Abstract: The invention relates to a drug delivery device (1) comprising: - a plunger (10) disposed within a case (2), wherein the plunger (10) is slidable from a proximal position to a distal position within the case (2), - an audible indicator (12) that comprises a resilient element (12.1), wherein the resilient element (12.1) is in a first configuration when the plunger (10) is in the proximal position, the resilient element (12.1) is deflected radially outwards to a second configuration during movement of the plunger (10) from the proximal position towards the distal position, and the resilient element (12.1) moves from the second configuration towards the first configuration when the plunger (10) moves towards or reaches the distal position, thereby generating an audible and tactile signal.
Drug delivery device

Technical Field

The invention relates to a drug delivery device.

Background

Administering an injection is a process which presents a number of risks and challenges for users and healthcare professionals, both mental and physical. Injection devices typically fall into two categories - manual devices and autoinjectors. In a conventional manual device, manual force is required to drive a medicament through a needle. This is typically done by a plunger which is continuously pressed during the injection. There are numerous disadvantages associated with this approach. For example, if the plunger is released prematurely, the injection will stop and may not deliver an intended dose. Furthermore, the force required to push the plunger may be too high (e.g., if the user is elderly or a child). And, aligning the injection device, administering the injection, and keeping the injection device still during the injection may require dexterity which some patients may not have.

Autoinjector devices aim to make self-injection easier for patients. A conventional autoinjector may provide the force for administering the injection by a spring, and a trigger button or other mechanism may be used to activate the injection. Autoinjectors may be single-use or reusable devices.

Furthermore, it is necessary to administer the full dose in order to achieve full effectiveness of the medicament within the patient.

Thus, there remains a need for an improved drug delivery device.

Summary

It is an object of the present invention to provide an improved drug delivery device.
The object is achieved by a drug delivery device according to claim 1.

Exemplary embodiments of the invention are given in the dependent claims.

According to the present invention, a drug delivery device, e.g. a manual injection device or an autoinjector, comprises:
- a plunger disposed within a case, wherein the plunger is slidable from a proximal position into a distal position within the case,
- an audible indicator that comprises a resilient element, wherein the resilient element is in a first configuration when the plunger is in the proximal position, wherein the resilient element is deflected radially outwards to a second configuration during movement of the plunger from the proximal position towards the distal position, and wherein the resilient element moves towards the second configuration towards the first configuration when the plunger moves towards or reaches the distal position, thereby generating an audible and tactile signal.

The provided drug delivery device is improved due to the audible indicator which can be used for indicating to a patient or user that the full dose of medicament was spent. Thereby, noise is generated due to a deflection of the resilient element.

In another exemplary embodiment, the resilient element may initially be in the second configuration.

In an exemplary embodiment, the resilient element is configured as a leaf spring comprising a proximal spring section coupled to a distal spring section.

The resilient element may be S-shaped which allows the resilient element to remain in a relaxed state until end of drug delivery. This enables less mechanical stress of the resilient element during storage and drug delivery.

The proximal spring section may be fixed to the case, e.g. by a snap connection, wherein the distal spring end is configured as a free end of the resilient element.

Furthermore, the distal spring section may be bent radially inwards towards the plunger with respect to the proximal spring section. The distal spring section may be representing a ramp section for an increased proximal plunger circumference.
In an exemplary embodiment, the distal spring section of the resilient element may comprise a hook that is bent radially outwards relative to the distal spring section. The hook constitutes a stop area adapted to impact on the plunger in order to generate the audible and tactile signal.

In a further exemplary embodiment, the resilient element is radially spaced from a distal plunger section.

The resilient element may comprise a single metal component for generating a recognizable audible signal.

Furthermore, the resilient element remains in the first configuration during medicament delivery until a proximal plunger section abuts the distal spring section.

When the proximal plunger section abuts the distal spring section, thereby reaching the distal spring end, the resilient element is allowed to relax radially inwards. As a result, the distal spring end hits an outer circumference of the proximal plunger section, thereby generating the audible signal.

In an exemplary embodiment, the drug delivery device is configured as an autoinjector that comprises the case adapted to hold a medicament container, a needle shroud telescopically coupled to the case, a shroud spring biasing the needle shroud distally relative to the case, and a drive spring biasing the plunger from the proximal position towards the distal position for delivering a medicament from the medicament container.

