to 4 (most frequent/severe symptoms). The overall symptom score was calculated as the average of these 3 symptom questions.
[0086] Subjects also completed the Asthma Quality of Life Questionnaire (standardized version). The AQLQ[S] is a 32-item questionnaire that measures the health related quality of life experienced by asthma patients. Juniper et al., Chest. 115: 1265-70 (1999). The AQLQ[S] was completed at the Week-3 screening visit and Day 1, and then every 4 weeks at home through the Week 52 visit. Adherence was checked at select visits through the Week 52 visit. The questionnaire comprises 4 separate domains (symptoms, activity limitations, emotional function, and environmental stimuli). Subjects were asked to recall their experiences during the previous 2 weeks and to score each of the 32 questions on a 7-point scale ranging from 7 (no impairment) to 1 (severe impairment). The overall score was calculated as the mean response to all questions. The 4 individual domain scores (symptoms, activity limitations, emotional function, and environmental stimuli) are the means of the responses to the questions in each of the domains. Individual improvement in both the overall score and individual domain scores of 0.5 has been identified as a minimally important change, with score changes of >1.5 identified as large meaningful change. Juniper et al., J Clin Epidemiol. 47: 81-7 (1994).
[0087] (c) Safety Assessments
[0088] Adverse events were monitored following administration of placebo or benralizumab. Other assessments included physical examination, vital sign monitoring, and laboratory measurements.

Example 2

Results

[0089] (a) Enrollment and Baseline Characteristics
[0090] The baseline characteristics of all randomized subjects who received any dose of investigational product are provided in Table 2 below. The mean population ICS dose was 1100 budesonide equivalents overall, 700 budesonide equivalents in the medium dose stratum, and 1600 budesonide equivalents in the high dose stratum.
[0091] 
[00002] [TABLE-US-00002]
  TABLE 2
 
  Demographics for Baseline Eosinophils (EOS)
    PLACEBO   BENRALIZUMAB   PLACEBO   BENRALIZUMAB
  POPULATION   EOS < 300   EOS < 300   EOS >= 300   EOS >= 300
 
  N   139     151   83     232
  Mean Age (yrs)   50.3   51.2   45.2   46.3
  Gender Female   71     70   66     68
  (%)        
  Race White (%)   76     80   64     65
  BMI (mean)   29.6   29.2   28.8   28.5
  EOS mean cells/μl   149     156   542     548-615
  Chronic OCS       2.2%   7.9%       4.8%   4.3%
  (%)        
FEV1 (L) % pred   70.0   54-69   65     64-67
  Reversibility   12.5   13-18   15.5   17-19
  (%)        
  Historical    2.2   2.3-2.5    2.2   2.3-2.5
  Exacerbations        
  ACQ at Baseline    2.5   2.5-2.8    2.6   2.4-2.7
  Childhood     32%       33-38%     40%       37-41%
  Asthma YES        
  History Nasal      10.8%   11.9%      14.5%   19.3%
  Polyps YES        
FENO mean ppb   22.1   21-39   34.8   34-42
 
  OCS = oral corticosteroids;
FEV1 = forced expiratory volume in 1 second;
  ACQ = asthma control questionnaire; and
  FENO = fraction of exhaled nitric oxide.
[0092] The baseline characteristics of randomized subjects who received any dose of investigational product and had a baseline eosinophil count of at least 300 cells/μl are shown in Table 3 below.
[0093] 
[00003] [TABLE-US-00003]
  TABLE 3
 
  Demographics for ICS with Baseline EOS at Least 300 Cells/μl
    PLACEBO   BENRALIZUMAB   PLACEBO   BENRALIZUMAB
  POPULATION   MED ICS   MED ICS   HIGH ICS   HIGH ICS
 
