Abstract:

There are provided liposomes, comprising cationic lipids, a membrane stabilizing lipid and at least one lipid conjugated to a polyethylene glycol (PEG) derivative, in particular PEG-amine, the liposomes are coated with a glycosaminoglycan, in particular, Hyaluronic Acid (HA), compositions comprising the same, methods for their preparation and uses thereof for the efficient delivery of nucleic acids, such as, siRNA molecules and for treating various conditions, such as cancer.
LIPOSOMAL FORMULATIONS FOR DELIVERY OF NUCLEIC ACIDS

FIELD OF THE INVENTION

The present invention relates to liposomes comprising cationic lipids, compositions comprising the same, methods for their preparation and uses thereof for the efficient delivery of nucleic acids, such as, siRNA molecules and for treating various conditions, such as, cancer.

BACKGROUND OF THE INVENTION

Efficient delivery of a nucleic acid to a desired target site has been the focus of many intense studies. Once introduced to the target site, the nucleic acid may exert, directly or indirectly, a biological effect in the target site. In some instances, the delivery of the nucleic acid may take use of carriers that are designed to deliver the nucleic acid to the target site. Exemplary nucleic acids that may be delivered to a target site include deoxyribonucleotides (DNA) and ribonucleotides (RNA), such as, for example, siRNA, miRNA, shRNA, Antisense RNA (AS-RNA), and the like.

For in-vitro or ex-vivo delivery of siRNA to cells, conventional transfection methods are generally used. In-vivo delivery of siRNA can be classified into two groups: localized or systemic. Whereas cellular and local delivery deal with the need for internalization, release, and accumulation of the siRNAs in the cell cytoplasm, systemic delivery in an entire animal enforces additional hurdles such as, for example, the siRNAs interaction with blood components, entrapment within capillaries, uptake by the reticuloendothelial cells, degradation by RNases, anatomical barriers (such as the liver, spleen and filtration by the kidneys), immune stimulation, extravasation from blood vessels to target tissues, permeation within the tissue, and the like.

Various methods and carriers have been suggested for systemic delivery of siRNA molecules. The methods and carriers include passive delivery of the siRNA or targeted delivery of the siRNA. Exemplary carriers described in the art include: Stable nucleic acid-lipid particles (SNALP), neutral liposomes, lipidated glycosaminoglycan particles (Gagomers), lipidoid containing liposomes, Pegylated liposomes, atelocollagen, cholesterol-siRNA, dynamic polyconjugates, PEI nanoplexes, antibody-protamine fusion proteins, aptamer-siRNAs, targeted cationic liposomes and cyclodextrin containing polycation (CDP).
(reviewed by Weinstein and Peer (2010), Schroder et al., (2010) and Shim et al. (2013)). For example, a publication by Liu et al. is directed to A Lipid Nanoparticle System Improves siRNA Efficacy in RPE Cells and a Laser-Induced Murine CNV Model. For example, a publication by Shim et al., is directed to application of cationic liposomes for delivery of nucleic acids. For example, PCT patent application publication no. WO 2011/075656 is directed to methods and compositions for delivery of nucleic acids.

Some of the nucleic acid carriers described in the art make use of hyaluronic acid that may be used as component of the particle and/or as a targeting moiety. For example: A publication by Taetz et al., is directed to Hyaluronic acid modified DOTAP/DOPE liposomes for the targeted delivery of anti-telomerase siRNA to CD44 Expressing Lung cancer cells. A publication by Lee. et al. is directed to target specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. A publication by Choi et al., is directed to self assembled hyaluronic acid nanoparticles for active tumor targeting. A publication by Peer et al., is directed to Systemic Leukocyte-Directed siRNA Delivery Revealing Cyclin D1 as an Anti-Inflammatory Target. For example, a publication by Arpicco et al., is directed to Lipid-Based Nanovectors for Targeting of CD44-Overexpressing Tumor Cells. For example, US Patent application no. US 2002/0012998 is directed to cationic liposomes. For example, PCT patent application publication no. WO 2011/013130 is directed to cell targeting nanoparticles comprising polynucleotide agents and uses thereof. Additionally, US Patent 7,544,374 is directed to lipidated glycosaminoglycan particles and their use in drug and gene delivery for diagnosis and therapy. A publication by Cohen et.al. (2015) is directed to Localized RNAi Therapeutics of Chemo-Resistant Grade IV Glioma using Hyaluronan-Grafted Lipid-Based Nanoparticles.

Nevertheless, the carriers described in the art, including carriers making use of hyaluronic acid do not address all the hurdles associated with a successful delivery of nucleic acids, such as, siRNA to a target cell, and in particular, in-vivo delivery.

There is thus a need in the art for compositions for the efficient and specific delivery of nucleic siRNA into a desired target site, wherein the carrier compositions are stable, have a long shelf life, biodegradable, amenable to industrial production processes, have high encapsulating capacity, non toxic, avoid induction of immune responses, provide enhanced protection (stability and integrity) to the siRNA encapsulated therein and are able to
efficiently deliver in-vitro and in-vivo, the siRNA to its target site, such that the siRNA is able to efficiently exert a desired effect.

SUMMARY OF THE INVENTION

The present invention provides liposomes that include a plurality of lipids comprising cationic lipid(s), membranes stabilizing lipids, and at least one lipid covalently conjugated to a poly-ethylene glycol (PEG) derivative coated with a glycosaminoglycan that is bound to the PEG derivative. According to some embodiments, the PEG derivative is a PEG-amine that bears an amino group that can bind to the carboxylic groups of the glycosaminoglycan. In some embodiments, the liposomes further comprise nucleic acid molecules. Such liposomes are useful as an effective and efficient in-vivo and in-vitro delivery system of nucleic acid molecules, such as, for example, siRNA molecules.

The present invention is based at least in part on the surprising and unexpected finding that inclusion of PEG derivatives, and in particular, PEG-amine derivatives, stabilizes the structure of the disclosed cationic liposomes and further serves as an anchor for the attachment of the glycosaminoglycan molecules that coat the surface of the liposomes. According to some embodiments, the glycosaminoglycan is hyaluronic acid (HA) of various molecular weights. As further disclosed herein for the first time, the cationic liposomes, which include the PEG derivatives are surprisingly and unexpectedly more stable as compared to similar lipid based compositions, which do not include PEG-amine or other PEG-derivatives. Moreover, as exemplified hereinbelow, the liposomes of the present disclosure advantageously have a relatively small polydispersion index (PDI). Furthermore, as exemplified hereinbelow, the liposomes of the present disclosure advantageously can be more easily controlled, such that the size of the glycosaminoglycan coated particles is not greater than about 300nm-500nm in diameter, which renders them advantageous for both in-vitro and in-vivo delivery of nucleic acid molecules. Additionally, the methods of preparation of the particles are advantageously commercially applicable, robust, cost effective and are amenable to scale up.

According to one aspect the present invention provides a cationic liposome for delivery of a nucleic acid, comprising: a) a lipid membrane comprising a cationic lipid, a membrane stabilizing lipid and PEG-amine conjugated to a lipid; b) a nucleic acid
encapsulated within the liposome; and c) a glycosaminoglycan bound to the PEG amine derivative and coating the external surface of the liposome.

According to another aspect the present invention provides a composition for delivery of a nucleic acid, comprising a plurality of liposomes, the liposomes comprising a plurality of lipids comprising cationic lipid, membranes stabilizing lipid and at least one lipid conjugated to a polyethylene glycol (PEG) derivative, wherein the liposomes are coated with glycosaminoglycan molecules, bound to the PEG derivative; and a nucleic acid encapsulated within the liposomes.

According to some embodiments, there is provided a composition comprising liposomes comprising a plurality of lipids comprising cationic lipid, membranes stabilizing lipids and at least one lipid conjugated to a polyethylene glycol (PEG) derivative; and a nucleic acid encapsulated within the liposomes, wherein the liposomes are coated with glycosaminoglycan molecules (such as HA), bound to the PEG derivative.

In some embodiments, the liposomes (the lipid phase/membranes thereof) may further comprise one or more additional lipids, selected from, but not limited to: ionized lipids and phosphatidylethanolamines.

In some embodiments, additional PEG derivatives (other than PEG-Amine) may be included in the lipids phase of the liposomes. The additional PEG derivatives may be modified with moieties that improve their binding or other properties. In some embodiments, the additional PEG derivatives may be conjugated to one or more additional molecules, such as, lipids.

In some embodiments, the PEG-Amine conjugated to the lipid may be selected from, but not limited to: 1,2-distearoyl-3-ω-glycerol-3-phosphoethanolamine-N-$\{\text{amino(polyethylene glycol)}\}$-2000) (DSPE-PEG-Amine); 1,2-Dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE)- conjugated to PEG-Amine; 1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine. DOPE- conjugated to PEG-Amine, and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) - conjugated to PEG-Amine, and the like or combinations thereof. Each possibility is a separate embodiment. In some embodiments, the PEG-Amine provides a primary amine to which additional molecules may be attached or reacted. In some embodiments, the PEG-Amine is conjugated to a lipid. In some embodiments, the PEG-amine is conjugated to a phospholipid.
In some embodiments, the additional PEG derivative may be selected from, but not limited to: PEG-DMG (with the option to include an amine group at the end of the molecule), PEG-cDMA, 3-N-(methoxy poly(ethylene glycol)2000)carbamoyl-1,2-dimyristyloxy-propylamine; PEG-cDSA, 3-N-(methoxy poly(ethylene glycol)2000)carbamoyl-1,2-distearyloxy-propylamine, and the like or combinations thereof. Each possibility is a separate embodiment.

In some embodiments, the cationic lipids may be selected from, but not limited to: DLinDMA, DLin-MC3-DMA and DLin-KC2-DMA; monocationic lipid N-[1-(2,3-Dioleoyloxy)]-N,N,N-trimethylammonium propane (DOTAP), BCAT 0-(2R-1,2-di-0-(1'Z, 9'Z-octadecadienyl)-glycerol)-3-N-(bis-2-aminoethyl)-carbamate, BGSC (Bis-guanidinium-spermidine-cholesterol), BGT (Bis-guanidinium-tren-cholesterol), CDAN (TV'-cholesteryl oxycarbonyl-1,3,7-diazanonane-1,9-diamine), CHDTAEA (Cholesteryl hemidithiodiglycolyl tris(amine(ethyl)amine), DCAT (0-(1,2-di-0-(9'Z-octadecanyl)-glycerol)-3-N-(bis-2-aminoethyl)-carbamate), DC-Cho (3β-[N'-(N',N'-dimethylaminothane)-carbamoyl] cholesterol), DLKD (0,0'-Dilauryl N-lysylaspartate), DMMK (0,0'-Dimyristyl N-lysylaspartate), DOG (Dioclylglycerol, DOGS (Diocdylamidoglycylspermine), DOGSMSO (1,2-Dioleoyl-sn-glycerol-3-succinyl-2-hydroxyethyl disulfide ornithine), DOPC (1,2-Dioleoyl-sn-glycero-3-phosphocholine), DOPE (1,2-Dioleoyl-sn-glycerol-3-phosphoethanolamine, DOSN (Dioleyl succinyl ethylthioneomycin), DOSP (Dioleyl succinyl paromomycin), DOST (Dioleyl succinyl tobramycin), DOTAP (1,2-Iolcoyl-3-trimethyl ammoniopropane), DOTMA (N[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride), DPPES (Di-palmitoyl phosphatidyl ethanolamidospermine), DDAB and DODAP. Each possibility is a separate embodiment.

In some exemplary embodiments, the cationic lipid has a pKa in the range of about 6.5-7. In some embodiments, the cationic lipid is selected from, but not limited to: DLinDMA, (with lipid pKa of 6.8), DLin-MC3-DMA (with lipid pKa of about 6.44) and DLin-KC2-DMA (with lipid pKa of about 6.7), or combinations thereof.

In some embodiments, the membrane stabilizing lipid may be selected from, but not limited to: cholesterol, phospholipids, cephalins, sphingolipids (sphingomyelins and glycosphingolipids), glycosylglycerolipids, and the like, or combinations thereof. Each possibility is a separate embodiment.
In some embodiments, the phospholipids may be selected from, but not limited to: phosphatidylcholine (PC), phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidylglycerol, diphosphatidylglycerols or any derivatives or combinations thereof. Each possibility is a separate embodiment.

In some embodiments, the Phosphatidyl ethanolamines may be selected from, but not limited to: 1,2-dilauroyl-L-phosphatidyl-ethanolamine (DLPE), 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) 1,2-Diphytanoyl-sn-glycero-3-phosphoethanolamine (DPhPE) 1,3-Dipalmitoyl-sn-glycero-2-phosphoethanolamine (1,3-DPPE) 1-Palmitoyl-3-oleoyl-sn-glycero-2-phosphoethanolamine (1,3-POPE) Biotin-Phosphatidylethanolamine, 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), Dipalmitoylphosphatidylethanolamine (DPPE)) and 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine (DSPE). Each possibility is a separate embodiment.

In some embodiments, the Phosphatidylethanolamines may be conjugated to a PEG-amine derivative.

According to further embodiments, the glycosaminoglycan may be selected from, but not limited to: hyaluronic acid (HA), Chondroitin sulfate, Dermatan sulfate, Keratan sulfate, Heparin, Heparan sulfate, as well as fragments, salts, and mixtures thereof. In some embodiments, the hyaluronic acid may be selected from, but not limited to: high molecular weight hyaluronic acid, low molecular weight hyaluronic acid, or combinations thereof, at various chain lengths. In some embodiments, the hyaluronic acid may have a molecular weight of about 1kDa to 500kDa. In some embodiments, the hyaluronic acid may have a molecular weight of about 1kDa to 1000kDa. In some embodiments, the hyaluronic acid may have a molecular weight of about 5kDa to 850kDa. In some embodiments, the hyaluronic acid may have a molecular weight of about 5kDa to 10kDa. In some embodiments, the hyaluronic acid may have a molecular weight of about 5kDa. In some embodiments, the hyaluronic acid may have a molecular weight of about 600 kDa to 1000kDa. Each possibility is a separate embodiment.

