Process, Arrangements And Systems For Providing Frequency Domain Imaging Of A Sample

  *US09364143B2*
  US009364143B2                                 
(12)United States Patent(10)Patent No.: US 9,364,143 B2
 Yun et al. (45) Date of Patent:*Jun.  14, 2016

(54)Process, arrangements and systems for providing frequency domain imaging of a sample 
    
(75)Inventors: Seok-Hyun Yun,  Cambridge, MA (US); 
  Johannes F. de Boer,  Somerville, MA (US) 
(73)Assignee:THE GENERAL HOSPITAL CORPORATION,  Boston, MA (US), Type: US Company 
(*)Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 866 days. 
  This patent is subject to a terminal disclaimer. 
(21)Appl. No.: 13/465,580 
(22)Filed: May  7, 2012 
(65)Prior Publication Data 
 US 2012/0316434 A1 Dec.  13, 2012 
 Related U.S. Patent Documents 
(63) .
Continuation of application No. 11/744,287, filed on May  4, 2007, now Pat. No. 8,175,685 .
 
(60)Provisional application No. 60/799,511, filed on May  10, 2006.
 
Jan.  1, 2013 A 61 B 3 102 F I Jun.  14, 2016 US B H C Jan.  1, 2013 A 61 B 5 0059 L I Jun.  14, 2016 US B H C Jan.  1, 2013 A 61 B 5 0066 L I Jun.  14, 2016 US B H C Jan.  1, 2013 G 01 N 21 45 L I Jun.  14, 2016 US B H C Jan.  1, 2013 G 01 N 21 4795 L I Jun.  14, 2016 US B H C Jan.  1, 2013 A 61 B 5 418 L A Jun.  14, 2016 US B H C
(51)Int. Cl. A61B 006/00 (20060101); A61B 003/10 (20060101); A61B 005/00 (20060101); G01N 021/45 (20060101); G01N 021/47 (20060101)
(58)Field of Search  600/473, 476, 479; 356/479, 497

 
(56)References Cited
 
 U.S. PATENT DOCUMENTS
 2,339,754  A  1/1944    Brace     
 3,090,753  A  5/1963    Matuszak et al.     
 3,601,480  A  8/1971    Randall     
 3,856,000  A  12/1974    Chikama     
 3,872,407  A  3/1975    Hughes     
 3,941,121  A  3/1976    Olinger     
 3,973,219  A  8/1976    Tang et al.     
 3,983,507  A  9/1976    Tang et al.     
 4,030,827  A  6/1977    Delhaye et al.     
 4,030,831  A  6/1977    Gowrinathan     
 4,140,364  A  2/1979    Yamashita et al.     
 4,141,362  A  2/1979    Wurster     
 4,224,929  A  9/1980    Furihata     
 4,295,738  A  10/1981    Meltz et al.     
 4,300,816  A  11/1981    Snitzer et al.     
 4,303,300  A  12/1981    Pressiat et al.     
 4,428,643  A  1/1984    Kay     
 4,479,499  A  10/1984    Alfano et al.     
 4,533,247  A  8/1985    Epworth     
 4,585,349  A  4/1986    Gross et al.     
 4,601,036  A  7/1986    Faxvog et al.     
 4,607,622  A  8/1986    Fritch et al.     
 4,631,498  A  12/1986    Cutler     
 4,639,999  A  2/1987    Daniele     
 4,650,327  A  3/1987    Ogi     
 4,734,578  A  3/1988    Horikawa     
 4,744,656  A  5/1988    Moran et al.     
 4,751,706  A  6/1988    Rohde et al.     
 4,763,977  A  8/1988    Kawasaki et al.     
 4,770,492  A  9/1988    Levin et al.     
 4,827,907  A  5/1989    Tashiro et al.     
 4,834,111  A  5/1989    Khanna et al.     
 4,868,834  A  9/1989    Fox et al.     
 4,890,901  A  1/1990    Cross, Jr.     
 4,892,406  A  1/1990    Waters     
 4,905,169  A  2/1990    Buican et al.     
 4,909,631  A  3/1990    Tan et al.     
 4,925,302  A  5/1990    Cutler     
 4,928,005  A  5/1990    Lefèvre et al.     
 4,940,328  A  7/1990    Hartman     
 4,965,441  A  10/1990    Picard     
 4,965,599  A  10/1990    Roddy et al.     
 4,966,589  A  10/1990    Kaufman     
 4,984,888  A  1/1991    Tobias et al.     
 4,993,834  A  2/1991    Carlhoff et al.     
 4,998,972  A  3/1991    Chin et al.     
 5,039,193  A  8/1991    Snow et al.     
 5,040,889  A  8/1991    Keane     
 5,045,936  A  9/1991    Lobb et al.     
 5,046,501  A  9/1991    Crilly     
 5,065,331  A  11/1991    Vachon et al.     
 5,085,496  A  2/1992    Yoshida et al.     
 5,120,953  A  6/1992    Harris     
 5,121,983  A  6/1992    Lee     
 5,127,730  A  7/1992    Brelje et al.     
 5,197,470  A  3/1993    Helfer et al.     
 5,202,745  A  4/1993    Sorin et al.     
 5,202,931  A  4/1993    Bacus et al.     
 5,208,651  A  5/1993    Buican     
 5,212,667  A  5/1993    Tomlinson et al.     
 5,214,538  A  5/1993    Lobb     
 5,217,456  A  6/1993    Narciso, Jr.     
 5,228,001  A  7/1993    Birge et al.     
 5,241,364  A  8/1993    Kimura et al.     
 5,248,876  A  9/1993    Kerstens et al.     
 5,250,186  A  10/1993    Dollinger et al.     
 5,251,009  A  10/1993    Bruno     
 5,262,644  A  11/1993    Maguire     
 5,275,594  A  1/1994    Baker     
 5,281,811  A  1/1994    Lewis     
 5,283,795  A  2/1994    Fink     
 5,291,885  A  3/1994    Taniji et al.     
 5,293,872  A  3/1994    Alfano et al.     
 5,293,873  A  3/1994    Fang     
 5,302,025  A  4/1994    Kleinerman     
 5,304,173  A  4/1994    Kittrell et al.     
 5,304,810  A  4/1994    Amos     
 5,305,759  A  4/1994    Kaneko et al.     
 5,317,389  A  5/1994    Hochberg et al.     
 5,318,024  A  6/1994    Kittrell et al.     
 5,321,501  A  6/1994    Swanson et al.     
 5,333,144  A  7/1994    Liedenbaum et al.     
 5,348,003  A  9/1994    Caro     
 5,353,790  A  10/1994    Jacques et al.     
 5,383,467  A  1/1995    Auer et al.     
 5,394,235  A  2/1995    Takeuchi et al.     
 5,400,771  A  3/1995    Pirak et al.     
 5,404,415  A  4/1995    Mori et al.     
 5,411,016  A  5/1995    Kume et al.     
 5,414,509  A  5/1995    Veligdan     
 5,419,323  A  5/1995    Kittrell et al.     
 5,424,827  A  6/1995    Horwitz et al.     
 5,439,000  A  8/1995    Gunderson et al.     
 5,441,053  A  8/1995    Lodder et al.     
 5,450,203  A  9/1995    Penkethman     
 5,454,807  A  10/1995    Lennox et al.     
 5,459,325  A  10/1995    Hueton et al.     
 5,459,570  A  10/1995    Swanson et al.     
 5,465,147  A  11/1995    Swanson     
 5,486,701  A  1/1996    Norton et al.     
 5,491,524  A  2/1996    Hellmuth et al.     
 5,491,552  A  2/1996    Knuttel     
 5,522,004  A  5/1996    Djupsjobacka et al.     
 5,526,338  A  6/1996    Hasman et al.     
 5,549,114  A*8/1996    Petersen et al. 600/504
 5,555,087  A  9/1996    Miyagawa et al.     
 5,562,100  A  10/1996    Kittrell et al.     
 5,565,983  A  10/1996    Barnard et al.     
 5,565,986  A  10/1996    Knuttel     
 5,566,267  A  10/1996    Neuberger     
 5,583,342  A  12/1996    Ichie     
 5,590,660  A  1/1997    MacAulay et al.     
 5,600,486  A  2/1997    Gal et al.     
 5,601,087  A  2/1997    Gunderson et al.     
 5,621,830  A  4/1997    Lucey et al.     
 5,623,336  A  4/1997    Raab et al.     
 5,635,830  A  6/1997    Itoh     
 5,649,924  A  7/1997    Everett et al.     
 5,697,373  A  12/1997    Richards-Kortum et al.     
 5,698,397  A  12/1997    Zarling et al.     
 5,710,630  A  1/1998    Essenpreis et al.     
 5,716,324  A  2/1998    Toida     
 5,719,399  A  2/1998    Alfano et al.     
 5,730,731  A  3/1998    Mollenauer et al.     
 5,735,276  A  4/1998    Lemelson     
 5,740,808  A  4/1998    Panescu et al.     
 5,748,318  A  5/1998    Maris et al.     
 5,748,598  A  5/1998    Swanson et al.     
 5,752,518  A  5/1998    McGee et al.     
 5,784,352  A  7/1998    Swanson et al.     
 5,785,651  A  7/1998    Baker et al.     
 5,795,295  A  8/1998    Hellmuth et al.     
 5,801,826  A  9/1998    Williams     
 5,801,831  A  9/1998    Sargoytchev et al.     
 5,803,082  A  9/1998    Stapleton et al.     
 5,807,261  A  9/1998    Benaron et al.     
 5,810,719  A  9/1998    Toida     
 5,817,144  A  10/1998    Gregory et al.     
 5,836,877  A  11/1998    Zavislan et al.     
 5,840,023  A  11/1998    Oraevsky et al.     
 5,840,031  A  11/1998    Crowley     
 5,840,075  A  11/1998    Mueller et al.     
 5,842,995  A  12/1998    Mahadevan-Jansen et al.     
 5,843,000  A  12/1998    Nishioka et al.     
 5,843,052  A  12/1998    Benja-Athon     
 5,847,827  A  12/1998    Fercher     
 5,862,273  A  1/1999    Pelletier     
 5,865,754  A  2/1999    Sevick-Muraca et al.     
 5,867,268  A  2/1999    Gelikonov et al.     
 5,871,449  A  2/1999    Brown     
 5,872,879  A  2/1999    Hamm     
 5,877,856  A  3/1999    Fercher     
 5,887,009  A  3/1999    Mandella et al.     
 5,892,583  A  4/1999    Li     
 5,910,839  A  6/1999    Erskine et al.     
 5,912,764  A  6/1999    Togino     
 5,920,373  A  7/1999    Bille     
 5,920,390  A  7/1999    Farahi et al.     
 5,921,926  A  7/1999    Rolland et al.     
 5,926,592  A  7/1999    Harris et al.     
 5,949,929  A  9/1999    Hamm     
 5,951,482  A  9/1999    Winston et al.     
 5,955,737  A  9/1999    Hallidy et al.     
 5,956,355  A  9/1999    Swanson et al.     
 5,968,064  A  10/1999    Selmon et al.     
 5,975,697  A  11/1999    Podoleanu et al.     
 5,983,125  A  11/1999    Alfano et al.     
 5,987,346  A  11/1999    Benaron et al.     
 5,991,697  A  11/1999    Nelson et al.     
 5,994,690  A  11/1999    Kulkarni et al.     
 5,995,223  A  11/1999    Power     
 6,002,480  A  12/1999    Izatt et al.     
 6,004,314  A  12/1999    Wei et al.     
 6,006,128  A  12/1999    Izatt et al.     
 6,007,996  A  12/1999    McNamara et al.     
 6,010,449  A  1/2000    Selmon et al.     
 6,014,214  A  1/2000    Li     
 6,016,197  A  1/2000    Krivoshlykov     
 6,020,963  A  2/2000    Dimarzio et al.     
 6,025,956  A  2/2000    Nagano et al.     
 6,033,721  A  3/2000    Nassuphis     
 6,037,579  A  3/2000    Chan et al.     
 6,044,288  A  3/2000    Wake et al.     
 6,045,511  A  4/2000    Ott et al.     
 6,048,742  A  4/2000    Weyburne et al.     
 6,053,613  A  4/2000    Wei et al.     
 6,069,698  A  5/2000    Ozawa et al.     
 6,078,047  A  6/2000    Mittleman et al.     
 6,091,496  A  7/2000    Hill     
 6,091,984  A  7/2000    Perelman et al.     
 6,094,274  A  7/2000    Yokoi     
 6,107,048  A  8/2000    Goldenring et al.     
 6,111,645  A  8/2000    Tearney et al.     
 6,117,128  A  9/2000    Gregory     
 6,120,516  A  9/2000    Selmon et al.     
 6,134,003  A  10/2000    Tearney et al.     
 6,134,010  A  10/2000    Zavislan     
 6,134,033  A  10/2000    Bergano et al.     
 6,141,577  A  10/2000    Rolland et al.     
 6,151,522  A  11/2000    Alfano et al.     
 6,159,445  A  12/2000    Klaveness et al.     
 6,160,826  A  12/2000    Swanson et al.     
 6,161,031  A  12/2000    Hochmann et al.     
 6,166,373  A  12/2000    Mao     
 6,174,291  B1  1/2001    McMahon et al.     
 6,175,669  B1  1/2001    Colston et al.     
 6,185,271  B1  2/2001    Kinsinger     
 6,191,862  B1  2/2001    Swanson et al.     
 6,193,676  B1  2/2001    Winston et al.     
 6,198,956  B1  3/2001    Dunne     
 6,201,989  B1  3/2001    Whitehead et al.     
 6,208,415  B1  3/2001    De Boer et al.     
 6,208,887  B1  3/2001    Clarke     
 6,245,026  B1  6/2001    Campbell et al.     
 6,249,349  B1  6/2001    Lauer     
 6,249,381  B1  6/2001    Suganuma     
 6,249,630  B1  6/2001    Stock et al.     
 6,263,234  B1  7/2001    Engelhardt et al.     
 6,264,610  B1  7/2001    Zhu     
 6,272,268  B1  8/2001    Miller et al.     
 6,272,376  B1  8/2001    Marcu et al.     
 6,274,871  B1  8/2001    Dukor et al.     
 6,282,011  B1  8/2001    Tearney et al.     
 6,297,018  B1  10/2001    French et al.     
 6,301,048  B1  10/2001    Cao et al.     
 6,308,092  B1  10/2001    Hoyns     
 6,324,419  B1  11/2001    Guzelsu et al.     
 6,341,036  B1  1/2002    Tearney et al.     
 6,353,693  B1  3/2002    Kano et al.     
 6,359,692  B1  3/2002    Groot     
 6,374,128  B1  4/2002    Toida et al.     
 6,377,349  B1  4/2002    Fercher     
 6,384,915  B1  5/2002    Everett et al.     
 6,393,312  B1  5/2002    Hoyns     
 6,394,964  B1  5/2002    Sievert, Jr. et al.     
 6,396,941  B1  5/2002    Bacus et al.     
 6,421,164  B2  7/2002    Tearney et al.     
 6,437,867  B2  8/2002    Zeylikovich et al.     
 6,441,892  B2  8/2002    Xiao et al.     
 6,441,959  B1  8/2002    Yang et al.     
 6,445,485  B1  9/2002    Frigo et al.     
 6,445,939  B1  9/2002    Swanson et al.     
 6,445,944  B1  9/2002    Ostrovsky     
 6,459,487  B1  10/2002    Chen et al.     
 6,463,313  B1  10/2002    Winston et al.     
 6,469,846  B2  10/2002    Ebizuka et al.     
 6,475,159  B1  11/2002    Casscells et al.     
 6,475,210  B1  11/2002    Phelps et al.     
 6,477,403  B1  11/2002    Eguchi et al.     
 6,485,413  B1  11/2002    Boppart et al.     
 6,485,482  B1  11/2002    Belef     
 6,501,551  B1  12/2002    Tearney et al.     
 6,501,878  B2  12/2002    Hughes et al.     
 6,516,014  B1  2/2003    Sellin et al.     
 6,517,532  B1  2/2003    Altshuler et al.     
 6,538,817  B1  3/2003    Farmer et al.     
 6,540,391  B2  4/2003    Lanzetta et al.     
 6,549,801  B1  4/2003    Chen et al.     
 6,552,796  B2  4/2003    Magnin et al.     
 6,556,305  B1  4/2003    Aziz et al.     
 6,556,853  B1  4/2003    Cabib et al.     
 6,558,324  B1  5/2003    Von Behren et al.     
 6,560,259  B1  5/2003    Hwang et al.     
 6,564,087  B1  5/2003    Pitris et al.     
 6,564,089  B2  5/2003    Izatt et al.     
 6,567,585  B2  5/2003    Harris     
 6,593,101  B2  7/2003    Richards-Kortum et al.     
 6,611,833  B1  8/2003    Johnson et al.     
 6,615,071  B1  9/2003    Casscells, III et al.     
 6,622,732  B2  9/2003    Constantz     
 6,654,127  B2  11/2003    Everett et al.     
 6,657,730  B2  12/2003    Pfau et al.     
 6,658,278  B2  12/2003    Gruhl     
 6,680,780  B1  1/2004    Fee     
 6,685,885  B2  2/2004    Nolte et al.     
 6,687,007  B1  2/2004    Meigs     
 6,687,010  B1  2/2004    Horii et al.     
 6,687,036  B2  2/2004    Riza     
 6,692,430  B2  2/2004    Adler     
 6,701,181  B2  3/2004    Tang et al.     
 6,721,094  B1  4/2004    Sinclair et al.     
 6,725,073  B1  4/2004    Motamedi et al.     
 6,738,144  B1  5/2004    Dogariu et al.     
 6,741,355  B2  5/2004    Drabarek     
 6,757,467  B1  6/2004    Rogers     
 6,790,175  B1  9/2004    Furusawa et al.     
 6,806,963  B1  10/2004    Wälti et al.     
 6,816,743  B2  11/2004    Moreno et al.     
 6,831,781  B2  12/2004    Tearney et al.     
 6,839,496  B1  1/2005    Mills et al.     
 6,882,432  B2  4/2005    Deck     
 6,900,899  B2  5/2005    Nevis     
 6,903,820  B2  6/2005    Wang     
 6,909,105  B1  6/2005    Heintzmann et al.     
 6,949,072  B2  9/2005    Furnish et al.     
 6,961,123  B1  11/2005    Wang et al.     
 6,980,299  B1  12/2005    de Boer     
 6,996,549  B2  2/2006    Zhang et al.     
 7,006,231  B2  2/2006    Ostrovsky et al.     
 7,006,232  B2  2/2006    Rollins et al.     
 7,019,838  B2  3/2006    Izatt et al.     
 7,027,633  B2  4/2006    Foran et al.     
 7,061,622  B2  6/2006    Rollins et al.     
 7,072,047  B2  7/2006    Westphal et al.     
 7,075,658  B2  7/2006    Izatt et al.     
 7,099,358  B1  8/2006    Chong et al.     
 7,113,288  B2  9/2006    Fercher     
 7,113,625  B2  9/2006    Watson et al.     
 7,130,320  B2  10/2006    Tobiason et al.     
 7,139,598  B2  11/2006    Hull et al.     
 7,142,835  B2  11/2006    Paulus     
 7,148,970  B2  12/2006    De Boer     
 7,177,027  B2  2/2007    Hirasawa et al.     
 7,190,464  B2  3/2007    Alphonse     
 7,230,708  B2  6/2007    Lapotko et al.     
 7,231,243  B2  6/2007    Tearney et al.     
 7,236,637  B2  6/2007    Sirohey et al.     
 7,242,480  B2  7/2007    Alphonse     
 7,267,494  B2  9/2007    Deng et al.     
 7,272,252  B2  9/2007    De La Torre-Bueno et al.     
 7,304,798  B2  12/2007    Izumi et al.     
 7,310,150  B2  12/2007    Guillermo et al.     
 7,330,270  B2  2/2008    O'Hara et al.     
 7,336,366  B2  2/2008    Choma et al.     
 7,342,659  B2  3/2008    Horn et al.     
 7,355,716  B2  4/2008    De Boer et al.     
 7,355,721  B2  4/2008    Quadling et al.     
 7,359,062  B2  4/2008    Chen et al.     
 7,365,858  B2  4/2008    Fang-Yen et al.     
 7,366,376  B2  4/2008    Shishkov et al.     
 7,382,809  B2  6/2008    Chong et al.     
 7,391,520  B2  6/2008    Zhou et al.     
 7,458,683  B2  12/2008    Chernyak et al.     
 7,530,948  B2  5/2009    Seibel et al.     
 7,539,530  B2  5/2009    Caplan et al.     
 7,609,391  B2  10/2009    Betzig     
 7,630,083  B2  12/2009    de Boer et al.     
 7,643,152  B2  1/2010    de Boer et al.     
 7,643,153  B2  1/2010    de Boer et al.     
 7,646,905  B2  1/2010    Guittet et al.     
 7,649,160  B2  1/2010    Colomb et al.     
 7,664,301  B2  2/2010    Lange et al.     
 7,733,497  B2  6/2010    Yun et al.     
 7,782,464  B2  8/2010    Mujat et al.     
 7,805,034  B2  9/2010    Kato et al.     
 7,911,621  B2  3/2011    Motaghiannezam et al.     
 7,969,578  B2  6/2011    Yun et al.     
 7,973,936  B2  7/2011    Dantus     
 2001//0020126  A1  9/2001    Swanson et al.     
 2001//0036002  A1  11/2001    Tearney et al.     
 2001//0047137  A1  11/2001    Moreno et al.     
 2002//0016533  A1  2/2002    Marchitto et al.     
 2002//0024015  A1  2/2002    Hoffmann et al.     
 2002//0048025  A1  4/2002    Takaoka     
 2002//0048026  A1  4/2002    Isshiki et al.     
 2002//0052547  A1  5/2002    Toida     
 2002//0057431  A1  5/2002    Fateley et al.     
 2002//0064341  A1  5/2002    Fauver et al.     
 2002//0076152  A1  6/2002    Hughes et al.     
 2002//0085209  A1  7/2002    Mittleman et al.     
 2002//0086347  A1  7/2002    Johnson et al.     
 2002//0091322  A1  7/2002    Chaiken et al.     
 2002//0093662  A1  7/2002    Chen et al.     
 2002//0109851  A1  8/2002    Deck     
 2002//0113965  A1  8/2002    Roche et al.     
 2002//0122182  A1  9/2002    Everett et al.     
 2002//0122246  A1  9/2002    Tearney et al.     
 2002//0140942  A1  10/2002    Fee et al.     
 2002//0158211  A1  10/2002    Gillispie     
 2002//0161357  A1  10/2002    Anderson et al.     
 2002//0163622  A1  11/2002    Magnin et al.     
 2002//0166946  A1  11/2002    Iizuka et al.     
 2002//0168158  A1  11/2002    Furusawa et al.     
 2002//0172485  A1  11/2002    Keaton et al.     
 2002//0183623  A1  12/2002    Tang et al.     
 2002//0188204  A1  12/2002    McNamara et al.     
 2002//0196446  A1  12/2002    Roth et al.     
 2002//0198457  A1  12/2002    Tearney et al.     
 2003//0001071  A1  1/2003    Mandella et al.     
 2003//0013973  A1  1/2003    Georgakoudi et al.     
 2003//0023153  A1  1/2003    Izatt et al.     
 2003//0026735  A1  2/2003    Nolte et al.     
 2003//0028114  A1  2/2003    Casscells, III et al.     
 2003//0030816  A1  2/2003    Eom et al.     
 2003//0043381  A1  3/2003    Fercher     
 2003//0053673  A1  3/2003    Dewaele et al.     
 2003//0067607  A1  4/2003    Wolleschensky et al.     
 2003//0082105  A1  5/2003    Fischman et al.     
 2003//0097048  A1  5/2003    Ryan et al.     
 2003//0108911  A1  6/2003    Klimant et al.     
 2003//0120137  A1  6/2003    Pawluczyk et al.     
 2003//0135101  A1  7/2003    Webler     
 2003//0137669  A1  7/2003    Rollins et al.     
 2003//0164952  A1  9/2003    Deichmann et al.     
 2003//0165263  A1  9/2003    Hamer et al.     
 2003//0171691  A1  9/2003    Casscells, III et al.     
 2003//0174339  A1  9/2003    Feldchtein et al.     
 2003//0199769  A1  10/2003    Podoleanu et al.     
 2003//0216719  A1  11/2003    Debenedictis et al.     
 2003//0218756  A1  11/2003    Chen et al.     
 2003//0220749  A1  11/2003    Chen et al.     
 2003//0236443  A1  12/2003    Cespedes et al.     
 2004//0002650  A1  1/2004    Mandrusov et al.     
 2004//0039252  A1  2/2004    Koch     
 2004//0039298  A1  2/2004    Abreu     
 2004//0054268  A1  3/2004    Esenaliev et al.     
 2004//0072200  A1  4/2004    Rigler et al.     
 2004//0075841  A1  4/2004    Van Neste et al.     
 2004//0076940  A1  4/2004    Alexander et al.     
 2004//0077949  A1  4/2004    Blofgett et al.     
 2004//0085540  A1  5/2004    Lapotko et al.     
 2004//0086245  A1  5/2004    Farroni et al.     
 2004//0095464  A1  5/2004    Miyagi et al.     
 2004//0100631  A1  5/2004    Bashkansky et al.     
 2004//0100681  A1  5/2004    Bjarklev et al.     
 2004//0110206  A1  6/2004    Wong et al.     
 2004//0126048  A1  7/2004    Dave et al.     
 2004//0126120  A1  7/2004    Cohen et al.     
 2004//0133191  A1  7/2004    Momiuchi et al.     
 2004//0150829  A1  8/2004    Koch et al.     
 2004//0150830  A1  8/2004    Chan     
 2004//0152989  A1  8/2004    Puttappa et al.     
 2004//0165184  A1  8/2004    Mizuno     
 2004//0166593  A1  8/2004    Nolte et al.     
 2004//0189999  A1  9/2004    De Groot et al.     
 2004//0212808  A1  10/2004    Okawa et al.     
 2004//0239938  A1  12/2004    Izatt et al.     
 2004//0246490  A1  12/2004    Wang     
 2004//0246583  A1  12/2004    Mueller et al.     
 2004//0247268  A1  12/2004    Ishihara et al.     
 2004//0254474  A1  12/2004    Seibel et al.     
 2004//0258106  A1  12/2004    Araujo et al.     
 2004//0263843  A1  12/2004    Knopp et al.     
 2005//0004453  A1  1/2005    Tearney et al.     
 2005//0018133  A1  1/2005    Huang et al.     
 2005//0018200  A1  1/2005    Guillermo et al.     
 2005//0018201  A1*1/2005    de Boer et al. 356/479
 2005//0035295  A1  2/2005    Bouma et al.     
 2005//0036150  A1  2/2005    Izatt et al.     
 2005//0046837  A1  3/2005    Izumi et al.     
 2005//0057680  A1  3/2005    Agan     
 2005//0057756  A1  3/2005    Fang-Yen et al.     
 2005//0059894  A1  3/2005    Zeng et al.     
 2005//0065421  A1  3/2005    Burckhardt et al.     
 2005//0075547  A1  4/2005    Wang     
 2005//0083534  A1  4/2005    Riza et al.     
 2005//0119567  A1  6/2005    Choi et al.     
 2005//0128488  A1  6/2005    Yelin et al.     
 2005//0165303  A1  7/2005    Kleen et al.     
 2005//0171438  A1  8/2005    Chen et al.     
 2005//0190372  A1  9/2005    Dogariu et al.     
 2005//0197530  A1  9/2005    Wallace et al.     
 2005//0221270  A1  10/2005    Connelly et al.     
 2005//0254061  A1  11/2005    Alphonse et al.     
 2006//0020172  A1  1/2006    Luerssen et al.     
 2006//0033923  A1  2/2006    Hirasawa et al.     
 2006//0039004  A1  2/2006    De Boer et al.     
 2006//0093276  A1  5/2006    Bouma et al.     
 2006//0103850  A1  5/2006    Alphonse et al.     
 2006//0106375  A1  5/2006    Werneth et al.     
 2006//0146339  A1  7/2006    Fujita et al.     
 2006//0155193  A1  7/2006    Leonardi et al.     
 2006//0164639  A1  7/2006    Horn et al.     
 2006//0167363  A1  7/2006    Bernstein et al.     
 2006//0171503  A1  8/2006    O'Hara et al.     
 2006//0184048  A1  8/2006    Saadat et al.     
 2006//0193352  A1  8/2006    Chong et al.     
 2006//0224053  A1  10/2006    Black et al.     
 2006//0244973  A1  11/2006    Yun et al.     
 2006//0279742  A1  12/2006    Tearney     
 2007//0002435  A1  1/2007    Ye et al.     
 2007//0019208  A1  1/2007    Toida et al.     
 2007//0038040  A1  2/2007    Cense et al.     
 2007//0070496  A1  3/2007    Gweon et al.     
 2007//0076217  A1  4/2007    Baker et al.     
 2007//0086013  A1  4/2007    De Lega et al.     
 2007//0086017  A1  4/2007    Buckland et al.     
 2007//0091317  A1  4/2007    Freischlad et al.     
 2007//0133002  A1  6/2007    Wax et al.     
 2007//0188855  A1  8/2007    Shishkov et al.     
 2007//0203404  A1  8/2007    Zysk et al.     
 2007//0208225  A1  9/2007    Czaniera et al.     
 2007//0223006  A1  9/2007    Tearney et al.     
 2007//0233056  A1  10/2007    Yun     
 2007//0233396  A1  10/2007    Tearney et al.     
 2007//0236700  A1  10/2007    Yun et al.     
 2007//0258094  A1  11/2007    Izatt et al.     
 2007//0291277  A1  12/2007    Everett et al.     
 2008//0002197  A1  1/2008    Sun et al.     
 2008//0007734  A1  1/2008    Park et al.     
 2008//0021275  A1  1/2008    Tearney et al.     
 2008//0049220  A1  2/2008    Izzia et al.     
 2008//0070323  A1  3/2008    Hess et al.     
 2008//0094613  A1  4/2008    de Boer et al.     
 2008//0094637  A1  4/2008    de Boer et al.     
 2008//0097225  A1  4/2008    Tearney et al.     
 2008//0097709  A1  4/2008    de Boer et al.     
 2008//0100837  A1  5/2008    de Boer et al.     
 2008//0139906  A1  6/2008    Bussek et al.     
 2008//0152353  A1  6/2008    de Boer et al.     
 2008//0154090  A1  6/2008    Hashimshony     
 2008//0192236  A1  8/2008    Smith et al.     
 2008//0204762  A1  8/2008    Izatt et al.     
 2008//0218696  A1  9/2008    Mir     
 2008//0228086  A1  9/2008    Ilegbusi     
 2008//0234560  A1  9/2008    Nomoto et al.     
 2008//0265130  A1  10/2008    Colomb et al.     
 2008//0308730  A1  12/2008    Vizi et al.     
 2009//0005691  A1  1/2009    Huang     
 2009//0011948  A1  1/2009    Uniu et al.     
 2009//0044799  A1  2/2009    Qiu     
 2009//0051923  A1  2/2009    Zuluaga     
 2009//0131801  A1  5/2009    Suter et al.     
 2009//0192358  A1  7/2009    Jaffer et al.     
 2009//0196477  A1  8/2009    Cense et al.     
 2009//0209834  A1  8/2009    Fine     
 2009//0273777  A1  11/2009    Yun et al.     
 2009//0281390  A1  11/2009    Qiunjun et al.     
 2009//0290156  A1  11/2009    Popescu et al.     
 2009//0305309  A1  12/2009    Chien et al.     
 2009//0323056  A1  12/2009    Yun et al.     
 2010//0002241  A1  1/2010    Hirose     
 2010//0086251  A1  4/2010    Xu et al.     
 2010//0094576  A1  4/2010    de Boer et al.     
 2010//0150467  A1  6/2010    Zhao et al.     
 2010//0261995  A1  10/2010    Mckenna et al.     