In a further exemplary embodiment, the case comprises a syringe support for supporting an axial position of the medicament container relative to the case, wherein the syringe support comprises at least two support arms. In particular, the support arms are configured with different lengths, wherein one support arm is longer than the other support arm.

The resilient element may be coupled to the syringe support in a manner extending distally from one of the support arms.

Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating exemplary embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
Brief Description of the Drawings

The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings which are given by way of illustration only, and thus, are not limitative of the present invention, and wherein:

Figure 1 is a schematic perspective partial section of an exemplary embodiment of a drug delivery device according to the present invention,

Figure 2 is a schematic perspective view of an exemplary embodiment of a resilient element of the audible indicator,

Figure 3 is a schematic perspective view of an exemplary embodiment of a drive sub assembly of the drug delivery device comprising a rear case, a plunger and the audible indicator,

Figure 4 is a schematic sectional view of a part of the drug delivery device according to figure 1 during movement of the plunger from a proximal position towards a distal position, and

Figure 5 is a schematic sectional view of the drug delivery device according to figure 1 with the plunger in the distal position.

Corresponding parts are marked with the same reference symbols in all figures.

Detailed Description

Figure 1 shows a schematic perspective partial section of an exemplary embodiment of a drug delivery device 1 according to the present invention.

In the shown exemplary embodiment, the drug delivery device 1 is configured as an autoinjector device.

The drug delivery device 1 comprises a case 2 with a front case 2.1 and a rear case 2.2 and a longitudinal axis A extending from a proximal end towards a distal end. The case 2 is adapted to
hold a medicament container 3, such as a syringe. The medicament container is referred to
hereinafter as the "syringe 3". The syringe 3 may be a pre-filled syringe containing a
medicament M and having a needle 4 arranged at a distal end of the syringe 3. In another
exemplary embodiment, the medicament container 3 may be a cartridge which includes the
medicament M and engages a removable needle (e.g. by threads, snaps, friction, etc.). In the
shown exemplary embodiment, the syringe 3 is held in the case 2 and supported at its proximal
end therein by a syringe support 13 that is further described in figure 3.

The drug delivery device 1 further comprises a protective needle sheath 5 that is coupled to the
needle 4. For example, the protective needle sheath 5 is removably coupled to the needle 4.
The protective needle sheath 5 may be a rubber needle sheath or a rigid needle sheath which is
composed of rubber and a full or partial plastic shell.

For sealing the syringe 3 in a proximal direction P and for displacing a medicament M contained
in the syringe 3 through the needle 4, a stopper 6 is provided and arranged within the syringe 3.

A needle shroud 7 is telescopically coupled to the case 2 and movable between a first extended
position relative to the case 2 in which the needle 4 is covered and a retracted position relative
to the case 2 in which the needle 4 is exposed. Furthermore, a shroud spring 8 is arranged to
bias the needle shroud 7 distally against the case 2.

In the shown exemplary embodiment, a drive spring 9 is arranged within the case 2. A
plunger 10 serves for forwarding a force of the drive spring 9 to the stopper 6. The plunger 10 is
hollow and comprises a proximal plunger section 10.1 and a distal plunger section 10.2,
wherein a diameter of the proximal plunger section 10.1 is larger than a diameter of the distal
plunger section 10.2. The drive spring 9 is arranged within the plunger 10 biasing the plunger 10
distally against the case 2 as illustrated in figure 1. In another not shown exemplary
embodiment, the plunger 10 may be solid and the drive spring 9 may engage a proximal end of
the plunger 10.

The plunger 10 is movable from a proximal position (as illustrated in figure 1) towards a distal
position (as illustrated in figure 5) relative to the case 2 to drive the medicament M from the
syringe 3 through the needle 4 into the patient.

Furthermore, the plunger 10 may be prevented from releasing prior to retraction of the needle
shroud 7 relative to the case 2. The plunger 10 may be configured to be released once the
needle shroud 7 is sufficiently retracted. This is realized by a plunger release mechanism, which will not be described in more detail.

A cap 11 may be removably disposed at a distal end of the case 2, in particular at a distal end of the front case 2.1. The cap 11 may comprise grip features (not shown in detail) for facilitating a removal of the cap 11, e.g., by twisting and/or pulling the cap 11 off the case 2 and for engaging the protective needle sheath 5, the case 2 and/or the needle shroud 7. The grip features may include a barb, a hook, a narrowed section, etc.

