Gene Disruptions, Compositions And Methods Relating Thereto

  *US07858843B2*
  US007858843B2                                 
(12)United States Patent(10)Patent No.: US 7,858,843 B2
 Culbertson et al. (45) Date of Patent:Dec.  28, 2010

(54)Gene disruptions, compositions and methods relating thereto 
    
(75)Inventors: Ling Ling Culbertson,  Spring, TX (US); 
  Frederic J. de Sauvage,  Foster City, CA (US); 
  Charles Montgomery,  Jay, OK (US); 
  Zheng-Zheng Shi,  The Woodlands, TX (US); 
  Mary Jean Sparks,  Magnolia, TX (US) 
(73)Assignee:Genentech, Inc.,  South San Francisco, CA (US), Type: US Company 
(*)Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. 
(21)Appl. No.: 11/814,361 
(22)PCT Filed:May  18, 2006 
(86)PCT No.: PCT/US2006/019651 
 § 371 (c)(1), (2), (4) Date: Jul.  19, 2007  
(87)PCT Pub. No.:WO20/06/132788 
 PCT Pub. Date:Dec.  14, 2006 
(65)Prior Publication Data 
 US 2009/0313707 A1 Dec.  17, 2009 
 Related U.S. Patent Documents 
(60)Provisional application No. 60/780,262, filed on Mar.  7, 2006.
 
 Provisional application No. 60/687,900, filed on Jun.  6, 2005.
 
(51)Int. Cl. G01N 033/00 (20060101); C12N 005/06 (20060101); C12Q 001/02 (20060101)
(52)U.S. Cl. 800/3; 435/325; 435/354; 435/29
(58)Field of Search  None

 
(56)References Cited
 
 U.S. PATENT DOCUMENTS
 2003//0027281  A1  2/2003    Baker et al.     
 2003//0040053  A1  2/2003    Baker et al.     
 2003//0215908  A1  11/2003    Ashkenazi et al.     

 
 FOREIGN PATENT DOCUMENTS 
 
       EP       1 386 931       A1                2/2004      

 OTHER PUBLICATIONS
  
  Yu et al. J. Biol. Chem. 278:17350-17359; 2003. *
  Nakae et al (Immunity. 2002; 17:375-387). *
  Abe et al., “Lysosomal phospholipase A2 is selectively expressed in alveolar macrophages” J Biol Chem. 279 (41) :42605-11 (Oct. 8, 2004).
  Abu-Elheiga et al., “Continuous Fatty Acid Oxidation and Reduced Fat Storage in Mice Lacking Acetyl-CoA Carboxylase 2” Science 291 (5513) :2613-16 (Mar. 30, 2001).
  Adam et al., “Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer” J Biol Chem. 278 (8) :6482-9 (Feb. 21, 2003).
  Afar et al., “Preclinical validation of anti-TMEFF2-auristatin E-conjugated antibodies in the treatment of prostate cancer” Mol Cancer Ther. 3 (8) :921-32 (Aug. 2004).
  Alpy et al., “Mentho, a MLN64 homologue devoid of the START domain” J Biol Chem. 277 (52) :50780-7 (Dec. 27, 2002).
  Ang et al., “Spatial and temporal expression of Wnt and Dickkopf genes during murine lens development” Gene Expr Patterns. May 2004;4(3):289-95 4 (3) :289-95.
  Baeza et al., “Rapid down regulation of pyroglutamyl peptidase II activity by arachidonic acid in primary cultures of adenohypophyseal cells” Life Sci. 68 (17) :2051-60 (Mar. 16, 2001).
  Ben-Porath and Benvenisty, “Characterization of a tumor-associated gene, a member of a novel family of genes encoding membrane glycoproteins” Gene 183 (1-2) :69-75 (Dec. 12, 1996).
  Berditchevski, “Complexes of tetraspanins with integrins: more than meets the eye” J Cell Sci. 114 (Pt 23) :4143-51. (Dec. 2001).
  Biunno et al., “Isolation of a pancreas-specific gene located on human chromosome 14q31: expression analysis in human pancreatic ductal carcinomas” Genomics 46 (2) :284-6 (Dec. 1, 1997).
  Bono et al., “Layilin, a novel integral membrane protein, is a hyaluronan receptor” Mol. Biol. Cell12 (4) :891-900 (2001).
  Borowsky and Hynes, “Layilin, a novel talin-binding transmembrane protein homologous with C-type lectins, is localized in membrane ruffles” Cell Biol. 143 (2) :429-42 (Oct. 19, 1998).
  Bottcher et al., “The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling” Nature Cell Biology 6: 38-44 (2004).
  Bouchon et al., “Cutting Edge: Activation of NK cell-mediated cytotoxicity by a SAP-independent receptor of the CD2 family” J Immunol. 167 (10) :5517-21 (Nov. 15, 2001).
  Bouis et al., “Effects of the CDT6/ANGX gene on tumour growth in immune competent mice” In Vivo. 17 (2) :157-61 (Mar.-Apr. 2003).
  Brott and Sokol, “Regulation of Wnt/LRP Signaling by Distinct Domains of Dickkopf Proteins” Molecular & Cellular Biology 22 (17) :6100-6110 (Sep. 2002).
  Cattaneo et al., “Identification of a region within SEL1L protein required for tumour growth inhibition” Gene 326:149-56 (Feb. 4, 2004).
  Chalhoub et al., “Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human” Nat Med. 9 (4) :399-406 (Apr. 2003).
  Charpantier et al., “Effects of estrogen on global gene expression: identification of novel targets of estrogen action” Cancer Research 60 (21) :5977-83 (Nov. 1, 2000).
  Chen et al., “cDNA cloning, genomic structure, and chromosome mapping of the human epithelial membrane protein CL-20 gene (EMP1), a member of the PMP22 family” Genomics 41 (1) :40-8 (Apr. 1, 1997).
  Cheng and Russell, “Mammalian wax biosynthesis. II. Expression cloning of wax synthase cDNAs encoding a member of the acyltransferase enzyme family” J Biol Chem. 279 (36) :37798-807 (Sep. 3, 2004).
  Chiaramonte et al., “Notch signal transduction is not regulated by SEL1L in leukaemia and lymphoma cells in culture” Anticancer Res. 22 (6C) :4211-4 (Nov.-Dec. 2002).
  Clark et al., “The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment” Genome Research 13 (10) :2265-2270 (Oct. 2003).
  Colonna et al., “Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells” Eur J Immunol. 30 (2) :697-704 (Feb. 2000).
  Coyne et al., “Role of claudin interactions in airway tight junctional permeability” Am J Physiol Lung Cell Mol Physiol. 285 (5) :L1166-78 (Nov. 2003).
  Cui et al., “Cloning of human myeloid-associated differentiation marker (MYADM) gene whose expression was up-regulated in NB4 cells induced by all-trans retinoic acid” Mol Biol Rep. 28 (3) :123-38 (2001).
  Dail et al., “SHEP1 function in cell migration is impaired by a single amino acid mutation that disrupts association with the scaffolding protein cas but not with Ras GTPases” J Biol Chem. 279 (40) :41892-902 (Oct. 1, 2004).
  DeLorey et al., “Mice lacking the β3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavorial characteristics of Angelman syndrome” J Neurosci. 18 (20) :8505-14 (Oct. 15, 1998).
  Dgany et al., “Congenital dyserythropoietic anemia type I is caused by mutations in codanin-1” Am J Hum Genet. 71 (6) :1467-74 (Dec. 2002).
  Dodelet et al., “A novel signaling intermediate, SHEP1, directly couples Eph receptors to R-Ras and Rap1A” J Biol Chem. 274 (45) :31941-6 (Nov. 5, 1999).
  Doerks et al., “GRAM, a novel domain in glucosyltransferases, myotubularins and other putative membrane-associated proteins” Trends Biochem Sci. 25 (10) :483-5 (Oct. 2000).
  Donoviel et al., “Cloning and characterization of Sel-11, a murine homolog of the C. elegans sel-1 gene” Mech Dev. 78 (1-2) :203-7 (Nov. 1998).
  Duan et al., “Identification of Human Intestinal Alkaline Sphingomyelinase as a Novel Ecto-enzyme Related to the Nucleotide Phosphodiesterase Family” Journal of Biological Chemistry 278 (40) :38528-38536 (2003).
  Erne et al., “Rafts in adult peripheral nerve myelin contain major structural myelin proteins and myelin and lymphocyte protein (MAL) and CD59 as specific markers” Neurochem 82 (3) :550-62 (Aug. 2002).
  Esther et al., “Mice Lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility” Laboratory Investigation 74 (5) :953-65 (May 1996).
  Ferrante et al., “Molecular and biochemical characterisation of a novel sulphatase gene: Arylsulfatase G (ARSG” Eur J Hum Genet. 10 (12) :813-8 (Dec. 2002).
  Fessler et al., “Papilin, a novel component of basement membranes, in relation to ADAMTS metalloproteases and ECM development” Int J Biochem Cell Biol. 36 (6) :1079-84 (Jun. 2004).
  Fischer et al., “Promotion of G alpha i3 subunit down-regulation by GIPN, a putative E3 ubiquitin ligase that interacts with RGS-GAIP” Proc Natl Acad Sci U S A. 100 (14) :8270-5 (Jul. 2003).
  Fletcher et al., “hAG-2 and hAG-3, human homologues of genes involved in differentiation, are associated with oestrogen receptor-positive breast tumours and interact with metastasis gene C4.4a and dystroglycan” Br J Cancer 88 (4) :579-85 (Feb. 24, 2003).
  Frank et al., “Developmental expression pattern of the myelin proteolipid MAL indicates different functions of MAL for immature Schwann cells and in a late step of CNS myelinogenesis” J Neurochem. 73 (2) :587-97 (Aug. 1999).
  Frank et al., “MAL, a proteolipid in glycosphingolipid enriched domains: functional implications in myelin and beyond” Prog Neurobiol. 60 (6) :531-44 (Apr. 2000).
  Fu and Kamp, “E2a-Pbx1 induces aberrant expression of tissue-specific and developmentally regulated genes when expressed in NIH 3T3 fibroblasts” Mol Cell Biol. 17 (3) :1503-12 (Mar. 1997).
  Furthauer et al., “Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signalling” Nat Cell Biol. 4 (2) :170-4 (Feb. 2002).
  Furuse et al., “Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin” J Cell Biol. 141 (7) :1539-50 (Jun. 29, 1998).
  Furuse et al., “Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice” J Cell Biol. 156 (6) :1099-111 (Mar. 18, 2002).
  Garlanda et al., “Intestinal inflammation in mice deficient in Tir8, an inhibitory member of the IL-1 receptor family” Proc Natl Acad Sci U S A. 101 (10) :3522-6 (Mar. 9, 2004).
  Georgas et al., “Characterisation of Criml expression in the developing mouse urogenital tract reveals a sexually dimorphic gonadal expression pattern” Dev Dyn. 219 (4) :582-7 (Dec. 2000).
  Gery and Koeffler, “Repression of the TMEFF2 promoter by c-Myc” J Mol Biol. 328 (5) :977-83 (May 16, 2003).
  Gery et al., “TMEFF2 is an androgen-regulated gene exhibiting antiproliferative effects in prostate cancer cells” Oncogene 21 (31) :4739-46 (Jul. 18, 2002).
  Glienke et al., “CRIM1 is involved in endothelial cell capillary formation in vitro and is expressed in blood vessels in vivo” Mech Dev. 119 (2) :165-75 (Dec. 2002).
  Grant and Greenwald, “Structure, function, and expression of SeL-1, a negative regulator of LIN-12 and GLP-1 in C. elegans” Development 124 (3) :637-44 (Feb. 1997).
  Heiskala et al., “The roles of claudin superfamily proteins in paracellular transport” Traffic 2 (2) :93-8 (Feb. 2001).
  Higuchi et al., “Molecular cloning, genomic structure, and expression analysis of MUC20, a novel mucin protein, up-regulated in injured kidney” J Biol Chem. 279 (3) :1968-79 (Jan. 16, 2004).
  Higuchi et al., “MUC20 suppresses the hepatocyte growth factor-induced Grb2-Ras pathway by binding to a multifunctional docking site of met” Mol Cell Biol. 24 (17) :7456-68 (Sep. 2004).
  Hiraoka et al., “Cloning and characterization of a lysosomal phospholipase A2, 1-O-acylceramide synthase” J Biol Chem. 277 (12) :10090-9 (Mar. 22, 2002).
  Hooper et al., “Mouse matriptase-2: identification, characterization and comparative mRNA expression analysis with mouse hepsin in adult and embryonic tissues” Biochemical Journal 373 (Pt 3) :689-702 (Aug. 1, 2003).
  Horie et al., “Identification and characterization of TMEFF2, a novel survival factor for hippocampal and mesencephalic neurons” Genomics 67 (2) :146-52 (Jul. 15, 2000).
  Hurst et al., “New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25” J Immunol. 169 (1) :443-53 (Jul. 1, 2002).
  Ihalmo et al., “Filtrin is a novel member of nephrin-like proteins” Biochem Biophys Res Commun. 300 (2) :364-70 (Jan. 10, 2003).
  Ioka et al., “Expression cloning and characterization of a novel glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein, GPI-HBP1” J Biol Chem. 278 (9) :7344-9 (Feb. 28, 2003).
  Izumoto et al., “Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus” Biochem Biophys Res Commun. 238 (1) :26-32 (Sep. 8, 1997).
  Kang et al., “BOC, an Ig superfamily member, associates with CDO to positively regulate myogenic differentiation” EMBO Journal 21 (1-2) :114-124 (Jan. 15, 2002).
  Kang et al., “Promyogenic members of the Ig and cadherin families associate to positively regulate differentiation” Proc Natl Acad Sci U S A 100 (7) :3989-3994 (Apr. 1, 2003).
  Katoh and Katoh, “Identification and characterization of human FCHSD1 and FCHSD2 genes in silico” Int J Mol Med. 13 (5) :749-54 (May 2004).
  Kawaguchi et al., “Activation of extracellular signal-regulated kinase (ERK)1/2, but not p38 and c-Jun N-terminal kinase, is involved in signaling of a novel cytokine, ML-1” J Biol Chem. 277 (18) :15229-32 (May 3, 2002).
  Kawaguchi et al., “Induction of granulocyte-macrophage colony-stimulating factor by a new cytokine, ML-1 (IL-17F), via Raf I-MEK-ERK pathway” J Allergy Clin Immunol. 114 (2) :444-50 (Aug. 2004).
  Kawamura et al., “cDNA of a novel mRNA expressed predominantly in mouse kidney” Biochem Genet. 39 (1-2) :33-42 (Feb. 2001).
  Kelly et al., “Kinetic investigation of the specificity of porcine brain thyrotropin-releasing hormone-degrading ectoenzyme for thyrotropin-releasing hormone-like peptides” J Biol Chem. 275 (22) :16746-51 (Jun. 2, 2000).
  King et al., “Organisation of the mouse and human 5T4 oncofoetal leucine-rich glycoprotein genes and expression in foetal and adult murine tissues” Biochim Biophys Acta. 1445 (3) :257-70 (Jun. 9, 1999).
  Kingsbury et al., “Cloning, expression, and function of BLAME, a novel member of the CD2 family” J. Immunol. 166 (9) :5675-80 (May 1, 2001).
  Kishima et al., “Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals” J Biol Chem. 277 (12) :10315-22 (Mar. 22, 2002).
  Kolle et al., “CRIM1, a novel gene encoding a cysteine-rich repeat protein, is developmentally regulated and implicated in vertebrate CNS development and organogenesis” Mech Dev. 90 (2) :181-93 (Feb. 2000).
  Korkmaz et al., “Molecular cloning and characterization of STAMP1, a highly prostate-specific six transmembrane protein that is overexpressed in prostate cancer” J Biol Chem. 277 (39) :36689-96 (Sep. 27, 2002).
  Kovalenko et al., “Sef inhibits fibroblast growth factor signaling by inhibiting FGFR1 tyrosine phosphorylation and subsequent ERK activation” J Biol Chem. 278 (16) :14087-91 (Apr. 18, 2003).
  Kramerova et al., “Papilin in development; a pericellular protein with a homology to the ADAMTS metalloproteinases” Development 127 (24) :5475-85 (Dec. 2000).
  Krupnik et al., “Functional and Structural Diversity of the Human Dickkopf Gene Family.” Gene 238 (2) :301-313 (1999).
  Kumaresan et al., “CS1, a novel member of the CD2 family, is homophilic and regulates NK cell function”Mol Immunol. 39 (1-2) :1-8 (Sep. 2002).
  Lacy et al., “Identification of FLRT1, FLRT2, and FLRT3: A Novel Family of Transmembrane Leucine-Rich Repeat Proteins” Genomics 62:417-426 (1999).
  Langenbach et al., “Prostaglandin Synthase 1 Gene Disruption in Mice Reduces Arachidonic Acid-Induced Inflammation and Indomethancin-Induced Gastric Ulceration” Cell 83 (3) :483-92 (Nov. 3, 1995).
  Lauren et al., “A novel gene family encoding leucine-rich repeat transmembrane proteins differentially expressed in the nervous system” Genomics 81:411-421 (2003).
  Laurent et al., “The human c-Fes tyrosine kinase binds tubulin and microtubules through separate domains and promotes microtubule assembly” Mol Cell Biol. 24 (21) :9351-8 (Nov. 2004).
  Le Naour et al., “Tetraspanins connect several types of Ig proteins: IgM is a novel component of the tetraspanin web on B-lymphoid cells” Cancer Immunol Immunother. 53 (3) :148-52 (Mar. 2004).
  Lee, et al., “IL-17E, a Novel Proinflammatory Ligand for the IL-17 Receptor Homolog IL-17Rh1” The Journal of Biological Chemistry 276 (2) :1660-1664 (2001).
  Li et al., “Cloning and characterization of the IL-17B and IL-17C two new members of the IL-17 cytokine family” Proc. Natl. Acad. Sci. USA 97 (2) :773-778 (2000).
  Li et al., “Expression of claudin-7 and -8 along the mouse nephron” Am J Physiol Renal Physiol. 286 (6) :F1063-71 (Jun. 2004).
  Li et al., “Second cysteine-rich domain of Dickkopf-2 activates canonical Wnt signaling pathway via LRP-6 independently of dishevelled” J Biol Chem. 277 (8) :5977-81 (Feb. 22, 2002)..
  Liang et al., “The gene for a novel transmembrane protein containing epidermal growth factor and follistatin domains is frequently hypermethylated in human tumor cells” Cancer Research 60(17):4907-12 (Sep. 1, 2000).
  Lin et al., “Tomoregulin ectodomain shedding by proinflammatory cytokines” Life Sci. 73(13):1617-27 (Aug. 15, 2003).
  Lobsiger et al., “Identification and characterization of a cDNA and the structural gene encoding the mouse epithelial membrane protein-1” Genomics 36 (3) :379-87 (Sep. 15, 1996).
  Lovicu et al., “Expression of Criml during murine ocular development” Mech Dev. 94 (1-2) :261-5 (Jun. 2000).
  Magyar et al., “Myelin and lymphocyte protein (MAL/MVP17/VIP17) and plasmolipin are members of an extended gene family” Gene 189 (2) :269-75 (Apr. 21, 1997).
  Mantovani et al., “Extracellular and intracellular decoys in the tuning of inflammatory cytokines and Toll-like receptors: the new entry TIR8/SIGIRR” J Leukoc Biol. 75 (5) :738-42 (May 2004).
  Manya et al., “Loss-of-function of an N-acetylglucosaminyltransferase, POMGnT1, in muscle-eye-brain disease” Biochem Biophys Res Commun. 306 (1) :93-7 (Jun. 20, 2003).
  Mao'and Niehrs, “Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling” Gene 302(1-2):179-83 (Jan. 2, 2003).
  Marazuela and Alonso, “Expression of MAL and MAL2, two elements of the protein machinery for raft-mediated transport, in normal and neoplastic human tissue” Histol Histopathol. 19 (3) :925-33 (Jul. 2004).
  Marvin et al., “Identification and characterization of a novel squamous cell-associated gene related to PMP22” J Biol Chem. 270 (48 ):28910-6 (Dec. 1, 1995).
  Monaghan et al., “Dickkopf Genes are Co-ordinately Expressed in Mesodermal Lineages” Mech. Dev. 87 (1-2) :45-56 (1999).
  Morita et al., “Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands” Proc Natl Acad Sci U S A 96 (2) :511-6 (Jan. 19, 1999).
  Moseley et al., “Interleukin-17 family and IL-17 receptors” Cytokine And Growth Factor Reviews 14 (2) :155-174 (Apr 2003).
  Mulieri et al., “Expression of the boc gene during murine embryogenesis” Dev Dyn. 223 (3) :379-88 (Mar. 2002).
  Murphy et al., “A novel immunoglobulin superfamily receptor (19A) related to CD2 is expressed on activated lymphocytes and promotes homotypic B-cell adhesion” Biochemical Journal 361 (Pt 3) :431-6 (Feb. 1, 2002).
  Myers, “Isolation of a cDNA Encoding 5T4 Oncofetal Trophoblast Glycoprotein” The Journal of Biological Chemistry 269 (12) :9319-9324 (Mar. 25, 1994).
  Neira et al., “A new gene (rmSTG) specific for taste buds is found by laser capture microdissection” Mamm Genome 12 (1) :60-6 (Jan. 2001).
  Numasaki et al., “IL-17 and IL-17F modulate GM-CSF production by lung microvascular endothelial cells stimulated with IL-lbeta and/or TNF-alpha” Immunol Lett. 95 (2) :175-84 (Sep. 2004).
  O'Brien et al., “Characterization of five novel human genes in the 11q13-q22 region” Biochem Biophys Res Commun. 273 (1) :90-4 (Jun. 24, 2000).
  O'Neill, “SIGIRR puts the brakes on Toll-like receptors” Nat Immunol. 4 (9) :823-4 (Sep. 2003).
  Oda et al., “Interleukin-17F induces pulmonary neutrophilia and amplifies antigen-induced allergic response” Am J Respir Crit Care Med. 171 (1) :12-8 (Jan 1, 2005).
  Ohta et al., “Tsukushi functions as an organizer inducer by inhibition of BMP activity in cooperation with chordin” Dev Cell 7(3):347-58 (Sep. 2004).
  Oku et al., “Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain” EMBO Journal 22 (13) :3231-41 (Jul. 1, 2003).
  Orlandi et al., “SEL1L expression decreases breast tumor cell aggressiveness in vivo and in vitro”Cancer Research 62 (2) :567-74 (Jan. 15, 2002).
  Overall et al., “Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors” Biol Chem. 385(6):493-504 (Jun. 2004).
  Pallesen et al., “Isolation and characterization of MUC15, a novel cell membrane-associated mucin” Eur J. Biochem. 269 (11) :2755-63 (Jun. 2002).
  Peek et al., “Molecular cloning of a new angiopoietinlike factor from the human cornea” Invest Ophthalmol Vis Sci. 39 (10) :1782-8 (Sep. 1998).
  Peek et al., “The angiopoietin-like factor cornea-derived transcript 6 is a putative morphogen for human cornea” J Biol Chem. 277 (1) :686-93 (Jan. 4, 2002).
  Pettersson et al., “Isolation of MYADM, a novel hematopoietic-associated marker gene expressed in multipotent progenitor cells and up-regulated during myeloid differentiation” J Leukoc Biol. 67 (3) :423-31 (Mar. 2000).
  Pielage et al., “The Drosophila cell survival gene discs lost encodes a cytoplasmic Codanin-l-like protein, not a homolog of tight junction PDZ protein Patj” Dev Cell 5 (6) :841-51 (Dec. 2003).
  Polentarutti et al., “Unique pattern of expression and inhibition of IL-1 signaling by the IL-1 receptor family member TIR8/SIGIRR” Eur Cytokine Netw. 14 (4) :211-8 (Oct. 2003).
  Porkka et al., “Cloning and characterization of a novel six-transmembrane protein STEAP2, expressed in normal and malignant prostate” Laboratory Investigations 82(11):1573-82 (Nov. 2002).
  Preger et al., “Alternative splicing generates an isoform of the human Sef gene with altered subcellular localization and specificity” Proc Nati Acad Sci U S A 101 (5) :1229-34 (Feb. 3, 2004).
  Puertollano et al., “Recombinant expression of the MAL proteolipid, a component of glycolipid-enriched membrane microdomains, induces the formation of vesicular structures in insect cells” J Biol Chem . 272 (29) :18311-5 (Jul. 18, 1997).
  Robinson et al., “Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects” Am J Hum Genet. 72(4):1047-52 (Apr. 2003).
  Ross et al., “Podocan, a novel small leucine-rich repeat protein expressed in the sclerotic glomerular lesion of experimental HIV-associated nephropathy” J Biol Chem. 278 (35) :33248-55 (Aug. 29, 2003).
  Ruegg et al., “B4B, a novel growth-arrest gene, is expressed by a subset of progenitor/pre-B lymphocytes negative for cytoplasmic mu-chain” J Immunol. 157(1):72-80 (Jul. 1, 1996).
  Rupp et al., “Identification, genomic organization and mRNA expression of CRELD1, the founding member of a unique family of matricellular proteins” Gene 293 (1-2) :47-57 (Jun. 26, 2002).
  Saito et al., “A secreted type of beta 1,6-N-acetylglucosaminyltransferase V (GnT-V) induces tumor angiogenesis without mediation of glycosylation: a novel function of GnT-V distinct from the original glycosyltransferase activity” J Biol Chem. 277 (19) :17002-8 (May 10, 2002).
  Sakakibara and Hattori, “Chat, a Cas/HEF1-associated adaptor protein that integrates multiple signaling pathways” J Biol Chem. 275(9):6404-10 (Mar 3, 2000).
  Sakakibara et al., “A novel hematopoietic adaptor protein, Chat-H, positively regulates T cell receptor-mediated interleukin-2 production by Jurkat cells” J Biol Chem. 278 (8) :6012-7 (Feb. 21, 2003).
  Sakakibara et al., “Novel function of Chat in controlling cell adhesion via Cas-Crk-C3G-pathway-mediated Rapl activation” J Cell Sci. 115 (Pt 24) :4915-24 (Dec. 15, 2002).
  Sanchez-Pulido et al., “ACRATA: a novel electron transfer domain associated to apoptosis and cancer” BMC Cancer 4 :98 (Dec. 29, 2004).
  Saravanan et al., “Specific downregulation and mistargeting of the lipid raft-associated protein MAL in a glycolipid storage disorder” Neurobiol Dis. 16 (2) :396-406(Jul. 2004).
  Sasaki et al., “Dynamic behavior of paired claudin strands within apposing plasma membranes” Proc Natl Acad Sci U S A. 100 (7) :3971-6 (Apr. 1, 2003).
  Schachter, “The role of the GlcNAc(beta)1,2Man(alpha)—moiety in mammalian development. Null mutations of the genes encoding UDP-N-acetylglucosamine: . . . ” Biochim Biophys Acta. 1573 (3) :292-300 (Dec. 19, 2002).
  Schaeren-Wiemers et al., “The raft-associated protein MAL is required for maintenance of proper axon--glia interactions in the central nervous system” J Cell Biol. 166 (5) :731-42 (Aug. 30, 2004).
  Schmitmeier et al., “Purification and characterization of the thyrotropin-releasing hormone (TRH)—degrading serum enzyme and its identification as a product of liver origin” Eur J Biochem. 269 (4) :1278-86 (Feb. 2002).
  Schomburg et al., “Human TRH—degrading ectoenzyme cDNA cloning, functional expression, genomic structure and chromosomal assignment” Eur J Biochem. 265 (1) :415-22 (Oct. 1, 1999).
  Scorilas et al., “Molecular characterization of a new gene, CEAL1, encoding for a carcinoembryonic antigen-like protein with a highly conserved domain of eukaryotic translation initiation factors” Gene. 310:79-89 (May 22, 2003).
  Sellin et al., “NEPH1 defines a novel family of podocin interacting proteins” FASEB J. 17 (1) :115-117 (Jan. 2003).
  Serru et al., “Sequence and expression of seven new tetraspans” Biochim Biophys Acta 1478 (1) :159-63 (Mar. 16, 2000).
  Shaw et al., “Glycosylation and epitope mapping of the 5T4 glycoprotein oncofoetal antigen” Biochemical Journal 363(Pt 1):137-45 (Apr. 1, 2002).
  Shi et al., “A Novel Cytokine Receptor-Ligand Pair: Identification, Molecular Characterization and In Vivo Immunomodulatory Activity” Journal of Biological Chemistry 275 (25) :19167-19176 (Jun. 23, 2000).
  Shimizu-Hirota et al., “Functional characterization of podocan, a member of a new class in the small leucine-rich repeat protein family” FEBS Letters 563(1-3):69-74 (Apr. 9, 2004).
  Sobanov et al., “A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex” Eur J Immunol. 31 (12) :3493-503 (Dec. 2001).
  Starnes et al., “Cutting Edge: IL-17F, a Novel Cytokine Selectively Expressed in Activated T Cells and Monocytes, Regulates Angiogenesis and Endothelial Cell Cytokine Production” Journal of Immunology. 167:4137-4140 (2001).
  Sun et al., “Kirrel2, a novel immunoglobulin superfamily gene expressed primarily in beta cells of the pancreatic islets” Genomics 82 (2) :130-42 (Aug. 2003).
  Swisshelm et al., “SEMP1, a senescence-associated cDNA isolated from human mammary epithelial cells, is a member of an epithelial membrane protein superfamily” Gene 226 (2) :285-95 (Jan. 21, 1999).
  Takahashi et al., “Role for Fes/Fps tyrosine kinase in microtubule nucleation through is Fes/CIP4 homology domain” J Biol Chem. 278 (49) :49129-33 (Dec. 5, 2003).
  Taniguchi et al., “Worldwide distribution and broader clinical spectrum of muscle-eye-brain disease” Hum Mol Genet. 12 (5) :527-34 (Mar. 1, 2003).
  Taniyama et al., “Cloning and expression of a novel lysophospholipase which structurally resembles lecithin cholesterol acyltransferase” Biochem Biophys Res Commun. 257 (1) :50-6 (Apr. 2, 1999).
  Tarrant et al., “Tetraspanins: molecular organisers of the leukocyte surface” Trends Immunol. 24(11):61077 (Nov 2003).
  Thomassen et al., “Identification and characterization of SIGIRR, a molecule representing a novel subtype of the IL-1R superfamily” Cytokine 11 (6) :389-99 (Jun. 1999).
  Tian, “EVI27 encodes a novel membrane protein with homology to the IL-17 receptor” Oncogene 19:2098-2109 (2000).
  Tominaga et al., “The novel gene fad104, containing a fibronectin type III domain, has a significant role in adipogenesis” BS Lett. 577 (1-2) :49-54 (Nov. 5, 2004).
  Torii et al., “Sef is a spatial regulator for Ras/MAP kinase signaling” Dev Cell 7(1) :33-44 (Jul. 2004).
  Tovar et al., “Mouse novel Ly9: a new member of the expanding CD150 (SLAM) family of leukocyte cell-surface receptors” Immunogenetics 54 (6) :394-402 (Sep. 2002).
  Tsang et al., “Identification of Sef, a novel modulator of FGF signalling” Nat Cell Biol. 4 (2) :165-9 (Feb 2002).
  Tucker et al., “The thrombospondin type 1 repeat superfamily” Int J Biochem Cell Biol. 36 (6) :969-74 (2004).
  Uchida et al., “A novel epidermal growth factor-like molecule containing two follistatin modules stimulates tyrosine phosphorylation of erbB-4 in MKN28 gastric cancer cells” chem Biophys Res Commun. 266 (2) :593-602 (Dec. 20, 1999).
  Velasco et al., “Matriptase-2, a membrane-bound mosaic serine proteinase predominantly expressed in human liver and showing degrading activity against extracellular matrix proteins” J Biol Chem. 277 (40) :37637-46 (Oct. 4, 2002).
  Vervoort et al., “POMGnTl gene alterations in a family with neurological abnormalities” Ann Neurol. 56(1):143-8 (Jul. 2004).
  Wald et al., “SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling” Nat. Immunol. 4 (9) :920-7 (Sep. 2003).
  Wang et al., “Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray” World J Gastroenterol. 9 (3) :392-8 (Mar. 2003).
  Ward et al., “The 5T4 oncofoetal antigen is an early differentiation marker of mouse ES cells and its absence is a useful means to assess pluripotency” J Cell Sci. 116 (Pt 22) :4533-42 (Nov. 15, 2003).
  Wegorzewska et al., “Overexpression of the immunoglobulin superfamily members CDO and BOC enhances differentiation of the human rhabdomyosarcoma cell line RD” Mol Carcinog. 37 (1) :1-4 (May 2003).
  Wilkinson et al., “CRIM1 regulates the rate of processing and delivery of bone morphogenetic proteins to the cell surface” J Biol Chem. 278 (36) :34181-8 (Sep. 5, 2003).
  Wright et al., “The L6 membrane proteins—a new four-transmembrane superfamily” Protein Sci. 9 (8) :1594-600 (Aug. 2000).
  Wu et al., “Generation of Committed Erythroid BFU-E and CFU-E Progenitors Does Not Require Erythropoietin or the Erythropoietin Receptor” Cell 83 (1) :59-67 (Oct. 6, 1995).
  Wu et al., “Identification of one exon deletion of intestinal alkaline sphingomyelinase in colon cancer HT-29 cells and a differentiation-related expression of the wild-type enzyme in Caco-2 cells” Carcinogenesis 25 (8) :1327-33 (Aug. 2004).
  Wulf and Suter, “Embryonic expression of epithelial membrane protein 1 in early neurons” Brain Res Dev Brain Res. 116 (2) :169-80 (Sep. 6, 1999).
  Xiong et al., “hSef inhibits PC-12 cell differentiation by interfering with Ras-mitogen-activated protein kinase MAPK signaling” J Biol Chem. 278 (50) : 50273-82 (Dec. 12, 2003).
  Xu et al., “A novel liver-specific zona pellucida domain containing protein that is expressed rarely in hepatocellular carcinoma” Hepatology 38 (3) :735-44 (Sep. 2003).
  Xu et al., “Identification of LZP gene from Mus musculus and Rattus norvegicus coding for a novel liver-specific ZP domain-containing secretory protein” DNA Seq. 15 (2) :81-7 (Apr. 2004).
  Yang et al., “A novel interleukin-17 receptor-like protein identified in human umbilical vein endothelial cells antagonizes basic fibroblast growth factor-induced signaling” J Biol Chem. 278 (35) :33232-8 (Aug. 29, 2003).
  Yang et al., “Sef interacts with TAKl and mediates JNK activation and apoptosis” J Biol Chem . 279 (37) :38099-102 (Sep. 10, 2004).
  Yoshida et al., “Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1” Dev Cell 1 (5) :717-24 (Nov. 2001).
  Yu et al., “Claudin-8 expression in Madin-Darby canine kidney cells augments the paracellular barrier to cation permeation” J Biol Chem. 278 (19) :17350-9 (May 9, 2003).
  Zhang et al., “Cloning and expression of a novel UDP-GlcNAc:alpha-D-mannoside beta1,2-N-acetylglucosaminyltransferase homologous to UDP-G1cNAc:alpha-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I” Biochemical Journal 361(Pt 1 ):153-62 (Jan. 1, 2002).
  Gerhard, D.S., et al., Genome Res.—14:2121-2127 (2004).
  Serru, V., et al., Biochimica et Biophysica Acta—1478(1):159-163 (2000).
  Thomas, K.R., et al., Cell—51:503-512 (1987).
  Kawaii, et al., “Functional annotation of a full-length mouse cDNA collection” Nature, vol. 409, No. 6821, pp. 685-690, (2001).
 
 
     * cited by examiner
 
     Primary Examiner —Scott Long
     Art Unit — 1633
     Exemplary claim number — 1
 
(74)Attorney, Agent, or Firm — Bonny Yeung; Christopher De Vry; Ginger R. Dreger

(57)

Abstract

The present invention relates to transgenic animals, as well as compositions and methods relating to the characterization of gene function. Specifically, the present invention provides transgenic mice comprising disruptions in PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 genes. Such in vivo studies and characterizations may provide valuable identification and discovery of therapeutics and/or treatments useful in the prevention, amelioration or correction of diseases or dysfunctions associated with gene disruptions such as neurological disorders; cardiovascular, endothelial or angiogenic disorders; eye abnormalities; immunological disorders; oncological disorders; bone metabolic abnormalities or disorders; lipid metabolic disorders; or developmental abnormalities.
3 Claims, 156 Drawing Sheets, and 142 Figures


RELATED APPLICATIONS

[0001] This application is a US national stage continuation application claiming priority under 35 USC §371 of international application PCT/US2006/019651, filed May 18, 2006, which claims priority under 35 USC §119 to U.S. Provisional Applications: 60/780,262 filed Mar. 7, 2006 and 60/687,900 filed Jun. 6, 2005.

FIELD OF THE INVENTION

[0002] The present invention relates to compositions, including transgenic and knockout animals and methods of using such compositions for the diagnosis and treatment of diseases or disorders.

BACKGROUND OF THE INVENTION

[0003] Extracellular proteins play important roles in, among other things, the formation, differentiation and maintenance of multicellular organisms. The fate of many individual cells, e.g., proliferation, migration, differentiation, or interaction with other cells, is typically governed by information received from other cells and/or the immediate environment. This information is often transmitted by secreted polypeptides (for instance, mitogenic factors, survival factors, cytotoxic factors, differentiation factors, neuropeptides, and hormones) which are, in turn, received and interpreted by diverse cell receptors or membrane-bound proteins. These secreted polypeptides or signaling molecules normally pass through the cellular secretory pathway to reach their site of action in the extracellular environment.
[0004] Secreted proteins have various industrial applications, including as pharmaceuticals, diagnostics, biosensors and bioreactors. Most protein drugs available at present, such as thrombolytic agents, interferons, interleukins, erythropoietins, colony stimulating factors, and various other cytokines, are secretory proteins. Their receptors, which are membrane proteins, also have potential as therapeutic or diagnostic agents. Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. Examples of screening methods and techniques are described in the literature [see, for example, Klein et al., Proc. Natl. Acad. Sci. 93:7108-7113 (1996); U.S. Pat. No. 5,536,637)].
[0005] Membrane-bound proteins and receptors can play important roles in, among other things, the formation, differentiation and maintenance of multicellular organisms. The fate of many individual cells, e.g., proliferation, migration, differentiation, or interaction with other cells, is typically governed by information received from other cells and/or the immediate environment. This information is often transmitted by secreted polypeptides (for instance, mitogenic factors, survival factors, cytotoxic factors, differentiation factors, neuropeptides, and hormones) which are, in turn, received and interpreted by diverse cell receptors or membrane-bound proteins. Such membrane-bound proteins and cell receptors include, but are not limited to, cytokine receptors, receptor kinases, receptor phosphatases, receptors involved in cell-cell interactions, and cellular adhesion molecules like selectins and integrins. For instance, transduction of signals that regulate cell growth and differentiation is regulated in part by phosphorylation of various cellular proteins. Protein tyrosine kinases, enzymes that catalyze that process, can also act as growth factor receptors. Examples include fibroblast growth factor receptor and nerve growth factor receptor.
[0006] Membrane-bound proteins and receptor molecules have various industrial applications, including as pharmaceutical and diagnostic agents. Receptor immuno-adhesions, for instance, can be employed as therapeutic agents to block receptor-ligand interactions. The membrane-bound proteins can also be employed for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction.
[0007] Efforts are being undertaken by both industry and academia to identify new, native receptor or membrane-bound proteins. Many efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel receptor or membrane-bound proteins.
[0008] Given the importance of secreted and membrane-bound proteins in biological and disease processes, in vivo studies and characterizations may provide valuable identification and discovery of therapeutics and/or treatments useful in the prevention, amelioration or correction of diseases or dysfunctions. In this regard, genetically engineered mice have proven to be invaluable tools for the functional dissection of biological processes relevant to human disease, including immunology, cancer, neuro-biology, cardiovascular biology, obesity and many others. Gene knockouts can be viewed as modeling the biological mechanism of drug action by presaging the activity of highly specific antagonists in vivo. Knockout mice have been shown to model drug activity; phenotypes of mice deficient for specific pharmaceutical target proteins can resemble the human clinical phenotype caused by the corresponding antagonist drug. Gene knockouts enable the discovery of the mechanism of action of the target, the predominant physiological role of the target, and mechanism-based side-effects that might result from inhibition of the target in mammals. Examples of this type include mice deficient in the angiotensin converting enzyme (ACE) [Esther, C. R. et al., Lab. Invest., 74:953-965 (1996)] and cyclooxygenase-1 (COX1) genes [Langenbach, R. et al., Cell 83:483-492 (1995)]. Conversely, knocking the gene out in the mouse can have an opposite phenotypic effect to that observed in humans after administration of an agonist drug to the corresponding target. Examples include the erythropoietin knockout [Wu, C. S. et al., Cell, 83:59-67 (1996)], in which a consequence of the mutation is deficient red blood cell production, and the GABA(A)-R-ββ3 knockout [DeLorey, T. M., J. Neurosci., 18:8505-8514 (1998)], in which the mutant mice show hyperactivity and hyper-responsiveness. Both these phenotypes are opposite to the effects of erythropoietin and benzodiazepine administration in humans. A striking example of a target validated using mouse genetics is the ACC2 gene. Although the human ACC2 gene had been identified several years ago, interest in ACC2 as a target for drug development was stimulated only recently after analysis of ACC2 function using a knockout mouse. ACC2 mutant mice eat more than their wild-type littermates, yet burn more fat and store less fat in their adipocytes, making this enzyme a probable target for chemical antagonism in the treatment of obesity [Abu-Elheiga, L. et al., Science, 291:2613-2616 (2001)].
[0009] In the instant application, mutated gene disruptions have resulted in phenotypic observations related to various disease conditions or dysfunctions including: CNS/neurological disturbances or disorders such as anxiety; eye abnormalities and associated diseases; cardiovascular, endothelial or angiogenic disorders including atherosclerosis; abnormal metabolic disorders including diabetes and dyslipidemias associated with elevated serum triglycerides and cholesterol levels; immunological and inflammatory disorders; oncological disorders; bone metabolic abnormalities or disorders such as arthritis, osteoporosis and osteopetrosis; or a developmental disease such as embryonic lethality.

