按照专利合作条约所公布的国际申请
(12)
(19) 世界知识产权组织
国际局
(43) 国际公布日
2016 年 10 月 6 日 (06.10.2016)
(10) 国际公布号
WO 2016/155564 A1
(54) 发明名称：一种逐波限流方法、装置和逆变电路
(51) 国际专利分类号：
H02M 7/483 (2007.01)
(71) 申请人：力勃特公司 (LIEBERT CORPORATION)
(84) 摘要：
(57) 摘要：
Abstract:
A cycle-by-cycle current limiting method and device, and an inverter circuit, which are used to solve the problem that when an existing cycle-by-cycle current limiting method is utilized to wave-seal an inverter, wave sealing of all of the switching tubes may lead to a high-voltage failure in a bus and may also affect the capability of the inverter in supplying power to a load. The method comprises: determining a current on an energy storage inductor in an inverter to be greater than or equal to a constant at a first current limiting point and smaller than a constant at a second current limiting point (S401); wave-sealing a main pipe in the inverter, and transmitting waves to auxiliary pipes in the inverter on the basis of the first wave-transmission timing sequence, the first wave-transmission timing sequence being a timing sequence of drive signals of the auxiliary pipes in the inverter when the current on the energy storage inductor is smaller than the current at the first current limiting point during the working process of the inverter (S402); and wave-sealing the main pipe in the inverter, and wave-sealing the auxiliary pipes in the inverter (S502).

(57) 摘要：

一种逐波限流方法、装置及逆变电路，用以解决采用现有的逐波限流方法对逆变器进行封波时，由于各个开关管全部封波，这可能会导致母线高压故障，还可能影响逆变器为负载供电的能力的问题。该方法包括：确定逆变器中的储能电感上的电流大于等于第一限流点的电流，且小于第二限流点的电流（S401）；将逆变器中的主管封波，并按照第一发波时序向所述逆变器中的辅管发波，所述第一发波时序为所述逆变器工作过程中所述储能电感上的电流大于等于第一限流点的电流时所述逆变器中的辅管的驱动信号的时序（S402）；并确定所述储能电感上电流大于等于第二限流点的电流（S601）；将所述逆变器中的主管封波，并将所述逆变器中的辅管封波（S602）。
一种逐波限流方法、装置和逆变电路

本申请要求于2015年3月31日提交中国专利局，申请号为201510150032.4，发明名称为“一种逐波限流方法、装置和逆变电路”的中国专利申请的优先权，其全部内容通过引用结合在本申请中。

5 技术领域

本发明涉及电力电子技术领域，尤其涉及一种逐波限流方法、装置和逆变电路。

10 背景技术

不间断电源、新能源发电、有源电力滤波、电机驱动等电力电子应用领域，逆变器都是十分关键的部分。目前常用的三电平逆变器如图1和图2所示，图1为T型三电平逆变器，图2为I型三电平逆变器，开关管Q1和开关管Q2为主管，开关管Q3和开关管Q4为辅管，电容C1为滤波电容，电容C2为中正母线电容，电容C3为负母线电容，电感L1为储能电感。

图1所示的T型三电平逆变器和图2所示的I型三电平逆变器均可采用图3所示的控制时序，在输出电压的正半周，即第I时段和第II时段，开关管Q1和开关管Q3互补高频斩波，开关管Q4常通，开关管Q2常断；在输出电压的负半周，即第III时段和第IV时段，开关管Q2和开关管Q4互补高频斩波，开关管Q3常通，开关管Q1常断。

目前的逆变器控制中，在逆变器的限流信号触发后，逆变器中的各个开关管均封波。以T型三电平逆变器为例，在输出电压的正半周，在限流前，电流
从正母线 BUS+ 观，开关管 Q1、电感 L1、电容 C1（负载与电容 C1 并联）回到
N 线；当电感 L1 上的电流大于等于逐波限流点的电流时，逆变器中的各个开
关管均封波，因此，电流从电感 L1、电容 C1、N 线、电容 C3、开关管 Q2 的
体二极管，回到电感 L1。由此可见，电感 L1 存储的能量存入了电容 C3，这
会使得负母线 BUS- 的电压升高，这就是导致母线高压故障关键诱因。