 
 FOREIGN PATENT DOCUMENTS 
 
       CN       1550203                         12/2004      
       DE       4105221                         9/1991      
       DE       4309056                         9/1994      
       DE       19542955                         5/1997      
       DE       10351319                         6/2005      
       DE       102005034443                         2/2007      
       EP       0110201                         6/1984      
       EP       0251062                         1/1988      
       EP       0617286                         2/1994      
       EP       0590268                         4/1994      
       EP       0728440                         8/1996      
       EP       0933096                         8/1999      
       EP       1324051                         7/2003      
       EP       1426799                         6/2004      
       FR       2738343                         8/1995      
       GB       2368889                         12/1971      
       GB       2030313                         4/1980      
       GB       2209221                         5/1989      
       GB       2298054                         8/1996      
       JP       6073405                         4/1985      
       JP       62-188001                         6/1989      
       JP       04-056907                         2/1992      
       JP       20040056907                         2/1992      
       JP       4135550                         5/1992      
       JP       4135551                         5/1992      
       JP       5509417                         11/1993      
       JP       H8-136345                         5/1996      
       JP       9-230248                         9/1997      
       JP       10-213485                         8/1998      
       JP       10-267631                         10/1998      
       JP       10-267830                         10/1998      
       JP       2259617                         10/1999      
       JP       2000-023978                         1/2000      
       JP       2000-046729                         2/2000      
       JP       2000-121961                         4/2000      
       JP       2000-504234                         4/2000      
       JP       2000-126116                         5/2000      
       JP       2001-4447                         1/2001      
       JP       2001-500026                         1/2001      
       JP       2001-174404                         6/2001      
       JP       2001-174744                         6/2001      
       JP       2001-508340                         6/2001      
       JP       2007-539336                         6/2001      
       JP       2001-212086                         8/2001      
       JP       2008-533712                         8/2001      
       JP       2001-264246                         9/2001      
       JP       2001-525580                         12/2001      
       JP       2002-503134                         1/2002      
       JP       2002-035005                         2/2002      
       JP       2002-205434                         2/2002      
       JP       2002-095663                         4/2002      
       JP       2002-113017                         4/2002      
       JP       2002-148185                         5/2002      
       JP       2002-214128                         7/2002      
       JP       2002214127                         7/2002      
       JP       2003-014585                         1/2003      
       JP       2003-504627                         2/2003      
       JP       20030035659                         2/2003      
       JP       2003-512085                         4/2003      
       JP       2003-513278                         4/2003      
       JP       2003-516531                         5/2003      
       JP       2004-037165                         2/2004      
       JP       2004-057652                         2/2004      
       JP       2004-258144                         9/2004      
       JP       2004-317437                         11/2004      
       JP       2005-062850                         3/2005      
       JP       2005-110208                         4/2005      
       JP       2005-195485                         7/2005      
       JP       2005-241872                         9/2005      
       JP       2006-237359                         9/2006      
       JP       2007271761                         10/2007      
       JP       2003-102672                         4/2012      
       WO       7900841                         10/1979      
       WO       9201966                         2/1992      
       WO       9216865                         10/1992      
       WO       9219930                         11/1992      
       WO       9303672                         3/1993      
       WO       9533971                         12/1995      
       WO       96-02184                         2/1996      
       WO       9628212                         9/1996      
       WO       9732182                         9/1997      
       WO       9800057                         1/1998      
       WO       9801074                         1/1998      
       WO       9814132                         4/1998      
       WO       9835203                         8/1998      
       WO       9838907                         9/1998      
       WO       9846123                         10/1998      
       WO       9848838                         11/1998      
       WO       9848846                         11/1998      
       WO       9905487                         2/1999      
       WO       9944189                         2/1999      
       WO       9944089                         9/1999      
       WO       99-45338                         10/1999      
       WO       9957507                         11/1999      
       WO       00-42906                         7/2000      
       WO       00-43730                         7/2000      
       WO       0058766                         10/2000      
       WO       0101111                         1/2001      
       WO       0108579                         2/2001      
       WO       0127679                         4/2001      
       WO       0138820                         5/2001      
       WO       01-42735                         6/2001      
       WO       0142735                         6/2001      
       WO       0236015                         5/2002      
       WO       0237075                         5/2002      
       WO       0238040                         5/2002      
       WO       02-68853                         6/2002      
       WO       02053050                         7/2002      
       WO       02054027                         7/2002      
       WO       02-083003                         10/2002      
       WO       02084263                         10/2002      
       WO       03-003903                         1/2003      
       WO       03-012405                         2/2003      
       WO       03013624                         2/2003      
       WO       03020119                         3/2003      
       WO       03046495                         6/2003      
       WO       03046636                         6/2003      
       WO       03052478                         6/2003      
       WO       03053226                         7/2003      
       WO       03062802                         7/2003      
       WO       03-088826                         10/2003      
       WO       03105678                         12/2003      
       WO       2004034869                         4/2004      
       WO       2004-037068                         5/2004      
       WO       2004-043251                         5/2004      
       WO       2004057266                         7/2004      
       WO       2004066824                         8/2004      
       WO       2004088361                         10/2004      
       WO       2004-100789                         11/2004      
       WO       2004105598                         12/2004      
       WO       2005000115                         1/2005      
       WO       2005-047813                         5/2005      
       WO       2005047813                         5/2005      
       WO       2005054780                         6/2005      
       WO       2005082225                         9/2005      
       WO       2006004743                         1/2006      
       WO       2006-020605                         2/2006      
       WO       2006014392                         2/2006      
       WO       2006038876                         4/2006      
       WO       2006039091                         4/2006      
       WO       2006-058187                         6/2006      
       WO       2006059109                         6/2006      
       WO       2006124860                         11/2006      
       WO       2006130797                         12/2006      
       WO       2007-030835                         3/2007      
       WO       2007028531                         3/2007      
       WO       2007038787                         4/2007      
       WO       2007083138                         7/2007      
       WO       2007084995                         7/2007      
       WO       2009-033064                         3/2009      
       WO       2009153929                         12/2009      
       WO       2011-055376                         5/2011      