As long as the cap 11 is in place, the needle shroud 7 is prevented from retracting relative to the case 2, thereby avoiding unintentional activation of the drug delivery device 1, e.g., if dropped, during shipping or packaging, etc. This is realized by a shroud lock mechanism, which will not be described in more detail.

The drug delivery device 1 further comprises at least one audible indicator 12 for producing an audible feedback for a user or patient indicating completion of medicament M delivery. In other words: The audible indicator 12 is provided to indicate to a user or a patient that the full dose of medicament M was spent.

According to the exemplary embodiment, the drug delivery device 1 comprises one audible indicator 12 that is arranged within the rear case 2.2.

The audible indicator 12 comprises a resilient element 12.1 and the proximal plunger section 10.1. The audible indicator 12 will be described in more detail within the description of the following figures 2 to 5.

Figure 2 shows the resilient element 12.1 separately in a schematic perspective view.

According to the present embodiment, the resilient element 12.1 is configured as an S-shaped leaf spring comprising a proximal spring section 12.1.1 coupled to a distal spring section 12.1.2.

The distal spring section 12.1.2 is angled from the proximal spring section 12.1.1 representing a ramp section for the plunger 10 and comprises a distal spring end 12.1.3. The distal spring end 12.1.3 comprises a hook. The hook constitutes a stop area adapted to impact on an outer circumference of the plunger 10.
Furthermore, the resilient element 12.1 may comprise a single metal component. For example, the single metal component is coupled to the distal spring end 12.1.3.

Figure 3 shows the resilient element 12.1 assembled within a drive subassembly 1.1 of the drug delivery device 1.

The drive subassembly 1.1 is a subassembly of the drug delivery device 1, wherein the drug delivery device 1 further comprises a front subassembly (not shown separately) to allow for flexibility as to the time and location of manufacture of the subassemblies and final assembly with the syringe 3.

The rear case 2.2 comprises the syringe support 13 that is adapted to compensate variable lengths of the syringe 3 which occur due to manufacturing intolerances.

The syringe support 13 comprises two support arms 13.1, 13.2 that are arranged opposite to each other and that project in a distal direction D from a proximal end of the rear case 2.2. According to the present embodiment, the support arms 13.1, 13.2 are configured with different lengths regarding the longitudinal axis A. In particular, a first support arm 13.1 is shorter than a second arm 13.2 in order to create space for an arrangement of the resilient element 12.1.

In the shown embodiment, the resilient element 12.1 is coupled to the first support arm 13.1. In particular, the proximal spring section 12.1.1 is coupled to the first support arm 13.1. For example, the proximal spring section 12.1.1 is received within a guiding recess arranged on an inner side of the first support arm 13.1 and fixed by a snap connection.

Referring to the drug delivery device 1 illustrated in figure 1, the proximal spring section 12.1.1 may run in parallel to the longitudinal axis A. The proximal spring section 12.1.1 is furthermore radially spaced from an outer circumference of the distal plunger section 10.2 when assembled as illustrated in figure 3.

The distal spring section 12.1.2 projects distally from a free distal end of the first support arm 13.1 and is bent towards the outer circumference of the plunger 10 with respect to the proximal spring section 12.1.1. In the assembled state, the distal spring section 12.1.2 is radially spaced from the outer circumference of the distal plunger section 10.2 and angled from the longitudinal axis A in a radial inward direction.
As the proximal spring section 12.1.1 is fixed to the first support arm 13.1, the distal spring end 12.1.3 is configured as a free end of the resilient element 12.1. The hook arranged on the distal spring end 12.1.3 is bent radially outwards away from the outer circumference of the plunger 10. A free end of the hook runs in parallel to the longitudinal axis A in the assembled state of the resilient element 12.1.

To support the axial position of the syringe 3 relative to the case 2 after assembly, in particular during storage, transportation and normal use, the syringe support 13 may comprise one or more supporting beams (not shown) that are biased radially inwards to accommodate the variable length of the syringe 3 in an assembled state.

Figure 4 shows an enlarged view of a section of the drug delivery device 1 as described in figure 1 during movement of the plunger 10 from the proximal position towards the distal position. The distal movement of the plunger 10 is indicated by an arrow illustrated within the plunger 10.