另外，在封波后，由于电感承受的去磁电压为 VL_1= Vbus-Vo=-705 (假设
母线电压 Vbus 为 380V，输出电压 Vo 峰值=230*1.414=325V)。此时，电感
L1 承受的电压接近两倍的母线电压，远大于等于正常工作模式下磁电压
Vbus+Vo=55，在正常工作模式下时高频斩波的开关管 Q1 的占空比为 84.6% ，
所以去磁时间 T*(1-84.6%)=0.144*T ，因此，去磁的伏秒值
V*S=-55*0.144*T=7.92*T 时，其中 T 为开关管的开关周期。而在限流后，开关管
Q1 的占空比一定低于 84.6%，甚至低至 5%，所以去磁的伏秒值为
V*S=705*T*(1-5%) =705*0.95*T=669.75*T。这会导致输出电感 L1 上的电流的
迅速下降，甚至降到零，出现很大的电流跌落，电感 L1 上的电流有很大的电
流纹波，同时输出电压也急速下降。因此，逆变器输出的电压和电流的平均值
都会很小，这会极大的影响逆变器为负载供电的能力。

综上所述，在采用现有的逐波限流的方法对逆变 T 型三电平逆变器或者 I
型三电平逆变器进行封波时，由于各个开关管全部封波，这可能会导致母线高
压故障，还可能影响逆变器为负载供电的能力。

发明内容

本发明实施例提供了一种逐波限流方法、装置及逆变电路，用以解决采用
现有的逐波限流方法对逆变器进行封波时，由于各个开关管全部封波，这可能
会导致母线高压故障，还可能影响逆变器为负载供电的能力的问题。

基于上述问题，本发明实施例提供的一种逐波限流方法，包括：

确定逆变器中的储能电感上电流大于等于第一限流点的电流，且小于第二限流点的电流；

将逆变器中的主控波，并按照第一发波时序向所述逆变器中的辅管发波；所述第一发波时序为所述逆变器工作过程中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的辅管的驱动信号的时序。

本发明实施例提供的一种逐波限流装置，包括：

确定模块，用于确定逆变器中的储能电感上电流大于等于第一限流点的电流，且小于第二限流点的电流；

限流模块，用于将逆变器中的主控波，并按照第一发波时序向所述逆变器中的辅管发波；所述第一发波时序为所述逆变器工作过程中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的辅管的驱动信号的时序。

本发明实施例提供的逆变电路，包括限流装置和逆变器；

所述限流装置用于，在确定逆变器中的储能电感上电流大于等于第一限流点的电流，且小于第二限流点的电流时，将逆变器中的主控波，并按照第一发波时序向所述逆变器中的辅管发波；所述第一发波时序为所述逆变器工作过程中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的辅管的驱动信号的时序；

所述逆变器，用于在所述限流装置的控制下将直流电转换为交流电输出。

本发明实施例的有益效果包括：

本发明实施例提供的逐波限流方法、装置及逆变电路，由于在逆变器中的
储能电感上的电流大于等于第一限流点的电流，且小于第二限流点的电流时，将逆变器中的主管封波，并按照第一发波时序向该逆变器中的辅管发波；所述第一发波时序为所述逆变器工作过程中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的辅管的驱动信号的时序，也就是说，向该逆变器中的辅管正常发波，因此，逆变器可以实现零电平续流，从而避免母线高压故障，并避免提高逆变器为负载供电的能力。

具体实施方式

附图说明

图1为现有技术中的T型三电平逆变器的结构示意图；
图2为现有技术中的I型三电平逆变电路的结构示意图；
图3为T型三电平逆变器或者I型三电平逆变器的输出电压、储能电感上的电流以及开关管的驱动信号的示意图；
图4为本发明实施例提供的逐波限流方法的流程图之一；
图5为本发明实施例提供的逐波限流方法的流程图之二；
图6为本发明实施例提供的逐波限流方法的流程图之三；
图7为采用本发明实施例提供的逐波限流方法限流和采用现有技术限流时储能电感上的电流的示意图，以及逆变器中的开关管的驱动信号的时序图；
图8为本发明实施例提供的逐波限流装置的结构图；
图9为本发明实施例提供的逆变电路结构图；
图10为限流装置位于逆变器的控制系统以外时，本发明实施例提供的逆变电路的原理框图。

