Title: A BARREL AND A METHOD FOR ITS PRODUCTION

Abstract: Barrel in particular for alcoholic beverages and especially for fermentation and/or vinification processes, which barrel has a horizontal central longitudinal axis which intersects a front wall and a back wall and a mantle wall closing on itself and extending around said axis, which barrel is made of ceramic. Object of the invention are further characteristics of the barrel as well as a method for the manufacturing thereof.
Clayver S.r.l.
BARREL AND METHOD FOR THE MANUFACTURING THEREOF
DESCRIPTION
The present invention relates to the field of the containers for storing, preserving and/or treating food liquids such as in particular the alcoholic beverages such as beverages obtained by fermentation, distilled beverages, liquors or the like.

Object of the present invention is a barrel according to the preamble of the claim and in particular which has a horizontal central longitudinal axis intersecting a fore front wall and a back wall substantially opposing to the fore front wall and a mantle wall closing on itself and extending around said axis and connecting to each other the two front sides.

Currently alcoholic beverages such as wine but also other strong drinks are preserved in containers made by various materials ranging from the classical wooden barrels, to the concrete barrels, to the containers made of plastics and the containers made of stainless steel.

All of these types of containers have influence in the production process.

Among the materials known for the preservation in particular in the oenological field, the most ancient material used for oenological purposes is indeed the terracotta, a material that has remained substantially identical for millennia. The first amphorae where most likely was kept wine have been found in Iran in Hajji Firuz and they would even go back to the 5100 b.C. The traditional Georgian technique is still at present linked to the use of big terracotta amphorae called Qvevri, with a capacity of 2000-3000 liters.
The raw material is the collected and possibly refined clay, which is lightly sifted in order to remove the impurities or coarser mineral components. The clay is a fine sediment predominantly made of phyllosilicates i.e. minerals composed of alternating layers of silicon oxide and aluminum hydroxide according to ordered lattices. These layers can incorporate a lot of water thus expanding and acquiring the capability to slide on each other. In this way the clay becomes plastic and deformable and can be shaped by skilled artisans to produce vessels also having very big size that reach the final consistency and solidity only after drying and firing in a furnace at temperatures in the order of 1000 °C. Therefore, it is a material relatively easy to be produced, cheap, ancient and, thus familiar to humans and also very durable if carefully manipulated. The terracotta has always been used for making food vessels, but besides the mentioned it also has two important drawbacks: the possible presence of contaminants and an intrinsic porosity.

The matter of the contaminants relates both to possible toxic contaminants, which can be remedied by going to selected and analytically controlled raw materials, and contaminants that are harmless to health but detrimental for the quality of the beverage. For example, think of iron which gives the terracotta its classic orange color, but can cause problems of "casse" or catalytic oxidation of the wine.

The problem of the porosity is instead linked to the possible loss of content by transpiration through the wall of the container and, mostly, to the risk of oxidation and increase of volatiles in the wine or also
in other alcoholic beverages. In fact, the passage of oxygen through the wall, for example, of an amphora is not mediated, as it happens in the case of wooden containers, mostly if they are small and new, by the release of polyphenolic substances able to bond to it, but is direct and substantially constant in time.

The problem of the porosity of the containers made of terracotta is very significant, in particular for the biggest containers. For example think that a Georgian amphora, if it is filled with water or wine, is able to be rapidly emptied by percolation of the liquid through the wall. In fact, the traditional Georgian technique is not providing particular technologies for refining the starting earth and, thus, reducing the porosity of the material; furthermore, these containers are so big that they cannot be fired in too sophisticated furnaces and all of this translates into a material having a rather coarse and heterogeneous structure and into poor mechanical resistance.

In the past a solution consisted in making the interior of large amphorae and jars impermeable by using beeswax, a not-toxic natural element. However this is not the optimal solution as not only it involves not easy maintenance and cleaning of the vessel, but mostly affects the quality of the wine or however of the alcoholic beverage contained therein, since the beeswax has flavors that can be transferred to the wine or alcoholic liquid because of its slight solubility in alcohol.

The same result can be obtained by painting the interior of the container with resins as it happens
for proofing the concrete barrels or else by glass glazing.

The proofing processes, although effective, in addition to be expensive have the drawback of requiring an integral repetition of the treatment even in case of local damages having small entity such to perforate the protective barrier.

For this reason, the use of non-proofed terracotta vessels is progressively spreading. In this case they are terracotta of Spanish or Tuscan origin, having more refined structure and, in general, size smaller than Georgian ones. In these containers the porosity is lower and allows the wine or other alcoholic beverage to be contained with a reduced percolation/evaporation effect. These containers are mainly to be used in the first steps of the vinification, when the high concentration of polyphenolic and saline substances in the must can balance the diffusion of oxygen and also determine precipitations inside the porous structure further reducing the permeability.

Another way currently used consists in burying the biggest amphorae in cellars with the purpose of promoting thermal insulation and, in some way, also protecting the beverage such as wine from the oxidation, trying to make carbon dioxide stagnate on the bottom since it is a gas heavier than oxygen. This solution is obviously little practicable for most of the cellars.