When the plunger 10 is in the proximal position, the resilient element 12.1 is in a first configuration which means in particular that the distal spring section 12.1.2 is in a relaxed state.

During movement of the plunger 10 from the proximal position towards the distal position, the distal spring section 12.1.2 is deflected radially outwards when the proximal plunger section 10.1 reaches the distal spring section 12.1.2. The distal spring section 12.1.2 is deflected radially outwards due to the increased diameter of the proximal plunger section 10.1. The deflection of the resilient element 12.1 is indicated by a further arrow pointing in a radial outward direction.

The distal spring section 12.1 is deflected until the proximal plunger section 10.1 passes the distal spring section 12.1.2 in the distal direction D as illustrated in figure 5.

Figure 5 shows a schematic sectional view of the drug delivery device 1, wherein the plunger 10 is in the distal position.

Due to the radial outward bending of the distal spring end 12.1.3 away from the plunger 10, the resilient element 12.1 is allowed to move into a second configuration. In the second configuration, the biased distal spring section 12.1.2 relaxes radially inwards when the distal spring end 12.1.3 is still at the same level of the proximal plunger section 10.1 with respect to the longitudinal axis A. The distal spring end 12.1.3 hits an outer circumference of the proximal
plunger section 10.1, thereby producing noise as an audible signal to indicate to a user that the full dose of medicament \(M\) was spent. The striking of the distal spring end 12.1.3 is indicated by an arrow pointing in the radial inward direction. The hitting noise generates an audible indication signal to a user that the full dose of medicament \(M\) was spent.

The skilled person readily understands that application of the audible indicator 12 is not limited to autoinjector devices. Instead, the audible indicator 12 may likewise be applied in a manually operated drug delivery device 1 for indicating that the plunger 10 has been completely moved into the distal position.

In an exemplary embodiment, when inserted in a drug delivery device 1, the resilient element 12.1 may produce an audible signal with a volume of at least 100 dB(A), e.g. measured at a distance of approximately 150 mm. In a test setup, the drug delivery device 1 was placed in a sound-absorbing environment on a table with the needle shroud 7 ahead. An elastomeric layer was located between the needle shroud 7 and the table to acoustically decouple the drug delivery device 1 from the table. Two microphones (e.g. ROGA MI-17 (IEPE)) were placed laterally from the drug delivery device 1 opposite each other at a distance of 150 mm, respectively and 170 mm above the table. A first test was performed with a user holding and operating the drug delivery device 1 with the right hand closed around the drug delivery device 1, wherein the fingers of the hand covered one side of the drug delivery device 1 directed towards one of the microphones and wherein the opposite side pointing towards the other microphone was covered by the palm of the hand. The volume of the audible signal on the finger side microphone was at least 100 dB(A) while the volume on the palm side microphone was lower than 100 dB(A). Another test was performed with a user holding and operating the drug delivery device 1 only with the fingertips of the right hand, wherein the palm of the hand was located between the drug delivery device 1 and one of the microphones; however, the drug delivery device 1 was not touched by the palm. The volume of the audible signal acquired by both microphones was at least 100 dB(A), wherein the volume detected by the palm side microphone was slightly lower than the volume detected by the other microphone.

The terms "drug" or "medicament" are used herein to describe one or more pharmaceutically active compounds. As described below, a drug or medicament can include at least one small or large molecule, or combinations thereof, in various types of formulations, for the treatment of one or more diseases. Exemplary pharmaceutically active compounds may include small molecules; polypeptides, peptides and proteins (e.g., hormones, growth factors, antibodies, antibody fragments, and enzymes); carbohydrates and polysaccharides; and nucleic acids,
double or single stranded DNA (including naked and cDNA), RNA, antisense nucleic acids such as antisense DNA and RNA, small interfering RNA (siRNA), ribozymes, genes, and oligonucleotides. Nucleic acids may be incorporated into molecular delivery systems such as vectors, plasmids, or liposomes. Mixtures of one or more of these drugs are also contemplated.

The term "drug delivery device" shall encompass any type of device or system configured to dispense a drug into a human or animal body. Without limitation, a drug delivery device may be an injection device (e.g., syringe, pen injector, auto injector, large-volume device, pump, perfusion system, or other device configured for intraocular, subcutaneous, intramuscular, or intravascular delivery), skin patch (e.g., osmotic, chemical, micro-needle), inhaler (e.g., nasal or pulmonary), implantable (e.g., coated stent, capsule), or feeding systems for the gastrointestinal tract. The presently described drugs may be particularly useful with injection devices that include a needle, e.g., a small gauge needle.

