(54) Title: SYSTEM, METHOD AND DEVICE FOR PROCESSING A TRANSACTION

(57) Abstract: This invention relates to a system, method and device for processing a transaction, particularly for supply chain management, more particularly for managing the supply chain of goods, for example, pharmaceutical products. The method for processing a supply chain transaction via a transaction device includes the steps of: obtaining an identifier of the operator handling a product; authenticating at least the operator; obtaining an identifier of the product using a product identifying component associated with the transaction device; and updating a record to associate the identifier of the operator with the identifier of the product and optionally additional information. The method further requires that (i) the product identifying component is activated post operator authentication; and/or (ii) at least the identifier of the operator and the identifier of the product are obtainable within a predefined transaction time interval, outside of which the transaction is operably cancelled.
SYSTEM, METHOD AND DEVICE FOR PROCESSING A TRANSACTION

FIELD OF THE INVENTION

This invention relates to a system, method and device for processing a transaction, particularly for supply chain management, more particularly for managing the supply chain of goods, for example, pharmaceutical products.

BACKGROUND TO THE INVENTION

The term supply chain generally refers to a system of entities, people, activities, information, and/or resources involved in moving a product from a supplier to an end-operator. Supply chain activities may involve the transformation of natural resources, raw materials, and components into a finished product that is delivered to the end-user.

Presently, the complexity of supply chains is increasing as, for example, companies outsource more aspects of their business to globally distributed supplier networks. Due to the number of different third parties involved in a supply chain, each with their own systems in place, it can be difficult for a product or resource to be reliably tracked as it moves from one stage in the supply chain to another.

There is accordingly a need for a technology which alleviates these and/or other difficulties. Although the invention is primarily aimed at supply chain management applications, it is envisaged that the invention may be applied to many other applications, for example, point of sale (POS) applications.

SUMMARY OF THE INVENTION

In accordance with a first aspect of the invention, there is provided a method for processing a transaction via a transaction device including the steps of:

(A) obtaining an identifier of an operator handling a product;
(B) authenticating at least the operator;
(C) obtaining an identifier of the product using a product identifying component associated
with the transaction device; and

(D) updating a record to associate the identifier of the operator with the identifier of the product and optionally additional information;

§

wherein:

(i) the product identifying component is activated post operator authentication; and/or

(ii) at least the identifier of the operator and the identifier of the product are obtainable within a predefined transaction time interval, outside of which the transaction is operably cancelable,

A further feature provides for updating a record to include storing one or more of the identifier of the operator, the identifier of the product and additional information in one or both of a digital storage of the transaction device and a credential storage device.

A still further feature provides for the method to include a step of transmitting data including one or more of the identifier of the operator, the identifier of the product and additional information to a third party server computer for storage thereat.

Typically, the step of transmitting data includes a step of encrypting such information.

A yet further feature provides for obtaining an identifier of an operator to include obtaining an identifier from a credential storage device of the operator.

A further feature provides for authenticating the operator to include obtaining biometric information from the operator and comparing the obtained Diametric information to biometric information stored on one or both of the transaction device and the credential storage device.

A still further feature provides for the operator to be a supplier of the product and for the method to include steps of: obtaining an identifier of a recipient of the product; and authenticating the recipient.

A yet further feature provides for the timed step of obtaining the identifiers of the supplier and the product including the further step of obtaining within the predefined transaction time interval the identifier of the recipient.

A further feature provides for the timed step to also include obtaining an identifier of a
transaction device. The transaction device identifier may be a unique number associated to such transaction device and/or a specific location of such transaction device, i.e. the GPS co-ordinate at which the transaction device is located at the time of processing the transaction.

Generally, the timed step is timed by a timing means of the transaction device, one or other of the credential storage devices and/or the server computers.

Yet further features provide for the step of obtaining an identifier of a recipient to include obtaining an identifier from a credential storage device of the recipient; and for the step of authenticating the recipient to include obtaining biometric information from the recipient and comparing the obtained biometric information to biometric information stored on the credential storage device of the recipient.

A still further feature provides for the step of obtaining an identifier of a transaction device to include obtaining an identifier from a credential storage device of the transaction devices; and for a step of authenticating the transaction device to include comparing the obtained transaction device identifier of a transaction device information stored on the credential storage device of the transaction devices,

A yet further feature provides for updating a record to include associating the Identifier of the product with identifiers of the supplier, the recipient and/or the transaction device.

An even further feature provides for updating a record to include associating the identifier of the product with a status from a group of statuses including: product received; product dispensed; product sold; product relumed; etc.

Another feature provides for the step of obtaining an identifier of the product to include a step of authenticating the identifier of the product, in the event of the identifier of the product failing authentication, the transaction is operably cancelled with the product being flagged or remove. The aim of this step is to eradicate non-genuine products.

Yet a further feature provides for associating a successful transaction with the identifier of a product such that, a downstream transaction is allowable only on the successful completion of an upstream transaction,

A further feature provides for the method to include receiving diagnostic information relating to
the recipient,

A still further feature provides for the diagnostic information to be input by the operator and for the received diagnostic information to be stored on the credential storage device of the recipient.

A yet further feature provides for the diagnostic information to be received from a credential storage device of the recipient.

A further feature provides for the method to include;

based on the received diagnostic information, identifying a product to be provided to the recipient; and

responsive to identifying the product, granting permission for release of the identified product.

A still further feature provides for the method to include:

determining whether the identified product is available; and

if the identified product is available, granting permission for release of the identified product, and

if the identified product is not available, identifying an alternative operator able to release the identified product.

Further features provide for the additional information to include one or more of: biometric information of the operator, supplier and/or the recipient; a time at which the identifier of the product was obtained; a time at which the identifier of the operator, supplier and/or the recipient was obtained; diagnostic information; and, a time at which the operator, supplier and/or the recipient was authenticated,

Even further features provide for the additional information to also include one or more of: the date and time of concluding the transaction; and the monetary amount associated with the transaction,
It will be appreciated that although the method may be applied to processing any number of transactions, including point of sales transactions, the method is primarily aimed at a method for managing the transactions within a supply chain, with the transaction device being a supply chain management device at each stage of a supply chain.

In accordance with a second aspect of the invention, there is provided a method for processing transactions, the method conducted at a central server computer in communication with a number of third party server computers, comprising:

(A) receiving, from each third party server computer as a product moves from one person or entity to another, data associated with the product, the data having been received at each third party server computer from a transaction device operated by an operator handling the product, the transaction device having: obtained an identifier of the operator; authenticated the operator; and obtained a product identifier of the product, wherein:

(i) obtainment of the product identifier occurs post authentication of the operator; and/or

(ii) at least the identifier of the operator and the identifier of the product are obtainable within a predefined transaction time interval, outside of which the transaction is operably cancelled,

(B) updating a record to associate the identifier of the operator and optionally additional information with the identifier of the product.

Generally, the method is a method for managing a supply chain, wherein each of the third party server computers relates to a different stage of the supply chain.

Typically, the step of receiving data associated with the product is received from each third party server computer as a product moves from one stage in the supply chain to another.

Preferably, the step of updating a record occurs at each stage of the supply chain.

Another feature provides for the step of obtaining an identifier of the product to include a step of authenticating the identifier of the product,
Further features provide for the additional information to include one or more of: biometric information of the operator, a supplier and/or a recipient; a time at which the Identifier of the product was obtained; a time at which an identifier of the operator, supplier and/or the recipient was obtained; diagnostic information; and, a time at which the operator a supplier and/or a recipient was authenticated.

Even further features provide for the additional information to also include one or more of: the date and time of concluding the transaction; and the monetary amount associated with the transaction.

In accordance with a third aspect of the invention, there is provided a system for processing a transaction, the system including a transaction device comprising:

- an operator identifying module for obtaining an identifier of an operator handling a product:
- an authentication component for authenticating the operator;
- a product identifying component for obtaining an identifier of the product using the product identifying component;
- a record updating component for updating a record to associate the identifier of the operator with the identifier of the product and optionally additional information; and
- one or both of:
 (i) an activating component for, if the operator is authenticated, activating the product identifying component associated with the device; and
 (ii) a timing component for timing a predefined transaction time interval within which at least the identifier of the operator and the identifier of the product must be operationally obtained, and outside of which the transaction is operably cancelled.

Further features provide for the operator identifying module to include a credential storage device receiving module and for obtaining an identifier of an operator to include obtaining an identifier of the operator from a credential storage device of the operator.