However, the more used solution by far is to abandon the use of terracotta in favor of other materials, such as stainless steel being, at present, the most used material for making winemakers, vats and "semprepieni" of any size or for making containers for
alcoholic beverages, such as beverages obtained by fermentation, distilled beverages, liquors or the like. For reasons not perfectly understood and probably due to the characteristics of electrical conductivity of any metal, also the use of steel begins however to be questioned. In fact, some producers complain about a certain tendency of the vessels made of steel to lead the wine and beer to a not appreciated reduction status.

In particular, the gaseous exchanges between the product and the environment during the refinement step of the vinification process are of fundamental importance.

The dosed oxygenation acts on the phenol compounds of the wine, easing two fundamental reactions for the refinement of wine, such as the condensation between tannins and anthocyanins and the polymerization of the tannins. The first phenomenon allows lasting stabilization of the coloring matters, hence they are protected from the natural degradation. The combination created among the single tannins leads to the formation of polymers with different, higher molecular weight, thus leading the wines to loose part of their astringency and to prove to be softer and rounder on the palate.

Currently a natural exchange between product and environment, which allows a controlled passage of the oxygen inside the vessel and the gases generated by the wine inside the barrel, is obtained by using wooden barrels, thanks to the natural porosity of the wood itself. However the wood is not an inert material and thus unrelated to the refinement process but it is subjected to a phenomenon leading to the dissolution
of the substance contained in the wood inside the wine: for example, oak wood which many barrels are made of is rich in two polyphenols, such as lignins and tannins. The lignins are polymers insoluble in water, which have polyphenolic nature and, from their degradation, precursors of many flavoring substances found in the aromas of the wines are originated, mostly if they are refined in small barrels made of toasted woods. Therefore, by using wooden barrels, the refinement step of the product also involves a substantial modification of the organoleptic characteristics of the wine and that is not always a wanted effect, therefore currently it is not possible to separate the refinement step from the dissolution step of the flavoring substances of the wood used for the barrels.

All the known containers made of materials involving the walls to be proofed, i.e. a suppression of the gaseous exchange between environment and product in the container, are not suitable to refinement processes.

Therefore, it is a first purpose of the present invention implementing a barrel having better or however different properties with regards to the product, in particular to the alcoholic beverage contained therein, such properties allowing the fermentation process or the reactions functional to a better and more natural production to be optimized.

It is a further purpose implementing a barrel having superior characteristics related to the shape and construction, such to improve both the handling of the same and the convenience of use related to the various activities of filling, racking, monitoring the
product conditions and also related to the cleaning of the barrel itself, without the need to intervene complexly on the structure and making easily repeatable the access operations.

It is a further purpose implementing a barrel having high wear resistance and high resistance to the modification of the material due to the product contained therein and thus ensuring relatively long duration and stability of the characteristics over time, mostly for what concerns the influence of the material of the barrel on the product.

It is still a further purpose of the present invention providing a modular simplified structure of the barrel making it easier to obtain barrels of different capacity.

It is a further purpose accomplishing a manufacturing process of said barrel that is relatively simple, safe and that allows barrels of different capacity to be made simply and by modifying a minimum number of parts, so as to save production steps and also to reduce to the minimum possible the expenditure in terms of production means linked to a specific embodiment of the barrel.

The invention meets the purpose by a barrel according to the preamble of claim 1, which barrel is made of ceramic.

According to an embodiment, the barrel is made by a ceramic having controlled porosity with water absorption lower than 10%, in particular lower than 3%.

An embodiment variation provides for the ceramic material belonging to the group I or II with reference to the ISO 13006 technical standard, wherein the water
absorption capacity is measured according to the ISO 10454-3v technical standard, said groups having the following absorption values E:

- group I: $E \leq 3\%$;
- group II: $3\% < E \leq 10\%$.

The barrel object of the present invention can preferably be used for the fermentation and preservation of wine and beer but also for the preservation of other alcoholic beverages such as beverages obtained by fermentation, distilled beverages, liquors or the like.

The ceramic material that is used typically has a composition comprising clay, kaolin or a mixture of phyllosilicates providing the plasticity necessary for the shaping. The alkali of the feldspar can provide component needed for the glass melting of a part of the material instead, in order to obtain greification of the same.

Since the barrel according to the present invention must house the alcoholic beverage, such as for example wine, for prolonged periods, for example during the fermentation and aging step, however the material to be used must be able to possibly ensure a certain degree of transpiration. That excludes the chance to use glazed ceramics. Therefore, according to an embodiment, a vitrified ceramic or stoneware having compactness characteristics that are intermediate between terracotta and porcelain, i.e. such a micro-porosity to possibly allow a controlled gaseous exchange with the environment similarly to the wooden containers, is advantageously used.

The material can advantageously comprise a coarse load of chamotte, such as quartz or aluminum oxide or
the same final material, also waste material, milled to coarse shape to supply a skeleton that is rigid enough to contain the possible collapse of the object formed, because of the melting of the feldspar at the firing temperature. Good results have been obtained with load percentages of chamotte not lower than 30%.

According to an embodiment, the material constituting the container comprises 33% kaolin clays, 50% fondants such as feldspar and the remainder 17% inert materials such as sands or quartz.