The drug or medicament may be contained in a primary package or "drug container" adapted for use with a drug delivery device. The drug container may be, e.g., a cartridge, syringe, reservoir, or other vessel configured to provide a suitable chamber for storage (e.g., short- or long-term storage) of one or more pharmaceutically active compounds. For example, in some instances, the chamber may be designed to store a drug for at least one day (e.g., 1 to at least 30 days). In some instances, the chamber may be designed to store a drug for about 1 month to about 2 years. Storage may occur at room temperature (e.g., about 20°C), or refrigerated temperatures (e.g., from about -4°C to about 4°C). In some instances, the drug container may be or may include a dual-chamber cartridge configured to store two or more components of a drug formulation (e.g., a drug and a diluent, or two different types of drugs) separately, one in each chamber. In such instances, the two chambers of the dual-chamber cartridge may be configured to allow mixing between the two or more components of the drug or medicament prior to and/or during dispensing into the human or animal body. For example, the two chambers may be configured such that they are in fluid communication with each other (e.g., by way of a conduit between the two chambers) and allow mixing of the two components when desired by a user prior to dispensing. Alternatively or in addition, the two chambers may be configured to allow mixing as the components are being dispensed into the human or animal body.

The drug delivery devices and drugs described herein can be used for the treatment and/or prophylaxis of many different types of disorders. Exemplary disorders include, e.g., diabetes mellitus or complications associated with diabetes mellitus such as diabetic retinopathy, thromboembolism disorders such as deep vein or pulmonary thromboembolism. Further
exemplary disorders are acute coronary syndrome (ACS), angina, myocardial infarction, cancer, macular degeneration, inflammation, hay fever, atherosclerosis and/or rheumatoid arthritis.

Exemplary drugs for the treatment and/or prophylaxis of diabetes mellitus or complications associated with diabetes mellitus include an insulin, e.g., human insulin, or a human insulin analogue or derivative, a glucagon-like peptide (GLP-1), GLP-1 analogues or GLP-1 receptor agonists, or an analogue or derivative thereof, a dipeptidyl peptidase-4 (DPP4) inhibitor, or a pharmaceutically acceptable salt or solvate thereof, or any mixture thereof. As used herein, the term "derivative" refers to any substance which is sufficiently structurally similar to the original substance so as to have substantially similar functionality or activity (e.g., therapeutic effectiveness).

Exemplary insulin analogues are Gly(A21), Arg(B31), Arg(B32) human insulin (insulin glargine); Lys(B3), Glu(B29) human insulin; Lys(B28), Pro(B29) human insulin; Asp(B28) human insulin; human insulin, wherein proline in position B28 is replaced by Asp, Lys, Leu, Val or Ala and wherein in position B29 Lys may be replaced by Pro; Ala(B26) human insulin; Des(B28-B30) human insulin; Des(B27) human insulin and Des(B30) human insulin.

Exemplary insulin derivatives are, for example, B29-N-myristoyl-des(B30) human insulin; B29-N-palmitoyl-des(B30) human insulin; B29-N-myristoyl human insulin; B29-N-palmitoyl human insulin; B28-N-myristoyl LysB28ProB29 human insulin; B28-N-palmitoyl-LysB28ProB29 human insulin; B30-N-myristoyl-ThrB29LysB30 human insulin; B30-N-palmitoyl-ThrB29LysB30 human insulin; B29-N-(N-palmitoyl-gamma-glutamyl)-des(B30) human insulin; B29-N-(N-lithocholyl-gamma-glutamyl)-des(B30) human insulin; B29-N-(oo-carboxyheptadecanoyl)-des(B30) human insulin and B29-N-(oo-carboxyheptadecanoyl) human insulin. Exemplary GLP-1, GLP-1 analogues and GLP-1 receptor agonists are, for example: Lixisenatide / AVE0010 / ZP10 / Lyxumia, Exenatide / Exendin-4 / Byetta / Bydureon / ITCA 650 / AC-2993 (a 39 amino acid peptide which is produced by the salivary glands of the Gila monster), Liraglutide / Victoza, Semaglutide, Taspoglutide, Syncria / Albiglutide, Dulaglutide, rExendin-4, CJC-1 134-PC, PB-1023, TTP-054, Langlenatide / HM-1 1260C, CM-3, GLP-1 Eligen, ORMD-0901, NN-9924, NN-9926, NN-9927, Nodexen, Viador-GLP-1, CVX-096, ZYOG-1, ZYD-1, GSK-2374697, DA-3091, MAR-701, MAR709, ZP-2929, ZP-3022, TT-401, BHM-034, MOD-6030, CAM-2036, DA-15864, ARI-2651, ARI-2255, Exenatide-XTEN and Glucagon-Xten.