 OTHER PUBLICATIONS
  
  Schweitzer et al (Evaluation of time-resolved autofluorescence images of the ocular fundus, Proceedings of SPIE-OSA Biomedical Optics, SPIE vol. 5141 (2003). *
  Yun et al (Pulse-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts, vol. 12, No. 23/Optic Express 5614. *
  European Search Report dated Jun. 25, 2012 for EP 10733985.5.
  Wieser Wolfgang et al., “Multi-Megahertz OCT: High Quality 3D Imaging at 20 million A-Scans and 4.5 Gvoxels Per Second” Jul. 5, 2010, vol. 18, No. 14, Optics Express.
  European Communication Pursuant to EPC Article 94(3) for EP 07845206.7 dated Aug. 30, 2012.
  International Search Report and Written Opinion mailed Aug. 30, 2012 for PCT/US2012/035234.
  Giuliano, Scarcelli et al., “Three-Dimensional Brillouin Confocal Microscopy”. Optical Society of American, 2007, CtuV5.
  Giuliano, Scarcelli et al. “Conlocal Brillouin Microscopy for Three-Dimensional Mechanical Imaging.” Nat Photons, Dec. 9, 2007.
  Japanese Notice of Reasons for Rejections dated Oct. 10, 2012 for 2008-553511.
  Japanese Notice of Reasons for Rejections dated Oct. 2, 2012 for 2007-543626.
  Canadian Office Action dated Oct. 10, 2012 for 2,514,189.
  Japanese Notice of Reasons for Rejections dated Nov. 9, 2012 for JP 2007-530134.
  Japanese Notice of Reasons for Rejections dated Nov. 27, 2012 for JP 2009-554772.
  Japanese Notice of Reasons for Rejections dated Oct. 11, 2012 for JP 2008-533712.
  Yoden, K. et al. “An Approach to Optical Reflection Tomography Along the Geometrical Thickness,” Optical Review, vol. 7, No. 5, Oct. 1, 2000.
  International Search Report and Written Opinion mialed Oct. 25, 2012 for PCT/US2012/047415.
  Poneros er al: “Optical Coherence Tomogrpahy of the Biliary Tree During ERCP”, Gastrointestinal Endoscopy, Elsevier, NL, vol. 55, No. 1, Jan. 1, 2002, pp. 84-88.
  Fu L e tal: Double-Clad Photonic Crystal Fiber Coupler for compact Nonlinear Optical Microscopy Imaging, Optics Letters, OSA, Optical Society of America, vol. 31, No. 10, May 15, 2006, pp. 1471-1473.
  Japanese language Appeal Decision dated Jan. 10, 2012 for JP 2006-503161.
  Japanese Notice of Grounds for Rejection dated Oct. 28, 2011 for JP2009-294737.
  Japanese Notice of Grounds for Rejection dated Dec. 28, 2011 for JP2008-535793.
  Japanese Notice of Reasons for Rejection dated Dec. 12, 2011 for JP 2008-533712.
  International Search Report and Written Opinion mailed Feb. 9, 2012 based on PCT/US2011/034810.
  Japanese Notice of Reasons for Rejection dated Mar. 27, 2012 for JP 2003-102672.
  Japanese Notice of Reasons for Rejection dated May 8, 2012 for JP 2008-533727.
  Korean Office Action dated May 25, 2012 for KR 10-2007-7008116.
  Japanese Notice of Reasons for Rejection dated May 21, 2012 for JP 2008-551523.
  Japanese Notice of Reasons for Rejection dated Jun. 20, 2012 for JP 2009-546534.
  European Official Communication dated Aug. 1, 2012 for EP 10193526.0.
  Office Action dated Jul. 7, 2010 for U.S. Appl. No. 11/624,277.
  Montag Ethan D., “Parts of the Eye” online tectbook for JIMG 774: Vision & Psychophysics, download on Jun. 23, 2010 from http://www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap8/ch8p3.html.
  Office Action dated Jul. 16, 2010 for U.S. Appl. No. 11/445,990.
  Office Action dated Jul. 20, 2010 for U.S. Appl. No. 11/625,135.
  Office Action dated Aug. 5, 2010 for U.S. Appl. No. 11/623,852.
  Chinese office action dated Aug. 4, 2010 for CN 200780005949.9.
  Chinese office action dated Aug. 4, 2010 for CN 200780016266.3.
  Zhang et al., “Full Range Polarization-Sensitive Fourier Domain Optical Coherence Tomography” Optics Express, Nov. 29, 2004, vo. 12, No. 24.
  Office Action dated Aug. 27, 2010 for U.S. Appl. No. 11/569,790.
  Office Action dated Aug. 31, 2010 for U.S. Appl. No. 11/677,278.
  Office Action dated Sep. 3, 2010 for U.S. Appl. No. 12/139,314.
  Yong Zhao et al: “Virtual Data Grid Middleware Services for Data-Intensive Science”, Concurrency and Computation: Practice and Experience, Wiley, London, GB, Jan. 1, 2000, pp. 1-7, pp. 1532-0626.
  Swan et al., “Toward Nanometer-Scale Resolution in Fluorescence Microscopy using Spectral Self-Inteference” IEEE Journal. Selected Topics in Quantum Electronics 9 (2) 2003, pp. 294-300.
  Moiseev et al., “Spectral Self-Interfence Fluorescence Microscopy”, J. Appl. Phys. 96 (9) 2004, pp. 5311-5315.
  Hendrik Verschueren, “Interference Reflection Microscopy in Cell Biology”, J. Cell Sci. 75, 1985, pp. 289-301.
  Park et al., “Diffraction Phase and Fluorescence Microscopy”, Opt. Expr. 14 (18) 2006, pp. 8263-8268.
  Swan et al., “High Resolution Spectral Self-Interference Fluorescence Microscopy”, Proc. SPIE 4621, 2002, pp. 77-85.
  Sanchez et al., “Near-Field Fluorscence Microscopy Based on Two-Photon Excvitation with Metal Tips”, Phys. Rev. Lett. 82 (20) 1999, pp. 4014-4017.
  Wojtkowski, Maciej, Ph.D. “Three-Dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography” Ophthalmology, Oct. 2005, 112(10): 1734-1746.
  Vaughan, J.M. et al., “Brillouin Scattering, Density and Elastic Properties of the Lens and Cornea of the Eye”, Nature, vol. 284, Apr. 3, 1980, pp. 489-491.
  Hess, S.T. et al. “Ultra-high Resolution Imaging by Fluorescence Photoactivation Localization Microscopy” Biophysical Journal vol. 91, Dec. 2006, 4258-4272.
  Fernandez-Suarez, M. et al., “Fluorescent Probes for Super-Resolution Imaging in Living Cells” Nature Reviews Molecular Cell Biology vol. 9, Dec. 2008.
  Extended European Search Report mailed Dec. 14, 2010 for EP 10182301.1.
  S. Hell et al., “Breaking the diffraction resolution limit by stimulated-emission—stimulated-emission-depletion fluorescence microscopy,” Optics Letters. 19:495 (1995) and Ground State Depletion (GSD).
  S. Hell et al. “Ground-State-Depletion fluorescence microscopy—a concept for breaking the diffraction resolution limit,” Applied Physics B. 60:780 (1994)) fluorescence microscopy, phto-activated localization microscopy (PALM).
  E. Betzig et al. “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313:1642 (2006), stochastic optical reconstruction microscopy (STORM).
  M. Rust et al. “Sub-diffraction-limited imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3:783 (2006), and structured illumination microscopy (SIM).
  B. Bailey et al. “Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation,” Nature 366:44 (1993).
  M. Gustafsson “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” Journal of Microscopy 198:82 (2000).
  M. Gustafsson “Nonlinear structured illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” PNAS 102:13081 (2005)).
  R. Thompson et al, “Precise nanometer localization analysis for individual fluorescent probes,” Biophysical Journal 82:2775 (2002).
  K. Drabe et al. “Localization of Spontaneous Emission in front of a mirror,” Optics Communications 73:91 (1989).
  Swan et al. “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE Quantum Electronics 9:294 (2003).
  C. Joo, et al, “Spectral Domain optical coherence phase and multiphoton microscopy,” Optics Letters 32:623 (2007).
  Virmani et al., “Lesions from sudden coronary death: A comprhensive morphological classification scheme for atherosclerotic lesions,” Arterioscler. Thromb. Vase. Bio., 20:1262-75 (2000).
  Gonzalez, R.C. and Wintz, P., “Digital Image Processing” Addison-Wesley Publishing Company, Reading MA, 1987.
  V. Tuchin et al., “Speckle interferometry in the measurements ofbiotissues vibrations,” SPIE, 1647: 125 (1992).
  A.A. Bednov et al., “Investigation of Statistical Properties of Lymph Flow Dynamics Using Speckle-Microscopy,” SPIE, 2981: 181-90 (1997).
  Feng et al., “Mesocopic Conductors and Correlations in Laser Speckle Patters” Science, New Series, vol. 251, No. 4994, pp. 633-639 (Feb. 8, 1991).
  Lee et al., “The Unstable Atheroma,” Arteriosclerosis, Thrombosis & Vascular Biology, 17:1859-67 (1997).
  International Search report dated Apr. 29, 2011 for PCT/US2010/051715.
  International Search report dated Sep. 13, 2010 for PCT/US2010/023215.
  International Search Report dated Jul. 28, 2011 for PCT/US2010/059534.
  International Search report dated Nov. 18, 2011 for PCT/US2011/027450.
  International Search report dated Nov. 18, 2011 for PCT/US2011/027437.
  International Search report dated Nov. 22, 2011 for PCT/US2011/027421.
  R. Haggitt et al., “Barrett's Esophagus Correlation Between Mucin Histochemistry, Flow Cytometry, and Histological Diagnosis for Predicting Increased Cancer Risk,” Apr. 1988, American Journal of Pathology, vol. 131, No. 1, pp. 53-61.
  R.H. Hardwick et al., (1995) “c-erbB-2 Overexpression in the Dysplasia/Carcinoma Sequence of Barrett's Oesophagus,” Journal of Clinical Pathology, vol. 48, No. 2, pp. 129-132.
  W. Polkowski et al, (1998) Clinical Decision making in Barrett's Oesophagus can be supported by Computerized Immunoquantitation and Morphometry of Features Associated with Proliferation and Differentiation, Journal of pathology, vol. 184, pp. 161-168.
  J.R. Turner et al., MN Antigen Expression in Normal Preneoplastic, and Neoplastic Esophagus: A Clinicopathological Study of a New Cancer-Associated Biomarker,: Jun. 1997, Human Pathology, vol. 28, No. 6, pp. 740-744.
  D.J. Bowery et al., (1999) “Patterns of Gastritis in Patients with Gastro-Oesophageal Reflux Disease,”, Gut, vol. 45, pp. 798-803.
  O'Reich et al., (2000) “Expression of Oestrogen and Progesterone Receptors in Low-Grade Endometrial Stromal Sarcomas,”, British Journal of Cancer, vol. 82, No. 5, pp. 1030-1034.
  M.I. Canto et al., (1999) “Vital Staining and Barrett's Esophagus,” Gastrointestinal Endoscopy, vol. 49, No. 3, Part 2, pp. S12-S16.
  S. Jackie et al., (2000) “In Vivo Endoscopic Optical Coherence Tomography of the Human Gastrointestinal Tract-Toward Optical Biopsy,” Encoscopy, vol. 32, No. 10, pp. 743-749.
  E. Montgomery et al. “Reproducibility of the Diagnosis of Dysplasia in Barrett Esophagus: A Reaffirmation,” Apr. 2001, Human Pathology, vol. 32, No. 4, pp. 368-378.
  H. Geddert et al., “Expression of Cyclin B1 in the Metaplasia—Dysphasia—Carcinoma Sequence of Barrett Esophagus,” Jan. 2002, Cancer, vol. 94, No. 1, pp. 212-218.
  P. Pfau et al., (2003) “Criteria for the Diagnosis of Dysphasia by Endoscopic Optical Coherence Tomography,” Gastrointestinal Endoscopy, vol. 58, No. 2, pp. 196-2002.
  R. Kiesslich et al., (2004) “Confocal Laser Endoscopy for Diagnosing Intraepithelial Neoplasias and Colorectal Cancer in Vivo,” Gastroenterology, vol. 127, No. 3, pp. 706-713.
  X. Qi et al., (2004) “Computer Aided Diagnosis of Dysphasia in Barrett's Esophagus Using Endoscopic Optical Coherence Tomography,” SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VIII. Proc. of Conference on., vol. 5316, pp. 33-40.
  Seltzer et al., (1991) “160 nm Continuous Tuning of a MQW Laser in an External Cavity Across the Entire 1.3 μm Communications Window,” Electronics Letters, vol. 27, pp. 95-96.
  Office Action dated Jan. 25, 2010 for U.S. Appl. No. 11/537,048.
  International Search Report dated Jan. 27, 2010 for PCT/US2009/050553.
  International Search Report dated Jan. 27, 2010 for PCT/US2009/047988.
  International Search Report dated Feb. 23, 2010 for U.S. Appl. No. 11/445,131.
  Office Action dated Mar. 18, 2010 of U.S. Appl. No. 11/844,454.
  Office Action dated Apr. 8, 2010 of U.S. Appl. No. 11/414,564.
  Japanese Office Action dated Apr. 13, 2010 for Japanese Patent application No. 2007-515029.
  International Search Report dated May 27, 2010 for PCT/US2009/063420.
  Office Action dated May 28, 2010 for U.S. Appl. No. 12/015,642.
  Office Action dated Jun. 2, 2010 for U.S. Appl. No. 12/112,205.
  Liptak David C. et al., (2007) “On the Development of a Confocal Rayleigh-Brillouin Microscope” American Institute of Physics vol. 78, 016106.
  Office Action mailed Oct. 1, 2008 for U.S. Appl. No. 11/955,986.
  Invitation of Pay Additional Fees mailed Aug. 7, 2008 for International Application No. PCT/US2008/062354.
  Invitation of Pay Additional Fees mailed Jul. 20, 2008 for International Application No. PCT/US2007/081982.
  International Search Report and Written Opinion mailed Mar. 7, 2006 for PCT/US2005/035711.
  International Search Report and Written Opinion mailed Jul. 18, 2008 for PCT/US2008/057533.
  Aizu, Y et al. (1991) “Bio-Speckle Phenomena and Their Application to the Evaluation of Blood Flow” Optics and Laser Technology, vol. 23, No. 4, Aug. 1, 1991.
  Richards G.J. et al. (1997) “Laser Speckle Contrast Analysis (LASCA): A Technique for Measuring Capillary Blood Flow Using the First Order Statistics of Laser Speckle Patterns” Apr. 2, 1997.
  Gonick, Maria M., et al (2002) “Visualization of Blood Microcirculation Parameters in Human Tissues by Time Integrated Dynamic Speckles Analysis” vol. 972, No. 1, Oct. 1, 2002.
  International Search Report and Written Opinion mailed Jul. 4, 2008 for PCT/US2008/051432.
  Jonathan, Enock (2005) “Dual Reference Arm Low-Coherence Interferometer-Based Reflectometer for Optical Coherence Tomography (OOCT) Application” Optics Communications vol. 252.
  Motaghian Nezarn, S.M.R. (2007) “increased Ranging Depth in optical Frequency Domain Imaging by Frequency Encoding” Optics Letters, vol. 32, No. 19, Oct. 1, 2007.
  Office Action dated Jun. 30, 2008 for U.S. Appl. No. 11/670,058.
  Office Action dated Jul. 7, 2008 for U.S. Appl. No. 10/551,735.
  Australian Examiner's Report mailed May 27, 2008 for Australian patent application No. 2003210669.
  Notice of Allowance mailed Jun. 4, 2008 for U.S. Appl. No. 11/174,425.
  European communication dated May 15, 2008 for European patent application No. 05819917.5.
  International Search Report and Written Opinion mailed Jun. 10, 2008 for PCT/US2008/051335.
  Oh. W.Y. et al (2006) “Ultrahigh-Speed Optical Frequency Domain Imaging and Application to laser Ablation Monitoring” Applied Physics Letters, vol. 88.
  Office Action dated Aug. 21, 2008 for U.S. Appl. No. 11/505,700.
  Sticker, Markus (2002) En Face Imaging of Single Cell layers by Differential Phase-Contrast Optical Coherence Microscopy) Optics Letters, col. 27, No. 13, Jul. 1, 2002.
  International Search Report and Written Opinion dated Jul. 17, 2008 for International Application No. PCT/US2008/057450.
  International Search Report and Written Opinion dated Aug. 11, 2008 for International Application No. PCT/US2008/058703.
  US National Library of Medicine (NLM), Bethesda, MD, US; Oct. 2007, “Abstracts of the 19th Annual Symposium of Transcatheter Cardiovascular Therapeutics, Oct. 20-25, 2007, Washington, DC, USA.”
  International Search Report and Written Opinion dated May 26, 2008 for International Application No. PCT/US2008/051404.
  Office Action dated Aug. 25, 2008 for U.S. Appl. No. 11/264,655.
  Office Action dated Sep. 11, 2008 for U.S. Appl. No. 11/624,334.
  Office Action dated Aug. 21, 2008 for U.S. Appl. No. 11/956,079.
  Gelikono, V. M. et al. Oct. 1, 2004 “Two-Wavelength Optical Coherence Tomography” Radio physics and Quantum Electronics, Kluwer Academic Publishers-Consultants. vol. 47, No. 10-1.
  International Search Report and Written Opinion for PCT/US2007/081982 dated Oct. 19, 2007.
  Database Compendex Engineering Information, Inc., New York, NY, US; Mar. 5, 2007, Yelin, Dvir et al: “Spectral-Domain Spectrally-Encoded Endoscopy”.
  Database Biosis Biosciences Information Service, Philadelphia, PA, US; Oct. 2006, Yelin D. et al: “Three-Dimensional Miniature Endoscopy”.
  International Search Report and Written Opinion mailed Mar. 14, 2005 for PCT/US2004/018045.
  Notification of the international Preliminary Report on Patentability mailed Oct. 21, 2005.
  Shim M.G. et al., “Study of Fiber-Optic Probes for in vivo Medical Raman Spectroscopy” Applied Spectroscopy. vol. 53, No. 6, Jun. 1999.
  Bingid U. et al., “Fibre-Optic Laser-Assisted Infrared Tumour Diagnostics (FLAIR); Infrared Tomour Diagnostics” Journal of Physics D. Applied Physics, vol. 38, No. 15, Aug. 7, 2005.
  Jun Zhang et al. “Full Range Polarization-Sensitive Fourier Domain Optical Coherence Tomography” Optics Express, vol. 12, No. 24. Nov. 29, 2004.
  Yonghua et al., “Real-Time Phase-Resolved Functional Optical Hilbert Transformation” Optics Letters, vol. 27, No. 2, Jan. 15, 2002.
  Siavash et al., “Self-Referenced Doppler Optical Coherence Tomography” Optics Letters, vol. 27, No. 23, Dec. 1, 2002.
  International Search Report and Written Opinion dated Dec. 20, 2004 for PCT/US04/10152.
  Notification Concerning Transmittal of International Preliminary Report on Patentability dated Oct. 13, 2005 for PCT/US04/10152.
  International Search Report and Written Opinion dated Mar. 23, 2006 for PCT/US2005/042408.
  International Preliminary Report on Patentability dated Jun. 7, 2007 for PCT/US2005/042408.
  International Search Report and Written Opinion dated Feb. 28, 2007 for International Application No. PCT/US2006/038277.
  International Search Report and Written Opinion dated Jan. 30, 2009 for International Application No. PCT/US2008/081834.
  Fox, J.A. et al; “A New Galvanometric Scanner for Rapid tuning of C02 Lasers” New York, IEEE, US vol. Apr. 7, 1991.
  Motaghian Nezam, S.M. et al: “High-speed Wavelength-Swept Semiconductor laser using a Diffrection Grating and a Polygon Scanner in Littro Configuration” Optical Fiber Communication and the National Fiber Optic Engineers Conference Mar. 29, 2007.
  International Search Report and Written Opinion dated Feb. 2, 2009 for International Application No. PCT/US2008/071786.
  Bilenca A et al: “The Role of Amplitude andphase in Fluorescence Coherence Imaging: From Wide Filed to Nanometer Depth Profiling”, Optics IEEE, May 5, 2007.
  Inoue, Yusuke et al: “Varible Phase-Contrast Fluorescence Spectrometry for Fluorescently Strained Cells”, Applied Physics Letters, Sep. 18, 2006.
  Bernet, S et al: “Quantitative Imaging of Complex Samples by Spiral Phase Contrast Microscopy”, Optics Express, May 9, 2006.
  International Search Report and Written Opinion dated Jan. 15, 2009 for International Application No. PCT/US2008/074863.
  Office Action dated Feb. 17, 2009 for U.S. Appl. No. 11/211,483.
  Notice of Reasons for Rejection mailed Dec. 2, 2008 for Japanese patent application No. 2000-533782.
  International Search Report and Written Opinion dated Feb. 24, 2009 for PCT/US2008/076447.
  European Official Action dated Dec. 2, 2008 for EP 07718117.0.
  Barfuss et al (1989) “Modified Optical Frequency Domain Reflectometry with High spatial Resolution for Components of integrated optic Systems”, Journal of Lightwave Technology, IEEE vol. 7., No. 1.
  Yun et al., (2004) “Removing the Depth-Degeneracy in Optical Frequency Domain Imaging with Frequency Shifting”, Optics Express, vol. 12, No. 20.
  International Search Report and Written Opinion dated Jun. 10, 2009 for PCT/US08/075456.
  European Search Report issued May 5, 2009 for European Application No. 01991471.2.
  Motz, J.T. et al: “Spectral-and Frequency-Encoded Fluorescence Imaging” Optics Letters, OSA, Optical Society of America, Washington, DC, US, vol. 30, No. 20, Oct. 15, 2005, pp. 2760-2762.
  Japanese Notice of Reasons for Rejection dated Jul. 14, 2009 for Japanese Patent application No. 2006-503161.
  Office Action dated Aug. 18, 2009 for U.S. Appl. No. 12/277,178.
  Office Action dated Aug. 13, 2009 for U.S. Appl. No. 10/136,813.
  Office Action dated Aug. 6, 2009 for U.S. Appl. No. 11/624,455.
  Office Action dated May 15, 2009 for U.S. Appl. No. 11/537,123.
  Office Action dated Apr. 17, 2009 for U.S. Appl. No. 11/537,343.
  Office Action dated Apr. 15, 2009 for U.S. Appl. No. 12/205,775.
  Office Action dated Dec. 9, 2008 for U.S. Appl. No. 09/709,162.
  Office Action dated Dec. 23, 2008 for U.S. Appl. No. 11/780,261.
  Office Action dated Jan. 9, 2010 for U.S. Appl. No. 11/624,455.
  Office Action dated Feb. 18, 2009 for U.S. Appl. No. 11/285,301.
  Beddow et al, (May 2002) “Improved Performance Interferomater Designs for Optical Coherence Tomography”, IEEE Optical Fiber Sensors Conference, pp. 527-530.
  Yagoob et al., (Jun. 2002) “High-Speed Wavelength-Multiplexed Fiber-Optic Sensors for Biomedicine,” Sensors Proceedings of the IEEE, pp. 325-330.
  Office Action dated Feb. 18, 2009 for U.S. Appl. No. 11/697,012.
  Zhang et al, (Sep. 2004), “Fourier Domain Functional Optical Coherence Tomography”, Saratov Fall Meeting 2004, pp. 8-14.
  Office Action dated Feb. 23, 2009 for U.S. Appl. No. 11/956,129.
  Office Action dated Mar. 16, 2009 for U.S. Appl. No. 11/621,694.
  Office Action dated Oct. 1, 2009 for U.S. Appl. No. 11/677,278.
  Office Action dated Oct. 6, 2009 for U.S. Appl. No. 12/015,642.
  Lin, Stollen et al., (1977) “A CW Tunable Near-infrared (1.085-1.175-um) Raman Oscillator,” Optics Letters, vol. 1, 96.
  Summons to attend Oral Proceedings dated Oct. 9, 2009 for European patent application No. 06813365.1.
  Office Action dated Dec. 15, 2009 for U.S. Appl. No. 11/549,397.
  Office Action dated Oct. 11, 2007 for U.S. Appl. No. 11/534,095.
  Office Action dated Oct. 9, 2007 for U.S. Appl. No. 09/709,162.
  Notice of Allowance dated Oct. 3, 2007 for U.S. Appl. No. 11/225,840.
  Siavash Yazdanfar et al., “In Vivo imaging in blood flow in human retinal vessels using color Doppler optical coherence tomography”, SPIE, 1999 vol. 3598, pp. 177-184.
  Office Action dated Oct. 30, 2007 for U.S. Appl. No. 11/670,069.
  Tang C. L. et al., “Wide-band electro-optical tuning of semiconductor lasers”, Applied Physics Letters, vol. 30, No. 2, Jan. 15, 1977, pp. 113-116.
  Tang C. L. et al., “Transient effects in wavelength-modulated dye lasers”, Applied Physics Letters, vol. 26, No. 9, May 1, 1975, pp. 534-537.
  Telle M. John, et al., “Very rapid tuning of cw dye laser”, Applied Physics Letters, vol. 26, No. 10, May 15, 1975, pp. 572-574.
  Telle M. John, et al., “New method for electro-optical tuning of tunable lasers”, Applied Physics Letters, vol. 24, No. 2, Jan. 15, 1974, pp. 85-87.
  Schmitt M. Joseph et al. “OCT elastography: imaging microscopic deformation and strain of tissue”, Optics Express, vol. 3, No. 6, Sep. 14, 1998, pp. 199-211.
  M. Gualini Muddassir et al., “Recent Advancements of Optical Interferometry Applied to Medicine”, IEEE Transactions on Medical Imaging, vol. 23, No. 2, Feb. 2004, pp. 205-212.
  Maurice L. Roch et al. “Noninvasive Vascular Elastography: Theoretical Framework”, IEEE Transactions on Medical Imaging, vol. 23, No. 2, Feb. 2004, pp. 164-180.
  Kirkpatrick J. Sean et al. “Optical Assessment of Tissue Mechanical Properties”, Proceedings of the SPIE—The International Society for Optical Engineering SPIE—vol. 4001, 2000, pp. 92-101.
  Lisauskas B. Jennifer et al., “Investigation of Plaque Biomechanics from Intravascular Ultrasound Images using Finite Element Modeling”, Proceedings of the 19th International Conference—IEEE Oct. 30-Nov. 2, 1997, pp. 887-888.
  Parker K. J. et al., “Techniques for Elastic Imaging: A Review”, IEEE Engineering in Medicine and Biology, Nov./Dec. 1996, pp. 52-59.
  European Patent Office Search Report for Application No. 05791226.3.
  Dubois Arnaud et al., “Ultrahigh-resolution OCT using white-light interference microscopy”, Proceedings of SPIE, 2003, vol. 4956, pp. 14-21.
  Office Action dated Jan. 3, 2008 for U.S. Appl. No. 10/997,789.
  Office Action dated Dec. 21, 2007 for U.S. Appl. No. 11/264,655.
  Office Action dated Dec. 18, 2007 for U.S. Appl. No. 11/288,994.
  Office Action dated Jan. 10, 2008 for U.S. Appl. No. 11/435,228.
  Office Action dated Jan. 10, 2008 for U.S. Appl. No. 11/410,937.
  Office Action dated Jan. 11, 2008 for U.S. Appl. No. 11/445,990.
  Office Action dated Feb. 4, 2008 for U.S. Appl. No. 10/861,179.
  PCT International Search Report and. Written Opinion for Application No. PCT/US2007/061463 dated Jan. 23, 2008.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/061481 dated Mar. 17, 2008.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/078254 dated Mar. 28, 2008.
  Sadhwani, Ajay et al., “Determination of Teflon thickness with laser speckle I. Potential for burn depth diagnosis”, Optical Society of America, 1996, vol. 35, No. 28, pp. 5727-5735.
  C.J. Stewart et al., “A comparison of two laser-based methods for determination of burn scar perfusion: Laser Doppler versus laser speckle imaging”, Elsevier Ltd., 2005, vol. 31, pp. 744-752.
  G. J. Tearney et al., “Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis”, CLEO 2001, vol. 56, pp. 307-307.
  PCT International Search Report for Application No. PCT/US2007/068233 dated Feb. 21, 2008.
  PCT International Search Report for Application No. PCT/US2007/060787 dated Mar. 18, 2008.
  Statement under Article 19 and Reply to PCT Written Opinion for PCT International Application No. PCT/US2005/043951 dated Jun. 6, 2006.
  PCT International Preliminary Report on Patentability for Application No. PCT/US2005/043951 dated Jun. 7, 2007.
  Hariri, Lida P. et al. “Endoscopic Optical Coherence Tomography and Laser-Induced Fluorescence Spectroscopy in a Murine Colon Cancer Model”, Laser in Surgery and Medicine, vol. 38, 2006, pp. 305-313.
  PCT International Search Report and Written Opinion for Application No. PCT/US2006/031905 dated May 3, 2007.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/060481 dated May 23, 2007.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/060717 dated May 24, 2007.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/060319 dated Jun. 6, 2007.
  D. Yelin et al., “Three-dimensional imaging using spectral encoding heterodyne interferometry”, Optics Letters, Jul. 15, 2005, vol. 30, No. 14, pp. 1794-1796.
  Akiba, Masahiro et al. “En-face optical coherence imaging for three-dimensional microscopy”, SPIE, 2002, pp. 8-15.
  Office Action dated Aug. 10, 2007 for U.S. Appl. No. 10/997,789.
  Office Action dated Feb. 2, 2007 for U.S. Appl. No. 11/174,425.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/060657 dated Aug. 13, 2007.
  Lewis, Neil E. et al., “Applications of Fourier Transform Infrared Imaging Microscopy in Neurotoxicity”, Annals New York Academy of Sciences, pp. 234-246.
  Joo, Chulmin et al., Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging, Optics Letters, Aug. 15, 2005, vol. 30, No. 16, pp. 2131-2133.
  Guo, Bujin et al., “Laser-based mid-infrared reflectance imaging of biological tissues”, Optics Express, Jan. 12, 2004, vol. 12, No. 1, pp. 208-219.
  Office Action dated Mar. 28, 2007 for U.S. Appl. No. 11/241,907.
  Office Action dated May 23, 2007 for U.S. Appl. No. 10/406,751.
  Office Action dated May 23, 2007 for U.S. Appl. No. 10/551,735.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/061815 dated Aug. 2, 2007.
  Sir Randall, John et al., “Brillouin scattering in systems of biological significance”, Phil. Trans. R. Soc. Lond. A 293, 1979, pp. 341-348.
  Takagi, Yasunari, “Application of a microscope to Brillouin scattering spectroscopy”, Review of Scientific Instruments, No. 12, Dec. 1992, pp. 5552-5555.
  Lees, S. et al., “Studies of Compact Hard Tissues and Collagen by Means of Brillouin Light Scattering”, Connective Tissue Research, 1990, vol. 24, pp. 187-205.
  Berovic, N. “Observation of Brillion scattering from single muscle fibers”, European Biophysics Journal, 1989, vol. 17, pp. 69-74.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/062465 dated Aug. 8, 2007.
  Pyhtila John W. et al., “Rapid, depth-resolved light scattering measurements using Fourier domain, angle-resolved low coherence interferometry”, Optics Society of America, 2004.
  Pyhtila John W. et al., “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system”, Optics Express, Dec. 15, 2003, vol. 11, No. 25, pp. 3473-3484.
  Desjardins A.E., et al., “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging”, Optics Express, May 15, 2006, vol. 14, No. 11, pp. 4736-4745.
  Nadkarni, Seemantini K., et al., “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images”, Journal of Biomedical Optics, vol. 11 Mar./Apr. 2006, pp. 021006-1-8.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/066017 dated Aug. 30, 2007.
  Yamanari M. et al., “Polarization sensitive Fourier domain optical coherence tomography with continuous polarization modulation”, Proc. of SPIE, vol. 6079, 2006.
  Zhang Jun et al., “Full range polarization-sensitive Fourier domain optical coherence tomography”, Optics Express, Nov. 29, 2004, vol. 12, No. 24, pp. 6033-6039.
  European Patent Office Search report for Application No. 01991092.6-2305 dated Jan. 12, 2006.
  PCT International Search Report and Written Opinion for Application No. PCT/US2007/060670 dated Sep. 21, 2007.
  J. M. Schmitt et al., “Speckle in Optical Coherence Tomography: An Overview”, SPIE vol. 3726, pp. 450-461.
  Fujimoto et al., “High Resolution in Vivo Intra-Arterial Imaging with Optical Coherence Tomography,” Official Journal of the British Cardiac Society, vol. 82, pp. 128-133 Heart, 1999.
  D. Huang et al., “Optical Coherence Tomography,” Science, vol. 254, pp. 1178-1181, Nov. 1991.
  Tearney et al., “High-Speed Phase—and Group Delay Scanning with a Grating Based Phase Control Delay Line,” Optics Letters, vol. 22, pp. 1811-1813, Dec. 1997.
  Rollins, et al., “In Vivo Video Rate Optical Coherence Tomography,” Optics Express, vol. 3, pp. 219-229, Sep. 1998.
  Saxer, et al., High Speed Fiber-Based Polarization-Sensitive Optical Coherence Tomography of in Vivo Human Skin, Optical Society of America, vol. 25, pp. 1355-1357, Sep. 2000.
  Oscar Eduardo Martinez, “3000 Times Grating Compress or with Positive Group Velocity Dispersion,” IEEE, vol. QE-23, pp. 59-64, Jan. 1987.
  Kulkarni, et al., “Image Enhancement in Optical Coherence Tomography Using Deconvolution,” Electronics Letters, vol. 33, pp. 1365-1367, Jul. 1997.
  Bashkansky, et al., “Signal Processing for Improving Field Cross-Correlation Function in Optical Coherence Tomography,” Optics & Photonics News, vol. 9, pp. 8137-8138, May 1998.
  Yung et al., “Phase-Domain Processing of Optical Coherence Tomography Images,” Journal of Biomedical Optics, vol. 4, pp. 125-136, Jan. 1999.
  Tearney, et al., “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science, vol. 276, Jun. 1997.
  W. Drexler et al., “In Vivo Ultrahigh-Resolution Optical Coherence Tomography,” Optics Letters vol. 24, pp. 1221-1223, Sep. 1999.
  Nicusor V. Iftimia et al., “A Portable, Low Coherence Interferometry Based Instrument for Fine Needle Aspiration Biopsy Guidance,” Accepted to Review of Scientific Instruments, 2005.
  Abbas, G.L., V.W.S. Chan et al., “Local-Oscillator Excess-Noise Suppression for Homodyne and Heterodyne-Detection,” Optics Letters, vol. 8, pp. 419-421, Aug. 1983 issue.
  Agrawal, G.P., “Population Pulsations and Nondegenerate 4-Wave Mixing in Semiconductor-Lasers and Amplifiers,” Journal of the Optical Society of America B—Optical Physics, vol. 5, pp. 147-159, Jan. 1998.
  Andretzky, P. et al., “Optical Coherence Tomography by Spectral Radar: Improvement of Signal-to-Noise Ratio,” The International Society for Optical Engineering, USA, vol. 3915, 2000.
  Ballif, J. et al., “Rapid and Scalable Scans at 21 m/s in optical Low-Coherence Reflectometry,” Optics Letters, vol. 22, pp. 757-759, Jun. 1997.
  Barfuss H. et al., “Modified Optical Frequency-Domain Reflectometry with High Spatial-Resolution for Components of Integrated Optic Systems,” Journal of Lightwave Technology, vol. 7, pp. 3-10, Jan. 1989.
  Beaud, P. et al., “Optical Reflectometry with Micrometer Resolution for the Investigation of Integrated Optical-Devices,” Leee Journal of Quantum Electronics, vol. 25, pp. 755-759, Apr. 1989.
  Bouma, Brett et al., “Power-Efficient Nonreciprocal Interferometer and Linear-Scanning Fiber-Optic Catheter for Optical Coherence Tomography,” Optics Letters, vol. 24, pp. 531-533, Apr. 1999.
  Brinkmeyer, E. et al., “Efficient Algorithm for Non-Equidistant Interpolation of Sampled Data,” Electronics Letters, vol. 28, p. 693, Mar. 1992.
  Brinkmeyer, E. et al., “High-Resolution OCDR in Dispersive Wave-Guides,” Electronics Letters, vol. 26, pp. 413-414, Mar. 1990.
  Chinn, S.R. et al., “Optical Coherence Tomography Using a Frequency-Tunable Optical Source,” Optics Letters, vol. 22, pp. 340-342, Mar. 1997.
  Danielson, B.L. et al., “Absolute Optical Ranging Using Low Coherence Interferometry,” Applied Optics, vol. 30, p. 2975, Jul. 1991.
  Dorrer, C. et al., “Spectral Resolution and Sampling Issues in Fourier-Transform Spectral Interferometry,” Journal of the Optical Society of America B—Optical Physics, vol. 17, pp. 1795-1802, Oct. 2000.
  Dudley, J.M. et al., “Cross-Correlation Frequency Resolved Optical Gating Analysis of Broadband Continuum Generation in Photonic Crystal Fiber: Simulations and Experiments,” Optics Express, vol. 10, p. 1215, Oct. 2002.
  Eickhoff, W. et al., “Optical Frequency-Domain Reflectometry in Single-Mode Fiber,” Applied Physics Letters, vol. 39, pp. 693-695, 1981.
  Fercher, Adolf “Optical Coherence Tomography,” Journal of Biomedical Optics, vol. 1, pp. 157-173, Apr. 1996.
  Ferreira, L.A. et al., “Polarization-Insensitive Fiberoptic White-Light Interferometry,” Optics Communications, vol. 114, pp. 386-392, Feb. 1995.
  Fujii, Yohji, “High-Isolation Polarization-Independent Optical Circulator”, Journal of Lightwave Technology, vol. 9, pp. 1239-1243, Oct. 1991.
  Glance, B., “Polarization Independent Coherent Optical Receiver,” Journal of Lightwave Technology, vol. LT-5, p. 274, Feb. 1987.
  Glombitza, U., “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Wave-Guides,” Journal of Lightwave Technology, vol. 11, pp. 1377-1384, Aug. 1993.
  Golubovic, B. et al., “Optical Frequency-Domain Reflectometry Using Rapid Wavelength Tuning of a Cr4+:Forsterite Laser,” Optics Letters, vol. 11, pp. 1704-1706, Nov. 1997.
  Haberland, U. H. P. et al., “Chirp Optical Coherence Tomography of Layered Scattering Media,” Journal of Biomedical Optics, vol. 3, pp. 259-266, Jul. 1998.
  Hammer, Daniel X. et al., “Spectrally Resolved White-Light Interferometry for Measurement of Ocular Dispersion,” Journal of the Optical Society of America A—Optics Image Science and Vision, vol. 16, pp. 2092-2102, Sep. 1999.
  Harvey, K. C. et al., “External-Cavity Diode-Laser Using a Grazing-Incidence Diffraction Grating,” Optics Letters, vol. 16, pp. 910-912, Jun. 1991.
  Hausler, Gerd et al., “‘Coherence Radar’ and ‘Spectral Radar’ New Tools for Dermatological Diagnosis,” Journal of Biomedical Optics, vol. 3, pp. 21-31, Jan. 1998.
  Hee, Michael R. et al., “Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging,” Journal of the Optical Society of America B (Optical Physics), vol. 9, p. 903-908, Jun. 1992.
  Hotate Kazuo et al., “Optical Coherence Domain Reflectometry by Synthesis of Coherence Function,” Journal of Lightwave Technology, vol. 11, pp. 1701-1710, Oct. 1993.
  Inoue, Kyo et al., “Nearly Degenerate 4-Wave-Mixing in a Traveling-Wave Semiconductor-Laser Amplifier,” Applied Physics Letters, vol. 51, pp. 1051-1053, 1987.
  Ivanov, A. P. et al., “New Method for High-Range Resolution Measurements of Light Scattering in Optically Dense Inhomogeneous Media,” Optics Letters, vol. 1, pp. 226-228, Dec. 1977.
  Ivanov, A. P. et al., “Interferometric Study of the Spatial Structure of a Light-Scattering Medium,” Journal of Applied Spectroscopy, vol. 28, pp. 518-525, 1978.
  Kazovsky, L. G. et al., “Heterodyne Detection Through Rain, Snow, and Turbid Media: Effective Receiver Size at Optical Through Millimeter Wavelenghths,” Applied Optics, vol. 22, pp. 706-710, Mar. 1983.
  Kersey, A. D. et al., “Adaptive Polarization Diversity Receiver Configuration for Coherent Optical Fiber Communications,” Electronics Letters, vol. 25, pp. 275-277, Feb. 1989.
  Kohlhaas, Andreas et al., “High-Resolution OCDR for Testing Integrated-Optical Waveguides: Dispersion-Corrupted Experimental Data Corrected by a Numerical Algorithm,” Journal of Lightwave Technology, vol. 9, pp. 1493-1502, Nov. 1991.
  Larkin, Kieran G., “Efficient Nonlinear Algorithm for Envelope Detection in White Light Interferometry,” Journal of the Optical Society of America A—Optics Image Science and Vision, vol. 13, pp. 832-843, Apr. 1996.
  Leitgeb, R. et al., “Spectral measurement of Absorption by Spectroscopic Frequency-Domain Optical Coherence Tomography,” Optics Letters, vol. 25, pp. 820-822, Jun. 2000.
  Lexer, F. et al., “Wavelength-Tuning Interferometry of Intraocular Distances,” Applied Optics, vol. 36, pp. 6548-6553, Sep. 1997.
  Mitsui, Takahisa, “Dynamic Range of Optical Reflectometry with Spectral Interferometry,” Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers, vol. 38, pp. 6133-6137, 1999.
  Naganuma, Kazunori et al., “Group-Delay Measurement Using the Fourier-Transform of an Interferometric Cross-Correlation Generated by White Light,” Optics Letters, vol. 15, pp. 393-395, Apr. 1990.
  Okoshi,Takanori, “Polarization-State Control Schemes for Heterodyne or Homodyne Optical Fiber Communications,” Journal of Lightwave Technology, vol. LT-3, pp. 1232-1237, Dec. 1995.