According to a particularly advantageous embodiment, the material used for the barrel is refractory stoneware or fireclay. This can comprise one or more of the following compounds: SiO₂, TiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, K₂O, Na₂O. Particularly advantageous is the use of the following composition: 71.0% SiO₂, 1.20% TiO₂, 20.5% Al₂O₃, 0.80% Fe₂O₃, 0.40% CaO, 1.70% MgO, 3.20% K₂O, 1.00% Na₂O.

Another example of composition that can be used is the following: 48.10% SiO₂, 1.80% TiO₂, 41.70% Al₂O₃, 2.20% Fe₂O₃, 0.65% CaO, 0.90% MgO, 0.71% K₂O, 0.17% Na₂O.

According to a further advantageous characteristic of the barrel according to the present invention, the fore front side has at least one part which is substantially perpendicular to the horizontal axis and has an inlet with a port having size equal to or greater than the average width of a human hand, to which opening a removable lid can be sealingly fixed for the sealed closing and for the inlet giving access inside said barrel.

Typically this front opening is provided at a certain height above the lower side supporting the
barrel on the ground or above a supporting structure, i.e. from the lowest point of the mantle surface.

The opening can have any shape and at least one diameter ranging from 50% to 5% of the maximum diameter of the barrel.

In a preferred embodiment a diameter of said opening may have lengths ranging from about 40% to 20% of the maximum diameter of the barrel, preferably of about 30% of said maximum diameter.

The maximum diameter and the axial length of the barrel are commensurated in such a way that the depth of the barrel in the direction of the horizontal axis allows manually reaching any point of the internal wall of the same from said opening.

The edge of the opening has or forms a contact flange of a lid element.

The surface of this flange is rectified and polished so as to eliminate porosity or roughness and sealingly adhere to the lid, in particular and advantageously to a gasket interposed between said lid and said flange of the opening edge.

Preferably the shape of the opening is circular.

Still according to a further characteristic the edge of said opening, i.e. the contact flange of the lid, extends on a plane transversal to said horizontal axis.

Still according to an advantageous characteristic, said opening is coaxial to the central horizontal axis of the barrel.

Still according to a further characteristic, the lid is provided with an outer closing element overlapping said opening and which peripheral, perimeter band overlaps a facing contact surface of
said annular edge of said opening, preferably by interposition of at least one sealing gasket, tightening elements being provided to tight the outer element of the lid, which consist of adjustable tightening elements of the edge surrounding the opening between said outer lid element and at least one pair of fins that are diametrically opposed to said outer element, which fins overlap the inner side of said annular edge and/or said front wall surrounding said annular edge.

Still according to a characteristic, the outer closing element has at least one or more communication openings each of which is provided with sealed coupling terminals alternate with an element closing said opening, which is removable, or with an operating member.

It is possible to provide any type of operating member functional to activities related to the product or operations related to the barrel itself.

An exemplary but not exhaustive list comprises one or more of the following elements: a valve, a tap, a temperature sensor and/or a sensor of one or more chemical and/or physical and/or biological parameters of the barrel content.

According to a further embodiment, the barrel can be provided with further openings, such as a filling hole at the mantle wall and to which hole a removable, closing bung can be associated.

A further embodiment variation can alternately or in combination provide a second opening on the back side analogous to that on the fore front side and to which opening on the back side a sealed, removable lid
analogous to that provided for the opening on the front side is combined.

Still according to a preferred embodiment, the barrel consists of two end sectors of which one on the front and one on the back having a concave, cup shape, which two sectors are opposing to each other, with the open sides facing to each other and which two end sectors are directly connected one another as a single piece or alternatively are connected to one another by an intermediate joining sector tubular or annular and connected as a single piece to the two end sectors.

Preferably the barrel has rotational symmetry with reference to a horizontal axis.

An embodiment provides for the two, front and rear end sectors consisting of semi-spherical shells, preferably having identical radius and directly connected to each other or connected by one or more cylindrical or annular intermediate elements having pre-established axial length, which are arranged coaxially to the central axes of the two semi-spherical end sectors and which central axes are parallel or coaxial to the horizontal axis of the barrel.

Still according to an embodiment variation, the two end sectors are connected to each other by a conical intermediate element or having a shape of a double opposing cone, whose short base is facing towards a corresponding semi-spherical sector, whereas the two cones are connected to each other at a common long base.

An embodiment still provides for the opening on the front side and/or the opening on the back side being oriented in such a way that the peripheral edge
bounding the same is perpendicular to the horizontal axis of the barrel.

As it will appear from the following description, the barrel according to the present invention is adapted to be used in cellars and to be provided in combination with at least one, preferably several barrels which can be housed in a supporting structure provided for the barrels on at least one or more planes placed side by side on each plane, the longitudinal, horizontal axes of the same barrels being parallel to each other, whereas the supporting structure optionally has pairs of supporting wheels of the front and rear sectors of the barrel, the supporting wheels of each pair being spaced so as to lean against a circumference of the corresponding sector, in angular positions spaced apart from each other of said circumference.

Advantageously as it will appear below, the barrel has a symmetry plane corresponding to the median plane perpendicular to the horizontal axis of the same.

Object of the invention is also a manufacturing process that, in its most essential form, provides the steps of

- making two bowl- or cup-like shells;
- arranging the two shells with the open sides opposing to each other and, directly or by interposing an intermediate connecting element, sealingly joining the two shells along the edges of the facing open sides.

