按照专利合作条约所公布的国际申请

世界知识产权组织国际局

国 际 公 布 日 2017年 1月 26日 (26.01.2017)

(21) 国际申请号： PCT/CN2016/000833

(22) 国际申请日： 2016年7月21日 (21.07.2016)

(26) 公布语言： 中文

(81) 优先权： 201510439315.0 2015年7月22日 (22.07.2015) CN

申请人： 广州高八二塑料有限公司 (GUANGZHOU GAODAER PLASTIC CO., LTD.) [CN/CN]

发明人： 林良云 (LIN, Liangyun)； 李绍男 (LI, Shuangnan)

地址： 中国广东省广州市番禺区桥南街陈涌村兴业大道东四横路12号 Guangdong 511486 (CN)

发明名称： 聚乙烯醇纤维增强聚苯硫醚复合材料及其制备方法

发明名称： Polyvinyl Alcohol Fiber Reinforced Polyphenylene Sulfide Composite and Preparation Method Thereof

摘要： Disclosed is a polyvinyl alcohol fiber reinforced polyphenylene sulfide composite, comprising polyphenylene sulfide, polyvinyl alcohol fiber, glass fiber, and an additive. The additive comprises a compatibilizer, an antioxidant, a coupling agent, and a lubricant. Also disclosed is a preparation method for a polyvinyl alcohol fiber reinforced polyphenylene sulfide composite, comprising the following steps: (1) mixing and dispersing polyphenylene sulfide, polyvinyl alcohol fiber, and glass fiber, and a compatibilizer, an antioxidant, a coupling agent, and a lubricant to obtain a mixture; and (2) feeding the mixture into an extruder to extrude a strip-shaped composite, and then obtaining colloidal particles through granulation by using a granulator. The polyvinyl alcohol fiber reinforced polyphenylene sulfide composite provided in the present invention has the advantages of high strength, low creep deformation, good liquidity, being easy to process, high toughness, and high modulus.

发明名称： 聚乙烯醇纤维增强聚苯硫醚复合材料及其制备方法

发明名称： Polyvinyl Alcohol Fiber Reinforced Polyphenylene Sulfide Composite and Preparation Method Thereof

摘要： Disclosed is a polyvinyl alcohol fiber reinforced polyphenylene sulfide composite, comprising polyphenylene sulfide, polyvinyl alcohol fiber, glass fiber, and an additive. The additive comprises a compatibilizer, an antioxidant, a coupling agent, and a lubricant. Also disclosed is a preparation method for a polyvinyl alcohol fiber reinforced polyphenylene sulfide composite, comprising the following steps: (1) mixing and dispersing polyphenylene sulfide, polyvinyl alcohol fiber, and glass fiber, and a compatibilizer, an antioxidant, a coupling agent, and a lubricant to obtain a mixture; and (2) feeding the mixture into an extruder to extrude a strip-shaped composite, and then obtaining colloidal particles through granulation by using a granulator. The polyvinyl alcohol fiber reinforced polyphenylene sulfide composite provided in the present invention has the advantages of high strength, low creep deformation, good liquidity, being easy to process, high toughness, and high modulus.

摘要： Disclosed is a polyvinyl alcohol fiber reinforced polyphenylene sulfide composite, comprising polyphenylene sulfide, polyvinyl alcohol fiber, glass fiber, and an additive. The additive comprises a compatibilizer, an antioxidant, a coupling agent, and a lubricant. Also disclosed is a preparation method for a polyvinyl alcohol fiber reinforced polyphenylene sulfide composite, comprising the following steps: (1) mixing and dispersing polyphenylene sulfide, polyvinyl alcohol fiber, and glass fiber, and a compatibilizer, an antioxidant, a coupling agent, and a lubricant to obtain a mixture; and (2) feeding the mixture into an extruder to extrude a strip-shaped composite, and then obtaining colloidal particles through granulation by using a granulator. The polyvinyl alcohol fiber reinforced polyphenylene sulfide composite provided in the present invention has the advantages of high strength, low creep deformation, good liquidity, being easy to process, high toughness, and high modulus.