According to some embodiments, the liposomes of the present invention (i.e., including the outer glycosaminoglycan coating and a nucleic acid encapsulated within) have a particle size of about 20-500 nm in diameter.
In some embodiments, the nucleic acid encapsulated/entrapped/carried within
the liposome may be selected from DNA, RNA, modified forms thereof, and combinations
thereof. In some embodiments, the RNA may be selected from siRNA, miRNA, antisense
RNA, mRNA, modified mRNA or combinations thereof.

In further embodiments, the liposomes may further include a targeting moiety.

In additional embodiments, the liposomes are capable of delivering nucleic acid
encapsulated within the lipid structure (lipid phase/membranes) to a target site. The target
site may be selected from a cell, a tissue, an organ, and a microorganism. In some
embodiments, the target site is recognized by the glycosaminoglycan coating the particles. In
some exemplary embodiments, the target site comprises a CD44 receptor and the
glycosaminoglycan is HA.

According to some embodiments, there is provided a pharmaceutical composition
comprising a plurality of liposomes encapsulating/carrying a nucleic acid, in a dosage form
suitable for administration via a route selected from oral, parenteral and topical.

According to additional embodiments, the liposomes may be in the form of freeze
dried particles or lyophilized particles.

According to exemplary embodiments, the liposomes of the present invention may
comprise: synthetic cationic lipids, selected from, DLinDMA, DLin-MC3-DMA and DLin-
KC2-DMA; phospholipid such as, phosphatidylcholine (PC) (for example, DSPC); a
membrane stabilizing lipid, such as, cholesterol; a polyethylene glycol-amine derivative
conjugated to a lipid (such as, PE); an additional PEG derivative conjugated to a lipid (such
as DMG-PEG); a glycosaminoglycan, such as, Hyaluronic acid, conjugated to the primary
amine derived from the PEG-amine and a nucleic acid encapsulated within the liposome.

According to some embodiments, there is provided a method for treatment of cancer
in a subject in need thereof, the method comprising administering to the subject a
composition comprising the cationic liposomes of the present disclosure, which include or
encapsulate a nucleic acid, or a pharmaceutical composition comprising the same. In some
embodiments, the nucleic acid may be selected from DNA, RNA, modified forms thereof,
and combinations thereof. In some embodiments, the RNA may be selected from siRNA,
miRNA, shRNA, antisense RNA, mRNA, modified mRNA or combinations thereof. In
some embodiments, the cancer is glioma. In some embodiments, the glioma is glioblastoma
multiforme (GBM).
In some embodiments, there is provided composition comprising the cationic liposomes of the present disclosure, which include or encapsulate a nucleic acid, or a pharmaceutical composition comprising the same for use in treating cancer, such as Glioma.

According to some embodiments, there is provided a method for the preparation of a glycosaminoglycan coated liposome for delivery of a nucleic acid, the method comprising the steps of:

a) forming a lipid phase comprising the step of mixing cationic lipid, membrane stabilizing lipid and PEG-Amine conjugated to a phospholipid, in an organic solvent at a desired ratio and forming a lipid mixture,

b) generating the liposome by the step of:

introducing a nucleic acid in an aqueous solution into the lipid mixture of step a); and

c) adding an activated glycosaminoglycan to the mixture.

According to some embodiments, there is provided a method for the preparation of a glycosaminoglycan coated liposome for delivery of a nucleic acid, the method comprising the steps of:

a) forming a lipid phase comprising the steps of:

i) mixing cationic lipids, membrane stabilizing lipid and PEG-Amine conjugated to a lipid, in an organic solvent at a desired ratio and forming a lipid mixture,

ii) suspending the lipid mixture in a buffer to generate multilamellar vesicles;

b) generating the liposome by the steps of:

i) incubating the lipid phase of step a) with the nucleic acid; and

ii) adding an activated glycosaminoglycan to the mixture.

According to certain embodiments the organic solvent is selected from ethanol, chloroform, methanol, and the like.

According to certain embodiments, the buffer is an aqueous buffer. In some embodiments, the buffer is an acidic aqueous buffer. In some exemplary embodiments, the buffer is acetate buffer. In some embodiments, the buffer is MES Buffer, pH 5.5.
In some embodiments, the nucleic acid, in an acidic buffer may be added to the one or more lipids, prior to formation of multilamellar vesicles.

According to some embodiments, there is provided a method for the preparation of a glycosaminoglycan coated liposome for delivery of a nucleic acid, the method comprising the steps of:

a) forming a lipid phase comprising the steps of:

 i) mixing cationic lipids, membrane stabilizing lipid and PEG-Amine conjugated to a lipid, in an organic solvent at a desired ratio and forming a lipid mixture,

 ii) suspending the lipid mixture in a buffer to generate multilamellar vesicles;

b) generating the liposome by the steps of:

 i) incubating the lipid phase of step a) with the nucleic acid; and

 ii) adding an activated glycosaminoglycan to the mixture.

In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the figures and by study of the following detailed description.

BRIEF DESCRIPTION OF THE FIGURES

Exemplary embodiments are illustrated in the figures. Dimensions of components and features shown in the figures are generally chosen for convenience and clarity of presentation and are not necessarily shown to scale. The figures are listed below.

Fig. 1A: synthesis scheme of various synthetic cationic lipids used for the preparation of the cationic liposomes, according to some embodiments;

Fig. 1B: Schematic illustration of conjugation of glycosaminoglycan (exemplified as Hyaluronic acid (HA), 4)) to the liposomal particles (2), which encapsulate nucleic acid molecules (6), to form the coated particles (8), according to some embodiments;

Fig. 2A: an atomic force microscopy pictogram of surface characterization of exemplary liposomes (comprised of: a lipid phase comprising DLinDMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:18:1.5:0.5) and coated with 7KDa HA);
Figs. 2 B-E: pictograms of surface characterization of exemplary liposomes (comprised of: DLinMC3-DMA/DSPC/Chol/DMG-PEG/DCPE-PEG-Amine (mol/mol 50:10:38:18:1.5:0.5) alone (Fig. 2B and 2D) or conjugated to HA (5KDa MW) (Figs 2C and 2E). Fig. 2B and Fig. 2D show pictograms of TEM analysis of the DLinMC3-DMA/DSPC/Chol/DMG-PEG/DCPE-PEG-Amine (mol/mol 50:10:38:18:1.5:0.5) and DLinMC3-DMA/DSPC/Chol/DMG-PEG/DCPE-PEG-Amine (mol/mol 50:10:38:18:1.5:0.5)-HA (5KDa MW), respectively; Fig. 2C and Fig. 2E show pictograms of SEM analysis of the DLinMC3-DMA/DSPC/Chol/DMG-PEG/DCPE-PEG-Amine (mol/mol 50:10:38:18:1.5:0.5)-HA (5KDa MW), respectively. Bar scale- 1 μm.

Fig. 3: FACS scan analysis of expression of CD44 in A459 cells and LnCap cells, stained with pan-CD44 monoclonal antibody (clone IM7) or its isotype control mAb (Rat IgG2b). Ten thousand cells, analyzed at each experimental point. Data analysis was performed using FlowJo software (Tree Star, Inc. Oregon, USA). Arrows indicate A549 cells, LnCap cells and CTRL (isotype control staining).

Figs. 4A-B: Bar graphs showing the relative gene expression of PLK1 in A549 cells (CD44+ cells), transfected with formulations 1-3 (Fig. 4A) and 4-6 (Fig. 4B), respectively. Formulations 1-6 are detailed in Table 2, below. Mock=transfection without nucleic acid. siPLK1=transfection with naked siRNA molecule.

Figs. 4C-D: Bar graphs showing the relative gene expression of PLK1 in LnCap cells (CD44+ cells), transfected with formulations 1-3 (Fig. 4C) and 4-6 (Fig. 4D), respectively. Formulations 1-6 are detailed in Table 2, below. Mock=transfection without nucleic acid. siPLK1=transfection with naked siRNA molecule.

Fig. 5: A graph showing relative expression of Cyclin D1 in various tissues obtained from seven model mice (injected with A459 cells, as detailed below), 96 hours after i.v. administration of the cationic liposomes of the present invention (comprising a specific siRNA directed against Cyclin D1). The expression of the Cyclin D1 target gene was normalized to the expression of U6, eIF3a and eIF3c control genes.

Figs. 6A-B - Expression of CD44 in GBM cells. Fig. 6A - Representative FACS analysis of CD44 expression in GBM cell lines. An anti pan-CD44 mAb was used to stain three different GBM cell lines: T98G, U87MG and U251. "-" no stain; "Ctrl-" isotype control mAb; "CD44" - anti pan-CD44 mAb (clone IM7); Fig. 6B. CD44 expression in primary
glioma samples excreted from patients using immunohistochemistry analysis as detailed. Analysis score was based on CD44 scattering within the tumor site. This staining is semi-quantitatively scored; + (positive), ++ (strongly positive), or +++ (very strongly positive).

Figs. 7A-B: liposomal particles comprising HA bind specifically to glioma cells. Liposomal particles (comprising or not comprising HA) which entrap/encapsulate a Cy5-siRNA as a control marker were used and analyzed for Cy5 presence in GBM (U87MG) cells by FACS analysis. Fig. 7A shows Representative FACS histograms of Particles comprising HA (HA-LP, which specifically bind to GBM cell line (U87MG cells) and particles without HA (LP, which do not bind to the GBM glioma cell line). Fig. 7B shows Representative FACS histograms of Particles comprising HA (HA-LP), which are bound to GBM patient and of control particles (LP) which do not bind the cells.

Fig. 8 GBM cells are resistant to chemotherapy treatment with DOX or BCNU. U87MG cells were treated with varying concentrations (1µM, 10µM and 100µM) of Doxorubicin (DOX) and 1,3-bis(2-chloroethyl)-1 -nitrosourea (BCNU). The bar graphs of Fig. 8 show the survival of the cells, 48 hours after treatment.

Figs. 9A-C PLK1 induce specific cell death in Glioma cells. Fig. 9A- show bar graphs of QPCR of Polo like Kinase (PLK1) gene expression in U87MG cells. The cells were incubated with liposomal particles comprising HA (HA-LNPs) or not comprising HA (LNPs-NH2) which further encapsulated either siRNA directed against Luciferase (siLuci) or siRNA directed against PLK1 (siPLK1) under shear flow conditions to simulate CSF flow. Fig. 9B - Pictogram showing Western blot analysis of PLK1 protein expression in the cells, after treatment with HA-LP containing siPLK1. Cells were harvested after 96-144 hr and analyzed for PLK1 protein levels using PLK1 antibody. β-Tubulin was used as a positive control. Fig. 9C - Bar graphs showing cell survival (as determined by XTT assay) under the various experimental conditions. Doxorubicin (DOX), was used as a positive control. * denotes p < 0.001.

Fig. 10 - show pictogram of representative histological analysis using H&E staining on an orthotopic GBM model, to evaluate tumor size and location 12 days post tumor inoculation by stereotactic implantation of U87GM cells.

Figs. 11A-C - show representative confocal microscopy pictograms of histological sections after administration (by injection) of liposomal particles comprising HA and encompassing Cy3-siRNA into tumor site. At different time points after administration. Fig.
11A- 3 hours after administration; Fig. 11B- 6 hours after administration and Fig. 11C - 24 hours after administration, animals were sacrificed and Cy3-siRNA (light gray (originally red), one exemplary location is marked with arrow in each Figure) location was detected using confocal microscopy analysis. DAPI (gray, (originally Blue)), one exemplary location is marked with dashed arrow in each Figure) was used for nuclear staining. Bar scale - 50µm.

Figs. 12A-D - Graphs showing the in-vivo effect of silencing of a target gene (PLK1) on GBM cells and survival of GBM-bearing mice. Fig. 12A- Bar graphs showing the percentage of PLK1 gene silencing by siRNA directed against PLK1, which is encapsulated/harbored within liposomal particles comprising HA that were administered to the tumor site of tumor bearing mice. The mice (n = 10 mice / group) were treated twice by either mock transfection (Mock treated) or with the liposomal particles comprising HA (HA-LNPs) further harboring siRNA directed against Luciferase (siLuci) or siRNA directed against PLK1 (siPLK1). Tumor cells were FACS sorted via a surface marker and PLK1 mRNA level was quantified using QPCR. * denotes p < 0.001.

Fig. 12B and Fig. 12C show bar graphs of Cytokine (TNF-a, and IL-6) induction in microglia cells by siPLK1 entrapped in HA-LNPs. Mouse primary microglia cells were incubated at 37 °C for 6 h with siPLK1 entrapped in HA-LNPs at 0.05 and 0.5mg/Kg siRNA. LPS (100 ng/mL) served as a positive control. The release of TNF-a (Fig. 12B), and IL-6 (Fig. 12C) to the medium was measured (pg/mL) by ELISA (R&D systems). Data is presented as the mean ± SD of at least three independent experiments; and

Fig. 12D Line graphs showing Kaplan-Meier survival analysis of GBM-bearing orthotropic U87MG cells (n=10 / group) treated with siLuci (siControl), siPLK1 or saline. Overall 4 administrations were given at days 7 and 9 post tumor inoculation and then at days 20 and 22 post tumor inoculation.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

To facilitate an understanding of the present invention, a number of terms and phrases are defined below. It is to be understood that these terms and phrases are for the purpose of description and not of limitation, such that the terminology or phraseology of the present
specification is to be interpreted by the skilled artisan in light of the teachings and guidance presented herein, in combination with the knowledge of one of ordinary skill in the art.

As referred to herein, the terms "nucleic acid", "nucleic acid molecules" "oligonucleotide", "polynucleotide", and "nucleotide" may interchangeably be used herein.

The terms are directed to polymers of deoxyribonucleotides (DNA), ribonucleotides (RNA), and modified forms thereof in the form of a separate fragment or as a component of a larger construct, linear or branched, single stranded, double stranded, triple stranded, or hybrids thereof. The term also encompasses RNA/DNA hybrids. The polynucleotides may include sense and antisense oligonucleotide or polynucleotide sequences of DNA or RNA. The DNA or RNA molecules may be, for example, but not limited to: complementary DNA (cDNA), genomic DNA, synthesized DNA, recombinant DNA, or a hybrid thereof or an RNA molecule such as, for example, mRNA, shRNA, siRNA, miRNA, Antisense RNA, and the like. Each possibility is a separate embodiment. The terms further include oligonucleotides composed of naturally occurring bases, sugars, and covalent internucleoside linkages, as well as oligonucleotides having non-naturally occurring portions, which function similarly to respective naturally occurring portions.