When the process is applied to a barrel made of ceramic according to one or more of the characteristics previously described in any combination or sub-combination, the process provides the following steps:
forming a first semi-shell from a slurry of ceramic material, in a mold having pre-established shape;
forming a second semi-shell from a slurry of ceramic material in a mold having pre-established shape;
alternately overturning one of the two semi-shells to an inverted position relative to the other and directly connecting the two semi-shells to each other;
or else making an intermediate element extending one of the two semi-shells at said edge of the open side of the same along a direction substantially parallel to the central axis of said semi-shell, the intermediate element having a pre-established length parallel to said axis;
overturning the other of the two semi-shells to an inverted position relative to the semi-shell provided with the intermediate element and connecting said overturned semi-shell with its edge of the open side to the facing edge of the intermediate element;
sealing the connection areas of the two semi-shells to each other or to the intermediate element;
drying the container;
furnace firing the container;
removing the material for making a hole in the area of the mantle wall and of an opening next to at least the fore front side of the container;
placing the container with the axis in a horizontal position.

Still according to a further aspect of the present invention, the same provides a process for storing, preserving and/or treating liquids during the
fermentation process and/or after the fermentation process, i.e. for producing, storing and/or treating wine, characterized in that the process provides for using tanks or barrels made of ceramic according to one or more of the characteristics described above in any combination or sub-combination.

These and other characteristics and advantages of the present invention will be more evident from the following description of some exemplary embodiments depicted in the attached drawings wherein:

Figs. 1, 2 and 3 depict an embodiment of the barrel according to the present invention in a perspective view, a view on the fore front side in the direction of the horizontal axis O and a lateral view, respectively.

Figure 4 is sectional view of the barrel according to the preceding figures along a diametrical plane containing the central horizontal axis of the barrel.

Figure 5 is an inverted and enlarged view of the detail of figure 4 related to the lid assembled on the barrel.

Figure 6 is sectional view analogous to that of figure 5, depicting the lid separated from the barrel.

Figure 7 is a perspective view of the lid according to the preceding figures.

Figure 8 depicts a combination of barrels according to the preceding figures, which are housed in a supporting structure.

Figure 9 schematically depicts the essential steps of the manufacturing process of the barrels according to the present invention.

With reference to figures 1 to 3, an embodiment of a barrel according to the present invention provides
for said barrel being formed by two end sectors 1, 10 that are arranged at the opposite ends of the barrel and connected to each other by a substantially cylindrical intermediate sector 100.

Any shape is possible for the two sectors 1, 10 and the intermediate sector 100, as only the front and rear sectors 1, 10 must have an edge at the open side which is fitting and congruent with the facing contact edge of the intermediate sector.

The depicted preferred embodiment provides for the barrel having rotational symmetry with respect to the horizontal axis "O" (fig. 1). This arrangement, while being the preferred embodiment for the advantages that involves, as it will appear more clearly below, must not be interpreted as a limitation of the inventive concepts also expressed in the introductory part of the present invention and in the claims.

The two end sectors 1, 10 have a substantially spheroidal shape, preferably regular semi-spherical shape, which semi-spherical shape is coaxial to the horizontal axis of the barrel.

The depicted intermediate sector 100 has a cylindrical shape coaxial to the horizontal axis and to the two semi-spherical end sectors 1, 10.

The intermediate sector can have different axial lengths and can be made in a single piece or more than one annular elements having pre-established axial dimension, whereby the combination of a certain number of rings allows making intermediate sectors 100 having different axial length depending on the capacity of the barrel.

Contrary to what depicted and as it will appear clearer below regarding the description of the process,
the intermediate sector 100 can also be missing as the two semi-spherical front and rear sectors 1, 10 are directly connected to each other to configure a barrel having a minimal capacity.

At the intermediate sector 100 there is a hole 110 for filling/emptying the barrel. A closing bung can be removably engaged in said hole for temporarily closing it.

The two front and rear sectors are substantially identical to each other and have median smoothing according to a plane secant or tangential to the spherical shape and perpendicular to the horizontal axis.

When a perfect rotational symmetry related to the horizontal axis is not required, the smoothing plane of the front and rear sector 1, 10 can also not be perfectly perpendicular to the horizontal axis "O".

The smoothing of the front sector forms an annular, circular edge 11 bounding an opening 12. The lower area of the annular edge 11 is provided at a higher level with respect to the lower area of the mantle wall.

Such an opening 12 advantageously has a diameter such that it is possible to access inside the barrel with one hand and/or preferably with the arm.

The opening can have a diameter ranging from 50% to 5% of the maximum diameter of the barrel.

A preferred embodiment provides for the diameter of said opening possibly having lengths between about 40% and 20% of the maximum diameter of the barrel, preferably about 30% of said the maximum diameter.

The maximum diameter and the axial length of the barrel are commensurated in such a way that the depth
of the barrel in the direction of the horizontal axis allows manually reaching any point of the internal wall of the same from said opening.

The annular bounding edge 11 of the opening forms, on its outer head side, a flange 13 which is appropriately rectified, polished, and/or suitably superficially treated to ensure a perfect sealing to an annular gasket (not depicted) which is intended to be interposed between said flange 13 and an annular peripheral flange 102 of a closing lid 2.