A still further feature provides for the authentication component to include a biometric capturing
device, and for authenticating the operator to include obtaining biometric information from the
operator and comparing the obtained biometric information to biometric information stored on
one or both of the transaction device and the credential storage device,

A yet further feature provides for the product identifying component to include one or both of a
barcode scanner and a radio-frequency identification (RFID) tag reader.

A further feature provides for the transaction device to include a transmitting component for
transmitting data including one or more of the identifier of the operator, the identifier of the
product and additional information to a third party server computer for storage thereat.

A still further feature provides for the transmitting component to transmit data via one or more of
the group of: a long range wireless area network (LoRAWAN), a satellite communication link; a
cellular communication link such as a universal mobile telecommunications system (UMTS) link
and/or global system for mobile communications (GSM); a wired local area network; and a
wireless local area network.

A yet further feature provides for the system to include a third party server computer including:

- a receiving component for receiving data from the transaction device;
- a storing component for storing the received data; and
- a synchronising component for synchronising the stored data with a central server
 computer.

Further features provide for the additional information to include one or more of: biometric
information of the operator, a supplier and/or a recipient; a time at which the identifier of the
product was obtained; a time at which an identifier of the operator, supplier and/or the recipient
was obtained; diagnostic information; and, a time at which the operator, a supplier and/or a
recipient was authenticated.

Even further features provide for the additional information to also include one or more of: the
date and time of concluding the transaction; and the monetary amount associated with the
transaction.
Another feature provides for the authentication of the identifier of the product.

It will be appreciated that although the system may be applied to processing any number of transactions, including point of safes transactions, the system is primarily aimed at managing the transactions within a supply chain, with the transaction device being a supply chain management device at each stage of a supply chain.

In accordance with a fourth aspect of the invention, there is provided a system for processing transactions, the system including a central server computer in communication with a number of third party server computers, comprising:

- a synchronising component for; receiving, from each third party server computer as a product moves from one person or entity to another, data associated with the product, the data having been received at each third party server computer from a transaction device operated by an operator handling the product, the transaction device having: obtained an identifier of the operator; authenticated the operator; and obtained a product identifier of the product, wherein:
 - (i) obtainment of the product identifier occurs post authentication of the operator; and/or
 - (ii) at least the identifier of the operator and the identifier of the product are obtainable within a predefined transaction time interval, outside of which the transaction is operably cancelled; and

- updating a record to associate the identifier of the operator and optionally additional information with the identifier of the product.

Generally, the system is for managing a supply chain, wherein each of the third party server computers relates to a different stage of the supply chain.

Typically, the receiving of data associated with the product is received from each third party server computer as a product moves from one stage in the supply chain to another.

Preferably, the updating a record occurs at each stage of the supply chain.

Another feature provides for the authentication of the identifier of the product.
Further features provide for the additional information to include one or more of: biometric information of the operator, a supplier and/or a recipient; a time at which the identifier of the product was obtained; a time at which an identifier of the operator, supplier and/or the recipient was obtained; diagnostic information; and, a time at which the operator, a supplier and/or a recipient was authenticated.

Even further features provide for the additional information to also include one or more of: the date and time of concluding the transaction; and the monetary amount associated with the transaction.

In accordance with a fifth aspect of the invention, there is provided a transaction devise including:

an operator identifying module for obtaining an identifier of an operator handling a product;

a product identifying component for obtaining an identifier of the product using the product identifying component;

a communications module for transmitting and receiving data for at least the purposes of authenticating the operator; and

one or both of:
(i) an activating component for, post authentication of the operator, activating the product identifying component associated with the device; and
(ii) a timing component for timing a predefined transaction time interval within which at least the identifier of the operator and the identifier of the product must be operatively obtained, and outside of which the transaction is operatively cancelled.

The operator identifying module may be at least one biometric scanner for scanning a biometric of the operator, which operator may be one or both of a supplier and a recipient. Preferably, the transaction device includes two biometric scanners.

Generally, the transaction device includes at least one secondary operator identifying module for obtaining a secondary identifier of an operator.
In one embodiment, the secondary operator identifying module may be a user input for inputting a unique supplier PIN and a unique recipient PIN. In an alternative embodiment, the secondary operator identifying module may be a card reader or a RFID tag reader. Preferably, the secondary operator identifying module is a pair of card readers, each configured to receive an identification card of either the supplier or the recipient.

Typically, the product identifying component includes one or both of a barcode scanner and a RFID tag reader.

The communications module may be integrated or capable of being integrated with a means of encryption thereby to encrypt some or all of the data being transmitted from and/or received by the communications module. Generally, the communications module is capable of being integrated with an Active Directory (AD) and/or Lightweight Directory Access Protocol (LDAP).

Preferably, and whether for the method, system or device described herein, the predefined transaction time interval is 10 seconds or less. More preferably, the predefined transaction time interval is 5 seconds or less. Most preferably, the predefined transaction time interval is 2 seconds or less, if is even mere preferable, that the predefined transaction time interval is near zero such that at least two or more of the identifiers are obtained near simultaneously, forming a "virtual handshake".

The transaction device may include further:

an authentication component for authenticating the operator and/or the product; and/or

a record updating component for updating a record to associate the identifier of the operator with the identifier of the product and optionally additional information.

The transaction device may be configured for use in many applications, including use as a point of sales device or a supply chain management device.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described, by way of example only, with reference to the accompanying representations in which:
Figure 1 is a schematic diagram which illustrates an exemplary supply chain management system;

Figure 2 is a flow diagram which illustrates an exemplary method for managing a supply chain;

Figure 3 is a flow diagram which illustrates another exemplary method for managing a supply chain;

Figure 4 is a flow chart showing an example of a supply chain at macro level;

Figure 5 is a flow chart showing an example of a supply chain of pharmaceuticals at macro level;

Figure 6 is a flow chart showing a process for capturing operator information on credential storage device;

Figure 7 is a flow chart illustrating a method for managing a supply chain;

Figure 8 is a flow chart showing information feedback of a product to a manufacturer;

Figure 9 is a flow chart illustrating a method for managing a supply chain;

Figure 10 is a flow chart which illustrates an exemplary enrolment process;

Figure 11 is a flow chart illustrating a method for managing a supply chain;

Figure 11A is a table showing exemplary traceable data;

Figure 11B is a table showing exemplary traceable data for pharmaceuticals;

Figure 12 is a flow chart which illustrates a method for managing a supply chain in which a supplier and recipient participate;
Figure 13 is a flow chart which illustrates a method in which diagnostic information is obtained and medicine dispensed;

Figure 14 is a flow chart illustrating a method for managing a supply chain in which product availability is determined and an alternative supplier is identified;

Figure 14A is a flow chart which illustrates a stage of the method illustrated in Figure 14 in greater detail;

Figure 14B is a flow chart which illustrates another stage of the method illustrated in Figure 14 in greater detail;

Figure 15 is a schematic diagram which illustrates aspects of an exemplary supply chain management system;

Figure 16 is a schematic diagram which illustrates third party integration with a supply chain management system;

Figure 16A illustrates an intermediate level of data flow between a supplier and/or a recipient and the supply chain management system;

Figure 18B illustrates an intermediate level of data flow between a supplier and/or a recipient and the supply chain management system;

Figure 17 is a schematic diagram which illustrates aspects of an exemplary supply chain management system;

Figure 18A is a schematic diagram which illustrates a first exemplary in-use scenario;

Figure 18B is a schematic diagram which illustrates a second exemplary in-use scenario;

Figure 18C is a schematic diagram which illustrates a third exemplary in-use scenario;
Figure 19 is a schematic diagram which illustrates a method of synchronising data between a third party server computer and a central server computer;

Figure 20 is a flow chart which illustrates an exemplary event criteria of data collection;

Figures 21A-21D illustrate an exemplary supply chain management device;

Figures 22A-22D illustrate an exemplary portable device including a biometric capturing device, a credential storage device receiving module and a product identifying component;

Figures 23A-23E illustrate an exemplary product identifying device; and,

Figures 24A-24B illustrate an alternative supply chain management device.

DETAILED DESCRIPTION WITH REFERENCE TO THE DRAWINGS

Although the description that follows focuses on the application of the present invention to supply chain management, it will be appreciated that this has been done only to fully describe the invention and will not be construed to limit the invention to this application exclusively. For example, the invention is capable of being applied to many applications, with point of sales application just being one other.

Effective supply chain management may enable a sufficient amount of inventory to make sales to be maintained by a third party, thereby preventing unnecessary storage and wastage expenses. Furthermore, logistics expenses may be reduced due to more efficient distribution systems. Communication channels between recipients and suppliers may be enhanced. Resources, including raw materials, equipment, employees and finances may be more efficiently utilised.