  N   43   121    40   111
  Mean Age (yrs)   45   46-47   45   45-47
  Gender Female (%)   65   63   68   70-79
  Race White (%)   56   66   73    63
  BMI (mean)     27.3   27.6-28.3     30.3   27.8-30.0
  EOS mean cells/μl   480    462-625   608    605-656
  Chronic OCS (%)    0    0      10%       9%
FEV1 (L) % pred     68.8   64-70   60   63-65
  Reversibility (%)      16%      17-23%      15%      14-21%
  Historical     2.2   2.1-2.5     2.3   2.4-2.5
  Exacerbations        
  ACQ at Baseline     2.6   2.3-2.6     2.7   2.6-2.8
  Childhood Asthma      42%      36%      38%      27-53%
  YES        
  History Nasal Polyps      14%      11%      15%      23-37%
  YES        
FENO mean ppb     38.3   35-45     31.0   33-39
 
  OCS = oral corticosteroids;
FEV1 = forced expiratory volume in 1 second;
  ACQ = asthma control questionnaire; and
  FENO = fraction of exhaled nitric oxide.
[0094] (b) Efficacy
[0095] The effects of administration of benralizumab on ACQ-6 are shown in FIGS. 2-8. For example, the data in FIG. 2 demonstrate that by week 24, patients with a blood eosinophil count of at least 300 cells/μl who received 2, 20, or 100 mg of benralizumab showed decreases in ACQ-6 scores. Similar results were also observed at week 52 (FIG. 3). The data in FIG. 4 demonstrate that ACQ-6 scores were improved in patients receiving either medium or high dose ICS, but the improvement was greater in patients receiving high dose ICS. The data in FIG. 5 compare the changes in ACQ-6 scores in patients with a blood eosinophil count of less than 300 cells/μl who were receiving medium dose ICS with those receiving high dose ICS, and the data in FIG. 6 compare the changes in ACQ-6 scores in patients with a blood eosinophil count of at least 300 cells/μl who were receiving medium dose ICS with those receiving high dose ICS. A more detailed breakdown by eosinophil number is provided in FIG. 7. As shown in FIG. 8, a difference in ACQ-6 scores between patients receiving benralizumab and placebo was observable as early as week 7 in patients with a blood eosinophil count of at least 300 cells/μl.
[0096] The effects of administration of benralizumab on overall symptoms scores in asthma symptom diaries are shown in FIG. 9. Patients with a blood eosinophil count of at least 300 cells/μl who received 100 mg of benralizumab showed decreases in overall diary symptom scores of greater than 0.5.
[0097] The effects of administration of benralizumab on AQLQ scores are shown in FIG. 10. Patients with a blood eosinophil count of at least 300 cells/μl who benralizumab showed increases in AQLQ scores of greater than 0.5 or 1.0.
[0098] (c) Safety
[0099] Treatment emergent adverse events (TEAEs) occurred at an approximate 10 percentage point higher frequency in patients treated with benralizumab compared with those treated with placebo. Treatment emergent severe adverse events (TE-SAEs) occurred at similar frequencies in patients treated with benralizumab and placebo. TEAEs and TE-SAEs were not dose dependent in patients treated with benralizumab.
[0100] (d) Anti-Drug Antibodies
[0101] The development of anti-drug antibodies (ADA) to benralizumab was inversely related to dose, with the highest proportion of ADA-positive subjects at the 2 mg dose (see Table 4 below). The incidence of high titer ADA (≧400) was 12% and 9% in the 20 and 100 mg dose groups, respectively. High titer ADAs were associated with reduced benralizumab concentration and varying degrees of eosinophil recovery when present. The pharmacokinetic/pharmacodynamic (PK/PD) impact of high titer ADA was reduced at higher drug exposures. No pattern was observed between TEAEs and ADA.
[0102] 
[00004] [TABLE-US-00004]
  TABLE 4
 
  Anti-Drug Antibodies at Week 24
    Total   % Subjects   % Subjects
    Number of   with Positive   with ADA
  Treatment Group   Subjects   ADA Titres   Titres ≧ 400
 
  Placebo   222    8.1% (n = 18)   3% (n = 6)
  Benralizumab 2 mg   81   34.6% (n = 28)   23% (n = 19)
  Benralizumab 20 mg   81   18.5% (n = 15)   12% (n = 10)
  Benralizumab 100 mg   222   21.2% (n = 47)    9% (n = 20)
 