The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers.

The term "plurality" as used herein is directed to include more than one component.

The terms "Glycosaminoglycans" or "mucopolysaccharides" are directed to long unbranched polysaccharides consisting of a repeating disaccharide unit. The repeating unit may include a hexose (six-carbon sugar) or a hexuronic acid, linked to a hexosamine. Members of the glycosaminoglycan family may vary in the type of hexosamine, hexose or hexuronic acid unit they contain (for example, glucuronic acid, iduronic acid, galactose, galactosamine, glucosamine) and in the geometry of the glycosidic linkage. The term Glycosaminoglycan includes natural, synthetic, or semisynthetic Glycosaminoglycan molecules. Exemplary Glycosaminoglycans include such Glycosaminoglycans as, but not limited to: Chondroitin sulfate, Dermatan sulfate, Keratan sulfate, Heparin, Heparan sulfate, Hyaluronan (also known as hyaluronic acid, hyaluronate, HA) and fragments, salts, and mixtures thereof. The term Glycosaminoglycan further includes Glycosaminoglycans that
have been chemically modified by modifications such as, but not limited to: esterification, sulfation, polysulfation, and methylation. The glycosaminoglycans, except hyaluronic acid, are naturally in the form of a protein moiety bound covalently to a polysaccharide moiety. Methods for hydrolyzing the protein-sugar bond are well known to those skilled in the art, both chemically and enzymatically.

The terms "HA" and "Hyaluronan" refer to Hyaluronic acid that can be in a free form, and in an attached form, such as an extracellular matrix component. The Term HA further relates to any of its hyaluronate salts, including, for example, sodium hyaluronate, potassium hyaluronate, magnesium hyaluronate, and calcium hyaluronate. HA polysaccharide consists of alternating N-acetyl-D-glucosamine and D-glucuronic acid residues joined by alternating beta-1, 3-glucuronidic and beta-1, 4-glucosaminidic bonds. The HA may be of low molecular weight (for example, in the range of $M_W=10^4-7.2x10^4$) and/or of High molecular weight (for example, in the range of about $MW=3.1x10^5-5x10^6$ kDa). The HA may be of varying chain length. In some embodiments, the HA has a molecular weight of about 1KDa-1000KDa. In some embodiments, the HA has a molecular weight of about 5KDa-850KDa. In some embodiments, the HA has a molecular weight of about 7KDa. In some embodiments, the HA has a molecular weight of about 800kDa. Hyaluronic acid has a high affinity for the extracellular matrix and to a variety of tumors, including those of the breast, brain, lung, skin, and other organs and tissues. HA have high affinity of CD44 cellular receptors.

As used herein, the terms "cationic liposomes", "liposomes" and "lipid-based nanoparticle(s)" may interchangeably be used. The terms relate to the cationic liposomes of the present invention, which comprise/include/made of a lipid phase (also referred to herein as membranes) which includes a combination/plurality of lipids (selected from, but not limited to: cationic lipid(s), membrane stabilizing lipid(s), phosphatidylethanolamine(s), phospholipid(s)); Polyethylene glycol derivative(s), conjugated/bound to a lipid); further coated with an activated glycosaminoglycan bound to a PEG amine derivative of the liposome; and further encapsulate nucleic acid molecules. In some embodiments, the lipid based nanoparticles (liposomes) are multilamellar vesicles. In some embodiments, the lipid based nanoparticles are modified liposomes. In some embodiments, the lipid based nanoparticles may be used as an efficient delivery system to deliver nucleic acid molecules that are encapsulated therein, to a target site.
The term "construct", as used herein, refers to an artificially assembled or isolated nucleic acid molecule which may include one or more nucleic acid sequences, wherein the nucleic acid sequences may include coding sequences (that is, sequence which encodes an end product), regulatory sequences, non-coding sequences, or any combination thereof. The term construct includes, for example, vector but should not be seen as being limited thereto.

"Expression vector" refers to constructs that have the ability to incorporate and express heterologous nucleic acid fragments (such as, for example, DNA), in a foreign cell. In other words, an expression vector comprises nucleic acid sequences/fragments (such as DNA, mRNA, tRNA, rRNA), capable of being transcribed. Many prokaryotic and eukaryotic expression vectors are known and/or commercially available. Selection of appropriate expression vectors is within the knowledge of those having skill in the art. In some exemplary embodiments, the expression vector may encode for a double stranded RNA molecule in the target site.

The term "expression", as used herein, refers to the production of a desired end-product molecule in a target cell. The end-product molecule may include, for example an RNA molecule; a peptide or a protein; and the like; or combinations thereof.

As used herein, the terms "introducing" and "transfection" may interchangeably be used and refer to the transfer of molecules, such as, for example, nucleic acids, polynucleotide molecules, vectors, and the like into a target cell(s), and more specifically into the interior of a membrane-enclosed space of a target cell(s). The molecules can be "introduced" into the target cell(s) by any means known to those of skill in the art, for example as taught by Sambrook et al. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York (2001), the contents of which are incorporated by reference herein. Means of "introducing" molecules into a cell include, for example, but are not limited to: heat shock, calcium phosphate transfection, PEI transfection, electroporation, lipofection, transfection reagent(s), viral-mediated transfer, and the like, or combinations thereof. The transfection of the cell may be performed on any type of cell, of any origin, such as, for example, human cells, animal cells, plant cells, virus cell, and the like. The cells may be selected from isolated cells, tissue cultured cells, cell lines, cells present within an organism body, and the like.

As referred to herein, the term "target site" refers to the location in which the nucleic acid is directed to and/or the site in which the nucleic acid is to exert its biological effect. In
some exemplary embodiments, the target site is a cell that may be selected from, but not limited to: a culture cell (primary cell or cell-line derived cell), and a cell within an organism body; a tissue, an organ, a microorganism (such as, for example, virus, bacteria, parasite), and the like. The organism may be any organism, such as, but not limited to: a mammal, such as human or an animal, an animal which is not a mammal (such as, for example, avian, Fish, and the like), and the like. In some exemplary embodiments, the target site is a subcellular location or cellular organelle (such as, for example, nucleus, cytoplasm, and the like). In some embodiments, the target site comprises a CD44 receptor.

The term "treating" and "treatment" as used herein refers to abrogating, inhibiting, slowing or reversing the progression of a disease or condition, ameliorating clinical symptoms of a disease or condition or preventing the appearance of clinical symptoms of a disease or condition. The term "preventing" is defined herein as barring a subject from acquiring a disorder or disease or condition.

The term "treatment of cancer" is directed to include one or more of the following: a decrease in the rate of growth of the cancer (i.e. the cancer still grows but at a slower rate); cessation of growth of the cancerous growth, i.e., stasis of the tumor growth, and, the tumor diminishes or is reduced in size. The term also includes reduction in the number of metastases, reduction in the number of new metastases formed, slowing of the progression of cancer from one stage to the other and a decrease in the angiogenesis induced by the cancer.

In most preferred cases, the tumor is totally eliminated. Additionally included in this term is lengthening of the survival period of the subject undergoing treatment, lengthening the time of diseases progression, tumor regression, and the like.

As used herein, the term "about" refers to +/-10%.

According to some embodiments of the present invention, there is provided a liposome for delivery of a nucleic acid, which comprises a lipid phase (membranes) comprising a plurality of lipids (including cationic lipid(s), membrane stabilizing lipid(s) and optionally additional lipids, such as, but limited to, ionized lipids and/or phosphatidylethanolamine(s)), and PEG-Amine derivative (conjugated to a lipid); further coated with activated glycosaminoglycan conjugated to the PEG amine derivative of the particle, and further encapsulating a nucleic acid. In some embodiments, additional PEG derivatives may be included in the particle. In some embodiments, the liposomes may be used as an efficient delivery system to deliver a nucleic acid molecule to a desired target site.
The target site may include any target site, such as, but not limited to: a cell, a tissue, an organ, a microorganism, and the like. The target site may be an in-vivo or in-vitro target site.

According to some embodiments, there is provided a cationic liposome for delivery of a nucleic acid, comprising: a) a lipid membrane comprising a cationic lipid, a membrane stabilizing lipid and PEG-amine conjugated to a lipid; b) a nucleic acid encapsulated within the liposome; and c) a glycosaminoglycan bound to the PEG amine derivative and coating the external surface of the liposome.

According to some embodiments, the present invention provides liposomes comprising a plurality of lipids comprising a cationic lipid, a membrane stabilizing lipid and at least one lipid conjugated to a polyethylene glycol (PEG) derivative, wherein the particles are coated with glycosaminoglycan molecules, bound to the PEG derivative. According to some embodiments the PEG derivative bears a PEG-amine. In some embodiments, the liposome encapsulate/carry nucleic acid molecules.

According to additional embodiments, the present invention provides a composition comprising a plurality of liposomes, the liposomes comprising a lipid phase comprising a plurality of lipids comprising a cationic lipid, a membrane stabilizing lipid and at least one lipid conjugated to a polyethylene glycol (PEG)-Amine derivative, wherein the particles are coated with glycosaminoglycan molecules, bound to the PEG-amine derivative; and further encapsulate/carry a nucleic acid.

According to yet additional embodiments, the present invention provides a composition comprising a plurality of liposomes, comprising a plurality of lipids comprising a cationic lipid, a membrane stabilizing lipid and at least one lipid conjugated to a polyethylene glycol (PEG)-Amine derivative, wherein the particles are coated with glycosaminoglycan molecules, bound to the PEG derivative and further comprising a nucleic acid molecule encapsulated within the lipid structure of the liposome.

Reference is now made to Fig. 1B, which is a schematic illustration of conjugation of glycosaminoglycan (exemplified as Hyaluronic acid (HA), 4)) to the liposomal particles (2), which encapsulate nucleic acid molecules (6), to form the coated liposomal particles (8), according to some embodiments. Further shown are the N¼ residues which can interact with the activate glycosaminoglycan.

According to some exemplary embodiments, the plurality of lipids of the lipid phase (membranes) of the liposome may be of natural or synthetic source and may be selected from,
but not limited to: cationic lipids, phosphatidylethanolamines, ionized lipids, membrane stabilizing lipids, phospholipids, and the like, or combinations thereof.

In some embodiments, the cationic lipids may be synthetic cationic lipids. In some embodiments, the cationic lipids may be selected from, but not limited to: DLinDMA, DLin-MC3-DMA and DLin-KC2-DMA; monocationic lipid N-[1-(2,3-Dioleoyloxy)]-N,N,N-trimethylammonium propane (DOTAP), BCAT 0-(2R-1,2-di-0-(1'Z, 9Z-octadecadienyl)-glycerol)-3-N-(bis-2-aminoethyl)-carbamate, BGSC (Bis-guanidinium-spermidine-cholesterol), BGTC (Bis-guanidinium-tren-cholesterol), CDAN (TV'-cholesteryl oxycarbonyl-3,7-diazanonane-1,9-diamine), CHDTAEA (Cholesteryl hemidithiodiglycolyl tris(amo
phosphoethanolamine (DOPE), 1,2-Diphytanoyl-sn-glycero-3-phosphoethanolamine (DPhPE), 1,3-Dipalmitoyl-sn-glycero-2-phosphoethanolamine (1,3-DPPE), 1-Palmitoyl-3-oleoyl-sn-glycero-2-phosphoethanolamine (1,3-POPE), Biotin-Phosphatidylethanolamine, 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), Dipalmitoylphosphatidylethanolamine (DPPE), 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) or combinations thereof. In some embodiments, the Phosphatidylethanolamines may be conjugated to a PEG-Amine derivative. Each possibility is a separate embodiment.

According to some embodiments, the liposomes (lipid phase thereof), may further include additional PEG derivatives, in addition to a PEG-Amine derivative. In some embodiments, the PEG derivatives may be conjugated to one or more additional molecules, such as, a lipid. In some embodiments, the PEG derivative is selected from, but not limited to: PEG-DMG, cDMA \(3-N\)\(-(-\text{methoxy polyethylene glycol2000)})\text{carbamoyl}1,2-dimyristyloxoy-propylamine; PEG-cDSA, \(3-N\)\(-(-\text{methoxy poly(ethylene glycol)2000)})\text{carbamoyl}1,2-distearyloxy-propylamine, or combinations thereof. Each possibility is a separate embodiment.

In some embodiments, the PEG-Amine, conjugated to a lipid, provides a primary amine to which an activated glycosaminoglycan may be covalently attached.

According to some embodiments, the ratio between the various lipids may vary. In some embodiments, the ratio is a molar ratio. In some embodiments, the ratio is a weight ratio. In some embodiments, each of the lipid groups may be at molar ratio/a weight ratio of about 1%-99%.

According to some embodiments, the weight ratio between the nucleic acid and the lipid phase may be adjusted so as to achieve maximal biological effect by the nucleic acid on the target site. In some embodiments, the ratio between the nucleic acid and the lipid phase may be 1:1. For example, the weight ratio between the nucleic acid and the lipid phase may be 1:2. For example, the weight ratio between the nucleic acid and the lipid phase may be 1:5. For example, the weight ratio between the nucleic acid and the lipid phase may be 1:10. For example, the weight ratio between the nucleic acid and the lipids phase may be 1:16. For example, the weight ratio between the nucleic acid and the lipid phase may be 1:20. In some embodiments, the weight ratio between the nucleic acid and the lipid phase is about 1:5 to 1:20 (w:w).
According to some embodiments, the glycosaminoglycan used in preparation of the liposomes may include any unmodified and/or modified glycosaminoglycan. In some embodiments, the glycosaminoglycan may be selected from, but not limited to: HA, Chondroitin sulfate, Dermatan sulfate, Keratan sulfate, Heparin, Heparan sulfate, and salts thereof. The glycosaminoglycan may be of varying lengths. In some exemplary embodiments, the glycosaminoglycan is a high molecular weight (HMW) HA. In some exemplary embodiments, the glycosaminoglycan is a low molecular weight (LMW) HA. In other exemplary embodiments, the glycosaminoglycan is a combination of HA having varying molecular weights. In some embodiments, the HA has a molecular weight of about 3-20KDa (for example, 7 KDa). In some embodiments, the HA has a molecular weight of about 600-10000KDa (for example, 800 KDa). According to some embodiments, the glycosaminoglycan may be activated prior to being reacted with the PEG-amine derivative of the lipid phase of the liposomes. For example, activation may include, but not limited to, acidifying the glycosaminoglycan, adding a crosslinker to the glycosaminoglycan, and the like. In exemplary embodiments, the crosslinker may be a carbodiimide selected from, but not limited to: EDC (EDAC, EDCI, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide), DCC (N,N'-dicyclohexylcarbodiimide), and DIC (N,N'-diisopropylcarbodiimide).