具体实施方式
本发明实施例提供的逐波限流方法、装置及逆变电路，由于在逆变器中的储能电感上的电流大于等于第一限流点的电流、且小于第二限流点的电流时，将逆变器中的主管封波，并向该逆变器中的辅管正常发波，因此，逆变器可以实现零电平续流，从而避免母线高压故障，并避免提高逆变器为负载供电的能力。

下面结合说明书附图，对本发明实施例提供的一种逐波限流方法、装置及逆变电路的具体实施方式进行说明。

本发明实施例提供的一种逐波限流方法，如图4所示，包括：

5401、确定逆变器中的储能电感上电流大于等于第一限流点的电流，且小于第二限流点的电流；

5402、将逆变器中的主管封波，并按照第一发波时序向所述逆变器中的辅管发波；所述第一发波时序为所述逆变器工作过程中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的辅管的驱动信号的时序。

显然第一限流点的电流小于第二限流点的电流。

以T型三电平逆变器为例，当逆变器中的储能电感，电感L1上的电流小于第一限流点的电流时，若正母线电压BUS+、开关管Q1、电感L1、电容C1、N线构成回路，此时，若逆变器中的储能电感上的电流增大，直至大于等于第一限流点的电流、且小于第二限流点的电流，逆变器中的主管，即开关管Q1和开关管Q2封波，逆变器中的辅管，即开关管Q3和开关管Q4正常发波，电流从电感L1、电容C1、N线、开关管Q3的体二极管和开关管Q4，回到电感L1进行续流，此时的续流为零电平续流，即电感L1的左边电位点是中性点，并且电感电流不会流过负母线电容，即电容C3。由于电感电流不会流过
电容 C3，因此，负母线 BUS- 的电压不会升高，不会导致母线高压故障。

并且，由于零电平续流，因此，电感承受的去磁电压为 VL_1= -Vo=-325V（假设输出电压 Vo 峰值=230*1.414=325 V），即输出的最高电压，电感 L1 在正常工作模式下，去磁电压 -Vbus+Vo=55，在正常工作模式下时高频斩波的开关管 Q1 的占空比为大约 84.6%，所以去磁时间为 T*(1-84.6%)=0.144*T，因此，去磁的伏秒值 V*S=-55*0.144*T=7.92*T，其中 T 为开关管的开关周期。
而在逆变器中的主开关管后，零电平续流时，开关管 Q1 的占空比一定低于 84.6%，假设低至 5%，此时去磁的伏秒值为 V*S=325*T*(1-5%) =325*0.95*T=308.75*T。

因此，采用本发明实施例提供的逐波限流方法后，将逆变器中的主管封波，并向该逆变器中的辅管正常发波时储能电感的去磁时间（308.75*T），小于采用现有的逐波限流的方法，将逆变器中各个开关管均封波时储能电感的去磁时间（669.75*T），因此，采用本发明实施例提供的逐波限流方法后，将逆变器中的主管封波，并向该逆变器中的辅管正常发波时储能电感上的电流的跌落幅度，小于采用现有的逐波限流的方法，将逆变器中各个开关管均封波时储能电感的电流的跌落幅度。