[0103] Based on both PK and immunological considerations, additional patients will receive dosing of 30 mg benralizumab. In some patients, the 30 mg benralizumab dose will be administered every four weeks. In some patients, the 30 mg benralizumab dose will be administered once every four weeks for three doses and then once every eight weeks thereafter.
[0104] (e) Discussion
[0105] This study demonstrates that benralizumab improves asthma symptoms as measured using ACQ-6. Improvements were observed at all doses, but a greater magnitude of benefit was evident in the 20 and 100 mg doses relative to the 2 mg dose. In addition, ACQ-6 scores improved more in those on high-dose ICS/LABA than those on medium-dose ICS/LABA. Asthma symptom diaries also reported improvements in overall symptom scores based on daytime symptom frequency, daytime symptom severity, and nighttime symptom severity. Increased AQLQ scores in patients also indicates symptom improvement.

Example 3

Additional Dose Evaluation

[0106] Dose-efficacy modeling was performed to identify additional doses of benralizumab that reduce annual exacerbation rates and are safe and well tolerated. The modeling indicated that a dose of about 30 mg is the minimum effective dose to produce 90% maximum treatment effect. Therefore patients with uncontrolled asthma receive subcutaneous injections of 30 mg of benralizumab or placebo. The 30 mg doses are administered (i) every four weeks or (ii) every four weeks for eight weeks (3 doses) and then every eight weeks (i.e., every 8 weeks including an additional dose at week 4). The number of exacerbations in patients receiving 30 mg benralizumab is compared to the number of exacerbations in patients receiving placebo in order to demonstrate that 30 mg doses of benralizumab decrease annual exacerbation rates. In addition, the number of exacerbations in patients with baseline blood eosinophil count of at least 300 cells/μl is analyzed in order to demonstrate that 30 mg doses of benralizumab can be effective in decrease annual exacerbation rates in such patients.
[0107] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific aspects of the disclosure described herein. Such equivalents are intended to be encompassed by the following claims.
[0108] Various publications are cited herein, the disclosures of which are incorporated by reference in their entireties.
[0109] Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications can be practiced within the scope of the appended claims.
[0110] 
[00005] [TABLE-US-00005]
 
  SEQUENCE LISTING
 
 
  SEQ ID NO: 1
>US20100291073_1 Sequence 1 from Patent US 20100291073 Organism: Homo sapiens
  DIQMTQSPSSLSASVGDRVTITCGTSEDIINYLNWYQQKPGKAPKLLIYHTSRLQSGVPSR
  FSGSGSGTDFTLTISSLQP
  EDFATYYCQQGYTLPYTFGQGTKVEIK
 
  SEQ ID NO: 2
>US20100291073_2 Sequence 2 from Patent US 20100291073 Organism: Homo sapiens
  DIQMTQSPSSLSASVGDRVTITCGTSEDIINYLNWYQQKPGKAPKLLIYHTSRLQSGVPSR
  FSGSGSGTDFTLTISSLQP
  EDFATYYCQQGYTLPYTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFY
  PREAKVQWKVDNALQSGNSQ
  ESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
  SEQ ID NO: 3
>US20100291073_3 Sequence 3 from Patent US 20100291073 Organism: Homo sapiens
  EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYVIHWVRQRPGQGLAWMGYINPYNDG
  TKYNERFKGKVTITSDRSTSTVY
  MELSSLRSEDTAVYLCGREGIRYYGLLGDYWGQGTLVTVSS
 