  Passy, R. et al., “Experimental and Theoretical Investigations of Coherent OFDR with Semiconductor-Laser Sources,” Journal of Lightwave Technology, vol. 12, pp. 1622-1630, Sep. 1994.
  Podoleanu, Adrian G., “Unbalanced Versus Balanced Operation in an Optical Coherence Tomography System,” Applied Optics, vol. 39, pp. 173-182, Jan. 2000.
  Price, J. H. V. et al., “Tunable, Femtosecond Pulse Source Operating in the Range 1.06-1.33 mu m Based on an Yb3+-doped Holey Fiber Amplifier,” Journal of the Optical Society of America B—Optical Physics, vol. 19, pp. 1286-1294, Jun. 2002.
  Schmitt, J. M. et al, “Measurement of Optical-Properties of Biological Tissues by Low-Coherence Reflectometry,” Applied Optics, vol. 32, pp. 6032-6042, Oct. 1993.
  Silberberg, Y. et al., “Passive-Mode Locking of a Semiconductor Diode-Laser,” Optics Letters, vol. 9, pp. 507-509, Nov. 1984.
  Smith, L. Montgomery et al., “Absolute Displacement Measurements Using Modulation of the Spectrum of White-Light in a Michelson Interferometer,” Applied Optics, vol. 28, pp. 3339-3342, Aug. 1989.
  Sonnenschein, C. M. et al., “Signal-To-Noise Relationships for Coaxial Systems that Heterodyne Backscatter from Atmosphere,” Applied Optics, vol. 10, pp. 1600-1604, Jul. 1971.
  Sorin, W. V. et al., “Measurement of Rayleigh Backscattering at 1.55 mu m with 32 mu m Spatial Resolution,” IEEE Photonics Technology Letters, vol. 4, pp. 374-376, Apr. 1992.
  Sorin, W. V. et al., “A Simple Intensity Noise-Reduction Technique for Optical Low-Coherence Reflectometry,” IEEE Photonics Technology Letters, vol. 4, pp. 1404-1406, Dec. 1992.
  Swanson, E. A. et al., “High-Speed Optical Coherence Domain Reflectometry,” Optics Letters, vol. 17, pp. 151-153, Jan. 1992.
  Takada, K. et al., “High-Resolution OFDR with Incorporated Fiberoptic Frequency Encoder,” IEEE Photonics Technology Letters, vol. 4, pp. 1069-1072, Sep. 1992.
  Takada, Kazumasa et al., “Narrow-Band light Source with Acoustooptic Tunable Filter for Optical Low-Coherence Reflectometry,” IEEE Photonics Technology Letters, vol. 8, pp. 658-660, May 1996.
  Takada, Kazumasa et al., “New Measurement System for Fault Location in Optical Wave-Guide Devices Based on an Interometric-Technique,” Applied Optics, vol. 26, pp. 1603-1606, May 1987.
  Tateda, Mitsuhiro et al., “Interferometric Method for Chromatic Dispersion Measurement in a Single-Mode Optical Fiber,” IEEE Journal of Quantum Electronics, vol. 17, pp. 404-407, Mar. 1981.
  Toide, M. et al., “Two-Dimensional Coherent Detection Imaging in Multiple Scattering Media Based the Directional Resolution Capability of the Optical Heterodyne Method,” Applied Physics B (Photophysics and Laser Chemistry), vol. B52, pp. 391-394, 1991.
  Trutna, W. R. et al., “Continuously Tuned External-Cavity Semiconductor-Laser,” Journal of Lightwave Technology, vol. 11, pp. 1279-1286, Aug. 1993.
  Uttam, Deepak et al., “Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique,” Journal of Lightwave Technology, vol. 3, pp. 971-977, Oct. 1985.
  Von Der Weid, J. P. et al., “On the Characterization of Optical Fiber Network Components with Optical Frequency Domain Reflectometry,” Journal of Lightwave Technology, vol. 15, pp. 1131-1141, Jul. 1997.
  Wysocki, P.F. et al., “Broad-Spectrum, Wavelength-Swept, Erbium-Doped Fiber Laser at 1.55-Mu-M,” Optics Letters, vol. 15, pp. 879-881, Aug. 1990.
  Youngquist, Robert C. et al., “Optical Coherence-Domain Reflectometry—A New Optical Evaluation Technique,” Optics Letters, vol. 12, pp. 158-160, Mar. 1987.
  Yun, S. H. et al., “Wavelength-Swept Fiber Laser with Frequency Shifted Feedback and Resonantly Swept Intra-Cavity Acoustooptic Tunable Filter,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, pp. 1087-1096, Aug. 1997.
  Yun, S. H. et al., “Interrogation of Fiber Grating Sensor Arrays with a Wavelength-Swept Fiber Laser,” Optics Letters, vol. 23, pp. 843-845, Jun. 1998.
  Yung, K. M., “Phase-Domain Processing of Optical Coherence Tomography Images,” Journal of Biomedical Optics, vol. 4, pp. 125-136, Jan. 1999.
  Zhou, Xiao-Qun et al., “Extended-Range FMCW Reflectometry Using an optical Loop with a Frequency Shifter,” IEEE Photonics Technology Letters, vol. 8, pp. 248-250, Feb. 1996.
  Zorabedian, Paul et al., “Tuning Fidelity of Acoustooptically Controlled External Cavity Semiconductor-Lasers,” Journal of Lightwave Technology, vol. 13, pp. 62-66, Jan. 1995.
  Victor S. Y. Lin et al., “A Porous Silicon-Based Optical Interferometric Biosensor,” Science Magazine, vol. 278, pp. 840-843, Oct. 31, 1997.
  De Boer, Johannes F. et al., “Review of Polarization Sensitive Optical Coherence Tomography and Stokes Vector Determination,” Journal of Biomedical Optics, vol. 7, No. 3, Jul. 2002, pp. 359-371.
  Jiao, Shuliang et al., “Depth-Resolved Two-Dimensional Stokes Vectors of Backscattered Light and Mueller Matrices of Biological Tissue Measured with Optical Coherence Tomography,” Applied Optics, vol. 39, No. 34, Dec. 1, 2000, pp. 6318-6324.
  Park, B. Hyle et al., “In Vivo Burn Depth Determination by High-Speed Fiber-Based Polarization Sensitive Optical Coherence Tomography,” Journal of Biomedical Optics, vol. 6 No. 4, Oct. 2001, pp. 474-479.
  Roth, Jonathan E. et al., “Simplified Method for Polarization-Sensitive Optical Coherence Tomography,” Optics Letters, vol. 26, No. 14, Jul. 15, 2001, pp. 1069-1071.
  Hitzenberger, Christopher K. et al., “Measurement and Imaging of Birefringence and Optic Axis Orientation by Phase Resolved Polarization Sensitive Optical Coherence Tomography,” Optics Express, vol. 9, No. 13, Dec. 17, 2001, pp. 780-790.
  Wang, Xueding et al., “Propagation of Polarized Light in Birefringent Turbid Media: Time-Resolved Simulations,” Optical Imaging Laboratory, Biomedical Engineering Program, Texas A&M University.
  Wong, Brian J.F. et al., “Optical Coherence Tomography of the Rat Cochlea,” Journal of Biomedical Optics, vol. 5, No. 4, Oct. 2000, pp. 367-370.
  Yao, Gang et al., “Propagation of Polarized Light in Turbid Media: Simulated Animation Sequences,” Optics Express, vol. 7, No. 5, Aug. 28, 2000, pp. 198-203.
  Wang, Xiao-Jun et al., “Characterization of Dentin and Enamel by Use of Optical Coherence Tomography,” Applied Optics, vol. 38, No. 10, Apr. 1, 1999, pp. 2092-2096.
  De Boer, Johannes F. et al., “Determination of the Depth-Resolved Stokes Parameters of Light Backscattered from Turbid Media by use of Polarization-Sensitive Optical Coherence Tomography,” Optics Letters, vol. 24, No. 5, Mar. 1, 1999, pp. 300-302.
  Ducros, Mathieu G. et al., “Polarization Sensitive Optical Coherence Tomography of the Rabbit Eye,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, No. 4, Jul./Aug. 1999, pp. 1159-1167.
  Groner, Warren et al., “Orthogonal Polarization Spectral Imaging: A New Method for Study of the Microcirculation,” Nature Medicine Inc., vol. 5 No. 10, Oct. 1999, pp. 1209-1213.
  De Boer, Johannes F. et al., “Polarization Effects in Optical Coherence Tomography of Various Viological Tissues,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, No. 4, Jul./Aug. 1999, pp. 1200-1204.
  Yao, Gang et al., “Two-Dimensional Depth-Resolved Mueller Matrix Characterization of Biological Tissue by Optical Coherence Tomography,” Optics Letters, Apr. 15, 1999, vol. 24, No. 8, pp. 537-539.
  Lu, Shih-Yau et al., “Homogeneous and Inhomogeneous Jones Matrices,” J. Opt. Soc. Am. A., vol. 11, No. 2, Feb. 1994, pp. 766-773.
  Bickel, S. William et al., “Stokes Vectors, Mueller Matrices, and Polarized Scattered Light,” Am. J. Phys., vol. 53, No. 5, May 1985 pp. 468-478.
  Brehonnet, F. Le Roy et al., “Optical Media and Target Characterization by Mueller Matrix Decomposition,” J. Phys. D: Appl. Phys. 29, 1996, pp. 34-38.
  Cameron, Brent D. et al., “Measurement and Calculation of the Two-Dimensional Backscattering Mueller Matrix of a Turbid Medium,” Optics Letters, vol. 23, No. 7, Apr. 1, 1998, pp. 485-487.
  De Boer, Johannes F. et al., “Two-Dimensional Birefringence Imaging in Biological Tissue by Polarization-Sensitive Optical Coherence Tomography,” Optics Letters, vol. 22, No. 12, Jun. 15, 1997, pp. 934-936.
  De Boer, Johannes F. et al., “Imaging Thermally Damaged Tissue by Polarization Sensitive Optical Coherence Tomography,” Optics Express, vol. 3, No. 6, Sep. 14, 1998, pp. 212-218.
  Everett, M.J. et al., “Birefringence Characterization of Biological Tissue by Use of Optical Coherence Tomography,” Optics Letters, vol. 23, No. 3, Feb. 1, 1998, pp. 228-230.
  Hee, Michael R. et al., “Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging,” J. Opt. Soc. Am. B., vol. 9, No. 6, Jun. 1992, pp. 903-908.
  Barakat, Richard, “Statistics of the Stokes Parameters,” J. Opt. Soc. Am. B., vol. 4, No. 7, Jul. 1987, pp. 1256-1263.
  Schmitt, J.M. et al., “Cross-Polarized Backscatter in Optical Coherence Tomography of Biological Tissue,” Optics Letters, vol. 23, No. 13, Jul. 1, 1998, pp. 1060-1062.
  Schoenenberger, Klaus et al., “Mapping of Birefringence and Thermal Damage in Tissue by use of Polarization-Sensitive Optical Coherence Tomography,” Applied Optics, vol. 37, No. 25, Sep. 1, 1998, pp. 6026-6036.
  Pierce, Mark C. et al., “Simultaneous Intensity, Birefringence, and Flow Measurements with High-Speed Fiber-Based Optical Coherence Tomography,” Optics Letters, vol. 27, No. 17, Sep. 1, 2002, pp. 1534-1536.
  De Boer, Johannes F. et al., “Review of Polarization Sensitive Optical Coherence Tomography and Stokes Vector Determination,” Journal of Biomedical Optics, Jul. 2002, vol. 7, No. 3, pp. 359-371.
  Fried, Daniel et al., “Imaging Caries Lesions and Lesion Progression with Polarization Sensitive Optical Coherence Tomography,” Journal of Biomedical Optics, vol. 7, No. 4, Oct. 2002, pp. 618-627.
  Jiao, Shuliang et al., “Two-Dimensional Depth-Resolved Mueller Matrix of Biological Tissue Measured with Double-Beam Polarization-Sensitive Optical Coherence Tomography,” Optics Letters, vol. 27, No. 2, Jan. 15, 2002, pp. 101-103.
  Jiao, Shuliang et al., “Jones-Matrix Imaging of Biological Tissues with Quadruple-Channel Optical Coherence Tomography,” Journal of Biomedical Optics, vol. 7, No. 3, Jul. 2002, pp. 350-358.
  Kuranov, R.V. et al., “Complementary Use of Cross-Polarization and Standard OCT for Differential Diagnosis of Pathological Tissues,” Optics Express, vol. 10, No. 15, Jul. 29, 2002, pp. 707-713.
  Cense, Barry et al., “In Vivo Depth-Resolved Birefringence Measurements of the Human Retinal Nerve Fiber Layer by Polarization-Sensitive Optical Coherence Tomography,” 2002, Optics Letters, vol. 27, No. 18, Sep. 15, pp. 1610-1612.
  Ren, Hongwu et al., “Phase-Resolved Functional Optical Coherence Tomography: Simultaneous Imaging of In Situ Tissue Structure, Blood Flow Velocity, Standard Deviation, Birefringence, and Stokes Vectors in Human Skin,” Optics Letters, vol. 27, No. 19, Oct. 1, 2002, pp. 1702-1704.
  Tripathi, Renu et al., “Spectral Shaping for Non-Gaussian Source Spectra in Optical Coherence Tomography,” Optics Letters, vol. 27, No. 6, Mar. 15, 2002, pp. 406-408.
  Yasuno, Y. et al., “Birefringence Imaging of Human Skin by Polarization-Sensitive Spectral Interferometric Optical Coherence Tomography,” Optics Letters, vol. 27, No. 20, Oct. 15, 2002 pp. 1803-1805.
  White, Brian R. et al., “In Vivo Dynamic Human Retinal Blood Flow Imaging Using Ultra-High-Speed Spectral Domain Optical Doppler Tomography,” Optics Express, vol. 11, No. 25, Dec. 15, 2003, pp. 3490-3497.
  De Boer, Johannes F. et al., “Improved Signal-to-Noise Ratio in Spectral-Domain Compared with Time-Domain Optical Coherence Tomography,” Optics Letters, vol. 28, No. 21, Nov. 1, 2003, pp. 2067-2069.
  Jiao, Shuliang et al., “Optical-Fiber-Based Mueller Optical Coherence Tomography,” Optics Letters, vol. 28, No. 14, Jul. 15, 2003, pp. 1206-1208.
  Jiao, Shuliang et al., “Contrast Mechanisms in Polarization-Sensitive Mueller-Matrix Optical Coherence Tomography and Application in Burn Imaging,” Applied Optics, vol. 42, No. 25, Sep. 1, 2003, pp. 5191-5197.
  Moreau, Julien et al., “Full-Field Birefringence Imaging by Thermal-Light Polarization-Sensitive Optical Coherence Tomography. I. Theory,” Applied Optics, vol. 42, No. 19, Jul. 1, 2003, pp. 3800-3810.
  Moreau, Julien et al., “Full-Field Birefringence Imaging by Thermal-Light Polarization-Sensitive Optical Coherence Tomography. II. Instrument and Results,” Applied Optics, vol. 42, No. 19, Jul. 1, 2003, pp. 3811-3818.
  Morgan, Stephen P. et al., “Surface-Reflection Elimination in Polarization Imaging of Superficial Tissue,” Optics Letters, vol. 28, No. 2, Jan. 15, 2003, pp. 114-116.
  Oh, Jung-Taek et al., “Polarization-Sensitive Optical Coherence Tomography for Photoelasticity Testing of Glass/Epoxy Composites,” Optics Express, vol. 11, No. 14, Jul. 14, 2003, pp. 1669-1676.
  Park, B. Hyle et al., “Real-Time Multi-Functional Optical Coherence Tomography,” Optics Express, vol. 11, No. 7, Apr. 7, 2003, pp. 782-793.
  Shribak, Michael et al., “Techniques for Fast and Sensitive Measurements of Two-Dimensional Birefringence Distributions,” Applied Optics, vol. 42, No. 16, Jun. 1, 2003, pp. 3009-3017.
  Somervell, A.R.D. et al., “Direct Measurement of Fringe Amplitude and Phase Using a Heterodyne Interferometer Operating in Broadband Light,” Elsevier, Optics Communications, Oct. 2003.
  Stifter, D. et al., “Polarisation-Sensitive Optical Coherence Tomography for Material Characterisation and Strain-Field Mapping,” Applied Physics A 76, Materials Science & Processing, Jan. 2003, pp. 947-951.
  Davé, Digant P. et al., “Polarization-Maintaining Fiber-Based Optical Low-Coherence Reflectometer for Characterization and Ranging of Birefringence,” Optics Letters, vol. 28, No. 19, Oct. 1, 2003, pp. 1775-1777.
  Yang, Ying et al., “Observations of Birefringence in Tissues from Optic-Fibre-Based Optical Coherence Tomography,” Measurement Science and Technology, Nov. 2002, pp. 41-46.
  Yun, S.H. et al., “High-Speed Optical Frequency-Domain Imaging,” Optics Express, vol. 11, No. 22, Nov. 3, 2003, pp. 2953-2963.
  Yun, S.H. et al., “High-Speed Spectral-Domain Optical Coherence Tomography at 1.3 μm Wavelength,” Optics Express, vol. 11, No. 26, Dec. 29, 2003, pp. 3598-3604.
  Zhang, Jun et al., “Determination of Birefringence and Absolute Optic Axis Orientation Using Polarization-Sensitive Optical Coherence Tomography with PM Fibers,” Optics Express, vol. 11, No. 24, Dec. 1, 2003, pp. 3262-3270.
  Pircher, Michael et al., “Three Dimensional Polarization Sensitive OCT of Human Skin In Vivo,” 2004, Optical Society of America.
  Götzinger, Erich et al., “Measurement and Imaging of Birefringent Properties of the Human Cornea with Phase-Resolved, Polarization-Sensitive Optical Coherence Tomography,” Journal of Biomedical Optics, vol. 9, No. 1, Jan./Feb. 2004, pp. 94-102.
  Guo, Shuguang et al., “Depth-Resolved Birefringence and Differential Optical Axis Orientation Measurements with Finer-based Polarization-Sensitive Optical Coherence Tomography,” Optics Letters, vol. 29, No. 17, Sep. 1, 2004, pp. 2025-2027.
  Huang, Xiang-Run et al.,“Variation of Peripapillary Retinal Nerve Fiber Layer Birefringence in Normal Human Subjects,” Investigative Ophthalmology & Visual Science, vol. 45, No. 9, Sep. 2004, pp. 3073-3080.
  Matcher, Stephen J. et al., “The Collagen Structure of Bovine Intervertebral Disc Studied Using Polarization-Sensitive Optical Coherence Tomography,” Physics in Medicine and Biology, 2004, pp. 1295-1306.
  Nassif, Nader et al., “In Vivo Human Retinal Imaging by Ultrahigh-Speed Spectral Domain Optical Coherence Tomography,” Optics Letters, vol. 29, No. 5, Mar. 1, 2004, pp. 480-482.
  Nassif, N.A. et al., “In Vivo High-Resolution Video-Rate Spectral-Domain Optical Coherence Tomography of the Human Retina and Optic Nerve,” Optics Express, vol. 12, No. 3, Feb. 9, 2004, pp. 367-376.
  Park, B. Hyle et al., “Comment on Optical-Fiber-Based Mueller Optical Coherence Tomography,” Optics Letters, vol. 29, No. 24, Dec. 15, 2004, pp. 2873-2874.
  Park, B. Hyle et al., “Jones Matrix Analysis for a Polarization-Sensitive Optical Coherence Tomography System Using Fiber-Optic Components,” Optics Letters, vol. 29, No. 21, Nov. 1, 2004, pp. 2512-2514.
  Pierce, Mark C. et al., “Collagen Denaturation can be Quantified in Burned Human Skin Using Polarization-Sensitive Optical Coherence Tomography,” Elsevier, Burns, 2004, pp. 511-517.
  Pierce, Mark C. et al., “Advances in Optical Coherence Tomography Imaging for Dermatology,” The Society for Investigative Dermatology, Inc. 2004, pp. 458-463.
  Pierce, Mark C. et al., “Birefringence Measurements in Human Skin Using Polarization-Sensitive Optical Coherence Tomography,” Journal of Biomedical Optics, vol. 9, No. 2, Mar./Apr. 2004, pp. 287-291.
  Cense, Barry et al., “In Vivo Birefringence and Thickness Measurements of the Human Retinal Nerve Fiber Layer Using Polarization-Sensitive Optical Coherence Tomography,” Journal of Biomedical Optics, vol. 9, No. 1, Jan./Feb. 2004, pp. 121-125.
  Pircher, Michael et al., “Imaging of Polarization Properties of Human Retina in Vivo with Phase Resolved Transversal PS-OCT,” Optics Express, vol. 12, No. 24, Nov. 29, 2004 pp. 5940-5951.
  Pircher, Michael et al., “Transversal Phase Resolved Polarization Sensitive Optical Coherence Tomography,” Physics in Medicine & Biology, 2004, pp. 1257-1263.
  Srinivas, Shyam M. et al., “Determination of Burn Depth by Polarization-Sensitive Optical Coherence Tomography,” Journal of Biomedical Optics, vol. 9, No. 1, Jan./Feb. 2004, pp. 207-212.
  Strasswimmer, John et al., “Polarization-Sensitive Optical Coherence Tomography of Invasive Basal Cell Carcinoma,” Journal of Biomedical Optics, vol. 9, No. 2, Mar./Apr. 2004, pp. 292-298.
  Todorovi{hacek over (c)}, Milo{hacek over (s)} et al., “Determination of Local Polarization Properties of Biological Samples in the Presence of Diattenuation by use of Mueller Optical Coherence Tomography,” Optics Letters, vol. 29, No. 20, Oct. 15, 2004, pp. 2402-2404.
  Yasuno, Yoshiaki et al., “Polarization-Sensitive Complex Fourier Domain Optical Coherence Tomography for Jones Matrix Imaging of Biological Samples,” Applied Physics Letters, vol. 85, No. 15, Oct. 11, 2004, pp. 3023-3025.
  Acioli, L. H., M. Ulman, et al. (1991). “Femtosecond Temporal Encoding in Barium-Titanate.” Optics Letters 16(24): 1984-1986.
  Aigouy, L., A. Lahrech, et al. (1999). “Polarization effects in apertureless scanning near-field optical microscopy: an experimental study.” Optics Letters 24(4): 187-189.
  Akiba, M., K. P. Chan, et al. (2003). “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras.” Optics Letters 28(10): 816-818.
  Akkin, T., D. P. Dave, et al. (2004). “Detection of neural activity using phase-sensitive optical low-coherence reflectometry.” Optics Express 12(11): 2377-2386.
  Akkin, T., D. P. Dave, et al. (2003). “Surface analysis using phase sensitive optical low coherence reflectometry.” Lasers in Surgery and Medicine: 4-4.
  Akkin, T., D. P. Dave, et al. (2003). “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity.” Lasers in Surgery and Medicine 33(4): 219-225.
  Akkin, T., T. E. Milner, et al. (2002). indication of neural functionality and “Phase-sensitive measurement of birefringence change as an diseases.” Lasers in Surgery and Medicine: 6-6.
  Andretzky, P., Lindner, M.W., Herrmann, J.M., Schultz, A., Konzog, M., Kiesewetter, F., Haeusler, G. (1999). “Optical coherence tomography by ‘spectral radar’: Dynamic range estimation and in vivo measurements of skin.” Proceedings of SPIE—The International Society for Optical Engineering 3567: pp. 78-87.
  Antcliff, R. J., T. J. ffytche, et al. (2000). “Optical coherence tomography of melanocytoma.” American Journal of Ophthalmology 130(6): 845-7.
  Antcliff, R. J., M. R. Stanford, et al. (2000). “Comparison between optical coherence tomography and fundus fluorescein angiography for the detection of cystoid macular edema in patients with uveitis.” Ophthalmology 107(3): 593-9.
  Anvari, B., T. E. Milner, et al. (1995). “Selective Cooling of Biological Tissues—Application for Thermally Mediated Therapeutic Procedures.” Physics in Medicine and Biology 40(2):241-252.
  Anvari, B., B. S. Tanenbaum, et al. (1995). “A Theoretical-Study of the Thermal Response of Skin to Cryogen Spray Cooling and Pulsed-Laser Irradiation—Implications for Treatment of Port-Wine Stain Birthmarks.” Physics in Medicine and Biology 40(9): 1451-1465.
  Arend, O., M. Ruffer, et al. (2000). “Macular circulation in patients with diabetes mellitus with and without arterial hypertension.” British Journal of Ophthalmology 84(12): 1392-1396.
  Arimoto, H. and Y. Ohtsuka (1997). “Measurements of the complex degree of spectral coherence by use of a wave-front-folded interferometer.” Optics Letters 22(13): 958-960.
  Azzolini, C., F. Patelli, et al. (2001). “Correlation between optical coherence tomography data and biomicroscopic interpretation of idiopathic macular hole.” American Journal of Ophthalmology 132(3): 348-55.
  Baba, T., K. Ohno-Matsui, et al. (2002). “Optical coherence tomography of choroidal neovascularization in high myopia.” Acta Ophthalmoloqica Scandinavica 80(1): 82-7.
  Bail, M. A. H., Gerd; Herrmann, Juergen M.; Lindner, Michael W.; Ringler, R. (1996). “Optical coherence tomography with the “spectral radar”: fast optical analysis in volume scatterers by short-coherence interferometry.” Proc. SPIE , 2925: p. 298-303.
  Baney, D. M. and W. V. Sorin (1993). “Extended-Range Optical Low-Coherence Reflectometry Using a Recirculating Delay Technique.” Ieee Photonics Technology Letters 5(9): 1109-1112.
  Baney, D. M., B. Szafraniec, et al. (2002). “Coherent optical spectrum analyzer.” Ieee Photonics Technology Letters 14(3): 355-357.
  Barakat, R. (1981). “Bilinear Constraints between Elements of the 4by4 Mueller-Jones Transfer-Matrix of Polarization Theory.” Optics Communications 38(3): 159-161.
  Barakat, R. (1993). “Analytic Proofs of the Arago-Fresnel Laws for the Interference of Polarized-Light.” Journal of the Optical Society of America a-Optics Image Science and Vision 10(1): 180-185.
  Barbastathis, G. and D. J. Brady (1999). “Multidimensional tomographic imaging using volume holography.” Proceedings of the Ieee 87(12): 2098-2120.
  Bardal, S., A. Kamal, et al. (1992). “Photoinduced Birefringence in Optical Fibers—a Comparative-Study of Low-Birefringence and High-Birefringence Fibers.” Optics Letters 17(6): 411-413.
  Barsky, S. H., S. Rosen, et al. (1980). “Nature and Evolution of Port Wine Stains—Computer-Assisted Study.” Journal of Investigative Dermatology 74(3): 154-157.
  Barton, J. K., J. A. Izatt, et al. (1999). “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images.” Dermatology 198(4): 355-361.
  Barton, J. K., A. Rollins, et al. (2001). “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling.” Physics in Medicine and Biology 46.
  Barton, J. K., A. J. Welch, et al. (1998). “Investigating pulsed dye laser-blood vessel interaction with color Doppler optical coherence tomography.” Optics Express 3.
  Bashkansky, M., M. D. Duncan, et al. (1997). “Subsurface defect detection in ceramics by high-speed high-resolution optical coherent tomography.” Optics Letters 22 (1): 61-63.
  Bashkansky, M. and J. Reintjes (2000). “Statistics and reduction of speckle in optical coherence tomography.” Optics Letters 25(8): 545-547.
  Baumgartner, A., S. Dichtl, et al. (2000). “Polarization-sensitive optical coherence tomography of dental structures.” Caries Research 34(1): 59-69.
  Baumgartner, A., C. K. Hitzenberger, et al. (2000). “Resolution-improved dual-beam and standard optical coherence tomography: a comparison.” Graefes Archive for Clinical and Experimental Ophthalmology 238(5): 385-392.
  Baumgartner, A., C. K. Hitzenberger, et al. (1998). “Signal and resolution enhancements in dual beam optical coherence tomography of the human eye.” Journal of Biomedical Optics 3(1): 45-54.
  Beaurepaire, E., P. Gleyzes, et at. (1998). Optical coherence microscopy for the in-depth study of biological structures: System based on a parallel detection scheme, Proceedings of SPIE—The International Society for Optical Engineering.
  Beaurepaire, E., L. Moreaux, et al. (1999). “Combined scanning optical coherence and two-photon-excited fluorescence microscopy.” Optics Letters 24(14): 969-971.
  Bechara, F. G., T. Gambichler, et al. (2004). “Histomorphologic correlation with routine histology and optical coherence tomography.” Skin Research and Technology 10 (3): 169-173.
  Bechmann, M., M. J. Thiel, et al. (2000). “Central corneal thickness determined with optical coherence tomography in various types of glaucoma. [see comments].” British Journal of Ophthalmology 84(11): 1233-7.
  Bek, T. and M. Kandi (2000). “Quantitative anomaloscopy and optical coherence tomography scanning in central serous chorioretinopathy.” Acta Ophthalmologica Scandinavica 78(6): 632-7.
  Benoit, A. M., K. Naoun, et al. (2001). “Linear dichroism of the retinal nerve fiber layer expressed with Mueller matrices.” Applied Optics 40(4): 565-569.
  Bicout, D., C. Brosseau, et al. (1994). “Depolarization of Multiply Scattered Waves by Spherical Diffusers—Influence of the Size Parameter.” Physical Review E 49(2): 1767-1770.
  Blanchot, L., M. Lebec, et al. (1997). Low-coherence in depth microscopy for biological tissues imaging: Design of a real time control system. Proceedings of SPIE—The International Society for Optical Engineering.
  Blumenthal, E. Z. and R. N. Weinreb (2001). “Assessment of the retinal nerve fiber layer in clinical trials of glaucoma neuroprotection. [Review] [36 refs].” Survey of Ophthalmology 45(Suppl 3): S305-12; discussion S332-4.
  Blumenthal, E. Z., J. M. Williams, et al. (2000). “Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography.” Ophthalmology 107(12): 2278-82.
  Boppart, S. A., B. E. Bouma, et al. (1996). “Imaging developing neural morphology using optical coherence tomography.” Journal of Neuroscience Methods 70.
  Boppart, S. A., B. E. Bouma, et al. (1997). “Forward-imaging instruments for optical coherence tomography.” Optics Letters 22.
  Boppart, S. A., B. E. Bouma, et al. (1998). “Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography.” Radiology 208: 81-86.
  Boppart, S. A., J. Herrmann, et al. (1999). “High-resolution optical coherence tomography-guided laser ablation of surgical tissue.” Journal of Surgical Research 82(2): 275-84.
  Bouma, B. E. and J. G. Fujimoto (1996). “Compact Kerr-lens mode-locked resonators.” Optics Letters 21. 134-136
  Bouma, B. E., L. E. Nelson, et al. (1998). “Optical coherence tomographic imaging of human tissue at 1.55 mu m and 1.81 mu m using Er and Tm-doped fiber sources.” Journal of Biomedical Optics 3. 76-79.
  Bouma, B. E., M. Ramaswamy-Paye, et al. (1997). “Compact resonator designs for mode-locked solid-state lasers.” Applied Physics B (Lasers and Optics) B65. 213-220.
  Bouma, B. E. and G. J. Tearney (2002). “Clinical imaging with optical coherence tomography.”Academic Radiology 9(8): 942-953.
  Bouma, B. E., G. J. Tearney, et al. (1996). “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography.” Optics Letters 21(22): 1839.
  Bouma, B. E., G. J. Tearney, et al. (2000). “High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography.” Gastrointestinal Endoscopy 51(4): 467-474.
  Bouma, B. E., G. J. Tearney, et al. (2003). “Evaluation of intracoronary stenting by intravascular optical coherence tomography.” Heart 89(3): 317-320.
  Bourquin, S., V. Monterosso, et al. (2000). “Video-rate optical low-coherence reflectometry based on a linear smart detector array.” Optics Letters 25(2): 102-104.
  Bourquin, S., P. Seitz, et al. (2001). “Optical coherence topography based on a two-dimensional smart detector array.” Optics Letters 26(8): 512-514.
  Bouzid, A., M. A. G. Abushagur, et al. (1995). “Fiber-optic four-detector polarimeter.” Optics Communications 118(3-4): 329-334.
  Bowd, C., R. N. Weinreb, et al. (2000). “The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography.” Archives of Ophthalmology 118(1): 22-6.
  Bowd, C., L. M. Zangwill, et al. (2001). “Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function.” Investigative Ophthalmology & Visual Science 42(9): 1993-2003.
  Bowd, C., L. M. Zangwill, et al. (2002). “Imaging of the optic disc and retinal nerve fiber layer: the effects of age, optic disc area, refractive error, and gender.” Journal of the Optical Society of America, A, Optics, Image Science, & Vision 19(1): 197-207.
  Brand, S., J. M. Poneros, et al. (2000). “Optical coherence tomography in the gastrointestinal tract.” Endoscopy 32(10): 796-803.
  Brezinski, M. E. and J. G. Fujimoto (1999). “Optical coherence tomography: high-resolution imaging in nontransparent tissue.” IEEE Journal of Selected Topics in Quantum Electronics 5(4): 1185-1192.
  Brezinski, M. E., G. J. Tearney, et al. (1996). “Imaging of coronary artery microstructure (in vitro) with optical coherence tomography.” American Journal of Cardiology 77 (1): 92-93.
  Brezinski, M. E., G. J. Tearney, et al. (1996). “Optical coherence tomography for optical biopsy—Properties and demonstration of vascular pathology.” Circulation 93(6): 1206-1213.
  Brezinski, M. E., G. J. Tearney, et al. (1997). “Assessing atherosclerotic plaque morphology: Comparison of optical coherence tomography and high frequency intravascular ultrasound.” Heart 77(5): 397-403.
  Brink, H. B. K. and G. J. Vanblokland (1988). “Birefringence of the Human Foveal Area Assessed Invivo with Mueller-Matrix Ellipsometry.” Journal of the Optical Society of America a-Optics Image Science and Vision 5(1): 49-57.
  Brosseau, C. and D. Bicout (1994). “Entropy Production in Multiple-Scattering of Light by a Spatially Random Medium.” Physical Review E 50(6): 4997-5005.
  Burgoyne, C. F., D. E. Mercante, et al. (2002). “Change detection in regional and volumetric disc parameters using longitudinal confocal scanning laser tomography.” Ophthalmology 109(3): 455-66.
  Candido, R. and T. J. Allen (2002). “Haemodynamics in microvascular complications in type 1 diabetes.” Diabetes-Metabolism Research and Reviews 18(4): 286-304.
  Cense, B., T. C. Chen, et al. (2004). “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography.” Investigative Ophthalmology & Visual Science 45(8): 2606-2612.
  Cense, B., N. Nassif, et al. (2004). “Ultrahigh-Resolution High-Speed Retinal Imaging Using Spectral-Domain Optical Coherence Tomography.” Optics Express 12(11): 2435-2447.
  Chance, B., J. S. Leigh, et al. (1988). “Comparison of Time-Resolved and Time-Unresolved Measurements of Deoxyhemoglobin in Brain.” Proceedings of the National Academy of Sciences of the United States of America 85(14): 4971-4975.
  Chang, E. P., D. A. Keedy, et al. (1974). “Ultrastructures of Rabbit Corneal Stroma—Mapping of Optical and Morphological Anisotropies.” Biochimica Et Biophysica Acta 343(3): 615-626.
  Chartier, T., A. Hideur, et al. (2001). “Measurement of the elliptical birefringence of single-mode optical fibers.” Applied Optics 40(30): 5343-5353.
  Chauhan, B. C., J. W. Blanchard, et al. (2000). “Technique for Detecting Serial Topographic Changes in the Optic Disc and Peripapillary Retina Using Scanning Laser Tomograph.” Invest Ophthalmol Vis Sci 41: 775-782.
  Chen, Z. P., T. E. Milner, et al. (1997). “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media.” Optics Letters 22(1): 64-66.
  Chen, Z. P., T. E. Milner, et al. (1997). “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography.” Optics Letters 22(14): 1119-1121.
  Chen, Z. P., Y. H. Zhao, et al. (1999). “Optical Doppler tomography.” Ieee Journal of Selected Topics in Quantum Electronics 5(4): 1134-1142.
  Cheong, W. F., S. A. Prahl, et al. (1990). “A Review of the Optical-Properties of Biological Tissues.” Ieee Journal of Quantum Electronics 26(12): 2166-2185.
  Chernikov, S. V., Y. Zhu, et al. (1997). “Supercontinuum self-Q-switched ytterbium fiber laser.” Optics Letters 22(5): 298-300.
  Cho, S. H., B. E. Bouma, et al. (1999). “Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:AI/sub 2/0/sub 3/ laser with a multiple-pass cavity.” Optics Letters 24(6): 417-419.
  Choma, M. A., M. V. Sarunic, et al. (2003). “Sensitivity advantage of swept source and Fourier domain optical coherence tomography.” Optics Express 11(18): 2183-2189.
  Choma, M. A., C. H. Yang, et al. (2003). “Instantaneous quadrature low-coherence interferometry with 3×3 fiber-optic couplers.” Optics Letters 28(22): 2162-2164.
  Choplin, N. T. and D. C. Lundy (2001). “The sensitivity and specificity of scanning laser polarimetry in the detection of glaucoma in a clinical setting.” Ophthalmology 108 (5): 899-904.
  Christens Barry, W. A., W. J. Green, et al. (1996). “Spatial mapping of polarized light transmission in the central rabbit cornea.” Experimental Eye Research 62(6): 651-662.
  Chvapil, M., D. P. Speer, et al. (1984). “Identification of the depth of burn injury by collagen stainability.” Plastic & Reconstructive Surgery 73(3): 438-41.
  Cioffi, G. A. (2001). “Three common assumptions about ocular blood flow and glaucoma.” Survey of Ophthalmology 45: S325-S331.
  Coleman, A. L. (1999). “Glaucoma.” Lancet 354(9192): 1803-10.
  Collaborative Normal-Tension Glaucoma Study Group (1998). “Comparison of Glaucomatous Progression Between Untreated Patients With Normal Tension Glaucoma and Patients with Therapeutically Reduced Intraocular Pressures.” Am J Ophthalmol 126: 487-97.
  Collaborative Normal-Tension Glaucoma Study Group (1998). “The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma.” Am J Ophthalmol 126: 498-505.
  Collaborative Normal-Tension Glaucoma Study Group (2001). “Natural History of Normal-Tension Glaucoma.” Ophthalmology 108: 247-253.
  Colston, B. W., M. J. Everett, et al. (1998). “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography.” Applied Optics 37(16): 3582-3585.
  Colston, B. W., U. S. Sathyam, et al. (1998). “Dental OCT.” Optics Express 3(6): 230-238.
  Congdon, N. G., D. S. Friedman, et al. (2003). “Important causes of visual impairment in the world today.” Jama-Journal of the American Medical Association 290(15): 2057-2060.
  Cregan, R. F., B. J. Mangan, et al. (1999). “Single-mode photonic band gap guidance of light in air.” Science 285(5433): 1537-1539.
  DalMolin, M., A. Galtarossa, et al. (1997). “Experimental investigation of linear polarization in high-birefringence single-mode fibers.” Applied Optics 36(12): 2526-2528.
  Danielson, B. L. and C. D. Whittenberg (1987). “Guided-Wave Reflectometry with Micrometer Resolution.” Applied Optics 26(14): 2836-2842.
  Dave, D. P. and T. E. Milner (2000). “Doppler-angle measurement in highly scattering media.” Optics Letters 25(20): 1523-1525.
  de Boer, J. F., T. E. Milner, et al. (1998). Two dimensional birefringence imaging in biological tissue using phase and polarization sensitive optical coherence tomography. Trends in Optics and Photonics (TOPS): Advances in Optical Imaging and Photon Migration, Orlando, USA, Optical Society of America, Washington, DC 1998.
  de Boer, J. F., C. E. Saxer, et al. (2001). “Stable carrier generation and phase-resolved digital data processing in optical coherence tomography.” Applied Optics 40(31): 5787-5790.
  Degroot, P. and L. Deck (1993). “3-Dimensional Imaging by Sub-Nyquist Sampling of White-Light Interferograms.” Optics Letters 18(17): 1462-1464.
  Denk, W., J. H. Strickler, et al. (1990). “2-Photon Laser Scanning Fluorescence Microscopy.” Science 248(4951): 73-76.
  Descour, M. R., A. H. O. Karkkainen, et al. (2002). “Toward the development of miniaturized Imaging systems for detection of pre-cancer.” Ieee Journal of Quantum Electronics 38(2): 122-130.
  Dettwiller, L. (1997). “Polarization state interference: A general investigation.” Pure and Applied Optics 6(1): 41-53.
  DiCarlo, C. D., W. P. Roach, et al. (1999). “Comparison of optical coherence tomography imaging of cataracts with histopathology.” Journal of Biomedical Optics 4.
  Ding, Z., Y. Zhao, et al. (2002). “Real-time phase-resolved optical coherence tomography and optical Doppler tomography.” Optics Express 10(5): 236-245.
  Dobrin, P. B. (1996). “Effect of histologic preparation on the cross-sectional area of arterial rings.” Journal of Surgical Research 61(2): 413-5.
  Donohue, D. J., B. J. Stoyanov, et al. (1995). “Numerical Modeling of the Corneas Lamellar Structure and Birefringence Properties.” Journal of the Optical Society of America a-Opics Image Science and Vision 12(7): 1425-1438.
  Doornbos, R. M. P., R. Lang, et al. (1999). “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy.” Physics in Medicine and Biology 44(4): 967-981.
  Drexler, W., A. Baumgartner, et al. (1997). “Biometric investigation of changes in the anterior eye segment during accommodation.” Vision Research 37(19): 2789-2800.