The systems described herein include a central server computer which receives data associated with a product from a number of third party server computers, each of which relates to or is associated with a different stage in a supply chain, as the product moves from one stage
in the supply chain to another. The data is received at each third party server computer from a
transaction device, more particularly and for the purposes of supply chain management
applications a supply chain management device, operated by an operator who handles the
product. The supply chain management device obtains an identifier of the operator and, in one
embodiment, authenticates the operator prior to obtaining an identifier of the product. The data
received at the centre! server computer from the third party server computers includes the
identifier of the operator, the identifier of the product and optionally additional information and is
used to update a record to associate, for each stage of the supply chain, the identifier of the
operator and optionally additional information with the identifier of the product.

In another embodiment, and either as an alternative or a supplement to authenticating the
operator prior to obtaining an identifier of the product, the system is configured to obtain at least
the identifier of the operator and the identifier of the product within a predefined transaction time
interval, outside of which the transaction is operably cancelled. Although the predefined
transaction time interval may typically be any time span of 10 seconds or less, it is preferable
that such predefined transaction time interval is very small such that such steps are undertaken
near simultaneously thereby to consifue a "Virtual handshake".

The systems and methods described herein aim to improve supply chain visibility. This may
help to minimize risk of loss, order delays and reduced qualify. Collaboration and
communication between recipients and suppliers may be improved. Additionally, transparency,
traceability, allocation and accountability of resources along the supply chain may be improved
so as to enable accurate and timely designation and distribution along the supply chain.

The term "supplier" as used herein should be broadly construed and includes any individual
authorised to distribute, dispense, release, deliver or otherwise dispose of or order the disposal
of a product. The supplier may represent (e.g. be employed by) a third party organisation or
entity which is involved in a product supply chain. Some specific examples of suppliers as
anticipated herein include medical practitioners such as doctors who diagnose conditions and
prescribe medication based on the diagnosis. A supplier may further include a pharmacist who
dispenses a product based on a doctor's prescription.

It will be appreciated that a supplier may even further include a retail merchant, for the retail of
any product pharmaceutical or otherwise.

The term "recipient" as used herein should be broadly construed and includes any Individual...
authorised to receive, take delivery of or collect a product, or any individual receiving
authorisation to receive, take delivery of or collect a product. The recipient may represent (e.g.
be employed by) a third party organisation or entity which is involved a product supply chain. A
specific example of a recipient as used herein includes a patient who is prescribed certain
medication by a medical practitioner and who then seeks the medication from a pharmacist,
it will be appreciated that a recipient may be the ultimate customer in the supply chain, or any
intermediate supplier between the first supplier and the ultimate customer.

The term "product" as used herein should be broadly construed and includes any article,
commodity, object, product of manufacture, shipment, consignment, container, crate, pallet or
the like which moves from control of one individual or entity to control of another individual or
entity through a supply chain.

The term "supply chain" as used herein refers to a system of entities, organisations individuals,
activities, information, and resources involved in moving a product or service from supplier to
end-user.

Figure 1 is a schematic diagram which illustrates an exemplary supply chain management
system (10). The system includes a supply chain management device (12), a third party server
computer (14) maintained by third party entity (e.g. a supplier or a recipient entity) involved in
one stage of a supply chain and a central server computer (18) maintained by a supply chain
management entity. Although only one third party server computer and one supply chain
management device are illustrated, it should be appreciated that in a practical implementation
there may be one or more of each of these. For example, there may be one third party server
and one or more supply chain management devices at each stage in the supply chain. The
system (10) includes a communication network (17) via which the supply chain management
device (12), third party server computer (14) and central server computer (16) communicate.

The supply chain management device (12) may be any appropriate mobile communication
device. In one embodiment, the supply chain management device (12) takes on the form of a
portable tablet computer which is able to operate in remote locations. The supply chain
management device is operated by an operator who may be an employee or representative of
the third party entity. As mentioned above, the third party entity may be any entity along a
supply chain who receives and/or disposes of products.
The supply chain management device (12) includes an operator identifying module (18) for obtaining an identifier of the operator. In the illustrated embodiment, the operator identifying module (16) includes a credential storage device receiving module (20) for obtaining an identifier from a credential storage device of the operator, in the illustrated embodiment, the credential storage device is a smartcard (e.g. an ID smartcard) which is configured to store credentials relating to the operator. Credentials stored in the credential storage device include one or more of the group of: the operator's name, date of birth, authority level, biometric information, organisational details and the like. The credential storage device receiving module (20) is, in this embodiment, a smartcard reader.

The supply chain management device (12) further includes an authentication component (22) for authenticating the operator. The authentication component (22) includes, in this exemplary embodiment, a biometric capturing device (24) for obtaining biometric information from the operator and comparing the obtained biometric information to biometric information stored on one or both of the supply chain management device (12) and the credential storage device. The biometric capturing device may be one or more of the group of: a fingerprint scanner, a finger vein scanner, a retina scanner, a microphone for performing voice recognition, a high resolution camera for performing facial recognition, a means for measuring electrophysiological signals (i.e. an electrocardiography device (EGG) or an electroencephalogram device (EEG)), a means for distinguishing humans from microbial, bacterial and/or DMA markers, and the like.

The supply chain management device (12) is associated with a product identifying component (26) and includes an activating component (28) for, if the operator is authenticated, activating the product identifying component (26). In this manner, the identifier of a product cannot be obtained if the operator has not been authenticated. The product identifying component is operable to obtain an identifier of a product and may include one or both of a barcode scanner and a radio-frequency identification (RFID) tag reader. The product identifier may be a unique number, an optical machine readable identifier such as a barcode (e.g. linear barcode, two dimensional barcode or the like), an RFID tag, or any other appropriate identifier.

As previously described, and either as an alternative or a supplement to authenticating the operator prior to obtaining an identifier of the product, the device may include a timing component for timing a predefined transaction time interval during which at least the identifier of the operator and the identifier of the product must be obtained. If such identifiers are not obtained within such predefined transaction time interval, the transaction is operably cancelled,
Furthermore, the step of obtaining an identifier of the product should further include a step of authenticating the identifier of the product. In the event of the identifier of the product failing authentication, the transaction is operably cancelled with the product being flagged or remove,

In the illustrated embodiment, the supply chain management device (12) includes a record updating component (30) for updating a record to associate the identifier of the operator with the identifier of the product and optionally additional information. The record updating component (30) is operable to store one or more of the identifier of the operator, the identifier of the product and additional information in one or both of a digital storage of the supply chain management device (12) and a credential storage device. The additional information includes one or more of: biometric information of the operator (e.g. supplier and/or recipient); a time at which the identifier of the product was obtained; a time at which the identifier of the operator (e.g. supplier and/or recipient) was obtained; diagnostic information; and, a time at which the operator (e.g. supplier and/or recipient) was authenticated. In some embodiments, the record updating component (30) updates a record maintained remotely by a cloud-based server computer (e.g. a cloud-based record).

It will be appreciated that for point of sales applications, if would be useful for the additional information to also include, for example, the date and time of concluding the transaction and the monetary amount associated with the transaction.

Furthermore, in the illustrated embodiment, the supply chain management device (12) includes a transmitting component (32) for transmitting data including one or more of the identifier of the operator, the identifier of the product and additional information to the third party server computer (14) for storage thereat. The transmitting component (32) is operable to transmit data via one or more of the group of: a long range wireless area network (LoRAWAN), a satellite communication link; a cellular communication link such as a universal mobile telecommunications system (UMTS) link (e.g. 3G, 4G, LTE, etc) and/or global system for mobile communications (GSM); a wired local area network; and a wireless local area network (e.g. Wi-Fi). In this manner, the supply chain management device may be operable in remote areas, even outside of the range of terrestrial-based communication networks.

The supply chain management device (12) also includes a user interface (34) via which the operator (e.g. a supplier or recipient) may interface with the device (12). The user interface (34) is operable to receive operator input in the form of controls, instructions and/or information. The user interface, in one embodiment, is operable to receive diagnostic information relating to a
medical (or other) condition of a recipient. The user interface is also operable to output data and/or information to the operator. In this exemplary embodiment, the user interface includes a touch-sensitive display screen for input and output.