发明名称： 聚乙烯醇纤维增强聚苯硫醚复合材料及其制备方法

发明名称： Polyvinyl Alcohol Fiber Reinforced Polyphenylene Sulfide Composite and Preparation Method Thereof

摘要： Disclosed is a polyvinyl alcohol fiber reinforced polyphenylene sulfide composite, comprising polyphenylene sulfide, polyvinyl alcohol fiber, glass fiber, and an additive. The additive comprises a compatibilizer, an antioxidant, a coupling agent, and a lubricant. Also disclosed is a preparation method for a polyvinyl alcohol fiber reinforced polyphenylene sulfide composite, comprising the following steps: (1) mixing and dispersing polyphenylene sulfide, polyvinyl alcohol fiber, and glass fiber, and a compatibilizer, an antioxidant, a coupling agent, and a lubricant to obtain a mixture; and (2) feeding the mixture into an extruder to extrude a strip-shaped composite, and then obtaining colloidal particles through granulation by using a granulator. The polyvinyl alcohol fiber reinforced polyphenylene sulfide composite provided in the present invention has the advantages of high strength, low creep deformation, good liquidity, being easy to process, high toughness, and high modulus.

摘要： Disclosed is a polyvinyl alcohol fiber reinforced polyphenylene sulfide composite, comprising polyphenylene sulfide, polyvinyl alcohol fiber, glass fiber, and an additive. The additive comprises a compatibilizer, an antioxidant, a coupling agent, and a lubricant. Also disclosed is a preparation method for a polyvinyl alcohol fiber reinforced polyphenylene sulfide composite, comprising the following steps: (1) mixing and dispersing polyphenylene sulfide, polyvinyl alcohol fiber, and glass fiber, and a compatibilizer, an antioxidant, a coupling agent, and a lubricant to obtain a mixture; and (2) feeding the mixture into an extruder to extrude a strip-shaped composite, and then obtaining colloidal particles through granulation by using a granulator. The polyvinyl alcohol fiber reinforced polyphenylene sulfide composite provided in the present invention has the advantages of high strength, low creep deformation, good liquidity, being easy to process, high toughness, and high modulus.
聚乙烯醇纤维增强聚苯硫醚复合材料及其制备方法

技术领域
本发明涉及高分子材料领域，特别涉及聚乙烯醇纤维增强聚苯硫醚复合材料及其制备方法。

背景技术
玻璃纤维增强聚苯硫醚复合材料是目前工业生产中常用的高分子材料，但因其材料脆性大、弯曲模量小、密度大、介电常数大，在应用中受到一定限制。

发明内容
本发明的目的是提供一种聚乙烯醇纤维增强聚苯硫醚复合材料及其制备方法，可以解决上述现有技术问题中的一种或几种。

根据本发明的一个方面，提供了一种聚乙烯醇纤维增强聚苯硫醚复合材料，含有聚苯硫醚、聚乙烯醇纤维、玻璃纤维和助剂，助剂含有相容剂、抗氧剂、偶联剂、润滑剂。

本发明的聚乙烯醇纤维增强聚苯硫醚复合材料具有既有高强度、低蠕度、流动性好、易于加工等特点，又具有高韧性、高模量等特点。聚乙烯醇纤维具有很好的机械性能，其强度高、模量高、拉伸度低。

将玻璃纤维增强聚苯硫醚复合材料中加入聚乙烯醇纤维可以提高该复合材料的弯曲模量、弯曲模量和冲击强度，也可以提高该复合材料的流动性。

目前常见的玻璃纤维增强聚苯硫醚复合材料的弯曲模量为13000-18000，可弯折1万次左右；本聚乙烯醇纤维增强聚苯硫醚复合材料的弯曲模量可以为20000以上，可弯折2万次左右，适用于制作需要耐高温、长时间承受弯折的产品，例如高温排气扇的扇叶、汽车的排气管等。