Said flange of the lid has shape and dimensions congruent or substantially congruent with the flange 13 of the edge 11 of the opening 12.

The lid has an outer closing element 202 like a disk peripherally ending with said flange 102.

The outer element of the lid 202 provides means tightening to the flange 13 of the edge 11 of the opening 12 which, in the exemplary embodiment, preferably consist, but are not limited to, a crosspiece 302 connected to the lid element 202 so as to get a diametrical position with respect to said closing element 202 and the opening 12. The diametrical crosspiece 302 has end fins 402 radially extending so as to exceed the diameter of the opening 12, which are intended to overlap posteriorly to the inner edge of the annular edge 11 of the opening 12 and which can also extend up to reach at least the part of the wall of the front sector 1 surrounding said edge 11. Said crosspiece 302 is coaxial to the lid and is retained by the same thanks to a central pin 502 coaxial to the axis of the lid 2, i.e. of the closing element 202 and the crosspiece 302, which has a threaded terminal 602. The threaded terminal 602 is engaged in a nut thread...
702 integral to the closing element 202 and provided in the center of the same. The end of the threaded terminal 602 protrudes beyond the nut thread 702 on the outer side of the lid 2 and is provided with grasping means or a grasping shaping for a conventional tool, like a wrench, a pipe wrench, a screwdriver, a pair of pliers or the like.

The threaded pin is freely and rotatably engaged in a central through hole of the crosspiece 302 and remains engaged with the same thanks to an enlarged head abutting against the crosspiece on the side of the same opposite to the closing element 202.

With the purpose of ensuring the sealing of the lid, also in the presence of the opening needed for the passage of the threaded pin, coaxially to the nut thread, the closing element 202 has a sleeve 802 surrounding said nut and ending with a sealingly joining end of a bung or other closing member.

Advantageously, the sleeve 802 has such a diameter to act simultaneously also as an orifice communicating with the interior of the barrel, at least one opening 902 in the wall of the closing element in an intermediate position between the nut and the internal wall of the sleeve 802 being provided.

In the depicted exemplary embodiment, instead of a bung, a drafting tap 3 is sealingly fixed to the end of the sleeve 802.

Thanks to that, the lid also gets the function of an access member to the barrel for drafting liquid samples.

Other terminals can be connected to the sleeve 802, which allow for example probes or sensors to be
sealingly inserted to evaluate the process parameters and/or the product conditions in the barrel.

In figure 6 a further passage path made in the lid 2 and in particular in the closing element 202, for sealingly inserting in the barrel possible further sensors or functional members, is schematically denoted by 5. Such sealed passages are known to the skilled in the art, who thus can select among known arrangements from his basic cultural baggage.

Also for what relates to the structure of the lid, different alternative solutions are possible. For example instead of a unique diametrical crosspiece it is possible to provide two diametrical crosspieces crossing each other or else, along the periphery of the lid, it is possible to provide a crown of overlapping fins posteriorly to the edge 11 of the opening 12, which are each tightened thanks to screw means, the sealing of the closing element 202 being fixed by gaskets interposed between the screw heads and the outer surface of the closing element 202 around the corresponding hole for the passage of the screw.

In the depicted exemplary embodiment, the secant smoothing of the rear sector denoted by 21 forms a back side of the barrel that is parallel and opposing to the opening 12. However according to a not depicted embodiment variation, also the rear end sector 10 of the barrel can be made with an opening and substantially identical to the front sector 1 and a sealing lid analogous or similar to that provided and described can be combined thereto, in order to seal the opening 12 on the front end 1 of the barrel.

A further possible embodiment variation provides that instead of an intermediate sector 100 made by a
cylindrical element or one or more annular elements as in the depicted preferred embodiment, the intermediate sector is made by two concentric conical elements connected to each other at the edge bounding the long base, whereas the edges of the two cones bounding the short base are each connected to the edge of the open side of one of the two end sectors 1, 10.

Still according to a further alternative, each of the two truncated-cone elements is made as an axial extension, in a single piece, of the edge of the front and rear end semi-spherical sectors.

Still according to a further variation, the two truncated-cone sectors opposing to each other described above can be connected to each other by an intermediate annular element, for example a cylindrical one.

Still according to a not depicted characteristic, the intermediate sector can have an outer diameter slightly bigger than the two end sectors 1, 10, thus forming a joining area with said end sectors 1, 10 having an outer radial step and a substantially cylindrical band with increased thickness and thus greater toughness, for example for rolling the barrel on the ground.

Figure 8 depicts the use of the barrel according to the present invention in a plant for storing liquid products such as beverages or the like, i.e. wines, liquors or the like.

A supporting structure denoted by 30 has more than one overlapping plane, each for a row of barrels placed side by side with their horizontal axes substantially parallel to each other. Each barrel B rests on two pairs of wheels 31. The wheels 31 are coincident with a circumference of the end sectors, therefore the
barrel B remains centered in the direction of the horizontal axis and can rotate around the same, thanks to its rotationally symmetrical construction.

The barrel according to the present invention can be made by a greified ceramic material of any type.

