Abstract:
The invention relates to active compound combinations, in particular a fungicidal composition, comprising (A) 2- {3-[2-[(3,5-bis(difluoromethyl)-IH-pyrazol-1-yl)acetyl]piperidin-4-yl]-1,3-thiazol-4-yl}-4,5-dihydro-1,2-oxazol-5-yl} -3-chlorophenyl methanesulfonate, (B) fosetyl-aluminium and (C) 2,6-dimethyl-1H,5H-[1,4]dithiinom[2,3-c:5,6-c']dipyrrrole-1,3,5,7(2H,6H)-tetrone, Propineb or Folpet. Moreover, the invention relates to a method for curatively or preventively controlling the phytopathogenic fungi of plants or crops, to the use of a combination according to the invention for the treatment of seed, to a method for protecting a seed and not at least to the treated seed.
Active compound combinations

The invention relates to active compound combinations, in particular a fungicidal composition, comprising (A) 2-\{3-[2-(l-\{3,5-bis(difluoromethyl)\}-H-pyrazol-1-yl]acetyl\}piperidin-4-yl\}-1 ,3-thiazol-4-yl\}-4,5-dihydro-1 ,2-oxazol-5-yl\} -3-chlorophenyl methanesulfonate, (B) fosetyl-aluminium (aluminium tris(ethyl phosphonate), CAS No 39148-24-8 (known from FR-A-2254276) and (C) 2,6-dimethyl-1H,5H-[l \(\alpha\)]dithiino[2,3-c:5,6-c']dipyrrole-1 ,3,5,7(2H,6H)-tetrone (CAS No. 16114-35-5, known from US 3364229 and WO 2010/043319). Propineb ([([1-methyl-1,2-ethanediyl]bis[carbamodithioato]](2-)]zinc homopolymer, CAS No. 12071-83-9 (known from BE 611960)) or Folpet (\(N\)-(trichloromethylthio)phthalimide, CAS No. 133-07-3, known from US 2553770).

Moreover, the invention relates to a method for curatively or preventively controlling the phytopathogenic fungi of plants or crops, to the use of a combination according to the invention for the treatment of seed, to a method for protecting a seed and not at least to the treated seed.

It is already known that the compound 2-\{3-[2-(l-\{3,5-bis(difluoromethyl)\}-IH-pyrazol-1-yl]acetyl\}piperidin-4-yl\}-1 ,3-thiazol-4-yl\}-4,5-dihydro-1,2-oxazol-5-yl\} -3-chlorophenyl methanesulfonate has fungicidal properties (WO 2012/025557). However, Oomycete diseases are in the focus of the spectrum of activity of this substance.

In addition, it has also been found that 2-\{3-[2-(l-\{3,5-bis(difluoromethyl)\}-IH-pyrazol-1-yl]acetyl\}piperidin-4-yl\}-1 ,3-thiazol-4-yl\}-4,5-dihydro-1,2-oxazol-5-yl\} -3-chlorophenyl methanesulfonate in combination with other fungicides gives synergistic combinations for controlling phytopathogenic fungi of plants or crops (WO 2013/127704). However, Oomycete diseases are in the focus of the spectrum of activity of these mixtures.

Furthermore, it is already known that phosphonic acid and derivatives (phosphonates) like the phosphonate ethyl hydrogen phosphonate with common name fosetyl-aluminium and its derivatives can be used for controlling phytopathogenic fungi of plant and crops (Pesticide Manual, 14th Edition (2006); "Modern Agrochemicals", Vol. 4, No. 3, June 2005; FR-A-2254276). However, the activity of these substances at low application rates is not always sufficient.

It is also known that the compound 2,6-dimethyl-1H,5H-[l \(\alpha\)]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetrone is also suitable for controlling phytopathogenic fungi of plants and crops (WO 2010/043319). However, the activity of this substance at low application rates is likewise not always sufficient.

It is also known that the compound Propineb is also suitable for controlling phytopathogenic fungi of plants and crops (BE 611960). However, the activity of this substance at low application rates is likewise not always sufficient.
It is also known that the compound Folpet is also suitable for controlling phytopathogenic fungi of plants and crops (US 2553770). However, the activity of this substance at low application rates is likewise not always sufficient.