在一些实施方式中，相容剂为马来酸酐接枝聚烯烃或丙烯酸接枝PP。由此，可以使用聚苯硫醚和聚乙烯醇这两种高分子材料的末端基团活化，不生产排斥作用，形成一个整体。

在一些实施方式中，抗氧剂为羟基苯基丙烯酸酯、羟基苯甲基丙烯酸酯、亚烷基双氨或¾代双氨。由此，可以阻碍高分子材料在热加工过程中的氧化反应，防止高分子材料的性能变差。
在一些实施方式中，偶联剂为γ—氨丙基三乙氧基硅烷、丙硫醇三甲基氧化硅烷或乙氧基三乙氧基硅烷。由此，可以对玻璃纤维、聚乙烯醇纤维进行表面处理，增大其与高分子材料的粘结力。

在一些实施方式中，润滑剂为硬酯酸、聚乙烯蜡、脂肪酸单酰胺、醋酸或金属皂。由此，可以降低高分子材料熔融状态的流动粘度，便于加工。

在一些实施方式中，以重量份数计，其中聚苯硫醚40~50、聚乙烯醇纤维20~30、玻璃纤维20~40。优点是制成的材料既有高强度、低蠕变、流动性好、易于加工等特点，具有高韧性、低密度、高模量等特点。

在一些实施方式中，以重量份数计，其中相容剂1、抗氧剂0.3、偶联剂0.3、润滑剂0.4。优点是增大几种材料的结合力、增加强度，方便加工。

本发明还提供了一种聚乙烯醇纤维增强聚苯硫醚复合材料的制备方法，包括如下步骤：(1) 将聚苯硫醚、聚乙烯醇纤维和玻璃纤维，以及相容剂、抗氧剂、偶联剂和润滑剂混合，得到混合料；(2) 将混合料加入挤出机，挤出条状复合材料。

在一些实施方式中，聚乙烯醇纤维增强聚苯硫醚复合材料的制备方法，其中还包括步骤(3) 将步骤(2) 中得到的条状复合材料冷却切粒制成塑料粒。由此，便于材料储存，以及再次加工。

在一些实施方式中，聚乙烯醇纤维增强聚苯硫醚复合材料的制备方法，其中在步骤(1) 将聚苯硫醚，以及助剂通过高速搅拌混合分散后，再加入玻璃纤维和聚乙烯醇纤维通过低速搅拌得到混合料。将聚苯硫醚，以及助剂通过高速(3000 转/分以上)搅拌混合分散可以使搅拌效率比较高，加入玻璃纤维和聚乙烯醇纤维再低速(200 转/分以下)搅拌可以避免在搅拌中玻璃纤维形成棉花团状不易分散的情况。

具体实施方式

以下通过实施例对本发明作进一步说明，但保护范围不受这些实施例的限制。

实施例1:

首先，常温常压下将聚苯硫醚、以及相容剂、抗氧剂、偶联剂、润滑剂通过高速搅拌混合分散均匀，搅拌速度约为3000 转/分钟以上。
搅拌时间为3分钟。再将玻璃纤维和聚乙烯醇纤维加入，通过低速搅拌分散均匀，搅拌速度约为200转/分钟以下，得到混合料。在本实施例中，以重量份数计，聚苯硫醚40～50、聚乙烯醇纤维30～40、玻璃纤维40～50、助剂2。以重量份数计，相容剂1、抗氧剂0.3、偶联剂0.3、润滑剂0.4。

然后，将混合料加入双螺杆挤出机中，双螺杆挤出机的设定工艺条件为温度300～350℃，螺杆转速1100转/分钟。

最后，在双螺杆挤出机的出料口设置冷水槽，将挤出的条状复合材料在冷水槽中拉条切粒，切成5～6mm长的聚乙烯醇纤维增强聚苯硫醚复合材料颗粒，便于储存及运输。冷水槽里的水温低于40℃。