  Drexler, W., A. Baumgartner, et al. (1997). “Submicrometer precision biometry of the anterior segment of the human eye.” Investigative Ophthalmology& Visual Science 38(7): 1304-1313.
  Drexler, W., A. Baumgartner, et al. (1998). “Dual beam optical coherence tomography: signal identification for ophthalmologic diagnosis.” Journal of Biomedical Optics 3 (1): 55-65.
  Drexler, W., O. Findl, et al. (1998). “Partial coherence interferometry: A novel approach to biometry in cataract surgery.” American Journal of Ophthalmology 126(4): 524-534.
  Drexler, W., O. Findl, et al. (1997). “Clinical feasibility of dual beam optical coherence topography and tomography for ophthalmologic diagnosis.” Investigative Ophthalmology & Visual Science 38(4): 1038-1038.
  Drexler, W., C. K. Hitzenberger, et al. (1998). “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry.” Experimental Eye Research 66(1): 25-33.
  Drexler, W., C. K. Hitzenberger, et al. (1996). “(Sub)micrometer precision biometry of the human eye by optical coherence tomography and topography.” Investigative Ophthalmology & Visual Science 37(3): 4374-4374.
  Drexler, W., C. K. Hitzenberger, et al. (1995). “Measurement of the Thickness of Fundus Layers by Partial Coherence Tomography.” Optical Engineering 34(3): 701-710.
  Drexler, W., U. Morgner, et al. (2001). “Ultrahigh-resolution ophthalmic optical coherence tomography.” Nature Medicine 7(4): 502-507.
  Drexler, W., U. Morgner, et al. (2001). “Ultrahigh-resolution ophthalmic optical coherence tomography. [erratum appears in Nat Med May 2001;7(5):636.].” Nature Medicine 7(4): 502-7.
  Drexler, W., H. Sattmann, et al. (2003). “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography.” Archives of Ophthalmology 121(5): 695-706.
  Drexler, W., D. Stamper, et al. (2001). “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis.” Journal of Rheumatology 28(6): 1311-8.
  Droog, E. J., W. Steenbergen, et al. (2001). “Measurement of depth of burns by laser Doppler perfusion imaging.” Burns 27(6): 561-8.
  Dubois, A., K. Grieve, et al. (2004). “Ultrahigh-resolution full-field optical coherence tomography.” Applied Optics 43(14): 2874-2883.
  Dubois, A., L. Vabre, et al. (2002). “High-resolution full-field optical coherence tomography with a Linnik microscope.” Applied Optics 41(4): 805-812.
  Ducros, M., M. Laubscher, et al. (2002). “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array.” Optics Communications 202(1-3): 29-35.
  Ducros, M. G., J. D. Marsack, et al. (2001). “Primate retina imaging with polarization-sensitive optical coherence tomography.” Journal of the Optical Society of America a-Optics Image Science and Vision 18(12): 2945-2956.
  Duncan, A., J. H. Meek, et al. (1995). “Optical Pathlength Measurements on Adult Head, Calf and Forearm and the Head of the Newborn-Infant Using Phase-Resolved Optical Spectroscopy.” Physics in Medicine and Biology 40(2): 295-304.
  Eigensee, A., G. Haeusler, et al. (1996). “New method of short-coherence interferometry in human skin (in vivo) and in solid volume scatterers.” Proceedings of SPIE—The International Society for Optical Engineering 2925: 169-178.
  Eisenbeiss, W., J. Marotz, et al. (1999). “Reflection-optical multispectral imaging method for objective determination of burn depth.” Burns 25(8): 697-704.
  Elbaum, M., M. King, et al. (1972). “Wavelength-Diversity Technique for Reduction of Speckle Size.” Journal of the Optical Society of America 62(5): 732-&.
  Ervin, J. C., H. G. Lemij, et al. (2002). “Clinician change detection viewing longitudinal stereophotographs compared to confocal scanning laser tomography in the LSU Experimental Glaucoma (LEG) Study.” Ophthalmology 109(3): 467-81.
  Essenpreis, M., C. E. Elwell, et al. (1993). “Spectral Dependence of Temporal Point Spread Functions in Human Tissues.” Applied Optics 32(4): 418-425.
  Eun, H. C. (1995). “Evaluation of skin blood flow by laser Doppler flowmetry. [Review] [151 refs].” Clinics in Dermatology 13(4): 337-47.
  Evans, J. A., J. M. Poneros, et al. (2004). “Application of a histopathologic scoring system to optical coherence tomography (OCT) images to identify high-grade dysplasia in Barrett's esophagus.” Gastroenterology 126(4): A51-A51.
  Feldchtein, F. I., G. V. Gelikonov, et al. (1998). “In vivo OCT imaging of hard and soft tissue of the oral cavity.” Optics Express 3(6): 239-250.
  Feldchtein, F. I., G. V. Gelikonov, et al. (1998). “Endoscopic applications of optical coherence tomography.” Optics Express 3(6): 257-270.
  Fercher, A. F., W. Drexler, et al. (1997). “Optical ocular tomography.” Neuro-Ophthalmology 18(2): 39-49.
  Fercher, A. F., W. Drexler, et al. (1994). Measurement of optical distances by optical spectrum modulation. Proceedings of SPIE—The International Society for Optical Engineering.
  Fercher, A. F., W. Drexler, et al. (2003). “Optical coherence tomography—principles and applications.” Reports on Progress in Physics 66(2): 239-303.
  Fercher, A. F., C. Hitzenberger, et al. (1991). “Measurement of Intraocular Optical Distances Using Partially Coherent Laser-Light.” Journal of Modern Optics 38(7): 1327-1333.
  Fercher, A. F., C. K. Hitzenberger, et al. (1996). Ocular partial coherence interferometry. Proceedings of SPIE—The International Society for Optical Engineering.
  Fercher, A. F., C. K. Hitzenberger, et al. (1993). “In-Vivo Optical Coherence Tomography.” American Journal of Ophthalmology 116(1): 113-115.
  Fercher, A. F., C. K. Hitzenberger, et al. (1994). In-vivo dual-beam optical coherence tomography. Proceedings of SPIE—The International Society for Optical Engineering.
  Fercher, A. F., C. K. Hitzenberger, et al. (1995). “Measurement of Intraocular Distances by Backscattering Spectral Interferometry.” Optics Communications 117(1-2): 43-48.
  Fercher, A. F., C. K. Hitzenberger, et al. (2000). “A thermal light source technique for optical coherence tomography.” Optics Communications 185(1-3): 57-64.
  Fercher, A. F., C. K. Hitzenberger, et al. (2001). “Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography.” Optics Express 9(12): 610-615.
  Fercher, A. F., C. K. Hitzenberger, et al. (2002). “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique.” Optics Communications 204(1-6): 67-74.
  Fercher, A. F., H. C. Li, et al. (1993). “Slit Lamp Laser-Doppler Interferometer.” Lasers in Surgery and Medicine 13(4): 447-452.
  Fercher, A. F., K. Mengedoht, et at. (1988). “Eye-Length Measurement by Interferometry with Partially Coherent-Light.” Optics Letters 13(3): 186-188.
  Ferro, P., M. Haelterman, et al. (1991). “All-Optical Polarization Switch with Long Low-Birefringence Fiber.” Electronics Letters 27(16): 1407-1408.
  Fetterman, M. R., D. Goswami, et al. (1998). “Ultrafast pulse shaping: amplification and characterization.” Optics Express 3(10): 366-375.
  Findl, O., W. Drexler, et al. (2001). “Improved prediction of intraocular lens power using partial coherence interferometry.” Journal of Cataract and Refractive Surgery 27 (6): 861-867.
  Fork, R. L., C. H. B. Cruz, et al. (1987). “Compression of Optical Pulses to 6 Femtoseconds by Using Cubic Phase Compensation.” Optics Letters 12(7): 483-485.
  Foschini, G. J. and C. D. Poole (1991). “Statistical-Theory of Polarization Dispersion in Single-Mode Fibers.” Journal of Lightwave Technology 9(11): 1439-1456.
  Francia, C., F. Bruyere, et al. (1998). “PMD second-order effects on pulse propagation in single-mode optical fibers.” Ieee Photonics Technology Letters 10(12): 1739-1741.
  Fried, D., R. E. Glena, et al. (1995). “Nature of Light-Scattering in Dental Enamel and Dentin at Visible and near-Infrared Wavelengths.” Applied Optics 34(7): 1278-1285.
  Fujimoto, J. G., M. E. Brezinski, et al. (1995). “Optical Biopsy and Imaging Using Optical Coherence Tomography.” Nature Medicine 1(9): 970-972.
  Fukasawa, A. and H. lijima (2002). “Optical coherence tomography of choroidal osteoma.” American Journal of Ophthalmology 133(3): 419-21.
  Fymat, A. L. (1981). “High-Resolution Interferometric Spectrophotopolarimetry.” Optical Engineering 20(1): 25-30.
  Galtarossa, A., L. Palmieri, et al. (2000). “Statistical characterization of fiber random birefringence.” Optics Letters 25(18): 1322-1324.
  Galtarossa, A., L. Palmieri, et al. (2000). “Measurements of beat length and perturbation length in long single-mode fibers.” Optics Letters 25(6): 384-386.
  Gandjbakhche, A. H., P. Mills, et al. (1994). “Light-Scattering Technique for the Study of Orientation and Deformation of Red-Blood-Cells in a Concentrated Suspension.” Applied Optics 33(6): 1070-1078.
  Garcia, N. and M. Nieto-Vesperinas (2002). “Left-handed materials do not make a perfect lens.” Physical Review Letters 88(20).
  Gelikonov, V. M., G. V. Gelikonov, et al. (1995). “Coherent Optical Tomography of Microscopic Inhomogeneities in Biological Tissues.” Jetp Letters 61(2): 158-162.
  George, N. and A. Jain (1973). “Speckle Reduction Using Multiple Tones of Illumination.” Applied Optics 12(6): 1202-1212.
  Gibson, G. N., R. Klank, et al. (1996). “Electro-optically cavity-dumped ultrashort-pulse Ti:sapphire oscillator.” Optics Letters 21(14): 1055.
  Gil, J. J. (2000). “Characteristic properties of Mueller matrices.” Journal of the Optical Society of America a-Optics Image Science and Vision 17(2): 328-334.
  Gil, J. J. and E. Bernabeu (1987). “Obtainment of the Polarizing and Retardation Parameters of a Nondepolarizing Optical-System from the Polar Decomposition of Its Mueller Matrix.” Optik 76(2): 67-71.
  Gladkova, N. D., G. A. Petrova, et al. (2000). “In vivo optical coherence tomography imaging of human skin: norm and pathology.” Skin Research and Technology 6 (1): 6-16.
  Glaessl, A., A. G. Schreyer, et al. (2001). “Laser surgical planning with magnetic resonance imaging-based 3-dimensional reconstructions for intralesional Nd : YAG laser therapy of a venous malformation of the neck.” Archives of Dermatology 137(10): 1331-1335.
  Gloesmann, M., B. Hermann, et al. (2003). “Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography.” Investigative Ophthalmology & Visual Science 44(4): 1696-1703.
  Goldberg, L. and D. Mehuys (1994). “High-Power Superluminescent Diode Source.” Electronics Letters 30(20): 1682-1684.
  Goldsmith, J. A., Y. Li, et al. (2005). “Anterior chamber width measurement by high speed optical coherence tomography.” Ophthalmology 112(2): 238-244.
  Goldstein, L. E., J. A. Muffat, et al. (2003). “Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer's disease.” Lancet 361(9365): 1258-1265.
  Golubovic, B., B. E. Bouma, et al. (1996). “Thin crystal, room-temperature Cr/sup 4 +/:forstefite laser using near-infrared pumping.” Optics Letters 21(24): 1993-1995.
  Gonzalez, S. and Z. Tannous (2002). “Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma.” Journal of the American Academy of Dermatology 47(6): 869-874.
  Gordon, M. O. and M. A. Kass (1999). “The Ocular Hypertension Treatment Study: design and baseline description of the participants.” Archives of Ophthalmology 117(5): 573-83.
  Grayson, T. P., J. R. Torgerson, et al. (1994). “Observation of a Nonlocal Pancharatnam Phase-Shift in the Process of Induced Coherence without Induced Emission.” Physical Review A 49(1): 626-628.
  Greaney, M. J., D. C. Hoffman, et al. (2002). “Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma.” Investigative Ophthalmology & Visual Science 43(1): 140-5.
  Greenfield, D. S., H. Bagga, et al. (2003). “Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography.” Archives of Ophthalmology 121(1): 41-46.
  Greenfield, D. S., R. W. Knighton, et al. (2000). “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry.” American Journal of Ophthalmology 129(6): 715-722.
  Griffin, R. A., D. D. Sampson, et al. (1995). “Coherence Coding for Photonic Code-Division Multiple-Access Networks.” Journal of Lightwave Technology 13(9): 1826-1837.
  Guedes, V., J. S. Schuman, et al. (2003). “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes.” Ophthalmology 110(1): 177-189.
  Gueugniaud, P. Y., H. Carsin, et al. (2000). “Current advances in the initial management of major thermal burns. [Review] [76 refs].” Intensive Care Medicine 26(7): 848-56.
  Guido, S. and R. T. Tranquillo (1993). “A Methodology for the Systematic and Quantitative Study of Cell Contact Guidance in Oriented Collagen Gels—Correlation of Fibroblast Orientation and Gel Birefringence.” Journal of Cell Science 105: 317-331.
  Gurses-Ozden, R., H. Ishikawa, et al. (1999). “Increasing sampling density improves reproducibility of optical coherence tomography measurements.” Journal of Glaucoma 8(4): 238-41.
  Guzzi, R. (1998). “Scattering Theory from Homogeneous and Coated Spheres.” 1-11.
  Haberland, U. B., Vladimir; Schmitt, Hans J. (1996). “Optical coherent tomography of scattering media using electrically tunable near-infrared semiconductor laser.” Applied Optics Draft.
  Haberland, U. R., Walter; Blazek, Vladimir; Schmitt, Hans J. (1995). “Investigation of highly scattering media using near-infrared continuous wave tunable semiconductor laser.” Proc. SPIE, 2389: 503-512.
  Hale, G. M. and M. R. Querry (1973). “Optical-Constants of Water in 200-Nm to 200-Mum Wavelength Region.” Applied Optics 12(3): 555-563.
  Hammer, D. X., R. D. Ferguson, et al. (2002). “Image stabilization for scanning laser ophthalmoscopy.” Optics Express 10(26): 1542.
  Hara, T., Y. Ooi, et al. (1989). “Transfer Characteristics of the Microchannel Spatial Light-Modulator.” Applied Optics 28(22): 4781-4786.
  Harland, C. C., S. G. Kale, et al. (2000). “Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound.” British Journal of Dermatology 143(2): 281-289.
  Hartl, I., X. D. Li, et al. (2001). “Ultrahigh-resolution continuum generation in an air-silica optical coherence tomography using microstructure optical fiber.” Optics Letters 26(9): 608-610.
  Hassenstein, A., A. A. Bialasiewicz, et al. (2000). “Optical coherence tomography in uveitis patients.” American Journal of Ophthalmoloqv 130(5): 669-70.
  Hattenhauer, M. G., D. H. Johnson, et al. (1998). “The probability of blindness from open-angle glaucoma. [see comments].” Ophthalmology 105(11): 2099-104.
  Hausler, G., J. M. Herrmann, et al. (1996). “Observation of light propagation in volume scatterers with 10(11)-fold slow motion.” Optics Letters 21(14): 1087-1089.
  Hazebroek, H. F. and A. A. Holscher (1973). “Interferometric Ellipsometry.” Journal of Physics E-Scientific Instruments 6(9): 822-826.
  Hazebroek, H. F. and W. M. Visser (1983). “Automated Laser Interferometric Ellipsometry and Precision Reflectometry.” Journal of Physics E-Scientific Instruments 16(7): 654-661.
  He, Z. Y., N. Mukohzaka, et al. (1997). “Selective image extraction by synthesis of the coherence function using two-dimensional optical lock-in amplifier with microchannel spatial light modulator.” Ieee Photonics Technology Letters 9(4): 514-516.
  Flee, M. R., J. A. Izatt, et al. (1993). “Femtosecond Transillumination Optical Coherence Tomography.” Optics Letters 18(12): 950-952.
  Hee, M. R., J. A. Izatt, et al. (1995). “Optical coherence tomography of the human retina.” Archives of Ophthalmology 113(3): 325-32.
  Hee, M. R., C. A. Puliafito, et al. (1998). “Topography of diabetic macular edema with optical coherence tomography.” Ophthalmology 105(2): 360-70.
  Hee, M. R., C. A. Puliafito, et al. (1995). “Quantitative assessment of macular edema with optical coherence tomography.” Archives of Ophthalmology 113(8): 1019-29.
  Hellmuth, T. and M. Welle (1998). “Simultaneous measurement of dispersion, spectrum, and distance with a fourier transform spectrometer.” Journal of Biomedical Optics 3(1): 7-11.
  Hemenger, R. P. (1989). “Birefringence of a medium of tenuous parallel cylinders.” Applied Optics 28(18): 4030-4034.
  Henry, M. (1981). “Fresnel-Arago Laws for Interference in Polarized-Light—Demonstration Experiment.” American Journal of Physics 49(7): 690-691.
  Herz, P. R., Y. Chen, et al. (2004). “Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography.” Optics Letters 29(19): 2261-2263.
  Hirakawa, H., H. Iijima, et al. (1999). “Optical coherence tomography of cystoid macular edema associated with retinitis pigmentosa.” American Journal of Ophthalmology 128(2): 185-91.
  Hitzenberger, C. K., A. Baumgartner, et al. (1994). “Interferometric Measurement of Corneal Thickness with Micrometer Precision.” American Journal of Ophthalmology 118(4): 468-476.
  Hitzenberger, C. K., A. Baumgartner, et al. (1999). “Dispersion effects in partial coherence interferometry: Implications for intraocularranging.” Journal of Biomedical Optics 4(1): 144-151.
  Hitzenberger, C. K., A. Baumgartner, et al. (1998). “Dispersion induced multiple signal peak splitting in partial coherence interferometry.” Optics Communications 154 (4): 179-185.
  Hitzenberger, C. K., M. Danner, et al. (1999). “Measurement of the spatial coherence of superluminescent diodes.” Journal of Modern Optics 46(12): 1763-1774.
  Hitzenberger, C. K. and A. F. Fercher (1999). “Differential phase contrast in optical coherence tomography.” Optics Letters 24(9): 622-624.
  Hitzenberger, C. K., M. Sticker, et al. (2001). “Differential phase measurements in low-coherence interferometry without 2 pi ambiguity.” Optics Letters 26(23): 1864-1866.
  Hoeling, B. M., A. D. Fernandez, et al. (2000). “An optical coherence microscope for 3-dimensional imaging in developmental biology.” Optics Express 6(7): 136-146.
  Hoerauf, H., C. Scholz, et al. (2002). “Transscleral optical coherence tomography: a new imaging method for the anterior segment of the eye.” Archives of Ophthalmology 120(6): 816-9.
  Hoffmann, K., M. Happe, et al. (1998). “Optical coherence tomography (OCT) in dermatology.” Journal of Investigative Dermatology 110(4): 583-583.
  Hoh, S. T., D. S. Greenfield, et al. (2000). “Optical coherence tomography and scanning laser polarimetry in normal, ocular hypertensive, and glaucomatous eyes.” American Journal of Ophthalmology 129(2): 129-35.
  Hohenleutner, U., M. Hilbert, et al. (1995). “Epidermal Damage and Limited Coagulation Depth with the Flashlamp-Pumped Pulsed Dye-Laser—a Histochemical-Study.” Journal of Investigative Dermatology 104(5): 798-802.
  Holland, A. J. A., H. C. O. Martin, et al. (2002). “Laser Doppler imaging prediction of burn wound outcome in children.” Burns 28(1): 11-17.
  Hotate, K. and T. Okugawa (1994). “Optical Information-Processing by Synthesis of the Coherence Function.” Journal of Lightwave Technology 12(7): 1247-1255.
  Hourdakis, C. J. and A. Perris (1995). “A Monte-Carlo Estimation of Tissue Optical-Properties for Use in Laser Dosimetry.” Physics in Medicine and Biology 40(3): 351-364.
  Hu, Z., F. Li, et al. (2000). “Wavelength-tunable narrow-linewidth semiconductor fiber-ring laser.” IEEE Photonics Technology Letters 12(8): 977-979.
  Huang, F., W. Yang, et al. (2001). “Quadrature spectral interferometric detection and pulse shaping.” Optics Letters 26(6): 382-384.
  Huang, X. R. and R. W. Knighton (2002). “Linear birefringence of the retinal nerve fiber layer measured in vitro with a multispectral imaging micropolarimeter.” Journal of Biomedical Optics 7(2): 199-204.
  Huber, R., M. Wojtkowski, et al. (2005). “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles.” Optics Express 13(9): 3513-3528.
  Hunter, D. G., J. C. Sandruck, et al. (1999). “Mathematical modeling of retinal birefringence scanning.” Journal of the Optical Society of America a-Optics Image Science and Vision 16(9): 2103-2111.
  Hurwitz, H. H. and R. C. Jones (1941). “A new calculus for the treatment of optical systems II. Proof of three general equivalence theorems.” Journal of the Optical Society of America 31(7): 493-499.
  Huttner, B., C. De Barros, et al. (1999). “Polarization-induced pulse spreading in birefringent optical fibers with zero differential group delay.” Optics Letters 24(6): 370-372.
  Huttner, B., B. Gisin, et al. (1999). “Distributed PMD measurement with a polarization-OTDR in optical fibers.” Journal of Lightwave Technology 17(10): 1843-1848.
  Huttner, B., J. Reecht, et al. (1998). “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry.” Ieee Photonics Technology Letters 10(10): 1458-1460.
  Hyde, S. C. W., N. P. Barry, et al. (1995). “Sub-100-Mu-M Depth-Resolved Holographic Imaging through Scattering Media in the near-Infrared.” Optics Letters 20(22): 2330-2332.
  Hyde, S. C. W., N. P. Barry, et al. (1995). “Depth-Resolved Holographic Imaging through Scattering Media by Photorefraction.” Optics Letters 20(11): 1331-1333.
  Iftimia, N. V., B. E. Bouma, et al. (2004). “Adaptive ranging for optical coherence tomography.” Optics Express 12(17): 4025-4034.
  Iida, T., N. Hagimura, et al. (2000). “Evaluation of central serous chorioretinopathy with optical coherence tomography.” American Journal of Ophthalmology 129(1): 16-20.
  Imai, M., H. Iijima, et al. (2001). “Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy. [republished in Am J Ophthalmol. Sep. 2001;132(3):458-61 ; 11530091.].” American Journal of Ophthalmology 132(1): 81-4.
  Indebetouw, G. and P. Klysubun (2000). “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography.” Optics Letters 25(4): 212-214.
  Ip, M. S., B. J. Baker, et al. (2002). “Anatomical outcomes of surgery for idiopathic macular hole as determined by optical coherence tomography.” Archives of Ophthalmology 120(1): 29-35.
  Ismail, R., V. Tanner, et al. (2002). “Optical coherence tomography imaging of severe commotio retinae and associated macular hole.” British Journal of Ophthalmology 86(4): 473-4.
  Izatt, J. A., M. R. Hee, et al. (1994). “Optical Coherence Microscopy in Scattering Media.” Optics Letters 19(8): 590-592.
  Izatt, J. A., M. R. Hee, et al. (1994). “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography.” Archives of Ophthalmology 112 (12): 1584-9.
  Izatt, J. A., M. D. Kulkami, et al. (1997). “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Optics Letters 22(18): 1439-1441.
  Izatt, J. A., M. D. Kulkarni, et al. (1996). “Optical coherence tomography and microscopy in gastrointestinal tissues.” IEEE Journal of Selected Topics in Quantum Electronics 2(4): 1017.
  Jacques, S. L., J. S. Nelson, et al. (1993). “Pulsed Photothermal Radiometry of Port-Wine-Stain Lesions.” Applied Optics 32(13): 2439-2446.
  Jacques, S. L., J. R. Roman, et al. (2000). “Imaging superficial tissues with polarized light.” Lasers in Surgery and Medicine 26(2): 119-129.
  Jang, I. K., B. E. Bouma, et al. (2002). “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound.” Journal of the American College of Cardiology 39(4): 604-609.
  Jang, I. K., B. D. MacNeill, et al. (2002). “In-vivo characterization of coronary plaques in patients with ST elevation acute myocardial infarction using optical coherence tomography (OCT).” Circulation 106(19): 698-698 3440 Suppl. S,.
  Jang, I. K., G. J. Tearney, et al. (2000). “Comparison of optical coherence tomography and intravascular ultrasound for detection of coronary plaques with large lipid-core in living patients.” Circulation 102(18): 509-509.
  Jeng, J. C., A. Bridgeman, et al. (2003). “Laser Doppler imaging determines need for excision and grafting in advance of clinical judgment: a prospective blinded trial.” Burns 29(7): 665-670.
  Jesser, C. A., S. A. Boppart, et al. (1999). “High resolution imaging of transitional cell carcinoma with optical coherence tomography: feasibility for the evaluation of bladder pathology.” British Journal of Radiology 72: 1170-1176.
  Johnson, C. A., J. L. Keltner, et al. (2002). “Baseline visual field characteristics in the ocular hypertension treatment study.” Ophthalmology 109(3): 432-7.
  Jones, R. C. (1941). “A new calculus for the treatment of optical systems III. The Sohncke theory of optical activity.” Journal of the Optical Society of America 31 (7): 500-503.
  Jones, R. C. (1941). “A new calculus for the treatment of optical systems I. Description and discussion of the calculus.” Journal of the Optical Society of America 31(7): 488-493.
  Jones, R. C. (1942). “A new calculus for the treatment of optical systems. IV.” Journal of the Optical Society of America 32(8): 486-493.
  Jones, R. C. (1947). “A New Calculus for the Treatment of Optical Systems .6. Experimental Determination of the Matrix.” Journal of the Optical Society of America 37(2): 110-112.
  Jones, R. C. (1947). “A New Calculus for the Treatment of Optical Systems .5. A More General Formulation, and Description of Another Calculus.” Journal of the Optical Society of America 37(2): 107-110.
  Jones, R. C. (1948). “A New Calculus for the Treatment of Optical Systems .7. Properties of the N-Matrices.” Journal of the Optical Society of America 38(8): 671-685.
  Jones, R. C. (1956). “New Calculus for the Treatment of Optical Systems .8. Electromagnetic Theory.” Journal of the Optical Society of America 46(2): 126-131.
  Jopson, R. M., L. E. Nelson, et al. (1999). “Measurement of second-order polarization-mode dispersion vectors in optical fibers.” Ieee Photonics Technology Letters 11 (9): 1153-1155.
  Jost, B. M., A. V. Sergienko, et al. (1998). “Spatial correlations of spontaneously down-converted photon pairs detected with a single-photon-sensitive CCD camera.” Optics Express 3(2): 81-88.
  Kaplan, B., E. Compain, et al. (2000). “Phase-modulated Mueller ellipsometry characterization of scattering by latex sphere suspensions.” Applied Optics 39 (4): 629-636.
  Kass, M. A., D. K. Heuer, et al. (2002). “The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma.” Archives of Ophthalmology 120(6): 701-13; discussion 829-30.
  Kasuga, Y., J. Arai, et al. (2000). “Optical coherence tomograghy to confirm early closure of macular holes.” American Journal of Ophthalmology 130(5): 675-6.
  Kaufman, T., S. N. Lusthaus, et al. (1990). “Deep Partial Skin Thickness Burns—a Reproducible Animal-Model to Study Burn Wound-Healing.” Burns 16(1): 13-16.
  Kemp, N. J., J. Park, et al. (2005). “High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography.” Journal of the Optical Society of America a-Optics Image Science and Vision 22(3): 552-560.
  Kerrigan-Baumrind, L. A., H. A. Quigley, et al. (2000). “Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons.” Investigative Ophthalmology & Visual Science 41(3): 741-8.
  Kesen, M. R., G. L. Spaeth, et al. (2002). “The Heidelberg Retina Tomograph vs clinical impression in the diagnosis of glaucoma.” American Journal of Ophthalmology 133(5): 613-6.
  Kienle, A. and R. Hibst (1995). “A New Optimal Wavelength for Treatment of Port-Wine Stains.” Physics in Medicine and Biology 40(10): 1559-1576.
  Kienle, A., L. Lilge, et al. (1996). “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue.” Applied Optics 35(13): 2304-2314.
  Kim, B. Y. and S. S. Choi (1981). “Analysis and Measurement of Birefringence in Single-Mode Fibers Using the Backscattering Method.” Optics Letters 6(11): 578-580.
  Kimel, S., L. O. Svaasand, et al. (1994). “Differential Vascular-Response to Laser Photothermolysis.” Journal of Investigative Dermatology 103(5): 693-700.
  Kloppenberg, F. W. H., G. Beerthuizen, et al. (2001). “Perfusion of burn wounds assessed by Laser Doppler Imaging is related to burn depth and healing time.” Burns 27(4): 359-363.
  Knighton, R. W. and X. R. Huang (2002). “Analytical methods for scanning laser polarimetry.” Optics Express 10(21): 1179-1189.
  Knighton, R. W., X. R. Huang, et al. (2002). “Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment.” Investigative Ophthalmology & Visual Science 43(2): 383-392.
  Knuettel, A. R. S., Joseph M.: Shay, M.; Knutson, Jay R. (1994). “Stationary low-coherence light imaging and spectroscopy using a CCD camera.” Proc. SPIE , vol. 2135: p. 239-250.
  Knuttel, A. and M. Boehlau-Godau (2000). “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography.” Journal of Biomedical Optics 5(1): 83-92.
  Knuttel, A. and J. M. Schmitt (1993). “Stationary Depth-Profiling Reflectometer Based on Low-Coherence Interferometry.” Optics Communications 102(3-4): 193-198.
  Knuttel, A., J. M. Schmitt, et al. (1994). “Low-Coherence Reflectometry for Stationary Lateral and Depth Profiling with Acoustooptic Deflectors and a Ccd Camera.” Optics Letters 19(4): 302-304.
  Kobayashi, M., H. Hanafusa, et al. (1991). “Polarization-Independent lnterferometric Optical-TimeDomain Reflectometer.” Journal of Lightwave Technology 9(5): 623-628.
  Kolios, M. C., M. D. Sherar, et al. (1995). “Large Blood-Vessel Cooling in Heated Tissues—a Numerical Study.” Physics in Medicine and Biology 40(4): 477-494.
  Koozekanani, D., K. Boyer, et al. (2001). “Retinal thickness measurements from optical coherence tomography using a Markov boundary model.” Ieee Transactions on Medical Imaging 20(9): 900-916.
  Kop, R. H. J. and R. Sprik (1995). “Phase-sensitive interferometry with ultrashort optical pulses.” Review of Scientific Instruments 66(12): 5459-5463.
  Kramer, R. Z., J. Bella, et al. (1999). “Sequence dependent conformational variations of collagen triple-helical structure.” Nature Structural Biology 6(5): 454-7.
  Kulkarni, M. D., T. G. van Leeuwen, et al. (1998). “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography.” Optics Letters 23(13): 1057-1059.
  Kwon, Y. H., C. S. Kim, et al. (2001). “Rate of visual field loss and long-term visual outcome in primary open-angle glaucoma.” American Journal of Ophthalmology 132(1): 47-56.
  Kwong, K. F., D. Yankelevich, et al. (1993). “400-Hz Mechanical Scanning Optical Delay-Line.” Optics Letters 18(7): 558-560.
  Landers, J., I. Goldberg, et al. (2002). “Analysis of risk factors that may be associated with progression from ocular hypertension to primary open angle glaucoma.” Clin Experiment Ophthalmogy 30(4): 242-7.
  Laszlo, A. and A. Venetianer (1998). Heat resistance in mammalian cells: Lessons and challenges. Stress of Life. 851: 169-178.
  Laszlo, A. and A. Venetianer (1998). “Heat resistance in mammalian cells: lessons and challenges. [Review] [52 refs].” Annals of the New York Academy of Sciences 851: 169-78.
  Laufer, J., R. Simpson, et al. (1998). “Effect of temperature on the optical properties of ex vivo human dermis and subdermis.” Physics in Medicine and Biology 43(9): 2479-2489.
  Lederer, D. E., J. S. Schuman, et al. (2003). “Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography.” American Journal of Ophthalmology 135(6): 838-843.
  Lee, P. P., Z. W. Feldman, et al. (2003). “Longitudinal prevalence of major eye diseases.” Archives of Ophthalmology 121(9): 1303-1310.
  Lehrer, M. S., T. T. Sun, et al. (1998). “Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation.” Journal of Cell Science 111(Pt 19): 2867-75.
  Leibowitz, H. M., D. E. Krueger, et al. (1980). “The Framingham Eye Study monograph: An ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973-1975.” Survey of Ophthalmology 24(Suppl): 335-610.
  Leitgeb, R., C. K. Hitzenberger, et al. (2003). “Performance of fourier domain vs. time domain optical coherence tomography.” Optics Express 11(8): 889-894.
  Leitgeb, R., L. F. Schmetterer, et al. (2002). “Flow velocity measurements by frequency domain short coherence interferometry.” Proc. SPIE 4619: 16-21.
  Leitgeb, R. A., W. Drexler, et al. (2004). “Ultrahigh resolution Fourier domain optical coherence tomography.” Optics Express 12(10): 2156-2165.
  Leitgeb, R. A., C. K. Hitzenberger, et al. (2003). “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography.” Optics Letters 28(22): 2201-2203.
  Leitgeb, R. A., L. Schmetterer, et al. (2003). “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography.” Optics Express 11(23): 3116-3121.
  Leitgeb, R. A., L. Schmetterer, et al. (2004). “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography.” Optics Letters 29 (2): 171-173.
  LeRoyBrehonnet, F. and B. LeJeune (1997). “Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties.” Progress in Quantum Electronics 21(2): 109-151.
  Leske, M. C., A. M. Connell, et al. (1995). “Risk factors for open-angle glaucoma. The Barbados Eye Study. [see comments].” Archives of Ophthalmology 113(7): 918-24.
  Leske, M. C., A. M. Connell, et al. (2001). “Incidence of open-angle glaucoma: the Barbados Eye Studies. The Barbados Eye Studies Group. [see comments].” Archives of Ophthalmology 119(1): 89-95.
  Leske, M. C., A. Heijl, et al. (1999). “Early Manifest Glaucoma Trial. Design and Baseline Data.” Ophthalmology 106(11): 2144-2153.
  Lewis, S. E., J. R. DeBoer, et al. (2005). “Sensitive, selective, and analytical improvements to a porous silicon gas sensor.” Sensors and Actuators B: Chemical 110(1): 54-65.
  Lexer, F., C. K. Hitzenberger, et al. (1999). “Dynamic coherent focus OCT with depth—independent transversal resolution.” Journal of Modern Optics 46(3): 541-553.
  Li, X., C. Chudoba, et al. (2000). “Imaging needle for optical coherence tomography.” Optics Letters 25: 1520-1522.
  Li, X., T. H. Ko, et al. (2001). “Intraluminal fiber-optic Doppler imaging catheter for structural and functional optical coherence tomography.” Optics Letters 26: 1906-1908.
  Liddington, M. I. and P. G. Shakespeare (1996). “Timing of the thermographic assessment of burns.” Burns 22(1): 26-8.
  Lindmo, T., D. J. Smithies, et al. (1998). “Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation.” Physics in Medicine and Biology 43(10): 3045-3064.
  Liu, J., X. Chen, et al. (1999). “New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating.” IEEE Transactions on Biomedical Engineering 46(4): 420-8.
  Luke, D. G., R. McBride, et al. (1995). “Polarization mode dispersion minimization in fiber-wound piezoelectric cylinders.” Optics Letters 20(24): 2550-2552.
  MacNeill, B. D., I. K. Jang, et al. (2004). “Focal and multi-focal plaque distributions in patients with macrophage acute and stable presentations of coronary artery disease.” Journal of the American College of Cardiology 44(5): 972-979.
  Mahgerefteh, D. and C. R. Menyuk (1999). “Effect of first-order PMD compensation on the statistics of pulse broadening in a fiber with randomly varying birefringence.” Ieee Photonics Technology Letters 11(3): 340-342.
  Maitland, D. J. and J. T. Walsh, Jr. (1997). “Quantitative measurements of linear birefringence during heating of native collagen.” Lasers in Surgery & Medicine 20 (3): 310-8.
  Majaron, B., S. M. Srinivas, et al. (2000). “Deep coagulation of dermal collagen with repetitive Er : YAG laser irradiation.” Lasers in Surgery and Medicine 26(2): 215-222.
  Mansuripur, M. (1991). “Effects of High-Numerical-Aperture Focusing on the State of Polarization in Optical and Magnetooptic Data-Storage Systems.” Applied Optics 30(22): 3154-3162.
  Marshall, G. W., S. J. Marshall, et al. (1997). “The dentin substrate: structure and properties related to bonding.” Journal of Dentistry 25(6): 441-458.
  Martin, P. (1997). “Wound healing—Aiming for perfect skin regeneration.” Science 276 (5309): 75-81.
  Martinez, O. E. (1987). “3000 Times Grating Compressor with Positive Group-Velocity Dispersion—Application to Fiber Compensation in 1.3-1.6 Mu-M Region.” Ieee Journal of Quantum Electronics 23(1): 59-64.
  Martinez, O. E., J. P. Gordon, et al. (1984). “Negative Group-Velocity Dispersion Using Refraction.” Journal of the Optical Society of America a-Optics Image Science and Vision 1(10): 1003-1006.
  McKinney, J. D., M. A. Webster, et al. (2000). “Characterization and imaging in optically scattering media by use of laser speckle and a variable-coherence source.” Optics Letters 25(1): 4-6.
  Miglior, S., M. Casula, et al. (2001). “Clinical ability of Heidelberg retinal tomograph examination to detect glaucomatous visual field changes.” Ophthalmology 108 (9): 1621-7.
  Milner, T. E., D. M. Goodman, et al. (1996). “Imaging laser heated subsurface chromophores in biological materials: Determination of lateral physical dimensions.” Physics in Medicine and Biology 41(1): 31-44.
  Milner, T. E., D. M. Goodman, et al. (1995). “Depth Profiling of Laser-Heated Chromophores in Biological Tissues by Pulsed Photothermal Radiometry.” Journal of the Optical Society of America a-Optics Image Science and Vision 12 (7): 1479-1488.
  Milner, T. E., D. J. Smithies, et al. (1996). “Depth determination of chromophores in human skin by pulsed photothermal radiometry.” Applied Optics 35(19): 3379-3385.
  Mishchenko, M. I. and J. W. Hovenier (1995). “Depolarization of Light Backscattered by Randomly Oriented Nonspherical Particles.” Optics Letters 20(12): 1356-&.
  Mistlberger, A., J. M. Liebmann, et al. (1999). “Heidelberg retina tomography and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes.” Ophthalmology 106(10): 2027-32.
  Mitsui, T. (1999). “High-speed detection of ballistic photons propagating through suspensions using spectral interferometry.” Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers 38(5A): 2978-2982.