图 4 所示的逐波限流方法在限流（将逆变器中的主管封波，并向逆变器中的辅管正常发波）时，可以实现零电平续流，这保证了逆变器为负载供电的能力。

第一限流点的电流可以根据逆变器所带的负载来设置。假设逆变器所带的某一路负载连接的空气开关在电流大于等于 A，且持续一定时长 t1 后，空气开关才能跳开，采用现有技术的限流点为 B，第一限流点的电流可以设置的
小于 B。在逆变器所带的负载发生短路时，采用现有技术限流时，逆变器中的储能电感上的电流大于等于 B 后，逆变器开始限流，如果限流后，电流持续大于等于 B 一段时间 t2（由于限流点的电流 B 较大，因此，逆变器长时间工作在限流状态时，损耗较大，逆变器在限流状态下的持续时间就要减小）后，为了保护逆变器中的功率器件，逆变器会停止工作，如果 t2 小于 t1，那么发生短路的负载所连接的空气开关不会跳开；如果采用本发明实施例提供的逐波限流方法限流时，第一限流点的电流小于 B，因此，逆变器可以在限流状态下多工作一会儿，这样更有利于发生短路的负载所连接的空气开关跳开，从而使得故障切除，逆变器可以工作更长的时间。

进一步地，本发明实施例提供的逐波限流方法，如图 5 所示，在 S402 之后还包括：

5501、确定所述逆变器中的储能电感上的电流小于第一限流点的电流；
5502、按照第二发波时序向所述逆变器中的主管发波；所述第二发波时序为所述逆变器工作过程中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的主管的驱动信号的时序。

进一步地，本发明实施例提供的逐波限流方法如图 6 所示，还包括：
5601、确定逆变器中的储能电感上电流大于等于第二限流点的电流；
5602、将所述逆变器中的主管封波，并将所述逆变器中的辅管封波，从而进一步保护逆变器中的功率器件。

图 7 为采用本发明实施例提供的逐波限流方法限流和采用现有技术限流时储能电感上的电流的示意图，以及逆变器中的开关管的驱动信号的时序图。图 7 以逆变器工作在输出电压的正半周期为例进行说明，并假设采用现有技术
时的限流点的电流与第一限流点的电流相等。从图7中可以看出，当储能电感上的电流大于等于第一限流点的电流时，采用本发明实施例提供的逐波限流方法限流时储能电感上的电流跌落的幅度（即t0时刻至t1时刻储能电感上的电流跌落的幅度），小于采用现有技术限流时储能电感上的电流跌落的幅度。并且，当储能电感上的电流大于等于第一限流点的电流时，无论是采用本发明实施例提供的逐波限流方法限流还是采用现有技术限流，开关管Q1和开关管Q2均封锁（t0时刻到t1时刻和t4时刻到t6时刻），采用本发明实施例提供的逐波限流方法限流时持续向开关管Q4和开关管Q3发波（t0时刻到t1时刻和t4时刻到t6时刻），采用现有技术限流时将开关管Q4和开关管Q3均封锁（t0时刻到t1时刻和t4时刻到t6时刻）。在t5时刻，储能电感上的电流增大至第二限流点的电流，开关管Q1、开关管Q2、开关管Q3和开关管Q4均封锁。在t2时刻，采用本发明实施例提供的逐波限流方法限流后的储能电感上的电流再次增大到第一限流点的电流。

上述第一限流点的电流和第二限流点的电流均小于逆变器中的开关管可耐受的最大电流值。

上述的逆变器可以为T型三电平逆变器、1型三电平逆变器、全桥逆变器以及其他的多电平逆变器。

基于同一发明构思，本发明实施例还提供了一种逐波限流装置，由于该装置所解决问题的原理与前述逐波限流方法相似，因此该装置实施可以参见前述方法的实施，重复之处不再赘述。

本发明实施例提供的逐波限流装置，如图8所示，包括：
确定模块 81，用于确定逆变器中的储能电感上电流大于等于第一限流点的电流，且小于第二限流点的电流；

限流模块 82，用于将逆变器中的主管封波，并按照第一发波时序向所述逆变器中的辅管发波；所述第一发波时序为所述逆变器中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的辅管的驱动信号的时序。

进一步地，确定模块 81 还用于，确定所述储能电感上电流大于等于第二限流点的电流；

限流模块 82 还用于，将所述逆变器中的主管封波，并将所述逆变器中的辅管封波。

进一步地，确定模块 81 还用于，在所述限流模块将逆变器中的主管封波，并按照第一发波时序向所述逆变器中的辅管发波后，确定所述储能电感上的电流小于第一限流点的电流；