经测定，本实施例制备的聚乙烯醇纤维增强聚苯硫醚复合材料的缺口冲击强度为9.8千焦/平方米，熔体指数为0.9克/10秒，弯曲模量为23500，拉伸强度为190兆帕，弯曲强度为200兆帕，热变形温度为260摄氏度，密度为1.72克/立方厘米。

搅拌时间可以根据实际情况延长或缩短。

在本实施例中，相容剂为马来酸酐接枝聚乙烯。在其它实施例中，相容剂也可以为马来酸酐接枝聚烯烃或马来酸酐接枝聚丁烯等马来酸酐接枝聚烯烃类物质，还可以是丙烯酸接枝聚丙烯（丙烯酸接枝PP）等。

在本实施例中，抗氧剂为羟基苯基丙烯酸酯。在其它实施例中，抗氧剂也可以为羟基苯甲基丙烯酸酯、亚烷基双酚或硫代双酚等。

在本实施例中，偶联剂为γ—氨丙基三乙氧基硅烷。在其它实施例中，偶联剂也可以为丙硫醇三甲基氧化硅烷或乙氧基三乙氧基硅烷等。

在本实施例中，润滑剂为硬脂酸。在其它实施例中，润滑剂也可以为聚乙烯蜡、脂肪酸单酰胺、酰胺、金属皂等。

表1是实施例1，以及在其它十五个与实施例1相同的方法制备聚乙烯醇纤维增强聚苯硫醚复合材料的实施例中，聚苯硫醚、玻璃纤维、聚乙烯醇纤维和助剂的重量份数，以及所制备的聚乙烯醇纤维增强聚苯硫醚复合材料的缺口冲击强度、弯曲模量、拉伸强度、弯曲强度、热变形温度和密度。

在这些实施例中，以重量份数计，其中聚苯硫醚40～50、聚乙烯醇纤维20～30、玻璃纤维20～40、助剂1～3。

由表1中数据可见，本发明的聚乙烯醇纤维增强聚苯硫醚复合
料的缺口冲击强度、弯曲模量和弯曲强度得到了提高。

目前常见的玻璃纤维增强聚苯硫醚复合材料的弯曲模量为13000-18000，可弯折1万次左右；本聚乙烯醇纤维增强聚苯硫醚复合材料的弯曲模量可以为20000以上，可弯折2万次左右，适用于制作需要耐高温、长时间承受弯折的产品，例如高温排气扇的扇叶、汽车的排气管等。