The third party server computer is any appropriate server computer and has access to a database. The third party server computer (14) includes a receiving component (38) for receiving data from the supply chain management device (12) and a storing component (40) for storing the received data in the database (38). Storing the received data may include updating various inventory lists so as to indicate, for example, whether a product which was in possession of the operator has been dispensed or dispatched or is counterfeit/ unidentifiable or, conversely, whether a product has been received and must now be included in the inventory. The third party server computer (14) further includes a synchronising component (42) for synchronising the stored data with the central server computer (18) maintained by the supply chain management entity.

The central server computer (16) is any appropriate server computer and has access to a database. The central server computer (16) includes a synchronising component (48) for synchronising with the third party server computer (14). The synchronising component (46) updates a record in the database to associate, for each stage of the supply chain, the identifier of the operator and optionally additional information with the identifier of the product.

Thus, a product may be tracked by the central server computer (16) as it moves through a supply chain. For each stage at the supply chain, the product is associated with an operator handling the product, the operator having been securing identified and authenticated prior to the product identifier being obtained. In this manner, transparency, traceability, allocation and accountability of the product along the supply chain may be monitored and managed so as to enable accurate and timely designation and distribution of the product along the supply chain.

In some embodiments, the biometric capturing device (24), credential storage device receiving module (20) and a product identifying component (26) are provided by a separate portable device which is detachable from the supply chain management device (12). Furthermore, some embodiments anticipate the transmitting component (32) being provided in the form of a portable modem detachable from the supply chain management device (12). The supply chain management device (12) may further include a portable electronic device and a further, portable product identifying device which may be detachable from the supply chain management device.
To further authenticate the delivery of the product through the supply chain, the device includes a device identifier in the form of a unique number associated to such supply chain management device and/or a specific location of such device, i.e. the GPS co-ordinate at which the transaction device is located at the time of processing the transaction. It will be appreciate that this identifier is similarly record against one or more of the operator or product identifiers.

Reference is now made to Figure 2, in which an exemplary method (SO) for managing a supply chain is illustrated. The method (50) may be implemented by a supply chain management system as described herein.

At a first stage (52), an identifier of an operator is obtained from, in this exemplary embodiment, a credential storage device (e.g. an ID smartcard) of the operator.

At a next stage (54), the operator is authenticated. Authenticating the operator includes obtaining biometric information (e.g. a fingerprint or retina image) from the operator and comparing the obtained biometric information with biometric information stored on one or both of a supply chain management device and the credential storage device.

At a following stage (56), if the operator is authenticated, a product identifying component (e.g. a barcode scanner) associated with the device is activated and, at a further stage (58), an identifier of a product is obtained using the product identifying component (e.g. by scanning a barcode displayed on the product).

As an alternative or a supplement to authenticating the operator prior to obtaining an identifier of the product, the method may include a timing means for timing a predefined transaction time interval during which at least the identifier of the operator and the identifier of the product must be obtained, if such identifiers are not obtained within such predefined transaction time interval, the transaction is operably cancelled.

A record is then updated at a following stage (60) so as to associate the identifier of the operator with the identifier of the product and optionally additional information. Updating the record includes storing one or more of the identifier of the operator, the identifier of the product and additional information in one or both of a digital storage of the supply management device and a credential storage device. The additional information may include one or more of: biometric information of the operator; a time at which the identifier of the product was obtained; a time at which the identifier of the operator was obtained; and, a time at which the operator
was authenticated.

For point of sales applications, it will be appreciated that the additional information could also include, for example, the date and time of concluding the transaction and the monetary amount associated with the transaction.

Updating a record may further include associating the identifier of the product with a status including, for example that the product has been dispensed, in this manner, a product is linked to an operator having handled the product at each stage in the supply chain. Furthermore, the operator is authenticated by providing biometric information meaning that the product can be accurately tracked as it moves through the supply chain.

In some embodiments, the operator is a supplier and, at a following stage (62), an identifier of a recipient is obtained from, for example, a credential storage device of the recipient (e.g. the recipients ID smartcard).

The recipient is authenticated at a next stage (64), for example, by obtaining biometric information from the recipient and comparing the obtained biometric information to biometric information stored on the stored on the credential storage device of the recipient.

At a further stage (66), the record is updated so as to associate the identifier of the recipient and optionally additional information with the identifier of the product. The stage (88) of updating the record may include storing one or more of the identifier of the supplier, the identifier of the recipient, the identifier of the product and additional information in one or more of a digital storage of the device, the credential storage device of the supplier and the credential storage device of the recipient. Preferably, at least some or all of the identifiers, including the identifier of the supply chain management device, are obtained within the predefined transaction time interval.

The additional information may further include biometric information of the recipient; a time at which the identifier of the recipient was obtained; and, a time at which the recipient was authenticated. Updating the record may further include associating the identifier of the product with a status including, for example that the product has been received. Thereafter, the product may be dispensed from the supplier to the recipient.

At a later stage (68), data including the updated record is transmitted to a third party server.
computer for storage thereat.

Figure 3 is a flow diagram which illustrates a method (70) for managing a supply chain. The method (70) may be implemented by a supply chain management system and includes an initial stage (72) of obtaining an identifier of an operator, in this case being a supplier, and authenticating the supplier.

At a following stage (74), an identifier of a recipient is obtained and the recipient is authenticated.

At a next stage (76), diagnostic information relating to a recipient is received. In one case, the diagnostic information may be received as an input from the supplier. For example, the supplier may be a medical practitioner who performs medical tests on a recipient and in doing so diagnoses a condition with which the recipient is suffering. The medical practitioner may then input the diagnostic information into a supply chain management device of the supply chain management system. In another case, the diagnostic information may be received from a credential storage device of the recipient. For example, the recipient may have previously been diagnosed with a condition and diagnostic information relating thereto having been stored on the recipient’s credential storage device.

At a following stage (78), based on the received diagnostic information, a product to be provided to the recipient is identified. The product may be identified as being, for example, a suitable medicament to be taken in order to treat the condition with which the recipient has been diagnosed.

In some embodiments, at a further stage (80), the availability of the relevant product may be determined and, if the identified product is available, permission for release of the identified product may be granted at a next stage (82) such that the recipient can take delivery of the product there and then. If the identified product is not available, an alternative supplier able to release the identified product is identified at a further stage (84). In some cases, permission may be granted for release of the product and stored in the credential storage device of the recipient, along with an identifier of the product and any appropriate additional information, such that the recipient may visit the alternative supplier (e.g. a pharmacist) in order to obtain the product.

Figure 4 is a flow chart showing an exemplary supply chain at macro level. The supply chain
includes manufactures (101), which may be local or international, and a logistics centre (102) which manages products manufactured by the manufacturer. Various transportation (103) methods may be used by the logistics centre (102) in transporting the products to distributors and importers (107). Exemplary transportation (103) methods include, air (104), sea (105) or road (108). Transporting products to distributors and importers (107) may be referred to as inbound logistics. Wholesalers and sub-distributors (108) supply retailers (109) who in turn supply end operators (110), a processes which is referred to as outbound logistics. A supply chain management device (111) may be used at each stage within the outbound logistics and provides statistics and end-to-end detail of the product that is made available to any of the supply chain operators.

Figure 5 is a flow chart showing an exemplary supply chain of pharmaceuticals at macro level. The local and international manufacturers (201) perform a dual function; firstly, to supply government directly via awarded tenders (202), where the pharmaceuticals are distributed directly to state depots (203) who then supply state health facilities (204); secondly, the pharmaceuticals are distributed to distributors and importers (205) or to wholesalers and sub distributors (208) or even directly to the private health sector (211). Typically the private health sector is split between retail pharmacies (207), private hospitals (208), medical practitioners (209) and other private business (210).

On a micro level the process can be used within a specific segment of a corporation’s supply chain to capture and manage data that provides key interest i.e. biometrics only as part of outbound logistics.

Figure 6 is a flow chart showing an exemplary process of capturing operator information on a credential storage device. The supply chain management device (306) may be a specifically designed tablet computer. The operator (301) is the person designated to use the supply chain management device (306). The operator may be anyone in the outbound logistics referred to in Figure 4 (e.g. a distributor, wholesaler and retailer). A credential storage device (302) is issued (303) to the designated operator (301) where all relevant personal details (304) are captured. Authority levels (305) are allocated to the operator (301) according to the function to be fulfilled.