According to further embodiments, additional molecules/moieties/derivatives may be attached first to the glycosaminoglycan, prior to being reacted with the PEG-amine derivative of the liposomes. The additional molecules may be, for example, antibodies, folate, porphyrins, or lectins, and may be used for targeting of the liposomes to specific target sites. In additional embodiments, the additional targeting molecules/derivatives may be attached directly to the liposomes.

In some embodiments, the liposomes (including the glycosaminoglycan coating and a nucleic acid encapsulated within) have a particle size (diameter) in the range of about 5 to about 500 nm. In some embodiments, the liposomes have a particle size (diameter) in the range of about 10 to about 350 nm. In some embodiments, the liposomes have a particle size (diameter) in the range of about 50 to about 250 nm. In some embodiments, the liposomes have a particle size (diameter) in the range of about 10 to about 200 nm. In some embodiments, the liposomes have a particle size (diameter) in the range of about 20 to about 200 nm. In some embodiments, the liposomes have a particle size (diameter) in the range of about 50 to about 200 nm. In some embodiments, the liposomes have a particle size (diameter) in the range of about 75 to about 200 nm. In some embodiments, the liposomes...
have a particle size (diameter) in the range of about 90 to about 200 nm. In some
embodiments, the liposomes have a particle size (diameter) in the range of about 100 to about
200 nm. In some embodiments, the liposomes have a particle size (diameter) in the range of
about 120 to about 200 nm. In some embodiments, the liposomes have a particle size
(diameter) in the range of about 150 to about 200. In some embodiments, the liposomes have
a particle size (diameter) in the range of about 50 to about 150 nm. In some embodiments, the
liposomes have a particle size (diameter) in the range of about 10 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 20 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 30 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 40 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 50 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 60 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 70 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 80 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 90 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 100 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 110 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 120 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 130 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 140 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 150 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 160 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 170 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 180 nm. In some
embodiments, the liposomes have a particle size (diameter) of over 190 nm. In some
embodiments, the liposomes have a particle size (diameter) of not more than about 500 nm.

According to exemplary embodiments, the liposomes may be comprised of a cationic
lipid (such as, for example, DLinDMA, DLinMC3 or DlinKC2-DMA), cholesterol, 1,2-
Distearoyl-sn-glycero-3-phosphocholine (DSPC), PEG derivative (such as DMG-PEG) and
PEG-Amine conjugated to a lipid (such as PE-PEG-Amine); at various mol:mol ratios, and
coated with HA of low and/or higher molecular weight (such as, 3-10KDa (for example,
7KDa) and/or 500-1000KDa (for example, 800KDa)). For example, the lipid phase may be
comprised of: DLinDMA/Chol/DSPC/DMG-PEG/PE-PEG- Amine (mol/mol
40:40:18:1.5:0.5. For example, the lipid phase may be comprised of: DLinDMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:15:3:2). For example, the lipid phase may be comprised of: DLinMC3-DMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:18:1.5:0.5). For example, the lipid phase may be comprised of:

DLinMC3-DMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:15:3:2). For example, the lipid phase may be comprised of: DLin-KC2-DMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:18:1.5:0.5). For example, the lipid phase may be comprised of: DLin-KC2-DMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:15:3:2).

According to some embodiments, the lipid phase may comprise about 30-60% (mol:mol) cationic lipids. For example, the cationic lipid(s) may comprise about 40-50% (mol:mol) of the lipid phase.

According to some embodiments, the lipid phase may comprise about 20-70% (mol:mol) membrane stabilizing lipids. For example, the membrane stabilizing lipids may comprise about 40-60% of the lipid phase. In some embodiments, more than one type of membrane stabilizing lipid may be used in the lipid phase. For example, the membrane stabilizing lipid may include cholesterol (being about 30-50% (mol:mol) of the lipid phase), and a phospholipid (such as, for example, DSPC), that may be about 5-15% (mohmol) of the lipid phase.

According to some embodiments, the lipid phase may comprise about 0.25-3% (mol:mol) of PEG-amine (conjugated to a lipid). For example, the PEG-amine may comprise about 0.5-1.5% of the lipid phase.

According to some embodiments, if present, an additional PEG-derivative (conjugated to a lipid) may comprise about 0.5-10% of the lipid phase composition. For example, the additional PEG derivative may comprise about 1.5-5% of the lipid phase.

According to some embodiments, there is provided a method for the preparation of a glycosaminoglycan coated liposome for delivery of a nucleic acid, the method comprising one or more of the steps of:

a) forming a lipid phase comprising the step of mixing cationic lipid, membrane stabilizing lipid and PEG-Amine conjugated to a phospholipid, in an organic solvent at a desired ratio and forming a lipid mixture,
b) generating the liposome by the step of:

introducing a nucleic acid in an aqueous solution into the lipid mixture of step a);

and

c) adding an activated glycosaminoglycan to the mixture.

In some embodiments, the lipids are suspended in an acidic aqueous buffer.

According to some embodiments, there is provided a method for the preparation of a glycosaminoglycan coated liposome for delivery of a nucleic acid, the method comprising one or more of the steps of:

a) forming a lipid phase comprising the steps of:

i) mixing cationic lipid, membrane stabilizing lipid and PEG-Amine conjugated to a lipid, in an organic solvent at a desired ratio and forming a lipid mixture,

ii) suspending the lipid mixture in a buffer to generate multilamellar vesicles;

b) activation of a glycosaminoglycan, comprising: i) dissolving a glycosaminoglycan in an acidic buffer and adding a crosslinker to form an activated glycosaminoglycan;

and

c) generating the liposome by the steps of:

i) incubating/mixing/suspending the lipid phase of step a) with the nucleic acid;

and

ii) adding the activated glycosaminoglycan to the mixture.

In some embodiments, the lipids are suspended in an acidic aqueous buffer. In some embodiments, the acidic aqueous buffer is selected from, but not limited to: MES Buffer (for example, 50mM - 100mM, pH 5.5), Acetate buffer (for example, 100mM, pH 4.0), and the like. In some embodiments, the nucleic acid may be added in an acidic buffer, such as, for example, but not limited to: MES Buffer (for example, 50mM - 100mM, pH 5.5), Acetate buffer (for example, 100mM, pH 4.0). In some embodiments, the nucleic acid may be mixed with the lipids, prior to formation of the multilamellar vesicles. In such embodiment, the nucleic acid (for example, in acetate buffer) and the lipids (for example, in 100% ethanol) may both be introduced to a microfluidizer mixer to form the particles encapsulating the nucleic acid.
According to some embodiments, the method for the preparation of the liposomes may include various modifications to finely adjust the components of the composition, as well as the ratio between the components, so as to obtain the most effective composition. The modifications may include, for example, such parameters as, but not limited to: the specific lipids used for the formation of the lipid composition, the ratio between the lipids of the lipid compositions, the identity of the nucleic acid to be encapsulated, the ratio between the nucleic acid and the lipid composition, the specific glycosaminoglycan used, the ratio between the glycosaminoglycan and the lipid composition, the pH at which reactions are performed, the temperatures at which reactions are performed, the conditions at which the reactions are formed, the time length of various steps, and the like, or any combination thereof.

According to some embodiments, the method for the preparation of the liposomes of the present invention may beneficially result in uniformly distributed lipid composition particle size.

According to some embodiments, the liposomes formed by the methods of the present invention may be lyophilized or dehydrated at various stages of formation.

According to some embodiments, the liposomes of the present disclosure (i.e., including a glycosaminoglycan coating and nucleic acid encapsulated within) can be used in the treatment of various pathological conditions in an organism in need thereof.

According to some embodiments, the liposomes may be administered as is. In some embodiments, the liposomes may be administered in a solution. In some embodiments, the liposomes may be formulated to a suitable pharmaceutical composition to be administered by any desired route of administration. Exemplary routes of administration include such routes as, but not limited to: topical, oral or parenteral. Depending on the intended mode of administration, the compositions used may be in the form of solid, semi-solid or liquid dosage forms, such as for example, tablets, suppositories, pills, capsules, powders, liquids, suspensions, or the like, preferably in unit dosage forms suitable for single administration of precise dosages. The pharmaceutical compositions may include the cationic liposomes, a pharmaceutical acceptable excipient, and, optionally, may include other medicinal agents, pharmaceutical agents, carriers, adjuvants, and the like. It is preferred that the pharmaceutically acceptable carrier be one which is inert to the nucleic acid encapsulated
within the particles and which has no detrimental side effects or toxicity under the conditions of use. In some embodiments, the administration is localized.

In some embodiments, injectable formulations for parenteral administration can be prepared as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol or the like. In addition, if desired, the pharmaceutical compositions to be administered may also contain minor amounts of non-toxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents and the like, such as for example, sodium acetate, sorbitan monolaurate, triethanolamine oleate, and the like.

Aqueous injection suspensions may also contain substances that increase the viscosity of the suspension, including, for example, sodium carboxymethylcellulose, sorbitol, and/or dextran. Optionally, the suspension may also contain stabilizers. The parenteral formulations can be present in unit dose or multiple dose sealed containers, such as ampules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, such as, for example, water, for injections immediately prior to use. In some embodiments, parenteral administration includes intravenous administration.

In other embodiments, for oral administration, a pharmaceutically acceptable, non-toxic composition may be formed by the incorporation of any of the normally employed excipients, such as, for example, mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, sodium crosscarmellose, glucose, gelatin, sucrose, magnesium carbonate, and the like. Such compositions include solutions, suspensions, tablets, dispersible tablets, pills, capsules, powders, sustained release formulations and the like. Formulations suitable for oral administration can consist of liquid solutions such as effective amounts of the compound(s) dissolved in diluents such as water, saline, or orange juice; sachets, lozenges, and troches, each containing a predetermined amount of the active ingredient as solids or granules; powders, suspensions in an appropriate liquid; and suitable emulsions. Liquid formulations may include diluents such as water and alcohols, (such as, for example ethanol, benzyl alcohol, and the polyethylene alcohols), either with or without the addition of a pharmaceutically acceptable surfactant, suspending agents, or emulsifying agents.

In determining the dosages of the liposomes to be administered, the dosage and frequency of administration is selected in relation to the pharmacological properties of the specific biologically active agent encapsulated within the particles.
In some exemplary embodiments, a liposome of the invention comprising a nucleic acid may be used in the treatment of various pathological conditions, depending on the identity of the nucleic acid, the target site, and the like. Exemplary pathological conditions may be selected from, but not limited to: various types of cancer, various infections (such as, for example, viral infection, bacterial infection, fungal infection, and the like), autoimmune diseases, neurodegenerative diseases, inflammations (for example, inflammatory bowel diseases such as Crohn's disease, colitis, and the like), eye related syndromes and diseases, pulmonary related diseases, gastro-intestinal related syndromes and diseases, and the like.

In some exemplary embodiments, a liposome comprising a nucleic acid, such as, for example, siRNA, miRNA, shRNA, and the like, may be used in the treatment of various pathological conditions, depending on the identity of the nucleic acid, the target site, and the like. In some embodiments, the nucleic acid encapsulated within the liposome may be a nucleic acid capable of inducing silencing of a target gene. In some embodiments, the target gene may be any gene, the expression of which is related to the condition to be treated. In some embodiments, the target gene may be a gene selected from, but not limited to: growth factors (such as EGFR, PDGFR), genes related to angiogenesis pathways (such as VEGF, Integrins), genes involved in intracellular signaling pathways and cell cycle regulation (such as PBK/AKT/mTOR, Ras/Raf/MAPK, PDK1, CHK1, PLK1, Cyclins). In some embodiments, a combination of nucleic acids, each having one or more target sites may be encapsulated within the liposomal particles.

According to some embodiments, exemplary pathological conditions that may be treated by the liposome particles comprising a nucleic acid may be selected from, but not limited to: various types of cancer, various infections (such as, for example, viral infection, bacterial infection, fungal infection, and the like), autoimmune diseases, neurodegenerative diseases, inflammations (for example, inflammatory bowel diseases such as Crohn's disease, colitis, and the like), eye related syndromes and diseases, pulmonary related diseases, gastro-intestinal related syndromes and diseases, and the like.

In some exemplary embodiments, the liposomes comprising a nucleic acid (such as, siRNA or miRNA or shRNA), may be used for the treatment of cancer. Cancer is a disorder in which a population of cells has become, in varying degrees, unresponsive to the control mechanisms that normally govern proliferation and differentiation. Cancer refers to various types of malignant neoplasms and tumors, including metastasis to different sites. Non-

In some exemplary embodiments, the nucleic acid (such as, siRNA, miRNA or shRNA) that may be used for the treatment of cancer are directed against a target gene, which is involved in the regulation of cell cycle. In some exemplary embodiments, the target gene may be Polo-like Kinase 1 (PLK), Cyclin D1, CHK1, Notch pathway genes, PDGFRA, EGFRvIII, PD-L1, RelB, and the like.

According to some embodiments, there is thus provided a method for the treatment of cancer, comprising the step of administration to a subject in need thereof the liposomes of the present disclosure or a pharmaceutical compositions comprising the same. In some embodiments, there is provided the use of the liposomes of the present disclosure or a pharmaceutical composition comprising the same, for the treatment of cancer.

In some exemplary embodiments, the cancer is carcinoma. In some embodiments, the cancer is adeno-carcinoma.

In some embodiments, the cancer is Glioma. In some embodiments, the glioma is selected from: Astrocytoma (including juvenile pilocytic astrocytoma, low grade astrocytoma, anaplastic astrocytoma, or glioblastoma); Ependymoma; Mixed Glioma (Oligoastrocytoma); Oligodendroglioma; oligodendroglioma; Optic Glioma and Gliomatosis Cerebri. In some exemplary embodiments, the cancer is Grade IV Astrocytoma (Glioblastoma Multiforme (GBM)). In some embodiments, the GBM is chemo-resistant GBM.