  Molteno, A. C., N. J. Bosma, et al. (1999). “Otago glaucoma surgery outcome study: long-term results of trabeculectomy—1976 to 1995.” Ophthalmology 106(9): 1742-50.
  Morgner, U., W. Drexler, et al. (2000). “Spectroscopic optical coherence tomography.” Optics Letters 25(2): 111-113.
  Morgner, U., F. X. Kartner, et al. (1999). “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti : sapphire laser (vol. 24, p. 411, 1999).” Optics Letters 24(13): 920-920.
  Mourant, J. R., A. H. Hielscher, et al. (1998). “Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells.” Cancer Cytopathology 84(6): 366-374.
  Muller, M., J. Squier, et al. (1998). “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives.” Journal of Microscopy-Oxford 191: 141-150.
  Muscat, S., N. McKay, et al. (2002). “Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography.” Investigative Ophthalmology & Visual Science 43(6): 1791-5.
  Musch, D. C., P. R. Lichter, et al. (1999). “The Collaborative Initial Glaucoma Treatment Study. Study Design, Methods, and Baseline Characteristics of Enrolled Patients.” Ophthalmology 106: 653-662.
  Neerken, S., Lucassen, G.W., Bisschop, M.A., Lenderink, E., Nuijs, T.A.M. (2004). “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography.” Journal of Biomedical Optics 9(2): 274-281.
  Nelson, J. S., K. M. Kelly, et al. (2001). “Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography.” Archives of Dermatology 137(6): 741-744.
  Newson, T. P., F. Farahi, et al. (1988). “Combined Interferometric and Polarimetric Fiber Optic Temperature Sensor with a Short Coherence Length Source.” Optics Communications 68(3): 161-165.
  Nov., L. J. (1993). “Recovery of the Matrix Operators in the Similarity and Congruency Transformations—Applications in Polarimetry.” Journal of the Optical Society of America a-Optics Image Science and Vision 10(4): 719-739.
  Oh, W. Y., S. H. Yun, et al. (2005). “Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers.” Ieee Photonics Technology Letters 17(3): 678-680.
  Oka, K. And T. Kato (1999). “Spectroscopic polarimetry with a channeled spectrum.” Optics Letters 24(21): 1475-1477.
  Okugawa, T. and K. Rotate (1996). “Real-time optical image processing by synthesis of the coherence function using real-time holography.” Ieee Photonics Technology Letters 8(2): 257-259.
  Oshima, M., R. Torii, et al. (2001). “Finite element simulation of blood flow in the cerebral artery.” Computer Methods in Applied Mechanics and Engineering 191 (6-7): 661-671.
  Pan, Y. T., H. K. Xie, et al. (2001). “Endoscopic optical coherence tomography based on a microelectromechanical mirror.” Optics Letters 26(24): 1966-1968.
  Parisi, V., G. Manni, et al. (2001). “Correlation between optical coherence tomography, pattern electroretinogram, and visual evoked potentials in open-angle glaucoma patients.” Ophthalmology 108(5): 905-12.
  Park, B. H., M. C. Pierce, et al. (2005). “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 mu m.” Optics Express 13(11): 3931-3944.
  Park, D. H., J. W. Hwang, et al. (1998). “Use of laser Doppler flowmetry for estimation of the depth of burns.” Plastic and Reconstructive Surgery 101(6): 1516-1523.
  Pendry, J. B., A. J. Holden, et al. (1999). “Magnetism from conductors and enhanced nonlinear phenomena.” Ieee Transactions on Microwave Theory and Techniques 47(11): 2075-2084.
  Penninckx, D. and V. Morenas (1999). “Jones matrix of polarization mode dispersion.” Optics Letters 24(13): 875-877.
  Pierce, M. C., M. Shishkov, et al. (2005). “Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography.” Optics Express 13(15): 5739-5749.
  Pircher, M., E. Gotzinger, et al. (2003). “Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography.” Optics Express 11(18): 2190-2197.
  Pircher, M., E. Gotzinger, et al. (2003). “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics 8(3): 565-569.
  Podoleanu, A. G., G. M. Dobre, et al. (1998). “En-face coherence imaging using galvanometer scanner modulation.” Optics Letters 23(3): 147-149.
  Podoleanu, A. G. and D. A. Jackson (1999). “Noise analysis of a combined optical coherence tomograph and a confocal scanning ophthalmoscope.” Applied Optics 38(10): 2116-2127.
  Podoleanu, A. G., J. A. Rogers, et al. (2000). “Three dimensional OCT images from retina and skin.” Optics Express 7(9): 292-298.
  Podoleanu, A. G., M. Seeger, et al. (1998). “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry.” Journal of Biomedical Optics 3(1): 12-20.
  Poole, C. D. (1988). “Statistical Treatment of Polarization Dispersion in Single-Mode Fiber.” Optics Letters 13(8): 687-689.
  Povazay, B., K. Bizheva, et al. (2002). “Submicrometer axial resolution optical coherence tomography.” Optics Letters 27(20): 1800-1802.
  Qi, B., A. P. Himmer, et al. (2004). “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror.” Optics Communications 232(1-6): 123-128.
  Radhakrishnan, S., A. M. Rollins, et al. (2001). “Real-time optical coherence tomography of the anterior segment at 1310 nm.” Archives of Ophthalmology 119(8): 1179-1185.
  Rogers, A. J. (1981). “Polarization-Optical Time Domain Reflectometry—a Technique for the Measurement of Field Distributions.” Applied Optics 20(6): 1060-1074.
  Rollins, A. M. and J. A. Izatt (1999). “Optimal interferometer designs for optical coherence tomography.” Optics Letters 24(21): 1484-1486.
  Rollins, A. M., R. Ung-arunyawee, et al. (1999). “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design.” Optics Letters 24(19): 1358-1360.
  Rollins, A. M., S. Yazdanfar, et al. (2002). “Real-time in vivo colors Doppler optical coherence tomography.” Journal of Biomedical Optics 7(1): 123-129.
  Rollins, A. M., S. Yazdanfar, et al. (2000). “Imaging of human retinal hemodynamics using color Doppler optical coherence tomography.” Investigative Ophthalmology & Visual Science 41(4): S548-S548.
  Sandoz, P. (1997). “Wavelet transform as a processing tool in white-light interferometry.” Optics Letters 22(14): 1065-1067.
  Sankaran, V., M. J. Everett, et al. (1999). “Comparison of polarized-light propagation in biological tissue and phantoms.” Optics Letters 24(15): 1044-1046.
  Sankaran, V., J. T. Walsh, et al. (2000). “Polarized light propagation through tissue phanto, ehms containing densely packed scatterers.” Optics Letters 25(4): 239-241
  Sarunic, M. V., M. A. Choma, et al. (2005). “Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3×3 fiber couplers.” Optics Express 13(3): 957-967.
  Sathyam, U. S., B. W. Colston, et al. (1999). “Evaluation of optical coherence quantitation of analytes in turbid media by use of two wavelengths.” Applied Optics 38(10): 2097-2104.
  Schmitt, J. M. (1997). “Array detection for speckle reduction in optical coherence microscopy.” Physics in Medicine and Biology 42(7): 1427-1439.
  Schmitt, J. M. (1999). “Optical coherence tomography (OCT): A review.” Ieee Journal of Selected Topics in Quantum Electronics 5(4): 1205-1215.
  Schmitt, J. M. and A. Knuttel (1997). “Model of optical coherence tomography of heterogeneous tissue.” Journal of the Optical Society of America a-Optics Image Science and Vision 14(6): 1231-1242.
  Schmitt, J. M., S. L. Lee, et al. (1997). “An optical coherence microscope with enhanced resolving power in thick tissue.” Optics Communications 142(4-6): 203-207.
  Schmitt, J. M., S. H. Xiang, et al. (1998). “Differential absorption imaging with optical coherence tomography.” Journal of the Optical Society of America a-Optics Image Science and Vision 15(9): 2288-2296.
  Schmitt, J. M., S. H. Xiang, et al. (1999). “Speckle in optical coherence tomography.” Journal of Biomedical Optics 4(1): 95-105.
  Schmitt, J. M., M. J. Yadlowsky, et al. (1995). “Subsurface Imaging of Living Skin with Optical Coherence Microscopy.” Dermatology 191(2): 93-98.
  Shi, H., J. Finlay, et al. (1997). “Multiwavelength 10-GHz picosecond pulse generation from a single-stripe semiconductor diode laser.” Ieee Photonics Technology Letters 9(11): 1439-1441.
  Shi, H., I. Nitta, et al. (1999). “Demonstration of phase correlation in multiwavelength mode-locked semiconductor diode lasers.” Optics Letters 24(4): 238-240.
  Simon, R. (1982). “The Connection between Mueller and Jones Matrices of Polarization Optics.”Optics Communications 42(5): 293-297.
  Smith, P. J. M., E.M.; Taylor, C.M.; Selviah, D.R.; Day, S.E.; Commander, L.G. “Variable-Focus Microlenses as a Potential Technology for Endoscopy.”
  Smithies, D. J., T. Lindmo, et al. (1998). “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation.” Physics in Medicine and Biology 43(10): 3025-3044.
  Sorin, W. V. and D. F. Gray (1992). “Simultaneous Thickness and Group Index Measurement Using Optical Low-Coherence Reflectometry.” Ieee Photonics Technology Letters 4(1):105-107.
  Sticker, M., C. K. Hitzenberger, et al. (2001). “Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography.” Optics Letters 26(8): 518-520.
  Sticker, M., M. Pircher, et al. (2002). “En face imaging of single cell layers by differential phase-contrast optical coherence microscopy.” Optics Letters 27(13): 1126-1128.
  Stoller, P., B. M. Kim, et al. (2002). “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon.” Journal of Biomedical Optics 7(2): 205-214.
  Sun, C. S. (2003). “Multiplexing of fiber-optic acoustic sensors in a Michelson interferometer configuration.” Optics Letters 28(12): 1001-1003.
  Swanson, E. A., J. A. Izatt, et al. (1993). “In-Vivo Retinal Imaging by Optical Coherence Tomography.” Optics Letters 18(21): 1864-1866.
  Takada, K., A. Himeno, et al. (1991). “Phase-Noise and Shot-Noise Limited Operations of Low Coherence Optical-Time Domain Reflectometry.” Applied Physics Letters 59(20): 2483-2485.
  Takenaka, H. (1973). “Unified Formalism for Polarization Optics by Using Group-Theory I (Theory).” Japanese Journal of Applied Physics 12(2): 226-231.
  Tanno, N., T. Ichimura, et al. (1994), “Optical Multimode Frequency-Domain Reflectometer.” Optics Letters 19(8): 587-589.
  Tan-no, N., T. Ichimura, et al. (1994). “Optical Multimode Frequency-Domain Reflectometer.” Optics Letters 19(8): 587-589.
  Targowski, P., M. Wojtkowski, et al. (2004). “Complex spectral OCT in human eye imaging in vivo.” Optics Communications 229(1-6): 79-84.
  Tearney, G. J., S. A. Boppart, et al. (1996). “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography (vol. 21, p. 543, 1996).” Optics Letters 21(12): 912-912.
  Tearney, C. J., B. E. Bouma, et al. (1996). “Rapid acquisition of in vivo biological images by use of optical coherence tomography.” Optics Letters 21(17): 1408-1410.
  Tearney, G. J., B. E. Bouma, et al. (1997). “In vivo endoscopic optical biopsy with optical coherence tomography.” Science 276(5321): 2037-2039.
  Tearney, G. J., M. E. Brezinski, et al. (1996). “Catheter-based optical imaging of a human coronary artery.” Circulation 94(11): 3013-3013.
  Tearney, G. J., M. E. Brezinski, et al. (1997). “In vivo endoscopic optical biopsy with optical coherence tomography.” Science 276(5321): 2037-9.
  Tearney, G. J., M. E. Brezinski, et al. (1997). “Optical biopsy in human gastrointestinal tissue using optical coherence tomography.” American Journal of Gastoenterology 92(10): 1800-1804.
  Tearney, G. J., M. E. Brezinski, et al. (1995). “Determination of the refractive index of highly scattering human tissue by optical coherence tomography.” Optics Letters 20(21): 2258-2260.
  Tearney, G. J., I. K. Jang, et al. (2000). “Porcine coronary imaging in vivo by optical coherence tomography.” Acta Cardiologica 55(4): 233-237.
  Tearney, G. J., R. H. Webb, et al. (1998). “Spectrally encoded confocal microscopy.” Optics Letters 23(15): 1152-1154.
  Tearney, G. J., H. Yabushita, et al. (2003), “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography.” Circulation 107(1): 113-119.
  Tower, T. T. and R. T. Tranquillo (2001). “Alignment maps of tissues: I. Microscopic elliptical polarimetry.” Biophysical Journal 81(5): 2954-2963.
  Tower, T. T. and R. T. Tranquillo (2001). “Alignment maps of tissues: II. Fast harmonic analysis for imaging.” Biophysical Journal 81(5): 2964-2971.
  Troy, T. L. and S. N. Thennadil (2001). “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm.” Journal of Biomedical Optics 6 (2): 167-176.
  Vabre, L., A. Dubois, et al. (2002). “Thermal-light full-field optical coherence tomography.” Optics Letters 27(7): 530-532.
  Vakhtin, A. B., D. J. Kane, et al. (2003). “Common-path interferometer for frequency-domain optical coherence tomography.” Applied Optics 42(34): 6953-6958.
  Vakhtin, A. B., K. A. Peterson, et al. (2003). “Differential spectral interferometry: an imaging technique for biomedical applications.” Optics Letters 28(15): 1332-1334.
  Vakoc, B. J., S. H. Yun, et al. (2005). “Phase-resolved optical frequency domain imaging.” Optics Express 13(14): 5483-5493.
  van Leeuwen, T. G., M. D. Kulkarni, et al. (1999). “High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography.” Optics Letters 24(22): 1584-1586.
  Vansteenkiste, N., P. Vignolo, et al. (1993). “Optical Reversibility Theorems for Polarization—Application to Remote-Control of Polarization.” Journal of the Optical Society of America a-Optics Image Science and Vision 10(10): 2240-2245.
  Vargas, O., E. K. Chan, et al. (1999). “Use of an agent to reduce scattering in skin.” Lasers in Surgery and Medicine 24(2): 133-141.
  Wang, R. K. (1999). “Resolution improved optical coherence-gated tomography for imaging through biological tissues.” Journal of Modern Optics 46(13): 1905-1912.
  Wang, X. J., T. E. Milner, et al. (1997). “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography.” Applied Optics 36(1): 144-149.
  Wang, X. J., T. E. Milner, et al. (1995). “Characterization of Fluid-Flow Velocity by Optical Doppler Tomography.” Optics Letters 20(11): 1337-1339.
  Wang, Y. M., J. S. Nelson, et al. (2003). “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express 11(12): 1411-1417.
  Wang, Y. M., Y. H. Zhao, et al. (2003). “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber.” Optics Letters 28(3): 182-184.
  Watkins, L. R., S. M. Tan, et al. (1999). “Determination of interferometer phase distributions by use of wavelets.” Optics Letters 24(13): 905-907.
  Wetzel, J. (2001). “Optical coherence tomography in dermatology: a review.” Skin Research and Technology 7(1): 1-9.
  Wentworth, R. H. (1989). “Theoretical Noise Performance of Coherence-Multiplexed Interferometric Sensors.” Journal of Lightwave Technology 7(6): 941-956.
  Westphal, V., A. M. Rollins, et al. (2002). “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle.” Optics Express 10(9): 397-404.
  Westphal, V., S. Yazdanfar, et al. (2002). “Real-time, high velocity-resolution color Doppler optical coherence tomography.” Optics Letters 27(1): 34-36.
  Williams, P. A. (1999). “Rotating-wave-plate Stokes polarimeter for differential group delay measurements of polarization-mode dispersion.” Applied Optics 38(31): 6508-6515.
  Wojtkowski, M., T. Bajraszewski, et al. (2003). “Real-time in vivo imaging by high-speed spectral optical coherence tomography.” Optics Letters 28(19): 1745-1747.
  Wojtkowski, M., A. Kowalczyk, et al. (2002). “Full range complex spectral optical coherence tomography technique in eye imaging.” Optics Letters 27(16): 1415-1417.
  Wojtkowski, M., R. Leitgeb, et al. (2002). “In vivo human retinal imaging by Fourier domain optical coherence tomography.” Journal of Biomedical Optics 7(3): 457-463.
  Wojtkowski, M., R. Leitgeb, et al. (2002). “Fourier domain OCT imaging of the human eye in vivo.” Proc. SPIE 4619: 230-236.
  Wojtkowski, M., V. J. Srinivasan, et al. (2004). “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.” Optics Express 12(11): 2404-2422.
  Wong, B. J. F., Y. H. Zhao, et al. (2004). “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 mu m and 1.3 mu m.” Otolaryngology—Head and Neck Surgery 130(3): 334-338.
  Yabushita, H. B., B.E.; Houser, S.L.; Aretz, H.T.; Jang, I.; Schlendorf, K.H.; Kauffman, C.R.; Shishkov, M.; Halpern, E.F.; Tearney, G.J. “Measurement of Thin Fibrous Caps in Atherosclerotic Plaques by Optical Coherence Tomography.”
  Yang, C., A. Wax, et al. (2001). “Phase-dispersion optical tomography.” Optics Letters 26(10): 686-688.
  Yang, C., A. Wax, et al. (2001). “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics.” Optics Letters 26(16): 1271-1273.
  Yang, C. H., A. Wax, et al. (2001). “Phase-dispersion optical tomography.” Optics Letters 26(10): 686-688.
  Yang, C. H., A. Wax, et al. (2000). “Interferometric phase-dispersion microscopy.” Optics Letters 25(20): 1526-1528.
  Yang, V. X. D., M. L. Gordon, et al. (2002). “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation.” Optics Communications 208(4-6): 209-214.
  Yang, V. X. D., M. L. Gordon, et al. (2003). “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance.” Optics Express 11(7): 794-809.
  Yang, V. X. D., M. L. Gordon, et al. (2003). “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis.” Optics Express 11(14): 1650-1658.
  Yang, V. X. D., M. L. Gordon, et al. (2003). “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts.” Optics Express 11(19): 2416-2424.
  Yang, V. X. D., B. Qi, et al. (2003). “In vivo feasibility of endoscopic catheter-based Doppler optical coherence tomography.” Gastroenterology 124(4): A49-A50.
  Yao, G. and L. H. V. Wang (2000). “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue.” Applied Optics 39(4): 659-664.
  Yazdanfar, S. and J. A. Izatt (2002). “Self-referenced Doppler optical coherence tomography.” Optics Letters 27(23): 2085-2087.
  Yazdanfar, S., M. D. Kulkarni, et al. (1997). “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography.” Optics Express 1 (13) : 424-431.
  Yazdanfar, S., A. M. Rollins, et al. (2000). “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography.” Optics Letters 25(19): 1448-1450.
  Yazdanfar, S., A. M. Rollins, et al. (2000), “Noninvasive imaging and velocimetry of human retinal blood flow using color Doppler optical coherence tomography.” Investigative-Ophthalmology & Visual Science 41(4): S548-S548.
  Yazdanfar, S., A. M, Rollins, et al. (2003). “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography.” Archives of Ophthalmology 121(2): 235-239.
  Yazdanfar, S., C. H. Yang, et al. (2005). “Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound.” Optics Express 13(2): 410-416.
  Yun, S. H., C. Boudoux, et al. (2004). “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging.” Ieee Photopics Teelinology Letters 16(1): 293-295.
  Yun, S. H., C. Boudoux, et al. (2003). “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter.” Optics Letters 28(20): 1981-1983.
  Yun, S. H., G. J. Tearney, et al. (2004). “Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts.” Optics Express 12(23): 5614-5624.
  Yun, S. H., G. J. Tearney, et al. (2004). “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting.” Optics Express 12(20): 4822-4828.
  Yun, S. H., G. J. Tearney, et al. (2004). “Motion artifacts in optical coherence tomography with frequency-domain ranging.” Optics Express 12(13): 2977-2998.
  Zhang, J., J. S. Nelson, et al. (2005). “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator.” Optics Letters 30(2): 147-149.
  Zhang, Y., M. Sato, et al. (2001). “Numerical investigations of optimal synthesis of several low coherence sources for resolution improvement.” Optics Communications 192(3-6): 183-192.
  Zhang Y., M. Sato, et al. (2001). “Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes.” Optics Letters 26(4): 205-207.
  Zhao, Y., Z. Chen, et al. (2002). “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transormation.” Optics Letters 27(2): 98-100.
  Zhao, Y.H., Z.P. Chen, et al. (2000). “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow.” Optics Letters 25(18): 1358-1360.
  Zhao, Y. H., Z. P. Chen, et al. (2000). “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity.” Optics Letters 25(2): 114-116.
  Zhou, D., P. R. Prucnal, et al. (1998). “A widely tunable narrow linewidth semiconductor fiber right laser.” IEEE Photonics Technology Letters 10(6): 781-783.
  Zuluaga, A. F. and R. Richards-Kortum (1999). “Spatially resolved spectral interferometry for determination of subsurface structure.” Optics Letters 24(8): 519-521.
  Zvyagin, A. V., J. B. FitzGerald, et al. (2000). “Real-time detection technique for Doppler optical coherence tomography.” Optics Letters 25(22): 1645-1647.
  Marc Nikles et al., “Brillouin gain spectrum characterization in single-mode optical fibers”, Journal of Lightwave Technology 1997, 15 (10): 1842-1851.
  Tsuyoshi Sonehara et al., “Forced Brillouin Spectroscopy Using Frequency-Tunable Continuous-Wave Lasers”, Physical Review Letters 1995, 75 (23): 4234-4237.
  Hajime Tanaka et al., “New Method of Superheterodyne Light Beating Spectroscopy for Brillouin-Scattering Using Frequency-Tunable Lasers”, Physical Review Letters 1995, 74 (9): 1609-1612.
  Webb RH et al. “Confocal Scanning Laser Ophthalmoscope”, Applied Optics 1987, 26 (8): 1492-1499.
  Andreas Zumbusch et al. “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering”, Physical Review Letters 1999, 82 (2): 4142-4145.
  Katrin Kneipp et al., “Single molecule detection using surface-enhanced Raman scattering (SERS)”, Physical Review Letters 1997, 78 (9): 1667-1670.
  K.J. Koski et al., “Brillouin imaging” Applied Physics Letters 87, 2005.
  Boas et al., “Diffusing temporal light correlation for burn diagnosis”, SPIE, 1999, 2979:468-477.
  David J. Briers, “Speckle fluctuations and biomedical optics: implications and applications”, Optical Engineering, 1993, 32(2):277-283.Clark et al., “Tackling Speckle Patters with Optical Correlation”, SPIE, 1992, 1772:77-87.
  Clark et al., “Tracking Speckle Patters with Optical Correlation”, SPIE, 1992, 1772:77-87.
  Facchini et al., “An endoscopic system for DSPI”, Optik, 1993, 95(1):27-30.
  Hrabovsky, M., “Theory of speckle dispacement and decorrelation: application in mechanics”, SPIE, 1998, 3479:345-354.
  Sean J. Krikpatrick et al., “Micromechanical behavior of cortical bone as inferred for laser speckle data”, Journal of Biomedical Materials Research, 1998, 39(3):373-379.
  Sean J. Kirkpatrick et al., “Laser speckle microstrain measurements in vascular tissue”, SPIE, 1999, 3598:121-129.
  Loree et al., “Mechanical Properties of Model Atherosclerotic Lesion Lipids Pools”, Arteriosclerosis and Thrombosis, 1994, 14(2):230-234.
  Podbielska, H. “Interferometric Methods and Biomedical Research”, SPIE, 1999, 2732:134-141.
  Richards-Kortum et al., “Spectral diagnosis of atherosclerosis using an optical the laser speckle catheter”, American Heart Journal, 1989, 118(2):381-391.
  Ruth, B. “blood flow determination by the laser speckle method”, Int J Microcirc: Clin Exp. 1990, 9:21-45.
  Shapo et al., “Intravascular strain imaging: Experiments on an Inhomogeneous Phantom”, IEEE Ultrasonics Symposium 1996, 2:1177-1180.
  Shapo et al., “Ultrasonic displacement and strain imaging of coronary arteries with a catheter array”, IEEE Ultrasonics Symposium 1995, 2:1511-1514.
  Thompson et al., “Imaging in scattering media by use of laser speckle”, Opt. Soc. Am. A., 1997, 14(9):2269-2277.
  Thompson et al., “Diffusive media characterization with laser speckle”, Applied Optics, 1997, 36(16):3726-3734.
  Tuchin, Valery V., “Coherent Optical Techniques for the Analysis of Tissue Structure and Dynamics,” Journal of Biomedical Optics, 1999, 4(1):106-124.
  M. Wussling et al., “Laser diffraction and speckling studies in skeletal and heart muscle”, Biomed. Biochim. Acta, 1986, 45(1/2):S 23-S 27.
  T. Yoshimura et al., “Statistical properties of dynamic speckles”, J. Opt. Soc. Am A. 1986, 3(7):1032-1054.
  Zimnyakov et al., “Spatial speckle correlometry in applications to tissue structure monitoring”, Applied Optics 1997, 36(22): 5594-5607.
  Zimnyakov et al., “A Study of statistical properties of partially developed speckle fields as applied to the diagnosis of structural changes in human skin”, Optics and Spectroscopy, 1994, 76(5): 747-753.
  Zimnyakov et al., “Speckle patterns polarization analysis as an approach to turbid tissue structure monitoring”, SPIE 1999, 2981:172-180.
  Ramasamy Manoharan et al., “Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy”, Atherosclerosis, May 1993, 181-1930.
  N.V. Salunke et al., “Biomechanics of Atherosclerotic Plaque” Critical Reviews™ in Biomedical Engineering 1997, 25(3):243-285.
  D. Fu et al., “Non-invasive quantitative reconstruction of tissue elasticity using an iterative forward approach”, Phys. Med. Biol. 2000 (45): 1495-1509.
  S.B. Adams Jr. et al., “The use of polarization sensitive optical coherence tomography and elastography to assess connective tissue”, Optical Soc. of American Washington 2002, p. 3.
  International Search Report for International Patent application No. PCT/US2005/039740.
  International Written Opinion for International Patent application No. PCT/US2005/039740.
  International Search Report for International Patent application No. PCT/US2005/030294.
  International Written Opinion for International Patent application No. PCT/US2005/043951.
  International Search Report for International Patent application No. PCT/US2005/043951.
  Erdelyi et al. “Generation of diffraction-free beams for applications in optical microlithography”, J. Vac. Sci. Technol. B 15 (12), Mar./Apr. 1997, pp. 287-292.
  International Search Report for International Patent application No. PCT/US2005/023664.
  International Written Opinion for International Patent application No. PCT/US2005/023664.
  Tearney et al., “Spectrally encoded miniature endoscopy” Optical Society of America; Optical Letters vol. 27, No. 6, Mar. 15, 2002; pp. 412-414.
  Yelin et al., “Double-clad Fiber for Endoscopy” Optical Society of America; Optical Letters vol. 29, No. 20, Oct. 16, 2005; pp. 2408-2410.
  International Search Report for International application No. PCT/US2001/049704.
  International Search Report for International Patent application No. PCT/US2004/039454.
  International Written Opinion for International Patent application No. PCT/US2004/039454.
  PCT International Preliminary Report on Patentablitiy for International Application No. PCT/US2004/038404 dated Jun. 2, 2006.
  Notice of Reasons for Rejection and English translation for Japanese Patent Application No. 2002-538830.
  Office Action dated Aug. 24, 2006 for U.S. Appl. No. 10/137,749.
  Barry Cense et al., “Spectral-domain polarization-sensitive optical coherence tomography at 850nm”, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, 2005, pp. 159-162.
  A. Ymeti et al., “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor”, Biosensors and Bioelectronics, Elsevier Science Publishers, 2005, pp. 1417-1421.
  PCT International Search Report for Application No. PCT/US2006/018865 filed May 5, 2006.
  International Written Opinion for International Patent application No. PCT/US2006/018865 filed May 5, 2006.
  John M. Poneros, “Diagnosis of Barrett's esophagus using optical coherence tomography”, Gastrointestinal Endoscopy clinics of North America, 14 (2004) pp. 573-588.
  P.F. Escobar et al., “Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive cancer of uterine cervix and vulva”, Int. Journal of Gynecological Cancer 2004, 14, pp. 470-474.
  Ko T et al., “Ultrahigh resolution in vivo versus ex vivo OCT imaging and tissue preservation”, Conference on Lasers and electro-optics, 2001, pp. 252-253.
  Paul M. Ripley et al., “A comparison of Artificial Intelligence techniques for spectral classification in the diagnosis of human pathologies based upon optical biopsy”, Journal of Optical Society of America, 2000, pp. 217-219.
  Wolfgang Drexler et al., “Ultrahigh-resolution optical coherence tomography”, Journal of Biomedical Optics Spie USA, 2004, pp. 47-74.
  PCT International Search Report for Application No. PCT/US2006/016677 filed Apr. 28, 2006.
  International Written Opinion for International Patent application No. PCT/US2006/016677 filed Apr. 28, 2006.
  Office Action dated Nov. 13, 2006 for U.S. Appl. No. 10/501,268.
  Office Action dated Nov. 20, 2006 for U.S. Appl. No. 09/709,162.
  PCT International Search Report and Written Opinion for Application No. PCT/US2004/023585 filed Jul. 23, 2004.
  Office Action dated Dec. 6, 2006 for U.S. Appl. No. 10/997,789.
  Elliott, K. H. “The use of commercial CCD cameras as linear detectors in the physics undergraduate teaching laboratory”, European Journal of Physics 19, 1998, pp. 107-117.
  Lauer, V. “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope”, Journal of Microscopy vol. 205, Issue 2, 2002, pp. 165-176.
  Yu, P. et al. “Imaging of tumor necroses using full-frame optical coherence imaging”, Proceedings of SPIE vol. 4956, 2003, pp. 34-41.
  Zhao, Y. et al. “Three-dimesnional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography”, IEEE Journal of Selected Topics in Quantum Electronics 7.6 (2001): 931-935.
  Office Action dated Dec. 18, 2006 for U.S. Appl. No. 10/501,276.
  Devesa, Susan S. et al. (1998) “Changing Patterns in the Incidence of Esophegeal and Gastric Carcinoma in the United States.” American Cancer Society vol. 83, No. 10 pp. 2049-2053.
  Barr, H et al. (2005) “Endoscopic Therapy for Barrett's Oesophaugs” Gut vol. 54:875-884.
  Johnston, Mark H.(2005) “Technology Insight: Ablative Techniques for Barrett's Esophagus—Current and Emerging Trends” www.Nature.com/clinicalpractice/gasthep.
  Falk, Gary W. et al. (1997) “Surveillance of Patients with Barrett's Esophagus for Dysplasia and Cancer with Ballon Cytology” Gastrorenterology vol. 112, pp. 1787-1797.
  Sepchler, Stuart Jon. (1997) “Barrett's Esophagus: Should We Brush off this Balloning Problem?” Gastroenterology vol. 112, pp. 2138-2152.
  Froehly, J. et al. (2003) “Multiplexed 3D Imaging Using Wavelength Encoded Spectral Interferometry: A Proof of Principle” Optics Communications vol. 222, pp. 127-136.
  Kubba A.K. et al. (1999) “Role of p53 Assessment in Management of Barrett's Esophagus” Digestive Disease and Sciences vol. 44, No. 4. pp. 659-667.
  Reid, Brian J. (2001) “p53 and Neoplastic Progression in Barrett's Esophagus” The American Journal of Gastroenterology vol. 96, No. 5, pp. 1321-1323.
  Sharma, P. et al.(2003) “Magnification Chromoendoscopy for the Detection of Intestinal Meaplasia and Dysplasia in Barrett's Oesophagus” Gut vol. 52, pp. 24-27.
  Kuipers E.J et al. (2005) “Diagnostic and Therapeutic Endoscopy” Journal of Surgical Oncology vol. 92, pp. 203-209.
  Georgakoudi, Irene et al. (2001) “Fluorescence, Reflectance, and Light-Scattering Spectroscopy for Evaluating Dysplasia in Patients with Barrett's Esophagus” Gastroenterology vol. 120, pp. 1620-1629.
  Adrain, Alyn L. et al. (1997) “High-Resolution Endoluminal Sonography is a Sensitive Modality for the Identification of Barrett's Meaplasia” Gastrointestinal Endoscopy vol. 46, No. 2, pp. 147-151.
  Canto, Marcia Irene et al (1999) “Vital Staining and Barrett's Esophagus” Gastrointestinal Endoscopy vol. 49, No. 3, part 2, pp. 12-16.
  Evans, John A. et al. (2006) “Optical Coherence Tomography to Identify Intramucosal Carcinoma and High-Grade Dysplasia in Barrett's Esophagus” Clinical Gastroenterology and Hepatology vol. 4, pp. 38-43.
  Poneros, John M. et al. (2001) “Diagnosis of Specialized Intestinal Metaplasia by Optical Coherence Tomography” Gastroenterology vol. 120, pp. 7-12.
  Ho, W. Y. et al. (2005) “115 KHz Tuning Repetition Rate Ultrahigh-Speed Wavelength-Swept Semiconductor Laser” Optics Letters col. 30, No. 23, pp. 3159-3161.
  Brown, Stanley B. et al. (2004) “The Present and Future Role of Photodynamic Therapy in Cancer Treatment” The Lancet Oncology vol. 5, pp. 497-508.
  Boogert, Jolanda Van Den et al. (1999) “Endoscopic Ablation Therapy for Barrett's Esophagua with High-Grade Dysplasia: A Review” The American Journal of Gastroenterology vol. 94, No. 5, pp. 1153-1160.
  Sampliner, Richard E. et al. (1996) “Reversal of Barrett's Esophagus with Acid Suppression and Multipolar Electrocoagulation: Preliminary Results” Gastrointestinal Endoscopy vol. 44, No. 5, pp. 532-535.
  Sampliner, Richard E. (2004) “Endoscopic Ablative Therapy for Barrett's Esophagus: Current Status” Gastrointestinal Endoscopy vol. 59, No. 1, pp. 66-69.
  Soetikno, Roy M. et al. (2003) “Endoscopic Mucosal resection” Gastrointestinal Endoscopy vol. 57, No. 4, pp. 567-579.
  Ganz, Robert A. et al. (2004) “Complete Ablation of Esophageal Epithelium with a Balloon-based Bipolar Electrode: A Phased Evaluation in the Porcine and in the Human Esophagus” Gastrointestinal Endoscopy vol. 60, No. 6, pp. 1002-1010.
  Pfefer, Jorje at al. (2006) “Performance of the Aer-O-Scope, A Pneumatic, Self Propelling, Self Navigating Colonoscope in Animal Experiments” Gastrointestinal Endoscopy vol. 63, No. 5, pp. AB223.
  Overholt, Bergein F. et al. (1999) “Photodynamic Therapy for Barrett's Esophagus: Follow-Up in 100 Patients” Gastrointestinal Endoscopy vol. 49, No. 1, pp. 1-7.
  Vogel, Alfred et al. (2003) “Mechanisms of Pulsed Laser Ablation of Biological Tissues” American Chemical Society vol. 103, pp. 577-644.
  McKenzie, A. L. (1990) “Physics of Thermal Processes in Laser-Tissue Interaction” Phys. Med. Biol vol. 35, No. 9, pp. 1175-1209.
  Anderson, R. Rox et al. (1983) “Selective Photothermolysis Precise Microsurgery by Selective Absorption of Pulsed Radiation” Science vol. 220, No. 4596, pp. 524-527.
  Jacques, Steven L. (1993) “Role of Tissue Optics and Pulse Duration on Tissue Effects During High-Power Laser Irradiation” Applied Optics vol. 32, No. 13, pp. 2447-2454.
  Nahen, Kester et al. (1999) “Investigations on Acosustic On-Line Monitoring of IR Laser Ablation of burned Skin” Lasers in Surgery and Medicine vol. 25, pp. 69-78.
  Jerath, Maya R. et al. (1993) “Calibrated Real-Time Control of Lesion Size Based on Reflectance Images” Applied Optics vol. 32, No. 7, pp. 1200-1209.
  Jerath, Maya R. et al (1992) “Dynamic Optical Property Changes: Implications for Reflectance Feedback Control of Photocoagulation” Journal of Photochemical . . . Photobiology. B: Biol vol. 16, pp. 113-126.
  Deckelbaum, Lawrence I. (1994) “Coronary Laser Angioplasty” Lasers in Surgery and Medicine vol. 14, pp. 101-110.
  Kim, B.M. et al. (1998) “Optical Feedback Signal for Ultrashort Laser Pulse Ablation of Tissue” Applied Surface Science vol. 127-129, pp. 857-862.
  Brinkman, Ralf et al. (1996) “Analysis of Cavitation Dynamics During Pulsed Laser Tissue Ablation by Optical On-Line Monitoring” IEEE Journal of Selected Topics in Quantum Electronics vol. 2, No. 4, pp. 826-835.
  Whelan, W.M. et al. (2005) “A novel Strategy for Monitoring Laser Thermal Therapy Based on Changes in Optothermal Properties of Heated Tissues” International Journal of Thermophysics vol. 26., No. 1, pp. 233-241.
  Thomsen, Sharon et al. (1990) “Microscopic Correlates of Macroscopic Optical Property Changes During Thermal Coagulation of Myocardium” SPIE vol. 1202, pp. 2-11.
  Khan, Misban Huzaira et al. (2005) “Intradermally Focused Infrared Laser Pulses: Thermal Effects at Defined Tissue Depths” Lasers in Surgery and Medicine vol. 36, pp. 270-280.
  Neumann, R.A. et al. (1991) “Enzyme Histochemical Analysis of Cell Viability After Argon Laser-Induced Coagulation Necrosis of the Skin” Journal of the American Academy of Dermatology vol. 25, No. 6, pp. 991-998.
  Nadkarni, Seemantini K. et al (2005) “Charaterization of Atherosclerotic Plaques by Laser Speckle Imaging” Circulation vol. 112, pp. 885-892.
  Zimnyakov, Dmitry A. et al (2002) “Speckle-Contrast Monitoring of Tissue Thermal Modification” Applied Optics vol. 41, No. 28, pp. 5989-5996.
  Morelli, J.G., et al (1986) “Tunable Dye Laser (577nm) Treatment of Port Wine Stains” Lasers in Surgery and Medicine vol. 6, pp. 94-99.
  French, P.M.W. et al. (1993) “Continuous-wave Mode-Locked Cr : YAG Laser” Optics Letters vol. 18, No. 1, pp. 39-41.
  Sennaroglu, Alphan at al. (1995) “Efficient-Continuous-Wave Chromium-Doped YAG Laser” Journal of Optical Society of America vol. 12, No. 5, pp. 930-937.
  Bouma, B et al. (1994) “Hybrid Mode Locking of a Flash-Lamp-Pumped Ti: Al2O3 Laser” Optics Letters vol. 19, No. 22, pp. 1858-1860.
  Bouma, B et al. (1995) “High Resolution Optical Coherence Tomography Imaging Using a Mode-Locked Ti: Al2O3 Laser Source” Optics Letters vol. 20, No. 13, pp. 1486-1488.
  Fernández, Cabrera Delia et al. “Automated detection of retinal layer structures on optical coherence tomography images”, Optics Express vol. 13, No. 25, Oct. 4, 2005, pp. 10200-10216.
  Ishikawa, Hiroshi et al. “Macular Segmentation with optical coherence tomography”, Investigative Ophthalmology & Visual Science, vol. 46, No. 6, Jun. 2005, pp. 2012-2017.
  Eurpoean Office Action for European Application No. 07761877.5 dated Oct. 29, 2015.
 