Figure 7 is a flow chart of the scan process using the credential storage device and biometric capturing device. The supplier (401) represents anyone in the outbound logistics role except for the end operator that distributes products (402) using the supply chain management device (403). The supplier (401) places his credential storage device (404) into a credential storage
device receiving module the supply chain management device (403) to unlock the device for use. The supplier (401) provides his or her biometrie (e.g. a finger (405)) to the biometric capturing device which captures biometric information (406). The supply chain management device (403) authenticates (407) the captured biometric information (406) against the credential storage device (404). If successful (408), the barcode scanning process (409) is activated. The barcode of the product is scanned (410) and all the information (e.g. supplier (operator) name, biometric Information and product details/identifier) is saved (411) to the supply chain management device (403).

Figure 8 is a flow chart showing information feedback of a product to a manufacturer. The product (501) when distributed in outbound logistics has all the relevant operator information linked to it when the distributor, the wholesaler, retailer and end-user use the barcode scan functions (502) of the supply chain management device. It will be appreciated that the process preferably includes an authentication (503) of the product (501) through its identifier, in the event of the identifier of the product failing authentication, the transaction is operably cancelled with the product being Ragged or removed (504).

Figure 9 is a flow chart which illustrates an exemplary process using the credential storage device, biometric capturing device and product identifying device in the context of a supplier and a recipient capture. The supplier (801) places his credential storage device (603) into the available the credential storage device receiving module the supply chain management device (602) to unlock for the supply chain management device for use, The supplier (601) places provides his or her biometric information (e.g. a finger (604)) to the biometric capturing device which captures the biometric information (e.g. a fingerprint (605)). The supply chain management device (602) authenticates (806) the biometric information (605) against the credential storage device (803). If successful (SO?) the product identification process (608) is activated. The supplier (601) identifies the product (e.g. by scanning the barcode of the medicine (809)) to be issued to the recipient (610). The recipient (810) places his credential storage device into the credential storage device receiving module the supply chain management device (602) to unlock for use. The recipient (610) provides his biometric (e.g. a finger (612)) to the biometric capturing device which captures the biometric information (e.g. a fingerprint (813)). Once the biometric Information is authenticated, the medicine (614) is released. Though the supply chain focus is on outbound logistics, the following processes can be implemented at inbound logistics as well. Where there is a supplier there is a recipient from manufacturer through the supply chain down to the retailer this system can capture specific events and interactions,
Figure 10 is a flow chart which illustrates an exemplary credential storage device enrolment process. The operator requests a credential storage device (701) from the authoriser who then approves (702) the application and issues the relevant application form (704) to the operator to complete (705). The request may also be declined (702) and sent back (703) for possible reprocessing. When the operator completes the application form (705) the document is sent to the enrolment department for processing. The application is reviewed (708). The application may be rejected or sent back for reprocessing (707) to the authoriser (708) and operator (709). The application can be resubmitted when the highlighted problems are resolved. When the application meets the criteria, an operator profile is created (710) using the credential storage device reader software installed on the supply chain management device (714). When the enrolment department is ready the operator's presence is requested (715). A photograph is taken (711) with the supply chain management device (714); a fingerprint (biometric) scan is taken (712) with the supply chain management device (714); and the credential storage device is personalised including the operator password. All the recorded data is stored on the supply chain management device (714).

Figure 11 is a flow chart of an exemplary supply chain management process using the supply chain management system through the supply chain. The operator (801) takes the supply chain management device, places his credential storage device into the credential storage device receiving module, scans, verifies and authenticates (802) his credentials. The data is recorded (803) including a date and time stamp (804) onto the supply chain management device. The biometric capturing device is activated and the operator (801) places e.g. his finger on the biometric capturing device, captures a biometric and verifies (805) the captured biometric. The data is recorded (808) including a date and time stamp (807) onto the supply chain management device. The product identifying device is activated and the operator (801) identifies the product (e.g. by scanning, verifying and authenticating (808) a barcode). Once the product has been authenticated as genuine (809), the data is recorded (812) including a date and time stamp (813) onto the supply chain management device. The product is ready to be shipped or received (814), in the event of the product failing authentication it is not dispense but flagged (810), allowing for the product removal from the supply chain (811).

Figure 11A is a table of exemplary traceable data as may be recorded through various supply chain stages described in Figure 11, Figure 11B is a table of exemplary traceable data for pharmaceuticals as may be recorded through the various stages described in Figure 11.
Figure 12 is a flow chart of an exemplary supply chain management process which uses a supply chain management system between a supplier and a recipient (seeker). The supplier (901) places his credential storage device into the credential storage device receiving module of his supply chain management device which scans and verifies (902) his credentials. The data is recorded (903) including a date and time stamp (904) onto the supply chain management device. The biometric capturing device is activated and the operator (901) provides biometric information to the biometric capturing device which obtains and verifies (905) biometric information of the operator. The data is recorded (906) including a date and time stamp (907) onto the supply chain management device. A product identifying device of the supply chain management device is activated to enable the supplier (901) to identify the product (e.g. by scanning and verifying (908) a barcode thereof). The data is recorded (909) including a date and time stamp (910) onto the supply chain management device. Thereafter, the medicine is ready to dispense (911). In order to take delivery of the medicine, the recipient (912) places his credential storage device into the credential storage device receiving module, information stored on the credential storage device is obtained and verified (913) by the supplier (901). The data is recorded (914) and date and time stamped (915) in the supply chain management device. The biometric capturing device is activated and the recipient (912) provides his biometric to the biometric capturing device which obtains and verifies (916) biometric information of the recipient. The data is recorded (917) and date and time stamped (918) in the supply chain management device. Thereafter, the supplier (901) may dispense (919) the medicine to the recipient (912).

Figure 13 is a flow chart which illustrates an exemplary supply chain management process which utilises a supply chain management system to diagnosis and dispense medicine. The recipient (1004) arrives at a health facility and presents his credential storage device (1005) to the supplier (1001). Initially, the supplier (1001) logs in (this includes inserting his credential storage device into the credential storage device receiving module and providing a biometric from which biometric information can be obtained) (1002) into the supply chain management device (1003). The supplier (1001) inserts the recipient’s (1004) credential storage device (1005), logs in and verifies (1006) (this includes fingerprint (biometric) scan) into the supply chain management device (1003). The supplier (1001) performs the required test (1007) (e.g. a medical test) on the recipient (1004). When a positive diagnosis (1008) has been established, the supplier (1001) obtains biometric information (1009) of the recipient (1004) and records (1010) the results on the credential storage device (1005) and the supply chain management device (1003). The supplier (1001) selects the appropriate medicine (1011) and scans the product barcode (1012) and records the information to the supply chain management -device
The supplier (1001) obtains biometric information (1009) of the recipient (1004) and records (1010) the medicine information on the credential storage device (1005) and the supply chain management device (1003). The medicine is distributed (1013) to the recipient (1004) by the supplier (1001).

Figure 14 is a flow chart which illustrates interactions between a supply chain management system and a pharmaceutical supply chain at recipient level. The supply chain management system (1101) has a database to add, retrieve or update stored information to manage stock (1102), capture personal details of the supplier (1103), to capture personal details of the recipient (1104) and to capture the tests results (1105) of the recipient (1104). Furthermore, the supply chain management system (1101) captures the data input by the supplier to determine the needs (1106) required by the recipient (1104). For example, a positive test result for malaria allows for the release of the appropriate medicines. The stock (1102) availability is checked to ascertain whether the supplier has the ability to supply (1107) the appropriate stock. A decision (1108) is made to either find an alternate supplier (1109) that has the legitimate stock if the stock is not available. If available then release (1110) the legitimate stock to the recipient (1104).

Figure 14A is a flow chart showing a detailed sub process associated with capturing personal details of the supplier (1103) illustrated in Figure 14. The supplier allocated to use the supply chain management system (1101) completes (1111) an application form (1112) and fills in his personal details, namely, full name with identification number (1113), contact details (1114) e.g. address, telephone number, email etc. and the position or title (1115) he holds within the organization. The completed form is handed to the authoriser who captures (1117) the detail onto the supply chain management system (1101). The authoriser sets (1116) the authority level of the operator. The authoriser creates a credential storage device profile (1120) using credential storage device software (1119) (as illustrated in Figure 10). Once the credential storage device issue process is complete, the credential storage device is inserted into the credential storage device receiving module of the supply chain management device and links the credential storage device profile (1121) to the supply chain management system (1101). The operator provides biometric information which is captured by a biometric capturing device (1122) and the authoriser records the biometric information (1123) and records the data to the supply chain management system (1101).