In some embodiments, the liposomal particles of the present disclosure or a pharmaceutical compositions comprising the same, may be administered is a localized manner. For example, when treating GBM, the particles, or pharmaceutical compositions comprising the same may be administered directly to the GBM site.

In some embodiments, the localized administration of the particles or compositions comprising the same, into brain regions (such as, to primary neurospheres of GBM subjects) is able to withstand the flow of the cerebrospinal fluid and exert its effect by delivering a therapeutic nucleic acid to the target site.
In some embodiments, the liposomes of the present disclosure or a pharmaceutical composition comprising the same encapsulate therein an siRNA nucleic acid. In some embodiments, the siRNA is an siRNA molecule directed against Polo-like kinase 1 (PLK1) (that is, the siRNA is capable of reducing or eliminating expression of the PLK1 gene product). In some embodiments, the siRNA is an siRNA directed against a Notch pathway gene or PDGFRA for treating proneural GBM. In some embodiments, the siRNA is an siRNA directed against EGFRvIII for treating Classic GBM. In some embodiments, the siRNA is an siRNA directed against PD-L1 for treating mesenchymal GBM. In some embodiments, the siRNA is an siRNA directed against RelB (an oncogenic driver of tumor growth and invasion) for mesenchymal GBM.

In some embodiments, there is provided a method of treating GBM, the method comprising localized administration of the liposomes of the present disclosure or a pharmaceutical compositions comprising the same, wherein the liposomes encapsulate an siRNA nucleic acid directed against PLK1.

In some embodiments, there is provided a method of treating proneural GBM, the method comprising localized administration of the liposomes of the present disclosure or a pharmaceutical compositions comprising the same, wherein the liposomes encapsulate an siRNA nucleic acid directed against notch pathway genes of PDGFRA.

In some embodiments, there is provided a method of treating classic GBM, the method comprising localized administration of the liposomes of the present disclosure or a pharmaceutical compositions comprising the same, wherein the liposomes encapsulate an siRNA nucleic acid directed against EGFRvIII.

In some embodiments, there is provided a method of treating mesenchymal GBM, the method comprising localized administration of the liposomes of the present disclosure or a pharmaceutical compositions comprising the same, wherein the liposomes encapsulate an siRNA nucleic acid directed against PD-L1 and/or RelB.

In some embodiments, combinational treatment with multiple nucleic acid types encapsulated within the liposomes may be used to provide an enhanced beneficial effect.

In some embodiments, when treating a condition, administration of the liposomes carrying a nucleic acid may be performed in combination with one or more additional treatments. For example, when treating cancer, such combination therapy may be used to increase tumor susceptibility to chemotherapy and irradiation. In some exemplary
embodiments, for treating cancer, silencing nucleic acids (such as, siRNA, miRNA, shRNA) that target genes such as, MGMT, Cx43, HeRl/EGF-R, VEGF, BCL-2 and Toll-like receptors may be used and may further provide synergistic responses. For example, targeting the MDR-1 (multi drug resistance) gene can increase anti-cancer drugs treatment efficiency, as this gene's overexpression is correlated with drug resistance in cancer, such as, GBM.

In some embodiments, when treating a condition, repeated administration of the liposomes carrying a nucleic acid may be performed, wherein the dosages administered and the composition of the nucleic acid encapsulated therein may be identical, similar or different. In some embodiments, the administration may be prolong (such as over the course of 1-120 hours.

While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced be interpreted to include all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope.

The following examples are presented in order to more fully illustrate certain embodiments of the invention. They should in no way, however, be construed as limiting the broad scope of the invention. One skilled in the art can readily devise many variations and modifications of the principles disclosed herein without departing from the scope of the invention.
EXAMPLES

Example 1 - Preparation of cationic liposomes encapsulating siRNA

Preparation of cationic lipids:
Three types of cationic lipids were synthesized: DLinDMA, DLin-MC3-DMA and DLin-KC2-DMA with lipid PKa of 6.7 (KC2 and MC3) and 6.8 (DLinDMA). Cationic lipids were synthesized essentially as summarized in Fig. 1.

DLinDMA: To a solution of 3- (Dimethylamino)-1,2-propanediol (140 mg, 1.2 mmol) and 95% sodium hydride (NaH, 322 mg, 20 mmol) were stirred in benzene (10 mL) under argon for 30 min. The mesyl ester of linoleic acid (1 g, 3 mmol) was added and the reaction refluxed under argon for 18 h. The reaction mixture was then cooled in an ice bath while quenching via the slow addition of ethanol. Following dilution with a further 50 mL of benzene, the mixture was washed with distilled water (2X100 mL) and brine (100 mL), using ethanol (-20 mL) to aid phase separation if necessary. The organic phase was dried over anhydrous sodium sulphate and evaporated. The crude product was purified on a silica gel column eluted with chloroform containing 0-5% methanol. Column fractions were analyzed by thin layer chromatography (TLC) (silica gel, chloroform/methanol 9:1 v/v) and fractions containing pure product were collected and concentrated to obtain 400 mg of pure product DLinDMA as pale yellow oil.

2,2-Dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]dioxolane (DLin-KC2-DMA):

Synthesis of Dilinoleyl Ketone: To a mixture of dilinoleyl methanol (2.0g, 3.8 mmol) and anhydrous sodium carbonate (0.2g) in 100 mL of CH2C12 was added pyridinium perchlorochromate (PCC, 2.0g, 9.5 mmol). The resulting suspension was stirred at room temperature for 60 minutes. Ether (300 mL) was then added into the mixture, and the resulting brown suspension was filtered through a pad of silica gel (300 mL). The silica gel pad was further washed with ether (3 x 200 mL). The ether filtrate and washes were combined. Evaporation of the solvent gave 3.0 g of an oily residual as a crude product. The crude product was purified by column chromatography on silica gel (230-400 mesh, 250 mL) eluted with 0-3% ether in hexanes. This gave 1.8 g (90%) of dilinoleyl ketone. Synthesis of 2,2-Dilinoleyl-4-(2-hydroxyethyl)-[1,3]dioxolane: A mixture of dilinoleyl ketone (527 mg, 1.0 mmol); 1,2,4-butanetriol (technical grade, ca. 90%, 236 mg, 2 mmol); and pyridinium p-toluenesulfonate (50 mg, 0.2 mmol) in 50 mL of toluene was refluxed under nitrogen overnight with a Dean-Stark tube to remove water. The resulting mixture was cooled to room temperature. The organic phase was washed with water (2 x 30 mL), then brine (50 mL), and
dried over anhydrous Na2SO4. Evaporation of the solvent resulted in a yellowish oily residual (0.6 g). The crude product was purified by column chromatography on silica gel (230-400 mesh, 100 mL) with dichloromethane as eluent. This afforded 0.5 g of pure 2,2-Dilinoleyl-4-(2-hydroxyethyl)-[1,3]-dioxolane. Synthesis of 2,2-Dilinoleyl-4-(2-methanesulfonyl)-[1,3]-dioxolane: To a solution of 1 (500 mg, 0.81 mmol) dry triethylamine (218 mg, 2.8 mmol) in 50 mL of anhydrous CH2C12 was added methanesulfonyl anhydride (290 mg, 1.6 mmol) under nitrogen. The resulting mixture was stirred at room temperature overnight. The mixture was diluted with 25 mL of CH2C12. The organic phase was washed with water (2 x 30 mL), then brine (50 mL), and dried over anhydrous Na2SO4. The solvent was evaporated to afford 510 mg of yellowish oil. The crude product (2,2-Dilinoleyl-4-(2-methanesulfonyl)-[1,3]-dioxolane) was used in the following step without further purification. To the above crude material, under nitrogen 20 mL of dimethylamine in THF (2.0 M) was added. The resulting mixture was stirred at room temperature for 6 days. An oily residual was obtained upon evaporation of the solvent. Column chromatography on silica gel (230-400 mesh, 100 mL) with 0-5% methanol gradient in dichloromethane as eluent resulted in 380 mg of the product DLin-KC2-DMA as pale oil.

The following cationic liposomes were prepared:
The following formulations (lipid phase compositions) were prepared in 100% Ethanol:

1. DLinDMA /Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:18:1.5:0.5).
5. DLin-KC2-DMA /Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:18:1.5:0.5).

(Chol=Cholesterol; DSPC= 1,2-Distearoyl-sn-glycero-3-phosphocholine; DMG-PEG=1,2-Dimyristoyl-sn-glycerol, methoxypolyethylene Glycol; PE-PEG-Amine 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)].
The formulations listed above were prepared as follows: After carefully dissolving each lipid phase formulation in 100% Ethanol, while stirring, the lipids were added into 50 mM Sodium Acetate buffer, (pH 4) to generate multilamellar vesicles (total 33% Ethanol). The formed multilamellar vesicles were then extruded with 80 nm diameter filters (Whatman) into small unilamellar vesicles.

siRNAs molecules (1.5mg/mL in acetate buffer pH 4.0 - stock) at 1:16 (wt/wt) siRNA:Lipid ratio was added to form 33% Ethanol and 66% Acetate Buffer.

Alternatively, lipids were mixed with ethanol (100%), siRNAs molecules were resuspended in acetate buffer, and both were introduced to a microfluidizer mixer (Precision NanoSystems, Vancouver, BC) to form the particles. Briefly, one volume of lipid mixture, prepared in ethanol and three volumes of siRNA (1:16 w/w siRNA to lipid, containing acetate buffer solutions) were mixed using dual syringe pump (Model S200, kD Scientific, Holliston, MA) to drive the solutions through the micro mixer at a combined flow rate of 2 ml/minute (0.5mL/min for ethanol and 1.5mL/min for aqueous buffer).

The particles (prepared according to any of the preparation methods) were dialyzed against PBS pH 7.4 overnight to remove ethanol. In order to remove un-encapsulated siRNA, Amicon 100K MW cutoff or a Mono Q column were used.

Conjugation of Hyaluronic acid (HA) to the particles

Low and High MW sizes of HA (LifeCore) were used for the conjugation:
Low MW HA 5kDa or 7Kda
High MW HA - 800KDa

HA was conjugated to the PEG amine by an amine coupling method: First, carboxylic groups of HA (Lifecore Biomedical LLC, USA) were activated by EDC/sulfo-NHS (1:1 ratio EDC:COOH, 1:1 ratio EDC/sulfo-NHS) in DIW for 1-2h (HA (0.3mg, 5X10^5 mmol) was dissolved in water and added with (0.2mg, 10X10^5 mmol) and sulfo-NHS (0.3mg, 10X10^5 mmol). The lipid particles (amine-functionalized particles) were then added in PBS (pH 7.8-8.2). The reaction continued for 2-3h followed by dialysis against PBS (pH 7.4) at RT, for 24 hours, with a 12-14KDa cutoff to remove excess HA and EDC and unbound small HA (5-7KDa) or by three washings using ultracentrifugation to remove unbound 800KDa HA. The ratio between HA to Amine was maintained at 5 to 1 (HA:Amine). The final HA/lipid ratio was typically 75 µg HA/µmol of lipid as assayed by ³H-HA (ARC, Saint Louis, MI).
Example 2 - Characterization of various cationic liposomal formulations

siRNA entrapment efficiency assay:

siRNA encapsulation efficiency was determined by the Quant-iT RiboGreen RNA assay (Invitrogen) as previously reported (Landeman-Milo et al. 2012 Cancer Letters and Peer D. et al. Science 2008). Briefly, the entrapment efficiency was determined by comparing fluorescence of the RNA binding dye RiboGreen in the different formulations samples, in the presence and absence of Triton X-100. In the absence of the detergent, fluorescence can be measured from accessible (unentrapped) siRNA only. Whereas, in the presence of the detergent, fluorescence is measured from total siRNA, thus, the % encapsulation is described by the equation:

\[
\% \text{ siRNA encapsulation} = \left[1 - \left(\frac{\text{free siRNA conc.}}{\text{total siRNA conc.}}\right)\right] \times 100.
\]

Transmission Electron Microscopy (TEM) analysis: The particles were analyzed by transmission electron microscopy for their size and shape. A drop of aqueous solution containing LNPs (with or without HA) were placed on a carbon coated copper grid and air-dried. The analysis was carried out on Joel 1200 EX (Japan) transmission electron microscopy.

Scanning Electron Microscopy (SEM): Particles containing aqueous sample (with or without HA) were dried on silica wafer and analysis was carried out on Quanta 200 FEG (USA) scanning electron microscopy.

The results of the entrapment assay are presented in Table 1. The formulation of each composition is indicated.

<table>
<thead>
<tr>
<th>Formulation (composition of the particles)</th>
<th>Size (nm)</th>
<th>Polydispersity Index (PDI)</th>
<th>% siRNA entrapment/encapsulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLinDMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:18:1.5:0.5)</td>
<td>129.2</td>
<td>0.08</td>
<td>95</td>
</tr>
<tr>
<td>DLinDMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:18:1.5:0.5) - coated with 7KDa HA</td>
<td>175.9</td>
<td>0.201</td>
<td>96</td>
</tr>
<tr>
<td>Lipid Complex</td>
<td>PEG-Amine Composition</td>
<td>Charge</td>
<td>HA Conjugation</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------</td>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>DLinDMA/Chol/DSPC/DMG-PEG/PE-192.3 0.245 95</td>
<td>(mol/mol 40:40:18:1.5:0.5) coated with 800KDa HA</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>DLinDMA/Chol/DSPC/DMG-PEG/PE-113.3 0.05 95</td>
<td>(mol/mol 40:40:15:3:2)</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>DLinDMA/Chol/DSPC/DMG-PEG/PE-189.4 0.224 94</td>
<td>(mol/mol 40:40:15:3:2) coated with 7KDa HA</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>DLinDMA/Chol/DSPC/DMG-PEG/PE-194.6 0.243 97</td>
<td>(mol/mol 40:40:15:3:2) coated with 800KDa HA</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>DLinMC3-DMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine 117.40 0.067 94</td>
<td>(mol/mol 40:40:18:1.5:0.5)</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>DLinMC3-DMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine 145.5 0.134 91</td>
<td>(mol/mol 40:40:18:1.5:0.5)-HA (7KDa)</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>DLinMC3-DMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine 190.5 0.223 92</td>
<td>(mol/mol 40:40:18:1.5:0.5)-HA (800KDa)</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>DLinMC3-DMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine 104.9 0.045 94</td>
<td>(mol/mol 40:40:15:3:2)</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>DLinMC3-DMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine 123.4 0.123 92</td>
<td>(mol/mol 40:40:15:3:2)- HA (7KDa)</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>DLinMC3-DMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine 197.5 0.223 94</td>
<td>(mol/mol 40:40:15:3:2)- HA (800KDa)</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>DLin-KC2-DM A/Chol/DSPC/DMG-PEG/PE-PEG-Amine 89.40 0.03 98</td>
<td>(mol/mol 40:40:18:1.5:0.5)</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>DLin-KC2-DM A/Chol/DSPC/DMG-PEG/PE-PEG-Amine 108.4 0.118 98</td>
<td>(mol/mol 40:40:18:1.5:0.5)-HA (7KDa)</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>DLin-KC2-DM A/Chol/DSPC/DMG-PEG/PE-PEG-Amine 174.4 0.149 98</td>
<td>(mol/mol 40:40:18:1.5:0.5)</td>
<td>98</td>
<td></td>
</tr>
</tbody>
</table>
The results suggest a very high percentage (over 91%) of entrapment of the nucleic acid molecule within the particles.