SUMMARY OF THE INVENTION

A. Embodiments

[0010] The invention provides an isolated nucleic acid molecule comprising a nucleotide sequence that encodes a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide.
[0011] In one aspect, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule encoding a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide having a full-length amino acid sequence as disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).
[0012] In other aspects, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule comprising the coding sequence of a full-length PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide cDNA as disclosed herein, the coding sequence of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide lacking the signal peptide as disclosed herein, the coding sequence of an extracellular domain of a transmembrane PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, with or without the signal peptide, as disclosed herein or the coding sequence of any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).
[0013] In a further aspect, the invention concerns an isolated nucleic acid molecule comprising a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule that encodes the same mature polypeptide encoded by any of the human 2 protein cDNAs deposited with the ATCC as disclosed herein, or (b) the complement of the DNA molecule of (a).
[0014] Another aspect of the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence encoding a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated, or is complementary to such encoding nucleotide sequence, wherein the transmembrane domain(s) of such polypeptide are disclosed herein. Therefore, soluble extracellular domains of the herein described PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptides are contemplated.
[0015] The invention also provides fragments of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide coding sequence, or the complement thereof, that may find use as, for example, hybridization probes, for encoding fragments of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide that may optionally encode a polypeptide comprising a binding site for an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody or as antisense oligonucleotide probes. Such nucleic acid fragments usually are or are at least about 10 nucleotides in length, alternatively are or are at least about 15 nucleotides in length, alternatively are or are at least about 20 nucleotides in length, alternatively are or are at least about 30 nucleotides in length, alternatively are or are at least about 40 nucleotides in length, alternatively are or are at least about 50 nucleotides in length, alternatively are or are at least about 60 nucleotides in length, alternatively are or are at least about 70 nucleotides in length, alternatively are or are at least about 80 nucleotides in length, alternatively are or are at least about 90 nucleotides in length, alternatively are or are at least about 100 nucleotides in length, alternatively are or are at least about 110 nucleotides in length, alternatively are or are at least about 120 nucleotides in length, alternatively are or are at least about 130 nucleotides in length, alternatively are or are at least about 140 nucleotides in length, alternatively are or are at least about 150 nucleotides in length, alternatively are or are at least about 160 nucleotides in length, alternatively are or are at least about 170 nucleotides in length, alternatively are or are at least about 180 nucleotides in length, alternatively are or are at least about 190 nucleotides in length, alternatively are or are at least about 200 nucleotides in length, alternatively are or are at least about 250 nucleotides in length, alternatively are or are at least about 300 nucleotides in length, alternatively are or are at least about 350 nucleotides in length, alternatively are or are at least about 400 nucleotides in length, alternatively are or are at least about 450 nucleotides in length, alternatively are or are at least about 500 nucleotides in length, alternatively are or are at least about 600 nucleotides in length, alternatively are or are at least about 700 nucleotides in length, alternatively are or are at least about 800 nucleotides in length, alternatively are or are at least about 900 nucleotides in length and alternatively are or are at least about 1000 nucleotides in length, wherein in this context the term “about” means the referenced nucleotide sequence length plus or minus 10% of that referenced length. It is noted that novel fragments of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide-encoding nucleotide sequence may be determined in a routine manner by aligning the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide-encoding nucleotide sequence with other known nucleotide sequences using any of a number of well known sequence alignment programs and determining which PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide-encoding nucleotide sequence fragment(s) are novel. All of such PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide-encoding nucleotide sequences are contemplated herein. Also contemplated are the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide fragments encoded by these nucleotide molecule fragments, preferably those PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide fragments that comprise a binding site for an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
[0016] The invention provides isolated PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptides encoded by any of the isolated nucleic acid sequences hereinabove identified.
[0017] In a certain aspect, the invention concerns an isolated PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 92% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide having a full-length amino acid sequence as disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of the full-length amino acid sequence as disclosed herein.
[0018] In a further aspect, the invention concerns an isolated PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 92% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to an amino acid sequence encoded by any of the human protein cDNAs deposited with the ATCC as disclosed herein.
[0019] In one aspect, the invention concerns PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 variant polypeptides which are or are at least about 10 amino acids in length, alternatively are or are at least about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600 amino acids in length, or more. Optionally, PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 variant polypeptides will have or have no more than one conservative amino acid substitution as compared to the native PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence, alternatively will have or will have no more than 2, 3, 4, 5, 6, 7, 8, 9, or 10 conservative amino acid substitution as compared to the native PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence.
[0020] In a specific aspect, the invention provides an isolated PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide without the N-terminal signal sequence and/or the initiating methionine and is encoded by a nucleotide sequence that encodes such an amino acid sequence as hereinbefore described. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide and recovering the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide from the cell culture.
[0021] Another aspect the invention provides an isolated PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide and recovering the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide from the cell culture.
[0022] The invention provides agonists and antagonists of a native PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide as defined herein. In particular, the agonist or antagonist is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody or a small molecule.
[0023] The invention provides a method of identifying agonists or antagonists to a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide which comprise contacting the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide with a candidate molecule and monitoring a biological activity mediated by said PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. Preferably, the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide is a native PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide.
[0024] The invention provides a composition of matter comprising a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, or an agonist or antagonist of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide as herein described, or an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody, in combination with a carrier. Optionally, the carrier is a pharmaceutically acceptable carrier.
[0025] The invention provides the use of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, or an agonist or antagonist thereof as hereinbefore described, or anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody, for the preparation of a medicament useful in the treatment of a condition which is responsive to the anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
[0026] The invention provides vectors comprising DNA encoding any of the herein described polypeptides. Host cell comprising any such vector are also provided. By way of example, the host cells may be CHO cells, E. coli, or yeast. A process for producing any of the herein described polypeptides is further provided and comprises culturing host cells under conditions suitable for expression of the desired polypeptide and recovering the desired polypeptide from the cell culture.
[0027] The invention provides chimeric molecules comprising any of the herein described polypeptides fused to a heterologous polypeptide or amino acid sequence. Example of such chimeric molecules comprise any of the herein described polypeptides fused to an epitope tag sequence or a Fc region of an immunoglobulin.
[0028] The invention provides an antibody which binds, preferably specifically, to any of the above or below described polypeptides. Optionally, the antibody is a monoclonal antibody, humanized antibody, antibody fragment or single-chain antibody.
[0029] The invention provides oligonucleotide probes which may be useful for isolating genomic and cDNA nucleotide sequences, measuring or detecting expression of an associated gene or as antisense probes, wherein those probes may be derived from any of the above or below described nucleotide sequences. Preferred probe lengths are described above.
[0030] The invention also provides a method of identifying a phenotype associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising:
[0031] (a) providing a non-human transgenic animal whose genome comprises a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide;
[0032] (b) measuring a physiological characteristic of the non-human transgenic animal; and
[0033] (c) comparing the measured physiological characteristic with that of a gender matched wild-type animal, wherein the physiological characteristic of the non-human transgenic animal that differs from the physiological characteristic of the wild-type animal is identified as a phenotype resulting from the gene disruption in the non-human transgenic animal. In one aspect, the non-human transgenic animal is a mammal. In another aspect, the mammal is a rodent. In still another aspect, the mammal is a rat or a mouse. In one aspect, the non-human transgenic animal is heterozygous for the disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. In another aspect, the phenotype exhibited by the non-human transgenic animal as compared with gender matched wild-type littermates is at least one of the following: a neurological disorder; a cardiovascular, endothelial or angiogenic disorder; an eye abnormality; an immunological disorder; an oncological disorder; a bone metabolic abnormality or disorder; a lipid metabolic disorder; or a developmental abnormality.
[0034] In yet another aspect, the neurological disorder is an increased anxiety-like response during open field activity testing. In yet another aspect, the neurological disorder is a decreased anxiety-like response during open field activity testing. In yet another aspect, the neurological disorder is an abnormal circadian rhythm during home-cage activity testing. In yet another aspect, the neurological disorder is an enhanced motor coordination during inverted screen testing. In yet another aspect, the neurological disorder is impaired motor coordination during inverted screen testing. In yet another aspect, the neurological disorder includes depression, generalized anxiety disorders, attention deficit disorder, sleep disorder, hyperactivity disorder, obsessive compulsive disorder, schizophrenia, cognitive disorders, hyperalgesia and sensory disorders. Such neurological disorders include the category defined as “anxiety disorders” which include but are not limited to: mild to moderate anxiety, anxiety disorder due to a general medical condition, anxiety disorder not otherwise specified, generalized anxiety disorder, panic attack, panic disorder with agoraphobia, panic disorder without agoraphobia, posttraumatic stress disorder, social phobia, social anxiety, autism, specific phobia, substance-induced anxiety disorder, acute alcohol withdrawal, obsessive compulsive disorder, agoraphobia, monopolar disorders, bipolar disorder I or II, bipolar disorder not otherwise specified, cyclothymic disorder, depressive disorder, major depressive disorder, mood disorder, substance-induced mood disorder, enhancement of cognitive function, loss of cognitive function associated with but not limited to Alzheimer's disease, stroke, or traumatic injury to the brain, seizures resulting from disease or injury including but not limited to epilepsy, learning disorders/disabilities, cerebral palsy. In addition, anxiety disorders may apply to personality disorders including but not limited to the following types: paranoid, antisocial, avoidant behavior, borderline personality disorders, dependent, histronic, narcissistic, obsessive-compulsive, schizoid, and schizotypal.
[0035] In another aspect, the eye abnormality is a retinal abnormality. In still another aspect, the eye abnormality is consistent with vision problems or blindness. In yet another aspect, the retinal abnormality is consistent with retinitis pigmentosa or is characterized by retinal degeneration or retinal dysplasia.
[0036] In still another aspect, the retinal abnormalities are consistent with retinal dysplasia, various retinopathies, including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, age-related macular degeneration, diabetic macular edema, corneal neovascularization, corneal graft neovascularization, corneal graft rejection, retinal/choroidal neovascularization, neovascularization of the angle (rubeosis), ocular neovascular disease, vascular restenosis, arteriovenous malformations (AVM), meningioma, hemangioma, angiofibroma, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, retinal artery obstruction or occlusion; retinal degeneration causing secondary atrophy of the retinal vasculature, retinitis pigmentosa, macular dystrophies, Stargardt's disease, congenital stationary night blindness, choroideremia, gyrate atrophy, Leber's congenital amaurosis, retinoschisis disorders, Wagner's syndrome, Usher syndromes, Zellweger syndrome, Saldino-Mainzer syndrome, Senior-Loken syndrome, Bardet-Biedl syndrome, Alport's syndrome, Alstrom's syndrome, Cockayne's syndrome, dysplaisa spondyloepiphysaria congentia, Flynn-Aird syndrome, Friedreich ataxia, Hallgren syndrome, Marshall syndrome, Albers-Schnoberg disease, Refsum's disease, Kearns-Sayre syndrome, Waardenburg's syndrome, Alagile syndrome, myotonic dystrophy, olivopontocerebellar atrophy, Pierre-Marie dunsdrome, Stickler syndrome, carotinemeia, cystinosis, Wolfram syndrome, Bassen-Kornzweig syndrome, abetalipoproteinemia, incontinentiapigmenti, Batten's disease, mucopolysaccharidoses, homocystinuria, or mannosidosis.
[0037] In still another aspect, the eye abnormality is a cataract. In still yet another aspect, the cataract is a systemic disease such as human Down's syndrome, Hallerman-Streiff syndrome, Lowe syndrome, galactosemia, Marfan syndrome, Trismoy 13-15, Alport syndrome, myotonic dystrophy, Fabry disease, hypoparathroidism or Conradi syndrome.
[0038] In still another aspect, the developmental abnormality comprises embryonic lethality or reduced viability.
[0039] In still yet another aspect, the cardiovascular, endothelial or angiogenic disorders are arterial diseases, such as diabetes mellitus; papilledema; optic atrophy; atherosclerosis; angina; myocardial infarctions such as acute myocardial infarctions, cardiac hypertrophy, and heart failure such as congestive heart failure; hypertension; inflammatory vasculitides; Reynaud's disease and Reynaud's phenomenon; aneurysms and arterial restenosis; venous and lymphatic disorders such as thrombophlebitis, lymphangitis, and lymphedema; peripheral vascular disease; cancer such as vascular tumors, e.g., hemangioma (capillary and cavernous), glomus tumors, telangiectasia, bacillary angiomatosis, hemangioendothelioma, angiosarcoma, haemangiopericytoma, Kaposi's sarcoma, lymphangioma, and lymphangiosarcoma; tumor angiogenesis; trauma such as wounds, burns, and other injured tissue, implant fixation, scarring; ischemia reperfusion injury; rheumatoid arthritis; cerebrovascular disease; renal diseases such as acute renal failure, or osteoporosis.
[0040] In still another aspect, the immunological disorders are consistent with systemic lupus erythematosis; rheumatoid arthritis; juvenile chronic arthritis; spondyloarthropathies; systemic sclerosis (scleroderma); idiopathic inflammatory myopathies (dermatomyositis, polymyositis); Sjögren's syndrome; systemic vasculitis; sarcoidosis; autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria); autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia); thyroiditis (Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis); diabetes mellitus; immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis); demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic demyelinating polyneuropathy or Guillain-Barré syndrome, and chronic inflammatory demyelinating polyneuropathy; hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other non-hepatotropic viruses), autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis; inflammatory bowel disease (ulcerative colitis: Crohn's disease); gluten-sensitive enteropathy, and Whipple's disease; autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis; allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, food hypersensitivity and urticaria; immunologic diseases of the lung such as eosinophilic pneumonia, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis; or transplantation associated diseases including graft rejection and graft-versus-host disease.
[0041] In still another aspect, the bone metabolic abnormality or disorder is arthritis, osteoporosis, osteopenia or osteopetrosis.
[0042] In another aspect, the non-human transgenic animal exhibits at least one of the following physiological characteristics compared with gender matched wild-type littermates: increased anxiety-like response during open field testing; decreased anxiety during open field testing; hypoactivity with no circadian rhythm; increased total distance traveled during open field testing (hyperactivity); decreased locomotor activity during open field testing; abnormal circadian rhythm during home-cage activity testing (low activity during the light phase); abnormal circadian rhythm during home-cage activity testing including decreased ambulatory counts; abnormal circadian rhythm during home-cage activity testing including increased ambulatory counts; whiskers absent due to anxiety phenotype; enhanced circadian rhythm; increased stress induced hyperthermia with increased stress response (increased anxiety); increased resistance to stress induced hyperthermia; decreased resistance to stress induced hyperthermia; enhanced motor coordination during inverted screen testing; impaired motor coordination during inverted screen testing; increased immobility in tail suspension (increased depressive-like response); increased depressive-like response during tail suspension testing; decreased depressive-like response during tail suspension testing; clutched hind limbs during tail suspension testing; decreased startle response during prepulse inhibition testing; no startle response indicating deafness; increased prepulse inhibition with enhanced sensorimotor gating/attention; increased latency on hotplate indicative of decreased sensitivity to heat-induced pain; opthamological abnormalities; corneal epidermidalization of the corneal stroma with scarring and blocked vision; metaplasia of the cornea and sclera; attenuated retinal arteries; retinal hemorrhage; optic nerve abnormalities; dilated optic disc; increased intraocular pressure; corneal epithelialization with underdeveloped eyelids; retinal degeneration; agenesis of the Harderian gland; retinal vessel disorganization, microaneurysms and retinal capillary leakage; impaired vision; decreased heart rate; decreased mean systolic blood pressure; increased mean systolic blood pressure; increased insulin sensitivity; increased mean fasting serum glucose levels; decreased mean serum glucose levels; increased mean serum cholesterol levels; decreased mean serum cholesterol levels; increased mean serum triglyceride levels; enhanced glucose tolerance; impaired glucose tolerance; decreased mean serum insulin levels; ketonemia; decreased mean serum calcium; blood urobilinogen, nitrites, protein and ketones; decreased sodium and chloride; increased bilirubin; notable lipemia; increased uric acid and potassium levels; increased mean serum alkaline phosphatase levels; decreased mean serum alkaline phosphatase levels; blood in the urine; glucosuria; increased nitrituria; ketonuria; increased mean percentage of natural killer cells; decreased mean percentage of natural killer cells; abnormal leukocyte count; leukopeniadue to lymphopenia and granulocytopenia; increased mean percentage of CD4 cells; decreased mean percentage of CD4 cells; decreased mean percentage of CD8 cells; reduced percentage of naive CD4 and CD8 T cells in lymph nodes; increased mean percentage of B cells in peripheral blood; decrease total white blood cells and lymphocyte counts; decreased absolute lymphocyte counts; increased mean absolute monocyte count; increased mean absolute neutrophil count; decreased in mean serum IgA levels; increase in mean serum IgA levels; increase in IgG1 levels; decreased mean serum IgG1 levels; decreased mean serum IgG1, IgG3, IgG2b and IgG2a levels; decreased mean serum IgG2a levels; decreased mean serum IgG2b levels; decreased mean serum IgG3 and IgM levels; increase in mean serum IgG2a levels; increase in mean serum IgG1, IgG2a and IgG3 levels; increase in mean serum IgG3 levels; anemia; decreased red blood cell count, decreased hemoglobin and decreased hematocrit with increased mean red blood cell count; increased mean corpuscular volume; decreased mean corpuscular volume; decreased mean corpuscular hemoglobin; increased red blood cell distribution width; defect in erythropoiesis; increased IgM+ IgD+ and B220hi/CD43− cells in bone marrow; decreased percentage of B220hi/CD43− IgM+ IgD+ cells in bone marrow; increased percentage of TCRB+ cells in Peyer's patches; reduction in naive T cells (especially CD4) in lymph nodes; increased percentage of CD11b+CD11c− cells (monocytes) in spleen; increased percentage of IgM+, CD117+ cells in bone marrow, higher percentage of dead B cells, decreased B cells, increased CD4 and CD8 T cells in lymph; B cells increased in bone marrow and significantly decreased in lymph node; notably decreased CD21hiCD23med B cells in spleen; decrease in Peyer's patch B220+ cells; decreased mean percentages of CD8 and natural killer cells with increased mean percentage of B cells; reduced number of TCRB+ CD38+ activated T cells in Peyer's patches; decreased mean percentage of CD4 cells with increased mean percentage of B cells; decreased B220+ CD38low and IgM in Payer's patches; increased mean platelet count; decreased mean platelet count; widespread apoptosis and loss of T lymphocytes in the thymic cortex and depletion of T cells in spleen; increased mean serum IgG2a response to an ovalbumin challenge; decreased to no serum IgG1 and IgG2a response to ovalbumin challenge; increased mean serum IgG1 response to an ovalbumin challenge; decreased mean serum TNF-alpha, MCP-1 and IL-6 responses to LPS challenge; increased mean serum MCP-1 response to a LPS challenge; increased mean serum TNF-alpha response to a LPS challenge; increased mean serum IL-6 response to a LPS challenge; increased skin fibroblast proliferation; decreased skin fibroblast proliferation; increased mean percent of total body fat and total fat mass; increased mean body weight; increased mean body length; increased total tissue mass (TTM); increased lean body mass (LBM); increased femoral bone mineral density (BMD); increased vertebral bone mineral density (BMD); increased bone mineral density (BMD); increased total body volumetric bone mineral density (vBMD); increased bone mineral content (BMC); increased mean femoral midshaft cortical thickness and cross-sectional area; increased mean vertebral trabecular bone volume, number and connectivity density; decreased mean percent of total body fat and total fat mass; decreased mean body weight; decreased mean body length; decreased total tissue mass (TTM); decreased lean body mass (LBM); decreased femoral bone mineral density (BMD); decreased vertebral bone mineral density (BMD); decreased bone mineral density (BMD); decreased bone mineral content (BMC); decreased bone mineral density index; decreased volumetric bone mineral density (vBMD); decreased mean femoral midshaft cortical thickness and cross-sectional area; decreased mean vertebral trabecular bone volume, number and connectivity density; marked osteopetrosis with increased bone mineralization; chronic inflammation in various tissues; thymic atrophy; systemic histiocytic storage disease affecting macrophages in liver, spleen and mesenteric lymph nodes; reduced liver size; chronic active hepatitis with focal hepatocyte necrosis; fatty changes in the liver; increased intracytoplasmic vacuolization of glycogen in hepatocytes; pancreatic dyserythropoietic anemia (type 1); multifocal neuronal necrosis; diffuse abiotrophy of the cerebellum granule cell layer; multifocal developmental malformation of the brain; hydronephosis; diffuse alopecia; epidermal hyperkeratosis; hypochromasia and anisocytosis characterized by abnormal erythrocytes (abnormally low hemoglobin and decreased erythropoiesis); growth retardation; development abnormalities; granulocytic hypoplasia of bone marrow; decreased numbers of myeloid granulocytic cell precursors; decreased granulocytopoiesis; no teeth; stunted growth with general reduction in all organ size; myocardial defects with defective structure and arrangement of the cardiac myocytes; cardiomyopathy with condensed eosinophilic sarcoplasm; congestive heart failure; pancreatic islets of Langerhans smaller and distribution of alpha (glycogen) and beta (insulin) cells altered; notable histopathologic alteration in cytoplasm of all cells in the zona fasciculata of the adrenal gland consistent with altered lipid/cholesterol uptake or metabolism (elevated cholesterol and triglycerides); infertility; testicular degeneration; vacuolar degeneration of seminiferous tubules; hypospermia; atrophic testes; ovarian and uterine hypoplasia; mammary gland was represented with just a few ducts; growth retardation with reduced viability; and embryonic lethality.
[0043] The invention also provides an isolated cell derived from a non-human transgenic animal whose genome comprises a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. In one aspect, the isolated cell is a murine cell. In yet another aspect, the murine cell is an embryonic stem cell. In still another aspect, the isolated cell is derived from a non-human transgenic animal which exhibits at least one of the following phenotypes compared with gender matched wild-type littermates: a neurological disorder; a cardiovascular, endothelial or angiogenic disorder; an eye abnormality; an immunological disorder; an oncological disorder; a bone metabolic abnormality or disorder; a lipid metabolic disorder; or a developmental abnormality. The invention also provides a method of identifying an agent that modulates a phenotype associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising:
[0044] (a) providing a non-human transgenic animal whose genome comprises a disruption of the gene which encodes for the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO111, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide;
[0045] (b) measuring a physiological characteristic of the non-human transgenic animal of (a);
[0046] (c) comparing the measured physiological characteristic of (b) with that of a gender matched wild-type animal, wherein the physiological characteristic of the non-human transgenic animal that differs from the physiological characteristic of the wild-type animal is identified as a phenotype resulting from the gene disruption in the non-human transgenic animal;
[0047] (d) administering a test agent to the non-human transgenic animal of (a); and
[0048] (e) determining whether the test agent modulates the identified phenotype associated with gene disruption in the non-human transgenic animal.
[0049] In one aspect, the phenotype associated with the gene disruption comprises a neurological disorder; a cardiovascular, endothelial or angiogenic disorder; an eye abnormality; an immunological disorder; anoncological disorder; a bone metabolic abnormality or disorder; a lipid metabolic disorder; or a developmental abnormality.
[0050] In yet another aspect, the neurological disorder is an increased anxiety-like response during open field activity testing. In yet another aspect, the neurological disorder is a decreased anxiety-like response during open field activity testing. In yet another aspect, the neurological disorder is an abnormal circadian rhythm during home-cage activity testing. In yet another aspect, the neurological disorder is an enhanced motor coordination during inverted screen testing. In yet another aspect, the neurological disorder is impaired motor coordination during inverted screen testing. In yet another aspect, the neurological disorder includes depression, generalized anxiety disorders, attention deficit disorder, sleep disorder, hyperactivity disorder, obsessive compulsive disorder, schizophrenia, cognitive disorders, hyperalgesia and sensory disorders. Such neurological disorders include the category defined as “anxiety disorders” which include but are not limited to: mild to moderate anxiety, anxiety disorder due to a general medical condition, anxiety disorder not otherwise specified, generalized anxiety disorder, panic attack, panic disorder with agoraphobia, panic disorder without agoraphobia, posttraumatic stress disorder, social phobia, social anxiety, autism, specific phobia, substance-induced anxiety disorder, acute alcohol withdrawal, obsessive compulsive disorder, agoraphobia, monopolar disorders, bipolar disorder I or II, bipolar disorder not otherwise specified, cyclothymic disorder, depressive disorder, major depressive disorder, mood disorder, substance-induced mood disorder, enhancement of cognitive function, loss of cognitive function associated with but not limited to Alzheimer's disease, stroke, or traumatic injury to the brain, seizures resulting from disease or injury including but not limited to epilepsy, learning disorders/disabilities, cerebral palsy. In addition, anxiety disorders may apply to personality disorders including but not limited to the following types: paranoid, antisocial, avoidant behavior, borderline personality disorders, dependent, histronic, narcissistic, obsessive-compulsive, schizoid, and schizotypal.
[0051] In yet another aspect, the eye abnormality is a retinal abnormality. In still another aspect, the eye abnormality is consistent with vision problems or blindness. In yet another aspect, the retinal abnormality is consistent with retinitis pigmentosa or is characterized by retinal degeneration or retinal dysplasia.
[0052] In still another aspect, the retinal abnormalities are consistent with retinal dysplasia, various retinopathies, including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, age-related macular degeneration, diabetic macular edema, corneal neovascularization, corneal graft neovascularization, corneal graft rejection, retinauchoroidal neovascularization, neovascularization of the angle (rubeosis), ocular neovascular disease, vascular restenosis, arteriovenous malformations (AVM), meningioma, hemangioma, angiofibroma, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, retinal artery obstruction or occlusion; retinal degeneration causing secondary atrophy of the retinal vasculature, retinitis pigmentosa, macular dystrophies, Stargardt's disease, congenital stationary night blindness, choroideremia, gyrate atrophy, Leber's congenital amaurosis, retinoschisis disorders, Wagner's syndrome, Usher syndromes, Zellweger syndrome, Saldino-Mainzer syndrome, Senior-Loken syndrome, Bardet-Biedl syndrome, Alport's syndrome, Alstrom's syndrome, Cockayne's syndrome, dysplaisa spondyloepiphysaria congentia, Flynn-Aird syndrome, Friedreich ataxia, Hallgren syndrome, Marshall syndrome, Albers-Schnoberg disease, Refsum's disease, Kearns-Sayre syndrome, Waardenburg's syndrome, Alagile syndrome, myotonic dystrophy, olivopontocerebellar atrophy, Pierre-Marie dunsdrome, Stickler syndrome, carotinemeia, cystinosis, Wolfram syndrome, Bassen-Kornzweig syndrome, abetalipoproteinemia, incontinentia pigmenti, Batten's disease, mucopolysaccharidoses, homocystinuria, or mannosidosis.
[0053] In still another aspect, the eye abnormality is a cataract. In still yet another aspect, the cataract is a systemic disease such as human Down's syndrome, Hallerman-Streiff syndrome, Lowe syndrome, galactosemia, Marfan syndrome, Trismoy 13-15, Alport syndrome, myotonic dystrophy, Fabry disease, hypoparathroidism, or Conradi syndrome.
[0054] In still another aspect, the developmental abnormality comprises embryonic lethality or reduced viability.
[0055] In still another aspect, the cardiovascular, endothelial or angiogenic disorders are arterial diseases, such as diabetes mellitus; papilledema; optic atrophy; atherosclerosis; angina; myocardial infarctions such as acute myocardial infarctions, cardiac hypertrophy, and heart failure such as congestive heart failure; hypertension; inflammatory vasculitides; Reynaud's disease and Reynaud's phenomenon; aneurysms and arterial restenosis; venous and lymphatic disorders such as thrombophlebitis, lymphangitis, and lymphedema; peripheral vascular disease; cancer such as vascular tumors, e.g., hemangioma (capillary and cavernous), glomus tumors, telangiectasia, bacillary angiomatosis, hemangioendothelioma, angiosarcoma, haemangiopericytoma, Kaposi's sarcoma, lymphangioma, and lymphangiosarcoma; tumor angiogenesis; trauma such as wounds, burns, and other injured tissue, implant fixation, scarring; ischemia reperfusion injury; rheumatoid arthritis; cerebrovascular disease; renal diseases such as acute renal failure, or osteoporosis.
[0056] In still another aspect, the immunological disorders are consistent with systemic lupus erythematosis; rheumatoid arthritis; juvenile chronic arthritis; spondyloarthropathies; systemic sclerosis (scleroderma); idiopathic inflammatory myopathies (dermatomyositis, polymyositis); Sjögren's syndrome; systemic vasculitis; sarcoidosis; autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria); autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia); thyroiditis (Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis); diabetes mellitus; immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis); demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic demyelinating polyneuropathy or Guillain-Barré syndrome, and chronic inflammatory demyelinating polyneuropathy; hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other non-hepatotropic viruses), autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis; inflammatory bowel disease (ulcerative colitis: Crohn's disease); gluten-sensitive enteropathy, and Whipple's disease; autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis; allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, food hypersensitivity and urticaria; immunologic diseases of the lung such as eosinophilic pneumonia, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis; or transplantation associated diseases including graft rejection and graft-versus-host disease.
[0057] In yet another aspect, the bone metabolic abnormality or disorder is arthritis, osteoporosis, osteopenia or osteopetrosis.
[0058] In another aspect, the non-human transgenic animal exhibits at least one of the following physiological characteristics compared with gender matched wild-type littermates: increased anxiety-like response during open field testing; decreased anxiety during open field testing; hypoactivity with no circadian rhythm; increased total distance traveled during open field testing (hyperactivity); decreased locomotor activity during open field testing; abnormal circadian rhythm during home-cage activity testing (low activity during the light phase); abnormal circadian rhythm during home-cage activity testing including decreased ambulatory counts; abnormal circadian rhythm during home-cage activity testing including increased ambulatory counts; whiskers absent due to anxiety phenotype; enhanced circadian rhythm; increased stress induced hyperthermia with increased stress response (increased anxiety); increased resistance to stress induced hyperthermia; decreased resistance to stress induced hyperthermia; enhanced motor coordination during inverted screen testing; impaired motor coordination during inverted screen testing; increased immobility in tail suspension (increased depressive-like response); increased depressive-like response during tail suspension testing; decreased depressive-like response during tail suspension testing; clutched hind limbs during tail suspension testing; decreased startle response during prepulse inhibition testing; no startle response indicating deafness; increased prepulse inhibition with enhanced sensorimotor gating/attention; increased latency on hotplate indicative of decreased sensitivity to heat-induced pain; opthamological abnormalities; corneal epidermidalization of the corneal stroma with scarring and blocked vision; metaplasia of the cornea and sclera; attenuated retinal arteries; retinal hemorrhage; optic nerve abnormalities; dilated optic disc; increased intraocular pressure; corneal epithelialization with underdeveloped eyelids; retinal degeneration; agenesis of the Harderian gland; retinal vessel disorganization, microaneurysms and retinal capillary leakage; impaired vision; decreased heart rate; decreased mean systolic blood pressure; increased mean systolic blood pressure; increased insulin sensitivity; increased mean fasting serum glucose levels; decreased mean serum glucose levels; increased mean serum cholesterol levels; decreased mean serum cholesterol levels; increased mean serum triglyceride levels; enhanced glucose tolerance; impaired glucose tolerance; decreased mean serum insulin levels; ketonemia; decreased mean serum calcium; blood urobilinogen, nitrites, protein and ketones; decreased sodium and chloride; increased bilirubin; notable lipemia; increased uric acid and potassium levels; increased mean serum alkaline phosphatase levels; decreased mean serum alkaline phosphatase levels; blood in the urine; glucosuria; increased nitrituria; ketonuria; increased mean percentage of natural killer cells; decreased mean percentage of natural killer cells; abnormal leukocyte count; leukopenia due to lymphopenia and granulocytopenia; increased mean percentage of CD4 cells; decreased mean percentage of CD4 cells; decreased mean percentage of CD8 cells; reduced percentage of naive CD4 and CD8 T cells in lymph nodes; increased mean percentage of B cells in peripheral blood; decrease total white blood cells and lymphocyte counts; decreased absolute lymphocyte counts; increased mean absolute monocyte count; increased mean absolute neutrophil count; decreased in mean serum IgA levels; increase in mean serum IgA levels; increase in IgG1 levels; decreased mean serum IgG1 levels; decreased mean serum IgG1, IgG3, IgG2b and IgG2a levels; decreased mean serum IgG2a levels; decreased mean serum IgG2b levels; decreased mean serum IgG3 and IgM levels; increase in mean serum IgG2a levels; increase in mean serum IgG1, IgG2a and IgG3 levels; increase in mean serum IgG3 levels; anemia; decreased red blood cell count, decreased hemoglobin and decreased hematocrit with increased mean red blood cell count; increased mean corpuscular volume; decreased mean corpuscular volume; decreased mean corpuscular hemoglobin; increased red blood cell distribution width; defect in erythropoiesis; increased IgM+ IgD+ and B220hi/CD43− cells in bone marrow; decreased percentage of B220hi/CD43− IgM+ IgD+ cells in bone marrow; increased percentage of TCRB+ cells in Peyer's patches; reduction in naive T cells (especially CD4) in lymph nodes; increased percentage of CD11b+CD11c− cells (monocytes) in spleen; increased percentage of IgM+, CD117+ cells in bone marrow, higher percentage of dead B cells, decreased B cells, increased CD4 and CD8 T cells in lymph; B cells increased in bone marrow and significantly decreased in lymph node; notably decreased CD21hiCD23med B cells in spleen; decrease in Peyer's patch B220+ cells; decreased mean percentages of CD8 and natural killer cells with increased mean percentage of B cells; reduced number of TCRB+ CD38+ activated T cells in Peyer's patches; decreased mean percentage of CD4 cells with increased mean percentage of B cells; decreased B220+ CD38low and IgM in Payer's patches; increased mean platelet count; decreased mean platelet count; widespread apoptosis and loss of T lymphocytes in the thymic cortex and depletion of T cells in spleen; increased mean serum IgG2a response to an ovalbumin challenge; decreased to no serum IgG1 and IgG2a response to ovalbumin challenge; increased mean serum IgG1 response to an ovalbumin challenge; decreased mean serum TNF-alpha, MCP-1 and IL-6 responses to LPS challenge; increased mean serum MCP-1 response to a LPS challenge; increased mean serum TNF-alpha response to a LPS challenge; increased mean serum IL-6 response to a LPS challenge; increased skin fibroblast proliferation; decreased skin fibroblast proliferation; increased mean percent of total body fat and total fat mass; increased mean body weight; increased mean body length; increased total tissue mass (TTM); increased lean body mass (LBM); increased femoral bone mineral density (BMD); increased vertebral bone mineral density (BMD); increased bone mineral density (BMD); increased total body volumetric bone mineral density (vBMD); increased bone mineral content (BMC); increased mean femoral midshaft cortical thickness and cross-sectional area; increased mean vertebral trabecular bone volume, number and connectivity density; decreased mean percent of total body fat and total fat mass; decreased mean body weight; decreased mean body length; decreased total tissue mass (TTM); decreased lean body mass (LBM); decreased femoral bone mineral density (BMD); decreased vertebral bone mineral density (BMD); decreased bone mineral density (BMD); decreased bone mineral content (BMC); decreased bone mineral density index; decreased volumetric bone mineral density (vBMD); decreased mean femoral midshaft cortical thickness and cross-sectional area; decreased mean vertebral trabecular bone volume, number and connectivity density; marked osteopetrosis with increased bone mineralization; chronic inflammation in various tissues; thymic atrophy; systemic histiocytic storage disease affecting macrophages in liver, spleen and mesenteric lymph nodes; reduced liver size; chronic active hepatitis with focal hepatocyte necrosis; fatty changes in the liver; increased intracytoplasmic vacuolization of glycogen in hepatocytes; pancreatic dyserythropoietic anemia (type 1); multifocal neuronal necrosis; diffuse abiotrophy of the cerebellum granule cell layer; multifocal developmental malformation of the brain; hydronephosis; diffuse alopecia; epidermal hyperkeratosis; hypochromasia and anisocytosis characterized by abnormal erythrocytes (abnormally low hemoglobin and decreased erythropoiesis); growth retardation; development abnormalities; granulocytic hypoplasia of bone marrow; decreased numbers of myeloid granulocytic cell precursors; decreased granulocytopoiesis; no teeth; stunted growth with general reduction in all organ size; myocardial defects with defective structure and arrangement of the cardiac myocytes; cardiomyopathy with condensed eosinophilic sarcoplasm; congestive heart failure; pancreatic islets of Langerhans smaller and distribution of alpha (glycogen) and beta (insulin) cells altered; notable histopathologic alteration in cytoplasm of all cells in the zona fasciculata of the adrenal gland consistent with altered lipid/cholesterol uptake or metabolism (elevated cholesterol and triglycerides); infertility; testicular degeneration; vacuolar degeneration of seminiferous tubules; hypospermia; atrophic testes; ovarian and uterine hypoplasia; mammary gland was represented with just a few ducts; growth retardation with reduced viability; and embryonic lethality.
[0059] The invention also provides an agent which modulates the phenotype associated with gene disruption. In one aspect, the agent is an agonist or antagonist of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. In yet another aspect, the agonist agent is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody. In still another aspect, the antagonist agent is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
[0060] The invention also provides a method of identifying an agent that modulates a physiological characteristic associated with a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising:
[0061] (a) providing a non-human transgenic animal whose genome comprises a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide;
[0062] (b) measuring a physiological characteristic exhibited by the non-human transgenic animal of (a);
[0063] (c) comparing the measured physiological characteristic of (b) with that of a gender matched wild-type animal, wherein the physiological characteristic exhibited by the non-human transgenic animal that differs from the physiological characteristic exhibited by the wild-type animal is identified as a physiological characteristic associated with gene disruption;
[0064] (d) administering a test agent to the non-human transgenic animal of (a); and
[0065] (e) determining whether the physiological characteristic associated with gene disruption is modulated.
[0066] In one aspect, the non-human transgenic animal exhibits at least one of the following physiological characteristics compared with gender matched wild-type littermates: increased anxiety-like response during open field testing; decreased anxiety during open field testing; hypoactivity with no circadian rhythm; increased total distance traveled during open field testing (hyperactivity); decreased locomotor activity during open field testing; abnormal circadian rhythm during home-cage activity testing (low activity during the light phase); abnormal circadian rhythm during home-cage activity testing including decreased ambulatory counts; abnormal circadian rhythm during home-cage activity testing including increased ambulatory counts; whiskers absent due to anxiety phenotype; enhanced circadian rhythm; increased stress induced hyperthermia with increased stress response (increased anxiety); increased resistance to stress induced hyperthermia; decreased resistance to stress induced hyperthermia; enhanced motor coordination during inverted screen testing; impaired motor coordination during inverted screen testing; increased immobility in tail suspension (increased depressive-like response); increased depressive-like response during tail suspension testing; decreased depressive-like response during tail suspension testing; clutched hind limbs during tail suspension testing; decreased startle response during prepulse inhibition testing; no startle response indicating deafness; increased prepulse inhibition with enhanced sensorimotor gating/attention; increased latency on hotplate indicative of decreased sensitivity to heat-induced pain; opthamological abnormalities; corneal epidermidalization of the corneal stroma with scarring and blocked vision; metaplasia of the cornea and sclera; attenuated retinal arteries; retinal hemorrhage; optic nerve abnormalities; dilated optic disc; increased intraocular pressure; corneal epithelialization with underdeveloped eyelids; retinal degeneration; agenesis of the Harderian gland; retinal vessel disorganization, microaneurysms and retinal capillary leakage; impaired vision; decreased heart rate; decreased mean systolic blood pressure; increased mean systolic blood pressure; increased insulin sensitivity; increased mean fasting serum glucose levels; decreased mean serum glucose levels; increased mean serum cholesterol levels; decreased mean serum cholesterol levels; increased mean serum triglyceride levels; enhanced glucose tolerance; impaired glucose tolerance; decreased mean serum insulin levels; ketonemia; decreased mean serum calcium; blood urobilinogen, nitrites, protein and ketones; decreased sodium and chloride; increased bilirubin; notable lipemia; increased uric acid and potassium levels; increased mean serum alkaline phosphatase levels; decreased mean serum alkaline phosphatase levels; blood in the urine; glucosuria; increased nitrituria; ketonuria; increased mean percentage of natural killer cells; decreased mean percentage of natural killer cells; abnormal leukocyte count; leukopenia due to lymphopenia and granulocytopenia; increased mean percentage of CD4 cells; decreased mean percentage of CD4 cells; decreased mean percentage of CD8 cells; reduced percentage of naive CD4 and CD8 T cells in lymph nodes; increased mean percentage of B cells in peripheral blood; decrease total white blood cells and lymphocyte counts; decreased absolute lymphocyte counts; increased mean absolute monocyte count; increased mean absolute neutrophil count; decreased in mean serum IgA levels; increase in mean serum IgA levels; increase in IgG1 levels; decreased mean serum IgG1 levels; decreased mean serum IgG1, IgG3, IgG2b and IgG2a levels; decreased mean serum IgG2a levels; decreased mean serum IgG2b levels; decreased mean serum IgG3 and IgM levels; increase in mean serum IgG2a levels; increase in mean serum IgG1, IgG2a and IgG3 levels; increase in mean serum IgG3 levels; anemia; decreased red blood cell count, decreased hemoglobin and decreased hematocrit with increased mean red blood cell count; increased mean corpuscular volume; decreased mean corpuscular volume; decreased mean corpuscular hemoglobin; increased red blood cell distribution width; defect in erythropoiesis; increased IgM+ IgD+ and B220hi/CD43− cells in bone marrow; decreased percentage of B220hi/CD43− IgM+ IgD+ cells in bone marrow; increased percentage of TCRB+ cells in Peyer's patches; reduction in naive T cells (especially CD4) in lymph nodes; increased percentage of CD11b+CD11c− cells (monocytes) in spleen; increased percentage of IgM+, CD117+ cells in bone marrow, higher percentage of dead B cells, decreased B cells, increased CD4 and CD8 T cells in lymph; B cells increased in bone marrow and significantly decreased in lymph node; notably decreased CD21hiCD23med B cells in spleen; decrease in Peyer's patch B220+ cells; decreased mean percentages of CD8 and natural killer cells with increased mean percentage of B cells; reduced number of TCRB+ CD38+ activated T cells in Peyer's patches; decreased mean percentage of CD4 cells with increased mean percentage of B cells; decreased B220+ CD38low and IgM in Payer's patches; increased mean platelet count; decreased mean platelet count; widespread apoptosis and loss of T lymphocytes in the thymic cortex and depletion of T cells in spleen; increased mean serum IgG2a response to an ovalbumin challenge; decreased to no serum IgG1 and IgG2a response to ovalbumin challenge; increased mean serum IgG1 response to an ovalbumin challenge; decreased mean serum TNF-alpha, MCP-1 and IL-6 responses to LPS challenge; increased mean serum MCP-1 response to a LPS challenge; increased mean serum TNF-alpha response to a LPS challenge; increased mean serum IL-6 response to a LPS challenge; increased skin fibroblast proliferation; decreased skin fibroblast proliferation; increased mean percent of total body fat and total fat mass; increased mean body weight; increased mean body length; increased total tissue mass (TTM); increased lean body mass (LBM); increased femoral bone mineral density (BMD); increased vertebral bone mineral density (BMD); increased bone mineral density (BMD); increased total body volumetric bone mineral density (vBMD); increased bone mineral content (BMC); increased mean femoral midshaft cortical thickness and cross-sectional area; increased mean vertebral trabecular bone volume, number and connectivity density; decreased mean percent of total body fat and total fat mass; decreased mean body weight; decreased mean body length; decreased total tissue mass (TTM); decreased lean body mass (LBM); decreased femoral bone mineral density (BMD); decreased vertebral bone mineral density (BMD); decreased bone mineral density (BMD); decreased bone mineral content (BMC); decreased bone mineral density index; decreased volumetric bone mineral density (vBMD); decreased mean femoral midshaft cortical thickness and cross-sectional area; decreased mean vertebral trabecular bone volume, number and connectivity density; marked osteopetrosis with increased bone mineralization; chronic inflammation in various tissues; thymic atrophy; systemic histiocytic storage disease affecting macrophages in liver, spleen and mesenteric lymph nodes; reduced liver size; chronic active hepatitis with focal hepatocyte necrosis; fatty changes in the liver; increased intracytoplasmic vacuolization of glycogen in hepatocytes; pancreatic dyserythropoietic anemia (type 1); multifocal neuronal necrosis; diffuse abiotrophy of the cerebellum granule cell layer; multifocal developmental malformation of the brain; hydronephosis; diffuse alopecia; epidermal hyperkeratosis; hypochromasia and anisocytosis characterized by abnormal erythrocytes (abnormally low hemoglobin and decreased erythropoiesis); growth retardation; development abnormalities; granulocytic hypoplasia of bone marrow; decreased numbers of myeloid granulocytic cell precursors; decreased granulocytopoiesis; no teeth; stunted growth with general reduction in all organ size; myocardial defects with defective structure and arrangement of the cardiac myocytes; cardiomyopathy with condensed eosinophilic sarcoplasm; congestive heart failure; pancreatic islets of Langerhans smaller and distribution of alpha (glycogen) and beta (insulin) cells altered; notable histopathologic alteration in cytoplasm of all cells in the zona fasciculata of the adrenal gland consistent with altered lipid/cholesterol uptake or metabolism (elevated cholesterol and triglycerides); infertility; testicular degeneration; vacuolar degeneration of seminiferous tubules; hypospermia; atrophic testes; ovarian and uterine hypoplasia; mammary gland was represented with just a few ducts; growth retardation with reduced viability; and embryonic lethality.
[0067] The invention also provides an agent that modulates a physiological characteristic which is associated with gene disruption. In one aspect, the agent is an agonist or antagonist of the phenotype associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. In yet another aspect, the agent is an agonist or antagonist of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. In yet another aspect, the agonist agent is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody. In still another aspect, the antagonist agent is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
[0068] The invention also provides a method of identifying an agent which modulates a behavior associated with a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising:
[0069] (a) providing a non-human transgenic animal whose genome comprises a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide;
[0070] (b) observing the behavior exhibited by the non-human transgenic animal of (a);
[0071] (c) comparing the observed behavior of (b) with that of a gender matched wild-type animal, wherein the observed behavior exhibited by the non-human transgenic animal that differs from the observed behavior exhibited by the wild-type animal is identified as a behavior associated with gene disruption;
[0072] (d) administering a test agent to the non-human transgenic animal of (a); and
[0073] (e) determining whether the agent modulates the behavior associated with gene disruption.
[0074] In one aspect, the observed behavior is an increased anxiety-like response during open field activity testing. In yet another aspect, the observed behavior is a decreased anxiety-like response during open field activity testing. In yet another aspect, the observed behavior is an abnormal circadian rhythm during home-cage activity testing. In yet another aspect, the observed behavior is an enhanced motor coordination during inverted screen testing. In yet another aspect, the observed behavior is impaired motor coordination during inverted screen testing. In yet another aspect, the observed behavior includes depression, generalized anxiety disorders, attention deficit disorder, sleep disorder, hyperactivity disorder, obsessive compulsive disorder, schizophrenia, cognitive disorders, hyperalgesia and sensory disorders. Such disorders include the category defined as “anxiety disorders” which include but are not limited to: mild to moderate anxiety, anxiety disorder due to a general medical condition, anxiety disorder not otherwise specified, generalized anxiety disorder, panic attack, panic disorder with agoraphobia, panic disorder without agoraphobia, posttraumatic stress disorder, social phobia, social anxiety, autism, specific phobia, substance-induced anxiety disorder, acute alcohol withdrawal, obsessive compulsive disorder, agoraphobia, monopolar disorders, bipolar disorder I or II, bipolar disorder not otherwise specified, cyclothymic disorder, depressive disorder, major depressive disorder, mood disorder, substance-induced mood disorder, enhancement of cognitive function, loss of cognitive function associated with but not limited to Alzheimer's disease, stroke, or traumatic injury to the brain, seizures resulting from disease or injury including but not limited to epilepsy, learning disorders/disabilities, cerebral palsy. In addition, anxiety disorders may apply to personality disorders including but not limited to the following types: paranoid, antisocial, avoidant behavior, borderline personality disorders, dependent, histronic, narcissistic, obsessive-compulsive, schizoid, and schizotypal.
[0075] The invention also provides an agent that modulates a behavior which is associated with gene disruption. In one aspect, the agent is an agonist or antagonist of the phenotype associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. In yet another aspect, the agent is an agonist or antagonist of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. In yet another aspect, the agonist agent is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody. In still another aspect, the antagonist agent is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
[0076] The invention also provides a method of identifying an agent that ameliorates or modulates a neurological disorder; a cardiovascular, endothelial or angiogenic disorder; an eye abnormality; an immunological disorder; an oncological disorder; a bone metabolic abnormality or disorder; a lipid metabolic disorder; or a developmental abnormality associated with a disruption in the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising:
[0077] (a) providing a non-human transgenic animal whose genome comprises a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide;
[0078] (b) administering a test agent to said non-human transgenic animal; and
[0079] (c) determining whether the test agent ameliorates or modulates the neurological disorder; cardiovascular, endothelial or angiogenic disorder; eye abnormality; immunological disorder; oncological disorder; bone metabolic abnormality or disorder; lipid metabolic disorder; or developmental abnormality associated with the gene disruption in the non-human transgenic animal.
[0080] In yet another aspect, the neurological disorder is an increased anxiety-like response during open field activity testing. In yet another aspect, the neurological disorder is a decreased anxiety-like response during open field activity testing. In yet another aspect, the neurological disorder is an abnormal circadian rhythm during home-cage activity testing. In yet another aspect, the neurological disorder is an enhanced motor coordination during inverted screen testing. In yet another aspect, the neurological disorder is impaired motor coordination during inverted screen testing. In yet another aspect, the neurological disorder includes depression, generalized anxiety disorders, attention deficit disorder, sleep disorder, hyperactivity disorder, obsessive compulsive disorder, schizophrenia, cognitive disorders, hyperalgesia and sensory disorders. Such neurological disorders include the category defined as “anxiety disorders” which include but are not limited to: mild to moderate anxiety, anxiety disorder due to a general medical condition, anxiety disorder not otherwise specified, generalized anxiety disorder, panic attack, panic disorder with agoraphobia, panic disorder without agoraphobia, posttraumatic stress disorder, social phobia, social anxiety, autism, specific phobia, substance-induced anxiety disorder, acute alcohol withdrawal, obsessive compulsive disorder, agoraphobia, monopolar disorders, bipolar disorder I or II, bipolar disorder not otherwise specified, cyclothymic disorder, depressive disorder, major depressive disorder, mood disorder, substance-induced mood disorder, enhancement of cognitive function, loss of cognitive function associated with but not limited to Alzheimer's disease, stroke, or traumatic injury to the brain, seizures resulting from disease or injury including but not limited to epilepsy, learning disorders/disabilities, cerebral palsy. In addition, anxiety disorders may apply to personality disorders including but not limited to the following types: paranoid, antisocial, avoidant behavior, borderline personality disorders, dependent, histronic, narcissistic, obsessive-compulsive, schizoid, and schizotypal.
[0081] In another aspect, the eye abnormality is a retinal abnormality. In still another aspect, the eye abnormality is consistent with vision problems or blindness. In yet another aspect, the retinal abnormality is consistent with retinitis pigmentosa or is characterized by retinal degeneration or retinal dysplasia.
[0082] In still another aspect, the retinal abnormalities the retinal abnormalities are consistent with retinal dysplasia, various retinopathies, including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, age-related macular degeneration, diabetic macular edema, corneal neovascularization, corneal graft neovascularization, corneal graft rejection, retinal/choroidal neovascularization, neovascularization of the angle (rubeosis), ocular neovascular disease, vascular restenosis, arteriovenous malformations (AVM), meningioma, hemangioma, angiofibroma, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, retinal artery obstruction or occlusion; retinal degeneration causing secondary atrophy of the retinal vasculature, retinitis pigmentosa, macular dystrophies, Stargardt's disease, congenital stationary night blindness, choroideremia, gyrate atrophy, Leber's congenital amaurosis, retinoschisis disorders, Wagner's syndrome, Usher syndromes, Zellweger syndrome, Saldino-Mainzer syndrome, Senior-Loken syndrome, Bardet-Biedl syndrome, Alport's syndrome, Alstrom's syndrome, Cockayne's syndrome, dysplaisa spondyloepiphysaria congentia, Flynn-Aird syndrome, Friedreich ataxia, Hallgren syndrome, Marshall syndrome, Albers-Schnoberg disease, Refsum's disease, Keams-Sayre syndrome, Waardenburg's syndrome, Alagile syndrome, myotonic dystrophy, olivopontocerebellar atrophy, Pierre-Marie dunsdrome, Stickler syndrome, carotinemeia, cystinosis, Wolfram syndrome, Bassen-Kornzweig syndrome, abetalipoproteinemia, incontinentia pigmenti, Batten's disease, mucopolysaccharidoses, homocystinuria, or mannosidosis.
[0083] In still another aspect, the eye abnormality is a cataract. In still yet another aspect, the cataract is a systemic disease such as human Down's syndrome, Hallerman-Streiff syndrome, Lowe syndrome, galactosemia, Marfan syndrome, Trismoy 13-15, Alport syndrome, myotonic dystrophy, Fabry disease, hypoparathroidism, or Conradi syndrome.
[0084] In still another aspect, the developmental abnormality comprises embryonic lethality or reduced viability.
[0085] In yet another aspect, the cardiovascular, endothelial or angiogenic disorders are arterial diseases, such as diabetes mellitus; papilledema; optic atrophy; atherosclerosis; angina; myocardial infarctions such as acute myocardial infarctions, cardiac hypertrophy, and heart failure such as congestive heart failure; hypertension; inflammatory vasculitides; Reynaud's disease and Reynaud's phenomenon; aneurysms and arterial restenosis; venous and lymphatic disorders such as thrombophlebitis, lymphangitis, and lymphedema; peripheral vascular disease; cancer such as vascular tumors, e.g., hemangioma (capillary and cavernous), glomus tumors, telangiectasia, bacillary angiomatosis, hemangioendothelioma, angiosarcoma, haemangiopericytoma, Kaposi's sarcoma, lymphangioma, and lymphangiosarcoma; tumor angiogenesis; trauma such as wounds, burns, and other injured tissue, implant fixation, scarring; ischemia reperfusion injury; rheumatoid arthritis; cerebrovascular disease; renal diseases such as acute renal failure, or osteoporosis.
[0086] In still yet another aspect, the immunological disorders are consistent with systemic lupus erythematosis; rheumatoid arthritis; juvenile chronic arthritis; spondyloarthropathies; systemic sclerosis (scleroderma); idiopathic inflammatory myopathies (dermatomyositis, polymyositis); Sjögren's syndrome; systemic vasculitis; sarcoidosis; autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria); autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia); thyroiditis (Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis); diabetes mellitus; immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis); demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic demyelinating polyneuropathy or Guillain-Barré syndrome, and chronic inflammatory demyelinating polyneuropathy; hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other non-hepatotropic viruses), autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis; inflammatory bowel disease (ulcerative colitis: Crohn's disease); gluten-sensitive enteropathy, and Whipple's disease; autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis; allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, food hypersensitivity and urticaria; immunologic diseases of the lung such as eosinophilic pneumonia, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis; or transplantation associated diseases including graft rejection and graft-versus-host disease.
[0087] In yet another aspect, the bone metabolic abnormality or disorder is arthritis, osteoporosis, osteopenia or osteopetrosis.
[0088] In another aspect, the non-human transgenic animal exhibits at least one of the following physiological characteristics compared with gender matched wild-type littermates: increased anxiety-like response during open field testing; decreased anxiety during open field testing; hypoactivity with no circadian rhythm; increased total distance traveled during open field testing (hyperactivity); decreased locomotor activity during open field testing; abnormal circadian rhythm during home-cage activity testing (low activity during the light phase); abnormal circadian rhythm during home-cage activity testing including decreased ambulatory counts; abnormal circadian rhythm during home-cage activity testing including increased ambulatory counts; whiskers absent due to anxiety phenotype; enhanced circadian rhythm; increased stress induced hyperthermia with increased stress response (increased anxiety); increased resistance to stress induced hyperthermia; decreased resistance to stress induced hyperthermia; enhanced motor coordination during inverted screen testing; impaired motor coordination during inverted screen testing; increased immobility in tail suspension (increased depressive-like response); increased depressive-like response during tail suspension testing; decreased depressive-like response during tail suspension testing; clutched hind limbs during tail suspension testing; decreased startle response during prepulse inhibition testing; no startle response indicating deafness; increased prepulse inhibition with enhanced sensorimotor gating/attention; increased latency on hotplate indicative of decreased sensitivity to heat-induced pain; opthamological abnormalities; corneal epidermidalization of the corneal stroma with scarring and blocked vision; metaplasia of the cornea and sclera; attenuated retinal arteries; retinal hemorrhage; optic nerve abnormalities; dilated optic disc; increased intraocular pressure; corneal epithelialization with underdeveloped eyelids; retinal degeneration; agenesis of the Harderian gland; retinal vessel disorganization, microaneurysms and retinal capillary leakage; impaired vision; decreased heart rate; decreased mean systolic blood pressure; increased mean systolic blood pressure; increased insulin sensitivity; increased mean fasting serum glucose levels; decreased mean serum glucose levels; increased mean serum cholesterol levels; decreased mean serum cholesterol levels; increased mean serum triglyceride levels; enhanced glucose tolerance; impaired glucose tolerance; decreased mean serum insulin levels; ketonemia; decreased mean serum calcium; blood urobilinogen, nitrites, protein and ketones; decreased sodium and chloride; increased bilirubin; notable lipemia; increased uric acid and potassium levels; increased mean serum alkaline phosphatase levels; decreased mean serum alkaline phosphatase levels; blood in the urine; glucosuria; increased nitrituria; ketonuria; increased mean percentage of natural killer cells; decreased mean percentage of natural killer cells; abnormal leukocyte count; leukopenia due to lymphopenia and granulocytopenia; increased mean percentage of CD4 cells; decreased mean percentage of CD4 cells; decreased mean percentage of CD8 cells; reduced percentage of naive CD4 and CD8 T cells in lymph nodes; increased mean percentage of B cells in peripheral blood; decrease total white blood cells and lymphocyte counts; decreased absolute lymphocyte counts; increased mean absolute monocyte count; increased mean absolute neutrophil count; decreased in mean serum IgA levels; increase in mean serum IgA levels; increase in IgG1 levels; decreased mean serum IgG1 levels; decreased mean serum IgG1, IgG3, IgG2b and IgG2a levels; decreased mean serum IgG2a levels; decreased mean serum IgG2b levels; decreased mean serum IgG3 and IgM levels; increase in mean serum IgG2a levels; increase in mean serum IgG1, IgG2a and IgG3 levels; increase in mean serum IgG3 levels; anemia; decreased red blood cell count, decreased hemoglobin and decreased hematocrit with increased mean red blood cell count; increased mean corpuscular volume; decreased mean corpuscular volume; decreased mean corpuscular hemoglobin; increased red blood cell distribution width; defect in erythropoiesis; increased IgM+ IgD+ and B220hi/CD43− cells in bone marrow; decreased percentage of B220hi/CD43−− IgM+ IgD+ cells in bone marrow; increased percentage of TCRB+ cells in Peyer's patches; reduction in naive T cells (especially CD4) in lymph nodes; increased percentage of CD11b+CD11c− cells (monocytes) in spleen; increased percentage of IgM+, CD117+ cells in bone marrow, higher percentage of dead B cells, decreased B cells, increased CD4 and CD8 T cells in lymph; B cells increased in bone marrow and significantly decreased in lymph node; notably decreased CD21hiCD23med B cells in spleen; decrease in Peyer's patch B220+ cells; decreased mean percentages of CD8 and natural killer cells with increased mean percentage of B cells; reduced number of TCRB+ CD38+ activated T cells in Peyer's patches; decreased mean percentage of CD4 cells with increased mean percentage of B cells; decreased B220+ CD38low and IgM in Payer's patches; increased mean platelet count; decreased mean platelet count; widespread apoptosis and loss of T lymphocytes in the thymic cortex and depletion of T cells in spleen; increased mean serum IgG2a response to an ovalbumin challenge; decreased to no serum IgG1 and IgG2a response to ovalbumin challenge; increased mean serum IgG1 response to an ovalbumin challenge; decreased mean serum TNF-alpha, MCP-1 and IL-6 responses to LPS challenge; increased mean serum MCP-1 response to a LPS challenge; increased mean serum TNF-alpha response to a LPS challenge; increased mean serum IL-6 response to a LPS challenge; increased skin fibroblast proliferation; decreased skin fibroblast proliferation; increased mean percent of total body fat and total fat mass; increased mean body weight; increased mean body length; increased total tissue mass (TTM); increased lean body mass (LBM); increased femoral bone mineral density (BMD); increased vertebral bone mineral density (BMD); increased bone mineral density (BMD); increased total body volumetric bone mineral density (vBMD); increased bone mineral content (BMC); increased mean femoral midshaft cortical thickness and cross-sectional area; increased mean vertebral trabecular bone volume, number and connectivity density; decreased mean percent of total body fat and total fat mass; decreased mean body weight; decreased mean body length; decreased total tissue mass (TTM); decreased lean body mass (LBM); decreased femoral bone mineral density (BMD); decreased vertebral bone mineral density (BMD); decreased bone mineral density (BMD); decreased bone mineral content (BMC); decreased bone mineral density index; decreased volumetric bone mineral density (vBMD); decreased mean femoral midshaft cortical thickness and cross-sectional area; decreased mean vertebral trabecular bone volume, number and connectivity density; marked osteopetrosis with increased bone mineralization; chronic inflammation in various tissues; thymic atrophy; systemic histiocytic storage disease affecting macrophages in liver, spleen and mesenteric lymph nodes; reduced liver size; chronic active hepatitis with focal hepatocyte necrosis; fatty changes in the liver; increased intracytoplasmic vacuolization of glycogen in hepatocytes; pancreatic dyserythropoietic anemia (type 1); multifocal neuronal necrosis; diffuse abiotrophy of the cerebellum granule cell layer; multifocal developmental malformation of the brain; hydronephosis; diffuse alopecia; epidermal hyperkeratosis; hypochromasia and anisocytosis characterized by abnormal erythrocytes (abnormally low hemoglobin and decreased erythropoiesis); growth retardation; development abnormalities; granulocytic hypoplasia of bone marrow; decreased numbers of myeloid granulocytic cell precursors; decreased granulocytopoiesis; no teeth; stunted growth with general reduction in all organ size; myocardial defects with defective structure and arrangement of the cardiac myocytes; cardiomyopathy with condensed eosinophilic sarcoplasm; congestive heart failure; pancreatic islets of Langerhans smaller and distribution of alpha (glycogen) and beta (insulin) cells altered; notable histopathologic alteration in cytoplasm of all cells in the zona fasciculata of the adrenal gland consistent with altered lipid/cholesterol uptake or metabolism (elevated cholesterol and triglycerides); infertility; testicular degeneration; vacuolar degeneration of seminiferous tubules; hypospermia; atrophic testes; ovarian and uterine hypoplasia; mammary gland was represented with just a few ducts; growth retardation with reduced viability; and embryonic lethality.
[0089] The invention also provides an agent that ameliorates or modulates a neurological disorder; a cardiovascular, endothelial or angiogenic disorder; an eye abnormality; an immunological disorder; an oncological disorder; a bone metabolic abnormality or disorder; a lipid metabolic disorder; or a developmental abnormality which is associated with gene disruption. In one aspect, the agent is an agonist or antagonist of the phenotype associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. In yet another aspect, the agent is an agonist or antagonist of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. In yet another aspect, the agonist agent is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody. In still another aspect, the antagonist agent is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
[0090] The invention also provides a therapeutic agent for the treatment of a neurological disorder; a cardiovascular, endothelial or angiogenic disorder; an eye abnormality; an immunological disorder; an oncological disorder; a bone metabolic abnormality or disorder; a lipid metabolic disorder; or a developmental abnormality.
[0091] The invention also provides a method of identifying an agent that modulates the expression of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising:
[0092] (a) contacting a test agent with a host cell expressing a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide; and
[0093] (b) determining whether the test agent modulates the expression of the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide by the host cell.
[0094] The invention also provides an agent that modulates the expression of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. In one aspect, the agent is an agonist or antagonist of the phenotype associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO2110, PRO23203 or PRO35250 polypeptide. In yet another aspect, the agent is an agonist or antagonist of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250, polypeptide. In yet another aspect, the agonist agent is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody. In still another aspect, the antagonist agent is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
[0095] The invention also provides a method of evaluating a therapeutic agent capable of affecting a condition associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising:
[0096] (a) providing a non-human transgenic animal whose genome comprises a disruption of the gene which encodes for the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide;
[0097] (b) measuring a physiological characteristic of the non-human transgenic animal of (a);
[0098] (c) comparing the measured physiological characteristic of (b) with that of a gender matched wild-type animal, wherein the physiological characteristic of the non-human transgenic animal that differs from the physiological characteristic of the wild-type animal is identified as a condition resulting from the gene disruption in the non-human transgenic animal;
[0099] (d) administering a test agent to the non-human transgenic animal of (a); and
[0100] (e) evaluating the effects of the test agent on the identified condition associated with gene disruption in the non-human transgenic animal.
[0101] In one aspect, the condition is a neurological disorder; a cardiovascular, endothelial or angiogenic disorder; an eye abnormality; an immunological disorder; an oncological disorder; a bone metabolic abnormality or disorder; a lipid metabolic disorder; or a developmental abnormality.
[0102] The invention also provides a therapeutic agent which is capable of affecting a condition associated with gene disruption. In one aspect, the agent is an agonist or antagonist of the phenotype associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. In yet another aspect, the agent is an agonist or antagonist of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. In yet another aspect, the agonist agent is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody. In still another aspect, the antagonist agent is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
[0103] The invention also provides a pharmaceutical composition comprising a therapeutic agent capable of affecting the condition associated with gene disruption.
[0104] The invention also provides a method of treating or preventing or ameliorating a neurological disorder; cardiovascular, endothelial or angiogenic disorder; immunological disorder; oncological disorder; bone metabolic abnormality or disorder, or embryonic lethality associated with the disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising administering to a subject in need of such treatment whom may already have the disorder, or may be prone to have the disorder or may be in whom the disorder is to be prevented, a therapeutically effective amount of a therapeutic agent, or agonists or antagonists thereof, thereby effectively treating or preventing or ameliorating said disorder or disease.
[0105] In yet another aspect, the neurological disorder is an increased anxiety-like response during open field activity testing. In yet another aspect, the neurological disorder is a decreased anxiety-like response during open field activity testing. In yet another aspect, the neurological disorder is an abnormal circadian rhythm during home-cage activity testing. In yet another aspect, the neurological disorder is an enhanced motor coordination during inverted screen testing. In yet another aspect, the neurological disorder is impaired motor coordination during inverted screen testing. In yet another aspect, the neurological disorder includes depression, generalized anxiety disorders, attention deficit disorder, sleep disorder, hyperactivity disorder, obsessive compulsive disorder, schizophrenia, cognitive disorders, hyperalgesia and sensory disorders. Such neurological disorders include the category defined as “anxiety disorders” which include but are not limited to: mild to moderate anxiety, anxiety disorder due to a general medical condition, anxiety disorder not otherwise specified, generalized anxiety disorder, panic attack, panic disorder with agoraphobia, panic disorder without agoraphobia, posttraumatic stress disorder, social phobia, social anxiety, autism, specific phobia, substance-induced anxiety disorder, acute alcohol withdrawal, obsessive compulsive disorder, agoraphobia, monopolar disorders, bipolar disorder I or II, bipolar disorder not otherwise specified, cyclothymic disorder, depressive disorder, major depressive disorder, mood disorder, substance-induced mood disorder, enhancement of cognitive function, loss of cognitive function associated with but not limited to Alzheimer's disease, stroke, or traumatic injury to the brain, seizures resulting from disease or injury including but not limited to epilepsy, learning disorders/disabilities, cerebral palsy. In addition, anxiety disorders may apply to personality disorders including but not limited to the following types: paranoid, antisocial, avoidant behavior, borderline personality disorders, dependent, histronic, narcissistic, obsessive-compulsive, schizoid, and schizotypal.
[0106] In another aspect, the eye abnormality is a retinal abnormality. In still another aspect, the eye abnormality is consistent with vision problems or blindness. In yet another aspect, the retinal abnormality is consistent with retinitis pigmentosa or is characterized by retinal degeneration or retinal dysplasia.
[0107] In still another aspect, the retinal abnormalities are consistent with retinal dysplasia, various retinopathies, including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, age-related macular degeneration, diabetic macular edema, corneal neovascularization, corneal graft neovascularization, corneal graft rejection, retinauchoroidal neovascularization, neovascularization of the angle (rubeosis), ocular neovascular disease, vascular restenosis, arteriovenous malformations (AVM), meningioma, hemangioma, angiofibroma, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, retinal artery obstruction or occlusion; retinal degeneration causing secondary atrophy of the retinal vasculature, retinitis pigmentosa, macular dystrophies, Stargardt's disease, congenital stationary night blindness, choroideremia, gyrate atrophy, Leber's congenital amaurosis, retinoschisis disorders, Wagner's syndrome, Usher syndromes, Zellweger syndrome, Saldino-Mainzer syndrome, Senior-Loken syndrome, Bardet-Biedl syndrome, Alport's syndrome, Alstrom's syndrome, Cockayne's syndrome, dysplaisa spondyloepiphysaria congentia, Flynn-Aird syndrome, Friedreich ataxia, Hallgren syndrome, Marshall syndrome, Albers-Schnoberg disease, Refsum's disease, Keams-Sayre syndrome, Waardenburg's syndrome, Alagile syndrome, myotonic dystrophy, olivopontocerebellar atrophy, Pierre-Marie dunsdrome, Stickler syndrome, carotinemeia, cystinosis, Wolfram syndrome, Bassen-Komzweig syndrome, abetalipoproteinemia, incontinentiapigmenti, Batten's disease, mucopolysaccharidoses, homocystinuria, or mannosidosis.
[0108] In still another aspect, the eye abnormality is a cataract. In still yet another aspect, the cataract is a systemic disease such as human Down's syndrome, Hallerman-Streiff syndrome, Lowe syndrome, galactosemia, Marfan syndrome, Trismoy 13-15, Alport syndrome, myotonic dystrophy, Fabry disease, hypoparathroidism or Conradi syndrome.
[0109] In still another aspect, the developmental abnormality comprises embryonic lethality or reduced viability.
[0110] In yet another aspect, the cardiovascular, endothelial or angiogenic disorders are arterial diseases, such as diabetes mellitus; papilledema; optic atrophy; atherosclerosis; angina; myocardial infarctions such as acute myocardial infarctions, cardiac hypertrophy, and heart failure such as congestive heart failure; hypertension; inflammatory vasculitides; Reynaud's disease and Reynaud's phenomenon; aneurysms and arterial restenosis; venous and lymphatic disorders such as thrombophlebitis, lymphangitis, and lymphedema; peripheral vascular disease; cancer such as vascular tumors, e.g., hemangioma (capillary and cavernous), glomus tumors, telangiectasia, bacillary angiomatosis, hemangioendothelioma, angiosarcoma, haemangiopericytoma, Kaposi's sarcoma, lymphangioma, and lymphangiosarcoma; tumor angiogenesis; trauma such as wounds, burns, and other injured tissue, implant fixation, scarring; ischemia reperfusion injury; rheumatoid arthritis; cerebrovascular disease; renal diseases such as acute renal failure, or osteoporosis.
[0111] In still yet another aspect, the immunological disorders are consistent with systemic lupus erythematosis; rheumatoid arthritis; juvenile chronic arthritis; spondyloarthropathies; systemic sclerosis (scleroderma); idiopathic inflammatory myopathies (dermatomyositis, polymyositis); Sjögren's syndrome; systemic vasculitis; sarcoidosis; autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria); autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia); thyroiditis (Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis); diabetes mellitus; immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis); demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic demyelinating polyneuropathy or Guillain-Barré syndrome, and chronic inflammatory demyelinating polyneuropathy; hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other non-hepatotropic viruses), autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis; inflammatory bowel disease (ulcerative colitis: Crohn's disease); gluten-sensitive enteropathy, and Whipple's disease; autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis; allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, food hypersensitivity and urticaria; immunologic diseases of the lung such as eosinophilic pneumonia, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis; or transplantation associated diseases including graft rejection and graft-versus-host disease.
[0112] In yet another aspect, the bone metabolic abnormality or disorder is arthritis, osteoporosis, osteopenia or osteopetrosis.
[0113] In another aspect the therapeutic agent is an agonist or antagonist of the phenotype associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. In yet another aspect, the agent is an agonist or antagonist of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. In yet another aspect, the agonist agent is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody. In still another aspect, the antagonist agent is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
[0114] The invention also provides a method of identifying an agent that ameliorates or modulates a neurological disorder; a cardiovascular, endothelial or angiogenic disorder; an eye abnormality; an immunological disorder; an oncological disorder; a bone metabolic abnormality or disorder; a lipid metabolic disorder; or a developmental abnormality associated with a disruption in the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising:
[0115] (a) providing a non-human transgenic animal cell culture, each cell of said culture comprising a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide;
[0116] (b) administering a test agent to said cell culture; and
[0117] (c) determining whether the test agent ameliorates or modulates the neurological disorder; cardiovascular, endothelial or angiogenic disorder; eye abnormality; immunological disorder; oncological disorder; bone metabolic abnormality or disorder; lipid metabolic disorder; or developmental abnormality in said culture.
[0118] In yet another aspect, the neurological disorder is an increased anxiety-like response during open field activity testing. In yet another aspect, the neurological disorder is a decreased anxiety-like response during open field activity testing. In yet another aspect, the neurological disorder is an abnormal circadian rhythm during home-cage activity testing. In yet another aspect, the neurological disorder is an enhanced motor coordination during inverted screen testing. In yet another aspect, the neurological disorder is impaired motor coordination during inverted screen testing. In yet another aspect, the neurological disorder includes depression, generalized anxiety disorders, attention deficit disorder, sleep disorder, hyperactivity disorder, obsessive compulsive disorder, schizophrenia, cognitive disorders, hyperalgesia and sensory disorders. Such neurological disorders include the category defined as “anxiety disorders” which include but are not limited to: mild to moderate anxiety, anxiety disorder due to a general medical condition, anxiety disorder not otherwise specified, generalized anxiety disorder, panic attack, panic disorder with agoraphobia, panic disorder without agoraphobia, posttraumatic stress disorder, social phobia, social anxiety, autism, specific phobia, substance-induced anxiety disorder, acute alcohol withdrawal, obsessive compulsive disorder, agoraphobia, monopolar disorders, bipolar disorder I or II, bipolar disorder not otherwise specified, cyclothymic disorder, depressive disorder, major depressive disorder, mood disorder, substance-induced mood disorder, enhancement of cognitive function, loss of cognitive function associated with but not limited to Alzheimer's disease, stroke, or traumatic injury to the brain, seizures resulting from disease or injury including but not limited to epilepsy, learning disorders/disabilities, cerebral palsy. In addition, anxiety disorders may apply to personality disorders including but not limited to the following types: paranoid, antisocial, avoidant behavior, borderline personality disorders, dependent, histronic, narcissistic, obsessive-compulsive, schizoid, and schizotypal.
[0119] In another aspect, the eye abnormality is a retinal abnormality. In still another aspect, the eye abnormality is consistent with vision problems or blindness. In yet another aspect, the retinal abnormality is consistent with retinitis pigmentosa or is characterized by retinal degeneration or retinal dysplasia.
[0120] In still another aspect, the retinal abnormalities are consistent with retinal dysplasia, various retinopathies, including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, age-related macular degeneration, diabetic macular edema, corneal neovascularization, corneal graft neovascularization, corneal graft rejection, retinauchoroidal neovascularization, neovascularization of the angle (rubeosis), ocular neovascular disease, vascular restenosis, arteriovenous malformations (AVM), meningioma, hemangioma, angiofibroma, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, retinal artery obstruction or occlusion; retinal degeneration causing secondary atrophy of the retinal vasculature, retinitis pigmentosa, macular dystrophies, Stargardt's disease, congenital stationary night blindness, choroideremia, gyrate atrophy, Leber's congenital amaurosis, retinoschisis disorders, Wagner's syndrome, Usher syndromes, Zellweger syndrome, Saldino-Mainzer syndrome, Senior-Loken syndrome, Bardet-Biedl syndrome, Alport's syndrome, Alstrom's syndrome, Cockayne's syndrome, dysplaisa spondyloepiphysaria congentia, Flynn-Aird syndrome, Friedreich ataxia, Hallgren syndrome, Marshall syndrome, Albers-Schnoberg disease, Refsum's disease, Kearns-Sayre syndrome, Waardenburg's syndrome, Alagile syndrome, myotonic dystrophy, olivopontocerebellar atrophy, Pierre-Marie dunsdrome, Stickler syndrome, carotinemeia, cystinosis, Wolfram syndrome, Bassen-Kornzweig syndrome, abetalipoproteinemia, incontinentiapigmenti, Batten's disease, mucopolysaccharidoses, homocystinuria, or mannosidosis.
[0121] In still another aspect, the eye abnormality is a cataract. In still yet another aspect, the cataract is a systemic disease such as human Down's syndrome, Hallerman-Streiff syndrome, Lowe syndrome, galactosemia, Marfan syndrome, Trismoy 13-15, Alport syndrome, myotonic dystrophy, Fabry disease, hypoparathroidism or Conradi syndrome.
[0122] In still another aspect, the developmental abnormality comprises embryonic lethality or reduced viability.
[0123] In yet another aspect, the cardiovascular, endothelial or angiogenic disorders are arterial diseases, such as diabetes mellitus; papilledema; optic atrophy; atherosclerosis; angina; myocardial infarctions such as acute myocardial infarctions, cardiac hypertrophy, and heart failure such as congestive heart failure; hypertension; inflammatory vasculitides; Reynaud's disease and Reynaud's phenomenon; aneurysms and arterial restenosis; venous and lymphatic disorders such as thrombophlebitis, lymphangitis, and lymphedema; peripheral vascular disease; cancer such as vascular tumors, e.g., hemangioma (capillary and cavernous), glomus tumors, telangiectasia, bacillary angiomatosis, hemangioendothelioma, angiosarcoma, haemangiopericytoma, Kaposi's sarcoma, lymphangioma, and lymphangiosarcoma; tumor angiogenesis; trauma such as wounds, burns, and other injured tissue, implant fixation, scarring; ischemia reperfusion injury; rheumatoid arthritis; cerebrovascular disease; renal diseases such as acute renal failure, or osteoporosis.
[0124] In still yet another aspect, the immunological disorders are consistent with systemic lupus erythematosis; rheumatoid arthritis; juvenile chronic arthritis; spondyloarthropathies; systemic sclerosis (scleroderma); idiopathic inflammatory myopathies (dermatomyositis, polymyositis); Sjögren's syndrome; systemic vasculitis; sarcoidosis; autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria); autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia); thyroiditis (Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis); diabetes mellitus; immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis); demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic demyelinating polyneuropathy or Guillain-Barré syndrome, and chronic inflammatory demyelinating polyneuropathy; hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other non-hepatotropic viruses), autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis; inflammatory bowel disease (ulcerative colitis: Crohn's disease); gluten-sensitive enteropathy, and Whipple's disease; autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis; allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, food hypersensitivity and urticaria; immunologic diseases of the lung such as eosinophilic pneumonia, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis; or transplantation associated diseases including graft rejection and graft-versus-host disease.
[0125] In yet another aspect, the bone metabolic abnormality or disorder is arthritis, osteoporosis, osteopenia or osteopetrosis.
[0126] The invention also provides an agent that ameliorates or modulates a neurological disorder; a cardiovascular, endothelial or angiogenic disorder; an eye abnormality; an immunological disorder; anoncological disorder; a bone metabolic abnormality or disorder; a lipid metabolic disorder; or a developmental abnormality which is associated with gene disruption in said culture. In one aspect, the agent is an agonist or antagonist of the phenotype associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. In yet another aspect, the agent is an agonist or antagonist of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. In yet another aspect, the agonist agent is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody. In still another aspect, the antagonist agent is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
[0127] The invention also provides a method of modulating a phenotype associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising administering to a subject whom may already have the phenotype, or may be prone to have the phenotype or may be in whom the phenotype is to be prevented, an effective amount of an agent identified as modulating said phenotype, or agonists or antagonists thereof, thereby effectively modulating the phenotype.
[0128] The invention also provides a method of modulating a physiological characteristic associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising administering to a subject whom may already exhibit the physiological characteristic, or may be prone to exhibit the physiological characteristic or may be in whom the physiological characteristic is to be prevented, an effective amount of an agent identified as modulating said physiological characteristic, or agonists or antagonists thereof, thereby effectively modulating the physiological characteristic.
[0129] The invention also provides a method of modulating a behavior associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising administering to a subject whom may already exhibit the behavior, or may be prone to exhibit the behavior or may be in whom the exhibited behavior is to be prevented, an effective amount of an agent identified as modulating said behavior, or agonists or antagonists thereof, thereby effectively modulating the behavior.
[0130] The invention also provides a method of modulating the expression of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising administering to a host cell expressing said PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, an effective amount of an agent identified as modulating said expression, or agonists or antagonists thereof, thereby effectively modulating the expression of said polypeptide.
[0131] The invention also provides a method of modulating a condition associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising administering to a subject whom may have the condition, or may be prone to have the condition or may be in whom the condition is to be prevented, a therapeutically effective amount of a therapeutic agent identified as modulating said condition, or agonists or antagonists thereof, thereby effectively modulating the condition.
[0132] The invention also provides a method of treating or preventing or ameliorating a neurological disorder; cardiovascular, endothelial or angiogenic disorder; immunological disorder; oncological disorder; bone metabolic abnormality or disorder, or embryonic lethality associated with the disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising administering to a non-human transgenic animal cell culture, each cell of said culture comprising a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, an effective amount of an agent identified as treating or preventing or ameliorating said disorder, or agonists or antagonists thereof, thereby effectively treating or preventing or ameliorating said disorder.