限流模块 82 还用于，按照第二发波时序向所述逆变器中的主管发波；所述第二发波时序为所述逆变器工作过程中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的主管的驱动信号的时序。

其中，所述第一限流点的电流的大小是根据所述逆变器所带的负载设置的。

本发明实施例提供的逆变电路，如图 9 所示，包括限流装置 91 和逆变器 92；

限流装置 91 用于，在确定逆变器中的储能电感上电流大于等于第一限流点的电流，且小于第二限流点的电流时，将逆变器中的主管封波，并按照第一发波时序向所述逆变器中的辅管发波；所述第一发波时序为所述逆变器工作过
程中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的辅管的驱动信号的时序；

逆变器 92，用于在所述限流装置的控制下将直流电转换为交流电输出。

进一步地，限流装置 91 还用于，在所述限流装置的控制下将直流电转换为交流电输出。在确定所述储能电感上电流大于等于第二限流点的电流时，将所述逆变器中的主控管和所述逆变器中的辅控管的驱动信号进行处理，并将处理后的各个开关管的驱动信号传输至逆变器中的开关管驱动板以驱动各个开关管。

通过以上的实施方式的描述，本领域的技术人员可以清楚地了解到本发明实施例可以通过硬件实现，也可以借助软件加必要的通用硬件平台的方式来实现。限流装置可以在逆变器的控制系统的控制下实现，也可以位于逆变器的控制系统以外，限流装置可以由微控制器实现，也可以由可编程器件（如 CPLD、FPGA、DSP）实现。

当限流装置位于逆变器的控制系统的控制下时，本发明实施例提供的逆变电路的原理示意图如图 10 所示，限流装置根据储能电感上的电流对逆变器的控制系统的控制下的各个开关管的驱动信号进行处理，并将处理后的各个开关管的驱动信号传输至逆变器的开关管驱动板以驱动各个开关管。

通过以上的实施方式的描述，本领域的技术人员可以清楚地了解到本发明实施例可以通过硬件实现，也可以借助软件加必要的通用硬件平台的方式来实现。
现。基于这样的理解，本发明实施例的技术方案可以以软件产品的形式体现出来，该软件产品可以存储在一个非易失性存储介质（可以是CD-ROM、U盘、移动硬盘等）中，包括若干指令用以使得一台计算机设备（可以是个人计算机、服务器，或者网络设备等）执行本发明各个实施例所述的方法。

本领域技术人员可以理解附图只是一个优选实施例的示意图，附图中的模块或流程并不一定是实施本发明所必须的。

本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描述进行分布于实施例的装置中，也可以进行相应变化位于不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块，也可以进一步拆分成多个子模块。

上述本发明实施例序号仅仅为了描述，不代表实施例的优劣。

显然，本领域技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样，倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内，则本发明也意图包含这些改动和变型在内。
权利要求

1. 一种逐波限流方法，其特征在于，包括：

确定逆变器中的储能电感上电流大于等于第一限流点的电流，且小于第二限流点的电流；

2. 如权利要求1所述的方法，其特征在于，所述方法还包括：

确定所述储能电感上的电流大于等于第二限流点的电流；

3. 如权利要求1所述的方法，其特征在于，在将逆变器中的主管封波，并按照第一发波时序向所述逆变器中的辅管发波时，所述第一发波时序为所述逆变器工作过程中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的辅管的驱动信号的时序。

4. 如权利要求1~3任一所述的方法，其特征在于，所述第一限流点的电流的大小是可调的。

5. 一种逐波限流装置，其特征在于，包括：

确定模块，用于确定逆变器中的储能电感上电流大于等于第一限流点的电流，且小于第二限流点的电流；

限流模块，用于将逆变器中的主管封波，并按照第一发波时序向所述逆变器中的辅管发波时，所述第一发波时序为所述逆变器工作过程中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的辅管的驱动信号的时序。
器中的辅管发波，所述第一发波时序为所述逆变器工作过程中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的辅管的驱动信号的时序。