An exemplary oligonucleotide is, for example: mipomersen / Kynamro, a cholesterol-reducing antisense therapeutic for the treatment of familial hypercholesterolemia.
Exemplary DPP4 inhibitors are Vildagliptin, Sitagliptin, Denagliptin, Saxagliptin, Berberine.

Exemplary hormones include hypophysis hormones or hypothalamus hormones or regulatory active peptides and their antagonists, such as Gonadotropine (Follitropin, Lutropin, Choriongonadotropin, Menotropin), Somatropine (Somatropin), Desmopressin, Terlipressin, Gonadorelin, Triptorelin, Leuprolerin, Buserelin, Nafarelin, and Goserelin.

Exemplary polysaccharides include a glucosaminoglycane, a hyaluronic acid, a heparin, a low molecular weight heparin or an ultra-low molecular weight heparin or a derivative thereof, or a sulphated polysaccharide, e.g. a poly-sulphated form of the above-mentioned polysaccharides, and/or a pharmaceutically acceptable salt thereof. An example of a pharmaceutically acceptable salt of a poly-sulphated low molecular weight heparin is enoxaparin sodium. An example of a hyaluronic acid derivative is Hylan G-F 20 / Synvisc, a sodium hyaluronate.

The term "antibody", as used herein, refers to an immunoglobulin molecule or an antigen-binding portion thereof. Examples of antigen-binding portions of immunoglobulin molecules include F(ab) and F(ab')₂ fragments, which retain the ability to bind antigen. The antibody can be polyclonal, monoclonal, recombinant, chimeric, de-immunized or humanized, fully human, non-human, (e.g., murine), or single chain antibody. In some embodiments, the antibody has effector function and can fix complement. In some embodiments, the antibody has reduced or no ability to bind an Fc receptor. For example, the antibody can be an isotype or subtype, an antibody fragment or mutant, which does not support binding to an Fc receptor, e.g., it has a mutagenized or deleted Fc receptor binding region.

The terms "fragment" or "antibody fragment" refer to a polypeptide derived from an antibody polypeptide molecule (e.g., an antibody heavy and/or light chain polypeptide) that does not comprise a full-length antibody polypeptide, but that still comprises at least a portion of a full-length antibody polypeptide that is capable of binding to an antigen. Antibody fragments can comprise a cleaved portion of a full length antibody polypeptide, although the term is not limited to such cleaved fragments. Antibody fragments that are useful in the present invention include, for example, Fab fragments, F(ab')₂ fragments, scFv (single-chain Fv) fragments, linear antibodies, monospecific or multispecific antibody fragments such as bispecific, trispecific, and multispecific antibodies (e.g., diabodies, triabodies, tetrabodies), minibodies, chelating recombinant antibodies, tribodies or bibodies, intrabodies, nanobodies, small modular immunopharmaceuticals (SMIP), binding-domain immunoglobulin fusion proteins, camelized antibodies, and VHH containing antibodies. Additional examples of antigen-binding antibody fragments are known in the art.
The terms "Complementarity-determining region" or "CDR" refer to short polypeptide sequences within the variable region of both heavy and light chain polypeptides that are primarily responsible for mediating specific antigen recognition. The term "framework region" refers to amino acid sequences within the variable region of both heavy and light chain polypeptides that are not CDR sequences, and are primarily responsible for maintaining correct positioning of the CDR sequences to permit antigen binding. Although the framework regions themselves typically do not directly participate in antigen binding, as is known in the art, certain residues within the framework regions of certain antibodies can directly participate in antigen binding or can affect the ability of one or more amino acids in CDRs to interact with antigen.