  SEQ ID NO: 4
>US20100291073_4 Sequence 4 from Patent US 20100291073 Organism: Homo sapiens
  EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYVIHWVRQRPGQGLAWMGYINPYNDG
  TKYNERFKGKVTITSDRSTSTVY
  MELSSLRSEDTAVYLCGREGIRYYGLLGDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTS
  GGTAALGCLVKDYFPEPVTV
  SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE
  PKSCDKTHTCPPCPAPELLG
  GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ
  YNSTYRVVSVLTVLHQDWLNG
  KEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDI
  AVEWESNGQPENNYKTTPP
  VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
  SEQ ID NO: 5
>US20100291073_5 Sequence 5 from Patent US 20100291073 Organism: Homo sapiens
  DLLPDEKISLLPPVNFTIKVTGLAQVLLQWKPNPDQEQRNVNLEYQVKINAPKEDDYET
  RITESKCVTILHKGFSASVRT
  ILQNDHSLLASSWASAELHAPPGSPGTSIVNLTCTTNTTEDNYSRLRSYQVSLHCTWLVG
  TDAPEDTQYFLYYRYGSWTE
  ECQEYSKDTLGRNIACWFPRTFILSKGRDWLAVLVNGSSKHSAIRPFDQLFALHAIDQINP
  PLNVTAEIEGTRLSIQWEK
  PVSAFPIHCFDYEVKIHNTRNGYLQIEKLMTNAFISIIDDLSKYDVQVRAAVSSMCREAGL
  WSEWSQPIYVGNDEHKPLR
  EWFVIVIMATICFILLILSLICKICHLWIKLFPPIPAPKSNIKDLFVTTNYEKAGSSETEIEVIC
  YIEKPGVETLEDSVF
 
  SEQ ID NO: 6
>US20100291073_6 Sequence 6 from Patent US 20100291073 Organism: Mus musculus
  DLLNHKKFLLLPPVNFTIKATGLAQVLLHWDPNPDQEQRHVDLEYHVKINAPQEDEYDT
  RKTESKCVTPLHEGFAASVRT
  ILKSSHTTLASSWVSAELKAPPGSPGTSVTNLTCTTHTVVSSHTHLRPYQVSLRCTWLVG
  KDAPEDTQYFLYYRFGVLTE
  KCQEYSRDALNRNTACWFPRTFINSKGFEQLAVHINGSSKRAAIKPFDQLFSPLAIDQVN
  PPRNVTVEIESNSLYIQWEK
  PLSAFPDHCFNYELKIYNTKNGHIQKEKLIANKFISKIDDYSTYSIQVRAAVSSPCRMPGR
  WGEWSQPIYVGKERKSLVE
  WHLIVLPTAACFVLLIFSLICRVCHLWTRLFPPVPAPKSNIKDLPVVTEYEKPSNETKIEVV
  HCVEEVGFEVMGNSTF
 
  SEQ ID NO: 7 - VH CDR1
  SYVIH
 
  SEQ ID NO: 8 - VH CDR2
  YINPYNDGTKYNERFKG
 
  SEQ ID NO: 9 - VH CDR3
  EGIRYYGLLGDY
 
  SEQ ID NO: 10 - VL CDR1
  GTSEDIINYLN
 
  SEQ ID NO: 11 - VL CDR2
  HTSRLQS
 
  SEQ ID NO: 12 - VL CDR3
  QQGYTLPYT
 
(57)

Claims

1. A method of treating asthma by improving an asthma control questionnaire-6 (ACQ-6) score in an adult asthmatic patient, comprising administering to the adult patient a dose of 30 mg once every four weeks for twelve weeks and then once every eight weeks of benralizumab or an antigen-binding fragment thereof, wherein the ACQ6 score is decreased by at least 0.5.
2. The method of claim 1, wherein the administration improves an asthma symptom in the patient.
3. The method of claim 2, wherein the asthma symptom is selected from the group consisting of night-time waking, symptoms on waking, activity limitation, shortness of breath, wheezing, rescue medication use, daytime symptom frequency and severity, nighttime symptom frequency and severity, activity avoidance and limitation, asthma-related anxiety, and fatigue.
4. The method of claim 1, wherein the asthma is eosinophilic asthma.
5. The method of claim 1, wherein the patient has a blood eosinophil count of at least 300 cells/μl.
6. The method of claim 1, wherein the patient uses high-dose inhaled corticosteroids (ICS).
7. The method of claim 1, wherein the patient uses long-acting β agonists (LABA).
8. The method of claim 1, wherein the patient has a history of exacerbations.
9. The method of claim 1, wherein the benralizumab or antigen-binding fragment thereof is administered in addition to corticosteroid therapy.
*****

Download Citation


Sign in to the Lens

Feedback