Dynamic light scattering for characterization of the particles was performed to identify surface characterization of the particles. Surface characterization was done for the first formulation of Table 1, that comprises DLinDMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:18:1.5:0.5) - coated with 7KDa HA. A pictogram of the particles, obtained from Atomic force microscopy is shown in Fig. 2A. The results show shows disperse, round shape particles with Young Modulus of 43.1 MPa.

In contrast, similar formulations that did not include PEG-Amine in the formulation, but rather PE (ranging from 20% mole, 10%, 5%, 2%, 1% or 0.5%) could not form particles as determined by visual inspection: which only shows aggregate that sediment. Further, a typical dynamic light scattering size distribution could not be obtained because of high noise to signal ratio, indicating the there are no particles stable enough with such formulations.

Analysis of exemplary formulations which include DLinMC3-DMA/DSPC/Chol/DMG-PEG/DCPE-PEG-Amine (mol/mol 50:10:38:18:1.5:0.5) alone or conjugated to HA (5Kda MW), are shown in Figs. 2B-E. Fig. 2B and 2D show pictograms of TEM analysis of the DLinMC3-DMA/DSPC/Chol/DMG-PEG/DCPE-PEG-Amine (mol/mol 50:10:38:18:1.5:0.5) and

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DLin-KC2-DM A/Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:18:1.5:0.5)-HA (800KDa)</td>
<td>78.9</td>
<td>0.045</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLin-KC2-DM A/Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:15:3:2)</td>
<td>110.4</td>
<td>0.109</td>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLin-KC2-DM A/Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:15:3:2)-HA (7KDa)</td>
<td>175.4</td>
<td>0.229</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLinMC3-DMA/DSPC/Chol/DMG-PEG/DCPE-PEG-Amine (mol/mol 50:10:38:18:1.5:0.5)</td>
<td>79 ± 3</td>
<td>0.13</td>
<td>94 ± 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLinMC3-DMA/DSPC/Chol/DMG-PEG/DCPE-PEG-Amine (mol/mol 50:10:38:18:1.5:0.5)-HA (5KDa)</td>
<td>100.7 ± 3</td>
<td>0.2</td>
<td>80 ± 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DLinMC3-DMA/DSPC/Chol/DMG-PEG/DCPE-PEG-Amine (mol/mol 50:10:38:18:1.5:0.5)-HA (5KDa MW), respectively. Fig. 2C and 2E show pictograms of SEM analysis of the DLinMC3-DMA/DSPC/Chol/DMG-PEG/DCPE-PEG-Amine (mol/mol 50:10:38:18:1.5:0.5) and DLinMC3-DMA/DSPC/Chol/DMG-PEG/DCPE-PEG-Amine (mol/mol 50:10:38:18:1.5:0.5)-HA (5KDa MW), respectively. The zeta potential of the formulations were 3.8+1 without conjugated HA and -8.2+0.7 after conjugation to HA. As shown in Figs. 2B-E, the particles without the HA conjugated thereto have globular shapes and round surfaces whereas the particles with the HA exhibit a flower-like shape on the particles.

All together, the results indicate that the inclusion of PEG-Amine in the formulation enables the formation of stable, evenly distributed particles. The results further suggest that inclusion of additional PEG derivatives further improves the condensation and stability of the liposomes. The results further demonstrate that the presence of the nucleic acid in the liposome enables the formation of the particles.

Example 3: Efficient knockdown of target gene by siRNA encapsulated within the liposomes in target cells harboring CD44.

Material and methods:

Cell lines:

Human lung adenocarcinoma cells (A549) expressing CD44 and human prostate cancer (LnCap) cells lacking CD44 (by flow cytometry) were purchased from American Type Culture Collection (ATCC). Cells were grown in RPMI-1640 supplemented with 15% FBS and 1% antibiotics as recommended by ATCC.

siRNA molecules: PLK1 siRNA molecules were synthesized according to the following published sequence: 5'-UmGmAAGAAGAUCmAmCCmCUCCUUmA-3' (Sense) (SEQ ID NO: 1). To enhance siRNA stability, the sense and antisense strands were modified by 2'-0-methylation (m).

Luciferase siRNA molecules (siLuci): Sense strand: 5' cuuAcGcuGAGuAcuucGAdTsdT (SEQ ID NO: 6)' Anti-Sense strand: 5' UCGAAAGuACuAGCGuAAGdTsdT (SEQ ID NO: 7).

2'-OMe modified nucleotides are in lower case, and phosphorothioate linkages are represented by "s".
Transfection in human A549 and LnCap cells: Cells were grown in RPMI-1640 with 15% FBS and 1% antibiotics at 37°C. Cells were plated in polystyrene coated 12-well plate with a density of 7X10^4 cells/well on the day of transfection. Different formulations of the lipid phase and/or free (naked) siRNA at 0.37 µM concentration in complete medium were added and incubated for 48h or 72h. Total RNA was isolated after 24h and 48h and PCR was performed to calculate the amount of PLK1 transcript present in cancer cells after transfection.

Quantitative real time PCR analysis: Total RNA was isolated using EZ-RNA Kit (Biological Industries) after 24h or 48h of incubation with different nanoparticle formulations and naked siRNA, according to the manufacturer's protocol. The mRNA was transcribed into cDNA using the High-Capacity cDNA Reverse Transcription Kits (SWIFT-Max Pro, ESCO). Thereafter, 0.625 ng of cDNA was subjected to quantitative real-time PCR analyses targeting Plk1 and GAPDH (as the house keeping gene). Primer sequences were: Plk1 forward 5'-ACCAGCACGTCTAGGATTC-3' (SEQ ID NO:2), Plk1 reverse 5'-CAAGCAACATGCGTAGG-3' (SEQ ID NO:3), GAPDH Forward 5'-TCAGGCTTCCATTTGGC (SEQ ID NO:4), GAPDH reverse 5'-GAGCATGGATCGGAAAACCA (SEQ ID NO:8). Syber green was used to detect PCR products. Analysis was performed using the StepOne Real-Time PCR System and the StepOne v2.0 software (Applied Biosystems). Relative gene expression values were determined by the AACT method using the StepOne v2.0 software (Applied Biosystems). Data are presented as the fold difference in Plk1 expression normalized to the housekeeping gene GAPDH as endogenous reference and relative to the untreated control cells.

Cell viability assay: In vitro cell viability was measured by XTT assay. XTT reagent (Biological Industries) was added to the cells 48h after treatment with the liposomal formulations and incubated for 4h according to manufacturer protocol. Absorbance was measured at 450-500 nm wave length by micro plate reader (BioTEk, Israel).

Particle size measurement: The sizes of the liposomes were measured in PBS by dynamic light scattering using Zetasizer Nano (Malvern, UK).
In order to test the in-vitro effect of the liposomes in reducing expression of a target gene in a target cell (harboring CD44), human lung adenocarcinoma cell line A549 expressing high amounts of CD44 and the non-CD44-expressing cells LNCAP (human prostate cancer) as specificity control, were used.

Statistical analysis
Differences between two means were tested using an unpaired, two-sided Student’s t-test. Differences between treatment groups were evaluated by one-way ANOVA test of SPSS software. Kaplan-Meier survival analysis was preformed with a GraphPad Prism version 5.0b.

CD44 was surface labeled with a pan-CD44 monoclonal antibody (clone IM7) or its isotype control mAb (Rat IgG2b) as previously reported (Landesman-Milo D. et al., Cancer Letters 2012). Samples were collected and analyzed using a FACSscan CellQuest (Becton Dickinson, Franklin Lakes, NJ). Ten thousand cells were analyzed at each experimental point. Data analysis was performed using FlowJo software (Tree Star, Inc. Oregon, USA).

Fig. 3 shows representative CD44 expression in the tested cells (A549 cells, LnCap cells and CTRL (isotype control staining)).

Next, the cells were transfected with the following lipid-based compositions (formulations) (Table 2):

<table>
<thead>
<tr>
<th>No.</th>
<th>Formulation (composition of the liposome)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DLinDMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:18:1.5:0.5)</td>
</tr>
<tr>
<td>2</td>
<td>DLinDMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:18:1.5:0.5) - coated with 7KDa HA</td>
</tr>
<tr>
<td>3</td>
<td>DLinDMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:18:1.5:0.5) - coated with 800KDa HA</td>
</tr>
<tr>
<td>4</td>
<td>DLin-KC2-DMA/Chol/DSPC/DMG-PEG/PE-PEG-Amine (mol/mol 40:40:18:1.5:0.5)</td>
</tr>
</tbody>
</table>
The results presented in Figs. 4A-B, show the relative gene expression of PLK1 in A549 cells, transfected with formulations 1-3 and 4-6, respectively.

The results presented in Figs. 4C-D, show the relative gene expression of PLK1 in LnCap cells, transfected with formulations 1-3 and 4-6, respectively.

The results show that the HA coating provides the liposomes targeting capabilities, as formulations which have an HA coating on the surface of the particles are specifically directed to target cells harboring CD44, but not to cells, which do no carry the CD44 receptor. The results further demonstrate that the tested formulations indeed capable of efficiently delivering siRNA to the target cell, whereby the siRNA is able to exert a biological effect by reducing expression of a target gene. In addition, the results show that HA having higher molecular weight (800KDa) provides enhanced effect on target cells as compared to low molecular weight (7KDa) HA.

Example 4- Specific knockdown of a target gene expression in A549 human xenograft model upon single i.v. injection

A549 cells (human lung adenocarcinoma cells (at 3x10^6 cells) were implanted above the femoral joint in nude mice (Nu/Nu), upon three washing with HBSS (biological industries, Israel) to establish A459 tumor model.

The mice were then intravenously injected with various particle compositions and 96 hours post the single i.v. injection, the effect on gene expression of the target gene (Cyclin D1) was assayed.

Cyclin D1- siRNA at a concentration of 2 mg /Kg was formulated in the MC3-PEG-Amine -HA (High Mw 800kDa) and i.v. administrated to the mice.

siRNA sequences against the cyclin D1 (CCND1) gene NM_053056 (siDl, sense strand: GUAGGACUCUCAUUCGGGATT (SEQ ID NO: 5)) were designed and screened by Alnylam Pharmaceuticals (Cambridge MA, USA) and previously published (See Weinstein
S. et al. PLOS ONE, 2012). Control genes to which the expression of the Cyclin D1 target gene was normalized to were U6, eIF3a and eIF3c.

The Intravenous injected particle composition was done in saline, supplemented with 5% glucose at day 0, 3 and 6 at IOQuE volume. Bodyweight was monitored every 2 days.

The results are presented in Fig. 5, which shows the relative expression of Cyclin D1 in various tissues of the mice. 96 hours after administration of the particles. The results demonstrate a specific reduction in expression of the Cyclin D1 in the tumor, but not in the lungs, spleen or kidneys, 96 hours post injection. About 75% reduction in expression of Cyclin D1 can be observed 96 hours post the last i.v. injection in the tumor. The results demonstrate the specificity of the particles to tumors, but not to other, non tumor cells. The results further show the efficiency of the particles in the in-vivo delivery of a functional nucleic acid to a target cell, which can effectively affect the expression of target gene in a target cell.

Example 5. Specific interaction of liposomal particles conjugated to HA with Glioblastoma (GBM) cells

Materials and Methods:
Cell lines: human glioblastoma cell lines, T98G, U251 and U87MG (WHO grade IV) were used as model cells for GBM. The selected cell lines represent a spectrum of different genetic lesions. All cell lines were grown in monolayer and maintained in high-glucose (4.5 g/L) Dulbecco’s modified Eagles medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin, and 2 mM-glutamine (Biological Industries). Cells were incubated at 37°C with 5% CO2 and were subcultured twice weekly.

Flow cytometry analysis and Immunohistochemistry: Flow cytometry of cell surface CD44 antigens was performed as described by Coehn et.al. (2014). Briefly, Alexa Fluor 488-conjugated rat anti-human CD44 (clone 1M7) from Biolegend (San Diego, CA, USA) or IgG2b isotype control were incubated with 0.5 \(10^6\) GBM cells (0.25ug per \(10^6\) cells) on ice for 30 min followed by washing with PBS. Data was acquired using FACSCalibur with CellQuest software (Becton Dickinson, Franklin Lakes, NJ, USA). Data analysis was performed using the FlowJo software (Tree Star, Inc., Oregon, USA).

Eight paraffin blocks of GBM patients and a single Gliosarcoma block were identified by examination of hematoxylin and eosin stained slides. From each tumor block, 4 \(\mu m\) thick
sections were cut onto positive charged slides and used for IHC. The slides were warmed up to 60°C for 1 hour and after that processed to a fully automated protocol (Benchmark XT, Ventana medical system, Inc., Tucson, AZ, USA) and the related Ventana reagents were used, using standard manufacturer's instructions. Briefly, after sections were dewaxed and rehydrated, a CC1 standard Benchmark XT pretreatment (60 min) for antigen retrieval was selected (Ventana Medical Systems). Sections were then incubated 40 min with a prediluted mouse anti- human CD44 (08-0184 from Zymed, San Francisco, CA, USA). Detection was performed with ultraView detection kit (Ventana Medical Systems) and counterstained with hematoxylin (4 min) (Ventana Medical Systems). After the run on the autostainer was completed, slides were dehydrated in 70% ethanol, 95% ethanol and 100% ethanol for 10 second each ethanol. Before coverslipping, sections were cleared in xylene for 10 seconds and mount with Entellan. Analysis score was based on CD44 scattering within the tumor site. This staining is semiquantitatively scored; + (positive), ++ (strongly positive), or +++ (very strongly positive).