The stoneware is obtained for natural clay mixtures containing quartz-feldspathic rocks inducing the vitrification or greification of the mass. A load of chamotte, typically made of quartz or aluminum oxide, provides a skeleton that is rigid enough to contain the possible collapse of the object formed because of the melting of the feldspar at the firing temperature. On the other hand, the chamotte affects the densification of the mass and, thus, the porosity of the same. Therefore, by acting on the percentage of chamotte, it is possible to control both the water absorption capacity of the material and its toughness.

The ISO 10454-3 technical standard provides for a standard to measure the absorption capacity \(E \), based on which it is possible to classify the ceramics in three groups according to ISO 13006 technical standard:

- group I: \(E \leq 3\% \);
- group II: \(3\% < E \leq 10\% \);
- group III: \(E > 10\% \).

The best results can be obtained with ceramics belonging to the first two groups, with a preference for group I. In principle there is no lower limit to be respected even though absorptions between 0.5% and 6% are preferred, i.e. ceramics belonging to the sub-groups Bib and Alia.

The inventors could verify how the refractory stoneware or fireclay has the best porosity/toughness
characteristics for making containers for oenological use also having large dimensions.

The fireclay is an aggregate mineral constituted by aluminum hydrosilicates with or without free silica. Its typical chemical composition comprises SiO₂, TiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, K₂O, Na₂O in various percentages. For example it is possible to provide 45% to 80%, preferably 71.0% SiO₂, 1% to 5%, preferably 1.20% TiO₂, 20% to 50%, preferably 20.5% Al₂O₃, 0.4% to 3%, preferably 0.80% Fe₂O₃, 0.2% to 2%, preferably 0.40% CaO, 0.50% to 3%, preferably 1.70% MgO, 0.50% to 5%, preferably 3.20% K₂O, 0.05% to 3%, preferably 1.00% Na₂O.

As described above an example of a usable composition can be the following: 48.10% SiO₂, 1.80% TiO₂, 41.70% Al₂O₃, 2.20% Fe₂O₃, 0.65% CaO, 0.90% MgO, 0.71% K₂O, 0.17% Na₂O.

In order to have a right balance between toughness and porosity, the load of chamotte is preferably coarse and not lower than 30%.

The techniques of manufacturing big hollow components, as in the case of the described container, comprise:
- lathe modeling;
- coil modeling;
- manual-tracing modeling on plaster molds with possible finishing with modine or rocking bar;
- molding two valves by a press on plaster molds and directly manual welding the two halves one to the other or to an intermediate sector;
- molding by an undercut press;
- slip casting in plaster molds or porous resin molds.
More in general any type of technique used for modeling the terracotta can be used for making containers according to the present invention.

According to an advantageous embodiment, the two semi-shells forming the front end and the rear end sectors 1, 10 of the barrel and the possible intermediate sector, are made by using suitable molds.

For the two end sectors an identical mold can be used and it is also possible to use a mold only for the step by step production of the two semi-shells.

Once the not yet dried and/or fired ceramic material has been modeled so as to take the shape of one of the two semi-shells forming the end sector, the intermediate sector is fixed to the same.

Different alternatives are possible for making the intermediate sector. A first alternative provides the intermediate sector being made separately and then coupled to one of the two semi-shells; a second alternative provides for said intermediate sector being directly built on the semi-shell formed by one of the two end sectors.

In both cases, it is advantageous that in this step the semi-shell forming the end sector is oriented with its axis that is the horizontal axis of the finished barrel in vertical direction, whereby the edge of said semi-shell, to which the intermediate sector has to be coupled, extends in an horizontal plane and the intermediate sector can be leaned or directly built thanks to a mold on the edge of the semi-shell.

The second semi-shell constituting the further end sector on the opposite side of the barrel is thus itself formed by a mold and thus it is overturned with the edge contacting the intermediate sector facing
downwards. Thanks to that, said second semi-shell is simply leaned to the upper edge of the intermediate sector.

The connection areas are made solid, i.e. "welded" one to the other according to techniques that are usual techniques in the field of ceramic products, so that after the drying step and the firing step the end sectors and the intermediate sector, when present, form a unique piece.

Figure 9 schematically depicts the steps of the manufacturing process in a very essential way.

A semi-shell corresponding to one of the two end sectors 1 or 10 is made by a mold. A possible element corresponding to the cylindrical sector is also provided. The dashed line represents the fact that this element may not be provided or else that it is possible to provide more than one different elements 100 according to what already described for what concerns shape and axial dimensions, in order to be able to easily and economically make barrels having different capacity.

The intermediate sector 100 is leaned on the edge of the semi-shell.

A second semi-shell corresponding to the further end sector is made; this it is then turned upside down and lowered on the upper edge of the intermediate sector 100, when provided, or on the edge of the facing semi-shell.

For what concerns the openings, these are made prior to drying and firing by using suitable milling cutters or cutting heads.
CLAIMS

1. Barrel in particular for alcoholic beverages and especially for fermentation and/or vinification processes, which barrel has a horizontal central longitudinal axis which intersects a front wall and a back wall and a mantle wall closing on itself and extending around said axis, which barrel is made of ceramic.

2. Barrel according to claim 1, characterized in that it is made by firing a ceramic material having controlled porosity, having a water absorption capacity lower than 10%, in particular lower than 3%.