以上所述的仅是本发明的一些实施方式。对于本领域的普通技术人员来说，在不脱离本发明创造构思的前提下，还可以做出若干变形和改进，这些都属于本发明的保护范围。
<table>
<thead>
<tr>
<th>实施例</th>
<th>聚苯硫醚 40~50</th>
<th>聚乙烯醇氨纤维 20~30</th>
<th>玻璃纤维 20~40</th>
<th>助剂 1~3</th>
<th>缺口冲击强度 KJ/m²</th>
<th>熔体指数 g/10s</th>
<th>弯曲模量 MPa</th>
<th>拉伸强度 MPa</th>
<th>弯曲温度 ℃</th>
<th>热变形温度 ℃</th>
<th>密度 g/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>30</td>
<td>40</td>
<td>马来酸酐接枝聚乙烯 1</td>
<td>甘油苯丙烯 0.3</td>
<td>γ-氨丙基三乙氧基硅烷 0.3</td>
<td>硬脂酸 0.4</td>
<td>9.8</td>
<td>0.9</td>
<td>23500</td>
<td>190</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>30</td>
<td>35</td>
<td>丙烯酸接枝 PP 1</td>
<td>甘油苯甲基丙烯酸酯 0.3</td>
<td>丙硫醇三甲基氧基硅烷 0.3</td>
<td>丙烯酸 0.4</td>
<td>9.6</td>
<td>0.91</td>
<td>24000</td>
<td>185</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>30</td>
<td>30</td>
<td>丙烯酸接枝 PP 0.4</td>
<td>亚烷基双氟 0.2</td>
<td>乙烯基三乙氧基硅烷 0.2</td>
<td>脂肪酸单酯 0.2</td>
<td>9.6</td>
<td>0.91</td>
<td>23500</td>
<td>184</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
<td>30</td>
<td>20</td>
<td>马来酸酐接枝聚丙烯 0.3</td>
<td>亚烷基双氟 0.3</td>
<td>γ-氨丙基三乙氧基硅烷 0.3</td>
<td>丙烯酸 0.3</td>
<td>9.0</td>
<td>0.92</td>
<td>23500</td>
<td>180</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>26</td>
<td>40</td>
<td>丙烯酸接枝 PP 0.4</td>
<td>甘油苯丙烯酸酯 0.4</td>
<td>丙硫醇三甲基氧基硅烷 0.4</td>
<td>金属皂 0.4</td>
<td>9.5</td>
<td>0.9</td>
<td>23000</td>
<td>190</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
<td>26</td>
<td>35</td>
<td>丙烯酸接枝 PP 0.8</td>
<td>甘油苯甲基丙烯酸酯 0.5</td>
<td>乙烯基三乙氧基硅烷 0.5</td>
<td>硬脂酸 0.4</td>
<td>9.2</td>
<td>0.91</td>
<td>23000</td>
<td>184</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>26</td>
<td>30</td>
<td>马来酸酐接枝聚丁烯 1.2</td>
<td>亚烷基双氟 0.6</td>
<td>γ-氨丙基三乙氧基硅烷 0.6</td>
<td>丙烯酸 0.6</td>
<td>9.2</td>
<td>0.91</td>
<td>23500</td>
<td>185</td>
</tr>
<tr>
<td>8</td>
<td>43</td>
<td>30</td>
<td>20</td>
<td>丙烯酸接枝 PP 1.1</td>
<td>硫苯双氟 0.5</td>
<td>丙硫醇三甲基氧基硅烷 0.4</td>