B. Further Embodiments

[0133] In yet further embodiments, the invention is directed to the following set of potential claims for this application:
[0134] 1. A method of identifying a phenotype associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising:
[0135] (a) providing a non-human transgenic animal whose genome comprises a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide;
[0136] (b) measuring a physiological characteristic of the non-human transgenic animal; and
[0137] (c) comparing the measured physiological characteristic with that of a gender matched wild-type animal, wherein the physiological characteristic of the non-human transgenic animal that differs from the physiological characteristic of the wild-type animal is identified as a phenotype resulting from the gene disruption in the non-human transgenic animal.
[0138] 2. The method of Claim 1, wherein the non-human transgenic animal is heterozygous for the disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide.
3. The method of Claim 1, wherein the phenotype exhibited by the non-human transgenic animal as compared with gender matched wild-type littermates is at least one of the following: a neurological disorder; a cardiovascular, endothelial or angiogenic disorder; an eye abnormality; an immunological disorder; anoncological disorder; a bone metabolic abnormality or disorder; a lipid metabolic disorder; or a developmental abnormality.
4. The method of Claim 3, wherein the neurological disorder is an increased anxiety-like response during open field activity testing.
5. The method of Claim 3, wherein the neurological disorder is a decreased anxiety-like response during open field activity testing.
6. The method of Claim 3, wherein the neurological disorder is an abnormal circadian rhythm during home-cage activity testing.
7. The method of Claim 3, wherein the neurological disorder is an enhanced motor coordination during inverted screen testing.
8. The method of Claim 3, wherein the neurological disorder is an impaired motor coordination during inverted screen testing.
9. The method of Claim 3, wherein the neurological disorder is depression, generalized anxiety disorders, attention deficit disorder, sleep disorder, hyperactivity disorder, obsessive compulsive disorder, schizophrenia, cognitive disorders, hyperalgesia or sensory disorders.
10. The method of Claim 3, wherein the eye abnormality is a retinal abnormality.
11. The method of Claim 3, wherein the eye abnormality is consistent with vision problems or blindness.
12. The method of Claim 10, wherein the retinal abnormality is consistent with retinitis pigmentosa.
13. The method of Claim 10, wherein the retinal abnormality is characterized by retinal degeneration or retinal dysplasia.
14. The method of Claim 10, wherein the retinal abnormality is consistent with retinal dysplasia, various retinopathies, including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, age-related macular degeneration, diabetic macular edema, corneal neovascularization, corneal graft neovascularization, corneal graft rejection, retinauchoroidal neovascularization, neovascularization of the angle (rubeosis), ocular neovascular disease, vascular restenosis, arteriovenous malformations (AVM), meningioma, hemangioma, angiofibroma, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, retinal artery obstruction or occlusion; retinal degeneration causing secondary atrophy of the retinal vasculature, retinitis pigmentosa, macular dystrophies, Stargardt's disease, congenital stationary night blindness, choroideremia, gyrate atrophy, Leber's congenital amaurosis, retinoschisis disorders, Wagner's syndrome, Usher syndromes, Zellweger syndrome, Saldino-Mainzer syndrome, Senior-Loken syndrome, Bardet-Biedl syndrome, Alport's syndrome, Alstrom's syndrome, Cockayne's syndrome, dysplaisa spondyloepiphysaria congentia, Flynn-Aird syndrome, Friedreich ataxia, Hallgren syndrome, Marshall syndrome, Albers-Schnoberg disease, Refsum's disease, Kearns-Sayre syndrome, Waardenburg's syndrome, Alagile syndrome, myotonic dystrophy, olivopontocerebellar atrophy, Pierre-Marie dunsdrome, Stickler syndrome, carotinemeia, cystinosis, Wolfram syndrome, Bassen-Kornzweig syndrome, abetalipoproteinemia, incontinentia pigmenti, Batten's disease, mucopolysaccharidoses, homocystinuria, or mannosidosis.
15. The method of Claim 3, wherein the eye abnormality is a cataract.
16. The method of Claim 15, wherein the cataract is consistent with systemic diseases such as human Down's syndrome, Hallerman-Streiff syndrome, Lowe syndrome, galactosemia, Marfan syndrome, Trismoy 13-15, Alport syndrome, myotonic dystrophy, Fabry disease, hypoparathroidism or Conradi syndrome.
17. The method of Claim 3, wherein the developmental abnormality comprises embryonic lethality or reduced viability.
18. The method of Claim 3, wherein the cardiovascular, endothelial or angiogenic disorders are arterial diseases, such as diabetes mellitus; papilledema; optic atrophy; atherosclerosis; angina; myocardial infarctions such as acute myocardial infarctions, cardiac hypertrophy, and heart failure such as congestive heart failure; hypertension; inflammatory vasculitides; Reynaud's disease and Reynaud's phenomenon; aneurysms and arterial restenosis; venous and lymphatic disorders such as thrombophlebitis, lymphangitis, and lymphedema; peripheral vascular disease; cancer such as vascular tumors, e.g., hemangioma (capillary and cavernous), glomus tumors, telangiectasia, bacillary angiomatosis, hemangioendothelioma, angiosarcoma, haemangiopericytoma, Kaposi's sarcoma, lymphangioma, and lymphangiosarcoma; tumor angiogenesis; trauma such as wounds, burns, and other injured tissue, implant fixation, scarring; ischemia reperfusion injury; rheumatoid arthritis; cerebrovascular disease; renal diseases such as acute renal failure, or osteoporosis.
19. The method of Claim 3, wherein the immunological disorders are systemic lupus erythematosis; rheumatoid arthritis; juvenile chronic arthritis; spondyloarthropathies; systemic sclerosis (scleroderma); idiopathic inflammatory myopathies (dermatomyositis, polymyositis); Sjögren's syndrome; systemic vasculitis; sarcoidosis; autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria); autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia); thyroiditis (Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis); diabetes mellitus; immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis); demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic demyelinating polyneuropathy or Guillain-Barré syndrome, and chronic inflammatory demyelinating polyneuropathy; hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other non-hepatotropic viruses), autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis; inflammatory bowel disease (ulcerative colitis: Crohn's disease); gluten-sensitive enteropathy, and Whipple's disease; autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis; allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, food hypersensitivity and urticaria; immunologic diseases of the lung such as eosinophilic pneumonia, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis; or transplantation associated diseases including graft rejection and graft-versus-host disease.
20. The method of Claim 3, wherein the bone metabolic abnormality or disorder is arthritis, osteoporosis or osteopetrosis.
21. The method of Claim 1, wherein the non-human transgenic animal exhibits at least one of the following physiological characteristics compared with gender matched wild-type littermates: increased anxiety-like response during open field testing; decreased anxiety during open field testing; hypoactivity with no circadian rhythm; increased total distance traveled during open field testing (hyperactivity); decreased locomotor activity during open field testing; abnormal circadian rhythm during home-cage activity testing (low activity during the light phase); abnormal circadian rhythm during home-cage activity testing including decreased ambulatory counts; abnormal circadian rhythm during home-cage activity testing including increased ambulatory counts; whiskers absent due to anxiety phenotype; enhanced circadian rhythm; increased stress induced hyperthermia with increased stress response (increased anxiety); increased resistance to stress induced hyperthermia; decreased resistance to stress induced hyperthermia; enhanced motor coordination during inverted screen testing; impaired motor coordination during inverted screen testing; increased immobility in tail suspension (increased depressive-like response); increased depressive-like response during tail suspension testing; decreased depressive-like response during tail suspension testing; clutched hind limbs during tail suspension testing; decreased startle response during prepulse inhibition testing; no startle response indicating deafness; increased prepulse inhibition with enhanced sensorimotor gating/attention; increased latency on hotplate indicative of decreased sensitivity to heat-induced pain; opthamological abnormalities; corneal epidermidalization of the corneal stroma with scarring and blocked vision; metaplasia of the cornea and sclera; attenuated retinal arteries; retinal hemorrhage; optic nerve abnormalities; dilated optic disc; increased intraocular pressure; corneal epithelialization with underdeveloped eyelids; retinal degeneration; agenesis of the Harderian gland; retinal vessel disorganization, microaneurysms and retinal capillary leakage; impaired vision; decreased heart rate; decreased mean systolic blood pressure; increased mean systolic blood pressure; increased insulin sensitivity; increased mean fasting serum glucose levels; decreased mean serum glucose levels; increased mean serum cholesterol levels; decreased mean serum cholesterol levels; increased mean serum triglyceride levels; enhanced glucose tolerance; impaired glucose tolerance; decreased mean serum insulin levels; ketonemia; decreased mean serum calcium; blood urobilinogen, nitrites, protein and ketones; decreased sodium and chloride; increased bilirubin; notable lipemia; increased uric acid and potassium levels; increased mean serum alkaline phosphatase levels; decreased mean serum alkaline phosphatase levels; blood in the urine; glucosuria; increased nitrituria; ketonuria; increased mean percentage of natural killer cells; decreased mean percentage of natural killer cells; abnormal leukocyte count; leukopenia due to lymphopenia and granulocytopenia; increased mean percentage of CD4 cells; decreased mean percentage of CD4 cells; decreased mean percentage of CD8 cells; reduced percentage of naive CD4 and CD8 T cells in lymph nodes; increased mean percentage of B cells in peripheral blood; decrease total white blood cells and lymphocyte counts; decreased absolute lymphocyte counts; increased mean absolute monocyte count; increased mean absolute neutrophil count; decreased in mean serum IgA levels; increase in mean serum IgA levels; increase in IgG1 levels; decreased mean serum IgG1 levels; decreased mean serum IgG1, IgG3, IgG2b and IgG2a levels; decreased mean serum IgG2a levels; decreased mean serum IgG2b levels; decreased mean serum IgG3 and IgM levels; increase in mean serum IgG2a levels; increase in mean serum IgG1, IgG2a and IgG3 levels; increase in mean serum IgG3 levels; anemia; decreased red blood cell count, decreased hemoglobin and decreased hematocrit with increased mean red blood cell count; increased mean corpuscular volume; decreased mean corpuscular volume; decreased mean corpuscular hemoglobin; increased red blood cell distribution width; defect in erythropoiesis; increased IgM+ IgD+ and B220hi/CD43− cells in bone marrow; decreased percentage of B220hi/CD43−IgM+ IgD+ cells in bone marrow; increased percentage of TCRB+ cells in Peyer's patches; reduction in naive T cells (especially CD4) in lymph nodes; increased percentage of CD11b+CD11c− cells (monocytes) in spleen; increased percentage of IgM+, CD117+ cells in bone marrow, higher percentage of dead B cells, decreased B cells, increased CD4 and CD8 T cells in lymph; B cells increased in bone marrow and significantly decreased in lymph node; notably decreased CD21hiCD23med B cells in spleen; decrease in Peyer's patch B220+ cells; decreased mean percentages of CD8 and natural killer cells with increased mean percentage of B cells; reduced number of TCRB+ CD38+ activated T cells in Peyer's patches; decreased mean percentage of CD4 cells with increased mean percentage of B cells; decreased B220+ CD38low and IgM in Payer's patches; increased mean platelet count; decreased mean platelet count; widespread apoptosis and loss of T lymphocytes in the thymic cortex and depletion of T cells in spleen; increased mean serum IgG2a response to an ovalbumin challenge; decreased to no serum IgG1 and IgG2a response to ovalbumin challenge; increased mean serum IgG1 response to an ovalbumin challenge; decreased mean serum TNF-alpha, MCP-1 and IL-6 responses to LPS challenge; increased mean serum MCP-1 response to a LPS challenge; increased mean serum TNF-alpha response to a LPS challenge; increased mean serum IL-6 response to a LPS challenge; increased skin fibroblast proliferation; decreased skin fibroblast proliferation; increased mean percent of total body fat and total fat mass; increased mean body weight; increased mean body length; increased total tissue mass (TTM); increased lean body mass (LBM); increased femoral bone mineral density (BMD); increased vertebral bone mineral density (BMD); increased bone mineral density (BMD); increased total body volumetric bone mineral density (vBMD); increased bone mineral content (BMC); increased mean femoral midshaft cortical thickness and cross-sectional area; increased mean vertebral trabecular bone volume, number and connectivity density; decreased mean percent of total body fat and total fat mass; decreased mean body weight; decreased mean body length; decreased total tissue mass (TTM); decreased lean body mass (LBM); decreased femoral bone mineral density (BMD); decreased vertebral bone mineral density (BMD); decreased bone mineral density (BMD); decreased bone mineral content (BMC); decreased bone mineral density index; decreased volumetric bone mineral density (vBMD); decreased mean femoral midshaft cortical thickness and cross-sectional area; decreased mean vertebral trabecular bone volume, number and connectivity density; marked osteopetrosis with increased bone mineralization; chronic inflammation in various tissues; thymic atrophy; systemic histiocytic storage disease affecting macrophages in liver, spleen and mesenteric lymph nodes; reduced liver size; chronic active hepatitis with focal hepatocyte necrosis; fatty changes in the liver; increased intracytoplasmic vacuolization of glycogen in hepatocytes; pancreatic dyserythropoietic anemia (type 1); multifocal neuronal necrosis; diffuse abiotrophy of the cerebellum granule cell layer; multifocal developmental malformation of the brain; hydronephosis; diffuse alopecia; epidermal hyperkeratosis; hypochromasia and anisocytosis characterized by abnormal erythrocytes (abnormally low hemoglobin and decreased erythropoiesis); growth retardation; development abnormalities; granulocytic hypoplasia of bone marrow; decreased numbers of myeloid granulocytic cell precursors; decreased granulocytopoiesis; no teeth; stunted growth with general reduction in all organ size; myocardial defects with defective structure and arrangement of the cardiac myocytes; cardiomyopathy with condensed eosinophilic sarcoplasm; congestive heart failure; pancreatic islets of Langerhans smaller and distribution of alpha (glycogen) and beta (insulin) cells altered; notable histopathologic alteration in cytoplasm of all cells in the zona fasciculata of the adrenal gland consistent with altered lipid/cholesterol uptake or metabolism (elevated cholesterol and triglycerides); infertility; testicular degeneration; vacuolar degeneration of seminiferous tubules; hypospermia; atrophic testes; ovarian and uterine hypoplasia; mammary gland was represented with just a few ducts; growth retardation with reduced viability; and embryonic lethality.
22. An isolated cell derived from a non-human transgenic animal whose genome comprises a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide.
23. The isolated cell of Claim 22 which is a murine cell.
24. The isolated cell of Claim 23, wherein the murine cell is an embryonic stem cell.
25. The isolated cell of Claim 22, wherein the non-human transgenic animal exhibits at least one of the following phenotypes compared with gender matched wild-type littermates: a neurological disorder; a cardiovascular, endothelial or angiogenic disorder; an eye abnormality; an immunological disorder; an oncological disorder; a bone metabolic abnormality or disorder; a lipid metabolic disorder; or a developmental abnormality.
26. A method of identifying an agent that modulates a phenotype associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising:
[0139] (a) providing a non-human transgenic animal whose genome comprises a disruption of the gene which encodes for the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide;
[0140] (b) measuring a physiological characteristic of the non-human transgenic animal of (a);
[0141] (c) comparing the measured physiological characteristic of (b) with that of a gender matched wild-type animal, wherein the physiological characteristic of the non-human transgenic animal that differs from the physiological characteristic of the wild-type animal is identified as a phenotype resulting from the gene disruption in the non-human transgenic animal;
[0142] (d) administering a test agent to the non-human transgenic animal of (a); and
[0143] (e) determining whether the test agent modulates the identified phenotype associated with gene disruption in the non-human transgenic animal.
27. The method of Claim 26, wherein the phenotype associated with the gene disruption comprises a neurological disorder; a cardiovascular, endothelial or angiogenic disorder; an eye abnormality; an immunological disorder; an oncological disorder; a bone metabolic abnormality or disorder; a lipid metabolic disorder; or a developmental abnormality.
28. The method of Claim 27, wherein the neurological disorder is an increased anxiety-like response during open field activity testing.
29. The method of Claim 27, wherein the neurological disorder is a decreased anxiety-like response during open field activity testing.
30. The method of Claim 27, wherein the neurological disorder is an abnormal circadian rhythm during home-cage activity testing.
31. The method of Claim 27, wherein the neurological disorder is an enhanced motor coordination during inverted screen testing.
32. The method of Claim 27, wherein the neurological disorder is an impaired motor coordination during inverted screen testing.
33. The method of Claim 27, wherein the neurological disorder is depression, generalized anxiety disorders, attention deficit disorder, sleep disorder, hyperactivity disorder, obsessive compulsive disorder, schizophrenia, cognitive disorders, hyperalgesia or sensory disorders.
34. The method of Claim 27, wherein the eye abnormality is a retinal abnormality.
35. The method of Claim 27, wherein the eye abnormality is consistent with vision problems or blindness.
36. The method of Claim 34, wherein the retinal abnormality is consistent with retinitis pigmentosa.
37. The method of Claim 34, wherein the retinal abnormality is characterized by retinal degeneration or retinal dysplasia.
38. The method of Claim 34, wherein the retinal abnormality is consistent with retinal dysplasia, various retinopathies, including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, age-related macular degeneration, diabetic macular edema, corneal neovascularization, corneal graft neovascularization, corneal graft rejection, retinauchoroidal neovascularization, neovascularization of the angle (rubeosis), ocular neovascular disease, vascular restenosis, arteriovenous malformations (AVM), meningioma, hemangioma, angiofibroma, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, retinal artery obstruction or occlusion; retinal degeneration causing secondary atrophy of the retinal vasculature, retinitis pigmentosa, macular dystrophies, Stargardt's disease, congenital stationary night blindness, choroideremia, gyrate atrophy, Leber's congenital amaurosis, retinoschisis disorders, Wagner's syndrome, Usher syndromes, Zellweger syndrome, Saldino-Mainzer syndrome, Senior-Loken syndrome, Bardet-Biedl syndrome, Alport's syndrome, Alstrom's syndrome, Cockayne's syndrome, dysplaisa spondyloepiphysaria congentia, Flynn-Aird syndrome, Friedreich ataxia, Hallgren syndrome, Marshall syndrome, Albers-Schnoberg disease, Refsum's disease, Kearns-Sayre syndrome, Waardenburg's syndrome, Alagile syndrome, myotonic dystrophy, olivopontocerebellar atrophy, Pierre-Marie dunsdrome, Stickler syndrome, carotinemeia, cystinosis, Wolfram syndrome, Bassen-Kornzweig syndrome, abetalipoproteinemia, incontinentia pigmenti, Batten's disease, mucopolysaccharidoses, homocystinuria, or mannosidosis.
39. The method of Claim 27, wherein the eye abnormality is a cataract.
40. The method of Claim 39, wherein the cataract is consistent with systemic diseases such as human Down's syndrome, Hallerman-Streiff syndrome, Lowe syndrome, galactosemia, Marfan syndrome, Trismoy 13-15, Alport syndrome, myotonic dystrophy, Fabry disease, hypoparathroidism or Conradi syndrome.
41. The method of Claim 27, wherein the developmental abnormality comprises embryonic lethality or reduced viability.
42. The method of Claim 27, wherein the cardiovascular, endothelial or angiogenic disorders are arterial diseases, such as diabetes mellitus; papilledema; optic atrophy; atherosclerosis; angina; myocardial infarctions such as acute myocardial infarctions, cardiac hypertrophy, and heart failure such as congestive heart failure; hypertension; inflammatory vasculitides; Reynaud's disease and Reynaud's phenomenon; aneurysms and arterial restenosis; venous and lymphatic disorders such as thrombophlebitis, lymphangitis, and lymphedema; peripheral vascular disease; cancer such as vascular tumors, e.g., hemangioma (capillary and cavernous), glomus tumors, telangiectasia, bacillary angiomatosis, hemangioendothelioma, angiosarcoma, haemangiopericytoma, Kaposi's sarcoma, lymphangioma, and lymphangiosarcoma; tumor angiogenesis; trauma such as wounds, burns, and other injured tissue, implant fixation, scarring; ischemia reperfusion injury; rheumatoid arthritis; cerebrovascular disease; renal diseases such as acute renal failure, or osteoporosis.
43. The method of Claim 27, wherein the immunological disorders are systemic lupus erythematosis; rheumatoid arthritis; juvenile chronic arthritis; spondyloarthropathies; systemic sclerosis (scleroderma); idiopathic inflammatory myopathies (dermatomyositis, polymyositis); Sjögren's syndrome; systemic vasculitis; sarcoidosis; autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria); autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia); thyroiditis (Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis); diabetes mellitus; immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis); demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic demyelinating polyneuropathy or Guillain-Barré syndrome, and chronic inflammatory demyelinating polyneuropathy; hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other non-hepatotropic viruses), autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis; inflammatory bowel disease (ulcerative colitis: Crohn's disease); gluten-sensitive enteropathy, and Whipple's disease; autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis; allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, food hypersensitivity and urticaria; immunologic diseases of the lung such as eosinophilic pneumonia, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis; or transplantation-associated diseases including graft rejection and graft-versus-host disease.
44. The method of Claim 27, wherein said bone metabolic abnormality or disorder is arthritis, osteoporosis or osteopetrosis.
45. The method of Claim 26, wherein the non-human transgenic animal exhibits at least one of the following physiological characteristics compared with gender matched wild-type littermates: increased anxiety-like response during open field testing; decreased anxiety during open field testing; hypoactivity with no circadian rhythm; increased total distance traveled during open field testing (hyperactivity); decreased locomotor activity during open field testing; abnormal circadian rhythm during home-cage activity testing (low activity during the light phase); abnormal circadian rhythm during home-cage activity testing including decreased ambulatory counts; abnormal circadian rhythm during home-cage activity testing including increased ambulatory counts; whiskers absent due to anxiety phenotype; enhanced circadian rhythm; increased stress induced hyperthermia with increased stress response (increased anxiety); increased resistance to stress induced hyperthermia; decreased resistance to stress induced hyperthermia; enhanced motor coordination during inverted screen testing; impaired motor coordination during inverted screen testing; increased immobility in tail suspension (increased depressive-like response); increased depressive-like response during tail suspension testing; decreased depressive-like response during tail suspension testing; clutched hind limbs during tail suspension testing; decreased startle response during prepulse inhibition testing; no startle response indicating deafness; increased prepulse inhibition with enhanced sensorimotor gating/attention; increased latency on hotplate indicative of decreased sensitivity to heat-induced pain; opthamological abnormalities; corneal epidermidalization of the corneal stroma with scarring and blocked vision; metaplasia of the cornea and sclera; attenuated retinal arteries; retinal hemorrhage; optic nerve abnormalities; dilated optic disc; increased intraocular pressure; corneal epithelialization with underdeveloped eyelids; retinal degeneration; agenesis of the Harderian gland; retinal vessel disorganization, microaneurysms and retinal capillary leakage; impaired vision; decreased heart rate; decreased mean systolic blood pressure; increased mean systolic blood pressure; increased insulin sensitivity; increased mean fasting serum glucose levels; decreased mean serum glucose levels; increased mean serum cholesterol levels; decreased mean serum cholesterol levels; increased mean serum triglyceride levels; enhanced glucose tolerance; impaired glucose tolerance; decreased mean serum insulin levels; ketonemia; decreased mean serum calcium; blood urobilinogen, nitrites, protein and ketones; decreased sodium and chloride; increased bilirubin; notable lipemia; increased uric acid and potassium levels; increased mean serum alkaline phosphatase levels; decreased mean serum alkaline phosphatase levels; blood in the urine; glucosuria; increased nitrituria; ketonuria; increased mean percentage of natural killer cells; decreased mean percentage of natural killer cells; abnormal leukocyte count; leukopenia due to lymphopenia and granulocytopenia; increased mean percentage of CD4 cells; decreased mean percentage of CD4 cells; decreased mean percentage of CD8 cells; reduced percentage of naive CD4 and CD8 T cells in lymph nodes; increased mean percentage of B cells in peripheral blood; decrease total white blood cells and lymphocyte counts; decreased absolute lymphocyte counts; increased mean absolute monocyte count; increased mean absolute neutrophil count; decreased in mean serum IgA levels; increase in mean serum IgA levels; increase in IgG1 levels; decreased mean serum IgG1 levels; decreased mean serum IgG1, IgG3, IgG2b and IgG2a levels; decreased mean serum IgG2a levels; decreased mean serum IgG2b levels; decreased mean serum IgG3 and IgM levels; increase in mean serum IgG2a levels; increase in mean serum IgG1, IgG2a and IgG3 levels; increase in mean serum IgG3 levels; anemia; decreased red blood cell count, decreased hemoglobin and decreased hematocrit with increased mean red blood cell count; increased mean corpuscular volume; decreased mean corpuscular volume; decreased mean corpuscular hemoglobin; increased red blood cell distribution width; defect in erythropoiesis; increased IgM+ IgD+ and B220hi/CD43− cells in bone marrow; decreased percentage of B220hi/CD43− IgM+ IgD+ cells in bone marrow; increased percentage of TCRB+ cells in Peyer's patches; reduction in naive T cells (especially CD4) in lymph nodes; increased percentage of CD11b+CD11c− cells (monocytes) in spleen; increased percentage of IgM+, CD117+ cells in bone marrow, higher percentage of dead B cells, decreased B cells, increased CD4 and CD8 T cells in lymph; B cells increased in bone marrow and significantly decreased in lymph node; notably decreased CD21hiCD23med B cells in spleen; decrease in Peyer's patch B220+ cells; decreased mean percentages of CD8 and natural killer cells with increased mean percentage of B cells; reduced number of TCRB+ CD38+ activated T cells in Peyer's patches; decreased mean percentage of CD4 cells with increased mean percentage of B cells; decreased B220+ CD38low and IgM in Payer's patches; increased mean platelet count; decreased mean platelet count; widespread apoptosis and loss of T lymphocytes in the thymic cortex and depletion of T cells in spleen; increased mean serum IgG2a response to an ovalbumin challenge; decreased to no serum IgG1 and IgG2a response to ovalbumin challenge; increased mean serum IgG1 response to an ovalbumin challenge; decreased mean serum TNF-alpha, MCP-1 and IL-6 responses to LPS challenge; increased mean serum MCP-1 response to a LPS challenge; increased mean serum TNF-alpha response to a LPS challenge; increased mean serum IL-6 response to a LPS challenge; increased skin fibroblast proliferation; decreased skin fibroblast proliferation; increased mean percent of total body fat and total fat mass; increased mean body weight; increased mean body length; increased total tissue mass (TTM); increased lean body mass (LBM); increased femoral bone mineral density (BMD); increased vertebral bone mineral density (BMD); increased bone mineral density (BMD); increased total body volumetric bone mineral density (vBMD); increased bone mineral content (BMC); increased mean femoral midshaft cortical thickness and cross-sectional area; increased mean vertebral trabecular bone volume, number and connectivity density; decreased mean percent of total body fat and total fat mass; decreased mean body weight; decreased mean body length; decreased total tissue mass (TTM); decreased lean body mass (LBM); decreased femoral bone mineral density (BMD); decreased vertebral bone mineral density (BMD); decreased bone mineral density (BMD); decreased bone mineral content (BMC); decreased bone mineral density index; decreased volumetric bone mineral density (vBMD); decreased mean femoral midshaft cortical thickness and cross-sectional area; decreased mean vertebral trabecular bone volume, number and connectivity density; marked osteopetrosis with increased bone mineralization; chronic inflammation in various tissues; thymic atrophy; systemic histiocytic storage disease affecting macrophages in liver, spleen and mesenteric lymph nodes; reduced liver size; chronic active hepatitis with focal hepatocyte necrosis; fatty changes in the liver; increased intracytoplasmic vacuolization of glycogen in hepatocytes; pancreatic dyserythropoietic anemia (type 1); multifocal neuronal necrosis; diffuse abiotrophy of the cerebellum granule cell layer; multifocal developmental malformation of the brain; hydronephosis; diffuse alopecia; epidermal hyperkeratosis; hypochromasia and anisocytosis characterized by abnormal erythrocytes (abnormally low hemoglobin and decreased erythropoiesis); growth retardation; development abnormalities; granulocytic hypoplasia of bone marrow; decreased numbers of myeloid granulocytic cell precursors; decreased granulocytopoiesis; no teeth; stunted growth with general reduction in all organ size; myocardial defects with defective structure and arrangement of the cardiac myocytes; cardiomyopathy with condensed eosinophilic sarcoplasm; congestive heart failure; pancreatic islets of Langerhans smaller and distribution of alpha (glycogen) and beta (insulin) cells altered; notable histopathologic alteration in cytoplasm of all cells in the zona fasciculata of the adrenal gland consistent with altered lipid/cholesterol uptake or metabolism (elevated cholesterol and triglycerides); infertility; testicular degeneration; vacuolar degeneration of seminiferous tubules; hypospermia; atrophic testes; ovarian and uterine hypoplasia; mammary gland was represented with just a few ducts; growth retardation with reduced viability; and embryonic lethality.
46. An agent identified by the method of Claim 26.
47. The agent of Claim 46 which is an agonist or antagonist of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide.
48. The agent of Claim 47, wherein the agonist is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
49. The agent of Claim 47, wherein the antagonist is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
50. A method of identifying an agent that modulates a physiological characteristic associated with a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising:
[0144] (a) providing a non-human transgenic animal whose genome comprises a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide;
[0145] (b) measuring a physiological characteristic exhibited by the non-human transgenic animal of (a);
[0146] (c) comparing the measured physiological characteristic of (b) with that of a gender matched wild-type animal, wherein the physiological characteristic exhibited by the non-human transgenic animal that differs from the physiological characteristic exhibited by the wild-type animal is identified as a physiological characteristic associated with gene disruption;
[0147] (d) administering a test agent to the non-human transgenic animal of (a); and
[0148] (e) determining whether the physiological characteristic associated with gene disruption is modulated.
51. The method of Claim 50, wherein the non-human transgenic animal exhibits at least one of the following physiological characteristics compared with gender matched wild-type littermates: increased anxiety-like response during open field testing; decreased anxiety during open field testing; hypoactivity with no circadian rhythm; increased total distance traveled during open field testing (hyperactivity); decreased locomotor activity during open field testing; abnormal circadian rhythm during home-cage activity testing (low activity during the light phase); abnormal circadian rhythm during home-cage activity testing including decreased ambulatory counts; abnormal circadian rhythm during home-cage activity testing including increased ambulatory counts; whiskers absent due to anxiety phenotype; enhanced circadian rhythm; increased stress induced hyperthermia with increased stress response (increased anxiety); increased resistance to stress induced hyperthermia; decreased resistance to stress induced hyperthermia; enhanced motor coordination during inverted screen testing; impaired motor coordination during inverted screen testing; increased immobility in tail suspension (increased depressive-like response); increased depressive-like response during tail suspension testing; decreased depressive-like response during tail suspension testing; clutched hind limbs during tail suspension testing; decreased startle response during prepulse inhibition testing; no startle response indicating deafness; increased prepulse inhibition with enhanced sensorimotor gating/attention; increased latency on hotplate indicative of decreased sensitivity to heat-induced pain; opthamological abnormalities; corneal epidermidalization of the corneal stroma with scarring and blocked vision; metaplasia of the cornea and sclera; attenuated retinal arteries; retinal hemorrhage; optic nerve abnormalities; dilated optic disc; increased intraocular pressure; corneal epithelialization with underdeveloped eyelids; retinal degeneration; agenesis of the Harderian gland; retinal vessel disorganization, microaneurysms and retinal capillary leakage; impaired vision; decreased heart rate; decreased mean systolic blood pressure; increased mean systolic blood pressure; increased insulin sensitivity; increased mean fasting serum glucose levels; decreased mean serum glucose levels; increased mean serum cholesterol levels; decreased mean serum cholesterol levels; increased mean serum triglyceride levels; enhanced glucose tolerance; impaired glucose tolerance; decreased mean serum insulin levels; ketonemia; decreased mean serum calcium; blood urobilinogen, nitrites, protein and ketones; decreased sodium and chloride; increased bilirubin; notable lipemia; increased uric acid and potassium levels; increased mean serum alkaline phosphatase levels; decreased mean serum alkaline phosphatase levels; blood in the urine; glucosuria; increased nitrituria; ketonuria; increased mean percentage of natural killer cells; decreased mean percentage of natural killer cells; abnormal leukocyte count; leukopenia due to lymphopenia and granulocytopenia; increased mean percentage of CD4 cells; decreased mean percentage of CD4 cells; decreased mean percentage of CD8 cells; reduced percentage of naive CD4 and CD8 T cells in lymph nodes; increased mean percentage of B cells in peripheral blood; decrease total white blood cells and lymphocyte counts; decreased absolute lymphocyte counts; increased mean absolute monocyte count; increased mean absolute neutrophil count; decreased in mean serum IgA levels; increase in mean serum IgA levels; increase in IgG1 levels; decreased mean serum IgG1 levels; decreased mean serum IgG1, IgG3, IgG2b and IgG2a levels; decreased mean serum IgG2a levels; decreased mean serum IgG2b levels; decreased mean serum IgG3 and IgM levels; increase in mean serum IgG2a levels; increase in mean serum IgG1, IgG2a and IgG3 levels; increase in mean serum IgG3 levels; anemia; decreased red blood cell count, decreased hemoglobin and decreased hematocrit with increased mean red blood cell count; increased mean corpuscular volume; decreased mean corpuscular volume; decreased mean corpuscular hemoglobin; increased red blood cell distribution width; defect in erythropoiesis; increased IgM+ IgD+ and B220hi/CD43− cells in bone marrow; decreased percentage of B220hi/CD43− IgM+ IgD+ cells in bone marrow; increased percentage of TCRB+ cells in Peyer's patches; reduction in naive T cells (especially CD4) in lymph nodes; increased percentage of CD11b+CD11c− cells (monocytes) in spleen; increased percentage of IgM+, CD117+ cells in bone marrow, higher percentage of dead B cells, decreased B cells, increased CD4 and CD8 T cells in lymph; B cells increased in bone marrow and significantly decreased in lymph node; notably decreased CD21hiCD23med B cells in spleen; decrease in Peyer's patch B220+ cells; decreased mean percentages of CD8 and natural killer cells with increased mean percentage of B cells; reduced number of TCRB+ CD38+ activated T cells in Peyer's patches; decreased mean percentage of CD4 cells with increased mean percentage of B cells; decreased B220+ CD38low and IgM in Payer's patches; increased mean platelet count; decreased mean platelet count; widespread apoptosis and loss of T lymphocytes in the thymic cortex and depletion of T cells in spleen; increased mean serum IgG2a response to an ovalbumin challenge; decreased to no serum IgG1 and IgG2a response to ovalbumin challenge; increased mean serum IgG1 response to an ovalbumin challenge; decreased mean serum TNF-alpha, MCP-1 and IL-6 responses to LPS challenge; increased mean serum MCP-1 response to a LPS challenge; increased mean serum TNF-alpha response to a LPS challenge; increased mean serum IL-6 response to a LPS challenge; increased skin fibroblast proliferation; decreased skin fibroblast proliferation; increased mean percent of total body fat and total fat mass; increased mean body weight; increased mean body length; increased total tissue mass (TTM); increased lean body mass (LBM); increased femoral bone mineral density (BMD); increased vertebral bone mineral density (BMD); increased bone mineral density (BMD); increased total body volumetric bone mineral density (vBMD); increased bone mineral content (BMC); increased mean femoral midshaft cortical thickness and cross-sectional area; increased mean vertebral trabecular bone volume, number and connectivity density; decreased mean percent of total body fat and total fat mass; decreased mean body weight; decreased mean body length; decreased total tissue mass (TTM); decreased lean body mass (LBM); decreased femoral bone mineral density (BMD); decreased vertebral bone mineral density (BMD); decreased bone mineral density (BMD); decreased bone mineral content (BMC); decreased bone mineral density index; decreased volumetric bone mineral density (vBMD); decreased mean femoral midshaft cortical thickness and cross-sectional area; decreased mean vertebral trabecular bone volume, number and connectivity density; marked osteopetrosis with increased bone mineralization; chronic inflammation in various tissues; thymic atrophy; systemic histiocytic storage disease affecting macrophages in liver, spleen and mesenteric lymph nodes; reduced liver size; chronic active hepatitis with focal hepatocyte necrosis; fatty changes in the liver; increased intracytoplasmic vacuolization of glycogen in hepatocytes; pancreatic dyserythropoietic anemia (type 1); multifocal neuronal necrosis; diffuse abiotrophy of the cerebellum granule cell layer; multifocal developmental malformation of the brain; hydronephosis; diffuse alopecia; epidermal hyperkeratosis; hypochromasia and anisocytosis characterized by abnormal erythrocytes (abnormally low hemoglobin and decreased erythropoiesis); growth retardation; development abnormalities; granulocytic hypoplasia of bone marrow; decreased numbers of myeloid granulocytic cell precursors; decreased granulocytopoiesis; no teeth; stunted growth with general reduction in all organ size; myocardial defects with defective structure and arrangement of the cardiac myocytes; cardiomyopathy with condensed eosinophilic sarcoplasm; congestive heart failure; pancreatic islets of Langerhans smaller and distribution of alpha (glycogen) and beta (insulin) cells altered; notable histopathologic alteration in cytoplasm of all cells in the zona fasciculata of the adrenal gland consistent with altered lipid/cholesterol uptake or metabolism (elevated cholesterol and triglycerides); infertility; testicular degeneration; vacuolar degeneration of seminiferous tubules; hypospermia; atrophic testes; ovarian and uterine hypoplasia; mammary gland was represented with just a few ducts; growth retardation with reduced viability; and embryonic lethality.
52. An agent identified by the method of Claim 50.
53. The agent of Claim 52 which is an agonist or antagonist of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide.
54. The agent of Claim 53, wherein the agonist is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO 19646, anti-PRO21718, anti-PRO 19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
55. The agent of Claim 53, wherein the antagonist is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
56. A method of identifying an agent which modulates a behavior associated with a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising:
[0149] (a) providing a non-human transgenic animal whose genome comprises a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide;
[0150] (b) observing the behavior exhibited by the non-human transgenic animal of (a);
[0151] (c) comparing the observed behavior of (b) with that of a gender matched wild-type animal, wherein the observed behavior exhibited by the non-human transgenic animal that differs from the observed behavior exhibited by the wild-type animal is identified as a behavior associated with gene disruption;
[0152] (d) administering a test agent to the non-human transgenic animal of (a); and
[0153] (e) determining whether the agent modulates the behavior associated with gene disruption.

57. The method of Claim 56, wherein the behavior is an increased anxiety-like response during open field activity testing.

58. The method of Claim 56, wherein the behavior is a decreased anxiety-like response during open field activity testing.

59. The method of Claim 56, wherein the behavior is an abnormal circadian rhythm during home-cage activity testing.

60. The method of Claim 56, wherein the behavior is an enhanced motor coordination during inverted screen testing.

61. The method of Claim 56, wherein the behavior is an impaired motor coordination during inverted screen testing.

[0154] 62. The method of Claim 56, wherein the behavior is depression, generalized anxiety disorders, attention deficit disorder, sleep disorder, hyperactivity disorder, obsessive compulsive disorder, schizophrenia, cognitive disorders, hyperalgesia or sensory disorders.
63. An agent identified by the method of Claim 56.
64. The agent of Claim 63 which is an agonist or antagonist of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide.
65. The agent of Claim 64, wherein the agonist is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO 19646, anti-PRO21718, anti-PRO 19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
66. The agent of Claim 64, wherein the antagonist is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
67. A method of identifying an agent that ameliorates or modulates a neurological disorder; a cardiovascular, endothelial or angiogenic disorder; an eye abnormality; an immunological disorder; an oncological disorder; a bone metabolic abnormality or disorder; a lipid metabolic disorder; or a developmental abnormality associated with a disruption in the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising:
[0155] (a) providing a non-human transgenic animal whose genome comprises a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide;
[0156] (b) administering a test agent to said non-human transgenic animal; and
[0157] (c) determining whether said test agent ameliorates or modulates the neurological disorder; cardiovascular, endothelial or angiogenic disorder; eye abnormality; immunological disorder; oncological disorder; bone metabolic abnormality or disorder; lipid metabolic disorder; or developmental abnormality in the non-human transgenic animal.

68. The method of Claim 67, wherein the neurological disorder is an increased anxiety-like response during open field activity testing.

69. The method of Claim 67, wherein the neurological disorder is a decreased anxiety-like response during open field activity testing.

70. The method of Claim 67, wherein the neurological disorder is an abnormal circadian rhythm during home-cage activity testing.

71. The method of Claim 67, wherein the neurological disorder is an enhanced motor coordination during inverted screen testing.

72. The method of Claim 67, wherein the neurological disorder is an impaired motor coordination during inverted screen testing.

[0158] 73. The method of Claim 73, wherein the neurological disorder is depression, generalized anxiety disorders, attention deficit disorder, sleep disorder, hyperactivity disorder, obsessive compulsive disorder, schizophrenia, cognitive disorders, hyperalgesia or sensory disorders.
74. The method of Claim 67, wherein the eye abnormality is a retinal abnormality.
75. The method of Claim 67, wherein the eye abnormality is consistent with vision problems or blindness.
76. The method of Claim 74, wherein the retinal abnormality is consistent with retinitis pigmentosa.
77. The method of Claim 74, wherein the retinal abnormality is characterized by retinal degeneration or retinal dysplasia.
78. The method of Claim 74, wherein the retinal abnormality is consistent with retinal dysplasia, various retinopathies, including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, age-related macular degeneration, diabetic macular edema, corneal neovascularization, corneal graft neovascularization, corneal graft rejection, retinauchoroidal neovascularization, neovascularization of the angle (rubeosis), ocular neovascular disease, vascular restenosis, arteriovenous malformations (AVM), meningioma, hemangioma, angiofibroma, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, retinal artery obstruction or occlusion; retinal degeneration causing secondary atrophy of the retinal vasculature, retinitis pigmentosa, macular dystrophies, Stargardt's disease, congenital stationary night blindness, choroideremia, gyrate atrophy, Leber's congenital amaurosis, retinoschisis disorders, Wagner's syndrome, Usher syndromes, Zellweger syndrome, Saldino-Mainzer syndrome, Senior-Loken syndrome, Bardet-Biedl syndrome, Alport's syndrome, Alstrom's syndrome, Cockayne's syndrome, dysplaisa spondyloepiphysaria congentia, Flynn-Aird syndrome, Friedreich ataxia, Hallgren syndrome, Marshall syndrome, Albers-Schnoberg disease, Refsum's disease, Kearns-Sayre syndrome, Waardenburg's syndrome, Alagile syndrome, myotonic dystrophy, olivopontocerebellar atrophy, Pierre-Marie dunsdrome, Stickler syndrome, carotinemeia, cystinosis, Wolfram syndrome, Bassen-Kornzweig syndrome, abetalipoproteinemia, incontinentia pigmenti, Batten's disease, mucopolysaccharidoses, homocystinuria, or mannosidosis.
79. The method of Claim 67, wherein the eye abnormality is a cataract.
80. The method of Claim 79, wherein the cataract is a systemic disease such as human Down's syndrome, Hallerman-Streiff syndrome, Lowe syndrome, galactosemia, Marfan syndrome, Trismoy 13-15, Alport syndrome, myotonic dystrophy, Fabry disease, hypoparathroidism or Conradi syndrome.
81. The method of Claim 67, wherein the developmental abnormality comprises embryonic lethality or reduced viability.
82. The method of Claim 67, wherein the cardiovascular, endothelial or angiogenic disorders are arterial diseases, such as diabetes mellitus; papilledema; optic atrophy; atherosclerosis; angina; myocardial infarctions such as acute myocardial infarctions, cardiac hypertrophy, and heart failure such as congestive heart failure; hypertension; inflammatory vasculitides; Reynaud's disease and Reynaud's phenomenon; aneurysms and arterial restenosis; venous and lymphatic disorders such as thrombophlebitis, lymphangitis, and lymphedema; peripheral vascular disease; cancer such as vascular tumors, e.g., hemangioma (capillary and cavernous), glomus tumors, telangiectasia, bacillary angiomatosis, hemangioendothelioma, angiosarcoma, haemangiopericytoma, Kaposi's sarcoma, lymphangioma, and lymphangiosarcoma; tumor angiogenesis; trauma such as wounds, burns, and other injured tissue, implant fixation, scarring; ischemia reperfusion injury; rheumatoid arthritis; cerebrovascular disease; renal diseases such as acute renal failure, or osteoporosis.
83. The method of Claim 67, wherein the immunological disorders are systemic lupus erythematosis; rheumatoid arthritis; juvenile chronic arthritis; spondyloarthropathies; systemic sclerosis (scleroderma); idiopathic inflammatory myopathies (dermatomyositis, polymyositis); Sjögren's syndrome; systemic vasculitis; sarcoidosis; autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria); autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia); thyroiditis (Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis); diabetes mellitus; immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis); demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic demyelinating polyneuropathy or Guillain-Barré syndrome, and chronic inflammatory demyelinating polyneuropathy; hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other non-hepatotropic viruses), autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis; inflammatory bowel disease (ulcerative colitis: Crohn's disease); gluten-sensitive enteropathy, and Whipple's disease; autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis; allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, food hypersensitivity and urticaria; immunologic diseases of the lung such as eosinophilic pneumonia, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis; ortransplantation associated diseases including graft rejection and graft-versus-host disease.
84. The method of Claim 67, wherein said bone metabolic abnormality or disorder is arthritis, osteoporosis or osteopetrosis.
85. The method of Claim 67, wherein the non-human transgenic animal exhibits at least one of the following physiological characteristics compared with gender matched wild-type littermates: increased anxiety-like response during open field testing; decreased anxiety during open field testing; hypoactivity with no circadian rhythm; increased total distance traveled during open field testing (hyperactivity); decreased locomotor activity during open field testing; abnormal circadian rhythm during home-cage activity testing (low activity during the light phase); abnormal circadian rhythm during home-cage activity testing including decreased ambulatory counts; abnormal circadian rhythm during home-cage activity testing including increased ambulatory counts; whiskers absent due to anxiety phenotype; enhanced circadian rhythm; increased stress induced hyperthermia with increased stress response (increased anxiety); increased resistance to stress induced hyperthermia; decreased resistance to stress induced hyperthermia; enhanced motor coordination during inverted screen testing; impaired motor coordination during inverted screen testing; increased immobility in tail suspension (increased depressive-like response); increased depressive-like response during tail suspension testing; decreased depressive-like response during tail suspension testing; clutched hind limbs during tail suspension testing; decreased startle response during prepulse inhibition testing; no startle response indicating deafness; increased prepulse inhibition with enhanced sensorimotor gating/attention; increased latency on hotplate indicative of decreased sensitivity to heat-induced pain; opthamological abnormalities; corneal epidermidalization of the corneal stroma with scarring and blocked vision; metaplasia of the cornea and sclera; attenuated retinal arteries; retinal hemorrhage; optic nerve abnormalities; dilated optic disc; increased intraocular pressure; corneal epithelialization with underdeveloped eyelids; retinal degeneration; agenesis of the Harderian gland; retinal vessel disorganization, microaneurysms and retinal capillary leakage; impaired vision; decreased heart rate; decreased mean systolic blood pressure; increased mean systolic blood pressure; increased insulin sensitivity; increased mean fasting serum glucose levels; decreased mean serum glucose levels; increased mean serum cholesterol levels; decreased mean serum cholesterol levels; increased mean serum triglyceride levels; enhanced glucose tolerance; impaired glucose tolerance; decreased mean serum insulin levels; ketonemia; decreased mean serum calcium; blood urobilinogen, nitrites, protein and ketones; decreased sodium and chloride; increased bilirubin; notable lipemia; increased uric acid and potassium levels; increased mean serum alkaline phosphatase levels; decreased mean serum alkaline phosphatase levels; blood in the urine; glucosuria; increased nitrituria; ketonuria; increased mean percentage of natural killer cells; decreased mean percentage of natural killer cells; abnormal leukocyte count; leukopenia due to lymphopenia and granulocytopenia; increased mean percentage of CD4 cells; decreased mean percentage of CD4 cells; decreased mean percentage of CD8 cells; reduced percentage of naive CD4 and CD8 T cells in lymph nodes; increased mean percentage of B cells in peripheral blood; decrease total white blood cells and lymphocyte counts; decreased absolute lymphocyte counts; increased mean absolute monocyte count; increased mean absolute neutrophil count; decreased in mean serum IgA levels; increase in mean serum IgA levels; increase in IgG1 levels; decreased mean serum IgG1 levels; decreased mean serum IgG1, IgG3, IgG2b and IgG2a levels; decreased mean serum IgG2a levels; decreased mean serum IgG2b levels; decreased mean serum IgG3 and IgM levels; increase in mean serum IgG2a levels; increase in mean serum IgG1, IgG2a and IgG3 levels; increase in mean serum IgG3 levels; anemia; decreased red blood cell count, decreased hemoglobin and decreased hematocrit with increased mean red blood cell count; increased mean corpuscular volume; decreased mean corpuscular volume; decreased mean corpuscular hemoglobin; increased red blood cell distribution width; defect in erythropoiesis; increased IgM+ IgD+ and B220hi/CD43− cells in bone marrow; decreased percentage of B220hi/CD43− IgM+ IgD+ cells in bone marrow; increased percentage of TCRB+ cells in Peyer's patches; reduction in naive T cells (especially CD4) in lymph nodes; increased percentage of CD11b+CD11c− cells (monocytes) in spleen; increased percentage of IgM+, CD117+ cells in bone marrow, higher percentage of dead B cells, decreased B cells, increased CD4 and CD8 T cells in lymph; B cells increased in bone marrow and significantly decreased in lymph node; notably decreased CD21hiCD23med B cells in spleen; decrease in Peyer's patch B220+ cells; decreased mean percentages of CD8 and natural killer cells with increased mean percentage of B cells; reduced number of TCRB+ CD38+ activated T cells in Peyer's patches; decreased mean percentage of CD4 cells with increased mean percentage of B cells; decreased B220+ CD38low and IgM in Payer's patches; increased mean platelet count; decreased mean platelet count; widespread apoptosis and loss of T lymphocytes in the thymic cortex and depletion of T cells in spleen; increased mean serum IgG2a response to an ovalbumin challenge; decreased to no serum IgG1 and IgG2a response to ovalbumin challenge; increased mean serum IgG1 response to an ovalbumin challenge; decreased mean serum TNF-alpha, MCP-1 and IL-6 responses to LPS challenge; increased mean serum MCP-1 response to a LPS challenge; increased mean serum TNF-alpha response to a LPS challenge; increased mean serum IL-6 response to a LPS challenge; increased skin fibroblast proliferation; decreased skin fibroblast proliferation; increased mean percent of total body fat and total fat mass; increased mean body weight; increased mean body length; increased total tissue mass (TTM); increased lean body mass (LBM); increased femoral bone mineral density (BMD); increased vertebral bone mineral density (BMD); increased bone mineral density (BMD); increased total body volumetric bone mineral density (vBMD); increased bone mineral content (BMC); increased mean femoral midshaft cortical thickness and cross-sectional area; increased mean vertebral trabecular bone volume, number and connectivity density; decreased mean percent of total body fat and total fat mass; decreased mean body weight; decreased mean body length; decreased total tissue mass (TTM); decreased lean body mass (LBM); decreased femoral bone mineral density (BMD); decreased vertebral bone mineral density (BMD); decreased bone mineral density (BMD); decreased bone mineral content (BMC); decreased bone mineral density index; decreased volumetric bone mineral density (vBMD); decreased mean femoral midshaft cortical thickness and cross-sectional area; decreased mean vertebral trabecular bone volume, number and connectivity density; marked osteopetrosis with increased bone mineralization; chronic inflammation in various tissues; thymic atrophy; systemic histiocytic storage disease affecting macrophages in liver, spleen and mesenteric lymph nodes; reduced liver size; chronic active hepatitis with focal hepatocyte necrosis; fatty changes in the liver; increased intracytoplasmic vacuolization of glycogen in hepatocytes; pancreatic dyserythropoietic anemia (type 1); multifocal neuronal necrosis; diffuse abiotrophy of the cerebellum granule cell layer; multifocal developmental malformation of the brain; hydronephosis; diffuse alopecia; epidermal hyperkeratosis; hypochromasia and anisocytosis characterized by abnormal erythrocytes (abnormally low hemoglobin and decreased erythropoiesis); growth retardation; development abnormalities; granulocytic hypoplasia of bone marrow; decreased numbers of myeloid granulocytic cell precursors; decreased granulocytopoiesis; no teeth; stunted growth with general reduction in all organ size; myocardial defects with defective structure and arrangement of the cardiac myocytes; cardiomyopathy with condensed eosinophilic sarcoplasm; congestive heart failure; pancreatic islets of Langerhans smaller and distribution of alpha (glycogen) and beta (insulin) cells altered; notable histopathologic alteration in cytoplasm of all cells in the zona fasciculata of the adrenal gland consistent with altered lipid/cholesterol uptake or metabolism (elevated cholesterol and triglycerides); infertility; testicular degeneration; vacuolar degeneration of seminiferous tubules; hypospermia; atrophic testes; ovarian and uterine hypoplasia; mammary gland was represented with just a few ducts; growth retardation with reduced viability; and embryonic lethality.
86. An agent identified by the method of Claim 67.
87. The agent of Claim 86 which is an agonist or antagonist of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide.
88. The agent of Claim 87, wherein the agonist is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
89. The agent of Claim 87, wherein the antagonist is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO 19646, anti-PRO21718, anti-PRO 19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
90. A therapeutic agent identified by the method of Claim 67.
91. A method of identifying an agent that modulates the expression of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising:
[0159] (a) contacting a test agent with a host cell expressing a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide; and
[0160] (b) determining whether the test agent modulates the expression of the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide by the host cell.