3. Barrel according to claim 1 or 2, characterized in that the ceramic material belongs to the group I or II with reference to the ISO 13006 technical standard, wherein the water absorption capacity is measured in accordance with the ISO 10545-3 technical standard, said groups having the following absorption values E:

 - group I: $E \leq 3\%$;
 - group II: $3\% < E \leq 10\%$.

4. Barrel according to one or more of the preceding claims, wherein the fore front side has at least one part which is substantially perpendicular to the horizontal axis and has an inlet with a port having size equal to or greater than the average width of a human hand, to which opening a removable lid can be sealingly fixed for the sealed closing and for the inlet giving access inside said barrel.

5. Barrel according to claim 4, wherein said opening is preferably circular and is bounded by an annular edge, the lid being provided with an outer closing element overlapping said opening and which peripheral, perimeter band overlaps a facing contact.
surface of said annular edge of said opening, preferably by interposition of at least one sealing gasket, tightening elements being provided to tight the outer element of the lid, which consist of adjustable tightening elements of the edge between said outer element and at least one pair of fins that are diametrically opposed to said outer element, which fins overlap the inner side of said annular edge and/or said front wall surrounding said annular edge.

6. Barrel according to one or more of the preceding claims, wherein the outer closing element has at least one or more communication openings each of which is provided with sealed coupling terminals alternate with an element closing said opening, which is removable, or with an operating member.

7. Barrel according to claim 6, characterized in that said operating member is selected among one or more of the following operating members: a valve, a tap, a temperature sensor and/or a sensor of one or more chemical and/or physical and/or biological parameters of the barrel content.

8. Barrel according to one or more of the preceding claims, characterized in that it comprises an opening also on the back side of the same, optionally in a symmetrical position with respect to the opening on the front side and to the median plane perpendicular to the longitudinal axis of the same, which opening can be opened and closed by a removable lid having one or more of the characteristics of claims 4 to 7.

9. Barrel according to one or more of the preceding claims, characterized in that it consists of two end sectors of which one on the front and one on the back having a concave, cup shape, which two sectors
are opposing to each other, with the open sides facing to each other and which two end sectors are directly connected one another as a single piece or else are connected by an intermediate joining sector tubular or annular and connected as a single piece to the two end sectors.

10. Barrel according to one or more of the preceding claims characterized in that it has a rotational symmetry with reference to a horizontal axis.

11. Barrel according to one or more of the preceding claims, wherein the two, front and rear end sectors consist of semi-spherical shells, preferably having identical radius and directly connected to each other or connected by one or more cylindrical or annular intermediate elements having pre-established axial length, which are arranged coaxially to the central axes of the two semi-spherical end sectors.

12. Barrel according to one or more of the preceding claims, characterized in that the two end sectors are connected to each other by a conical intermediate element or having a shape of a double opposing cone, whose short base is facing towards a corresponding semi-spherical sector, whereas the two cones are connected to each other at a common long base.

13. Barrel according to one or more of the preceding claims, characterized in that the opening on the fore front side and/or the opening on the back side are oriented in such a way that the peripheral edge bounding the same is perpendicular to the horizontal axis of the barrel.
14. Barrel according to one or more of the preceding claims, characterized in that the mantle wall has a filling hole provided with a sealing bung.

15. Barrel according to one or more of the preceding claims, characterized in that it is provided in combination with at least one further barrel and a supporting structure of the barrels on at least one or more planes placed side by side on each plane, the longitudinal, horizontal axes of the same barrels being parallel to each other, whereas the supporting structure optionally has pairs of supporting wheels of the front and rear sectors of the barrel, the supporting wheels of each pair being spaced so as to lean against a circumference of the corresponding sector, in angular positions spaced apart from each other of said circumference.

16. Process for manufacturing barrels, characterized by the following steps:
 making two bowl- or cup-like shells;
 arranging the two shells with the open sides opposing to each other and, directly or by interposing an intermediate connecting element, sealingly joining the two shells along the edges of the facing open sides.

17. Process according to claim 16, wherein the two shells and the intermediate element are made of ceramic.

18. Process according to claim 17 wherein the two semi-shells and the intermediate element are made of a ceramic material having controlled porosity, having a water absorption capacity lower than 10%, in particular lower than 3%.

19. Process according to claims 17 or 18, wherein the ceramic material belongs to the group I or II with
reference to the ISO 13006 technical standard, wherein
the water absorption capacity is measured in accordance
with the ISO 10545-3 technical standard, said groups
having the following absorption values E:

- group I: $E \leq 3\%$
- group II: $3\% < E \leq 10\%$.

20. Process according to one or more of the
preceding claims, characterized by the following steps:

forming a first semi-shell from a slurry of
ceramic material, in a mold having pre-established
shape;

forming a second semi-shell from a slurry of
ceramic material in a mold having pre-established
shape;

alternately
overturning one of the two semi-shells to an
inverted position relative to the other and directly
connecting the two semi-shells to each other;
or else making an intermediate element extending
one of the two semi-shells at said edge of the open
side of the same along a direction substantially
parallel to the central axis of said semi-shell, the
intermediate element having a pre-established length
parallel to said axis;

overturning the other of the two semi-shells to
an inverted position relative to the semi-shell
provided with the intermediate element and connecting
said overturned semi-shell with its edge of the open
side to the facing edge of the intermediate element;

sealing the connection areas of the two semi-
shells to each other or to the intermediate element;

drying the container;
furnace firing the container;
removing the material for making a hole in the area of the mantle wall and of an opening next to at least the foremost side of the container;

placing the container with the axis in a horizontal position.