Exemplary antibodies are anti PCSK-9 mAb (e.g., Alirocumab), anti IL-6 mAb (e.g., Sarilumab), and anti IL-4 mAb (e.g., Dupilumab).

The compounds described herein may be used in pharmaceutical formulations comprising (a) the compound(s) or pharmaceutically acceptable salts thereof, and (b) a pharmaceutically acceptable carrier. The compounds may also be used in pharmaceutical formulations that include one or more other active pharmaceutical ingredients or in pharmaceutical formulations in which the present compound or a pharmaceutically acceptable salt thereof is the only active ingredient. Accordingly, the pharmaceutical formulations of the present disclosure encompass any formulation made by admixing a compound described herein and a pharmaceutically acceptable carrier.

Pharmaceutically acceptable salts of any drug described herein are also contemplated for use in drug delivery devices. Pharmaceutically acceptable salts are for example acid addition salts and basic salts. Acid addition salts are e.g. HCl or HBr salts. Basic salts are e.g. salts having a cation selected from an alkali or alkaline earth metal, e.g. Na+, or K+, or Ca2+, or an ammonium ion N+(R1)(R2)(R3)(R4), wherein R1 to R4 independently of each other mean: hydrogen, an optionally substituted C1-C6-alkyl group, an optionally substituted C2-C6-alkenyl group, an optionally substituted C6-C10-aryl group, or an optionally substituted C6-C10-heteroaryl group. Further examples of pharmaceutically acceptable salts are known to those of skill in the arts.

Pharmaceutically acceptable solvates are for example hydrates or alkanolates such as methanolates or ethanolates.
Those of skill in the art will understand that modifications (additions and/or removals) of various components of the substances, formulations, apparatuses, methods, systems and embodiments described herein may be made without departing from the full scope and spirit of the present invention, which encompass such modifications and any and all equivalents thereof.
List of References:

<table>
<thead>
<tr>
<th></th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1. drug delivery device</td>
</tr>
<tr>
<td></td>
<td>2. case</td>
</tr>
<tr>
<td></td>
<td>2.1. front case</td>
</tr>
<tr>
<td></td>
<td>2.2. rear case</td>
</tr>
<tr>
<td></td>
<td>3. medicament container (syringe 3)</td>
</tr>
<tr>
<td>10</td>
<td>4. needle</td>
</tr>
<tr>
<td></td>
<td>5. protective needle sheath</td>
</tr>
<tr>
<td></td>
<td>6. stopper</td>
</tr>
<tr>
<td></td>
<td>7. needle shroud</td>
</tr>
<tr>
<td></td>
<td>8. shroud spring</td>
</tr>
<tr>
<td>15</td>
<td>9. drive spring</td>
</tr>
<tr>
<td></td>
<td>10. plunger</td>
</tr>
<tr>
<td></td>
<td>10.1. proximal plunger section</td>
</tr>
<tr>
<td></td>
<td>10.2. distal plunger section</td>
</tr>
<tr>
<td></td>
<td>11. cap</td>
</tr>
<tr>
<td>20</td>
<td>12. audible indicator</td>
</tr>
<tr>
<td></td>
<td>12.1. resilient element</td>
</tr>
<tr>
<td></td>
<td>12.1.1. proximal spring section</td>
</tr>
<tr>
<td></td>
<td>12.1.2. distal spring section</td>
</tr>
<tr>
<td></td>
<td>12.1.3. distal spring end</td>
</tr>
<tr>
<td>25</td>
<td>13. syringe support</td>
</tr>
<tr>
<td></td>
<td>13.1. first support arm</td>
</tr>
<tr>
<td></td>
<td>13.2. second support arm</td>
</tr>
</tbody>
</table>

D distal direction
M medicament
P proximal direction
Claims

1. A drug delivery device (1) comprising:
 - a plunger (10) disposed within a case (2), wherein the plunger (10) is slidable from a proximal position to a distal position within the case (2),
 - an audible indicator (12) that comprises a resilient element (12.1), wherein
 the resilient element (12.1) is in a first configuration when the plunger (10) is in the proximal position,
 the resilient element (12.1) is deflected radially outwards to a second configuration during movement of the plunger (10) from the proximal position towards the distal position, and
 the resilient element (12.1) moves from the second configuration towards the first configuration when the plunger (10) moves towards or reaches the distal position, thereby generating an audible and tactile signal.