The expression of CD44 in various human GBM cell lines and primary human glioma samples (obtained from GBM patients) was tested. To this aim, three representative GBM cell lines were used: T98G, U87MG and U251 (all have been reported to be resistant to chemotherapy treatment). Pan anti-CD44 mAb (monoclonal antibody) was used to detect the expression of CD44 in all three-cell lines and, as shown in the FACS analysis presented in Fig. 6A, all cell lines were shown to have a high CD44 expression. Next, the expression of CD44 in primary glioma cells excreted from human patients was tested using immunohistochemistry. Representative staining pictograms are shown in the right hand panel of Fig. 6B. Further shown in Fig. 6B is a list of patient's samples with semi-quantitative analysis of CD44 expression.

Next, the liposomal particles (comprising Dlin-MC3-DMA, DSPC, Choi, DMG-PEG and DSPE-PEG amine at 50:10:38:1.5:0.5 mole ratio, total lipid concentration 9.64mM)) were tested for their binding ability to glioma cells. The particles entrapped a Cy5-siRNA (1:16 w/w siRNA to lipid) as a control marker (whereby identification thereof in the target cells is indicative of association of the particles and the cells). The results presented in Figs. 7A-B demonstrate that particles comprising HA (HA-LP (HA-lipid based particles)) can interact/bind U87GM cells (Fig. 7A) as well as primary GBM cells form GBM patients (Fig. 7B), whereas particles that do not include the HA (LP (lipid particles)).
Example 6- Induction of cell death in Glioblastoma (GBM) cells lines using the HA-liposomal particles

Glioblastoma cells are known to be resistant to chemotherapy. To verify the resistance of U87MG cells to chemotherapy, two classical chemotherapeutic agents (namely, doxorubicin (DOX) and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)) were tested for their effect on the cells.

Briefly, U87MG cells were seeded onto 96 multi-well plates (1 x 10^4 cells/well) in 200ul culture medium. Twenty-four hours later, the medium was replaced by treatment medium, which contained different concentrations of DOX (Teva pharmaceutical, Israel) and BCNU (MW 214, purchased from Calbiochem (San Diego, CA)) for 48 h followed by an extensive wash with PBS and a standard XTT survival assay.

The results presented in **Fig. 8** demonstrate that even at the highest dose of 100μM under static culturing conditions for 48 h, cell survival was > 50%, thereby confirming their intrinsic resistance to chemotherapy.

In order to overcome/ by pass the resistance mechanism of the cells, which involved extrusion of large molecules from the cells by eflux pumps, a specific cell cycle inhibitor, for example, in the form of a nucleic acid, such as, siRNA may be used.

To this aim, specific siRNA molecules (siPLK1) directed against Polo-like Kinase 1 (PLK1), which is a serine-threonine protine kinase involved in cell cycle regulation, a or control siRNA (siLuciferase; siLuc) were entrapped in the HA-LP or in the control particles (LP) lacking the targeting ligand. The experiment was performed under shear flow conditions as described by Shulman et.al. (2009), in order to simulate the cerebrospinal fluid (CSF) flow for 10 minutes (min), followed by incubation in static condition with fresh media. 72 h post transfection, cells were analyzed for mRNA levels of PLK1. Briefly, The mRNA levels of polo-like kinase 1 (PLK1 gene) in the cells was quantified by real-time PCR. 72 h post transfection (10 min under shear flow and additional 72 h under static conditions with full fresh media). Total RNA was isolated using the EzRNA RNA purification kit (Biological industries, Beit Haemek, Israel), and 1 μg of RNA from each sample was reverse transcribed into cDNA using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA), Quantification of cDNA (5 ng total) was performed on the step one Sequence Detection System (Applied Biosystems, Foster City, CA), using syber green
(Applied Biosystems). GAPDH was chosen as a housekeeping gene. Primer sequences are as detailed in Example 3.

The results presented in Figs. 9A-B demonstrate that HA-coated particles induced a robust gene silencing under shear flow both at the mRNA and PLK1 protein level (Figs. 9A and 9B, respectively). PLK1 protein was silenced for 96 h and recovery of the protein level was observed at 144 h post transfection (Fig. 9B). This silencing effect was specific since HA-coated LNPs netraping a control siRNA (siLuci) did not reduce the expression of PLK1 mRNA in the cells. In addition, the robust silencing observed with siPLK1 delivered via HA-LNPs was translated to effective cell death (Fig. 9C). The control particles (LP), which do not include HA, did not reduce mRNA levels of PLK1 when siPLK1 or siLuci were entrapped therein, nor did they induce cell death. The results suggest that the HA coating on the LNPs surface bind with high affinity to CD44 expressed on the GBM cells, even under shear flow and that the internalization process is fast and efficient.

Example 7- in-vivo delivery of nucleic acid into a glioma established model

Material and Methods:
U87MG orthotopic GBM model establishment: Cells were maintained in Dulbecco's modified Eagle's medium supplemented with 10% bovine serum and incubated at 37°C in a humidified atmosphere containing 5% carbon dioxide/95% air. On the day of implantation, monolayer cell cultures were harvested using a 0.05% trypsin/ethylene ediamine tetra acetic acid solution. Cells were counted, resuspended in 3 µl of PBS. 5 x 10^5 U87MG cells were injected into each animal in a 3 µl volume.

Animal Hosts
4- to 6-week-old female nude mice (strain nu/nu), each weighing ~ 20 g, were used for this study. All procedures were performed in accordance with regulations of the Animal Care and Use Committee of the Sheba Medical Center. The mice were housed in groups of five in cages within a standardized barrier facility and maintained on a 12-hour day/night cycle at 23°C. Animals were given free access to laboratory chow and water. All instruments were sterilized before the procedure and sterile small-animal surgical techniques were used. The mice were allowed to feed until the time of surgery. Animals were anesthetized by
intraperitoneal injection of ketamine/xylazine solution (200 mg ketamine and 20 mg xylazine in 17 ml of saline) at a dosage of 0.15mg/10 g body weight.

Identification of implantation site. The animal's head was stabilized manually by holding it with one finger behind the interaural line. The skin was prepared with povidone iodine solution and then a 2- to 3-mm-long incision was made just to the right of midline and anterior to the interaural line so that the coronal and sagittal sutures can be identified; the bregma is located. The entry site was marked at a point 2.5 mm lateral and 1 mm anterior to the bregma. This point is chosen because it is located directly above the caudate nucleus, which has been shown to be a highly reliable intracranial site for tumor engraftment.

Drill Hole Placement. Using a small hand-controlled twist drill that is 1 mm in diameter a drill hole was made in the animal's skull at the entry point. The drill bit penetrates the dura and thereby opens it.

Cell Injection With Hamilton Syringe. The 3-µl cell suspension was drawn up into the cuffed of the 26-gauge needle of a Hamilton syringe. Using a stereotactic apparatus the needle of the Hamilton syringe was slowly lowered into the central skull hole made by the twist drill. Based on the entry point and the depth of needle penetration, it is certain that the cells are injected into the caudate nucleus. The cell suspension was slowly injected (typically over 5 minutes) into the mouse's brain. After the entire volume of the cell suspension was injected, the needle was manually removed. A suture was placed to close the scalp. The mice were kept warm until they recover from anesthesia and were allowed to move around freely until the time of intratumoral injection of the therapeutic interventions. In the interim the injected tumor cells proliferate and establish themselves as intraparenchymal xenografts. The technique of intratumoral injection mimics the technique of tumor cell implantation, except that HA-LNPs were delivered into the established xenograft in 4 doses of 3 µl, each. The first doses were given at days 7 and 9 and the next disease were given at days 20 and 22. Mice were monitored for global toxicity changes including changes in bodyweight that were not observed for the entire period of the experiment.

As detailed above, Human U87G cells were used to generate an orthotopic xenograft model in athymic BALA/c nu/nu mice. This serves as a model for studying the growth,
biology, and treatment of human gliomas. A suspension of 3ul of 5X10^5 U87G cells was injected into each animal. Histological analysis was performed at day 12 (post inoculation). A representative histology pictogram is presented in Fig. 10.

Next, 3µl of 0.2mg/Kg body Cy3-siRNAs encasulated within the particles (HA-LP) or via LP were administered (injection) directly into the tumor vicinity at day 20 after tumor inoculation. The mice (n=6) were sacrificed at 3 hours, 6 hours and 24 hours (h) post administration. Brains were sectioned and immediately taken into confocal microscopy analysis to identify the distribution of the Cy3-siRNAs within the tumor at different time points. Representative data of the results after administration of the HA-LP particles are presented in the pictograms shown in Figs. 11A-C. Detection of Cy3 signal was observed only in HA-LP treated mice in all sections and increased with time from 3, 6 to 24 h post administration (Fig. 11A, Fig. 11B and Fig. 11C, respectively). When administered with LP (i.e. particles without HA), no Cy3 signal was detected in the tumor tissue. This may be attributed to the shear flow by the cerebral spinal fluid (CSF) which may cause such particles not to adhere to the U87MG cells, whereas particles comprising HA, adhere to the cells due to the specific bininding of HA to the CD44 expressed on the cells.

Example 8- in-vivo Silencing of PLK1 in U87MG cells prolongs the survival of GBM-bearing mice.

Materials and Methods:
Preparation of single cell suspension from brain tissue: Neural tissues were dissociated to single-cell suspension by enzymatic degradation using the GentleMACS Dissociator and neural tissue dissociation kit (Miltenyi Biotech), according to the manufacturer protocol. Briefly, mice were perfused with either HBSS or PBS and brains were removed and weighed in order to adjust the buffers and enzyme mix to the amount of tissue. A pre-warmed enzyme mix was added to the tissue and incubated with agitation at 37 °C. The tissue was mechanically dissociated and the suspension was applied to a 70µm strainer. Myelin was removed using Myelin Removal Beads II (Miltenyi Biotech) as it can interfere with flow cytometric analysis. Cells were processed immediately and stained with anti-human CD44v6-FITC (non-cross reactive with mice, clone MCA1730F, Bio-Rad) in order to identify the U87MG cells. Cells were incubated on ice for 30min, then washed twice and subjected to FACS sorting using FACSaria III (BD). Sorted cells were moved directly into EzRNA RNA
purification kit (Biological industries, Beit Haemek, Israel) and analyzed for PLK1 mRNA levels using QPCR as detailed above.

The GBM orthotopic model was further used to test the in vivo silencing of PLK1 gene expression upon local administration (0.5mg/Kg body) of the particles encapsulating siRNA against PLK1 (as in example 6), at day 20 and 22 of tumor inoculation. In order to identify the tumor cells from other types of cells in the brain, tumor tissue was taken out, a single cell suspension was made and the cells were incubated with a surface marker expressed on U87MG cells (CD44v6). An anti-human CD44v6-FITC antibody (non-cross reactive with mice) was incubated on ice for 30min, then washed twice and subjected to FACS sorting. FACS (FACSAria III, BD) sorted cells were analyzed for PLK1 mRNA levels using QPCR. As shown in the bar graphs of Fig. 12A, a robust knockdown of 80% was observed in U87MG CD44v6+ cells treated with siPLK1 that was delivered with the HA-LP ("HA-LNPs"). No effect on PLK1 expression was observed when control siRNA (siLuci) was used.

Next, in order to show that siRNA entrapped in the particles does not trigger a pro-inflammatory response, primary mouse cells were isolated from the brain and the cells were sorted (by FACS) using an anti-mouse CD11b mAb, in order to obtain mouse microglia cells, as these cells may be involved in a potential local inflammatory response when siRNAs are delivered. The cells were incubated with siPLK1 entrapped/encapsulated in the particles (HA-LP) at two doses (0.05 and 0.5mg/Kg siRNA) and probed for TNF-ot and IL-6 levels 6 hours post incubation with the primary cells. LPS was used as a positive control. As shown in Figs. 12B-C, no induction of the proinflammatory cytokines (TNF-ot and IL-6, respectively) in the low concentration was observed, and a very mild induction was detected in the higher concentration. Thus, these results support the finding that the particles comprising HA (HA-LP) protect siRNA in a very efficient manner and do not trigger a proinflammatory response even when directly interacting with CD11b+ cells.

It has been shown that robust silencing of PLK1 induced tumor regression in different tumors implanted in nude or SCID mice (Sakurai et.al. (2014). Thus, the orthotopic GBM model was used to examine the effect of PLK1 silencing on the survival of the mice (Fig. 12D). Into the GBM tumor site, 3μl (per administration) of 0.5mg/Kg body of particles encapsulating siPLK1 or siLuci were locally administered at days 7, 9, 20 and 22 post tumor inoculation. The median survival of Mock-treated mice was determined to be 33 days. Mice
receiving 4 administrations of HA-LP encapsulating siLuc had a median survival of 34.5 days and those receiving HA-LP encapsulating siPLK1 had prolong survival with a remarkable 60% survival at day 95 post tumor inoculation according to Kaplan-Meier survival analysis (p = 0.0012, between siPLK1 and siLuci treated group). This is the longest ever reported survival of mice in this orthotopic GBM model. In addition, this is the first time therapeutic siRNAs are being used in localized treatment to achieve therapeutic benefit in an orthotopic model of GBM.
REFERENCES

CLAIMS

What is claimed is:

1. A liposome for delivery of a nucleic acid comprising:
 a) lipid membrane comprising cationic lipid, membrane stabilizing lipid and PEG-amine conjugated to a phospholipid;
 b) nucleic acid encapsulated within the liposome; and
 c) glycosaminoglycan bound to said PEG amine.