Figure 14B is a flow chart illustrating a detailed sub-process of capturing personal details of the recipient (1104), as illustrated in Figure 14. The supplier allocated to use the supply chain
management system (1101) completes (1111) an application form (1112) in fills in his personal
details, namely, full name with identification number (1113) and contact details (1114) e.g.
address, telephone number, email, etc. The completed form is handed to the authoriser who
captures (1117) the detail onto the supply chain management system (1101). The authoriser
creates a credential storage device profile (1120) using the credential storage device software
(1119) (as illustrated in Figure 10). Once the credential storage device issue process is
complete, the credential storage device is inserted into the credential storage device receiving
module of the supply chain management device which links the credential storage device profile
(1121) to the supply chain management system (1101). The operator provides biometric
information (e.g. places his finger on a scanner) (1122) and the authoriser records the biometric
information (e.g. fingerprint) (1123) and saves the data to the supply chain management system
(1101).

Figure 15 is a schematic diagram which illustrates a high level layout of an exemplary supply
chain management system. Using a cloud (2101) based server, a central database (2102)
stores all information linked to the system. Infrastructure includes various backend systems
utilised in the process. The infrastructure includes stock control (2103) processes that are linked
(2104) to a third party (2105) software system to extract the relevant information. The
infrastructure further includes a credential storage device management (2106) system which
uses its own software (2107) to register and manage operators. The product allocation and
distribution (2108) system is the process to select and issue product (e.g. medicine) to the
recipient (e.g. a patient). The stock control (2103) process and the product allocation and
distribution (2108) system are linked to the supply chain management system, A platform
includes a web based frontend system (2112) that allows operators to access the cloud via the
supply chain management device (2113).

Figure 18 is a schematic diagram which illustrates at an intermediate level how third party
software may interface with a supply chain management system. Third party software refers to
platforms which may be used by third parties along the supply chain to manage their stock in
and stock out. The stock control (2201) process includes stock in (2203) which sends selected
information to a trace (2202) system. When stock is selected (2205) and allocated (2204) the
selected information is sent to the trace (2202) system. Stock out (2207) refers to the
distribution (2206) of stock to the recipient and selected information is sent to the trace (2202)
system.

Figure 18A is a flow diagram which illustrates an intermediate level of data flow between a
supplier and/or a recipient and a supply chain management system. The inventory (2208) on hand (2209) on the recipient / supplier platform needs to mirror (2210) to the inventory (2211) database on the supply chain management system. Each stock item (2212) will track data received, as will be explained further below.

For stock in, recipient / supplier platform processes inventory received (2213) and updates the inventory (2208) on hand (2209). The supply chain management system records the operator information (2214) (including information obtained from a credential storage device and biometric capturing device) with a date and time (2215) of transaction. The captured information is recorded (2216) against the individual stock item (2212) (e.g. against a product identifier).

For stock out, the recipient and/or supplier platform processes inventory dispatched (2217) and updates the inventory (2208) on hand (2209). The supply chain management system records the operator information (2214) (including information obtained from a credential storage device and biometric capturing device) with a date and time (2215) of transaction. The captured information is recorded (2216) against the individual stock item (2212) (e.g. against a product identifier).

Figure 18B is a flow diagram which illustrates an intermediate level of data flow between a supplier and/or a recipient and the supply chain management system. Inventory (3208) on hand (3209) on the recipient / supplier platform needs to mirror (3210) to the inventory (3211) database on the supply chain management system. Each stock item (3212) will track data received. The recipient / supplier platform allocates (3218) available inventories (3208) to be distributed (3219). The supply chain management system records the operator information (3214) (including information obtained from a credential storage device and biometric capturing device) with a date and time (3215) of transaction. The captured information is recorded (3216) against the individual stock item (3212).

Figure 1? is a high level flowchart which illustrates exemplary interfaces between a supply chain management system and a recipient / supplier system. The recipient / supplier system includes a storage database (3301) which may reside on a server (3302). The server (3302) in turn connects to a front end workstation (3304) either directly or through a cloud platform (3303). The recipient / supplier is able to log into the front end workstation (3304) and loads an appropriate software program (3305) which manages stock (3306). Stock is either received (3307) or issued (3308) as may be appropriate. The supply chain management system includes a storage database (3309) which may reside on a server (3310). The server (3310) connects to
the supply chain management device (3312) through a cloud (3311) platform. The supply chain
management software (3313) is operable to gather information from the recipient / supplier
platform as stock is received, sold, dispensed or the like. A process and connectivity module is
provided which includes a track module (3314). The track module (3314) enables a traceability
and transparency process that follows the journey of the stock (3307) and (3308) from
manufacturer to end-operator depending on the supply chain needs. An allocate module (3315)
is provided which enables an allocation and accountability process that checks the stock availability (3308) and suggests alternative supply, whether at source or alternative options. A
distribute module (3316) is provided which enables a designation and distribution process for
selling or dispensing (3303) of stock.

Figure 18A is a flowchart which illustrates connectivity which may be implemented between a
supplier / recipient system and a supply chain management system according to one
embodiment. In this embodiment, a supply chain management device is used alongside a
supplier / recipient work station. An operator (3401) logs into the supply chain management
device (3402), inserts his credential storage device (3403) and provides biometric information
for capture by a biometric capturing device (3404). The information is sent to a third party server
computer (3405) which then releases (3408) the work station (3407) to do the required
processes (3408). The work station may, for example, identify a product which is to be
dispensed or disposed of, or identify a product which is to be received. The data is
synchronised (3409) between the third party server computer (3405) and the central server
computer (3410).

Figure 18B is a flowchart which illustrates connectivity which may be implemented between a
supplier / recipient system and a supply chain management system according to another
embodiment. In this embodiment, the supplier / recipient work station interfaces with the supply
chain management system for the entire process. The operator (4401) logs into the supplier /
recipient work station (4407), inserts his credential storage device (4403) and provides
biometric information using the biometric capturing device (4404). The information is sent to the
third party server computer (4405) which then releases (4406) the work station (4407) to do the
required processes (4408). The data is synchronised (4409) between the third party server
computer (4405) and the central server computer (4410).

Figure 18C is a flowchart which illustrates connectivity which may be implemented between a
supplier / recipient system and a supply chain management system according to yet another
embodiment. In this embodiment, the supply chain management device uses the supply chain
management system for the entire process. The operator (5401) logs into the supply chain management device (5402), inserts his credential storage device (5403) and provides biometric information using the biometric capturing device (5404). The information is sent to the third party server computer (5405) which then releases (5408) the supply chain management device (5402) to do the required processes (5408). The data is synchronised (5409) between the third party server computer (5405) and the central server computer (5410).

Figure 19 is a flow chart which illustrates method for synchronising data between a supplier / recipient system (e.g. a third party server) and a supply chain management system (e.g. a central server). The supplier / recipient system server storage (5501) exports the data (5502) in a text format (5503). The resultant text file is encrypted (5504) and uploaded to (5505) a secure file transfer protocol (FTP) server (5508). The supply chain management system accesses the secure FTP server (5506) remotely and downloads (5507) the data. The data is transferred (5508) to a central server computer storage (5509) whereat the text file is decrypted (5510). Such an implementation described above with reference to Figure 19 may require more resource management than process management. This may in turn require significantly less programming. In some cases, the synchronisation may take place at set intervals, e.g. hourly, daily, weekly, monthly, and the like. The intervals may be initiated or controlled by a recipient / supplier.

Figure 20 is a flow chart which illustrates an exemplary event criteria of data collection. Operators (5601) may be the employees or contractors who fulfil the various processes (5604) of stock movement (5608). The operator data (5602) collects information including: operator name; operator position; operator authentication (e.g. credential storage device information, biometric information). This information is stored in the server (5603) storage database. The various processes (5604) done by the operators (5801) relating to stock movement (5806) that affect the stock balance (5807) include: Invoicing stock out; credit notes stock out reversed; goods receiving stock in; debit notes stock in reversed; stock take stock adjustments; waste stock adjustments; spoilage stock adjustments; and, expired stock adjustments.

An example of what a text file may look like could be as follows:

Name, Position, Date, Time, ID authentication, Biometric authentication, Process, Description
John Smith, Accounts Payable, 5 May 2015, 08:00am, True, True, Goods Receiving, Stock in
Pete Jones, Stores Controller, 16 May 2015, 11:15am, True, true, Expired, Stock adjustments

Figures 21A-21D illustrate various views of an exemplary supply chain management device
The supply chain management device (6012) includes a portable device (6014) detachable from the supply chain management device (6012) and which includes a biometric capturing device, a credential storage device receiving module and a product identifying component. The supply chain management device (6012) also includes detachable transmitting component (6032), which may be in the form of a portable modem, and is operable to transmit data via one or more of the group of: a long range wireless area network (LoRaWAN), a satellite communication link; a cellular communication link such as a universal mobile telecommunications system (UMTS) link (e.g. 3G, AG, LTE, etc.) and/or global system for mobile communications (GSM); a wired local area network (e.g. Wi-Fi). In this manner, the supply chain management device may be operable in remote areas, even outside of the range of terrestrial-based communication networks. The supply chain management device (8012) further includes a portable electronic device (6050) and a portable product identifying device (6052), both of which are detachable from the supply chain management device.