<td>脂肪酸单酯 0.3</td>
<td>9.0</td>
<td>0.92</td>
<td>22800</td>
<td>187</td>
</tr>
<tr>
<td>9</td>
<td>44</td>
<td>29</td>
<td>40</td>
<td>丙烯酸接枝 PP 0.8</td>
<td>甘油苯丙烯酸酯 0.6</td>
<td>乙烯基三乙氧基硅烷 0.6</td>
<td>丙烯酸 0.5</td>
<td>9.6</td>
<td>0.9</td>
<td>22000</td>
<td>191</td>
</tr>
<tr>
<td>实施例</td>
<td>聚苯硫醚</td>
<td>聚乙烯醇纤维</td>
<td>玻璃纤维</td>
<td>助剂1-3</td>
<td>缺口冲击强度KJ/m²</td>
<td>熔体指数g/10s</td>
<td>弯曲模量MPa</td>
<td>拉伸强度MPa</td>
<td>弯曲强度MPa</td>
<td>热变形温度℃</td>
<td>密度g/cm³</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>---------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>10</td>
<td>45</td>
<td>28</td>
<td>35</td>
<td>马来酸酐接枝聚乙烯 0.9</td>
<td>γ-苯基苯乙烯 0.7</td>
<td>金属皂 0.6</td>
<td>9.6</td>
<td>0.82</td>
<td>21800</td>
<td>185</td>
<td>215</td>
</tr>
<tr>
<td>11</td>
<td>46</td>
<td>27</td>
<td>30</td>
<td>丙烯酸接枝PP 1</td>
<td>丙烷基双氟 1</td>
<td>硬脂酸 0.4</td>
<td>9.7</td>
<td>0.82</td>
<td>21800</td>
<td>187</td>
<td>215</td>
</tr>
<tr>
<td>12</td>
<td>47</td>
<td>24</td>
<td>20</td>
<td>丙烯酸接枝PP 0.5</td>
<td>硫代双氟 0.4</td>
<td>乙氧基三乙氧基硅烷 0.6</td>
<td>聚乙烯醇 1</td>
<td>9.4</td>
<td>0.90</td>
<td>21700</td>
<td>183</td>
</tr>
<tr>
<td>13</td>
<td>48</td>
<td>23</td>
<td>40</td>
<td>马来酸酐接枝聚丙烯 0.8</td>
<td>γ-苯基苯乙烯 0.7</td>
<td>硬脂酸 0.3</td>
<td>9.9</td>
<td>0.90</td>
<td>21500</td>
<td>181</td>
<td>215</td>
</tr>
<tr>
<td>14</td>
<td>49</td>
<td>22</td>
<td>35</td>
<td>丙烯酸接枝PP 0.6</td>
<td>γ-苯基苯乙烯 0.6</td>
<td>硬脂酸 0.3</td>
<td>9.8</td>
<td>0.90</td>
<td>21500</td>
<td>185</td>
<td>215</td>
</tr>
<tr>
<td>15</td>
<td>50</td>
<td>21</td>
<td>30</td>
<td>丙烯酸接枝PP 0.9</td>
<td>丙烷基双氟 1</td>
<td>乙氧基三乙氧基硅烷 0.4</td>
<td>金属皂 0.4</td>
<td>9.4</td>
<td>0.90</td>
<td>21500</td>
<td>180</td>
</tr>
<tr>
<td>16</td>
<td>50</td>
<td>20</td>
<td>20</td>
<td>马来酸酐接枝聚丁烯 0.5</td>
<td>硫代双氟 0.4</td>
<td>γ-苯基苯乙烯 0.7</td>
<td>硬脂酸 0.3</td>
<td>9.6</td>
<td>0.90</td>
<td>21700</td>
<td>180</td>
</tr>
</tbody>
</table>