2. The liposome of claim 1, wherein the cationic lipid is selected from: DLinDMA, DLin-MC3-DMA and DLin-KC2-DMA; monocationic lipid N-[l-(2,3-Dioleoyloxy)]-N,N,N-trimethylammonium propane (DOTAP), BCAT 0-(2R-l ,2-di-0-(l'Z, 9'Z-octadecadienyl)-glycerol)-3-N-(bis-2-aminoethyl)-carbamate, BGSC (Bis-guanidinium-spermidine-cholesterol), BGTC (Bis-guanidinium-tren-cholesterol), CDAN (N'-cholesteryl oxycarbonyl 1-3,7-diazanonane-1,9-diamine), CHDTAEA (Cholesteryl hemidithidiglycolyl tris(amoio(ethyl)amine), DCAT (0-(l,2-di-0-(9'Z-octadecanoyl)-glycerol)-3-N-(bis-2-aminoethyl)-carbamate), DC-Choi (3β [N-(N', N'-dimethylaminoethane)-carbamoyl] cholesterol), DLKD (O,O'-Dilauryl N-lysylaspartate), DMKD (O,O'-Dimyristyl N-lysylaspartate), DOG (Diocylglycerol, DOGS (Diocyldecamidoglycylspermine), DOGSOS (1,2-Dioleoyl-sn-glycero-3-succinyl-2-hydroxyethyl disulfide ornithine), DOPC (1,2-Dioleoyl-sn-glycero-3-phosphocholine), DOPE (1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine, DOSN (Diocetyl succinyl ethylthioneomycin), DOSP (Diocetyl succinyl paromomycin), DOST (Diocetyl succinyl tobramycin), DOTAP (1,2- Uicoloyl-3-trimethyl ammoniopropane), DOTMA (NTI-(2,3-Dioleloxy)propyl]-N,N,N-trimethylammonium chloride), DPPES (Di-palmitoyl phosphatidyl ethanolamidosperrnine), DDAB and DODAP.

3. The liposome of claim 1, wherein the membrane stabilizing lipid is selected from the group consisting of cholesterol, phospholipids, cephalins, sphingolipids and glycosyglycerolipids.

4. The liposome of claim 1 further comprising phosphatidylamine selected from: 1,2-dilauroyl-L-phosphatidyl-ethanolamine (DLPE), 1,2-Dioleoyl-sn-glycero-3-
phosphoethanolamine (DOPE), 1,2-Diphytanoyl-sn-glycero-3-phosphoethanolamine (DPhPE), 1,3-Dipalmitoyl-sn-glycero-2-phosphoethanolamine (1,3-DPPE), 1-Palmitoyl-3-oleoyl-sn-glycero-2-phosphoethanolamine (1,3-POPE), Biotin-Phosphatidylethanolamine, 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), and Dipalmitoylphosphatidylethanolamine (DPPE).

5. The liposome of claim 1, further comprising one or more additional PEG derivative.

6. The liposome of claim 5, wherein the additional PEG derivative is selected from: DMG-PEG, PEG-cDMA, 3-N-(-methoxy polyethylene glycol)2000)carbamoyl-1,2-dimyristoxy-propylamine; PEG-cDSA, 3-N-(-methoxy poly(ethylene glycol)2000)carbamoyl-1,2-distearoxy-propylamine, or combinations thereof.

7. The liposome of claim 1, wherein the glycosaminoglycan is selected from the group consisting of: hyaluronic acid (HA), Chondroitin sulfate, Dermatan sulfate, Keratan sulfate, Heparin, Heparan sulfate, salts, and mixtures thereof.

8. The liposome of claim 7, wherein the hyaluronic acid is selected from a hyaluronic acid having a molecular weight in the range of about 5-20KD, a hyaluronic acid having a molecular weight in the range of about 600-1000KDa, and combinations thereof.

9. The liposome of claim 1, having a diameter of about 50nm to about 300 nm.

10. The liposome of claim 1, wherein the nucleic acid is selected from DNA, RNA and modified forms thereof.

11. The liposome of claim 10, wherein the RNA is selected from siRNA, miRNA, shRNA, antisense RNA, mRNA, modified mRNA and combinations thereof.

12. A composition comprising a plurality of liposomes according to claim 1.

13. The composition of claim 12, wherein the liposomes are capable of delivering the nucleic acid to a target site.

14. The composition of claim 13, wherein the target site is selected from a cell, a tissue, an organ, and a microorganism.
15. The composition of claim 14, wherein the target cell harbors a CD44 receptor.

16. A pharmaceutical composition comprising the composition of claim 12 in a dosage form suitable for administration via a route selected from oral, parenteral and topical.

17. The composition of claim 16, wherein the administration is localized.

18. A method for treating cancer, comprising the step of administering to a subject in need thereof a pharmaceutical composition according to claim 16.

19. The method of claim 18, wherein the cancer is selected from Adenocarcinoma and Glioblastoma Multiforme (GBM).

20. Use of the pharmaceutical composition of claim 16 for treating cancer.

21. A method for the preparation of a glycosaminoglycan coated liposome for delivery of a nucleic acid, the method comprising the steps of:

 a) forming a lipid phase comprising the step of mixing cationic lipid, membrane stabilizing lipid and PEG-Amine conjugated to a phospholipid, in an organic solvent at a desired ratio and forming a lipid mixture,

 b) generating the liposome by the step of:

 introducing a nucleic acid in an aqueous solution into the lipid mixture of step a);

 and

 c) adding an activated glycosaminoglycan to the mixture.

22. The method of claim 21 wherein the lipid particle has a diameter of about 100 nm to about 300 nm.

23. The method of claim 21, wherein the cationic lipid is selected from: DLinDMA, DLin-MC3-DMA and DLin-KC2-DMA; monocationic lipid N-[1-(2,3-Dioleoyloxy)]-N,N,N-trimethylammonium propane (DOTAP), BCAT 0-(2R,1,2-di-0-(1'Z, 9'Z-octadecadienyl)-glycerol)-3-N-(bis-2-aminoethyl)-carbamate, BGSC (Bis-guanidinium-spermidine-cholesterol), BGTC (Bis-guanidinium-tren-cholesterol), CDAN (N'-cholesteryl oxycarbony 1,3,7-diazanonane-1,9-diamine), CHDTAEA (Cholesteryl hemidithiodiglycolyl tris(amin(ethyl)amine), DCAT (0-(1,2-di-0-(9'Z-octadecanyl)-
glycerol)-3-N-(bis-2-aminoethyl carbamate), DC-Choi (3β [N-(N', N'-' dimethylaminoethane)-carbamoyl] cholesterol), DLKD (O,O'-Dilauryl N-lysylaspartate), DMKD (O,O'-Dimyristyl N-lysylaspartate), DOG (Diolelylglycerol, DOGS (Diocadecylamidoglycylspermine), DOGSDSO (1,2-Dioleoyl-sn-glycero-3-succinyl-2-hydroxyethyl disulfide ornithine), DOPC (1,2-Dioleoyl-sn-glycero-3-phosphocholine), DOPE (1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine), DOSN (Diolely succinyl ethylthioneomycin), DOSP (Diolely succinyl paromomycin), DOST (Diolely succinyl tobramycin), DOTAP (1,2-Uiolcoyl-3-trimethyl ammoniopropane), DOTMA (NTI-(2,3-Dioleyloxy)propyl]-N,N,N-trimethylammonium chloride), DPPES (Di-palmitoyl phosphatidyl ethanolamidosperrninc), DDAB and DODAP.

24. The method of claim 21, wherein the membrane stabilizing lipid is selected from cholesterol, phospholipids, cephalins, sphingolipids and glycoglycerolipids.

25. The method of claim 21, further comprising mixing a phosphatidylamine, wherein the phosphatidylamine is selected from 1,2-dilauroyl-L-phosphatidyl-ethanolamine (DLPE), 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) 1,2-Diphtanoyl-sn-glycero-3-phosphoethanolamine (DPhPE) 1,3-Dipalmitoyl-sn-glycero-2-phosphoethanolamine (1,3-DPPE) 1-Palmitoyl-3-oleoyl-sn-glycero-2-phosphoethanolamine (1,3-POPE), Biotin-Phosphatidylethanolamine, 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine(DMPE), 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), and Dipalmitoylphosphatidylethanolamine (DPPE).

26. The method of claim 21, further comprising mixing one or more additional PEG derivatives.

27. The method of claim 26, wherein the additional PEG derivatives is selected from DMG-PEG, PEG-cDMA, 3-N-(-methoxy polyethylene glycol)2000)carbamoyl-1,2-dimyristloxy-propylamine; PEG-cDSA, 3-N-(-methoxy poly(ethylene glycol)2000)carbamoyl-1,2-diistearyloxy-propylamine, and combinations thereof.

28. The method of claim 21, wherein the glycosaminoglycan is activated by dissolving a glycosaminoglycan in an acidic buffer and adding a crosslinker to form an activated glycosaminoglycan.
29. The method of claim 21, wherein the glycosaminoglycan is selected from hyaluronic acid (HA), Chondroitin sulfate, Dermatan sulfate, Keratan sulfate, Heparin, Heparan sulfate, salts, and mixtures thereof.

30. The method of claim 29, wherein the hyaluronic acid is selected from a hyaluronic acid having a molecular weight in the range of about 5-20KD, a hyaluronic acid having a molecular weight in the range of about 600-1000KDa, and combinations thereof.

31. The method of claim 21, wherein the nucleic acid is selected from DNA, RNA, modified forms thereof, and combinations thereof.

32. The method of claim 31, wherein the RNA is selected from siRNA, miRNA, shRNA, antisense RNA, mRNA, modified mRNA and combinations thereof.

33. The method of claim 21, wherein the nucleic acid is in an acidic buffer.

34. A method for the preparation of a glycosaminoglycan coated liposome for delivery of a nucleic acid, the method comprising the steps of:

 a) forming a lipid phase comprising the steps of:

 i) mixing cationic lipid, membrane stabilizing lipid and PEG-Amine conjugated to a lipid, in an organic solvent at a desired ratio and forming a lipid mixture,

 ii) suspending the lipid mixture in a buffer to generate multilamellar vesicles;

 b) generating the liposome by the steps of:

 i) incubating the lipid phase of step a) with the nucleic acid; and

 ii) adding an activated glycosaminoglycan to the mixture.
Fig. 1A

\[\text{DLinDMA} \]

\[\text{MC3} \]

\[\text{KC2} \]
Fig. 4A

![Bar graph showing gene expression levels for different formulations and controls.]

Fig. 4B

![Bar graph showing gene expression levels for different formulations and controls.]
Fig. 4C

![Gene expression bar chart](chart1.png)

Relative gene expression

Mock
Free siPLK1
Formulation 1
Formulation 2 - HA 7KdA
Formulation 3 - HA 800KdA

Fig. 4D

![Gene expression bar chart](chart2.png)

Relative gene expression

Mock
Free siPLK1
Formulation 4
Formulation 5 - HA 7KdA
Formulation 6 - HA 800KdA
Fig. 6A

Fig. 6B

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>CD 44 expression</th>
<th>Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>9558/10</td>
<td>+++</td>
<td>GBM</td>
</tr>
<tr>
<td>3970/10</td>
<td>+</td>
<td>GBM</td>
</tr>
<tr>
<td>10105/10</td>
<td>+++</td>
<td>GBM</td>
</tr>
<tr>
<td>15081/10</td>
<td>+++</td>
<td>GBM</td>
</tr>
<tr>
<td>14784/10</td>
<td>+++</td>
<td>GBM</td>
</tr>
<tr>
<td>19037/10</td>
<td>++</td>
<td>GBM</td>
</tr>
<tr>
<td>20888/10</td>
<td>+++/++++</td>
<td>GBM</td>
</tr>
<tr>
<td>22712/10</td>
<td>+++</td>
<td>GBM</td>
</tr>
</tbody>
</table>
A. CLASSIFICATION OF SUBJECT MATTER
IPC (2015.01) A61K 9/127, A61K 47/18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC (2015.01) A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
See extra sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Advances in Lipid Nanoparticles for siRNA Delivery, Pharmaceutics, 5, 498-507 (2013); doi: 10.3390/pharmaceutics5030498 Yuen Yi C. Tarn, Sam Chen and Pieter R. Cullis 18 Sep 2013 (2013/09/18) Pages 499-500; Figure 2</td>
<td>1-4,7-25,28-34</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Dale of the actual completion of the international search 13 Oct 2015
Date of mailing of the international search report 15 Oct 2015

Name and mailing address of the ISA:
Israel Patent Office
Technology Park, Bldg.5, Malcha, Jerusalem, 9695101, Israel
Facsimile No. 972-2-5651616

Authorized officer PACE Umberto
Telephone No. 972-2-5651625

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| Y | Systemic Leukocyte-Directed siRNA Delivery Revealing Cyclin D1 as an Anti-Inflammatory Target
Dan Peer, Eun Jeong Park, Yoshiyuki Morishita, Christopher V. Carman, and Motomu Shimaoka
01 Feb 2008 (2008/02/01)
The whole document | 1-4,7-25,28-34 |
Justin M. Saul, Ananth Annapragada, Jayaganesh V. Natarajan, Ravi V. Bellamkonda
19 Sep 2003 (2003/09/19)
The whole document, especially pages 51-52, paragraphs 2.5-2.6 and Figure 1. | 1-4,7-25,28-34 |
http://www.futuremedicine.com/doi/abs/10.2217/nmm.10.83
Barbara Ruozi, Giovanni Riva, Daniela Belletti, Giovanni Tosi, Patrizia Barozzi, Mario Luppi, Flavio Forni & Maria Angela Vandelli
30 Sep 2010 (2010/09/30)
The whole document, especially page 1053, first two paragraphs, and Figure 1. | 1-4,7-25,28-34 |
| A | WO 2011075656 A1 The University of British Columbia and Alnylam Pharmaceuticals, Inc.
23 Jun 2011 (201/06/23)
The whole document | 1-34 |
B. FIELDS SEARCHED:

* Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Databases consulted: THOMSON INNOVATION, Esp@cenet, Google Patents, CAPLUS, BIOSIS, EMBASE, MEDLINE, WPI Data, PubMed, Google Scholar

Search terms used: Liposome, delivery, "cationic lipid", "peg amine", glycosaminoglycan, "hyaluronic acid" INVENTOR: Dan Peer, CPC: A61K 47/48815, 9/1271
<table>
<thead>
<tr>
<th>Patent document cited search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU 2010330814 A1</td>
<td>12 Jul 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA 2784568 A1</td>
<td>23 Jun 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 2512449 A4</td>
<td>21 May 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZ 600725 A</td>
<td>28 Aug 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2013017223 A1</td>
<td>17 Jan 2013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>