Since, moreover, the environmental and economic requirements imposed on modern-day fungicides are continually increasing, with regard, for example, to the spectrum of action, toxicity, selectivity, application rate, formation of residues, and favorable preparation ability, and since, furthermore, there may be problems, for example, with resistances developing to known active compounds, a constant task is to develop new fungicide agents which in some areas at least have advantages over their known counterparts.

The invention provides active compound combinations which in some aspects at least achieve the stated objectives.

It has now been found, surprisingly, that the novel active compound combinations comprising

(A) 2-\{3-[(2-(1-[(3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]acetyl)piperidin-4-yl]-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl\} -3-chlorophenyl methanesulfonate and

(B) Fosetyl-aluminium and

(C) Propineb, Folpet or 2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c’]dipyrrole-1,3,5,7(2H,6H)-tetrone

have not only very good fungicidal properties but also show additive enhancement of the spectrum of action with respect to the phytopathogenic fungi and/or microorganisms and/or pests to be controlled and above all achieves a synergistic effect which extends the range of action of the compound (A), (B) and (C) in two ways. Firstly, the rates of application of the compounds (A), (B) and (C) are lowered whilst the action remains equally good. Secondly, the combination still achieves a high degree of phytopathogen control even where the three individual compounds have become nearly ineffective in such a low application rate range. This allows, on the one hand, a substantial broadening of the spectrum of phytopathogens that can be controlled and, on the other hand, increased safety in use.

However, besides the actual synergistic action with respect to fungicidal activity, the combination according to the invention also have further surprising advantageous properties which can also be described, in a wider sense, as synergistic activity. Examples of such advantageous properties that may be mentioned are: a broadening of the spectrum of fungicidal and/or insecticidal activity to other phytopathogenic fungi and/or microorganisms and/or pests, for example to resistant strains; a reduction in the rate of application of the active ingredients; adequate pest control with the aid of the compositions according to the invention, even at a rate of application at which the individual compounds are totally
ineffective; advantageous behavior during formulation or upon application, for example upon grinding, sieving, emulsifying, dissolving or dispensing; increased storage stability; improved stability to light; more advantageous degradability; improved toxicological or ecotoxicological behavior; improved characteristics of the useful plants including: emergence, crop yields, more developed root system, tillering increase, increase in plant height, bigger leaf blade, less dead basal leaves, stronger tillers, greener leaf color, less fertilizers needed, less seeds needed, more productive tillers, earlier flowering, early grain maturity, less plant verse (lodging), increased shoot growth, improved plant vigor, and early germination; or any other advantages familiar to a person skilled in the art.

The combination according to the invention can also provide an improved systemicity to the active compounds that are used. Indeed, even if some of the used fungicide compound does not possess any or a satisfying systemicity, within the composition according to the invention these compounds can exhibit such a property.

In a similar manner, the combination according to the invention can allow an increased persistence of the fungicide efficacy of the active compounds that are employed.

Another advantage of the combination according to the invention relies in that an increased efficacy is achievable.

In a preferred embodiment the active compound combination according to the present invention is leading to one or more of the following properties:

additive enhancement of the spectrum, synergistic effect, improved yields, better developed root system, greener leaves, tillering increase, increased plant height, bigger leaf blade, less dead basal leaves, stronger tillers, less fertilizer needed, more productive tillers, earlier flowering, earlier grain maturity, less plant verse, increased shoot growth, improved plant vigor, earlier germination, improved systemicity, increased persistence of the fungicide efficacy, increased achievable efficacy.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: additive enhancement of the spectrum.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: synergistic effect.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: improved yield.
Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: better developed root system.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: greener leaves.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: tillering increase.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: increased plant height.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: bigger leaf blade.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: less dead basal leaves.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: stronger tillers.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: less fertilizer needed.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: more productive tillers.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: earlier flowering.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: earlier grain maturity.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: less plant verse.

Furthermore preferred is that the active compound combination according to the present invention
is leading to the following property: increased shoot growth.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: earlier germination.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: improved plant vigor.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: improved systemicity.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: increased persistence of the fungicide efficacy.

Furthermore preferred is that the active compound combination according to the present invention is leading to the following property: increased achievable efficacy.

For the ternary mixtures the weight ratio of active ingredient compounds is selected as to give the desired, for example synergistic, action:

\[(A):(B):(C)\] is 1:500:200 to 1:50:10; preferred 1:200:180 to 1:100:25.\]

15 If (C) is 2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c′]dipyrrole-1,3,5,7(2H,6H)-tetrone the most preferred weight ratio is 1:200:40 to 1:150:30.