Figures 22A-22D illustrate various views of an exemplary portable device (6014) which may be utilised in aspects of the disclosure. The portable device (6014) includes a biometric capturing device (6024), a credential storage device receiving module (8020) and a product identifying component (6026).

Figures 23A-23E illustrate various views of an exemplary portable product identifying device (8052), including a product identifying component, which may be utilised in aspects of the disclosure.

Figures 24A and 24B illustrates another embodiment of the supply chain management device 7012 including a pair of operator identifying modules 7013, 7015, in the form of biometric fingerprint or finger vein scanners, and a pair of secondary operator identifying modules 7017, 7019, in the form of card readers.

The supply chain management device 7012 further includes a product identifying component 7021, in the form of a barcode scanner, and a screen 7023. With the supply chain management device 7012 configured in this manner, a biometric and secondary identifier of each of the supplier and the recipient, as well as the identifier of the product can be obtained near simultaneously, and certainly within the predefined transaction time interval, constituting a virtual handshake.
It is envisaged that the invention will lend to what is trying to be achieved under legislation (or proposed legislation) in the United States of America and the European Union, namely The Dasg Supply Chain Security Act and the Falsified Medicines Directive.

The foregoing description of the embodiments of the invention has been presented for the purpose of illustration; it is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Persons skilled in the relevant art can appreciate that many modifications and variations are possible in light of the above disclosure.

Some portions of this description describe the embodiments of the invention in terms of algorithms and symbolic representations of operations on information. These algorithmic descriptions and representations are commonly used by those skilled in the data processing arts to convey the substance of their work affectively to others skilled in the art. These operations, while described functionally, computationally, or logically, are understood to be implemented by computer programs or equivalent electrical circuits, microcode, or the like. The described operations may be embodied in software, firmware, hardware, or any combinations thereof.

The software components or functions described in this application may be implemented as software code to be executed by one or more processors using any suitable computer language such as, for example, Java, C++, or Peri using, for example, conventional or object-oriented techniques. The software code may be stored as a series of instructions, or commands on a non-transitory computer-readable medium, such as a random access memory (RAM), a read-only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk, or an optical medium such as a CD-ROM. Any such computer-readable medium may also reside on or within a single computational apparatus, and may be present on or within different computational apparatuses within a system or network.

Any of the steps, operations, or processes described herein may be performed or implemented with one or more hardware or software modules, alone or in combination with other devices, in one embodiment, a software module is implemented with a computer program product comprising a non-transient computer-readable medium containing computer program code, which can be executed by a computer processor for performing any or all of the steps, operations, or processes described.

Finally, the language used in the specification has been principally selected for readability and
instructional purposes, and it may not have been selected to delineate or circumscribe the inventive subject matter. It is therefore intended that the scope of the invention be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments of the invention is intended to be illustrative, but not limiting, of the scope of the Invention.

Throughout the specification unless the contents requires otherwise the word 'comprise' or variations such as 'comprises' or 'comprising' will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
CLAMS

1. A method for processing a transaction via a transaction device including the steps of:

 (A) obtaining an identifier of an operator handling a product;
 (B) authenticating at least the operator;
 (C) obtaining an identifier of the product using a product identifying component associated with the transaction device; and
 (D) updating a record to associate the identifier of the operator with the identifier of the product and optionally additional information;

 wherein:

 (i) the product identifying component is activated post operator authentication; and/or
 (ii) at least the identifier of the operator and the identifier of the product are obtainable within a predefined transaction time interval, outside of which the transaction is operably cancelled.

2. A method according to claim 1, wherein the updating of the record includes storing one or more of the identifier of the operator, the identifier of the product and additional information in one or both of a digital storage of the transaction device and a credential storage device.

3. A method according to claim 2 including a step of transmitting data including one or more of the identifier of the operator, the identifier of the product and additional information to a third party server computer for storage thereat, wherein the data transmitted in operably encrypted.

4. A method according to claim 3, wherein the step of obtaining an identifier of an operator includes obtaining an identifier from a credential storage device of the operator.

5. A method according to claim 4, wherein the step of authenticating the operator includes obtaining biometric information from the operator and comparing the obtained biometric information to biometric information stored on one or both of the transaction device and the credential storage device.

6. A method according to claim 5, wherein the operator is a supplier of the product and further wherein the method includes the steps of: obtaining an identifier of a recipient of the
product; and, authenticating the recipient,

7. A method according to claim 6, wherein the timed step of obtaining the identifiers of the supplier and the product include the further step of obtaining within the predefined transaction time interval the identifier of the recipient,

8. A method according to claim 7, wherein the timed step further includes obtaining an identifier of a transaction device, being a unique number associated to such transaction device and/or a specific location of such transaction device at which the transaction device is located at the time of processing the transaction, and further wherein the timed step is timed by a timing means of the transaction device, one or other of the credential storage devices and/or the server computers,

9. A method according to claim 8, wherein the step of obtaining an identifier of a recipient includes obtaining an identifier from a credential storage device of the recipient; and for the step of authenticating the recipient to include obtaining biometric information from the recipient and comparing the obtained biometric information to biometric information stored on the credential storage device of the recipient.

10. A method according to claim 9, wherein the step of obtaining an identifier of a transaction device includes obtaining an identifier from a credential storage device of the transaction devices; and for a step of authenticating the transaction device to include comparing the obtained transaction device identifier of a transaction device information stored on the credential storage device of the transaction devices.

11. A method according to claim 10, wherein the step of updating a record includes associating the identifier of the product with identifiers of the supplier, the recipient and/or the transaction device.

12. A method according to claim 11, wherein the step of updating a record includes associating the identifier of the product with a status from a group of statuses including: product received; product dispensed; product sold; and product returned.

13. A method according to claim 12, wherein the step of obtaining an identifier of the product includes a step of authenticating the identifier of the product thereby to authenticate the product.
14. A method according to **claim 13** including a step of associating a successful **transaction** with the identifier of a product such that a downstream transaction is allowable only on the successful **completion** of an upstream transaction.

15. A method according to **claim 14** including a step of **receiving** diagnostic information relating to the recipient, wherein the diagnostic information is capable of being inputted by the operator and for the received diagnostic information to be stored on the **credential** storage device of the recipient.

16. A method according to **claim 15**, wherein the step of receiving diagnostic information includes receiving such Information from a credential storage device of the recipient.

17. A method according to **claim 16** including, and based on the received diagnostic information, identifying a product to be provided to the recipient; and **responsive** to identifying the product, granting permission for release of the identified product.

18. A method according to **claim 17** including a step of determining whether the identified product is available; and: (i) if the identified product is **available**, granting permission for release of the identified product, and (ii) if the identified product is not **available**, identifying an alternative operator able to release the identified product.

19. A method according to **claim 18**, wherein the additional information includes one or more of: biometric information of the operator, supplier and/or the recipient; a time at which the **identifier of the product** was obtained; a time at which the **identifier of the operator**, supplier and/or the recipient was obtained; diagnostic information; a time at which the operator, supplier and/or the recipient was authenticated; the date and time of concluding the transaction; and the monetary amount associated with the transaction.

20. **A method for processing transactions**, the method **conducted** at a **central** server computer in communication with a **number** of third party server computers, comprising:

 (A) receiving, from each third party server computer as a product moves from one person or entity to another, data associated with the product, the data having been received at each third party server computer from a transaction device operated by an operator handling the product, the transaction device having; obtained an identifier of the operator; authenticated the operator; and obtained a product identifier of the product,
wherein:
(i) obtainment of the product identifier occurs post authentication of the operator; and/or
(ii) at least the identifier of the operator and the identifier of the product are obtainable within a predefined transaction time interval, outside of which the transaction is operably cancelled.