92. An agent identified by the method of Claim 91.

[0161] 93. The agent of Claim 92 which is an agonist or antagonist of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide.
94. The agent of Claim 93, wherein the agonist is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO 19646, anti-PRO21718, anti-PRO 19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
95. The agent of Claim 93, wherein the antagonist is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO 19646, anti-PRO21718, anti-PRO 19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
96. A method of evaluating a therapeutic agent capable of affecting a condition associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising:
[0162] (a) providing a non-human transgenic animal whose genome comprises a disruption of the gene which encodes for the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide;
[0163] (b) measuring a physiological characteristic of the non-human transgenic animal of (a);
[0164] (c) comparing the measured physiological characteristic of (b) with that of a gender matched wild-type animal, wherein the physiological characteristic of the non-human transgenic animal that differs from the physiological characteristic of the wild-type animal is identified as a condition resulting from the gene disruption in the non-human transgenic animal;
[0165] (d) administering a test agent to the non-human transgenic animal of (a); and
[0166] (e) evaluating the effects of the test agent on the identified condition associated with gene disruption in the non-human transgenic animal.
[0167] 97. The method of Claim 96, wherein the condition is a neurological disorder; a cardiovascular, endothelial or angiogenic disorder; an eye abnormality; an immunological disorder; an oncological disorder; a bone metabolic abnormality or disorder; a lipid metabolic disorder; or a developmental abnormality.
98. A therapeutic agent identified by the method of Claim 96.
99. The therapeutic agent of Claim 98 which is an agonist or antagonist of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide.
100. The therapeutic agent of Claim 99, wherein the agonist is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO 19646, anti-PRO21718, anti-PRO 19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
101. The therapeutic agent of Claim 99, wherein the antagonist is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
102. A pharmaceutical composition comprising the therapeutic agent of Claim 98.
103. A method of treating or preventing or ameliorating a neurological disorder; cardiovascular, endothelial or angiogenic disorder; immunological disorder; oncological disorder; bone metabolic abnormality or disorder, or embryonic lethality associated with the disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising administering to a subject in need of such treatment whom may already have the disorder, or may be prone to have the disorder or may be in whom the disorder is to be prevented, a therapeutically effective amount of the therapeutic agent of Claim 94, or agonists or antagonists thereof, thereby effectively treating or preventing or ameliorating said disorder.
104. The method of Claim 103, wherein the neurological disorder is an increased anxiety-like response during open field activity testing.
105. The method of Claim 103, wherein the neurological disorder is a decreased anxiety-like response during open field activity testing.
106. The method of Claim 103, wherein the neurological disorder is an abnormal circadian rhythm during home-cage activity testing.
107. The method of Claim 103, wherein the neurological disorder is an enhanced motor coordination during inverted screen testing.
108. The method of Claim 103, wherein the neurological disorder is an impaired motor coordination during inverted screen testing.
109. The method of Claim 103, wherein the neurological disorder is depression, generalized anxiety disorders, attention deficit disorder, sleep disorder, hyperactivity disorder, obsessive compulsive disorder, schizophrenia, cognitive disorders, hyperalgesia or sensory disorders.
110. The method of Claim 103, wherein the eye abnormality is a retinal abnormality.
111. The method of Claim 103, wherein the eye abnormality is consistent with vision problems or blindness.
112. The method of Claim 110, wherein the retinal abnormality is consistent with retinitis pigmentosa.
113. The method of Claim 110, wherein the retinal abnormality is characterized by retinal degeneration or retinal dysplasia.
114. The method of Claim 110, wherein the retinal abnormality is consistent with retinal dysplasia, various retinopathies, including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, age-related macular degeneration, diabetic macular edema, corneal neovascularization, corneal graft neovascularization, corneal graft rejection, retinauchoroidal neovascularization, neovascularization of the angle (rubeosis), ocular neovascular disease, vascular restenosis, arteriovenous malformations (AVM), meningioma, hemangioma, angiofibroma, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, retinal artery obstruction or occlusion; retinal degeneration causing secondary atrophy of the retinal vasculature, retinitis pigmentosa, macular dystrophies, Stargardt's disease, congenital stationary night blindness, choroideremia, gyrate atrophy, Leber's congenital amaurosis, retinoschisis disorders, Wagner's syndrome, Usher syndromes, Zellweger syndrome, Saldino-Mainzer syndrome, Senior-Loken syndrome, Bardet-Biedl syndrome, Alport's syndrome, Alstrom's syndrome, Cockayne's syndrome, dysplaisa spondyloepiphysaria congentia, Flynn-Aird syndrome, Friedreich ataxia, Hallgren syndrome, Marshall syndrome, Albers-Schnoberg disease, Refsum's disease, Kearns-Sayre syndrome, Waardenburg's syndrome, Alagile syndrome, myotonic dystrophy, olivopontocerebellar atrophy, Pierre-Marie dunsdrome, Stickler syndrome, carotinemeia, cystinosis, Wolfram syndrome, Bassen-Kornzweig syndrome, abetalipoproteinemia, incontinentia pigmenti, Batten's disease, mucopolysaccharidoses, homocystinuria, or mannosidosis.
115. The method of Claim 103, wherein the eye abnormality is a cataract.
116. The method of Claim 115, wherein the cataract is a systemic disease such as human Down's syndrome, Hallerman-Streiff syndrome, Lowe syndrome, galactosemia, Marfan syndrome, Trismoy 13-15, Alport syndrome, myotonic dystrophy, Fabry disease, hypoparathroidism or Conradi syndrome.
117. The method of Claim 103, wherein the developmental abnormality comprises embryonic lethality or reduced viability.
118. The method of Claim 103, wherein the cardiovascular, endothelial or angiogenic disorders are arterial diseases, such as diabetes mellitus; papilledema; optic atrophy; atherosclerosis; angina; myocardial infarctions such as acute myocardial infarctions, cardiac hypertrophy, and heart failure such as congestive heart failure; hypertension; inflammatory vasculitides; Reynaud's disease and Reynaud's phenomenon; aneurysms and arterial restenosis; venous and lymphatic disorders such as thrombophlebitis, lymphangitis, and lymphedema; peripheral vascular disease; cancer such as vascular tumors, e.g., hemangioma (capillary and cavernous), glomus tumors, telangiectasia, bacillary angiomatosis, hemangioendothelioma, angiosarcoma, haemangiopericytoma, Kaposi's sarcoma, lymphangioma, and lymphangiosarcoma; tumor angiogenesis; trauma such as wounds, burns, and other injured tissue, implant fixation, scarring; ischemia reperfusion injury; rheumatoid arthritis; cerebrovascular disease; renal diseases such as acute renal failure, or osteoporosis.
119. The method of Claim 103, wherein the immunological disorders are systemic lupus erythematosis; rheumatoid arthritis; juvenile chronic arthritis; spondyloarthropathies; systemic sclerosis (scleroderma); idiopathic inflammatory myopathies (dermatomyositis, polymyositis); Sjögren's syndrome; systemic vasculitis; sarcoidosis; autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria); autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia); thyroiditis (Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis); diabetes mellitus; immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis); demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic demyelinating polyneuropathy or Guillain-Barré syndrome, and chronic inflammatory demyelinating polyneuropathy; hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other non-hepatotropic viruses), autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis; inflammatory bowel disease (ulcerative colitis: Crohn's disease); gluten-sensitive enteropathy, and Whipple's disease; autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis; allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, food hypersensitivity and urticaria; immunologic diseases of the lung such as eosinophilic pneumonia, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis; ortransplantation associated diseases including graft rejection and graft-versus-host disease.
120. The method of Claim 103, wherein said bone metabolic abnormality or disorder is arthritis, osteoporosis or osteopetrosis.
121. A method of identifying an agent that ameliorates or modulates a neurological disorder; a cardiovascular, endothelial or angiogenic disorder; an eye abnormality; an immunological disorder; an oncological disorder; a bone metabolic abnormality or disorder; a lipid metabolic disorder; or a developmental abnormality associated with a disruption in the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising:
[0168] (a) providing a non-human transgenic animal cell culture, each cell of said culture comprising a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide;
[0169] (b) administering a test agent to said cell culture; and
[0170] (c) determining whether said test agent ameliorates or modulates the neurological disorder; cardiovascular, endothelial or angiogenic disorder; eye abnormality; immunological disorder; oncological disorder; bone metabolic abnormality or disorder; lipid metabolic disorder; or developmental abnormality in said cell culture.

122. The method of Claim 121, wherein the neurological disorder is an increased anxiety-like response during open field activity testing.

123. The method of Claim 121, wherein the neurological disorder is a decreased anxiety-like response during open field activity testing.

124. The method of Claim 121, wherein the neurological disorder is an abnormal circadian rhythm during home-cage activity testing.

125. The method of Claim 121, wherein the neurological disorder is an enhanced motor coordination during inverted screen testing.

126. The method of Claim 121, wherein the neurological disorder is an impaired motor coordination during inverted screen testing.

[0171] 127. The method of Claim 121, wherein the neurological disorder is depression, generalized anxiety disorders, attention deficit disorder, sleep disorder, hyperactivity disorder, obsessive compulsive disorder, schizophrenia, cognitive disorders, hyperalgesia or sensory disorders.
128. The method of Claim 121, wherein the eye abnormality is a retinal abnormality.
129. The method of Claim 121, wherein the eye abnormality is consistent with vision problems or blindness.
130. The method of Claim 128, wherein the retinal abnormality is consistent with retinitis pigmentosa.
131. The method of Claim 128, wherein the retinal abnormality is characterized by retinal degeneration or retinal dysplasia.
132. The method of Claim 128, wherein the retinal abnormality is consistent with retinal dysplasia, various retinopathies, including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, age-related macular degeneration, diabetic macular edema, corneal neovascularization, corneal graft neovascularization, corneal graft rejection, retinauchoroidal neovascularization, neovascularization of the angle (rubeosis), ocular neovascular disease, vascular restenosis, arteriovenous malformations (AVM), meningioma, hemangioma, angiofibroma, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, retinal artery obstruction or occlusion; retinal degeneration causing secondary atrophy of the retinal vasculature, retinitis pigmentosa, macular dystrophies, Stargardt's disease, congenital stationary night blindness, choroideremia, gyrate atrophy, Leber's congenital amaurosis, retinoschisis disorders, Wagner's syndrome, Usher syndromes, Zellweger syndrome, Saldino-Mainzer syndrome, Senior-Loken syndrome, Bardet-Biedl syndrome, Alport's syndrome, Alstrom's syndrome, Cockayne's syndrome, dysplaisa spondyloepiphysaria congentia, Flynn-Aird syndrome, Friedreich ataxia, Hallgren syndrome, Marshall syndrome, Albers-Schnoberg disease, Refsum's disease, Kearns-Sayre syndrome, Waardenburg's syndrome, Alagile syndrome, myotonic dystrophy, olivopontocerebellar atrophy, Pierre-Marie dunsdrome, Stickler syndrome, carotinemeia, cystinosis, Wolfram syndrome, Bassen-Kornzweig syndrome, abetalipoproteinemia, incontinentia pigmenti, Batten's disease, mucopolysaccharidoses, homocystinuria, or mannosidosis.
133. The method of Claim 121, wherein the eye abnormality is a cataract.
134. The method of Claim 133, wherein the cataract is a systemic disease such as human Down's syndrome, Hallerman-Streiff syndrome, Lowe syndrome, galactosemia, Marfan syndrome, Trismoy 13-15, Alport syndrome, myotonic dystrophy, Fabry disease, hypoparathroidism or Conradi syndrome.
135. The method of Claim 121, wherein the developmental abnormality comprises embryonic lethality or reduced viability.
136. The method of Claim 121, wherein the cardiovascular, endothelial or angiogenic disorders are arterial diseases, such as diabetes mellitus; papilledema; optic atrophy; atherosclerosis; angina; myocardial infarctions such as acute myocardial infarctions, cardiac hypertrophy, and heart failure such as congestive heart failure; hypertension; inflammatory vasculitides; Reynaud's disease and Reynaud's phenomenon; aneurysms and arterial restenosis; venous and lymphatic disorders such as thrombophlebitis, lymphangitis, and lymphedema; peripheral vascular disease; cancer such as vascular tumors, e.g., hemangioma (capillary and cavernous), glomus tumors, telangiectasia, bacillary angiomatosis, hemangioendothelioma, angiosarcoma, haemangiopericytoma, Kaposi's sarcoma, lymphangioma, and lymphangiosarcoma; tumor angiogenesis; trauma such as wounds, burns, and other injured tissue, implant fixation, scarring; ischemia reperfusion injury; rheumatoid arthritis; cerebrovascular disease; renal diseases such as acute renal failure, or osteoporosis.
137. The method of Claim 121, wherein the immunological disorders are systemic lupus erythematosis; rheumatoid arthritis; juvenile chronic arthritis; spondyloarthropathies; systemic sclerosis (scleroderma); idiopathic inflammatory myopathies (dermatomyositis, polymyositis); Sjögren's syndrome; systemic vasculitis; sarcoidosis; autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria); autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia); thyroiditis (Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis); diabetes mellitus; immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis); demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic demyelinating polyneuropathy or Guillain-Barré syndrome, and chronic inflammatory demyelinating polyneuropathy; hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other non-hepatotropic viruses), autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis; inflammatory bowel disease (ulcerative colitis: Crohn's disease); gluten-sensitive enteropathy, and Whipple's disease; autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis; allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, food hypersensitivity and urticaria; immunologic diseases of the lung such as eosinophilic pneumonia, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis; ortransplantation associated diseases including graft rejection and graft-versus-host disease.
138. The method of Claim 121, wherein said bone metabolic abnormality or disorder is arthritis, osteoporosis or osteopetrosis.
139. An agent identified by the method of Claim 121.
140. The agent of Claim 139 which is an agonist or antagonist of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide.
141. The agent of Claim 140, wherein the agonist is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO 19646, anti-PRO21718, anti-PRO 19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
142. The agent of Claim 140, wherein the antagonist is an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO 19646, anti-PRO21718, anti-PRO 19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody.
143. A therapeutic agent identified by the method of Claim 121.
144. A method of modulating a phenotype associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising administering to a subject whom may already have the phenotype, or may be prone to have the phenotype or may be in whom the phenotype is to be prevented, an effective amount of the agent of Claim 46, or agonists or antagonists thereof, thereby effectively modulating the phenotype.
145. A method of modulating a physiological characteristic associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising administering to a subject whom may already exhibit the physiological characteristic, or may be prone to exhibit the physiological characteristic or may be in whom the physiological characteristic is to be prevented, an effective amount of the agent of Claim 52, or agonists or antagonists thereof, thereby effectively modulating the physiological characteristic.
146. A method of modulating a behavior associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising administering to a subject whom may already exhibit the behavior, or may be prone to exhibit the behavior or may be in whom the exhibited behavior is to be prevented, an effective amount of the agent of Claim 63, or agonists or antagonists thereof, thereby effectively modulating the behavior.
147. A method of modulating the expression of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO285, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising administering to a host cell expressing said PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, an effective amount of the agent of Claim 92, or agonists or antagonists thereof, thereby effectively modulating the expression of said polypeptide.
148. A method of modulating a condition associated with a disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising administering to a subject whom may have the condition, or may be prone to have the condition or may be in whom the condition is to be prevented, a therapeutically effective amount of the therapeutic agent of Claim 98, or agonists or antagonists thereof, thereby effectively modulating the condition.
149. A method of treating or preventing or ameliorating a neurological disorder; cardiovascular, endothelial or angiogenic disorder; immunological disorder; oncological disorder; bone metabolic abnormality or disorder, or embryonic lethality associated with the disruption of a gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, the method comprising administering to a non-human transgenic animal cell culture, each cell of said culture comprising a disruption of the gene which encodes for a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, a therapeutically effective amount of the agent of Claim 139, or agonists or antagonists thereof, thereby effectively treating or preventing or ameliorating said disorder.

BRIEF DESCRIPTION OF THE DRAWINGS

[0172] FIG. 1 shows a nucleotide sequence (SEQ ID NO:1) of a native sequence PRO69122 cDNA, wherein SEQ ID NO:1 is a clone designated herein as “DNA284870” (UNQ128).
[0173] FIG. 2 shows the amino acid sequence (SEQ ID NO:2) derived from the coding sequence of SEQ ID NO:1 shown in FIG. 1.
[0174] FIG. 3 shows a nucleotide sequence (SEQ ID NO:3) of a native sequence PRO204 cDNA, wherein SEQ ID NO:3 is a clone designated herein as “DNA30871-1157” (UNQ178).
[0175] FIG. 4 shows the amino acid sequence (SEQ ID NO:4) derived from the coding sequence of SEQ ID NO:3 shown in FIG. 3.
[0176] FIG. 5 shows a nucleotide sequence (SEQ ID NO:5) of a native sequence PRO214 cDNA, wherein SEQ ID NO:5 is a clone designated herein as “DNA32286-1191” (UNQ188).
[0177] FIG. 6 shows the amino acid sequence (SEQ ID NO:6) derived from the coding sequence of SEQ ID NO:5 shown in FIG. 5.
[0178] FIG. 7 shows a nucleotide sequence (SEQ ID NO:7) of a native sequence PRO222 cDNA, wherein SEQ ID NO:7 is a clone designated herein as “DNA33107-1135” (UNQ196).
[0179] FIG. 8 shows the amino acid sequence (SEQ ID NO:8) derived from the coding sequence of SEQ ID NO:7 shown in FIG. 7.
[0180] FIG. 9 shows a nucleotide sequence (SEQ ID NO:9) of a native sequence PRO234 cDNA, wherein SEQ ID NO:9 is a clone designated herein as “DNA35557-1137” (UNQ208).
[0181] FIG. 10 shows the amino acid sequence (SEQ ID NO: 10) derived from the coding sequence of SEQ ID NO:9 shown in FIG. 9.
[0182] FIG. 11 shows a nucleotide sequence (SEQ ID NO:11) of a native sequence PRO265 cDNA, wherein SEQ ID NO:11 is a clone designated herein as “DNA36350-1158” (UNQ232).
[0183] FIG. 12 shows the amino acid sequence (SEQ ID NO:12) derived from the coding sequence of SEQ ID NO:11 shown in FIG. 11.
[0184] FIG. 13 shows a nucleotide sequence (SEQ ID NO:13) of a native sequence PRO309 cDNA, wherein SEQ ID NO:13 is a clone designated herein as “DNA61601-1223” (UNQ272).
[0185] FIG. 14 shows the amino acid sequence (SEQ ID NO:14) derived from the coding sequence of SEQ ID NO:13 shown in FIG. 13.
[0186] FIG. 15 shows a nucleotide sequence (SEQ ID NO:15) of a native sequence PRO332 cDNA, wherein SEQ ID NO:15 is a clone designated herein as “DNA40982-1235” (UNQ293).
[0187] FIG. 16 shows the amino acid sequence (SEQ ID NO:16) derived from the coding sequence of SEQ ID NO:15 shown in FIG. 15.
[0188] FIG. 17 shows a nucleotide sequence (SEQ ID NO:17) of a native sequence PRO342 cDNA, wherein SEQ ID NO:17 is a clone designated herein as “DNA38649” (UNQ301).
[0189] FIG. 18 shows the amino acid sequence (SEQ ID NO:18) derived from the coding sequence of SEQ ID NO:17 shown in FIG. 17.
[0190] FIG. 19 shows a nucleotide sequence (SEQ ID NO:19) of a native sequence PRO356 cDNA, wherein SEQ ID NO:19 is a clone designated herein as “DNA47470-1130P1” (UNQ313).
[0191] FIG. 20 shows the amino acid sequence (SEQ ID NO:20) derived from the coding sequence of SEQ ID NO:19 shown in FIG. 19.
[0192] FIG. 21 shows a nucleotide sequence (SEQ ID NO:21) of a native sequence PRO540 cDNA, wherein SEQ ID NO:21 is a clone designated herein as “DNA44189-1322” (UNQ341).
[0193] FIG. 22 shows the amino acid sequence (SEQ ID NO:22) derived from the coding sequence of SEQ ID NO:21 shown in FIG. 21.
[0194] FIG. 23 shows a nucleotide sequence (SEQ ID NO:23) of a native sequence PRO618 cDNA, wherein SEQ ID NO:23 is a clone designated herein as “DNA49152-1324” (UNQ354).
[0195] FIG. 24 shows the amino acid sequence (SEQ ID NO:24) derived from the coding sequence of SEQ ID NO:23 shown in FIG. 23.
[0196] FIG. 25 shows a nucleotide sequence (SEQ ID NO:25) of a native sequence PRO944 cDNA, wherein SEQ ID NO:25 is a clone designated herein as “DNA52185-1370” (UNQ481).
[0197] FIG. 26 shows the amino acid sequence (SEQ ID NO:26) derived from the coding sequence of SEQ ID NO:25 shown in FIG. 25.
[0198] FIG. 27 shows a nucleotide sequence (SEQ ID NO:27) of a native sequence PRO994 cDNA, wherein SEQ ID NO:27 is a clone designated herein as “DNA58855-1422” (UNQ518).
[0199] FIG. 28 shows the amino acid sequence (SEQ ID NO:28) derived from the coding sequence of SEQ ID NO:27 shown in FIG. 27.
[0200] FIG. 29 shows a nucleotide sequence (SEQ ID NO:29) of a native sequence PRO1079 cDNA, wherein SEQ ID NO:29 is a clone designated herein as “DNA56050-1455” (UNQ536).
[0201] FIG. 30 shows the amino acid sequence (SEQ ID NO:30) derived from the coding sequence of SEQ ID NO:29 shown in FIG. 29.
[0202] FIG. 31 shows a nucleotide sequence (SEQ ID NO:31) of a native sequence PRO1110 cDNA, wherein SEQ ID NO:31 is a clone designated herein as “DNA58727-1474” (UNQ553).
[0203] FIG. 32 shows the amino acid sequence (SEQ ID NO:32) derived from the coding sequence of SEQ ID NO:31 shown in FIG. 31.
[0204] FIG. 33 shows a nucleotide sequence (SEQ ID NO:33) of a native sequence PRO1122 cDNA, wherein SEQ ID NO:33 is a clone designated herein as “DNA62377-1381-1” (UNQ561).
[0205] FIG. 34 shows the amino acid sequence (SEQ ID NO:34) derived from the coding sequence of SEQ ID NO:33 shown in FIG. 33.
[0206] FIG. 35 shows a nucleotide sequence (SEQ ID NO:35) of a native sequence PRO1138 cDNA, wherein SEQ ID NO:35 is a clone designated herein as “DNA58850-1495” (UNQ576).
[0207] FIG. 36 shows the amino acid sequence (SEQ ID NO:36) derived from the coding sequence of SEQ ID NO:35 shown in FIG. 35.
[0208] FIG. 37 shows a nucleotide sequence (SEQ ID NO:37) of a native sequence PRO 1190 cDNA, wherein SEQ ID NO:37 is a clone designated herein as “DNA59586-1520” (UNQ604).
[0209] FIG. 38 shows the amino acid sequence (SEQ ID NO:38) derived from the coding sequence of SEQ ID NO:37 shown in FIG. 37.
[0210] FIG. 39 shows a nucleotide sequence (SEQ ID NO:39) of a native sequence PRO1272 cDNA, wherein SEQ ID NO:39 is a clone designated herein as “DNA64896-1539” (UNQ642).
[0211] FIG. 40 shows the amino acid sequence (SEQ ID NO:40) derived from the coding sequence of SEQ ID NO:39 shown in FIG. 39.
[0212] FIG. 41 shows a nucleotide sequence (SEQ ID NO:41) of a native sequence PRO1286 cDNA, wherein SEQ ID NO:41 is a clone designated herein as “DNA64903-1553” (UNQ655).
[0213] FIG. 42 shows the amino acid sequence (SEQ ID NO:42) derived from the coding sequence of SEQ ID NO:41 shown in FIG. 41.
[0214] FIG. 43 shows a nucleotide sequence (SEQ ID NO:43) of a native sequence PRO1295 cDNA, wherein SEQ ID NO:43 is a clone designated herein as “DNA59218-1559” (UNQ664).
[0215] FIG. 44 shows the amino acid sequence (SEQ ID NO:44) derived from the coding sequence of SEQ ID NO:43 shown in FIG. 43.
[0216] FIG. 45 shows a nucleotide sequence (SEQ ID NO:45) of a native sequence PRO1309 cDNA, wherein SEQ ID NO:45 is a clone designated herein as “DNA59588-1571” (UNQ675).
[0217] FIG. 46 shows the amino acid sequence (SEQ ID NO:46) derived from the coding sequence of SEQ ID NO:45 shown in FIG. 45.
[0218] FIG. 47 shows a nucleotide sequence (SEQ ID NO:47) of a native sequence PRO1316 cDNA, wherein SEQ ID NO:47 is a clone designated herein as “DNA60608-1577” (UNQ682).
[0219] FIG. 48 shows the amino acid sequence (SEQ ID NO:48) derived from the coding sequence of SEQ ID NO:47 shown in FIG. 47.
[0220] FIG. 49 shows a nucleotide sequence (SEQ ID NO:49) of a native sequence PRO1383 cDNA, wherein SEQ ID NO:49 is a clone designated herein as “DNA58743-1609” (UNQ719).
[0221] FIG. 50 shows the amino acid sequence (SEQ ID NO:50) derived from the coding sequence of SEQ ID NO:49 shown in FIG. 49.
[0222] FIG. 51 shows a nucleotide sequence (SEQ ID NO:51) of a native sequence PRO1384 cDNA, wherein SEQ ID NO:51 is a clone designated herein as “DNA71159-1617” (UNQ721).
[0223] FIG. 52 shows the amino acid sequence (SEQ ID NO:52) derived from the coding sequence of SEQ ID NO:51 shown in FIG. 51.
[0224] FIG. 53 shows a nucleotide sequence (SEQ ID NO:53) of a native sequence PRO1431 cDNA, wherein SEQ ID NO:53 is a clone designated herein as “DNA73401-1633” (UNQ737).
[0225] FIG. 54 shows the amino acid sequence (SEQ ID NO:54) derived from the coding sequence of SEQ ID NO:53 shown in FIG. 53.
[0226] FIG. 55 shows a nucleotide sequence (SEQ ID NO:55) of a native sequence PRO1434 cDNA, wherein SEQ ID NO:55 is a clone designated herein as “DNA68818-2536” (UNQ739).
[0227] FIG. 56 shows the amino acid sequence (SEQ ID NO:56) derived from the coding sequence of SEQ ID NO:55 shown in FIG. 55.
[0228] FIG. 57 shows a nucleotide sequence (SEQ ID NO:57) of a native sequence PRO1475 cDNA, wherein SEQ ID NO:57 is a clone designated herein as “DNA61185-1646” (UNQ746).
[0229] FIG. 58 shows the amino acid sequence (SEQ ID NO:58) derived from the coding sequence of SEQ ID NO:57 shown in FIG. 57.
[0230] FIG. 59 shows a nucleotide sequence (SEQ ID NO:59) of a native sequence PRO1481 cDNA, wherein SEQ ID NO:59 is a clone designated herein as “DNA58732-1650” (UNQ750).
[0231] FIG. 60 shows the amino acid sequence (SEQ ID NO:60) derived from the coding sequence of SEQ ID NO:59 shown in FIG. 59.
[0232] FIG. 61 shows a nucleotide sequence (SEQ ID NO:61) of a native sequence PRO1568 cDNA, wherein SEQ ID NO:61 is a clone designated herein as “DNA68880-1676” (UNQ774).
[0233] FIG. 62 shows the amino acid sequence (SEQ ID NO:62) derived from the coding sequence of SEQ ID NO:61 shown in FIG. 61.
[0234] FIG. 63 shows a nucleotide sequence (SEQ ID NO:63) of a native sequence PRO1573 cDNA, wherein SEQ ID NO:63 is a clone designated herein as “DNA73735-1681” (UNQ779).
[0235] FIG. 64 shows the amino acid sequence (SEQ ID NO:64) derived from the coding sequence of SEQ ID NO:63 shown in FIG. 63.
[0236] FIG. 65 shows a nucleotide sequence (SEQ ID NO:65) of a native sequence PRO1599 cDNA, wherein SEQ ID NO:65 is a clone designated herein as “DNA62845-1684” (UNQ782).
[0237] FIG. 66 shows the amino acid sequence (SEQ ID NO:66) derived from the coding sequence of SEQ ID NO:65 shown in FIG. 65.
[0238] FIG. 67 shows a nucleotide sequence (SEQ ID NO:67) of a native sequence PRO1604 cDNA, wherein SEQ ID NO:67 is a clone designated herein as “DNA71286-1687” (UNQ785).
[0239] FIG. 68 shows the amino acid sequence (SEQ ID NO:68) derived from the coding sequence of SEQ ID NO:67 shown in FIG. 67.
[0240] FIG. 69 shows a nucleotide sequence (SEQ ID NO:69) of a native sequence PRO1605 cDNA, wherein SEQ ID NO:69 is a clone designated herein as “DNA77648-1688” (UNQ786).
[0241] FIG. 70 shows the amino acid sequence (SEQ ID NO:70) derived from the coding sequence of SEQ ID NO:69 shown in FIG. 69.
[0242] FIG. 71 shows a nucleotide sequence (SEQ ID NO:71) of a native sequence PRO1693 cDNA, wherein SEQ ID NO:71 is a clone designated herein as “DNA77301-1708” (UNQ803).
[0243] FIG. 72 shows the amino acid sequence (SEQ ID NO:72) derived from the coding sequence of SEQ ID NO:71 shown in FIG. 71.
[0244] FIG. 73 shows a nucleotide sequence (SEQ ID NO:73) of a native sequence PRO1753 cDNA, wherein SEQ ID NO:73 is a clone designated herein as “DNA68883-1691” (UNQ826).
[0245] FIG. 74 shows the amino acid sequence (SEQ ID NO:74) derived from the coding sequence of SEQ ID NO:73 shown in FIG. 73.
[0246] FIG. 75 shows a nucleotide sequence (SEQ ID NO:75) of a native sequence PRO1755 cDNA, wherein SEQ ID NO:75 is a clone designated herein as “DNA76396-1698” (UNQ828).
[0247] FIG. 76 shows the amino acid sequence (SEQ ID NO:76) derived from the coding sequence of SEQ ID NO:75 shown in FIG. 75.
[0248] FIG. 77 shows a nucleotide sequence (SEQ ID NO:77) of a native sequence PRO1777 cDNA, wherein SEQ ID NO:77 is a clone designated herein as “DNA71235-1706” (UNQ839).
[0249] FIG. 78 shows the amino acid sequence (SEQ ID NO:78) derived from the coding sequence of SEQ ID NO:77 shown in FIG. 77.
[0250] FIG. 79 shows a nucleotide sequence (SEQ ID NO:79) of a native sequence PRO1788 cDNA, wherein SEQ ID NO:79 is a clone designated herein as “DNA77652-2505” (UNQ850).
[0251] FIG. 80 shows the amino acid sequence (SEQ ID NO:80) derived from the coding sequence of SEQ ID NO:79 shown in FIG. 79.
[0252] FIG. 81 shows a nucleotide sequence (SEQ ID NO:81) of a native sequence PRO1864 cDNA, wherein SEQ ID NO:81 is a clone designated herein as “DNA45409-2511” (UNQ855).
[0253] FIG. 82 shows the amino acid sequence (SEQ ID NO:82) derived from the coding sequence of SEQ ID NO:81 shown in FIG. 81.
[0254] FIG. 83 shows a nucleotide sequence (SEQ ID NO:83) of a native sequence PRO1925 cDNA, wherein SEQ ID NO:83 is a clone designated herein as “DNA82302-2529” (UNQ904).
[0255] FIG. 84 shows the amino acid sequence (SEQ ID NO:84) derived from the coding sequence of SEQ ID NO:83 shown in FIG. 83.
[0256] FIG. 85 shows a nucleotide sequence (SEQ ID NO:85) of a native sequence PRO1926 cDNA, wherein SEQ ID NO:85 is a clone designated herein as “DNA82340-2530” (UNQ905).
[0257] FIG. 86 shows the amino acid sequence (SEQ ID NO:86) derived from the coding sequence of SEQ ID NO:85 shown in FIG. 85.
[0258] FIG. 87 shows a nucleotide sequence (SEQ ID NO:87) of a native sequence PRO3566 cDNA, wherein SEQ ID NO:87 is a clone designated herein as “DNA59844-2542” (UNQ1840).
[0259] FIG. 88 shows the amino acid sequence (SEQ ID NO:88) derived from the coding sequence of SEQ ID NO:87 shown in FIG. 87.
[0260] FIG. 89 shows a nucleotide sequence (SEQ ID NO:89) of a native sequence PRO4330 cDNA, wherein SEQ ID NO:89 is a clone designated herein as “DNA90842-2574” (UNQ1886).
[0261] FIG. 90 shows the amino acid sequence (SEQ ID NO:90) derived from the coding sequence of SEQ ID NO:89 shown in FIG. 89.
[0262] FIG. 91 shows a nucleotide sequence (SEQ ID NO:91) of a native sequence PRO4423 cDNA, wherein SEQ ID NO:91 is a clone designated herein as “DNA96893-2621” (UNQ1940).
[0263] FIG. 92 shows the amino acid sequence (SEQ ID NO:92) derived from the coding sequence of SEQ ID NO:91 shown in FIG. 91.
[0264] FIG. 93 shows a nucleotide sequence (SEQ ID NO:93) of a native sequence PRO36935 cDNA, wherein SEQ ID NO:93 is a clone designated herein as “DNA336539” (UNQ2257).
[0265] FIG. 94 shows the amino acid sequence (SEQ ID NO:94) derived from the coding sequence of SEQ ID NO:93 shown in FIG. 93.
[0266] FIG. 95 shows a nucleotide sequence (SEQ ID NO:95) of a native sequence PRO4977 cDNA, wherein SEQ ID NO:95 is a clone designated herein as “DNA62849-2647” (UNQ2420).
[0267] FIG. 96 shows the amino acid sequence (SEQ ID NO:96) derived from the coding sequence of SEQ ID NO:95 shown in FIG. 95.
[0268] FIG. 97 shows a nucleotide sequence (SEQ ID NO:97) of a native sequence PRO4979 cDNA, wherein SEQ ID NO:97 is a clone designated herein as “DNA222844” (UNQ2421).
[0269] FIG. 98 shows the amino acid sequence (SEQ ID NO:98) derived from the coding sequence of SEQ ID NO:97 shown in FIG. 97.
[0270] FIG. 99 shows a nucleotide sequence (SEQ ID NO:99) of a native sequence PRO4980 cDNA, wherein SEQ ID NO:99 is a clone designated herein as “DNA97003-2649” (UNQ2422).
[0271] FIG. 100 shows the amino acid sequence (SEQ ID NO:100) derived from the coding sequence of SEQ ID NO:99 shown in FIG. 99.
[0272] FIG. 101 shows a nucleotide sequence (SEQ ID NO:101) of a native sequence PRO4981 cDNA, wherein SEQ ID NO:101 is a clone designated herein as “DNA94849-2960” (UNQ2423).
[0273] FIG. 102 shows the amino acid sequence (SEQ ID NO:102) derived from the coding sequence of SEQ ID NO:101 shown in FIG. 101.
[0274] FIG. 103 shows a nucleotide sequence (SEQ ID NO:103) of a native sequence PRO5801 cDNA, wherein SEQ ID NO:103 is a clone designated herein as “DNA115291-2681” (UNQ2501).
[0275] FIG. 104 shows the amino acid sequence (SEQ ID NO:104) derived from the coding sequence of SEQ ID NO:103 shown in FIG. 103.
[0276] FIG. 105 shows a nucleotide sequence (SEQ ID NO:105) of a native sequence PRO5995 cDNA, wherein SEQ ID NO:105 is a clone designated herein as “DNA96988-2685” (UNQ2507).
[0277] FIG. 106 shows the amino acid sequence (SEQ ID NO:106) derived from the coding sequence of SEQ ID NO:105 shown in FIG. 105.
[0278] FIG. 107 shows a nucleotide sequence (SEQ ID NO:107) of a native sequence PRO6001 cDNA, wherein SEQ ID NO:107 is a clone designated herein as “DNA98380” (UNQ2512).
[0279] FIG. 108 shows the amino acid sequence (SEQ ID NO:108) derived from the coding sequence of SEQ ID NO:107 shown in FIG. 107.
[0280] FIG. 109 shows a nucleotide sequence (SEQ ID NO:109) of a native sequence PRO6095 cDNA, wherein SEQ ID NO:109 is a clone designated herein as “DNA105680-2710” (UNQ2543).
[0281] FIG. 110 shows the amino acid sequence (SEQ ID NO:110) derived from the coding sequence of SEQ ID NO:109 shown in FIG. 109.
[0282] FIG. 111 shows a nucleotide sequence (SEQ ID NO:111) of a native sequence PRO6182 cDNA, wherein SEQ ID NO:111 is a clone designated herein as “DNA110700-2716” (UNQ2553).
[0283] FIG. 112 shows the amino acid sequence (SEQ ID NO:112) derived from the coding sequence of SEQ ID NO:111 shown in FIG. 111.
[0284] FIG. 113 shows a nucleotide sequence (SEQ ID NO:113) of a native sequence PRO7170 cDNA, wherein SEQ ID NO:113 is a clone designated herein as “DNA108722-2743” (UNQ2782).
[0285] FIG. 114 shows the amino acid sequence (SEQ ID NO:114) derived from the coding sequence of SEQ ID NO:113 shown in FIG. 113.
[0286] FIG. 115 shows a nucleotide sequence (SEQ ID NO:115) of a native sequence PRO7171 cDNA, wherein SEQ ID NO:115 is a clone designated herein as “DNA108670-2744” (UNQ2783).
[0287] FIG. 116 shows the amino acid sequence (SEQ ID NO:116) derived from the coding sequence of SEQ ID NO:115 shown in FIG. 115.
[0288] FIG. 117 shows a nucleotide sequence (SEQ ID NO:117) of a native sequence PRO7436 cDNA, wherein SEQ ID NO:117 is a clone designated herein as “DNA119535-2756” (UNQ2973).
[0289] FIG. 118 shows the amino acid sequence (SEQ ID NO:118) derived from the coding sequence of SEQ ID NO:117 shown in FIG. 117.
[0290] FIG. 119 shows a nucleotide sequence (SEQ ID NO:119) of a native sequence PRO9912 cDNA, wherein SEQ ID NO:119 is a clone designated herein as “DNA108700-2802” (UNQ3077).
[0291] FIG. 120 shows the amino acid sequence (SEQ ID NO:120) derived from the coding sequence of SEQ ID NO:119 shown in FIG. 119.
[0292] FIG. 121 shows a nucleotide sequence (SEQ ID NO:121) of a native sequence PRO9917 cDNA, wherein SEQ ID NO:121 is a clone designated herein as “DNA119474-2803” (UNQ3079).
[0293] FIG. 122 shows the amino acid sequence (SEQ ID NO:122) derived from the coding sequence of SEQ ID NO:121 shown in FIG. 121.
[0294] FIG. 123 shows a nucleotide sequence (SEQ ID NO:123) of a native sequence PRO37337 cDNA, wherein SEQ ID NO:123 is a clone designated herein as “DNA226874” (UNQ5291).
[0295] FIG. 124 shows the amino acid sequence (SEQ ID NO:124) derived from the coding sequence of SEQ ID NO:123 shown in FIG. 123.
[0296] FIG. 125 shows a nucleotide sequence (SEQ ID NO:125) of a native sequence PRO37496 cDNA, wherein SEQ ID NO:125 is a clone designated herein as “DNA227033” (UNQ5407).
[0297] FIG. 126 shows the amino acid sequence (SEQ ID NO:126) derived from the coding sequence of SEQ ID NO:125 shown in FIG. 125.
[0298] FIG. 127 shows a nucleotide sequence (SEQ ID NO:127) of a native sequence PRO19646 cDNA, wherein SEQ ID NO:127 is a clone designated herein as “DNA145841-2868” (UNQ5827).
[0299] FIG. 128 shows the amino acid sequence (SEQ ID NO:128) derived from the coding sequence of SEQ ID NO:127 shown in FIG. 127.
[0300] FIG. 129 shows a nucleotide sequence (SEQ ID NO:129) of a native sequence PRO21718 cDNA, wherein SEQ ID NO:129 is a clone designated herein as “DNA188342” (UNQ5893).
[0301] FIG. 130 shows the amino acid sequence (SEQ ID NO:130) derived from the coding sequence of SEQ ID NO:129 shown in FIG. 129.
[0302] FIG. 131 shows a nucleotide sequence (SEQ ID NO:131) of a native sequence PRO19820 cDNA, wherein SEQ ID NO:131 is a clone designated herein as “DNA149911-2885” (UNQ5926).
[0303] FIG. 132 shows the amino acid sequence (SEQ ID NO:132) derived from the coding sequence of SEQ ID NO:131 shown in FIG. 131.
[0304] FIG. 133 shows a nucleotide sequence (SEQ ID NO:133) of a native sequence PRO21201 cDNA, wherein SEQ ID NO:133 is a clone designated herein as “DNA168028-2956” (UNQ6098).
[0305] FIG. 134 shows the amino acid sequence (SEQ ID NO:134) derived from the coding sequence of SEQ ID NO:133 shown in FIG. 133.
[0306] FIG. 135 shows a nucleotide sequence (SEQ ID NO:135) of a native sequence PRO20026 cDNA, wherein SEQ ID NO:135 is a clone designated herein as “DNA154095-2998” (UNQ6115).
[0307] FIG. 136 shows the amino acid sequence (SEQ ID NO:136) derived from the coding sequence of SEQ ID NO:135 shown in FIG. 135.
[0308] FIG. 137 shows a nucleotide sequence (SEQ ID NO:137) of a native sequence PRO20110 cDNA, wherein SEQ ID NO:137 is a clone designated herein as “DNA166819-1381R1P1” (UNQ6129).
[0309] FIG. 138 shows the amino acid sequence (SEQ ID NO:138) derived from the coding sequence of SEQ ID NO:137 shown in FIG. 137.
[0310] FIG. 139 shows a nucleotide sequence (SEQ ID NO:139) of a native sequence PRO23203 cDNA, wherein SEQ ID NO:139 is a clone designated herein as “DNA185171-2994” (UNQ6507).
[0311] FIG. 140 shows the amino acid sequence (SEQ ID NO:140) derived from the coding sequence of SEQ ID NO:139 shown in FIG. 139.
[0312] FIG. 141 shows a nucleotide sequence (SEQ ID NO:141) of a native sequence PRO35250 cDNA, wherein SEQ ID NO:141 is a clone designated herein as “DNA171732-3100” (UNQ9574).
[0313] FIG. 142 shows the amino acid sequence (SEQ ID NO:142) derived from the coding sequence of SEQ ID NO:141 shown in FIG. 141.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. Definitions