If (C) is Propineb the most preferred weight ratio is 1:200:180 to 1:150:150.

If (C) is Folpet the most preferred weight ratio is 1:200:150 to 1:150:100.

Where a compound (A), (B) or (C) can be present in tautomeric form, such a compound is understood herein above and herein below also to include, where applicable, corresponding tautomeric forms, even when these are not specifically mentioned in each case.

Compound (A), (B) or (C) having at least one basic centre are capable of forming, for example, acid addition salts, e.g. with strong inorganic acids, such as mineral acids, e.g. perchloric acid, sulfuric acid, nitric acid, nitrous acid, a phosphoric acid or a hydrohalic acid, with strong organic carboxylic acids, such as unsubstituted substituted, e.g. halo-substituted, C1-C4 alkanecarboxylic acids, e.g. acetic acid, saturated or unsaturated dicarboxylic acids, e.g. oxalic, malonic, succinic, maleic, fumaric and phthalic acid, hydroxycarboxylic acids, e.g. ascorbic, lactic, malic, tartaric and citric acid, or benzoic acid, or
with organic sulfonic acids, such as unsubstituted or substituted, e.g. halo-substituted, Ci-C4 alkane- or aryl-sulfonic acids, e.g. methane- or p-toluene-sulfonic acid. Compounds (A) or compound (B) having at least one acid group are capable of forming, for example, salts with bases, e.g. metal salts, such as alkali metal or alkaline earth metal salts, e.g. sodium, potassium or magnesium salts, or salts with ammonia or an organic amine, such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower alkylamine, e.g. ethyl-, diethyl-, triethyl- or dimethyl-propyl-amine, or a mono-, di- or tri-hydroxy- lower alkylamine, e.g. mono-, di- or tri-ethanolamine. In addition, corresponding internal salts may optionally be formed. In the context of the invention, preference is given to agrochemically advantageous salts. In view of the close relationship between the compound (A), (B) or (C) in free form and in the form of their salts, hereinabove and herein below any reference to the free compound (A), (B) or (C) or to their salts should be understood as including also the corresponding salts or the free compound (A), (B) or (C), respectively, where appropriate and expedient. The equivalent also applies to tautomers of compound (A), (B) or (C) and to their salts.

Although the mixture according to the present invention may be a composition itself, the final used composition is usually prepared by mixing the compounds of the formula (A) and compounds (B) and (C), and an inert carrier, and if necessary, by adding a surfactant and/or another auxiliary for formulation, such as an extender, and by formulating the mixture into oil formulation, emulsifiable concentrate, flowable formulation, wettable powder, water dispersible granules, powder, granules, or the like. The formulation, which is used alone or by adding another inert component, can be used as a pesticide.

Specific further components of this final composition are described later.

The "composition" can be prepared by formulating the compounds of the formula (A) and compounds (B) and (C) as described in the above, and then making the formulations or their diluents.

For the sake of clearness, a mixture means a physical combination of the compounds of the formula (A) and compounds (B) and (C), whereas a composition means a combination of the mixture together with further additives, such as surfactants, solvents, carriers, pigments, antifoams, thickeners and extenders, in a form as suitable for agrochemical application.

The present invention also relates to a method for controlling harmful microorganisms, comprising contacting said harmful microorganisms or their habitat with the above-described composition.

The present invention relates further to a method for treating seeds, comprising contacting said seeds with the above-described composition.

Finally, the present invention also relates to seed treated with the above-mentioned composition.

Accordingly, the present invention also relates compositions for controlling harmful microorganisms, especially harmful fungi and bacteria, comprising an effective and non-phytotoxic amount of the inventive
active ingredients. These are preferably fungicidal compositions which comprise agriculturally suitable auxiliaries, solvents, carriers, surfactants or extenders.

In the context of the present invention, "control of harmful microorganisms" means a reduction in infestation by harmful microorganisms, compared with the untreated plant measured as fungicidal efficacy, preferably a reduction by 25-50 %, compared with the untreated plant (100 %), more preferably a reduction by 40-79 %, compared with the untreated plant (100 %); even more preferably, the infection by harmful microorganisms is entirely suppressed (by 70-100 %). The control may be curative, i.e. for treatment of already infected plants, or protective, for protection of plants which have not yet been infected.