目前常见的玻璃纤维增强聚苯硫醚复合材料的相关参数

|-----------|---------------|----------------|---------------|---------------|---------------|-----------------|

WO 2017/025439
权利要求书

1、聚乙烯醇纤维增强聚苯硫醚复合材料，其特征在于，含有聚苯硫醚、聚乙烯醇纤维、玻璃纤维和助剂，所述助剂含有相容剂、抗氧剂、偶联剂和润滑剂。

2、根据权利要求1所述的聚乙烯醇纤维增强聚苯硫醚复合材料，其中所述相容剂为马来酸酐接枝聚烯烃或丙烯酸接枝PP。

3、根据权利要求1所述的聚乙烯醇纤维增强聚苯硫醚复合材料，其中所述抗氧剂为羟基苯基丙烯酸酯、羟基苯甲基丙烯酸酯、亚烷基双氮或硫代双氨。

4、根据权利要求1所述的聚乙烯醇纤维增强聚苯硫醚复合材料，其中所述偶联剂为γ-氨丙基三乙氧基硅烷、丙硫醇三甲基氧基硅烷或乙氧基三乙氧基硅烷。

5、根据权利要求1所述的聚乙烯醇纤维增强聚苯硫醚复合材料，其中所述润滑剂为硬脂酸、聚乙烯蜡、脂肪酸单酰胺、醋酸、金属皂。

6、根据权利要求1~5任一项所述的聚乙烯醇纤维增强聚苯硫醚复合材料，以重量份数计，其中聚苯硫醚40~50、聚乙烯醇纤维20~30、玻璃纤维20~40。

7、根据权利要求1~5任一项所述的聚乙烯醇纤维增强聚苯硫醚复合材料，以重量份数计，其中相容剂1、抗氧剂0.3、偶联剂0.3、润滑剂0.4。

8、制备如权利要求1所述的聚乙烯醇纤维增强聚苯硫醚复合材料的方法，包括如下步骤：

(1) 将聚苯硫醚、聚乙烯醇纤维和玻璃纤维，以及相容剂、抗氧剂、偶联剂和润滑剂混合分散，得到混合料；

(2) 将所述混合料加入挤出机，挤出条状复合材料。

9、根据权利要求8所述的聚乙烯醇纤维增强聚苯硫醚复合材料的制备
方法，其中还包括步骤（3）将所述步骤（2）中得到的条状复合材料冷却切粒制成塑 料粒。

10、根据权利要求 8 或 9 所述的聚乙烯醇纤维增强聚苯硫醚复合材料的制备方法，其中在所述步骤（1）将聚苯硫醚和聚乙烯醇纤维，以及助剂通过高速搅拌混合分散后，再加入玻璃纤维通过低速搅拌得到混合料。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C08L 81/02 (2006.01) i; C08L 29/04 (2006.01) i; C08L 51/06 (2006.01) i; C08K 13/04 (2006.01) i; C08K 7/14 (2006.01) i; C08K 5/09 (2006.01) i; C08K 5/54 (2006.01) i; C08K 5/20 (2006.01) i; C08K 5/548 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C08L 81/02, C08L, C08K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNTXT; CNABS; WPI; EPDOC; CNK: polyphenylene sulfide, polyarylene sulfide, poly sulfide, polyvinyl alcohol fiber, PVA fibre., PPS, polarylene, polyphenylene, sulfide, sulphide, PVA, +fiber, +fibre, vinylon

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX</td>
<td>CN 104974525 A (QINGDAO SHUNYI NEW MATERIAL TECHNOLOGY CO., LTD.), 14 October 2015 (14.10.2015), claims 1-10</td>
<td>1-10</td>
</tr>
<tr>
<td>X</td>
<td>CN 1869124 A (POLY PLASTICS CO. LTD.), 29 November 2006 (29.11.2006), claims 1-4 and description, page 6, line 9 to page 9, line 22</td>
<td>1-10</td>
</tr>
<tr>
<td>X</td>
<td>CN 1667044 A (POLYPLASTICS CO., LTD.), 14 September 2005 (14.09.2005), embodiments 1-11, and description, page 5, line 12 to page 7, line 15</td>
<td>1-10</td>
</tr>
<tr>
<td>X</td>
<td>CN 1488675 A (POLYPLASTICS CO., LTD.), 14 April 2004 (14.04.2004), embodiments 9 and 23, and description, page 12, line 23 to page 15, line 19</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>CN 104175569 A (QINGDAO SHUNYI NEW MATERIAL TECHNOLOGY CO., LTD.), 03 December 2014 (03.12.2014), the whole document</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Π Further documents are listed in the continuation of Box C.
X See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"S" document member of the same patent family

Date of the actual completion of the international search

08 October 2016 (08.10.2016)

Date of mailing of the international search report

20 October 2016 (20.10.2016)

Name and mailing address of the ISA/CN:

State Intellectual Property Office of the P. R. China
No. 6, Xitucheng Road, Jinchuan
Haidian District, Beijing 100088, China
Facsimile No.: (86-10) 62019451

Authorized officer

LI, Kaiyang
Telephone No.: (86-10) 62084429

Form PCT/IS A/210 (second sheet) (July 2009)
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 104974525 A</td>
<td>14 October 2015</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 1869124 A</td>
<td>29 November 2006</td>
<td>JP 2005336229 A</td>
<td>08 December 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4633384 B2</td>
<td>23 February 2011</td>
</tr>
<tr>
<td>CN 1667044 A</td>
<td>14 September 2005</td>
<td>JP 2005255861 A</td>
<td>22 September 2005</td>
</tr>
<tr>
<td>CN 1488675 A</td>
<td>14 April 2004</td>
<td>CN 1323114 C</td>
<td>27 June 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004149648 A</td>
<td>27 May 2004</td>
</tr>
<tr>
<td>CN 104175569 A</td>
<td>03 December 2014</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
表 PCT/ISA/210