6、如权利要求5所述的装置，其特征在于，所述确定模块还用于，在所述限流模块中所述逆变器中的电流大于等于第二限流点的电流。

7、如权利要求5所述的装置，其特征在于，所述确定模块还用于，所述限流模块将逆变器中的主辅管发波，并按照第一发波时序向逆变器中的辅管发波后，所述逆变器中的主辅管的输入信号的时序。

8、一种逆变电路，其特征在于，包括逆变器和限流装置；

所述逆变装置用于，在确定逆变器中的储能电感上电流大于等于第一限流点的电流前，将逆变器中的主辅管发波，并按照第一发波时序向所述逆变器中的辅管发波，所述第一发波时序为所述逆变器工作过程中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的辅管的驱动信号的时序；

所述逆变器用于在所述逆变装置的控制下将直流电转换为交流电输出。

9、如权利要求8所述的逆变电路，其特征在于，所述逆变装置还用于：

所述逆变器的输入信号的时序为所述储能电感上电流大于等于第二限流点的电流时，将所述逆变器中的主辅管发波，并将所述逆变器中的主辅管封波。
10. 如权利要求8所述的逆变电路，其特征在于，所述限流装置还用于：

在将逆变器中的主管封波，并按照第一发波时序向逆变器中的辅管发波后，在确定所述储能电感上的电流小于第一限流点的电流时，按照第二发波时序向所述逆变器中的主管发波；所述第二发波时序为所述逆变器工作过程中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的主管的驱动信号的时序。
图3

确定逆变器中的储能电感上电流大于等于第一限流点的电流，且小于第二限流点的电流

S401

将逆变器中的主管续流，并按照第一发波时序向所述逆变器中的辅管发波；所述第一发波时序为所述逆变器工作过程中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的辅管的驱动信号的时序

S402

图4
图 5

- S401
 确定逆变器中的储能电感上电流大于等于第一限流点的电流，且小于第二限流点的电流

- S402
 将逆变器中的主要管压波，并按照第一波时序向所述逆变器中的辅助管压波；所述第一波时序为所述逆变器工作过程中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的辅助管的驱动信号的时序

- S501
 确定所述逆变器中的储能电感上的电流小于第一限流点的电流

- S502
 按照第二波时序向所述逆变器中的主要管压波；所述第二波时序为所述逆变器工作过程中所述储能电感上的电流小于第一限流点的电流时所述逆变器中的主要的驱动信号的时序

图 6

- S601
 确定逆变器中的储能电感上电流大于等于第二限流点的电流

- S602
 将所述逆变器中的主要管压波，并将所述逆变器中的辅助管压波
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H02M 7/483 (2007.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H02M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT, CNKI, WPI, EPDOC: current limiting, inverter, wave-by-wave, main tube, auxiliary tube, power tube, inductance, seal wave, lock wave, close, limit???, current, wave, invert+, overcurrent, drive+, auxiliary, main

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN 104270026 A (SUNGROW POWER SUPPLY CO., LTD.), 07 January 2015 (07.01.2015), description, paragraphs [0081]-[0097] and [0100]-[0112], and figures 5-8</td>
<td>1-10</td>
</tr>
<tr>
<td>PX</td>
<td>CN 104518999 A (EMERSON NETWORK POWER CO., LTD.), 15 April 2015 (15.04.2015), description, paragraphs [0052]-[0058] and [0063]-[0098], and figures 1-3 and 9</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>CN 103944148 A (HUAWEI TECHNOLOGIES CO., LTD.), 23 July 2014 (23.07.2014), the whole document</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>CN 101588124 A (LIEBERT CORPORATION), 25 November 2009 (25.11.2009), the whole document</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>WO 2012159668 A1 (ABB TECHNOLOGY AG. et al.), 29 November 2012 (29.11.2012), the whole document</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>JP 2002010649 A (MITSUBISHI ELECTRIC CORP.), 11 January 2002 (11.01.2002), the whole document</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

X: See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"L" earlier application or patent but published on or after the international filing date

"W" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"D" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"S" document member of the same patent family

Date of the actual completion of the international search
13 May 2016 (13.05.2016)

Date of mailing of the international search report
27 May 2016 (27.05.2016)