(8) updating a record to associate the identifier of the operator and optionally additional information with the identifier of the product,

21. A system for processing a transaction, the system including a transaction device comprising:

an operator identifying module for obtaining an identifier of an operator handling a product;

an authentication component for authenticating the operator;

a product identifying component for obtaining an identifier of the product using the product identifying component;

a record updating component for updating a record to associate the identifier of the operator with the identifier of the product and optionally additional information; and

one or both of:
(i) an activating component for, if the operator is authenticated, activating the product identifying component associated with the device; and
(ii) a timing component for timing a predefined transaction time interval within which at least the identifier of the operator and the identifier of the product must be operatively obtained, and outside of which the transaction is operably cancelled,

22. A system according to claim 21, wherein the operator identifying module includes a credential storage device receiving module and for obtaining an identifier of an operator to include obtaining an identifier of the operator from a credential storage device of the operator.
23. A system according to claim 22, wherein the authentication component includes a biometric capturing device, and for authenticating the operator to include obtaining biometric information from the operator and comparing the obtained biometric information to biometric information stored on one or both of the transaction device and the credential storage device.

24. A system according to claim 23, wherein the product identifying component includes one or both of a barcode scanner and a radio-frequency identification (RFID) tag reader, and further wherein the system authenticates the identifier of the product.

25. A system according to claim 24, wherein the transaction device includes a transmitting component for transmitting data including one or more of the identifier of the operator, the identifier of the product and additional information to a third party server computer for storage thereat.

28. A system according to claim 25 comprising a third party server computer including:

 a receiving component for receiving data from the transaction device;

 a storing component for storing the received data; and

 a synchronising component for synchronising the stored data with a central server computer.

27. A system according to claim 28, wherein the additional information includes one or more of: biometric information of the operator, a supplier and/or a recipient; a time at which the identifier of the product was obtained; a time at which an identifier of the operator, supplier and/or the recipient was obtained; diagnostic information; a time at which the operator, a supplier and/or a recipient was authenticated; the date and time of concluding the transaction; and the monetary amount associated with the transaction.

28. A system for processing transactions, the system including a central server computer in communication with a number of third party server computers, comprising:

 a synchronising component for: receiving, from each third party server computer as a product moves from one person or entity to another, data associated with the product,
the data having been received at each third party server computer from a transaction device operated by an operator handling the product, the transaction device having; obtained an identifier of the operator; authenticated the operator; and obtained a product identifier of the product, wherein:

(i) obtaining of the product identifier occurs post authentication of the operator; and/or

(ii) at least the identifier of the operator and the identifier of the product are obtainable within a predefined transaction time interval, outside of which the transaction is operably cancelled; and

updating a record to associate the identifier of the operator end optionally additional information with the identifier of the product.

29. A system according to claim 28, wherein the additional information to include one or more of: biometric information of the operator, a supplier and/or a recipient; a time at which the identifier of the product was obtained; a time at which an identifier of the operator, supplier and/or the recipient was obtained; diagnostic information; a time at which the operator, a supplier and/or a recipient was authenticated; the date and time of concluding the transaction; and the monetary amount associated with the transaction.

30. A transaction device including:

an operator identifying module for obtaining an identifier of an operator handling a product;

a product identifying component for obtaining an identifier of the product using the product identifying component;

a communications module for transmitting and receiving data for at least the purposes of authenticating the operator; and

one or both of:

(i) an activating component for, post authentication of the operator, activating the product identifying component associated with the device; and

(ii) a timing component for timing a predefined transaction time interval within which at least the identifier of the operator and the identifier of the product must be
operativeiy obtained, and outside of which the transaction is operably cancelled.

31. A transaction device according to claim 30, wherein the operator identifying module is at least one biometric scanner for scanning a biometric of the operator, which operator may be one or both of a supplier and a recipient.

32. A transaction device according to claim 31 including at least one secondary operator identifying module for obtaining a secondary identifier of an operator, the secondary operator identifying module being:
 (i) a user input for inputting a unique supplier PIN and a unique recipient PIN;
 (ii) a card reader for reading a unique supplier card and a unique recipient card; or
 (iii) a RFID tag reader for reading a unique supplier tag and a unique recipient tag.

33. A transaction device according to claim 32, wherein the device includes a pair of biometric scanners and a pair of; (i) card readers; or (ii) tag readers.

34. A transaction device according to claim 33, wherein the product identifying component includes one or both of a barcode scanner and a RFID tag reader.

35. A transaction device according to claim 34, wherein the predefined transaction time interval is 10 seconds or less.

36. A transaction device according to claim 35, wherein the predefined transaction time interval is 5 seconds or less.

37. A transaction device according to claim 36, wherein the predefined transaction time interval is 2 seconds or less.

38. A transaction device according to claim 37, wherein the predefined transaction time interval is near zero such that at least two or more of the identifiers are obtained near simultaneously.

39. A transaction device according to claim 38 including

 an authentication component for authenticating the operator and/or the product; and/or
a record updating component for updating a record to associate the identifier of the operator with the identifier of the product and optionally additional information.
Figure 1
Start

Obtain identifier of supplier

Authenticate supplier

Authenticated?

Y

Activate product identifying component

Obtain product identifier

Update record

Obtain identifier of recipient

Authenticate recipient

N

Update record

Authenticated?

Y

Transmit updated record to central server

Figure 2
Figure 3

Flowchart:

1. Start
2. Identify and authenticate supplier
3. Identify and authenticate recipient
4. Receive diagnostic information
5. Identify product
6. Determine availability
7. Dispense product
8. Available? (Y) Yes, proceed; (N) No, identify alternative supplier
9. Identify alternative supplier
10. End
Figure 6
Figure 11A

Supply Chain Data Table Example of Product A based on Figure 8a

<table>
<thead>
<tr>
<th>Supply Chain</th>
<th>Seeker / Supplier</th>
<th>User</th>
<th>Position</th>
<th>Date & Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Supplier</td>
<td>M Black</td>
<td>Warehouse Controller</td>
<td>01 May 2015 11:15am</td>
</tr>
<tr>
<td>Distributor</td>
<td>Seeker</td>
<td>D Green</td>
<td>Goods Receiving Controller</td>
<td>07 May 2015 09:00am</td>
</tr>
<tr>
<td>Distributor</td>
<td>Supplier</td>
<td>D White</td>
<td>Warehouse Controller</td>
<td>15 June 2015 02:00pm</td>
</tr>
<tr>
<td>Wholesaler</td>
<td>Seeker</td>
<td>W Brown</td>
<td>Goods Receiving Controller</td>
<td>16 June 2015 10:45am</td>
</tr>
<tr>
<td>Wholesaler</td>
<td>Supplier</td>
<td>W Grey</td>
<td>Warehouse Controller</td>
<td>24 June 2015 11:00am</td>
</tr>
<tr>
<td>Retailer</td>
<td>Seeker</td>
<td>R Black</td>
<td>Goods Receiving Controller</td>
<td>27 June 2015 04:00pm</td>
</tr>
</tbody>
</table>

Figure 11B

Supply Chain Data Table Example of Product A based on Figure 8a for Pharmaceuticals

<table>
<thead>
<tr>
<th>Supply Chain</th>
<th>Seeker / Supplier</th>
<th>User</th>
<th>Position</th>
<th>Date & Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Supplier</td>
<td>M Black</td>
<td>Warehouse Controller</td>
<td>01 May 2015 11:15am</td>
</tr>
<tr>
<td>Distributor</td>
<td>Seeker</td>
<td>D Green</td>
<td>Goods Receiving Controller</td>
<td>07 May 2015 09:00am</td>
</tr>
<tr>
<td>Distributor</td>
<td>Supplier</td>
<td>D White</td>
<td>Warehouse Controller</td>
<td>15 June 2015 02:00pm</td>
</tr>
<tr>
<td>Wholesaler</td>
<td>Seeker</td>
<td>W Brown</td>
<td>Goods Receiving Controller</td>
<td>16 June 2015 10:45am</td>
</tr>
<tr>
<td>Wholesaler</td>
<td>Supplier</td>
<td>W Grey</td>
<td>Warehouse Controller</td>
<td>24 June 2015 11:00am</td>
</tr>
<tr>
<td>Retailer</td>
<td>Seeker</td>
<td>R Black</td>
<td>Goods Receiving Controller</td>
<td>27 June 2015 04:00pm</td>
</tr>
<tr>
<td>Retailer</td>
<td>Supplier</td>
<td>R White</td>
<td>Warehouse Controller</td>
<td>13 July 2015 09:00am</td>
</tr>
<tr>
<td>End User (Health Facility)</td>
<td>Seeker</td>
<td>H Grey</td>
<td>Health Facility Stock Controller</td>
<td>15 July 2015 03:00pm</td>
</tr>
</tbody>
</table>
Figure 17