21. Process for storing, preserving and/or treating liquids during the fermentation process and/or after the fermentation process, i.e. for producing, storing and/or treating wine, characterized in that the process provides for using tanks or barrels made of ceramic according to one or more of claims 1 to 20.
INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2018/051272

A. CLASSIFICATION OF SUBJECT MATTER

INV. B65D13/02 B28B1/00 C12G1/00 C12H1/22 B65D39/08

B65D47/06

ADD.

According to International Patent Classification (IPC) into both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B65D B28B C12G C12H C04B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN 203 211 614 U (LU YANFANG) 25 September 2013 (2013-09-25) the whole document</td>
<td>1-4, 10, 13, 21</td>
</tr>
<tr>
<td>X</td>
<td>US 2012/088018 Al (LIX THOMAS STEVEN [US]) 12 April 1 2012 (2012-04-12) paragraph [0019] ; figure 8</td>
<td>1,4, 10, 13, 15, 21</td>
</tr>
<tr>
<td>Y</td>
<td>DE 20 58 734 Al (SCHWADERLAPP KURT) 15 June 1972 (1972-06-15) page 1, paragraph 1; claim 1; figures</td>
<td>5-8</td>
</tr>
<tr>
<td>X</td>
<td>DE 64 038 C (GUTBI ER&K0CH) 31 August 1892 (1892-08-31) the whole document</td>
<td>1,4, 10, 13, 14, 21</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C.

[X] See patent family annex.

* Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which may affect the patentability of the claimed invention
- **O** document referring to an oral disclosure, use, exhibition or other means of publication
- **P** document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

25 April 2018

Date of mailing of the international search report

04/05/2018

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax. (+31-70) 340-3016

Authorized officer

Fournié, Jacques

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 2011/053405 A2 (CLEVELAND WHISKEY LLC [US] ; LIX THOMAS STEVEN [US]) 5 May 2011 (2011-05-05) page 4, paragraph 4; figure 5</td>
<td>1,4, 10, 13,21</td>
</tr>
<tr>
<td>X</td>
<td>cn 203 294 474 U (MA ZHANWEI) 20 November 2013 (2013-11-20) the whole document</td>
<td>1,4, 10, 13,21</td>
</tr>
<tr>
<td>X</td>
<td>us 2 043 183 A (WILHELM MAUSER KARL) 2 June 1936 (1936-06-02) columns 2, r, lines 24-37; figures</td>
<td>1,4, 10, 13,21</td>
</tr>
<tr>
<td>X</td>
<td>cn 2 897 831 Y (NIU XINCHUAN [CN]) 9 May 2007 (2007-05-09) the whole document</td>
<td>1,4, 10, 13,21</td>
</tr>
<tr>
<td>Y</td>
<td>us 578 232 A (GILDEMEYER) 2 March 1897 (1897-03-02) page 1, line 8 - page 2, line 22; figures</td>
<td>5-7</td>
</tr>
<tr>
<td>Y</td>
<td>nl 7 812 594 A (WIJKEN BOERMA B V VAN) 1 July 1980 (1980-07-01) page 3, lines 6-20; claim 1; figures</td>
<td>8</td>
</tr>
<tr>
<td>A</td>
<td>gb 2 135 627 A (GULIAN SHAHAI) 5 September 1984 (1984-09-05) figures</td>
<td>16, 17</td>
</tr>
<tr>
<td>A</td>
<td>us 221 827 A (JOHNSTON) 18 November 1879 (1879-11-18) figures</td>
<td>5-7</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>CN 203211614</td>
<td>U</td>
<td>25-09-2013</td>
</tr>
<tr>
<td>US 2012088018</td>
<td>A1</td>
<td>12-04-2012</td>
</tr>
<tr>
<td>DE 2058734</td>
<td>A1</td>
<td>15-06-1972</td>
</tr>
<tr>
<td>DE 64038</td>
<td>C</td>
<td>31-08-1892</td>
</tr>
<tr>
<td>WO 2011053405</td>
<td>A2</td>
<td>05-05-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 203294474</td>
<td>U</td>
<td>20-11-2013</td>
</tr>
<tr>
<td>US 2043183</td>
<td>A</td>
<td>02-06-1936</td>
</tr>
<tr>
<td>WO 2007024987</td>
<td>A2</td>
<td>01-03-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 2897831</td>
<td>Y</td>
<td>09-05-2007</td>
</tr>
<tr>
<td>US 578232</td>
<td>A</td>
<td>02-03-1897</td>
</tr>
<tr>
<td>NL 7812594</td>
<td>A</td>
<td>01-07-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB 2135627</td>
<td>A</td>
<td>05-09-1984</td>
</tr>
<tr>
<td>US 221827</td>
<td>A</td>
<td>18-11-1879</td>
</tr>
</tbody>
</table>