[0314] The terms “PRO polypeptide” and “PRO” as used herein and when immediately followed by a numerical designation refer to various polypeptides, wherein the complete designation (i.e., PRO/number) refers to specific polypeptide sequences as described herein. The terms “PRO/number polypeptide” and “PRO/number” wherein the term “number” is provided as an actual numerical designation as used herein encompass native sequence polypeptides and polypeptide variants (which are further defined herein). The PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptides described herein may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods. The term “PRO polypeptide” refers to each individual PRO/number polypeptide disclosed herein. All disclosures in this specification which refer to the “PRO polypeptide” refer to each of the polypeptides individually as well as jointly. For example, descriptions of the preparation of, purification of, derivation of, formation of antibodies to or against, administration of, compositions containing, treatment of a disease with, etc., pertain to each polypeptide of the invention individually. The term “PRO polypeptide” also includes variants of the PRO/number polypeptides disclosed herein.
[0315] A “native sequence PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide” comprises a polypeptide having the same amino acid sequence as the corresponding PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide derived from nature. Such native sequence PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO 19646, PRO21718, PRO 19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptides can be isolated from nature or can be produced by recombinant or synthetic means. The term “native sequence PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide” specifically encompasses naturally-occurring truncated or secreted forms of the specific PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide (e.g., an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of the polypeptide. The invention provides native sequence PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptides disclosed herein which are mature or full-length native sequence polypeptides comprising the full-length amino acids sequences shown in the accompanying figures. Start and stop codons are shown in bold font and underlined in the figures. However, while the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide disclosed in the accompanying figures are shown to begin with methionine residues designated herein as amino acid position 1 in the figures, it is conceivable and possible that other methionine residues located either upstream or downstream from the amino acid position 1 in the figures may be employed as the starting amino acid residue for the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptides.
[0316] The PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide “extracellular domain” or “ECD” refers to a form of the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide which is essentially free of the transmembrane and cytoplasmic domains. Ordinarily, a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PR618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide ECD will have less than 1% of such transmembrane and/or cytoplasmic domains and preferably, will have less than 0.5% of such domains. It will be understood that any transmembrane domains identified for the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptides of the present invention are identified pursuant to criteria routinely employed in the art for identifying that type of hydrophobic domain. The exact boundaries of a transmembrane domain may vary but most likely by no more than about 5 amino acids at either end of the domain as initially identified herein. Optionally, therefore, an extracellular domain of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide may contain from about 5 or fewer amino acids on either side of the transmembrane domain/extracellular domain boundary as identified in the Examples or specification and such polypeptides, with or without the associated signal peptide, and nucleic acid encoding them, are contemplated by the present invention.
[0317] The approximate location of the “signal peptides” of the various PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptides disclosed herein are shown in the present specification and/or the accompanying figures. It is noted, however, that the C-terminal boundary of a signal peptide may vary, but most likely by no more than about 5 amino acids on either side of the signal peptide C-terminal boundary as initially identified herein, wherein the C-terminal boundary of the signal peptide may be identified pursuant to criteria routinely employed in the art for identifying that type of amino acid sequence element (e.g., Nielsen et al., Prot. Eng. 10:1-6 (1997) and von Heinje et al., Nucl. Acids. Res. 14:4683-4690 (1986)). Moreover, it is also recognized that, in some cases, cleavage of a signal sequence from a secreted polypeptide is not entirely uniform, resulting in more than one secreted species. These mature polypeptides, where the signal peptide is cleaved within no more than about 5 amino acids on either side of the C-terminal boundary of the signal peptide as identified herein, and the polynucleotides encoding them, are contemplated by the present invention.
[0318] “PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide variant” means a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, preferably an active PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, as defined herein having at least about 80% amino acid sequence identity with a full-length native sequence PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence as disclosed herein, a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence as disclosed herein (such as those encoded by a nucleic acid that represents only a portion of the complete coding sequence for a full-length PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide). Such PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide variants include, for instance, PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptides wherein one or more amino acid residues are added, or deleted, at the N- or C-terminus of the full-length native amino acid sequence. Ordinarily, a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide variant will have or will have at least about 80% amino acid sequence identity, alternatively will have or will have at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% amino acid sequence identity, to a full-length native sequence PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence as disclosed herein, a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of a full-length PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence as disclosed herein. Ordinarily, PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 variant polypeptides are or are at least about 10 amino acids in length, alternatively are or are at least about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600 amino acids in length, or more. Optionally, PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 variant polypeptides will have no more than one conservative amino acid substitution as compared to the native PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence, alternatively will have or will have no more than 2, 3, 4, 5, 6, 7, 8, 9, or 10 conservative amino acid substitution as compared to the native PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence.
[0319] “Percent (%) amino acid sequence identity” with respect to the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequences identified herein is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the specific PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, however, % amino acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, Calif. or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.
[0320] In situations where ALIGN-2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows:
          100 times the fraction X/Y
where X is the number of amino acid residues scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. As examples of % amino acid sequence identity calculations using this method, Tables 2 and 3 demonstrate how to calculate the % amino acid sequence identity of the amino acid sequence designated “Comparison Protein” to the amino acid sequence designated “PRO”, wherein “PRO” represents the amino acid sequence of a hypothetical PRO polypeptide of interest, “Comparison Protein” represents the amino acid sequence of a polypeptide against which the “PRO” polypeptide of interest is being compared, and “X, “Y” and “Z” each represent different hypothetical amino acid residues. Unless specifically stated otherwise, all % amino acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program.
[0321] “PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 variant polynucleotide” or “PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 variant nucleic acid sequence” means a nucleic acid molecule which encodes a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, preferably an active PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, as defined herein and which has at least about 80% nucleic acid sequence identity with a nucleotide acid sequence encoding a full-length native sequence PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence as disclosed herein, a full-length native sequence PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence as disclosed herein (such as those encoded by a nucleic acid that represents only a portion of the complete coding sequence for a full-length PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide). Ordinarily, a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 variant polynucleotide will have or will have at least about 80% nucleic acid sequence identity, alternatively will have or will have at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% nucleic acid sequence identity with a nucleic acid sequence encoding a full-length native sequence PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence as disclosed herein, a full-length native sequence PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, with or without the signal sequence, as disclosed herein or any other fragment of a full-length PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide sequence as disclosed herein. Variants do not encompass the native nucleotide sequence.
[0322] Ordinarily, PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 variant polynucleotides are or are at least about 5 nucleotides in length, alternatively are or are at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, or 1000 nucleotides in length, wherein in this context the term “about” means the referenced nucleotide sequence length plus or minus 10% of that referenced length.
[0323] “Percent (%) nucleic acid sequence identity” with respect to PRO69122-, PRO204-, PRO214-, PRO222-, PRO234-, PRO265-, PRO309-, PRO332-, PRO342-, PRO356-, PRO540-, PRO618-, PRO944-, PRO994-, PRO1079, PRO1110-, PRO1122-, PRO1138-, PRO1190-, PRO1272-, PRO1286-, PRO1295-, PRO1309-, PRO1316-, PRO1383-, PRO1384-, PRO1431-, PRO1434-, PRO1475-, PRO1481-, PRO1568-, PRO1573-, PRO1599-, PRO1604-, PRO1605-, PRO1693-, PRO1753-, PRO1755-, PRO1777-, PRO1788-, PRO1864-, PRO1925-, PRO1926-, PRO3566-, PRO4330-, PRO4423-, PRO36935-, PRO4977-, PRO4979-, PRO4980-, PRO4981-, PRO5801-, PRO5995-, PRO6001-, PRO6095-, PRO6182-, PRO7170-, PRO7171-, PRO7436-, PRO9912-, PRO9917-, PRO37337-, PRO37496-, PRO19646-, PRO21718-, PRO19820-, PRO21201-, PRO20026-, PRO20110-, PRO23203- or PRO35250-encoding nucleic acid sequences identified herein is defined as the percentage of nucleotides in a candidate sequence that are identical with the nucleotides in the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 nucleic acid sequence of interest, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent nucleic acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. For purposes herein, however, % nucleic acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, Calif. or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.
[0324] In situations where ALIGN-2 is employed for nucleic acid sequence comparisons, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows:
          100 times the fraction W/Z
where W is the number of nucleotides scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C. As examples of % nucleic acid sequence identity calculations, Tables 4 and 5, demonstrate how to calculate the % nucleic acid sequence identity of the nucleic acid sequence designated “Comparison DNA” to the nucleic acid sequence designated “PRO-DNA”, wherein “PRO-DNA” represents a hypothetical PRO-encoding nucleic acid sequence of interest, “Comparison DNA” represents the nucleotide sequence of a nucleic acid molecule against which the “PRO-DNA” nucleic acid molecule of interest is being compared, and “N”, “L” and “V” each represent different hypothetical nucleotides. Unless specifically stated otherwise, all % nucleic acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program.
[0325] The invention also provides PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 variant polynucleotides which are nucleic acid molecules that encode a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide and which are capable of hybridizing, preferably under stringent hybridization and wash conditions, to nucleotide sequences encoding a full-length PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide as disclosed herein. PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 variant polypeptides may be those that are encoded by a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 variant polynucleotide.
[0326] The term “full-length coding region” when used in reference to a nucleic acid encoding a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide refers to the sequence of nucleotides which encode the full-length PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide of the invention (which is often shown between start and stop codons, inclusive thereof, in the accompanying figures). The term “full-length coding region” when used in reference to an ATCC deposited nucleic acid refers to the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide-encoding portion of the cDNA that is inserted into the vector deposited with the ATCC (which is often shown between start and stop codons, inclusive thereof, in the accompanying figures).
[0327] “Isolated,” when used to describe the various polypeptides disclosed herein, means polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. The invention provides that the polypeptide will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Isolated polypeptide includes polypeptide in situ within recombinant cells, since at least one component of the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.
[0328] An “isolated” PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide-encoding nucleic acid or other polypeptide-encoding nucleic acid is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the polypeptide-encoding nucleic acid. An isolated polypeptide-encoding nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated polypeptide-encoding nucleic acid molecules therefore are distinguished from the specific polypeptide-encoding nucleic acid molecule as it exists in natural cells. However, an isolated polypeptide-encoding nucleic acid molecule includes polypeptide-encoding nucleic acid molecules contained in cells that ordinarily express the polypeptide where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.
[0329] The term “control sequences” refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.
[0330] Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
[0331] “Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
[0332] “Stringent conditions” or “high stringency conditions”, as defined herein, may be identified by those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, 5×SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5×Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42° C., with washes at 42° C. in 0.2×SSC (sodium chloride/sodium citrate) and 50% formamide at 55° C., followed by a high-stringency wash consisting of 0.1×SSC containing EDTA at 55° C.
[0333] “Moderately stringent conditions” may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37° C. in a solution comprising: 20% formamide, 5×SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5×Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1×SSC at about 37-50° C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.
[0334] The term “epitope tagged” when used herein refers to a chimeric polypeptide comprising a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide fused to a “tag polypeptide”. The tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the polypeptide to which it is fused. The tag polypeptide preferably also is fairly unique so that the antibody does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 and 50 amino acid residues (preferably, between about 10 and 20 amino acid residues).
[0335] “Active” or “activity” for the purposes herein refers to form(s) of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide which retain a biological and/or an immunological activity of native or naturally-occurring PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, wherein “biological” activity refers to a biological function (either inhibitory or stimulatory) caused by a native or naturally-occurring PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide other than the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide and an “immunological” activity refers to the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide.
[0336] The term “antagonist” is used in the broadest sense [unless otherwise qualified], and includes any molecule that partially or fully blocks, inhibits, or neutralizes a biological activity of a native PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide disclosed herein. In a similar manner, the term “agonist” is used in the broadest sense [unless otherwise qualified] and includes any molecule that mimics a biological activity of a native PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide disclosed herein. Suitable agonist or antagonist molecules specifically include agonist or antagonist antibodies or antibody fragments, fragments or amino acid sequence variants of native PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptides, peptides, antisense oligonucleotides, small organic molecules, etc. Methods for identifying agonists or antagonists of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO501, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide may comprise contacting a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide with a candidate agonist or antagonist molecule and measuring a detectable change in one or more biological activities normally associated with the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide.
[0337] “Treating” or “treatment” or “alleviation” refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. A subject in need of treatment may already have the disorder, or may be prone to have the disorder or may be in whom the disorder is to be prevented.
[0338] “Chronic” administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. “Intermittent” administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.
[0339] “Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, rodents such as rats or mice, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. Preferably, the mammal is human.
[0340] Administration “in combination with” one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order.
[0341] “Carriers” as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN™, polyethylene glycol (PEG), and PLURONICS™.
[0342] By “solid phase” is meant anon-aqueous matrix to which the antibody of the present invention can adhere. Examples of solid phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones. Depending on the context, the solid phase can comprise the well of an assay plate; in others it is a purification column (e.g., an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Pat. No. 4,275,149.
[0343] A “liposome” is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug (such as a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide or antibody thereto) to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes.
[0344] A “small molecule” is defined herein to have a molecular weight below about 500 Daltons.
[0345] An “effective amount” of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody, a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO944, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding oligopeptide, a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding organic molecule or an agonist or antagonist thereof as disclosed herein is an amount sufficient to carry out a specifically stated purpose. An “effective amount” may be determined empirically and in a routine manner, in relation to the stated purpose.
[0346] The term “therapeutically effective amount” refers to an amount of an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody, a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding oligopeptide, a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding organic molecule or other drug effective to “treat” a disease or disorder in a subject or mammal. In the case of cancer, the therapeutically effective amount of the drug may reduce the number of cancer cells; reduce the tumor size; inhibit (i.e., slow to some extent and preferably stop) cancer cell in filtration into peripheral organs; inhibit (i.e., slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer. See the definition herein of “treating”. To the extent the drug may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic.
[0347] The phrases “cardiovascular, endothelial and angiogenic disorder”, “cardiovascular, endothelial and angiogenic dysfunction”, “cardiovascular, endothelial or angiogenic disorder” and “cardiovascular, endothelial or angiogenic dysfunction” are used interchangeably and refer in part to systemic disorders that affect vessels, such as diabetes mellitus, as well as diseases of the vessels themselves, such as of the arteries, capillaries, veins, and/or lymphatics. This would include indications that stimulate angiogenesis and/or cardiovascularization, and those that inhibit angiogenesis and/or cardiovascularization. Such disorders include, for example, arterial disease, such as atherosclerosis, hypertension, inflammatory vasculitides, Reynaud's disease and Reynaud's phenomenon, aneurysms, and arterial restenosis; venous and lymphatic disorders such as thrombophlebitis, lymphangitis, and lymphedema; and other vascular disorders such as peripheral vascular disease, cancer such as vascular tumors, e.g., hemangioma (capillary and cavernous), glomus tumors, telangiectasia, bacillary angiomatosis, hemangioendothelioma, angiosarcoma, haemangiopericytoma, Kaposi's sarcoma, lymphangioma, and lymphangiosarcoma, tumor angiogenesis, trauma such as wounds, burns, and other injured tissue, implant fixation, scarring, ischemia reperfusion injury, rheumatoid arthritis, cerebrovascular disease, renal diseases such as acute renal failure, or osteoporosis. This would also include angina, myocardial infarctions such as acute myocardial infarctions, cardiac hypertrophy, and heart failure such as CHF.
[0348] “Hypertrophy”, as used herein, is defined as an increase in mass of an organ or structure independent of natural growth that does not involve tumor formation. Hypertrophy of an organ or tissue is due either to an increase in the mass of the individual cells (true hypertrophy), or to an increase in the number of cells making up the tissue (hyperplasia), or both. Certain organs, such as the heart, lose the ability to divide shortly after birth. Accordingly, “cardiac hypertrophy” is defined as an increase in mass of the heart, which, in adults, is characterized by an increase in myocyte cell size and contractile protein content without concomitant cell division. The character of the stress responsible for inciting the hypertrophy, (e.g., increased preload, increased afterload, loss of myocytes, as in myocardial infarction, or primary depression of contractility), appears to play a critical role in determining the nature of the response. The early stage of cardiac hypertrophy is usually characterized morphologically by increases in the size of myofibrils and mitochondria, as well as by enlargement of mitochondria and nuclei. At this stage, while muscle cells are larger than normal, cellular organization is largely preserved. At a more advanced stage of cardiac hypertrophy, there are preferential increases in the size or number of specific organelles, such as mitochondria, and new contractile elements are added in localized areas of the cells, in an irregular manner. Cells subjected to long-standing hypertrophy show more obvious disruptions in cellular organization, including markedly enlarged nuclei with highly lobulated membranes, which displace adjacent myofibrils and cause breakdown of normal Z-band registration. The phrase “cardiac hypertrophy” is used to include all stages of the progression of this condition, characterized by various degrees of structural damage of the heart muscle, regardless of the underlying cardiac disorder. Hence, the term also includes physiological conditions instrumental in the development of cardiac hypertrophy, such as elevated blood pressure, aortic stenosis, or myocardial infarction.
[0349] “Heart failure” refers to an abnormality of cardiac function where the heart does not pump blood at the rate needed for the requirements of metabolizing tissues. The heart failure can be caused by a number of factors, including ischemic, congenital, rheumatic, or idiopathic forms.
[0350] “Congestive heart failure” (CHF) is a progressive pathologic state where the heart is increasingly unable to supply adequate cardiac output (the volume of blood pumped by the heart over time) to deliver the oxygenated blood to peripheral tissues. As CHF progresses, structural and hemodynamic damages occur. While these damages have a variety of manifestations, one characteristic symptom is ventricular hypertrophy. CHF is a common end result of a number of various cardiac disorders.
[0351] “Myocardial infarction” generally results from atherosclerosis of the coronary arteries, often with superimposed coronary thrombosis. It may be divided into two major types: transmural infarcts, in which myocardial necrosis involves the full thickness of the ventricular wall, and subendocardial (nontransmural) infarcts, in which the necrosis involves the subendocardium, the intramural myocardium, or both, without extending all the way through the ventricular wall to the epicardium. Myocardial infarction is known to cause both a change in hemodynamic effects and an alteration in structure in the damaged and healthy zones of the heart. Thus, for example, myocardial infarction reduces the maximum cardiac output and the stroke volume of the heart. Also associated with myocardial infarction is a stimulation of the DNA synthesis occurring in the interstice as well as an increase in the formation of collagen in the areas of the heart not affected.
[0352] As a result of the increased stress or strain placed on the heart in prolonged hypertension due, for example, to the increased total peripheral resistance, cardiac hypertrophy has long been associated with “hypertension”. A characteristic of the ventricle that becomes hypertrophic as a result of chronic pressure overload is an impaired diastolic performance. Fouad et al, J. Am. Coll. Cardiol., 4: 1500-1506 (1984); Smith et al., J. Am. Coll. Cardiol., 5: 869-874 (1985). A prolonged left ventricular relaxation has been detected in early essential hypertension, in spite of normal or supranormal systolic function. Hartford et al., Hypertension, 6: 329-338 (1984). However, there is no close parallelism between blood pressure levels and cardiac hypertrophy. Although improvement in left ventricular function in response to antihypertensive therapy has been reported in humans, patients variously treated with a diuretic (hydrochlorothiazide), a β-blocker (propranolol), or a calcium channel blocker (diltiazem), have shown reversal of left ventricular hypertrophy, without improvement in diastolic function. Inouye et al., Am. J. Cardiol., 53: 1583-7 (1984).
[0353] Another complex cardiac disease associated with cardiac hypertrophy is “hypertrophic cardiomyopathy”. This condition is characterized by a great diversity of morphologic, functional, and clinical features (Maron et al., N. Engl. J. Med., 316: 780-789 (1987); Spirito et al., N. Engl. J. Med., 320: 749-755 (1989); Louie and Edwards, Prog. Cardiovasc. Dis., 36: 275-308 (1994); Wigle et al., Circulation, 92: 1680-1692 (1995)), the heterogenecity of which is accentuated by the fact that it afflicts patients of all ages. Spirito et al., N. Eng. J. Med., 336: 775-785 (1997). The causative factors of hypertrophic cardiomyopathy are also diverse and little understood. In general, mutations in genes encoding sarcomeric proteins are associated with hypertrophic cardiomyopathy. Recent data suggest that β-myosin heavy chain mutations may account for approximately 30 to 40 percent of cases of familial hypertrophic cardiomyopathy. Watkins et al., N. Engl. J. Med., 326: 1108-1114 (1992); Schwartz et al, Circulation, 91: 532-540 (1995); Marian and Roberts, Circulation, 92: 1336-1347 (1995); Thierfelder et al., Cell, 77: 701-712 (1994); Watkins et al., Nat. Gen., 11: 434-437 (1995). Besides β-myosin heavy chain, other locations of genetic mutations include cardiac troponin T, alpha topomyosin, cardiac myosin binding protein C, essential myosin light chain, and regulatory myosin light chain. See, Malik and Watkins, Curr. Opin. Cardiol., 12: 295-302 (1997).
[0354] Supravalvular “aortic stenosis” is an inherited vascular disorder characterized by narrowing of the ascending aorta, but other arteries, including the pulmonary arteries, may also be affected. Untreated aortic stenosis may lead to increased intracardiac pressure resulting in myocardial hypertrophy and eventually heart failure and death. The pathogenesis of this disorder is not fully understood, but hypertrophy and possibly hyperplasia of medial smooth muscle are prominent features of this disorder. It has been reported that molecular variants of the elastin gene are involved in the development and pathogenesis of aortic stenosis. U.S. Pat. No. 5,650,282 issued Jul. 22, 1997.
[0355] “Valvular regurgitation” occurs as a result of heart diseases resulting in disorders of the cardiac valves. Various diseases, like rheumatic fever, can cause the shrinking or pulling apart of the valve orifice, while other diseases may result in endocarditis, an inflammation of the endocardium or lining membrane of the atrioventricular orifices and operation of the heart. Defects such as the narrowing of the valve stenosis or the defective closing of the valve result in an accumulation of blood in the heart cavity or regurgitation of blood past the valve. If uncorrected, prolonged valvular stenosis or insufficiency may result in cardiac hypertrophy and associated damage to the heart muscle, which may eventually necessitate valve replacement.
[0356] The term “immune related disease” means a disease in which a component of the immune system of a mammal causes, mediates or otherwise contributes to a morbidity in the mammal. Also included are diseases in which stimulation or intervention of the immune response has an ameliorative effect on progression of the disease. Included within this term are immune-mediated inflammatory diseases, non-immune-mediated inflammatory diseases, infectious diseases, immunodeficiency diseases, neoplasia, etc.
[0357] The term “T cell mediated disease” means a disease in which T cells directly or indirectly mediate or otherwise contribute to a morbidity in a mammal. The T cell mediated disease may be associated with cell mediated effects, lymphokine mediated effects, etc., and even effects associated with B cells if the B cells are stimulated, for example, by the lymphokines secreted by T cells.
[0358] “Autoimmune disease” can be an organ-specific disease (i.e., the immune response is specifically directed against an organ system such as the endocrine system, the hematopoietic system, the skin, the cardiopulmonary system, the gastrointestinal and liver systems, the renal system, the thyroid, the ears, the neuromuscular system, the central nervous system, etc.) or a systemic disease which can affect multiple organ systems (for example, systemic lupus erythematosus (SLE), rheumatoid arthritis, polymyositis, etc.). Preferred such diseases include autoimmune rheumatologic disorders (such as, for example, rheumatoid arthritis, Sjögren's syndrome, scleroderma, lupus such as SLE and lupus nephritis, polymyositis/dermatomyositis, cryoglobulinemia, anti-phospholipid antibody syndrome, and psoriatic arthritis), autoimmune gastrointestinal and liver disorders (such as, for example, inflammatory bowel diseases (e.g., ulcerative colitis and Crohn's disease), autoimmune gastritis and pernicious anemia, autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis, and celiac disease), vasculitis (such as, for example, ANCA-associated vasculitis, including Churg-Strauss vasculitis, Wegener's granulomatosis, and polyarteriitis), autoimmune neurological disorders (such as, for example, multiple sclerosis, opsoclonus myoclonus syndrome, myasthenia gravis, neuromyelitis optica, Parkinson's disease, Alzheimer's disease, and autoimmune polyneuropathies), renal disorders (such as, for example, glomerulonephritis, Goodpasture's syndrome, and Berger's disease), autoimmune dermatologic disorders (such as, for example, psoriasis, urticaria, hives, pemphigus vulgaris, bullous pemphigoid, and cutaneous lupus erythematosus), hematologic disorders (such as, for example, thrombocytopenic purpura, thrombotic thrombocytopenic purpura, post-transfusion purpura, and autoimmune hemolytic anemia), atherosclerosis, uveitis, autoimmune hearing diseases (such as, for example, inner ear disease and hearing loss), Behcet's disease, Raynaud's syndrome, organ transplant, and autoimmune endocrine disorders (such as, for example, diabetic-related autoimmune diseases such as insulin-dependent diabetes mellitus (IDDM), Addison's disease, and autoimmune thyroid disease (e.g., Graves' disease and thyroiditis)). More preferred such diseases include, for example, rheumatoid arthritis, ulcerative colitis, ANCA-associated vasculitis, lupus, multiple sclerosis, Sjögren's syndrome, Graves' disease, IDDM, pernicious anemia, thyroiditis, and glomerulonephritis.
[0359] Specific examples of other autoimmune diseases as defined herein, which in some cases encompass those listed above, include, but are not limited to, arthritis (acute and chronic, rheumatoid arthritis including juvenile-onset rheumatoid arthritis and stages such as rheumatoid synovitis, gout or gouty arthritis, acute immunological arthritis, chronic inflammatory arthritis, degenerative arthritis, type II collagen-induced arthritis, infectious arthritis, Lyme arthritis, proliferative arthritis, psoriatic arthritis, Still's disease, vertebral arthritis, osteoarthritis, arthritis chronica progrediente, arthritis deformans, polyarthritis chronica primaria, reactive arthritis, menopausal arthritis, estrogen-depletion arthritis, and ankylosing spondylitis/rheumatoid spondylitis), autoimmune lymphoproliferative disease, inflammatory hyperproliferative skin diseases, psoriasis such as plaque psoriasis, gutatte psoriasis, pustular psoriasis, and psoriasis of the nails, atopy including atopic diseases such as hay fever and Job's syndrome, dermatitis including contact dermatitis, chronic contact dermatitis, exfoliative dermatitis, allergic dermatitis, allergic contact dermatitis, hives, dermatitis herpetiformis, nummular dermatitis, seborrheic dermatitis, non-specific dermatitis, primary irritant contact dermatitis, and atopic dermatitis, x-linked hyper IgM syndrome, allergic intraocular inflammatory diseases, urticaria such as chronic allergic urticaria and chronic idiopathic urticaria, including chronic autoimmune urticaria, myositis, polymyositis/dermatomyositis, juvenile dermatomyositis, toxic epidermal necrolysis, scleroderma (including systemic scleroderma), sclerosis such as systemic sclerosis, multiple sclerosis (MS) such as spino-optical MS, primary progressive MS (PPMS), and relapsing remitting MS (RRMS), progressive systemic sclerosis, atherosclerosis, arteriosclerosis, sclerosis disseminata, ataxic sclerosis, neuromyelitis optica (NMO), inflammatory bowel disease (IBD) (for example, Crohn's disease, autoimmune-mediated gastrointestinal diseases, gastrointestinal inflammation, colitis such as ulcerative colitis, colitis ulcerosa, microscopic colitis, collagenous colitis, colitis polyposa, necrotizing enterocolitis, and transmural colitis, and autoimmune inflammatory bowel disease), bowel inflammation, pyoderma gangrenosum, erythema nodosum, primary sclerosing cholangitis, respiratory distress syndrome, including adult or acute respiratory distress syndrome (ARDS), meningitis, inflammation of all or part of the uvea, iritis, choroiditis, an autoimmune hematological disorder, graft-versus-host disease, angioedema such as hereditary angioedema, cranial nerve damage as in meningitis, herpes gestationis, pemphigoid gestationis, pruritis scroti, autoimmune premature ovarian failure, sudden hearing loss due to an autoimmune condition, IgE-mediated diseases such as anaphylaxis and allergic and atopic rhinitis, encephalitis such as Rasmussen's encephalitis and limbic and/or brainstem encephalitis, uveitis, such as anterior uveitis, acute anterior uveitis, granulomatous uveitis, nongranulomatous uveitis, phacoantigenic uveitis, posterior uveitis, or autoimmune uveitis, glomerulonephritis (GN) with and without nephrotic syndrome such as chronic or acute glomerulonephritis such as primary GN, immune-mediated GN, membranous GN (membranous nephropathy), idiopathic membranous GN or idiopathic membranous nephropathy, membrano- or membranous proliferative GN (MPGN), including Type I and Type II, and rapidly progressive GN (RPGN), proliferative nephritis, autoimmune polyglandular endocrine failure, balanitis including balanitis circumscripta plasmacellularis, balanoposthitis, erythema annulare centrifugum, erythema dyschromicum perstans, eythema multiform, granuloma annulare, lichen nitidus, lichen sclerosus et atrophicus, lichen simplex chronicus, lichen spinulosus, lichen planus, lamellar ichthyosis, epidermolytic hyperkeratosis, premalignant keratosis, pyoderma gangrenosum, allergic conditions and responses, food allergies, drug allergies, insect allergies, rare allergic disorders such as mastocytosis, allergic reaction, eczema including allergic or atopic eczema, asteatotic eczema, dyshidrotic eczema, and vesicular palmoplantar eczema, asthma such as asthma bronchiale, bronchial asthma, and auto-immune asthma, conditions involving infiltration of T cells and chronic inflammatory responses, immune reactions against foreign antigens such as fetal A-B-O blood groups during pregnancy, chronic pulmonary inflammatory disease, autoimmune myocarditis, leukocyte adhesion deficiency, lupus, including lupus nephritis, lupus cerebritis, pediatric lupus, non-renal lupus, extra-renal lupus, discoid lupus and discoid lupus erythematosus, alopecia lupus, SLE, such as cutaneous SLE or subacute cutaneous SLE, neonatal lupus syndrome (NLE), and lupus erythematosus disseminatus, juvenile onset (Type I) diabetes mellitus, including pediatric IDDM, adult onset diabetes mellitus (Type II diabetes), autoimmune diabetes, idiopathic diabetes insipidus, diabetic retinopathy, diabetic nephropathy, diabetic colitis, diabetic large-artery disorder, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes, tuberculosis, sarcoidosis, granulomatosis including lymphomatoid granulomatosis, Wegener's granulomatosis, agranulocytosis, vasculitides, including vasculitis, large-vessel vasculitis (including polymyalgia rheumatica and giant-cell (Takayasu's) arteritis), medium-vessel vasculitis (including Kawasaki's disease and polyarteritis nodosa/periarteritis nodosa), microscopic polyarteritis, immunovasculitis, CNS vasculitis, cutaneous vasculitis, hypersensitivity vasculitis, necrotizing vasculitis such as systemic necrotizing vasculitis, and ANCA-associated vasculitis, such as Churg-Strauss vasculitis or syndrome (CSS) and ANCA-associated small-vessel vasculitis, temporal arteritis, aplastic anemia, autoimmune aplastic anemia, Coombs positive anemia, Diamond Blackfan anemia, hemolytic anemia or immune hemolytic anemia including autoimmune hemolytic anemia (AIHA), pernicious anemia (anemia perniciosa), Addison's disease, pure red cell anemia or aplasia (PRCA), Factor VIII deficiency, hemophilia A, autoimmune neutropenia(s), cytopenias such as pancytopenia, leukopenia, diseases involving leukocyte diapedesis, CNS inflammatory disorders, Alzheimer's disease, Parkinson's disease, multiple organ injury syndrome such as those secondary to septicemia, trauma or hemorrhage, antigen-antibody complex-mediated diseases, anti-glomerular basement membrane disease, anti-phospholipid antibody syndrome, motoneuritis, allergic neuritis, Behcet's disease/syndrome, Castleman's syndrome, Goodpasture's syndrome, Reynaud's syndrome, Sjögren's syndrome, Stevens-Johnson syndrome, pemphigoid such as pemphigoid bullous and skin pemphigoid, pemphigus (including pemphigus vulgaris, pemphigus foliaceus, pemphigus mucus-membrane pemphigoid, and pemphigus erythematosus), autoimmune polyendocrinopathies, Reiter's disease or syndrome, thermal injury due to an autoimmune condition, preeclampsia, an immune complex disorder such as immune complex nephritis, antibody-mediated nephritis, neuroinflammatory disorders, polyneuropathies, chronic neuropathy such as IgM polyneuropathies or IgM-mediated neuropathy, thrombocytopenia (as developed by myocardial infarction patients, for example), including thrombotic thrombocytopenic purpura (TTP), post-transfusion purpura (PTP), heparin-induced thrombocytopenia, and autoimmune or immune-mediated thrombocytopenia including, for example, idiopathic thrombocytopenic purpura (ITP) including chronic or acute ITP, scleritis such as idiopathic cerato-scleritis, episcleritis, autoimmune disease of the testis and ovary including autoimmune orchitis and oophoritis, primary hypothyroidism, hypoparathyroidism, autoimmune endocrine diseases including thyroiditis such as autoimmune thyroiditis, Hashimoto's disease, chronic thyroiditis (Hashimoto's thyroiditis), or subacute thyroiditis, autoimmune thyroid disease, idiopathic hypothyroidism, Grave's disease, polyglandular syndromes such as autoimmune polyglandular syndromes, for example, type I (or polyglandular endocrinopathy syndromes), paraneoplastic syndromes, including neurologic paraneoplastic syndromes such as Lambert-Eaton myasthenic syndrome or Eaton-Lambert syndrome, stiff-man or stiff-person syndrome, encephalomyelitis such as allergic encephalomyelitis or encephalomyelitis allergica and experimental allergic encephalomyelitis (EAE), myasthenia gravis such as thymoma-associated myasthenia gravis, cerebellar degeneration, neuromyotonia, opsoclonus or opsoclonus myoclonus syndrome (OMS), and sensory neuropathy, multifocal motor neuropathy, Sheehan's syndrome, autoimmune hepatitis, chronic hepatitis, lupoid hepatitis, giant-cell hepatitis, chronic active hepatitis or autoimmune chronic active hepatitis, pneumonitis such as lymphoid interstitial pneumonitis (LIP), bronchiolitis obliterans (non-transplant) vs NSIP, Guillain-Barré syndrome, Berger's disease (IgA nephropathy), idiopathic IgA nephropathy, linear IgA dermatosis, acute febrile neutrophilic dermatosis, subcorneal pustular dermatosis, transient acantholytic dermatosis, cirrhosis such as primary biliary cirrhosis and pneumonocirrhosis, autoimmune enteropathy syndrome, Celiac or Coeliac disease, celiac sprue (gluten enteropathy), refractory sprue, idiopathic sprue, cryoglobulinemia such as mixed cryoglobulinemia, amylotrophic lateral sclerosis (ALS; Lou Gehrig's disease), coronary artery disease, autoimmune ear disease such as autoimmune inner ear disease (AIED), autoimmune hearing loss, polychondritis such as refractory or relapsed or relapsing polychondritis, pulmonary alveolar proteinosis, Cogan's syndrome/nonsyphilitic interstitial keratitis, Bell's palsy, Sweet's disease/syndrome, rosacea autoimmune, zoster-associated pain, amyloidosis, a non-cancerous lymphocytosis, a primary lymphocytosis, which includes monoclonal B cell lymphocytosis (e.g., benign monoclonal gammopathy and monoclonal gammopathy of undetermined significance, MGUS), peripheral neuropathy, paraneoplastic syndrome, channelopathies such as epilepsy, migraine, arrhythmia, muscular disorders, deafness, blindness, periodic paralysis, and channelopathies of the CNS, autism, inflammatory myopathy, focal or segmental or focal segmental glomerulosclerosis (FSGS), endocrine ophthalmopathy, uveoretinitis, chorioretinitis, autoimmune hepatological disorder, fibromyalgia, multiple endocrine failure, Schmidt's syndrome, adrenalitis, gastric atrophy, presenile dementia, demyelinating diseases such as autoimmune demyelinating diseases and chronic inflammatory demyelinating polyneuropathy, Dressler's syndrome, alopecia areata, alopecia totalis, CREST syndrome (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia), male and female autoimmune infertility, e.g., due to anti-spermatozoan antibodies, mixed connective tissue disease, Chagas' disease, rheumatic fever, recurrent abortion, farmer's lung, erythema multiforme, post-cardiotomy syndrome, Cushing's syndrome, bird-fancier's lung, allergic granulomatous angiitis, benign lymphocytic angiitis, Alport's syndrome, alveolitis such as allergic alveolitis and fibrosing alveolitis, interstitial lung disease, transfusion reaction, leprosy, malaria, parasitic diseases such as leishmaniasis, kypanosomiasis, schistosomiasis, ascariasis, aspergillosis, Sampter's syndrome, Caplan's syndrome, dengue, endocarditis, endomyocardial fibrosis, diffuse interstitial pulmonary fibrosis, interstitial lung fibrosis, fibrosing mediastinitis, pulmonary fibrosis, idiopathic pulmonary fibrosis, cystic fibrosis, endophthalmitis, erythema elevatum et diutinum, erythroblastosis fetalis, eosinophilic faciitis, Shulman's syndrome, Felty's syndrome, flariasis, cyclitis such as chronic cyclitis, heterochronic cyclitis, iridocyclitis (acute or chronic), or Fuch's cyclitis, Henoch-Schonlein purpura, human immunodeficiency virus (HIV) infection, SCID, acquired immune deficiency syndrome (AIDS), echovirus infection, sepsis (systemic inflammatory response syndrome (SIRS)), endotoxemia, pancreatitis, thyroxicosis, parvovirus infection, rubellavirus infection, post-vaccination syndromes, congenital rubella infection, Epstein-Barr virus infection, mumps, Evan's syndrome, autoimmune gonadal failure, Sydenham's chorea, post-streptococcal nephritis, thromboangitis ubiterans, thyrotoxicosis, tabes dorsalis, chorioiditis, giant-cell polymyalgia, chronic hypersensitivity pneumonitis, conjunctivitis, such as vernal catarrh, keratoconjunctivitis sicca, and epidemic keratoconjunctivitis, idiopathic nephritic syndrome, minimal change nephropathy, benign familial and ischemia-reperfusion injury, transplant organ reperfusion, retinal autoimmunity, joint inflammation, bronchitis, chronic obstructive airway/pulmonary disease, silicosis, aphthae, aphthous stomatitis, arteriosclerotic disorders (cerebral vascular insufficiency) such as arteriosclerotic encephalopathy and arteriosclerotic retinopathy, aspermiogenese, autoimmune hemolysis, Boeck's disease, cryoglobulinemia, Dupuytren's contracture, endophthalmia phacoanaphylactica, enteritis allergica, erythema nodo sum lepro sum, idiopathic facial paralysis, chronic fatigue syndrome, febris rheumatica, Hamman-Rich's disease, sensoneural hearing loss, haemoglobinuria paroxysmatica, hypogonadism, ileitis regionalis, leucopenia, mononucleosis infectiosa, traverse myelitis, primary idiopathic myxedema, nephrosis, ophthalmia symphatica, orchitis granulomatosa, pancreatitis, polyradiculitis acuta, pyoderma gangrenosum, Quervain's thyreoiditis, acquired spenic atrophy, non-malignant thymoma, lymphofollicular thymitis, vitiligo, toxic-shock syndrome, food poisoning, conditions involving infiltration of T cells, leukocyte-adhesion deficiency, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes, diseases involving leukocyte diapedesis, multiple organ injury syndrome, antigen-antibody complex-mediated diseases, antiglomerular basement membrane disease, autoimmune polyendocrinopathies, oophoritis, primary myxedema, autoimmune atrophic gastritis, sympathetic ophthalmia, rheumatic diseases, mixed connective tissue disease, nephrotic syndrome, insulitis, polyendocrine failure, autoimmune polyglandular syndromes, including polyglandular syndrome type I, adult-onset idiopathic hypoparathyroidism (AOIH), cardiomyopathy such as dilated cardiomyopathy, epidermolisis bullosa acquisita (EBA), hemochromatosis, myocarditis, nephrotic syndrome, primary sclerosing cholangitis, purulent or nonpurulent sinusitis, acute or chronic sinusitis, ethmoid, frontal, maxillary, or sphenoid sinusitis, allergic sinusitis, an eosinophil-related disorder such as eosinophilia, pulmonary infiltration eosinophilia, eosinophilia-myalgia syndrome, Loffler's syndrome, chronic eosinophilic pneumonia, tropical pulmonary eosinophilia, bronchopneumonic aspergillosis, aspergilloma, or granulomas containing eosinophils, anaphylaxis, spondyloarthropathies, seronegative spondyloarthritides, polyendocrine autoimmune disease, sclerosing cholangitis, sclera, episclera, chronic mucocutaneous candidiasis, Bruton's syndrome, transient hypogammaglobulinemia of infancy, Wiskott-Aldrich syndrome, ataxia telangiectasia syndrome, angiectasis, autoimmune disorders associated with collagen disease, rheumatism such as chronic arthrorheumatism, lymphadenitis, reduction in blood pressure response, vascular dysfunction, tissue injury, cardiovascular ischemia, hyperalgesia, renal ischemia, cerebral ischemia, and disease accompanying vascularization, allergic hypersensitivity disorders, glomerulonephritides, reperfusion injury, ischemic re-perfusion disorder, reperfusion injury of myocardial or other tissues, lymphomatous tracheobronchitis, inflammatory dermatoses, dermatoses with acute inflammatory components, multiple organ failure, bullous diseases, renal cortical necrosis, acute purulent meningitis or other central nervous system inflammatory disorders, ocular and orbital inflammatory disorders, granulocyte transfusion-associated syndromes, cytokine-induced toxicity, narcolepsy, acute serious inflammation, chronic intractable inflammation, pyelitis, endarterial hyperplasia, peptic ulcer, valvulitis, and endometriosis.