 
     * cited by examiner
 
     Primary Examiner —Joel F Brutus
     Art Unit — 3777
     Exemplary claim number — 17
 
(74)Attorney, Agent, or Firm — Andrews Kurth, LLP

(57)

Abstract

Exemplary apparatus, arrangement and method can be provided for obtaining information associated with an anatomical structure or sample using optical microscopy. A radiation can include first electromagnetic radiation(s) directed to an anatomical sample and at least one second electromagnetic radiation directed to a reference. A wavelength of the radiation can vary over time, and the wavelength can be shorter than approximately 1150 nm. An interference can be detected between third and forth radiations associated with the first, second and fourth radiation, respectively. At least one image corresponding to portion(s) of the sample can be generated using data associated with the interference. Source arrangement(s) can be provided which is configured to provide an electromagnetic radiation having a wavelength that varies over time. A period of a variation of the wavelength of the first electromagnetic radiation(s) can be shorter than 1 millisecond, and the wavelength can be shorter than approximately 1150 nm.
22 Claims, 12 Drawing Sheets, and 29 Figures


CROSS REFERENCE TO RELATED APPLICATION(S)

[0001] This present application is a continuation of U.S. patent application Ser. No. 11/744,287 filed May 4, 2007 and also claims the benefit of priority from U.S. patent application Ser. No. 60/799,511, filed May 10, 2006, the entire disclosures of which are incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

[0002] The research leading to the present invention was supported, at least in part, by National Institute of Health—National Cancer Institute, Grant number R33 214033. Thus, the U.S. government may have certain rights in the invention.

FIELD OF THE INVENTION

[0003] The present invention relates to processes, arrangements and systems which obtain information associated with an anatomical structure or a sample using optical microscopy, and more particularly to such methods, systems and arrangements that provide optical frequency domain imaging of the anatomical structure/sample (e.g., at least one portion of an eye).

BACKGROUND INFORMATION

[0004] Optical frequency domain imaging (“OFDI”), which may also be known as swept source optical coherence tomography (“OCT”), is a technique associated with OCT concepts that generally uses a wavelength-swept light source to probe the amplitude and phase of back scattering light from tissue. Exemplary OFDI techniques and systems are described in International Application No. PCT/USO4/029148. Method and system to determine polarization properties of tissue is described in International Application No. PCT/US05/039374. The OFDI technique can offer intrinsic signal-to-noise ratio (“SNR”) advantage over the time-domain techniques because the interference signal can be effectively integrated through a Fourier transform. With the recently developed rapidly tunable lasers in the 1300-nm range, the OFDI technique has enabled significant improvements in, e.g., imaging speed, sensitivity, and ranging depth over the conventional time-domain OCT systems. For example, such OFDI procedures/techniques can be used for imaging skin, coronary artery, esophagus, and anterior eye segments.
[0005] While retinal imaging is an established clinical use of the OCT techniques, this application has not been implemented using the OFDI procedures because the optical absorption in the human eye at 1300 nm may be too large. The standard spectral range of the conventional ophthalmic OCT techniques has been between 800 nm and 900 nm where the humors in the eye are transparent and broadband super-luminescent-diode (“SLD”) light sources are readily available. It has been has suggested that the 1040-nm spectral range can be a viable alternative operating window for a retinal imaging, and can potentially offer a deeper penetration into the choroidal layers below the highly absorbing and scattering retinal pigment epithelium. The spectral domain (“SD”) OCT systems, also known as Fourier domain OCT systems, that use broadband light sources at 800 nm and arrayed spectrometers have been provided to facilitate a three-dimensional retinal imaging in vivo with a superior image acquisition speed and a sensitivity to conventional time-domain OCT techniques.
[0006] As compared to the SD-OCT techniques, the OFDI procedures offer several advantages, such as an immunity to motion-induced signal fading, simple polarization-sensitive or diversity scheme, and long ranging depth. However, a clinical-viable OFDI system for imaging posterior eye segments has previously been unavailable, primarily due to the lack of a wide-tuning rapidly-swept light source in a low water absorption window. Indeed, despite the widespread use of the conventional OCT for retinal disease diagnostics, imaging posterior eye segment with OFDI has not been possible.
[0007] Accordingly, there is a need to overcome the deficiencies as described herein above.

OBJECTS AND SUMMARY OF EXEMPLARY EMBODIMENTS

[0008] To address and/or overcome the above-described problems and/or deficiencies, exemplary embodiments of systems, arrangements and processes can be provided that are capable of, e.g., utilizing the OFDI techniques to image at least one portion of the eye.
[0009] Thus, an exemplary embodiment of OFDI technique, system and process according to the present invention for imaging at least one portion of an eye can be provided. For example, a high-performance swept laser at 1050 nm and an ophthalmic OFDI system can be used that offers a high A-line rate of 19 kHz, sensitivity of >92 dB over a depth range of 2.5 mm with an optical exposure level of 550 μW, and a deep penetration into the choroid. Using the exemplary systems, techniques and arrangements according to the present invention, it is possible to perform comprehensive human retina, optic disk, and choroid imaging in vivo. This can enable a display of a choroidal vasculature in vivo, without exogenous fluorescence contrasts, and may be beneficial for evaluating choroidal as well as retinal diseases. According to another exemplary embodiment of the present invention, an OFDI system can be utilized which uses a swept laser in the 815-870 nm range, which can be used in clinical ophthalmic imaging and molecular contrast-based imaging.
[0010] Thus, according to one exemplary embodiment of the present invention, a method, apparatus and software arrangement can be provided for obtaining information associated with an anatomical structure or a sample using optical microscopy. For example, a radiation can be provided which includes at least one first electro-magnetic radiation directed to be provided to an anatomical sample and at least one second electro-magnetic radiation directed to a reference. A wavelength of the radiation can vary over time, and the wavelength is shorter than approximately 1150 nm. An interference can be detected between at least one third radiation associated with the first radiation and at least one fourth radiation associated with the second radiation. At least one image corresponding to at least one portion of the sample can be generated using data associated with the interference.
[0011] For example, a period of a variation of the wavelength of the first electro-magnetic radiation can be shorter than 1 millisecond. The anatomical sample can include at least one section of the posterior segment of an eye. The section can include a retina, a choroid, an optic nerve and/or a fovea. The wavelength may be shorter than approximately 950 nm: The wavelength can also vary by at least 10 nm over a period of a variation of the wavelength of the first electro-magnetic radiation. At least one fourth arrangement can also be provided which is capable of scanning the first electro-magnetic radiation laterally across the anatomical sample. The image may be associated with the anatomical structure of the sample and/or a blood and/or a lymphatic flow in the sample.
[0012] In one exemplary variant, the third arrangement may be capable of (i) obtaining at least one signal associated with at least one phase of at least one frequency component of the interference signal over less than an entire sweep of the wavelength, and (ii) comparing the at least one phase to at least one particular information. The particular information can be associated with a further signal obtained from a sweep of the wavelength that is different from the sweep of the wavelength of the signal. The particular information may be a constant, and/or can be associated with at least one phase of at least one further frequency component of the interference signal over less than an entire sweep of the wavelength. The frequency components may be different from one another.
[0013] In another exemplary variant, the third arrangement may be capable of generating a two-dimensional fundus-type reflectivity profile of the anatomic sample and/or a two-dimensional fundus-type image of the anatomic sample based the signal. Another arrangement may be provided which is capable of receiving the first or second electro-magnetic radiations, and providing at least one fifth electro-magnetic radiation associated with the first electro-magnetic radiation and/or the second electro-magnetic radiation The second arrangement may be further capable of detecting a further interference signal between the fifth radiation and the fourth radiation. The second arrangement may be further capable of obtaining at least one reference signal associated with a further phase of at least one first frequency component of the further interference signal over less than an entire sweep of the wavelength. The particular information may be the further phase.
[0014] According to another exemplary embodiment of the present invention, at least one source arrangement can be provided which is configured to provide an electro-magnetic radiation which has a wavelength that varies over time. A period of a variation of the wavelength of the one first electro-magnetic radiation can be shorter than 1 millisecond, and the wavelength is shorter than approximately 1150 nm. A control arrangement which is capable of modulating at least one of an optical gain or an optical loss in the at least one source arrangement over time can be provided. The optical gain may be facilitated by a semiconductor material. Another arrangement can be provided which is configured to effect a gain and/or a loss as a function of the wavelength. The wavelength may vary by at least 10 nm over the period and/or may be shorter than approximately 950 nm.
[0015] In yet another exemplary embodiment of the present invention, a method, apparatus and software arrangement can be provided. For example, first data can be received for a three-dimensional image of at least one portion of a sample. The first data may be associated with an optical interferometric signal generated from signals obtained from the sample and a reference. A region that is less than an entire portion of the first data can be converted to second data to generate a two-dimensional image which is associated with the portion of the sample. The region can be automatically selected based on at least one characteristic of the sample The entire portion may be associated with an internal structure within the sample (e.g., an anatomical structure). For example, the region may be at least one portion of a retina and/or a choroid. The two-dimensional image may be associated with an integrated reflectivity profile of the region and/or at least one of a blood or a lymphatic vessel network. The region can be automatically selected by determining at least one location of at least one section of the region based a reflectivity in the region.
[0016] According to a further exemplary embodiment of the present invention, is possible to cause a radiation to be provided which includes at least one first electro-magnetic radiation directed to a sample and at least one second electro-magnetic radiation directed to a reference. A wavelength of the radiation varies over time. An interference signal can be detected between at least one third radiation associated with the first radiation and at least one fourth radiation associated with the second radiation. At least one signal associated with at least one phase of at least one frequency component of the interference signal can be obtained over less than an entire sweep of the wavelength. The phase may be compared to at least one particular information.
[0017] In one exemplary variant, the first electro-magnetic radiation may be scanned laterally across the sample, which may include at least one section of a posterior segment of an eye. The section can include a retina, a choroid, an optic nerve and/or a fovea. The interference signal may be associated with an integral fraction of the entire sweep of the wavelength. The fraction of the sweep may be a half or a quarter of the sweep. The signal may be associated with a flow velocity and/or an anatomical structure in the sample. The particular information may be associated with a further signal obtained from a sweep of the wavelength that is different from the sweep of the wavelength of the signal. The particular information may be a constant and/or may be associated with at least one phase of at least one further frequency component of the interference signal over less than an entire sweep of the wavelength. The frequency components may be different from one another.
[0018] These and other objects, features and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention, when taken in conjunction with the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] Further objects, features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the invention, in which:
[0020] FIG. 1(a) is a block diagram of an exemplary embodiment of a wavelength-swept laser system according to the present invention;
[0021] FIG. 1(b) is a block diagram of an exemplary embodiment of an interferometric system according to the present invention;
[0022] FIG. 2(a) is a graph illustrating measured output characteristics of a peak-hold output spectrum and an optical absorption in water for a particular propagation distance corresponding to a roundtrip in typical human vitreous;
[0023] FIG. 2(b) is a graph illustrating measured output characteristics of a time-domain output trace;
[0024] FIG. 3 is a graph illustrating point spread functions measured at various path length differences;
[0025] FIG. 4 is an exemplary image of retina and choroid obtained from a healthy volunteer using the exemplary embodiment of the . system, process and arrangement according to the present invention;
[0026] FIG. 5(a) is a first exemplary OFDI image at fovea and optic nerve head of a patient A produced by an exemplary system at one location;
[0027] FIG. 5(b) is a second exemplary OFDI image at the fovea and the optic nerve head of the patient A produced by another exemplary system at such location;
[0028] FIG. 5(c) is a first exemplary SD-OCT image at the fovea and the optic nerve head of the patient A as a similar location produced by an exemplary system according to the present invention;
[0029] FIG. 5(d) is a second exemplary SD-OCT image at the fovea and the optic nerve head of the patient A as the location of FIG. 5(c) produced by an exemplary system according to the present invention;
[0030] FIG. 5(e) is a third exemplary OFDI image obtained from a patient B produced by another exemplary system according to the present invention;
[0031] FIG. 5(f) is a fourth exemplary OFDI image obtained from the patient
[0032] B produced by a further exemplary system according to the present invention;
[0033] FIG. 6A is an exemplary two-dimensional reflectance image of the retinal and choroidal vasculature extracted from the three-dimensional OFDI data set associated with the image of FIG. 4 obtained by a conventional full-range integration method;
[0034] FIG. 6B is an exemplary fundus-type reflectivity image obtained using an exemplary embodiment of an axial-sectioning integration technique;
[0035] FIG. 6C is an exemplary retinal reflectivity image showing a shadow of a blood vasculature;
[0036] FIG. 6D is an exemplary reflectivity image obtained from an upper part of the choroids;
[0037] FIG. 6E is an exemplary image of an exemplary reflectivity image integrated from a center of the choroid showing a choroidal vasculature;
[0038] FIG. 7(a) is a schematic diagram of an exemplary embodiment of the wavelength-swept laser arrangement according to the present invention;
[0039] FIG. 7(b) is a graph of a peak-hold output spectrum of the signals generated using the exemplary embodiment of FIG. 7(a);
[0040] FIG. 7(c) is a graph of a oscilloscope trace generated using the exemplary embodiment of FIG. 7(a);
[0041] FIG. 8(a) is a graph of a sensitivity measured as a function of a reference power;
[0042] FIG. 8(b) is a graph of a sensitivity measured as a function of a depth;
[0043] FIG. 9 is an exemplary OFDI image of a Xenopus laevis tadpole in vivo acquired using another exemplary embodiment of the system, arrangement and process according to the present invention;
[0044] FIG. 10(a) is a graph of an exemplary output of a shaped spectra without a gain/loss modulation generated as a function of wavelength using another exemplary embodiment of the system, arrangement and process according to the present invention;
[0045] FIG. 10(b) is a graph of an exemplary output of the shaped spectra with the gain/loss modulation generated as a function of wavelength using an exemplary embodiment of the system, arrangement and process according to the present invention;
[0046] FIG. 11 is a flow diagram of a conventional method to obtain Doppler
[0047] OFDI signals;
[0048] FIG. 12 is a flow diagram of an exemplary embodiment of a process to obtain Doppler OFDI signals by processing a portion of an interference fringe according to the present invention;
[0049] FIG. 13(a) is an exemplary single image of the retina which includes the fovea and optic disk obtained from a healthy volunteer consecutively acquired at a large number of frames; and
[0050] FIG. 13(b) is an exemplary integrated fundus image of the retina generated from multiple cross-sectional images covering an area by integrating the intensity in each depth profile.
[0051] Throughout the figures, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components or portions of the illustrated embodiments. Moreover, while the subject invention will now be described in detail with reference to the figures, it is done so in connection with the illustrative embodiments. It is intended that changes and modifications can be made to the described embodiments without departing from the true scope and spirit of the subject invention as defined by the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

First Exemplary Embodiment of Laser Source System

[0052] FIG. 1(a) depicts an exemplary embodiment of a laser source system (e.g., which can include a 1050 nm swept laser source) provided in a linear cavity configuration according to the present invention. As shown in this figure, a gain medium 10 can be provided, such as a bi-directional semiconductor optical amplifier (QPhotonics, Inc., QSOA-1050) which may be driven at an injection current level of 400 mA. One port of the amplifier can be coupled to a wavelength-scanning filter 20 that may comprise a diffraction grating 30 (1200 lines/mm), a telescope consisting of two lenses 40, 42 with respective focal lengths of 100 and 50 mm, and a polygon mirror scanner 50 (e.g., Lincoln Lasers, Inc., 40 facets). The design bandwidth and free spectral range of the filter can be approximately 0.1 nm and 61 nm, respectively. The amplifier's other port can be spliced to connect to a loop mirror which may include a 50/50 coupler 60. A Sagnac loop 70 can also act as an output coupler.
[0053] The reflectivity and output coupling ratio can be complementary, and may be optimized by adjusting a polarization controller 80 to tune the amount of the birefringence-induced non-reciprocity in the loop. The linear-cavity configuration can also be used instead of or together with conventional ring cavity designs, since low-loss low-cost circulators and isolators may not be readily available at 1050 nm. Sweep repetition rates of up to 36 kHz may be achieved with 100% duty cycle, which may represent a significant improvement over previously demonstrated swept lasers in the 1050 nm region that offered tuning rates of <1 kHz. In an OFDI system according to one exemplary embodiment of the present invention, the laser can be operated at a wavelength sweep rate of about 18.8 kHz, thus producing a polarized output with an average output power of 2.7 mW.

Exemplary Embodiment of Imaging System

[0054] FIG. 1(b) depicts an exemplary embodiment of an optical frequency domain imaging (OFDI) system according to the present invention. For example, it is possible to use a swept laser can be used as a light source 100. This exemplary system further comprises a fiber-optic interferometer 110, a beam scanner 120, a detector 130 and a computer 140. A sample arm 150 (e.g., 30% port) can be connected to a two-axis galvanometer scanner apparatus 120 which may be designed for a retinal imaging. A focal beam size can be approximately 10 μm in tissue (e.g., index=1.38). The optical power level at an entrance pupil of an eye 160 can be measured to be about 550 μW, which is well below the 1.9-mW maximum exposure level at λ=1050 nm according to the ANSI laser safety standards. A reference arm 170 (e.g., 70% port) can utilize a transmission-type variable delay line 180 and a 10% tap coupler 182 to generate sampling trigger signals for acquiring data.
[0055] As shown in FIG. 1(b), a neutral density (ND) attenuator 184 may be used to obtain an optimal reference-arm power. Light returning from the sample can be combined with the reference light at a 50/50 coupler 190. Resulting interference signals can be measured using an InGaAs dual-balanced detector 140 (e.g., New Focus, Inc., 1811). A signal provided by the balanced detector 140 can be further amplified (e.g., by 10 dB), low-pass filtered, and digitized at 10 MS/s using, e.g., a 12-bit data acquisition board (National Instruments, Inc., PCI-6115). For example, when sampling a 512 samples during each A-line scan, the imaging depth range determined by the spectral sampling interval can be about 2.44 mm in air.

Exemplary Laser Output Characteristics

[0056] FIG. 2(a) depicts an exemplary output spectrum measured using an optical spectrum analyzer in peak-hold mode (with resolution=0.1 nm). The exemplary output spectrum spanned from 1019 to 1081 nm over a range of 62 nm determined by the free spectral range of the filter. The spectral range coincided with a local transparent window of the eye. The roundtrip optical absorption in human vitreous and aqueous humors can be estimated to be between about 2dB and 5 dB based on known absorption characteristics of water (as shown in FIG. 2(a)). Using a variable-delay Michelson interferometer, it is possible to measure the coherence length of the laser output, defined as the roundtrip delay resulting in 50% visibility, to be approximately 4.4 mm in air. From this value, it is possible to determine an instantaneous line width of laser output to be 0.11 nm. In FIG. 2(a), a peak-hold output spectrum 200 and an optical absorption curve 205 are provided in water for a 42-mm propagation distance corresponding to a roundtrip in a typical human vitreous.
[0057] FIG. 2(b) shows a graph of a time domain exemplary oscilloscope output trace 210 of a laser output indicating 100% tuning duty cycle at 18.8 kHz (single shot, 5-MHz detection bandwidth). The y-axis of the trace graph of FIG. 2(b) represents an instantaneous optical power. The total power of amplified spontaneous emission (ASE) in the output, measured by blocking the intracavity beam in the polygon filter, is shown as about 1.1 mW. Since ASE is significantly suppressed during lasing, it is expected that the ASE level in the laser output may be negligible. The laser output exhibited significant intensity fluctuations (˜10% pp) due to an etalon effect originating from relatively large facet reflections at the SOA chip with a thickness equivalent to 2.5 mm in air. In the exemplary embodiment of the imaging system, the etalon effect can cause ghost images (−30 dB) by optical aliasing.