2. The drug delivery device (1) according to claim 1,
 characterized in that the resilient element (12.1) is configured as a leaf spring comprising a proximal spring section (12.1.1) coupled to a distal spring section (12.1.2).

3. The drug delivery device (1) according to claim 2,
 characterized in that the resilient element (12.1) is S-shaped.

4. The drug delivery device (1) according to claim 2 or 3,
 characterized in that the proximal spring section (12.1.1) is fixed to the case (2), wherein the distal spring end (12.1.3) is configured as a free end of the resilient element (12.1).

5. The drug delivery device (1) according to any one of the claims 2 to 4,
 characterized in that the distal spring section (12.1.2) is bent radially inwards towards the plunger (10) with respect to the proximal spring section (12.1.1).

6. The drug delivery device (1) according to any one of the claims 2 to 5,
 characterized in that the distal spring end (12.1.3) comprises a hook bent radially outwards with respect to the distal spring section (12.1.2).
7. The drug delivery device (1) according to any one of the preceding claims, characterized in that the resilient element (12.1) is radially spaced from a distal plunger section (10.2).

8. The drug delivery device (1) according to any one of the preceding claims, characterized in that the resilient element (12.1) comprises a single metal component.

9. The drug delivery device (1) according to any one of the claims 2 to 8, characterized in that the resilient element (12.1) remains in the first configuration during movement of the plunger (10) until a proximal plunger section (10.1) abuts the distal spring section (12.1.2).

10. The drug delivery device (1) according to any one of the claims 2 to 9, characterized in that the resilient element (12.1) is bent radially outwards to the second configuration when the proximal plunger section (10.1) abuts the distal spring section (12.1.2).

11. The drug delivery device (1) according to any one of the claims 2 to 10, characterized in that the resilient element (12.1) moves towards the first configuration when the proximal plunger section (10.1) passes the distal spring section (12.1.2).

12. The drug delivery device (1) according to any one of the preceding claims, wherein the drug delivery device (1) is configured as an autoinjector device further comprising:
 - the case (2) adapted to hold a medicament container (3)
 - a needle shroud (7) telescopically coupled to the case (2),
 - a shroud spring (8) biasing the needle shroud (7) distally relative to the case (2), and
 - a drive spring (9) biasing the plunger (10) from the proximal position towards the distal position for delivering a medicament (M) from the medicament container (3).

13. The drug delivery device (1) according to claim 12, characterized in that the case (2) comprises a syringe support (13) for supporting an axial position of the medicament container (3) relative to the case (2), wherein the syringe support (13) comprises at least two support arms (13.1, 13.2).

14. The drug delivery device (1) according to claim 13, characterized in that the support arms (13.1, 13.2) are configured with different lengths.
The drug delivery device (1) according to claim 13 or 14,
characterized in that the resilient element (12.1) is coupled to the syringe support (13) in
a manner extending distally from one of the support arms (13.1, 13.2).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61M5/20 A61M5/315

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols): A61M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used): EPO-Internal , WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2011/079278 AI (BECTON DICKINSON CO) 30 June 2011 (2011-06-30) abstract; figure 8</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search: 5 August 2016

Date of mailing of the international search report: 17/08/2016

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer: Turkavci, Levent
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA 2084305 Al</td>
<td>03-10-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0532747 Al</td>
<td>24-03-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H05508098 A</td>
<td>18-11-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2080882 Cl</td>
<td>10-06-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5127906 A</td>
<td>07-07-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 9217223 Al</td>
<td>15-10-1992</td>
</tr>
<tr>
<td>Wo 2011079278 Al</td>
<td>30-06-2011</td>
<td>CN 102740903 A</td>
<td>17-10-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2515968 Al</td>
<td>31-10-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5852965 B2</td>
<td>03-02-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013526894 A</td>
<td>27-06-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016032771 A</td>
<td>10-03-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012302966 Al</td>
<td>29-11-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2011079278 Al</td>
<td>30-06-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2727617 Al</td>
<td>07-05-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2916888 Al</td>
<td>16-09-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1210071 Al</td>
<td>15-04-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015536715 A</td>
<td>24-12-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015297833 Al</td>
<td>22-10-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2014072237 Al</td>
<td>15-05-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2015062915 Al</td>
<td>07-05-2015</td>
</tr>
</tbody>
</table>