[0360] The phrase “anxiety related disorders” refers to disorders of anxiety, mood, and substance abuse, including but not limited to: depression, generalized anxiety disorders, attention deficit disorder, sleep disorder, hyperactivity disorder, obsessive compulsive disorder, schizophrenia, cognitive disorders, hyperalgesia and sensory disorders. Such disorders include the mild to moderate anxiety, anxiety disorder due to a general medical condition, anxiety disorder not otherwise specified, generalized anxiety disorder, panic attack, panic disorder with agoraphobia, panic disorder without agoraphobia, posttraumatic stress disorder, social phobia, social anxiety, autism, specific phobia, substance-induced anxiety disorder, acute alcohol withdrawal, obsessive compulsive disorder, agoraphobia, monopolar disorders, bipolar disorder I or II, bipolar disorder not otherwise specified, cyclothymic disorder, depressive disorder, major depressive disorder, mood disorder, substance-induced mood disorder, enhancement of cognitive function, loss of cognitive function associated with but not limited to Alzheimer's disease, stroke, or traumatic injury to the brain, seizures resulting from disease or injury including but not limited to epilepsy, learning disorders/disabilities, cerebral palsy. In addition, anxiety disorders may apply to personality disorders including but not limited to the following types: paranoid, antisocial, avoidant behavior, borderline personality disorders, dependent, histronic, narcissistic, obsessive-compulsive, schizoid, and schizotypal.
[0361] The term “lipid metabolic disorder” refers to abnormal clinical chemistry levels of cholesterol and triglycerides, wherein elevated levels of these lipids is an indication for atherosclerosis. Additionally, abnormal serum lipid levels may be an indication of various cardiovascular diseases including hypertension, stroke, coronary artery diseases, diabetes and/or obesity.
[0362] The phrase “eye abnormality” refers to such potential disorders of the eye as they may be related to atherosclerosis or various ophthalmological abnormalities. Such disorders include but are not limited to the following: retinal dysplasia, various retinopathies, restenosis, retinal artery obstruction or occlusion; retinal degeneration causing secondary atrophy of the retinal vasculature, retinitis pigmentosa, macular dystrophies, Stargardt's disease, congenital stationary night blindness, choroideremia, gyrate atrophy, Leber's congenital amaurosis, retinoschisis disorders, Wagner's syndrome, Usher syndromes, Zellweger syndrome, Saldino-Mainzer syndrome, Senior-Loken syndrome, Bardet-Biedl syndrome, Alport's syndrome, Alstrom's syndrome, Cockayne's syndrome, dysplasia spondyloepiphysaria congentia, Flynn-Aird syndrome, Friedreich ataxia, Hallgren syndrome, Marshall syndrome, Albers-Schnoberg disease, Refsum's disease, Kearns-Sayre syndrome, Waardenburg's syndrome, Alagile syndrome, myotonic dystrophy, olivopontocerebellar atrophy, Pierre-Marie dunsdrome, Stickler syndrome, carotinemeia, cystinosis, Wolfram syndrome, Bassen-Kornzweig syndrome, abetalipoproteinemia, incontinentia pigmenti, Batten's disease, mucopolysaccharidoses, homocystinuria, or mannosidosis. Cataracts are also considered an eye abnormality and are associated with such systemic diseases as: Human Down's syndrome, Hallerman-Streiff syndrome, Lowe syndrome, galactosemia, Marfan syndrome, Trismoy 13-15 condition, Alport syndrome, myotonic dystrophy, Fabry disease, hypothroidisms, or Conradi syndrome. Other ocular developmental anomalies include: Aniridia, anterior segment and dysgenesis syndrome. Cataracts may also occur as a result of an intraocular infection or inflammation (uveitis).
[0363] A “growth inhibitory amount” of an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody, PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding oligopeptide or PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding organic molecule is an amount capable of inhibiting the growth of a cell, especially tumor, e.g., cancer cell, either in vitro or in vivo. A “growth inhibitory amount” of an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody, PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding oligopeptide or PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding organic molecule for purposes of inhibiting neoplastic cell growth may be determined empirically and in a routine manner.
[0364] A “cytotoxic amount” of an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody, PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding oligopeptide or PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding organic molecule is an amount capable of causing the destruction of a cell, especially tumor, e.g., cancer cell, either in vitro or in vivo. A “cytotoxic amount” of an anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody, PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding oligopeptide or PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding organic molecule for purposes of inhibiting neoplastic cell growth may be determined empirically and in a routine manner.
[0365] The term “antibody” is used in the broadest sense and specifically covers, for example, single anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies), anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody compositions with polyepitopic specificity, polyclonal antibodies, single chain anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibodies, and fragments of anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibodies (see below) as long as they exhibit the desired biological or immunological activity. The term “immunoglobulin” (Ig) is used interchangeable with antibody herein.
[0366] An “isolated antibody” is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. The invention provides that the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
[0367] The basic 4-chain antibody unit is a heterotetrameric glycoprotein composed of two identical light (L) chains and two identical heavy (H) chains (an IgM antibody consists of 5 of the basic heterotetramer unit along with an additional polypeptide called J chain, and therefore contain 10 antigen binding sites, while secreted IgA antibodies can polymerize to form polyvalent assemblages comprising 2-5 of the basic 4-chain units along with J chain). In the case of IgGs, the 4-chain unit is generally about 150,000 daltons. Each L chain is linked to a H chain by one covalent disulfide bond, while the two H chains are linked to each other by one or more disulfide bonds depending on the H chain isotype. Each H and L chain also has regularly spaced intrachain disulfide bridges. Each H chain has at the N-terminus, a variable domain (VH) followed by three constant domains (CH) for each of the α and γ chains and four CH domains for μ and ε isotypes. Each L chain has at the N-terminus, a variable domain (VL) followed by a constant domain (CL) at its other end. The VL is aligned with the VH and the CL is aligned with the first constant domain of the heavy chain (CH1). Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable domains. The pairing of a VH and VL together forms a single antigen-binding site. For the structure and properties of the different classes of antibodies, see, e.g., Basic and Clinical Immunology, 8th edition, Daniel P. Stites, Abba I. Terr and Tristram G. Parslow (eds.), Appleton & Lange, Norwalk, Conn., 1994, page 71 and Chapter 6.
[0368] The L chain from any vertebrate species can be assigned to one of two clearly distinct types, called kappa and lambda, based on the amino acid sequences of their constant domains. Depending on the amino acid sequence of the constant domain of their heavy chains (CH), immunoglobulins can be assigned to different classes or isotypes. There are five classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, having heavy chains designated α, δ, ε, γ, and μ, respectively. The γ and α classes are further divided into subclasses on the basis of relatively minor differences in CH sequence and function, e.g., humans express the following subclasses: IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2.
[0369] The term “variable” refers to the fact that certain segments of the variable domains differ extensively in sequence among antibodies. The V domain mediates antigen binding and define specificity of a particular antibody for its particular antigen. However, the variability is not evenly distributed across the 110-amino acid span of the variable domains. Instead, the V regions consist of relatively invariant stretches called framework regions (FRs) of 15-30 amino acids separated by shorter regions of extreme variability called “hypervariable regions” that are each 9-12 amino acids long. The variable domains of native heavy and light chains each comprise four FRs, largely adopting a β-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β-sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).
[0370] The term “hypervariable region” when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region generally comprises amino acid residues from a “complementarity determining region” or “CDR” (e.g. around about residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the VL, and around about 1-35 (H1), 50-65 (H2) and 95-102 (H3) in the VH; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)) and/or those residues from a “hypervariable loop” (e.g. residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the VL, and 26-32 (H1), 53-55 (H2) and 96-101 (H3) in the VH; Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)).
[0371] The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations which include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they may be synthesized uncontaminated by other antibodies. The modifier “monoclonal” is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies useful in the present invention may be prepared by the hybridoma methodology first described by Kohler et al., Nature, 256:495(1975), or may be made using recombinant DNA methods in bacterial, eukaryotic animal or plant cells (see, e.g., U.S. Pat. No. 4,816,567). The “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991), for example.
[0372] The monoclonal antibodies herein include “chimeric” antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (see U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)). Chimeric antibodies of interest herein include “primatized” antibodies comprising variable domain antigen-binding sequences derived from a non-human primate (e.g. Old World Monkey, Ape etc), and human constant region sequences.
[0373] An “intact” antibody is one which comprises an antigen-binding site as well as a CL and at least heavy chain constant domains, CH1, CH2 and CH3. The constant domains may be native sequence constant domains (e.g. human native sequence constant domains) or amino acid sequence variant thereof. Preferably, the intact antibody has one or more effector functions.
[0374] “Antibody fragments” comprise a portion of an intact antibody, preferably the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab′, F(ab′)2, and Fv fragments; diabodies; linear antibodies (see U.S. Pat. No. 5,641,870, Example 2; Zapata et al., Protein Eng. 8(10): 1057-1062 [1995]); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.
[0375] Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, and a residual “Fc” fragment, a designation reflecting the ability to crystallize readily. The Fab fragment consists of an entire L chain along with the variable region domain of the H chain (VH), and the first constant domain of one heavy chain (CH1). Each Fab fragment is monovalent with respect to antigen binding, i.e., it has a single antigen-binding site. Pepsin treatment of an antibody yields a single large F(ab′)2 fragment which roughly corresponds to two disulfide linked Fab fragments having divalent antigen-binding activity and is still capable of cross-linking antigen. Fab′ fragments differ from Fab fragments by having additional few residues at the carboxy terminus of the CH1 domain including one or more cysteines from the antibody hinge region. Fab′-SH is the designation herein for Fab′ in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab′)2 antibody fragments originally were produced as pairs of Fab′ fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
[0376] The Fc fragment comprises the carboxy-terminal portions of both H chains held together by disulfides. The effector functions of antibodies are determined by sequences in the Fc region, which region is also the part recognized by Fc receptors (FcR) found on certain types of cells.
[0377] “Fv” is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This fragment consists of a dimer of one heavy- and one light-chain variable region domain in tight, non-covalent association. From the folding of these two domains emanate six hypervariable loops (3 loops each from the H and L chain) that contribute the amino acid residues for antigen binding and confer antigen binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
[0378] “Single-chain Fv” also abbreviated as “sFv” or “scFv” are antibody fragments that comprise the VH and VL antibody domains connected into a single polypeptide chain. Preferably, the sFv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the sFv to form the desired structure for antigen binding. For a review of sFv, see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994); Borrebaeck 1995, infra.
[0379] The term “diabodies” refers to small antibody fragments prepared by constructing sFv fragments (see preceding paragraph) with short linkers (about 5-10 residues) between the VH and VL domains such that inter-chain but not intra-chain pairing of the V domains is achieved, resulting in a bivalent fragment, i.e., fragment having two antigen-binding sites. Bispecific diabodies are heterodimers of two “crossover” sFv fragments in which the VH and VL domains of the two antibodies are present on different polypeptide chains. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993).
[0380] “Humanized” forms of non-human (e.g., rodent) antibodies are chimeric antibodies that contain minimal sequence derived from the non-human antibody. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or non-human primate having the desired antibody specificity, affinity, and capability. In some instances, framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992).
[0381] A “species-dependent antibody,” e.g., a mammalian anti-human IgE antibody, is an antibody which has a stronger binding affinity for an antigen from a first mammalian species than it has for a homologue of that antigen from a second mammalian species. Normally, the species-dependent antibody “bind specifically” to a human antigen (i.e., has a binding affinity (Kd) value of no more than about 1×10−7 M, preferably no more than about 1×10−8 and most preferably no more than about 1×10−9 M) but has a binding affinity for a homologue of the antigen from a second non-human mammalian species which is at least about 50 fold, or at least about 500 fold, or at least about 1000 fold, weaker than its binding affinity for the human antigen. The species-dependent antibody can be of any of the various types of antibodies as defined above, but preferably is a humanized or human antibody.
[0382] A “PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding oligopeptide” is an oligopeptide that binds, preferably specifically, to a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide as described herein. PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding oligopeptides may be chemically synthesized using known oligopeptide synthesis methodology or may be prepared and purified using recombinant technology. PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding oligopeptides usually are or are at least about 5 amino acids in length, alternatively are or are at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 amino acids in length or more, wherein such oligopeptides that are capable of binding, preferably specifically, to a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide as described herein. PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding oligopeptides may be identified without undue experimentation using well known techniques. In this regard, it is noted that techniques for screening oligopeptide libraries for oligopeptides that are capable of specifically binding to a polypeptide target are well known in the art (see, e.g., U.S. Pat. Nos. 5,556,762, 5,750,373, 4,708,871, 4,833,092, 5,223,409, 5,403,484, 5,571,689, 5,663,143; PCT Publication Nos. WO 84/03506 and WO84/03564; Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 81:3998-4002 (1984); Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 82:178-182(1985); Geysen et al., in Synthetic Peptides as Antigens, 130-149 (1986); Geysen et al., J. Immunol. Meth., 102:259-274 (1987); Schoofs et al., J. Immunol., 140:611-616 (1988), Cwirla, S. E. et al. (1990) Proc. Natl. Acad. Sci. USA, 87:6378; Lowman, H. B. et al. (1991) Biochemistry, 30:10832; Clackson, T. et al. (1991) Nature, 352: 624; Marks, J. D. et al. (1991), J. Mol. Biol., 222:581; Kang, A. S. et al. (1991) Proc. Natl. Acad. Sci. USA, 88:8363, and Smith, G. P. (1991) Current Opin. Biotechnol., 2:668).
[0383] A “PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO2110, PRO23203 or PRO35250 binding organic molecule” is an organic molecule other than an oligopeptide or antibody as defined herein that binds, preferably specifically, to a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide as described herein. PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding organic molecules may be identified and chemically synthesized using known methodology (see, e.g., PCT Publication Nos. WO00/00823 and WO00/39585). PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 binding organic molecules are usually less than about 2000 daltons in size, alternatively less than about 1500, 750, 500, 250 or 200 daltons in size, wherein such organic molecules that are capable of binding, preferably specifically, to a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide as described herein may be identified without undue experimentation using well known techniques. In this regard, it is noted that techniques for screening organic molecule libraries for molecules that are capable of binding to a polypeptide target are well known in the art (see, e.g., PCT Publication Nos. WO00/00823 and WO00/39585).
[0384] An antibody, oligopeptide or other organic molecule “which binds” an antigen of interest, e.g. a tumor-associated polypeptide antigen target, is one that binds the antigen with sufficient affinity such that the antibody, oligopeptide or other organic molecule is preferably useful as a diagnostic and/or therapeutic agent in targeting a cell or tissue expressing the antigen, and does not significantly cross-react with other proteins. The extent of binding of the antibody, oligopeptide or other organic molecule to a “non-target” protein will be less than about 10% of the binding of the antibody, oligopeptide or other organic molecule to its particular target protein as determined by fluorescence activated cell sorting (FACS) analysis or radioimmunoprecipitation (RIA). With regard to the binding of an antibody, oligopeptide or other organic molecule to a target molecule, the term “specific binding” or “specifically binds to” or is “specific for” a particular polypeptide or an epitope on a particular polypeptide target means binding that is measurably different from a non-specific interaction. Specific binding can be measured, for example, by determining binding of a molecule compared to binding of a control molecule, which generally is a molecule of similar structure that does not have binding activity. For example, specific binding can be determined by competition with a control molecule that is similar to the target, for example, an excess of non-labeled target. In this case, specific binding is indicated if the binding of the labeled target to a probe is competitively inhibited by excess unlabeled target. The term “specific binding” or “specifically binds to” or is “specific for” a particular polypeptide or an epitope on a particular polypeptide target as used herein can be exhibited, for example, by a molecule having a Kd for the target of at least about 10−4 M, alternatively at least about 10−5 M, alternatively at least about 10−6 M, alternatively at least about 10−7 M, alternatively at least alternatively at least about 10−9 M, alternatively at least about 10−10 M, alternatively at least about 10−11 M, alternatively at least about 10−12 M, or greater. The term “specific binding” refers to binding where a molecule binds to a particular polypeptide or epitope on a particular polypeptide without substantially binding to any other polypeptide or polypeptide epitope.
[0385] An antibody, oligopeptide or other organic molecule that “inhibits the growth of tumor cells expressing a “PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250” or a “growth inhibitory” antibody, oligopeptide or other organic molecule is one which results in measurable growth inhibition of cancer cells expressing or overexpressing the appropriate PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. The PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide may be a transmembrane polypeptide expressed on the surface of a cancer cell or may be a polypeptide that is produced and secreted by a cancer cell. Preferred growth inhibitory anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibodies, oligopeptides or organic molecules inhibit growth of PRO69122-, PRO204-, PRO214-, PRO222-, PRO234-, PRO265-, PRO309-, PRO332-, PRO342-, PRO356-, PRO540-, PRO618-, PRO944-, PRO994-, PRO1079-, PRO1110-, PRO1122-, PRO1138-, PRO1190-, PRO1272-, PRO1286-, PRO1295-, PRO1309-, PRO1316-, PRO1383-, PRO1384-, PRO1431-, PRO1434-, PRO1475-, PRO1481-, PRO1568-, PRO1573-, PRO1599-, PRO1604-, PRO1605-, PRO1693-, PRO1753-, PRO1755-, PRO1777-, PRO1788-, PRO1864-, PRO1925-, PRO1926-, PRO3566-, PRO4330-, PRO4423-, PRO36935-, PRO4977-, PRO4979-, PRO4980-, PRO4981-, PRO5801-, PRO5995-, PRO6001-, PRO6095-, PRO6182-, PRO7170-, PRO7171-, PRO7436-, PRO9912-, PRO9917-, PRO37337-, PRO37496-, PRO19646-, PRO21718-, PRO19820-, PRO21201-, PRO20026-, PRO20110-, PRO23203- or PRO35250-expressing tumor cells by or by greater than 20%, preferably from about 20% to about 50%, and even more preferably, by or by greater than 50% (e.g., from about 50% to about 100%) as compared to the appropriate control, the control typically being tumor cells not treated with the antibody, oligopeptide or other organic molecule being tested. Growth inhibition can be measured at an antibody concentration of about 0.1 to 30 μg/ml or about 0.5 nM to 200 nM in cell culture, where the growth inhibition is determined 1-10 days after exposure of the tumor cells to the antibody. Growth inhibition of tumor cells in vivo can be determined in various ways. The antibody is growth inhibitory in vivo if administration of the anti-PRO69122, anti-PRO204, anti-PRO214, anti-PRO222, anti-PRO234, anti-PRO265, anti-PRO309, anti-PRO332, anti-PRO342, anti-PRO356, anti-PRO540, anti-PRO618, anti-PRO944, anti-PRO994, anti-PRO1079, anti-PRO1110, anti-PRO1122, anti-PRO1138, anti-PRO1190, anti-PRO1272, anti-PRO1286, anti-PRO1295, anti-PRO1309, anti-PRO1316, anti-PRO1383, anti-PRO1384, anti-PRO1431, anti-PRO1434, anti-PRO1475, anti-PRO1481, anti-PRO1568, anti-PRO1573, anti-PRO1599, anti-PRO1604, anti-PRO1605, anti-PRO1693, anti-PRO1753, anti-PRO1755, anti-PRO1777, anti-PRO1788, anti-PRO1864, anti-PRO1925, anti-PRO1926, anti-PRO3566, anti-PRO4330, anti-PRO4423, anti-PRO36935, anti-PRO4977, anti-PRO4979, anti-PRO4980, anti-PRO4981, anti-PRO5801, anti-PRO5995, anti-PRO6001, anti-PRO6095, anti-PRO6182, anti-PRO7170, anti-PRO7171, anti-PRO7436, anti-PRO9912, anti-PRO9917, anti-PRO37337, anti-PRO37496, anti-PRO19646, anti-PRO21718, anti-PRO19820, anti-PRO21201, anti-PRO20026, anti-PRO20110, anti-PRO23203 or anti-PRO35250 antibody at about 1 μg/kg to about 100 mg/kg body weight results in reduction in tumor size or tumor cell proliferation within about 5 days to 3 months from the first administration of the antibody, preferably within about 5 to 30 days.
[0386] An antibody, oligopeptide or other organic molecule which “induces apoptosis” is one which induces programmed cell death as determined by binding of annexin V, fragmentation of DNA, cell shrinkage, dilation of endoplasmic reticulum, cell fragmentation, and/or formation of membrane vesicles (called apoptotic bodies). The cell is usually one which overexpresses a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. Preferably the cell is a tumor cell, e.g., a prostate, breast, ovarian, stomach, endometrial, lung, kidney, colon, bladder cell. Various methods are available for evaluating the cellular events associated with apoptosis. For example, phosphatidyl serine (PS) translocation can be measured by annexin binding; DNA fragmentation can be evaluated through DNA laddering; and nuclear/chromatin condensation along with DNA fragmentation can be evaluated by any increase in hypodiploid cells. Preferably, the antibody, oligopeptide or other organic molecule which induces apoptosis is one which results in or in about 2 to 50 fold, preferably in or in about 5 to 50 fold, and most preferably in or in about 10 to 50 fold, induction of annexin binding relative to untreated cell in an annexin binding assay.
[0387] Antibody “effector functions” refer to those biological activities attributable to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an antibody, and vary with the antibody isotype. Examples of antibody effector functions include: C1q binding and complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g., B cell receptor); and B cell activation.
[0388] “Antibody-dependent cell-mediated cytotoxicity” or “ADCC” refers to a form of cytotoxicity in which secreted Ig bound onto Fc receptors (FcRs) present on certain cytotoxic cells (e.g., Natural Killer (NK) cells, neutrophils, and macrophages) enable these cytotoxic effector cells to bind specifically to an antigen-bearing target cell and subsequently kill the target cell with cytotoxins. The antibodies “arm” the cytotoxic cells and are absolutely required for such killing. The primary cells for mediating ADCC, NK cells, express FcγRIII only, whereas monocytes express FcγRI, FcγRII and FcγRIII. FcR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol. 9:457-92 (1991). To assess ADCC activity of a molecule of interest, an in vitro ADCC assay, such as that described in U.S. Pat. Nos. 5,500,362 or 5,821,337 may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al. Proc. Natl. Acad. Sci. U.S.A. 95:652-656 (1998).
[0389] “Fc receptor” or “FcR” describes a receptor that binds to the Fc region of an antibody. The preferred FcR is a native sequence human FcR. Moreover, a preferred FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the FcγRI, FcγRII and FcγRIII subclasses, including allelic variants and alternatively spliced forms of these receptors. FcγRII receptors include FcγRIIA (an “activating receptor”) and FcγRIIB (an “inhibiting receptor”), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof. Activating receptor FcγRIIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain. Inhibiting receptor FcγRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain. (see review M. in Daëron, Annu. Rev. Immunol. 15:203-234 (1997)). FcRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol. 9:457-492 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., J. Lab. Clin. Med. 126:330-41 (1995). Other FcRs, including those to be identified in the future, are encompassed by the term “FcR” herein. The term also includes the neonatal receptor, FcRn, which is responsible for the transfer of maternal IgGs to the fetus (Guyer et al., J. Immunol. 117:587 (1976) and Kim et al., J. Immunol. 24:249 (1994)).
[0390] “Human effector cells” are leukocytes which express one or more FcRs and perform effector functions. Preferably, the cells express at least FcγRIII and perform ADCC effector function. Examples of human leukocytes which mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred. The effector cells may be isolated from a native source, e.g., from blood.
[0391] “Complement dependent cytotoxicity” or “CDC” refers to the lysis of a target cell in the presence of complement. Activation of the classical complement pathway is initiated by the binding of the first component of the complement system (C1q) to antibodies (of the appropriate subclass) which are bound to their cognate antigen. To assess complement activation, a CDC assay, e.g., as described in Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1996), may be performed.
[0392] The terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia. More particular examples of such cancers include squamous cell cancer, lung cancer (including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, and squamous carcinoma of the lung), cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer (including gastrointestinal cancer), pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancer, as well as B-cell lymphoma (including low grade/follicular non-Hodgkin's lymphoma (NHL); small lymphocytic (SL) NHL; intermediate grade/follicular NHL; intermediate grade diffuse NHL; high grade immunoblastic NHL; high grade lymphoblastic NHL; high grade small non-cleaved cell NHL; bulky disease NHL; mantle cell lymphoma; AIDS-related lymphoma; and Waldenstrom's Macroglobulinemia); chronic lymphocytic leukemia (CLL); acute lymphoblastic leukemia (ALL); Hairy cell leukemia; chronic myeloblastic leukemia; and post-transplant lymphoproliferative disorder (PTLD). Preferably, the cancer comprises a tumor that expresses an IGF receptor, more preferably breast cancer, lung cancer, colorectal cancer, or prostate cancer, and most preferably breast or prostate cancer.
[0393] A “chemotherapeutic agent” is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN® cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethiylenethiophosphoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); a camptothecin (including the synthetic analogue topotecan); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CB1-TM1); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as cannustine, chlorozotocin, fotemustine, lomustine, nimustine, and ranimnustine; antibiotics such as the enediyne antibiotics (e.g., calicheamicin, especially calicheamicin gamma1I and calicheamicin omegaI1 (see, e.g., Agnew, Chem Intl. Ed. Engl., 33: 183-186 (1994)); dynemicin, including dynemicin A; bisphosphonates, such as clodronate; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN® doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elfomithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidainine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidanmol; nitraerine; pentostatin; phenamet; pirarubicin; losoxantrone; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK® polysaccharide complex (JHS Natural Products, Eugene, Oreg.); razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2,2′,2″-trichlorotriethylamine; trichothecenes (especially T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside (“Ara-C”); cyclophosphamide; thiotepa; taxoids, e.g., TAXOL® paclitaxel (Bristol-Myers Squibb Oncology, Princeton, N.J.), ABRAXANE™ Cremophor-free, albumin-engineered nanoparticle formulation of paclitaxel (American Pharmaceutical Partners, Schaumberg, Ill.), and TAXOTERE® doxetaxel (Rhône-Poulenc Rorer, Antony, France); chloranbucil; GEMZAR® gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; vinblastine; platinum; etoposide (VP-16); ifosfamide; mitoxantrone; vincristine; NAVELBINE® vinorelbine; novantrone; teniposide; edatrexate; daunomycin; aminopterin; xeloda; ibandronate; CPT-11; topoisomerase inhibitor RFS 2000; difluorometlhylornithine (DMFO); retinoids such as retinoic acid; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above.
[0394] Also included in this definition are anti-hormonal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens and selective estrogen receptor modulators (SERMs), including, for example, tamoxifen (including NOLVADEX® tamoxifen), raloxifene, droloxifene, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and FARESTON toremifene; aromatase inhibitors that inhibit the enzyme aromatase, which regulates estrogen production in the adrenal glands, such as, for example, 4(5)-imidazoles, aminoglutethimide, MEGASE megestrol acetate, AROMASIN® exemestane, formestanie, fadrozole, RIVISOR® vorozole, FEMARA® letrozole, and ARIMIDEX® anastrozole; and anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; as well as troxacitabine (a 1,3-dioxolane nucleoside cytosine analog); antisense oligonucleotides, particularly those which inhibit expression of genes in signaling pathways implicated in abherant cell proliferation, such as, for example, PKC-alpha, Ralf and H-Ras; ribozymes such as a VEGF expression inhibitor (e.g., ANGIOZYME® ribozyme) and a HER2 expression inhibitor; vaccines such as gene therapy vaccines, for example, ALLOVECTIN® vaccine, LEUVECTIN® vaccine, and VAXID® vaccine; PROLEUKIN® rIL-2; LURTOTECAN® topoisomerase 1 inhibitor; ABARELIX® rmRH; and pharmaceutically acceptable salts, acids or derivatives of any of the above.
[0395] The terms “cell proliferative disorder” and “proliferative disorder” refer to disorders that are associated with some degree of abnormal cell proliferation. In one aspect of the invention, the cell proliferative disorder is cancer.
[0396] “Tumor”, as used herein, refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
[0397] An antibody, oligopeptide or other organic molecule which “induces cell death” is one which causes a viable cell to become nonviable. The cell is one which expresses a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, preferably a cell that overexpresses a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide as compared to a normal cell of the same tissue type. The PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide may be a transmembrane polypeptide expressed on the surface of a cancer cell or may be a polypeptide that is produced and secreted by a cancer cell. Preferably, the cell is a cancer cell, e.g., a breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, thyroid, pancreatic or bladder cell. Cell death in vitro may be determined in the absence of complement and immune effector cells to distinguish cell death induced by antibody-dependent cell-mediated cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC). Thus, the assay for cell death may be performed using heat inactivated serum (i.e., in the absence of complement) and in the absence of immune effector cells. To determine whether the antibody, oligopeptide or other organic molecule is able to induce cell death, loss of membrane integrity as evaluated by uptake of propidium iodide (PI), trypan blue (see Moore et al. Cytotechnology 17:1-11(1995)) or 7AAD can be assessed relative to untreated cells. Preferred cell death-inducing antibodies, oligopeptides or other organic molecules are those which induce PI uptake in the PI uptake assay in BT474 cells.
[0398] As used herein, the term “immunoadhesion” designates antibody-like molecules which combine the binding specificity of a heterologous protein (an “adhesion”) with the effector functions of immunoglobulin constant domains. Structurally, the immunoadhesions comprise a fusion of an amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site of an antibody (i.e., is “heterologous”), and an immunoglobulin constant domain sequence. The adhesion part of an immunoadhesion molecule typically is a contiguous amino acid sequence comprising at least the binding site of a receptor or a ligand. The immunoglobulin constant domain sequence in the immunoadhesion may be obtained from any immunoglobulin, such as IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA (including IgA-1 and IgA-2), IgE, IgD or IgM.
[0399] The word “label” when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the antibody so as to generate a “labeled” antibody. The label may be detectable by itself (e.g. radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable.
[0400] “Replication-preventing agent” is an agent wherein replication, function, and/or growth of the cells is inhibited or prevented, or cells are destroyed, no matter what the mechanism, such as by apoptosis, angiostasis, cytosis, tumoricide, mytosis inhibition, blocking cell cycle progression, arresting cell growth, binding to tumors, acting as cellular mediators, etc. Such agents include a chemotherapeutic agent, cytotoxic agent, cytokine, growth-inhibitory agent, or anti-hormonal agent, e.g., an anti-estrogen compound such as tamoxifen, an anti-progesterone such as onapristone (see, EP 616 812); or an anti-androgen such as flutamide, as well as aromidase inhibitors, or a hormonal agent such as an androgen.
[0401] The term “cytotoxic agent” as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g., At211, I131, I125, Y90, Re186, Re188, Sm153, Bi212, P32 and radioactive isotopes of Lu), chemotherapeutic agents e.g. methotrexate adriamicin, vinca alkaloids (vincristine, vinblastine, etoposide), doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents, enzymes and fragments thereof such as nucleolytic enzymes, antibiotics, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof, and the various antitumor or anticancer agents disclosed below. Other cytotoxic agents are described below. A tumoricidal agent causes destruction of tumor cells.
[0402] Preferred cytotoxic agents herein for the specific tumor types to use in combination with the antagonists herein are as follows:
[0403] 1. Prostate cancer: androgens, docetaxel, paclitaxel, estramustine, doxorubicin, mitoxantrone, antibodies to ErbB2 domain(s) such as 2C4 (WO 01/00245; hybridoma ATCC HB-12697), which binds to a region in the extracellular domain of ErbB2 (e.g., any one or more residues in the region from about residue 22 to about residue 584 of ErbB2, inclusive), AVASTIN™ anti-vascular endothelial growth factor (VEGF), TARCEVA™ OSI-774 (erlotinib) (Genenetech and OSI Pharmaceuticals), or other epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKI's).
2. Stomach cancer: 5-fluorouracil (5FU), XELODA™ capecitabine, methotrexate, etoposide, cisplatin/carboplatin, pacliitaxel, docetaxel, gemcitabine, doxorubicin, and CPT-11 (camptothcin-11; irinotecan, USA Brand Name: CAMPTOSAR®).
3. Pancreatic cancer: gemcitabine, 5FU, XELODA™ capecitabine, CPT-11, docetaxel, paclitaxel, cisplatin, carboplatin, TARCEVA™ erlotinib, and other EGFR TKI's.
4. Colorectal cancer: 5FU, XELODA™ capecitabine, CPT-11, oxaliplatin, AVASTIN™ anti-VEGF, TARCEVA™ erlotinib and other EGFR TKI's, and ERBITUX™ (formerly known as IMC-C225) human:murine-chimerized monoclonal antibody that binds to EGFR and blocks the ability of EGF to initiate receptor activation and signaling to the tumor.
5. Renal cancer: IL-2, interferon alpha, AVASTIN™ anti-VEGF, MEGACE™ (Megestrol acetate) progestin, vinblastine, TARCEVA™ erlotinib, and other EGFR TKI's.
[0404] A “growth inhibitory agent” when used herein refers to a compound or composition which inhibits growth of a cell, especially a PRO69122-, PRO204-, PRO214-, PRO222-, PRO234-, PRO265-, PRO309-, PRO332-, PRO342-, PRO356-, PRO540-, PRO618-, PRO944-, PRO994-, PRO1079-, PRO1110-, PRO1122-, PRO1138-, PRO1190-, PRO1272-, PRO1286-, PRO1295-, PRO1309-, PRO1316-, PRO1383-, PRO1384-, PRO1431-, PRO1434-, PRO1475-, PRO1481-, PRO1568-, PRO1573-, PRO1599-, PRO1604-, PRO1605-, PRO1693-, PRO1753-, PRO1755-, PRO1777-, PRO1788-, PRO1864-, PRO1925-, PRO1926-, PRO3566-, PRO4330-, PRO4423-, PRO36935-, PRO4977-, PRO4979-, PRO4980-, PRO4981-, PRO5801-, PRO5995-, PRO6001-, PRO6095-, PRO6182-, PRO7170-, PRO7171-, PRO7436-, PRO9912-, PRO9917-, PRO37337-, PRO37496-, PRO19646-, PRO21718-, PRO19820-, PRO21201-, PRO20026-, PRO20110-, PRO23203- or PRO35250-expressing cancer cell, either in vitro or in vivo. Thus, the growth inhibitory agent may be one which significantly reduces the percentage of PRO69122-, PRO204-, PRO214-, PRO222-, PRO234-, PRO265-, PRO309-, PRO332-, PRO342-, PRO356-, PRO540-, PRO618-, PRO944-, PRO994-, PRO1079-, PRO1110-, PRO1122-, PRO1138-, PRO1190-, PRO1272-, PRO1286-, PRO1295-, PRO1309-, PRO1316-, PRO1383-, PRO1384-, PRO1431-, PRO1434-, PRO1475-, PRO1481-, PRO1568-, PRO1573-, PRO1599-, PRO1604-, PRO1605-, PRO1693-, PRO1753-, PRO1755-, PRO1777-, PRO1788-, PRO1864-, PRO1925-, PRO1926-, PRO3566-, PRO4330-, PRO4423-, PRO36935-, PRO4977-, PRO4979-, PRO4980-, PRO4981-, PRO5801-, PRO5995-, PRO6001-, PRO6095-, PRO6182-, PRO7170-, PRO7171-, PRO7436-, PRO9912-, PRO9917-, PRO37337-, PRO37496-, PRO19646-, PRO21718-, PRO19820-, PRO21201-, PRO20026-, PRO20110-, PRO23203- or PRO35250-expressing cells in S phase. Examples of growth inhibitory agents include agents that block cell cycle progression (at a place other than S phase), such as agents that induce G1 arrest and M-phase arrest. Classical M-phase blockers include the vincas (vincristine and vinblastine), taxanes, and topoisomerase II inhibitors such as doxorubicin, epirubicin, daunorubicin, etoposide, and bleomycin. Those agents that arrest G1 also spill over into S-phase arrest, for example, DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5-fluorouracil, and ara-C. Further information can be found in The Molecular Basis of Cancer, Mendelsohn and Israel, eds., Chapter 1, entitled “Cell cycle regulation, oncogenes, and antineoplastic drugs” by Murakami et al. (W B Saunders: Philadelphia, 1995), especially p. 13. The taxanes (paclitaxel and docetaxel) are anticancer drugs both derived from the yewtree. Docetaxel (TAXOTERE®, Rhone-Poulenc Rorer), derived from the European yew, is a semisynthetic analogue of paclitaxel (TAXOL®, Bristol-Myers Squibb). Paclitaxel and docetaxel promote the assembly of microtubules from tubulin dimers and stabilize microtubules by preventing depolymerization, which results in the inhibition of mitosis in cells.
[0405] “Doxorubicin” is an anthracycline antibiotic. The full chemical name of doxorubicin is (8S-cis)-10-[(3-amino-2,3,6-trideoxy-α-L-lyxo-hexapyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(hydroxyacetyl)-1-methoxy-5,12-naphthacenedione.
[0406] The term “cytokine” is a generic term for proteins released by one cell population which act on another cell as intercellular mediators. Examples of such cytokines are lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormone such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH); hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor-α and -β; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO); nerve growth factors such as NGF-β; platelet-growth factor; transforming growth factors (TGFs) such as TGF-α and TGF-β; insulin-like growth factor-I and -II; erythropoietin (EPO); osteoinductive factors; interferons such as interferon-α, -β, and -γ; colony stimulating factors (CSFs) such as macrophage-CSF (M-CSF); granulocyte-macrophage-CSF (GM-CSF); and granulocyte-CSF (G-CSF); interleukins (ILs) such as IL-1, IL-1a, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-11, IL-12; a tumor necrosis factor such as TNF-α or TNF-β; and other polypeptide factors including LIF and kit ligand (KL). As used herein, the term cytokine includes proteins from natural sources or from recombinant cell culture and biologically active equivalents of the native sequence cytokines.
[0407] The term “package insert” is used to refer to instructions customarily included in commercial packages of therapeutic products, that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products.
[0408] The term “gene” refers to (a) a gene containing at least one of the DNA sequences disclosed herein; (b) any DNA sequence that encodes the amino acid sequence encoded by the DNA sequences disclosed herein and/or; ©) any DNA sequence that hybridizes to the complement of the coding sequences disclosed herein. Preferably, the term includes coding as well as noncoding regions, and preferably includes all sequences necessary for normal gene expression.
[0409] The term “gene targeting” refers to a type of homologous recombination that occurs when a fragment of genomic DNA is introduced into a mammalian cell and that fragment locates and recombines with endogenous homologous sequences. Gene targeting by homologous recombination employs recombinant DNA technologies to replace specific genomic sequences with exogenous DNA of particular design.
[0410] The term “homologous recombination” refers to the exchange of DNA fragments between two DNA molecules or chromatids at the site of homologous nucleotide sequences.
[0411] The term “target gene” (alternatively referred to as “target gene sequence” or “target DNA sequence”) refers to any nucleic acid molecule, polynucleotide, or gene to be modified by homologous recombination. The target sequence includes an intact gene, an exon or intron, a regulatory sequence or any region between genes. The target gene my comprise a portion of a particular gene or genetic locus in the individual's genomic DNA.
[0412] “Disruption” of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 gene occurs when a fragment of genomic DNA locates and recombines with an endogenous homologous sequence wherein the disruption is a deletion of the native gene or a portion thereof, or a mutation in the native gene or wherein the disruption is the functional inactivation of the native gene. Alternatively, sequence disruptions may be generated by nonspecific insertional inactivation using a gene trap vector (i.e. non-human transgenic animals containing and expressing a randomly inserted transgene; see for example U.S. Pat. No. 6,436,707 issued Aug. 20, 2002). These sequence disruptions or modifications may include insertions, missense, frameshift, deletion, or substitutions, or replacements of DNA sequence, or any combination thereof. Insertions include the insertion of entire genes, which may be of animal, plant, fungal, insect, prokaryotic, or viral origin. Disruption, for example, can alter the normal gene product by inhibiting its production partially or completely or by enhancing the normal gene product's activity. Preferably, the disruption is a null disruption, wherein there is no significant expression of the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 gene.
[0413] The term “native expression” refers to the expression of the full-length polypeptide encoded by the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 gene, at expression levels present in the wild-type mouse. Thus, a disruption in which there is “no native expression” of the endogenous PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 gene refers to a partial or complete reduction of the expression of at least a portion of a polypeptide encoded by an endogenous PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 gene of a single cell, selected cells, or all of the cells of a mammal.
[0414] The term “knockout” refers to the disruption of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 gene wherein the disruption results in: the functional inactivation of the native gene; the deletion of the native gene or a portion thereof; or a mutation in the native gene.
[0415] The term “knock-in” refers to the replacement of the mouse ortholog (or other mouse gene) with a human cDNA encoding any of the specific human PRO69122-, PRO204-, PRO214-, PRO222-, PRO234-, PRO265-, PRO309-, PRO332-, PRO342-, PRO356-, PRO540-, PRO618-, PRO944-, PRO994-, PRO1079-, PRO1110-, PRO1122-, PRO1138-, PRO1190-, PRO1272-, PRO1286-, PRO1295-, PRO1309-, PRO1316-, PRO1383-, PRO1384-, PRO1431-, PRO1434-, PRO1475-, PRO1481-, PRO1568-, PRO1573-, PRO1599-, PRO1604-, PRO1605-, PRO1693-, PRO1753-, PRO1755-, PRO1777-, PRO1788-, PRO1864-, PRO1925-, PRO1926-, PRO3566-, PRO4330-, PRO4423-, PRO36935-, PRO4977-, PRO4979-, PRO4980-, PRO4981-, PRO5801-, PRO5995-, PRO6001-, PRO6095-, PRO6182-, PRO7170-, PRO7171-, PRO7436-, PRO9912-, PRO9917-, PRO37337-, PRO37496-, PRO19646-, PRO21718-, PRO19820-, PRO21201-, PRO20026-, PRO20110-, PRO23203- or PRO35250-encoding genes or variants thereof (ie. the disruption results in a replacement of a native mouse gene with a native human gene).
[0416] The term “construct” or “targeting construct” refers to an artificially assembled DNA segment to be transferred into a target tissue, cell line or animal. Typically, the targeting construct will include a gene or a nucleic acid sequence of particular interest, a marker gene and appropriate control sequences. As provided herein, the targeting construct comprises a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 targeting construct. A “PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 targeting construct” includes a DNA sequence homologous to at least one portion of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 gene and is capable of producing a disruption in a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 gene in a host cell.
[0417] The term “transgenic cell” refers to a cell containing within its genome a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 gene that has been disrupted, modified, altered, or replaced completely or partially by the method of gene targeting.
[0418] The term “transgenic animal” refers to an animal that contains within its genome a specific gene that has been disrupted or otherwise modified or mutated by the methods described herein or methods otherwise well known in the art. Preferably the non-human transgenic animal is a mammal. More preferably, the mammal is a rodent such as a rat or mouse. In addition, a “transgenic animal” may be a heterozygous animal (i.e., one defective allele and one wild-type allele) or a homozygous animal (i.e., two defective alleles). An embryo is considered to fall within the definition of an animal. The provision of an animal includes the provision of an embryo or fetus in utero, whether by mating or otherwise, and whether or not the embryo goes to term.
[0419] As used herein, the terms “selective marker” and position selection marker” refer to a gene encoding a product that enables only the cells that carry the gene to survive and/or grow under certain conditions. For example, plant and animal cells that express the introduced neomycin resistance (Neor) gene are resistant to the compound G418. Cells that do not carry the Neor gene marker are killed by G418. Other positive selection markers are known to, or are within the purview of, those of ordinary skill in the art.
[0420] The term “modulates” or “modulation” as used herein refers to the decrease, inhibition, reduction, amelioration, increase or enhancement of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 gene function, expression, activity, or alternatively a phenotype associated with PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 gene.
[0421] The term “ameliorates” or “amelioration” as used herein refers to a decrease, reduction or elimination of a condition, disease, disorder, or phenotype, including an abnormality or symptom.
[0422] The term “abnormality” refers to any disease, disorder, condition, or phenotype in which PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 is implicated, including pathological conditions and behavioral observations.
[0423] 
[00001] [TABLE-US-00001]
  TABLE 1
 