Exemplarly Sensitivity and Resolution of Imaging System

[0058] An exemplary embodiment of the OFDI system and exemplary optimized operating parameters can be provided to maximize the SNR using a partial reflector (neutral density filter and metal mirror) as a sample. An exemplary preferable reference arm power for maximal SNR may be 2.6 μW at each detection port. This relatively low value can be attributed to the relatively large intensity noise of the laser that may not be completely suppressed in the dual balanced detection. Exemplary data processing according to an exemplary embodiment of the present invention can include reference subtraction, envelope apodization or windowing, interpolation to correct for nonlinear k-space tuning, and dispersion correction. For example, subtracting the reference from the interference signals can eliminate image artifacts due to a non-uniform spectral envelope of the laser source. Apodizing the interference fringes by imposing a appropriate windowing technique can decrease the sidebands of point spread functions and improve image contrast.
[0059] This exemplary embodiment of the process according to the present invention may come at a resolution loss and SNR (due to a reduced integration time). It is possible to use a Gaussian window to yield a desirable compromise in contrast and resolution (e.g., at 1050-nm). Since the detector signal may not be sampled in constant time intervals, whereas the tuning curve of our laser was not linear in k-space, interpolating the interference signal may be preferable to reduce or avoid image blurring. Upon completing the exemplary interpolation, the signal may be further corrected for the chromatic dispersion in the interferometer as well as in the sample, e.g., by multiplying a predetermined phase function.
[0060] FIG. 3 shows exemplary A-line profiles and/or point spread functions 220 measured at various path length differences of the interferometer. For this measurement, we used a neutral density attenuator (73 dB) and gold-coated mirror in the sample arm, and the path length was varied by moving the reference mirror. The maximum
[0061] SNR is 25 d. that corresponds to a maximum sensitivity of 98 dB. The theoretical shot-noise limit of sensitivity is calculated to be 109 dB; the 11-dB deficiency in sensitivity of our system seems reasonable, considering that the residual laser intensity noise, imperfect polarization alignment between the sample and reference light, and Gaussian windowing, among many other practical details, contributed to SNR loss. For example, to facilitate the exemplary SNR analysis, each exemplary curve plotted was obtained by an average over 500 consecutive scans at a constant depth, and a simple numerical subtraction was performed to make the noise floor flat. Ghost artifacts marked as asterisks 230 were caused by the etalon effect in the laser source are shown in this figure.
[0062] As indicated in FIG. 3, the sensitivity was decreased to 92 dB as the path length increased to a depth of 2.4 mm, due to the finite coherence length of the laser output. As compared to the conventional time-domain systems that use a broadband source at 1040 nm, the exemplary embodiment of the system according to the present invention provides a higher sensitivity, e.g., at a 100-fold faster image acquisition speed and one sixth of sample arm power. The high sensitivity and depth range of the exemplary embodiment of the system according to the present invention compare favorably with exemplary SD-OCT systems that use broadband sources in the 800-900 nm spectral range. Due to the absorption by water in the eye, the actual SNR for the human retina is likely 3-4 dB lower than the values measured with the mirror sample. Based on the source spectrum (as shown in FIG. 2(a)) and the Gaussian window function used, the theoretical axial resolution can be determined to be about 13 μm in air; the measured values may be 14-16 μm, increasing with the depth. Errors in interpolation and dispersion compensation due to higher order terms may account for the discrepancy.

Exemplary Video-rate Imaging of Retina, Optic Disk, and Choroid in Vivo

[0063] Exemplary OFDI imaging was conducted on two healthy volunteers (A: 36-year-old Asian male, B: 41-year-old Caucasian male) using the exemplary embodiments of the system, process and arrangement according to the present invention. The exemplary OFDI system acquired 18,800 A-lines continuously over 10-20 seconds as the focused sample beam was scanned over an area of 6 mm (horizontal) by 5.2 mm (vertical) across the macular region in the retina. FIG. 4 shows a sequence 250 of images of the fovea and optic disk of the sample recorded from volunteer A at a frame rate of 18.8 Hz in 10.6 seconds. Each image frame was constructed from 1,000 A-line scans with an inverse grayscale table mapping to the reflectivity range over 47 dB, with each frame spanning over 6.0 mm (horizontal) and 1.8 mm (depth) in tissue. For example, 200 frames were acquired in 10.6 seconds to screen a tissue area with a vertical span of 5.2 mm. The anatomical layers in the retina are visualized and correlate well with previously published OCT images and histological findings.
[0064] FIG. 5A depicts an expanded exemplary image of fovea extracted from the three-dimensional data set using the exemplary embodiments of the system, process and arrangement according to the present invention. The exemplary OFDI image of FIG. 5A indicates a deep penetration into the choroid nearly up to the interface with the sclera, visualizing densely-packed choroidal capillaries and vessels.
[0065] To assess the penetration of the exemplary embodiments of the system, process and arrangement according to the present invention, the two volunteers A and B can be three-dimensionally imaged using both the OFDI system and the SD-OCT system previously developed for video-rate retinal imaging. The SD-OCT system employed a super luminescent diode with a center wavelength of 840 nm and a 3-dB spectral bandwidth of 50 nm, offering an axial resolution of 8-9 nm in air. At an A-line rate of 29 kHz and a sample arm power level of 600 μW, the SD-OCT system offered a peak sensitivity of 98 dB at zero delay that decreased to 82 dB at the maximum ranging depth of 2.2 mm in air.
[0066] FIGS. 5A-5F illustrate side-by-side comparisons of the OFDI and SD-OCT images near the foveae and optic disks of the two volunteers A and B. For example, FIGS. 5A and 5C shows OFDI images at fovea and optic nerve head from the volunteer A. FIGS. 5B and 5D illustrate SD-OCT images from the same person at similar tissue locations. FIGS. 5E and 5F provide the OFDI and SD-OCT images, respectively, obtained from volunteer B. For example, as shown, the OFDI images exhibit considerably deeper penetration in tissue than the SD-OCT images in most if not in all data sets. Such large penetration depth may stem from both the high system sensitivity and long source wavelength. Despite the relatively large axial resolution of ˜11 μm in tissue, the OFDI system can visualize the anatomical layered structure in the retina (as shown in FIG. 5A), RNFL, retinal nerve fiber layer, IPL, inner plexiform layer, INL;
[0067] inner nuclear layer, OPL; outer plexiform layer, ONL; outer nuclear layer, IPRL; interface between the inner and outer segments of the photoreceptor layer, RPE; retinal pigmented epithelium, and C; choriocapillaris and choroid.
[0068] As shown in these figures, the OFDI images exhibit considerably deeper penetration into the choroid compared to the SD-OCT images, whereas the higher axial resolution in the SD-OCT images provide better contrast between retinal layers. The lower absorption and scattering in RPE at 1050 nm than 840 nm may account for the apparently superior penetration of the OFDI system to the SD-OCT system with a comparable sensitivity.

Visualization of Retinal/Choroidal Vasculature with OFDI Technique/Systems

[0069] With the three-dimensional tomographic data of the eye's posterior segment, the pixel values along the entire depth axis can be integrated to produce a two-dimensional fundus-type reflectivity image. FIG. 6A shows an exemplary integrated reflectivity image generated from the entire OFDI image sequence shown in FIG. 4, with the image being two-dimensional reflectance image (5.3×5.2 mm2) obtained with the conventional full-range integration method. The exemplary image shows the exemplary optical nerve head, fovea, retinal vessels, and an outline of the deep choroidal vasculature. However, the depth information is not indicated. To address this deficiency of the image generated by a conventional method, it is possible to integrate only selective regions according to using the exemplary embodiment of the system, process and arrangement of the present invention.
[0070] For example, according to one exemplary embodiment of the present invention, in order to visualize the retinal vasculature with a maximum contrast, it is possible to integrate the reflectivity in the range between IPRL and RPE 260, 270 as shown in FIG. 6B. This figure shows an Illustration of an exemplary embodiment of a axial-sectioning integration technique for producing fundus-type reflectivity images. The shadow or loss of signal created by the retinal vessels above can appear most distinctly. Integrating over the entire retina including the vessel often results in a lower contrast in the vasculature because retinal blood vessels produce large signals by strong scattering. Automatic image processing conveniently allowed for automatic segmentations of the IPRL and RPE layers 260, 270.
[0071] FIG. 6C depicts an exemplary reflectivity image (shadow) of a blood vasculature (3.8×5.2 mm2) of the retina vessels . Using the thin integration region below the RPE, it is also possible to obtain fundus-type reflectivity images of the choriocapillary layer containing abundant small blood vessels and pigment cells obtained from an upper part of the choroid, as shown in FIG. 6D. To obtain an image of the complete choroidal region, it is possible to utilize an integration range indicated by references 280 and 290 of FIG. 6B. The choroidal vasculature is shown in the exemplary resulting reflectivity image of FIG. 6E which is an exemplary reflectivity image integrated from the center of the choroid revealing the choroidal vasculature. Reflectivity images with similar qualities can be obtained from volunteer B.

Exemplary Implementation of Exemplary Embodiments of Invention

[0072] Experimental results show that the images generated using the exemplary OFDI techniques at 1050 nm can provide a comprehensive imaging of the human retina and choroid with high resolution and contrast. However, the exemplary embodiment of the OFDI system according to the exemplary embodiments of the present invention may provide an order-of-magnitude higher image acquisition speed than with the use of the conventional time-domain OCT systems, and avails the choroid images with an enhanced contrast in comparison to the SD-OCT system at 840 nm. The enhanced penetration makes it possible to obtain depth-sectioned reflectivity images of the choroid capillary and vascular networks. Fundus camera or scanning laser ophthalmoscope have been conventionally used to view vasculatures. However, such methods may require fluoresce in or indocyanine green angiography to have access to the choroid except for patients with significantly low level of pigmentations.
[0073] The exemplary OFDI system according to the present invention includes a wavelength-swept laser produced using, e.g., a commercial SOA and custom-built intracavity scanning filter. such laser's output power, tuning speed and range may yield a sensitivity of about 98 dB, A-line rate of 19 kHz, and resolution of 10 μm in tissue. Increasing the saturation power and gain of SOA and reducing the extended-Cavity loss can possibly further improve the sensitivity and resolution (tuning range). For example, the power exposure level of the exemplary embodiment of the system according to the present invention can be only 550 μW, whereas the maximum ANSI limit at 1050 nm is likely to be 1.9 mW.

Exemplary Embodiment of Swept Laser Source

[0074] FIG. 7(a) shows another exemplary embodiment of a swept laser source arrangement according to the present invention, e.g., in the 815-870 nm spectral range. The swept laser source arrangement can include a fiber-optic unidirectional ring cavity 300 with a free-space isolator 310. The gain medium 320 may be a commercially-available semiconductor optical amplifier (e.g., SOA-372-850-SM, Superlum Diodes Ltd.). An intracavity spectral filter 330 can be provided which may comprise a diffractive grating (e.g., 830 grooves/nun) 332, two achromatic lenses 334, 336 in the 4f configuration, and a 72-facet polygon mirror 340 (Lincoln lasers, Inc.). The polygon can be rotated at about 600 revolutions per second to produce unidirectional sweeps from short to long wavelengths at a repetition rate of 43.2 kHz.
[0075] The free-space collimated beam in the cavity may have a size of about 1 mm FWHM (full width at half maximum). The beam incident angle to the grating normal can be 67 deg. The focal lengths of the two lenses 334, 336 in the telescope can be 75 (f1) and 40 (h) mm, respectively. It is possible to predict a free-spectral range of 55 nm and
[0076] FWIIM filter bandwidth of 0.17 nm. The laser output can be obtained via a 70% port of a fiber-optic coupler 350. Two polarization controllers 360, 362 can be used to maximize the output power and tuning range.
[0077] For example, it is possible to measure the spectral and temporal characteristics of the laser output at a sweep rate of about 43.2 kHz. The SOA may be driven with an injection current of about 110 mA. FIG. 7(b) shows an exemplary output spectrum 380, 385 measured with an exemplary optical spectrum analyzer in a peak-hold mode at a resolution bandwidth of 0.1 nm. The total tuning range is 55 nm from 815 to 870 nm with a FWHM bandwidth of 38 nm. A stability of the output power is provided in the single-shot oscilloscope trace 390 as shown in FIG. 7(c) provided at a about 43.2 kHz sweep rate and 7 mW averaged power. The peak power variation across tuning cycles may be less than 1%. The instantaneous laser emission can contain multiple longitudinal modes.
[0078] An exemplary measurement of the coherence length (as shown in FIG. 3(b)) can indicate that the FWHM line width may be approximately 0.17 nm corresponding to the filter bandwidth. The intensity noise characteristic of the laser output may further be characterized by using an electrical spectrum analyzer (e.g., Model, Agilent) and low-gain Silicon detector. The measured relative intensity noise can range from about −125 dB/Hz to −135 dB/Hz decreasing with the frequency in the frequency range of about 2 MHz to 10 MHz. The noise peaks due to longitudinal mode beating can appear at 91 MHz. The time-average output power may be about 6.9 mW.
[0079] The large output coupling ratio of the exemplary embodiment of the laser source arrangement, e.g., about 70%, can ensure that the peak power at the SOA does not exceed about 20 mW, e.g., the specified optical damage threshold of the SOA. When this condition is not satisfied, a sudden catastrophic or slowly progressing damage may occur at the output facet of SOA chip. Increasing the optical damage threshold of the 800-nm SOA chips, e.g., by new chip designs, can improve the tuning range as well as the long-term reliability. The output may contain a broadband amplified spontaneous emission that can occupy ˜8% (about 0.56 mW) of the total average power.

Exemplary Imaging System

[0080] An exemplary embodiment of the OFDI system according to the present invention can be provided using the exemplary wavelength-swept laser arrangement. The configuration of the exemplary system can be similar to the system shown in FIG. 1(b). The laser output can be split into two paths in an interferometer by a 30/70 coupler. In one path (e.g., 30% port, termed “sample arm”) may illuminate a biological sample via a two-axis galvanometer scanner (e.g., Model, Cambridge Technologies). The other path, “reference arm,” generally provides a reference beam. The signal beam returning from the sample by backscattering is combined with the reference beam at, e.g., a 50/50 coupler, thus producing interference.
[0081] The interference signal may be detected with a dual-balanced silicon receiver (e.g., DC-80 MHz, 1807-FS, New Focus). The receiver output is low-pass filtered (35 MHz) and digitized at a sampling rate of 100 MS/s with a 14-bit data acquisition board (e.g., DAQ, NI-5122, National Instruments). A small portion (10%) of the reference beam can be tapped and detected through a grating filter to provide triggers to the DAQ board. During each wavelength sweep or A-line scan, a large number, e.g., 2048 samples can be acquired. The sampled data may initially be stored in an on-board memory or on another storage device.
[0082] Upon collecting a desired number of A-line scans, the data set may be transferred to a host personal computer, either to the memory/storage arrangement for on-line processing and/or display or to the hard disk for post processing. When only a single frame is acquired at a time, the exemplary system is capable of processing and displaying the image frame in real time at a frame refresh rate of about 5 Hz. For larger data sets, an exemplary 256 MB on-board memory provides for acquisition of up to 65,536 A-line scans consecutively for about 1.3 sec. This corresponds to about 128 image frames, each consisting of 512 A-lines. Post data processing techniques can include reference subtraction, apodization, interpolation into a linear k-space, and dispersion compensation prior to Fourier transforms.
[0083] To characterize and optimize the exemplary embodiment of the system, process and arrangement according to the present invention, it is possible to use an axial point spread function (or A-line) by using a partial mirror as the sample (−50 dB reflectivity). FIG. 8(a) shows a graph 400 of the sensitivity of the exemplary system measured as a function of the reference optical power. The reference power can be varied by using a variable neutral density (ND) filter in the reference arm. Throughout this measurement, for example, the path length difference between the sample and reference arms may be about 0.6 mm, and the optical power returning from the attenuated sample mirror can be 3.3 nW at each port of the 50/50 coupler. The sensitivity values may be determined by adding the sample attenuation (e.g., about 50 dB) to the measured signal-to-noise ratios (SNR). The reference power can be measured at one of the ports of the 50/50 coupler, corresponding to the time-average reference power at each photodiode. At reference powers between about 30 μW and 200 μW, a maximum sensitivity of ˜96 dB may be obtained.
[0084] The sensitivity in the unit of decibel may be expressed as: Sdb=S0−10 log 10(1+a/Pr+Pr/b)−Δ, where S0 denotes the shot-noise limited sensitivity, Pr is the reference power level, a and b correspond to the reference power levels at which the thermal and intensity noise, respectively, become equal to that of the shot noise in magnitude, and Δ can be a fitting parameter associated with other factors contributing to the loss of sensitivity. Taking into account amplified spontaneous emission, S0 may be about 107 dB. For example, a=17 μW from the detector noise level (e.g., 3.3 pA/√Hz) and conversion efficiency (e.g., 1 A/W). Based on the relative intensity noise of the laser (e.g., −130 dB/Hz) and an 18-dB common-noise suppression efficiency of the balanced receiver, b=280 μW. For example, the best fit to the experimental data 410 of FIG. 8(b) can be obtained with Δ=8 dB. FIG. 8(b) shows a graph of the sensitivity 420 measured as a function of depth. This exemplary value may be largely attributed to the simplified model assuming a flat reference spectrum, a polarization mismatch between the sample and the reference light, and the apodization step in data processing, each possibly contributing to a loss of sensitivity by a couple of dB's.
[0085] Due to a finite coherence length of the laser source, the sensitivity can decrease as the interferometric delay increases. It is possible to measure axial point spread functions at various depth locations of the sample mirror by changing the delay in the reference arm while maintaining the reference power at about 100 μW per photodiode, as shown in the graph of FIG. 8(b). For example, each axial profile can be calibrated by measuring the noise floor obtained by blocking the sample arm, and then matching the noise floor to a 50 dB level. In this manner, the modest frequency or depth dependence (˜2 dB) of the noise floor can be reduced or eliminated. Thus, the sensitivity can drop by about 6 dB at a depth of about 1.9 mm. From a Gaussian fit (dashed line), the instantaneous laser line width may be about 0.17 nm. The FWHM of the axial profile, or the axial resolution in air, can be about 8 μm in the depth from zero to B mm. This corresponds to an axial resolution of ˜6 μm in tissue imaging (e.g., refractive index, n≈1.35).
[0086] As an example, to confirm and demonstrate the capabilities of the exemplary embodiment of the system, process and arrangement according to the present invention for high-speed high-resolution biological imaging, images of Xenopus laevis tadpoles may be obtained in vivo by scanning the sample beam (B-mode scan). The sample beam can have a confocal parameter of about 250 μm and a FWHM beam size of approximately 7 μm at the focus in air (n=1). The optical power on the sample may be about 2.4 mW. During the imaging procedure, the tadpole (stage 46) can be under anesthesia in a water bath by a drop of about 0.02% 3-aminobenzoic acid ethyl ester (MS-222).
[0087] FIG. 9 shows a sequence of images 450 obtained as the beam is scanned in one dimension repeatedly over the ventricle in the heart. The image sequence was acquired at a frame rate of 84.4 Hz (512 A-lines per frame) in the duration of 1.2 s, but is displayed at a reduced rate of 24 frames per second. Each frame, cropped from the original (500×1024 pixels), has 400×200 pixels and spans a dimension of 3.3 mm (horizontal) by 1.1 mm (depth, n=1.35). The motion of the ventricle including trabeculae can be seen. The ability to image the beating heart with high spatial and temporal resolution may be useful for investigating normal and abnormal cardiac developments in vivo. Combined with contrast agents such ICG and gold nano particles developed in the 800-nm region, the exemplary embodiment of the OFDI system, process and arrangement according to the present invention can enable high-speed functional or molecular imaging.

Exemplary Laser Current Modulation

[0088] An exemplary preferred light source arrangement for OFDI imaging generally has a flat output spectrum. To obtain such desired spectral profile, it is possible to modulate the gain or loss of a gain medium or a filter inside or outside a laser cavity. The filter may be a broadband variable attenuator, and its transmission may be controlled synchronously with laser tuning. The exemplary filter may be a passive spectral filter with a desired transmission spectrum. The gain medium can preferably be a semiconductor optical amplifier, and its gain may be varied by modulating the injection current to the amplifier synchronously with filter tuning. FIGS. 10(a) and 10(b) illustrate graphs of exemplary output tuning traces 480, 490 without and with the use of an exemplary embodiment of a modulation method according to the present invention, respectively. This exemplary method can also be effective to maximize or at least increase the output power and tuning range for a given optical damage threshold of the semiconductor gain chip.

Exemplary Flow Measurement

[0089] The ability to detect and quantify the blood flow in the eye retina and choroid can have impacts in several clinical applications such as for an evaluation of age-related macular degeneration. Several methods of extracting the flow information from the phase of the OFDI signals are known in the art. These exemplary conventional methods, however, require a significant beam overlap between two consecutive A-line scans-over sampling, thus causing undesirable compromise between the phase accuracy and image acquisition speed. Using the exemplary embodiment of the system, process and arrangement according to the present invention, instead of comparing the phase values of two A-line scans, it is possible to extract multiple phase values corresponding to different time points or wavelengths within a single A-line and compare the values with reference phase values. This exemplary procedure provides for a measurement of the flow velocity at multiple time points during a single A-line scan, permitting a faster beam scan and image acquisition speed. Such procedure can be used at decreased phase or velocity measurement accuracy, which is likely to be acceptable in many applications.
[0090] FIG. 11 illustrates a flow diagram of a conventional method to extract the phase and velocity information from an entire dataset obtained during each wavelength scan. As shown in FIG. 10, A-line scans, k-th through (k+1)-th are provided. In step 510, DFT from each of such scans is received, and utilized in the formulas Ak(z)eiφk(z) and Ak(z)eiφk+1(z), respectively. Then, using the determined results in step 510, the following determination is made in step 520: Δ(z)=φk+1(z)−φk(z). Then, in step 530, a phase image is overlayed to an intensity image if A(z) is larger than a particular threshold. Here, Am(z) denotes the signal amplitude associated with the sample reflectance at a depth z at the m-th A-line scan, φm(z) denotes the signal phase associated with a depth z at the m-th A-line scan, and Δ(z) represents a difference between the phases.
[0091] FIG. 12 illustrates a flow diagram of the exemplary embodiment of the process according to the present invention which can be used to obtain the phase and flow information by processing a half of the interference fringe data. For example, similarly to the conventional method shown in FIG. 11, A-line scans, k-th through (k+1)-th are provided. Then, in step 560, DFT from each of such scans is received, and utilized in the following formulas, respectively: A1(z)eiφ1(z)−φr,1 (z), A2(z)eiφ2(z)−φr,2 (z), etc. Using the results obtained from step 560, the following determination is made in step 570: Δ(z)=φ1(z)−φ2(z)+φr,1(z)−φr,2(z). Here, A 1(z) and A2(z) denote the signal amplitudes obtained from the two different portions of the interference signal acquired in each A-line scan, φ1(z) and φ2(z) denote the signal phases obtained from the two different portions of the interference signal, and φr,1(z) and φr,2(z) denote reference phases that may be constants, phases obtained from an auxiliary interferometric signal, or phases associated with a different depth. By subtracting the reference phases from the signal phases, phase noise associated with sampling timing fluctuations and motion artifacts can be greatly reduced. Further, in step 580, a phase image is overlayed to an intensity image if A(z) is larger than a particular threshold. This exemplary process can also be applicable to beam-scanning phase microscopy.
[0092] FIGS. 13(a) and 13(b) show exemplary images image of the retina obtained from a healthy volunteer. For example, FIG. 13(a) illustrates a single exemplary image from a large number of frames consecutively acquired using the exemplary embodiment of the system, process and arrangement according to the present invention. The image frame consists of about 1000 axial lines, and the exemplary image shows the fovea and optic disk of the patient. FIG. 13(b) shows an exemplary Integrated fundus image produced from multiple cross-sectional images covering an area by integrating the intensity in each depth profile to represent a single point in the fundus image using the exemplary embodiment of the system, process and arrangement according to the present invention.
[0093] As shown in these figures, the retinal OFDI imaging was performed at 800-900 nm in vivo on a 41-year-old Caucasian male subject. The exemplary embodiment of the OFDI system, process and arrangement according to the present invention acquired 23 k A-lines continuously over 1-2 seconds as the focused sample beam was scanned over an area including the macular and optic nerve head region in the retina. Each image frame was constructed from 1,000 A-line scans with an inverse grayscale table mapping to the reflectivity range. The anatomical layers in the retina are clearly visualized and correlate well with previously published OCT images and histological findings.
[0094] The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. Indeed, the arrangements, systems and methods according to the exemplary embodiments of the present invention can be used with any OCT system, OFDI system, SD-OCT system or other imaging systems, and for example with those described in International Patent Application PCT/US2004/029148, filed Sep. 8, 2004, U.S. patent application Ser. No. 11/266,779, filed Nov. 2, 2005, and U.S. patent application Ser. No. 10/501,276, filed Jul. 9, 2004, the disclosures of which are incorporated by reference herein in their entireties. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention. In addition, to the extent that the prior art knowledge has not been explicitly incorporated by reference herein above, it is explicitly being incorporated herein in its entirety. All publications referenced herein above are incorporated herein by reference in their entireties.
(57)

Claims

1. An apparatus comprising:
at least one source first arrangement configured to provide a radiation which includes at least one first electro-magnetic radiation directed to an anatomical sample and at least one second electro-magnetic radiation directed to a reference, wherein the anatomical sample includes at least one section, and wherein a wavelength of the radiation provided by the at least one first arrangement varies over time, and the wavelength is shorter than approximately 1150 nm;
at least one detector second arrangement configured to detect an interference between at least one third radiation associated with the at least one first radiation and at least one fourth radiation associated with the at least one second radiation; and
at least one computer third arrangement configured to generate at least one image corresponding to at least one portion of the anatomical sample using data associated with the interference.
2. The apparatus according to claim 1, wherein a period of a variation of the wavelength of the at least one first electro-magnetic radiation is shorter than 1 millisecond.
3. The apparatus according to claim 1, wherein the at least one section includes at least one of a retina, a choroid, an optic nerve, or a fovea.
4. The apparatus according to claim 1, wherein the wavelength is shorter than approximately 950 nm.
5. The apparatus according to claim 1, wherein the wavelength varies by at least 10 nm over a period of a variation of the wavelength of the at least one first electro-magnetic radiation.
6. The apparatus according to claim 1, further comprising at least one fourth arrangement which is configured to scan the at least one first electro-magnetic radiation laterally across the anatomical sample.
7. The apparatus according to claim 1, wherein the at least one image is associated with the anatomical structure of the anatomical sample.
8. The apparatus according to claim 7, wherein the at least one image is further associated with at least one of a blood or a lymphatic flow in the anatomical sample.
9. The apparatus according to claim 1, wherein the at least one third arrangement is configured to (i) obtain at least one signal associated with at least one phase of at least one frequency component of the interference signal over less than an entire sweep of the wavelength, and (ii) compare the at least one phase to at least one particular information.
10. The apparatus according to claim 9, wherein the at least one particular information is at least one of (i) associated with a further signal obtained from a sweep of the wavelength that is different from the sweep of the wavelength of the at least one signal, (ii) a constant, or (iii) associated with at least one phase of at least one further frequency component of the interference signal over less than an entire sweep of the wavelength, and wherein the at least one frequency component and the at least one further frequency component are different from one another.
11. The apparatus according to claim 1, wherein the at least one third arrangement is configured to generate a two-dimensional fundus-type reflectivity profile of the anatomical sample.
12. The apparatus according to claim 1, wherein the at least one third arrangement is configured to generate a two-dimensional fundus-type image of the anatomical sample based the at least one signal.
13. The apparatus according to claim 1, further comprising
at least on fourth arrangement configured to receive the at least one of the first or second electro-magnetic radiations, and providing at least one fifth electro-magnetic radiation associated with the at least one of the first electro-magnetic radiation or the second electro-magnetic radiation,
wherein the at least one second arrangement is further configured to detect a further interference signal between the at least one fifth radiation and the at least one fourth radiation, and
wherein the at least one second arrangement is further configured to obtain at least one reference signal associated with a further phase of at least one first frequency component of the further interference signal over less than an entire sweep of the wavelength.
14. The apparatus according to claim 13, wherein the at least one particular information is the further phase.
15. The apparatus according to claim 1, wherein the wavelength of the radiation provided by the at least one first arrangement that varies over time is swept in a controllable manner.
16. The apparatus according to claim 1, wherein the detector second arrangement includes at least one single detector which detects the interference over multiple different wavelengths that change over time.
17. A method comprising:
causing a transmission of a radiation which includes at least one first electro-magnetic radiation directed to be provided to an anatomical sample and at least one second electro-magnetic radiation directed to a reference, wherein the anatomical sample includes at least one section, and wherein a wavelength of the radiation varies over time, and the wavelength is shorter than approximately 1150 nm;
detecting an interference between at least one third radiation associated with the at least one first radiation and at least one fourth radiation associated with the at least one second radiation using detector arrangement; and
generating at least one image corresponding to at least one portion of the anatomical sample using data associated with the interference.
18. A software arrangement provided on a non-transitory computer-accessible medium and executable by a computer processing arrangement, the computer-accessible medium comprising:
a first set of instructions which, when executed by the processing arrangement, causes a radiation which includes at least one first electro-magnetic radiation directed to be provided to an anatomical sample and at least one second electro-magnetic radiation directed to a reference, wherein the anatomical sample includes at least one section, and wherein a wavelength of the radiation varies over time, and the wavelength is shorter than approximately 1150 nm;
a second set of instructions which, when executed by the processing arrangement, causes a detection of an interference between at least one third radiation associated with the at least one first radiation and at least one fourth radiation associated with the at least one second radiation using a detector arrangement; and
a second set of instructions which, when executed by the processing arrangement, causes the processing arrangement to generate at least one digital image corresponding to at least one portion of the anatomical sample using data associated with the interference.
19. An apparatus comprising:
at least one computer arrangement configured to receive first data for a three-dimensional image of at least one portion of a sample which includes at least one section,
wherein the first data is associated with an optical interferometric signal generated from signals obtained from the anatomical sample and a reference, wherein the optical interferometric signal is based on a radiation whose a wavelength provided from a source arrangement varies over time,
wherein the at least one computer arrangement is further configured to convert a region that is less than an entire portion of the first data to second digital data to generate a digital two-dimensional image which is associated with the at least one portion of the anatomical sample,
wherein the at least one computer arrangement is still further configured to automatically select the region based on at least one characteristic of the anatomical sample, and
wherein the entire portion is associated with an internal structure within the anatomical sample.
20. An apparatus comprising:
at least one source first arrangement providing a radiation which includes at least one first electro-magnetic radiation directed to a sample and at least one second electro-magnetic radiation directed to a reference, wherein a wavelength of the radiation provided by the at least one first arrangement varies over time, and wherein the anatomical sample includes at least one section; and
at least one detector second arrangement configured to detect an interference signal between at least one third radiation associated with the at least one first radiation and at least one fourth radiation associated with the at least one second radiation,
wherein the at least one second arrangement is configured to obtain at least one signal associated with at least one phase of at least one frequency component of the interference signal over less than an entire sweep of the wavelength, and comparing the at least one phase to at least one particular information.
21. The apparatus according to claim 20, wherein the wavelength of the radiation provided by the at least one first arrangement that varies over time is swept in a controllable manner.
22. The apparatus according to claim 20, wherein the detector second arrangement includes at least one single detector which detects the interference over multiple different wavelengths that change over time.
*****

Sign in to the Lens

Feedback