<table>
<thead>
<tr>
<th>类型</th>
<th>引用文件</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX</td>
<td>CN 104974525 (广州高八二塑料有限公司)2015年10月14日 (2015-10-14)</td>
<td>1-10</td>
</tr>
<tr>
<td>X</td>
<td>CN 1889124 (亚龙塑料株式会社)2006年11月29日 (2006-11-29)</td>
<td>1-10</td>
</tr>
<tr>
<td>X</td>
<td>CN 1867044 (亚龙塑料株式会社)2005年9月14日 (2005-09-14)</td>
<td>1-10</td>
</tr>
<tr>
<td>X</td>
<td>CN 1488675 (宝理塑料株式会社)2004年4月14日 (2004-04-14)</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>CN 104175669 (青岛益顺新材料科技有限公司)2014年12月3日 (2014-12-03)</td>
<td>1-10</td>
</tr>
</tbody>
</table>

国际检索报告

PCT/CN2016/090833

按照国际专利分类 (IPC) 或者同时按照国家分类和 IPC 两种分类

B. 检索领域

检索的最低限度文献 (标明分类系统和分类号)

C08L 81/02 (2006.01) i;
C08L 29/04 (2006.01) i;
C08L 51/06 (2006.01) i;
C08K 13/04 (2006.01) i;
C08K 7/14 (2008.01) i;
C08K 5/54 (2006.01) i;
C08K 5/544 (2006.01) i;
C08K 5/20 (2008.01) i;
C08K 5/548 (2006.01) i;

包含在检索领域中的除最低限度文献以外的检索文献

C. 相关文件

<table>
<thead>
<tr>
<th>类型</th>
<th>引用文件</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX</td>
<td>CN 104974525 (广州高八二塑料有限公司)2015年10月14日 (2015-10-14)</td>
<td>1-10</td>
</tr>
<tr>
<td>X</td>
<td>CN 1889124 (亚龙塑料株式会社)2006年11月29日 (2006-11-29)</td>
<td>1-10</td>
</tr>
<tr>
<td>X</td>
<td>CN 1867044 (亚龙塑料株式会社)2005年9月14日 (2005-09-14)</td>
<td>1-10</td>
</tr>
<tr>
<td>X</td>
<td>CN 1488675 (宝理塑料株式会社)2004年4月14日 (2004-04-14)</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>CN 104175669 (青岛益顺新材料科技有限公司)2014年12月3日 (2014-12-03)</td>
<td>1-10</td>
</tr>
</tbody>
</table>

国际检索实际完成的日期

2016年10月8日

国际检索报告邮寄日期

2016年10月20日

ISA/CN 的名称和邮寄地址

中华人民共和国国家知识产权局 (ISA/CN)
中国北京市海淀区学院路35号 100088
传真号 (86-10)62019451

受权官员

李开扬
电话号码 (86-10)62084429
<table>
<thead>
<tr>
<th>检索报告引用的专利文件</th>
<th>公布日 (年/月/日)</th>
<th>同族专利</th>
<th>公布日 (年/月/日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 104974525 A</td>
<td>2015年10月14日</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>CN 1869124 A</td>
<td>2006年11月29日</td>
<td>JP 2005336229 A</td>
<td>2005年12月8日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4633384 B2</td>
<td>2011年2月23日</td>
</tr>
<tr>
<td>CN 1667044 A</td>
<td>2005年9月14日</td>
<td>JP 2005255861 A</td>
<td>2005年9月22日</td>
</tr>
<tr>
<td>CN 1488675 A</td>
<td>2004年4月14日</td>
<td>CN 13231 14 C</td>
<td>2007年6月27日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004149648 A</td>
<td>2004年5月27日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4015001 B2</td>
<td>2007年11月28日</td>
</tr>
<tr>
<td>CN 104175969 A</td>
<td>2014年12月3日</td>
<td>无</td>
<td>无</td>
</tr>
</tbody>
</table>

表 PCT/ISA/210 (同族专利附件) (2009年7月)