  /*
   *
   * C-C increased from 12 to 15
   * Z is average of EQ
   * B is average of ND
   * match with stop is _M; stop-stop = 0; J (joker) match = 0
   */
  #define   _M   −8   /* value of a match with a stop */
  int   _day[26][26] = {
  /* A B C D E F G H I J K L M N O P Q R S T U V W X Y Z */
  /* A */   { 2, 0,−2, 0, 0,−4, 1,−1,−1, 0,−1,−2,−1, 0,_M, 1, 0,−2, 1, 1, 0, 0,−6, 0,−3, 0},
  /* B */   { 0, 3,−4, 3, 2,−5, 0, 1,−2, 0, 0,−3,−2, 2,_M,−1, 1, 0, 0, 0, 0,−2,−5, 0,−3, 1},
  /* C */   {−2,−4,15,−5,−5,−4,−3,−3,−2, 0,−5,−6,−5,−4,_M,−3,−5,−4, 0,−2, 0,−2,−8, 0, 0,−5},
  /* D */   { 0, 3,−5, 4, 3,−6, 1, 1,−2, 0, 0,−4,−3, 2,_M,−1, 2,−1, 0, 0, 0,−2,−7, 0,−4, 2},
  /* E */   { 0, 2,−5, 3, 4,−5, 0, 1,−2, 0, 0,−3,−2, 1,_M,−1, 2,−1, 0, 0, 0,−2,−7, 0,−4, 3},
  /* F */   {−4,−5,−4,−6,−5, 9,−5,−2, 1, 0,−5, 2, 0,−4,_M,−5,−5,−4,−3,−3, 0,−1, 0, 0, 7,−5},
  /* G */   { 1, 0,−3, 1, 0,−5, 5,−2,−3, 0,−2,−4,−3, 0,_M,−1,−1,−3, 1, 0, 0,−1,−7, 0,−5, 0},
  /* H */   {−1, 1,−3, 1, 1,−2,−2, 6,−2, 0, 0,−2,−2, 2,_M, 0, 3, 2,−1,−1, 0,−2,−3, 0, 0, 2},
  /* I */   {−1,−2,−2,−2,−2, 1,−3,−2, 5, 0,−2, 2, 2,−2,_M,−2,−2,−2,−1, 0, 0, 4,−5, 0,−1,−2},
  /* J */   { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,_M, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
  /* K */   {−1, 0,−5, 0, 0,−5,−2, 0,−2, 0, 5,−3, 0, 1,_M,−1, 1, 3, 0, 0, 0,−2,−3, 0,−4, 0},
  /* L */   {−2,−3,−6,−4,−3, 2,−4,−2, 2, 0,−3, 6, 4,−3,_M,−3,−2,−3,−3,−1, 0, 2,−2, 0,−1,−2},
  /* M */   {−1,−2,−5,−3,−2, 0,−3,−2, 2, 0, 0, 4, 6,−2,_M,−2,−1, 0,−2,−1, 0, 2,−4, 0,−2,−1},
  /* N */   { 0, 2,−4, 2, 1,−4, 0, 2,−2, 0, 1,−3,−2, 2,_M,−1, 1, 0, 1, 0, 0,−2,−4, 0,−2, 1},
  /* O */   {_M,_M,_M,_M,_M,_M,_M,_M,_M,_M,_M,_M,_M,_M, 0,_M,_M,_M,_M,_M,_M,_M,_M,_M,_M,_M},
  /* P */   { 1,−1,−3,−1,−1,−5,−1, 0,−2, 0,−1,−3,−2,−1,_M, 6, 0, 0, 1, 0, 0,−1,−6, 0,−5, 0},
  /* Q */   { 0, 1,−5, 2, 2,−5,−1, 3,−2, 0, 1,−2,−1, 1,_M, 0, 4, 1,−1,−1, 0,−2,−5, 0,−4, 3},
  /* R */   {−2, 0,−4,−1,−1,−4,−3, 2,−2, 0, 3,−3, 0, 0,_M, 0, 1, 6, 0,−1, 0,−2, 2, 0,−4, 0},
  /* S */   { 1, 0, 0, 0, 0,−3, 1,−1,−1, 0, 0,−3,−2, 1,_M, 1,−1, 0, 2, 1, 0,−1,−2, 0,−3, 0},
  /* T */   { 1, 0,−2, 0, 0,−3, 0,−1, 0, 0, 0,−1,−1, 0,_M, 0,−1,−1, 1, 3, 0, 0,−5, 0,−3, 0},
  /* U */   { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,_M, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
  /* V */   { 0,−2,−2,−2,−2,−1,−1,−2, 4, 0,−2, 2, 2,−2,_M,−1,−2,−2,−1, 0, 0, 4,−6, 0,−2,−2},
  /* W */   {−6,−5,−8,−7,−7, 0,−7,−3,−5, 0,−3,−2,−4,−4,_M,−6,−5, 2,−2,−5, 0,−6,17, 0, 0,−6},
  /* X */   { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,_M, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
  /* Y */   {−3,−3, 0,−4,−4, 7,−5, 0,−1, 0,−4,−1,−2,−2,_M,−5,−4,−4,−3,−3, 0,−2, 0, 0,10,−4},
  /* Z */   { 0, 1,−5, 2, 3,−5, 0, 2,−2, 0, 0,−2,−1, 1,_M, 0, 3, 0, 0, 0, 0,−2,−6, 0,−4, 4}
  };
  /*
   */
  #include <stdio.h>
  #include <ctype.h>
  #define   MAXJMP   16   /* max jumps in a diag */
  #define   MAXGAP   24   /* don't continue to penalize gaps larger than this */
  #define   JMPS   1024   /* max jmps in an path */
  #define   MX   4   /* save if there's at least MX−1 bases since last jmp */
  #define   DMAT   3   /* value of matching bases */
  #define   DMIS   0   /* penalty for mismatched bases */
  #define   DINS0   8   /* penalty for a gap */
  #define   DINS1   1   /* penalty per base */
  #define   PINS0   8   /* penalty for a gap */
  #define   PINS1   4   /* penalty per residue */
  struct jmp {
    short   n[MAXJMP];   /* size of jmp (neg for dely) */
    unsigned short   x[MAXJMP];   /* base no. of jmp in seq x */
  };   /* limits seq to 2{circumflex over ( )}16 −1 */
  struct diag {
    int   score;   /* score at last jmp */
    long   offset;   /* offset of prev block */
    short   ijmp;   /* current jmp index */
    struct jmp   jp;   /* list of jmps */
  };
  struct path {
    int   spc;   /* number of leading spaces */
    short   n[JMPS];/* size of jmp (gap) */
    int   x[JMPS];/* loc of jmp (last elem before gap) */
  };    
  char   *ofile;   /* output file name */
  char   *namex[2];   /* seq names: getseqs( ) */
  char   *prog;   /* prog name for err msgs */
  char   *seqx[2];   /* seqs: getseqs( ) */
  int   dmax;   /* best diag: nw( ) */
  int   dmax0;   /* final diag */
  int   dna;   /* set if dna: main( ) */
  int   endgaps;   /* set if penalizing end gaps */
  int   gapx, gapy;   /* total gaps in seqs */
  int   len0, len1;   /* seq lens */
  int   ngapx, ngapy;   /* total size of gaps */
  int   smax;   /* max score: nw( ) */
  int   *xbm;   /* bitmap for matching */
  long   offset;   /* current offset in jmp file */
  struct   diag   *dx;   /* holds diagonals */
  struct   path   pp[2];   /* holds path for seqs */
  char   *calloc( ), *malloc( ), *index( ), *strcpy( );
  char   *getseq( ), *g_calloc( );
  /* Needleman-Wunsch alignment program
   *
   * usage: progs file1 file2
   * where file1 and file2 are two dna or two protein sequences.
   * The sequences can be in upper- or lower-case an may contain ambiguity
   * Any lines beginning with ‘;’, ‘>’ or ‘<’ are ignored
   * Max file length is 65535 (limited by unsigned short x in the jmp struct)
   * A sequence with ⅓ or more of its elements ACGTU is assumed to be DNA
   * Output is in the file “align.out”
   *
   * The program may create a tmp file in /tmp to hold info about traceback.
   * Original version developed under BSD 4.3 on a vax 8650
   */
  #include “nw.h”
  #include “day.h”
  static   _dbval[26] = {
    1,14,2,13,0,0,4,11,0,0,12,0,3,15,0,0,0,5,6,8,8,7,9,0,10,0
  };
  static   _pbval[26] = {
    1, 2|(1<<(‘D’-‘A’))|(1<<(‘N’-‘A’)), 4, 8, 16, 32, 64,
    128, 256, 0xFFFFFFF, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14,
    1<<15, 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22,
    1<<23, 1<<24, 1<<25|(1<<(‘E’-‘A’))|(1<<(‘Q’-‘A’))
  };
  main(ac, av)   main
    int   ac;
    char   *av[ ];
  {
    prog = av[0];
    if (ac != 3) {
    fprintf(stderr,“usage: %s file1 file2\n”, prog);
    fprintf(stderr,“where file1 and file2 are two dna or two protein sequences.\n”);
    fprintf(stderr,“The sequences can be in upper- or lower-case\n”);
    fprintf(stderr,“Any lines beginning with ‘;’ or ‘<’ are ignored\n”);
    fprintf(stderr,“Output is in the file \”align.out\“\n”);
    exit(1);
    }
    namex[0] = av[1];
    namex[1] = av[2];
    seqx[0] = getseq(namex[0], &len0);
    seqx[1] = getseq(namex[1], &len1);
    xbm = (dna)? _dbval : _pbval;
    endgaps = 0;   /* 1 to penalize endgaps */
    ofile = “align.out”;   /* output file */
    nw( );   /* fill in the matrix, get the possible jmps */
    readjmps( );   /* get the actual jmps */
    print( );   /* print stats, alignment */
    cleanup(0);   /* unlink any tmp files */}
  /* do the alignment, return best score: main( )
   * dna: values in Fitch and Smith, PNAS, 80, 1382-1386, 1983
   * pro: PAM 250 values
   * When scores are equal, we prefer mismatches to any gap, prefer
   * a new gap to extending an ongoing gap, and prefer a gap in seqx
   * to a gap in seq y.
   */
  nw( )   nw
  {
    char   *px, *py;   /* seqs and ptrs */
    int   *ndely, *dely;   /* keep track of dely */
    int   ndelx, delx;   /* keep track of delx */
    int   *tmp;   /* for swapping row0, row1 */
    int   mis;   /* score for each type */
    int   ins0, ins1;   /* insertion penalties */
    register   id;   /* diagonal index */
    register   ij;   /* jmp index */
    register   *col0, *col1;   /* score for curr, last row */
    register   xx, yy;   /* index into seqs */
    dx = (struct diag *)g_calloc(“to get diags”, len0+len1+1, sizeof(struct diag));
    ndely = (int *)g_calloc(“to get ndely”, len1+1, sizeof(int));
    dely = (int *)g_calloc(“to get dely”, len1+1, sizeof(int));
    col0 = (int *)g_calloc(“to get col0”, len1+1, sizeof(int));
    col1 = (int *)g_calloc(“to get col1”, len1+1, sizeof(int));
    ins0 = (dna)? DINS0 : PINS0;
    ins1 = (dna)? DINS1 : PINS1;
    smax = −10000;
    if (endgaps) {
    for (col0[0] = dely[0] = −ins0, yy = 1; yy <= len1; yy++) {
    col0[yy] = dely[yy] = col0[yy−1] − ins1;
    ndely[yy] = yy;
    }  
    col0[0] = 0;   /* Waterman Bull Math Biol 84 */
    }
    else
    for (yy = 1; yy <= len1; yy++)
    dely[yy] = −ins0;
    /* fill in match matrix
     */
    for (px = seqx[0], xx = 1; xx <= len0; px++, xx++) {
    /* initialize first entry in col
     */
    if (endgaps) {
    if (xx == 1)
    col1[0] = delx = −(ins0+ins1);
    else
    col1[0] = delx = col0[0] − ins1;
    ndelx = xx;
    }
    else {
    col1[0] = 0;
    delx = −ins0;
    ndelx = 0;
    }
    ...nw
  for (py = seqx[1], yy = 1; yy <= len1; py++, yy++) {
    mis = col0[yy−1];
    if (dna)
    mis += (xbm[*px−‘A’]&xbm[*py−‘A’])? DMAT : DMIS;
    else
    mis += _day[*px−‘A’][*py−‘A’];
    /* update penalty for del in x seq;
     * favor new del over ongong del
     * ignore MAXGAP if weighting endgaps
     */
    if (endgaps || ndely[yy] < MAXGAP) {
    if (col0[yy] − ins0 >= dely[yy]) {
    dely[yy] = col0[yy] − (ins0+ins1);
    ndely[yy] = 1;
    } else {
    dely[yy] −= ins1;
    ndely[yy]++;
    }
    } else {
    if (col0[yy] − (ins0+ins1) >= dely[yy]) {
    dely[yy] = col0[yy] − (ins0+ins1);
    ndely[yy] = 1;
    } else
    ndely[yy]++;
    }
    /* update penalty for del in y seq;
     * favor new del over ongong del
     */
    if (endgaps || ndelx < MAXGAP) {
    if (col1[yy−1] − ins0 >= delx) {
    delx = col1[yy−1] − (ins0+ins1);
    ndelx = 1;
    } else {
    delx −= ins1;
    ndelx++;
    }
    } else {
    if (col1[yy−1] − (ins0+ins1) >= delx) {
    delx = col1[yy−1] − (ins0+ins1);
    ndelx = 1;
    } else
    ndelx++;
    }
    /* pick the maximum score; we're favoring
     * mis over any del and delx over dely
     */
    ...nw
    id = xx − yy + len1 − 1;
    if (mis >= delx && mis >= dely[yy])
    col1[yy] = mis;
    else if (delx >= dely[yy]) {
    col1[yy] = delx;
    ij = dx[id].ijmp;
    if (dx[id].jp.n[0] && (!dna || (ndelx >= MAXJMP
    && xx > dx[id].jp.x[ij]+MX) || mis > dx[id].score+DINS0)) {
    dx[id].ijmp++;
    if (++ij >= MAXJMP) {
    writejmps(id);
    ij = dx[id].ijmp = 0;
    dx[id].offset = offset;
    offset += sizeof(struct jmp) + sizeof(offset);
    }
    }
    dx[id].jp.n[ij] = ndelx;
    dx[id].jp.x[ij] = xx;
    dx[id].score = delx;
    }
    else {
    col1[yy] = dely[yy];
    ij = dx[id].ijmp;
  if (dx[id].jp.n[0] && (!dna || (ndely[yy] >= MAXJMP
    && xx > dx[id].jp.x[ij]+MX) || mis > dx[id].score+DINS0)) {
    dx[id].ijmp++;
    if (++ij >= MAXJMP) {
    writejmps(id);
    ij = dx[id].ijmp = 0;
    dx[id].offset = offset;
    offset += sizeof(struct jmp) + sizeof(offset);
    }
    }
    dx[id].jp.n[ij] = −ndely[yy];
    dx[id].jp.x[ij] = xx;
    dx[id].score = dely[yy];
    }
    if (xx == len0 && yy < len1) {
    /* last col
     */
    if (endgaps)
    col1[yy] −= ins0+ins1*(len1−yy);
    if (col1[yy] > smax) {
    smax = col1[yy];
    dmax = id;
    }
    }
    }
    if (endgaps && xx < len0)
    col1[yy−1] −= ins0+ins1*(len0−xx);
    if (col1[yy−1] > smax) {
    smax = col1[yy−1];
    dmax = id;
    }
    tmp = col0; col0 = col1; col1 = tmp;   }
  (void) free((char *)ndely);  
  (void) free((char *)dely);
  (void) free((char *)col0);
  (void) free((char *)col1);   }
  /*
   *
   * print( ) -- only routine visible outside this module
   *
   * static:
   * getmat( ) -- trace back best path, count matches: print( )
   * pr_align( ) -- print alignment of described in array p[ ]: print( )
   * dumpblock( ) -- dump a block of lines with numbers, stars: pr_align( )
   * nums( ) -- put out a number line: dumpblock( )
   * putline( ) -- put out a line (name, [num], seq, [num]): dumpblock( )
   * stars( ) - -put a line of stars: dumpblock( )
   * stripname( ) -- strip any path and prefix from a seqname
   */
  #include “nw.h”
  #define SPC   3  
  #define P_LINE   256   /* maximum output line */
  #define P_SPC   3   /* space between name or num and seq */
  extern   _day[26][26];
  int   olen;   /* set output line length */
  FILE   *fx;   /* output file */
  print( )   print
  {
    int   lx, ly, firstgap, lastgap;   /* overlap */
    if ((fx = fopen(ofile, “w”)) == 0) {
    fprintf(stderr,“%s: can't write %s\n”, prog, ofile);
    cleanup(1);
    }
    fprintf(fx, “<first sequence: %s (length = %d)\n”, namex[0], len0);
    fprintf(fx, “<second sequence: %s (length = %d)\n”, namex[1], len1);
    olen = 60;
    lx = len0;
    ly = len1;
    firstgap = lastgap = 0;
    if (dmax < len1 − 1) {   /* leading gap in x */
    pp[0].spc = firstgap = len1 − dmax − 1;
    ly −= pp[0].spc;
    }  
    else if (dmax > len1 − 1) {   /* leading gap in y */
    pp[1].spc = firstgap = dmax − (len1 − 1);
    lx −= pp[1].spc;
    }  
    if (dmax0 < len0 − 1) {   /* trailing gap in x */
    lastgap = len0 − dmax0 −1;
    lx −= lastgap;
    }  
    else if (dmax0 > len0 − 1) {   /* trailing gap in y */
    lastgap = dmax0 − (len0 − 1);
    ly −= lastgap;
    }
    getmat(lx, ly, firstgap, lastgap);
    pr_align( );   }
  /*
   * trace back the best path, count matches
   */
  static
  getmat(lx, ly, firstgap, lastgap)   getmat
    int   lx, ly;   /* “core” (minus endgaps) */
    int   firstgap, lastgap;   /* leading trailing overlap */
  {
    int   nm, i0, i1, siz0, siz1;
    char   outx[32];
    double   pct;
    register   n0, n1;
    register char   *p0, *p1;
    /* get total matches, score
     */
    i0 = i1 = siz0 = siz1 = 0;
    p0 = seqx[0] + pp[1].spc;
    p1 = seqx[1] + pp[0].spc;
    n0 = pp[1].spc + 1;
    n1 = pp[0].spc + 1;
    nm = 0;
    while ( *p0 && *p1 ) {
    if (siz0) {
    p1++;
    n1++;
    siz0−−;
    }
    else if (siz1) {
    p0++;
    n0++;
    siz1−−;
    }
    else {
    if (xbm[*p0−‘A’]&xbm[*p1−‘A’])
    nm++;
    if (n0++ == pp[0].x[i0])
    siz0 = pp[0].n[i0++];
    if (n1++ == pp[1].x[i1])
    siz1 = pp[1].n[i1++];
    p0++;
    p1++;
    }
    }
    /* pct homology:
     * if penalizing endgaps, base is the shorter seq
     * else, knock off overhangs and take shorter core
     */
    if (endgaps)
    lx = (len0 < len1)? len0 : len1;
    else
    lx = (lx < ly)? lx : ly;
    pct = 100.*(double)nm/(double)lx;
    fprintf(fx, “\n”);
    fprintf(fx, “<%d match%s in an overlap of %d: %.2f percent similarity\n”,
    nm, (nm == 1)? “” : “es”, lx, pct);
    fprintf(fx, “<gaps in first sequence: %d”, gapx);   ...getmat
    if (gapx) {
    (void) sprintf(outx, “ (%d %s%s)”,
    ngapx, (dna)? “base”:“residue”, (ngapx == 1)? “”:“s”);
    fprintf(fx,“%s”, outx);
    fprintf(fx, “, gaps in second sequence: %d”, gapy);
    if (gapy) {
    (void) sprintf(outx, “ (%d %s%s)”,
    ngapy, (dna)? “base”:“residue”, (ngapy == 1)? “”:“s”);
    fprintf(fx,“%s”, outx);
    }
    if (dna)
    fprintf(fx,
    “\n<score: %d (match = %d, mismatch = %d, gap penalty = %d + %d per base)\n”,
    smax, DMAT, DMIS, DINS0, DINS1);
    else
    fprintf(fx,
    “\n<score: %d (Dayhoff PAM 250 matrix, gap penalty = %d + %d per residue)\n”,
    smax, PINS0, PINS1);
    if (endgaps)
    fprintf(fx,
    “<endgaps penalized. left endgap: %d %s%s, right endgap: %d %s%s\n”,
    firstgap, (dna)? “base” : “residue”, (firstgap == 1)? “” : “s”,
    lastgap, (dna)? “base” : “residue”, (lastgap == 1)? “” : “s”);
    else
    fprintf(fx, “<endgaps not penalized\n”);
  }    
  static   nm;   /* matches in core -- for checking */
  static   lmax;   /* lengths of stripped file names */
  static   ij[2];   /* jmp index for a path */
  static   nc[2];   /* number at start of current line */
  static   ni[2];   /* current elem number -- for gapping */
  static   siz[2];
  static char   *ps[2];   /* ptr to current element */
  static char   *po[2];   /* ptr to next output char slot */
  static char   out[2][P_LINE];   /* output line */
  static char   star[P_LINE];   /* set by stars( ) */
  /*
   * print alignment of described in struct path pp[ ]
   */
  static
  pr_align( )   pr_align
  {
    int   nn;   /* char count */
    int   more;
    register   I;
    for (I = 0, lmax = 0; I < 2; I++) {
    nn = stripname(namex[i]);
    if (nn > lmax)
    lmax = nn;
    nc[i] = 1;
    ni[i] = 1;
    siz[i] = ij[i] = 0;
    ps[i] = seqx[i];
    po[i] = out[i];   }
    for (nn = nm = 0, more = 1; more; ) {   ...pr_align
    for (I = more = 0; I < 2; I++) {
    /*
     * do we have more of this sequence?
     */
    if (!*ps[i])
    continue;
    more++;  
    if (pp[i].spc) {   /* leading space */
    *po[i]++ = ‘ ’;
    pp[i].spc−−;
    }  
    else if (siz[i]) {   /* in a gap */
    *po[i]++ = ‘-’;
    siz[i]−−;
    }  
    else {   /* we're putting a seq element
       */
    *po[i] = *ps[i];
    if (islower(*ps[i]))
    *ps[i] = toupper(*ps[i]);
    po[i]++;
    ps[i]++;
    /*
     * are we at next gap for this seq?
     */
    if (ni[i] == pp[i].x[ij[i]]) {
    /*
     * we need to merge all gaps
     * at this location
     */
    siz[i] = pp[i].n[ij[i]++];
    while (ni[i] == pp[i].x[ij[i]])
    siz[i] += pp[i].n[ij[i]++];
    }
    ni[i]++;
    }
    }
    if (++nn == olen || !more && nn) {
    dumpblock( );
    for (I = 0; I < 2; I++)
    po[i] = out[i];
    nn = 0;
    }
    }
  }
  /*
   * dump a block of lines, including numbers, stars: pr_align( )
   */
  static
  dumpblock( )   dumpblock
  {
    register I;
    for (I = 0; I < 2; I++)
    *po[i]−− = ‘\0’;
    ...dumpblock
    (void) putc(‘\n’, fx);
    for (I = 0; I < 2; I++) {
    if (*out[i] && (*out[i] != ‘ ’ || *(po[i]) != ‘ ’)) {
    if (I == 0)
    nums(I);
    if (I == 0 && *out[1])
    stars( );
    putline(I);
    if (I == 0 && *out[1])
    fprintf(fx, star);
    if (I == 1)
    nums(I);
    }
    }
  }
  /*
   * put out a number line: dumpblock( )
   */
  static
  nums(ix)   nums
    int   ix;   /* index in out[ ] holding seq line */
  {
    char   nline[P_LINE];
    register   I, j;
    register char   *pn, *px, *py;
    for (pn = nline, I = 0; I < lmax+P_SPC; I++, pn++)
    *pn = ‘ ’;
    for (I = nc[ix], py = out[ix]; *py; py++, pn++) {
    if (*py == ‘ ’ || *py == ‘-’)
    *pn = ‘ ’;
    else {
    if (I%10 == 0 || (I == 1 && nc[ix] != 1)) {
    j = (I < 0)? −I : I;
    for (px = pn; j; j /= 10, px−−)
    *px = j%10 + ‘0’;
    if (I < 0)
    *px = ‘-’;
    }
    else
    *pn = ‘ ’;
    I++;
    }
    }
    *pn = ‘\0’;
    nc[ix] = I;
    for (pn = nline; *pn; pn++)
    (void) putc(*pn, fx);
    (void) putc(‘\n’, fx);
  }
  /*
   * put out a line (name, [num], seq, [num]): dumpblock( )
   */
  static
  putline(ix)   putline
    int   ix;   {
    ...putline
    int   I;
    register char   *px;
    for (px = namex[ix], I = 0; *px && *px != ‘:’; px++, I++)
    (void) putc(*px, fx);
    for (; I < lmax+P_SPC; I++)
    (void) putc(‘ ’, fx);
    /* these count from 1:
     * ni[ ] is current element (from 1)
     * nc[ ] is number at start of current line
     */
    for (px = out[ix]; *px; px++)
    (void) putc(*px&0x7F, fx);
    (void) putc(‘\n’, fx);
  }
  /*
   * put a line of stars (seqs always in out[0], out[1]): dumpblock( )
   */
  static
  stars( )   stars
  {
    int   I;
    register char   *p0, *p1, cx, *px;
    if (!*out[0] || (*out[0] == ‘ ’ && *(po[0]) == ‘ ’) ||
     !*out[1] || (*out[1] == ‘ ’ && *(po[1]) == ‘ ’))
    return;
    px = star;
    for (I = lmax+P_SPC; I; I−−)
    *px++ = ‘ ’;
    for (p0 = out[0], p1 = out[1]; *p0 && *p1; p0++, p1++) {
    if (isalpha(*p0) && isalpha(*p1)) {
    if (xbm[*p0−‘A’]&xbm[*p1−‘A’]) {
    cx = ‘*’;
    nm++;
    }
    else if (!dna && _day[*p0−‘A’][*p1−‘A’] > 0)
    cx = ‘.’;
    else
    cx = ‘ ’;
    }
    else
    cx = ‘ ’;
    *px++ = cx;
    }
    *px++ = ‘\n’;
    *px = ‘\0’;
  }
  /*
   * strip path or prefix from pn, return len: pr_align( )
   */
  static
  stripname(pn)   stripname
    char   *pn;   /* file name (may be path) */
  {
    register char   *px, *py;
    py = 0;
    for (px = pn; *px; px++)
    if (*px == ‘/’)
    py = px + 1;
    if (py)
    (void) strcpy(pn, py);
    return(strlen(pn));
  }
  /*
   * cleanup( ) -- cleanup any tmp file
   * getseq( ) -- read in seq, set dna, len, maxlen
   * g_calloc( ) -- calloc( ) with error checkin
   * readjmps( ) -- get the good jmps, from tmp file if necessary
   * writejmps( ) -- write a filled array of jmps to a tmp file: nw( )
   */
  #include “nw.h”
  #include <sys/file.h>
  char   *jname = “/tmp/homgXXXXXX”;   /* tmp file for jmps */
  FILE   *fj;
  int   cleanup( );   /* cleanup tmp file */
  long   lseek( );
  /*
   * remove any tmp file if we blow
   */
  cleanup(I)   cleanup
    int   I;
  {
    if (fj)
    (void) unlink(jname);
    exit(I);
  }
  /*
   * read, return ptr to seq, set dna, len, maxlen
   * skip lines starting with ‘;’, ‘<’, or ‘>’
   * seq in upper or lower case
   */
  char   *
  getseq(file, len)   getseq
    char   *file;   /* file name */
    int   *len;   /* seq len */
  {
    char   line[1024], *pseq;
    register char   *px, *py;
    int   natgc, tlen;
    FILE   *fp;
    if ((fp = fopen(file,“r”)) == 0) {
    fprintf(stderr,“%s: can't read %s\n”, prog, file);
    exit(1);
    }
    tlen = natgc = 0;
    while (fgets(line, 1024, fp)) {
    if (*line == ‘;’ || *line == ‘<’ || *line == ‘>’)
    continue;
    for (px = line; *px != ‘\n’; px++)
    if (isupper(*px) || islower(*px))
    tlen++;
    }
    if ((pseq = malloc((unsigned)(tlen+6))) == 0) {
    fprintf(stderr,“%s: malloc( ) failed to get %d bytes for %s\n”, prog, tlen+6, file);
    exit(1);
    }
    pseq[0] = pseq[1] = pseq[2] = pseq[3] = ‘\0’;
    ...getseq
    py = pseq + 4;
    *len = tlen;
    rewind(fp);
    while (fgets(line, 1024, fp)) {
    if (*line == ‘;’ || *line == ‘<’ || *line == ‘>’)
    continue;
    for (px = line; *px != ‘\n’; px++) {
    if (isupper(*px))
    *py++ = *px;
    else if (islower(*px))
    *py++ = toupper(*px);
    if (index(“ATGCU”,*(py−1)))
    natgc++;
    }
    }
    *py++ = ‘\0’;
    *py = ‘\0’;
    (void) fclose(fp);
    dna = natgc > (tlen/3);
    return(pseq+4);
  }  
  char   *
  g_calloc(msg, nx, sz)   g_calloc
    char   *msg;   /* program, calling routine */
    int   nx, sz;   /* number and size of elements */
  {
    char   *px, *calloc( );
    if ((px = calloc((unsigned)nx, (unsigned)sz)) == 0) {
    if (*msg) {
    fprintf(stderr, “%s: g_calloc( ) failed %s (n=%d, sz=%d)\n”, prog, msg, nx, sz);
    exit(1);
    }
    }
    return(px);
  }
  /*
   * get final jmps from dx[ ] or tmp file, set pp[ ], reset dmax: main( )
   */
  readjmps( )   readjmps
  {
    int   fd = −1;
    int   siz, i0, i1;
    register   I, j, xx;
    if (fj) {
    (void) fclose(fj);
    if ((fd = open(jname, O_RDONLY, 0)) < 0) {
    fprintf(stderr, “%s: can't open( ) %s\n”, prog, jname);
    cleanup(1);
    }
    }
    for (I = i0 = i1 = 0, dmax0 = dmax, xx = len0; ; I++) {
    while (1) {
    for (j = dx[dmax].ijmp; j >= 0 && dx[dmax].jp.x[j] >= xx; j−−)
    ;
    ...readjmps
    if (j < 0 && dx[dmax].offset && fj) {
    (void) lseek(fd, dx[dmax].offset, 0);
    (void) read(fd, (char *)&dx[dmax].jp, sizeof(struct jmp));
    (void) read(fd, (char *)&dx[dmax].offset, sizeof(dx[dmax].offset));
    dx[dmax].ijmp = MAXJMP−1; }
    else
    break;   }
    if (I >= JMPS) {
    fprintf(stderr, “%s: too many gaps in alignment\n”, prog);
    cleanup(1);
    }
    if (j >= 0) {
    siz = dx[dmax].jp.n[j];
    xx = dx[dmax].jp.x[j];
    dmax += siz;
    if (siz < 0) {   /* gap in second seq */
    pp[1].n[i1] = −siz;
    xx += siz;
    /* id = xx − yy + len1 − 1      */
    pp[1].x[i1] = xx − dmax + len1 − 1;
    gapy++;
    ngapy −= siz;
  /* ignore MAXGAP when doing endgaps */
    siz = (−siz < MAXGAP || endgaps)? −siz : MAXGAP;
    i1++;
    }
    else if (siz > 0) { /* gap in first seq */
    pp[0].n[i0] = siz;
    pp[0].x[i0] = xx;
    gapx++;
    ngapx += siz;
  /* ignore MAXGAP when doing endgaps */
    siz = (siz < MAXGAP || endgaps)? siz : MAXGAP;
    i0++;
    }
    }
    else
    break;
    }
    /* reverse the order of jmps */
    for (j = 0, i0−−; j < i0; j++, i0−−) {
    I = pp[0].n[j]; pp[0].n[j] = pp[0].n[i0]; pp[0].n[i0] = I;
    I = pp[0].x[j]; pp[0].x[j] = pp[0].x[i0]; pp[0].x[i0] = I;
    }
    for (j = 0, i1−−; j < i1; j++, i1−−) {
    I = pp[1].n[j]; pp[1].n[j] = pp[1].n[i1]; pp[1].n[i1] = I;
    I = pp[1].x[j]; pp[1].x[j] = pp[1].x[i1]; pp[1].x[i1] = I;
    }
    if (fd >= 0)
    (void) close(fd);
    if (fj) {
    (void) unlink(jname);
    fj = 0;
    offset = 0;
    }   }
  /*
   * write a filled jmp struct offset of the prev one (if any): nw( )
   */
  writejmps(ix)   writejmps
    int   ix;
  {
    char   *mktemp( );
    if (!fj) {
    if (mktemp(jname) < 0) {
    fprintf(stderr, “%s: can't mktemp( ) %s\n”, prog, jname);
    cleanup(1);
    }
    if ((fj = fopen(jname, “w”)) == 0) {
    fprintf(stderr, “%s: can't write %s\n”, prog, jname);
    exit(1);
    }
    }
    (void) fwrite((char *)&dx[ix].jp, sizeof(struct jmp), 1, fj);
    (void) fwrite((char *)&dx[ix].offset, sizeof(dx[ix].offset), 1, fj);
  }
 