Name and mailing address of the ISA/CN:
State Intellectual Property Office of the P. R. China
No. 6, Xitucheng Road, Jieminqiao
Haidian District, Beijing 100088, China
Facsimile No.: (86-10) 62019451

Authorized officer
L I Wei
Telephone No.: (86-10) 61648117

Form PCT/IS A/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent Document</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 104270026 A</td>
<td>07 January 2015</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 104518699 A</td>
<td>15 April 2015</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 103944148 A</td>
<td>23 July 2014</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 101588124 A</td>
<td>25 November 2009</td>
<td>CN 101588124 B</td>
<td>10 October 2012</td>
</tr>
<tr>
<td>WO 2012159668 A</td>
<td>29 November 2012</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>JP 2002010649 A</td>
<td>11 January 2002</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/IS A/210 (patent family annex) (July 2009)
A. 主题的分类

H02M 7/483 (2007.01)

按照国际专利分类 (IPC) 或者同时按照国家分类和 IPC 两种分类

B. 检索领域

检索的最低限度文献 (标明分类系统和分类号)

H02M

包含在检索领域中的除最低限度文献以外的检索文献

在国际检索时查阅的电子数据库 (数据库的名称, 和使用的检索词 (如使用))

CNPAT,CNKI, WIPO EPDOC: 现有, 逆转, 逆变, 主管, 辅管, 功率管, 电感, 过流, 短路, 饱和, 关闭, 转动, limit???

C. 相关文件

<table>
<thead>
<tr>
<th>类型</th>
<th>引用文件，必要时，指明相关段落</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN 104270026 A (阳光电源股份有限公司) 2015 年 1 月 7 日 (2015-01-07) 说明书第 81-97 和 100-112 段，附图 5-8</td>
<td>1-10</td>
</tr>
<tr>
<td>PX</td>
<td>CN 104588699 A (艾默生网络能源有限公司) 2015 年 4 月 15 日 (2015-04-15) 说明书第 52-58 和 83-86 段，附图 1-3，9</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>CN 103944448 A (华为技术有限公司) 2014 年 7 月 23 日 (2014-07-23) 全文</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>CN 101588124 A (力特公司) 2009 年 11 月 25 日 (2009-11-25) 全文</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>JP 2002010849 A (MITSUBISHI ELECTRIC CORP.) 2002 年 1 月 11 日 (2002-01-11) 全文</td>
<td>1-10</td>
</tr>
</tbody>
</table>

* 引用文件的类型标志：
 - "A" 认为特别相关的显示了现有技术一般状态的文件
 - "P" 认为特别相关的显示了现有技术具体状态的文件
 - "W" 出于其他目的引用的文件
 - "X" 在申请日文献优先权日之前公开，未申请不公开的文献
 - "Y" 特别相关的文件，单独考虑该文件，认定要求保护的发明不具有新颖性或不具有创造性
 - "Z" 特别相关的文件，应当文件与另一篇或者多篇该类文献结合后与现有技术相关的文献
 - "Z" 该文献为对本领域技术人员为显而易见时，要求保护的发明不具有创造性

国际检索实际完成的日期

2016 年 5 月 13 日

国际检索报告寄送日期

2016 年 5 月 27 日

ISA/CN 的名称和邮寄地址

中华人民共和国知识产权局 (ISA/CN)
中国北京市海淀区蓟门桥西土城路 6 号 100088

电话号码 (86-10) 616481 17
<table>
<thead>
<tr>
<th>检索报告引用的专利文件</th>
<th>公布日（年/月/日）</th>
<th>同族专利</th>
<th>公布日（年/月/日）</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 104270026 A</td>
<td>2015年1月7日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>CN 104518899 A</td>
<td>2015年4月15日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>CN 103944148 A</td>
<td>2014年7月23日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>CN 101588124 A</td>
<td>2009年11月25日</td>
<td>CN 101588124 B</td>
<td>2012年10月10日</td>
</tr>
<tr>
<td>WO 2012159668 A</td>
<td>2012年11月28日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>JP 2002010849 A</td>
<td>2002年1月11日</td>
<td>无</td>
<td></td>
</tr>
</tbody>
</table>