[0424] 
[00002] [TABLE-US-00002]
  TABLE 2
 
  PRO   XXXXXXXXXXXXXXX   (Length = 15 amino acids)
  Comparison   XXXXXYYYYYYY   (Length = 12 amino acids)
  Protein
 
  % amino acid sequence identity = (the number of identically matching amino acid residues between the two polypeptide sequences as determined by ALIGN-2) divided by (the total number of amino acid residues of the PRO polypeptide) = 5 divided by 15 = 33.3%
[0425] 
[00003] [TABLE-US-00003]
  TABLE 3
 
  PRO   XXXXXXXXXX   (Length = 10 amino acids)
  Comparison   XXXXXYYYYYYZZYZ   (Length = 15 amino acids)
  Protein
 
  % amino acid sequence identity = (the number of identically matching amino acid residues between the two polypeptide sequences as determined by ALIGN-2) divided by (the total number of amino acid residues of the PRO polypeptide) = 5 divided by 10 = 50%
[0426] 
[00004] [TABLE-US-00004]
  TABLE 4
 
  PRO-DNA   NNNNNNNNNNNNNN   (Length = 14 nucleotides)
  Comparison   NNNNNNLLLLLLLLLL   (Length = 16 nucleotides)
  DNA
 
  % nucleic acid sequence identity = (the number of identically matching nucleotides between the two nucleic acid sequences as determined by ALIGN-2) divided by (the total number of nucleotides of the PRO-DNA nucleic acid sequence) = 6 divided by 14 = 42.9%
[0427] 
[00005] [TABLE-US-00005]
  TABLE 5
 
  PRO-DNA   NNNNNNNNNNNN   (Length = 12 nucleotides)
  Comparison DNA   NNNNLLLVV   (Length = 9 nucleotides)
 
  % nucleic acid sequence identity = (the number of identically matching nucleotides between the two nucleic acid sequences as determined by ALIGN-2) divided by (the total number of nucleotides of the PRO-DNA nucleic acid sequence) = 4 divided by 12 = 33.3%

II. Compositions and Methods of the Invention

[0428] A. Full-Length PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203, or PRO35250 Polypeptides
[0429] The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptides. In particular, cDNAs encoding various PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptides have been identified and isolated, as disclosed in further detail in the Examples below. It is noted that proteins produced in separate expression rounds may be given different PRO numbers but the UNQ number is unique for any given DNA and the encoded protein, and will not be changed. However, for sake of simplicity, in the present specification the protein encoded by the full length native nucleic acid molecules disclosed herein as well as all further native homologues and variants included in the foregoing definition of PRO, will be referred to as “PRO/number”, regardless of their origin or mode of preparation.
[0430] As disclosed in the Examples below, various cDNA clones have been deposited with the ATCC. The actual nucleotide sequences of those clones can readily be determined by the skilled artisan by sequencing of the deposited clone using routine methods in the art. The predicted amino acid sequence can be determined from the nucleotide sequence using routine skill. For the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptides and encoding nucleic acids described herein, Applicants have identified what is believed to be the reading frame best identifiable with the sequence information available at the time.
[0431] B. PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO4979, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 Polypeptide Variants
[0432] In addition to the full-length native sequence PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptides described herein, it is contemplated that PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 variants can be prepared. PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 variants can be prepared by introducing appropriate nucleotide changes into the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 DNA, and/or by synthesis of the desired PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. Those skilled in the art will appreciate that amino acid changes may alter post-translational processes of the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide, such as changing the number or position of glycosylation sites or altering the membrane anchoring characteristics.
[0433] Variations in the native full-length sequence PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide or in various domains of the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide described herein, can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Pat. No. 5,364,934. Variations may be a substitution, deletion or insertion of one or more codons encoding the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide that results in a change in the amino acid sequence of the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide as compared with the native sequence PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. Optionally the variation is by substitution of at least one amino acid with any other amino acid in one or more of the domains of the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. Guidance in determining which amino acid residue may be inserted, substituted or deleted without adversely affecting the desired activity may be found by comparing the sequence of the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide with that of homologous known protein molecules and minimizing the number of amino acid sequence changes made in regions of high homology. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with a serine, i.e., conservative amino acid replacements. Insertions or deletions may optionally be in the range of about 1 to 5 amino acids. The variation allowed may be determined by systematically making insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the full-length or mature native sequence.
[0434] PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide fragments are provided herein. Such fragments may be truncated at the N-terminus or C-terminus, or may lack internal residues, for example, when compared with a full length native protein. Certain fragments lack amino acid residues that are not essential for a desired biological activity of the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide.
[0435] PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 fragments may be prepared by any of a number of conventional techniques. Desired peptide fragments may be chemically synthesized. An alternative approach involves generating PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 fragments by enzymatic digestion, e.g., by treating the protein with an enzyme known to cleave proteins at sites defined by particular amino acid residues, or by digesting the DNA with suitable restriction enzymes and isolating the desired fragment. Yet another suitable technique involves isolating and amplifying a DNA fragment encoding a desired polypeptide fragment, by polymerase chain reaction (PCR). Oligonucleotides that define the desired termini of the DNA fragment are employed at the 5′ and 3′ primers in the PCR. Preferably, PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide fragments share at least one biological and/or immunological activity with the native PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide disclosed herein.
[0436] Conservative substitutions of interest are shown in Table 6 under the heading of preferred substitutions. If such substitutions result in a change in biological activity, then more substantial changes, denominated exemplary substitutions in Table 6, or as further described below in reference to amino acid classes, are preferably introduced and the products screened.
[0437] 
[00006] [TABLE-US-00006]
    TABLE 6
   
    Original   Exemplary   Preferred
    Residue   Substitutions   Substitutions
   
    Ala (A)   Val; Leu; Ile   Val
    Arg ®)   Lys; Gln; Asn   Lys
    Asn (N)   Gln; His; Asp, Lys; Arg   Gln
    Asp (D)   Glu; Asn   Glu
    Cys ©)   Ser; Ala   Ser
    Gln (Q)   Asn; Glu   Asn
    Glu (E)   Asp; Gln   Asp
    Gly (G)   Ala   Ala
    His (H)   Asn; Gln; Lys; Arg   Arg
    Ile (I)   Leu; Val; Met; Ala;   Leu
      Phe; Norleucine
    Leu (L)   Norleucine; Ile; Val;   Ile
      Met; Ala; Phe
    Lys (K)   Arg; Gln; Asn   Arg
    Met (M)   Leu; Phe; Ile   Leu
    Phe (F)   Trp; Leu; Val; Ile; Ala; Tyr   Tyr
    Pro (P)   Ala   Ala
    Ser (S)   Thr   Thr
    Thr (T)   Val; Ser   Ser
    Trp (W)   Tyr; Phe   Tyr
    Tyr (Y)   Trp; Phe; Thr; Ser   Phe
    Val (V)   Ile; Leu; Met; Phe;   Leu
      Ala; Norleucine
   
[0438] Substantial modifications in function or immunological identity of the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties: Amino acids may be grouped according to similarities in the properties of their side chains (in A. L. Lehninger, in Biochemistry, second ed., pp. 73-75, Worth Publishers, New York (1975)):

(1) non-polar: Ala (A), Val (V), Leu (L), Ile (I), Pro (P), Phe (F), Trp (W), Met (M)

(2) uncharged polar: Gly (G), Ser (S), Thr (T), Cys (C), Tyr (Y), Asn (N), Gln (Q)

(3) acidic: Asp (D), Glu (E)

(4) basic: Lys (K), Arg (R), His (H)

Alternatively, naturally occurring residues may be divided into groups based on common side-chain properties:

(1) hydrophobic: Norleucine, Met, Ala, Val, Leu, Ile;

(2) neutral hydrophilic: Cys, Ser, Thr, Asn, Gln;

(3) acidic: Asp, Glu;

(4) basic: His, Lys, Arg;

(5) residues that influence chain orientation: Gly, Pro;

(6) aromatic: Trp, Tyr, Phe.

[0439] Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Such substituted residues also may be introduced into the conservative substitution sites or, more preferably, into the remaining (non-conserved) sites.
[0440] The variations can be made using methods known in the art such as oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis [Carter et al., Nucl. Acids Res., 13:4331 (1986); Zoller et al., Nucl. Acids Res., 10:6487 (1987)], cassette mutagenesis [Wells Gene, 34:315 (1985)], restriction selection mutagenesis [Wells et al., Philos. Trans. R. Soc. London SerΛ, 317:415 (1986)] or other known techniques can be performed on the cloned DNA to produce the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 variant DNA.
[0441] Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant [Cunningham and Wells, Science, 244: 1081-1085 (1989)]. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions [Creighton, The Proteins, (W.H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)]. If alanine substitution does not yield adequate amounts of variant, an isoteric amino acid can be used.
[0442] C. Modifications of PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 Polypeptides
[0443] Covalent modifications of PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues of the PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO1693, PRO1753, PRO1755, PRO1777, PRO1788, PRO1864, PRO1925, PRO1926, PRO3566, PRO4330, PRO4423, PRO36935, PRO4977, PRO4979, PRO4980, PRO4981, PRO5801, PRO5995, PRO6001, PRO6095, PRO6182, PRO7170, PRO7171, PRO7436, PRO9912, PRO9917, PRO37337, PRO37496, PRO19646, PRO21718, PRO19820, PRO21201, PRO20026, PRO20110, PRO23203 or PRO35250 polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking PRO69122, PRO204, PRO214, PRO222, PRO234, PRO265, PRO309, PRO332, PRO342, PRO356, PRO540, PRO618, PRO944, PRO994, PRO1079, PRO1110, PRO1122, PRO1138, PRO1190, PRO1272, PRO1286, PRO1295, PRO1309, PRO1316, PRO1383, PRO1384, PRO1431, PRO1434, PRO1475, PRO1481, PRO1568, PRO1573, PRO1599, PRO1604, PRO1605, PRO16