An "effective but non-phytotoxic amount" means an amount of the inventive composition which is sufficient to control the fungal disease of the plant in a satisfactory manner or to eradicate the fungal disease completely, and which, at the same time, does not cause any significant symptoms of phytotoxicity. In general, this application rate may vary within a relatively wide range. It depends on several factors, for example on the fungus to be controlled, the plant, the climatic conditions and the ingredients of the inventive compositions.

Suitable organic solvents include all polar and non-polar organic solvents usually employed for formulation purposes. Preferable the solvents are selected from ketones, e.g. methyl-isobutyl-ketone and cyclohexanone, amides, e.g. dimethyl formamide and alkanecarboxylic acid amides, e.g. N,N-dimethyl decaneamide and N,N-dimethyl octanamide, furthermore cyclic solvents, e.g. N-methyl-pyrrolidone, N-octyl-pyrrolidone, N-dodecyl-pyrrolidone, N-octyl-caprolactame, N-dodecyl-caprolactame and butyrolactone, furthermore strong polar solvents, e.g. dimethylsulfoxide, and aromatic hydrocarbons, e.g. xylol, Solvesso™, mineral oils, e.g. white spirit, petroleum, alkyl benzenes and spindle oil, also esters, e.g. propyleneglycol-monomethylether acetate, adipic acid dibutylester, acetic acid hexylester, acetic acid heptylester, citric acid tri-n-butylester and phthalic acid di-n-butylester, and also alkohols, e.g. benzyl alcohol and 1-methoxy-2-propanol.

According to the invention, a carrier is a natural or synthetic, organic or inorganic substance with which the active ingredients are mixed or combined for better applicability, in particular for application to plants or plant parts or seed. The carrier, which may be solid or liquid, is generally inert and should be suitable for use in agriculture.

Useful solid or liquid carriers include: for example ammonium salts and natural rock dusts, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and synthetic rock dusts, such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes, solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral and vegetable oils, and derivatives thereof. Mixtures of such carriers can likewise be used.
Suitable solid filler and carrier include inorganic particles, e.g. carbonates, silikates, sulphates and oxides with an average particle size of between 0.005 and 20 µµ, preferably of between 0.02 to 10 µµ, for example ammonium sulphate, ammonium phosphate, urea, calcium carbonate, calcium sulphate, magnesium sulphate, magnesium oxide, aluminium oxide, silicium dioxide, so-called fine-particle silica, silica gels, natural or synthetic silicates, and alumosilicates and plant products like cereal flour, wood powder/sawdust and cellulose powder.

Useful solid carriers for granules include: for example crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite, and synthetic granules of inorganic and organic meals, and also granules of organic material such as sawdust, coconut shells, maize cobs and tobacco stalks.

Useful liquefied gaseous extenders or carriers are those liquids which are gaseous at standard temperature and under standard pressure, for example aerosol propellants such as halohydrocarbons, and also butane, propane, nitrogen and carbon dioxide.

In the formulations, it is possible to use tackifiers such as carboxymethylcellulose, and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, or else natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids. Further additives may be mineral and vegetable oils.

If the extender used is water, it is also possible to employ, for example, organic solvents as auxiliary solvents. Useful liquid solvents are essentially: aromatics such as xylene, toluene or alkynaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or dichloromethane, aliphatic hydrocarbons such as cyclohexane or paraffins, for example mineral oil fractions, mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulphoxide, and also water.

The inventive compositions may additionally comprise further components, for example surfactants. Useful surfactants are emulsifiers and/or foam formers, dispersants or wetting agents having ionic or nonionic properties, or mixtures of these surfactants. Examples of these are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (preferably alklyphenols or arlyphenols), salts of sulphosuccinic esters, taurine derivatives (preferably alkyl taurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates, for example alkylary polyglycol ethers, alkylsulphonates, alkylsulphates, arylsulphonates, protein hydrolysates, lignosulphite waste liquors and methylcellulose. The presence of a surfactant is necessary if one of the active ingredients and/or one of the inert carriers is insoluble in water and when application is effected in water. The proportion of surfactants is between 5 and 40 per cent by weight of the inventive composition.
Suitable surfactants (adjuvants, emulsifiers, dispersants, protective colloids, wetting agent and adhesive) include all common ionic and non-ionic substances, for example ethoxylated nonylphenols, polyalkylene glycol ethers, polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidone, polyacrylic acid, polymethacrylic acid and copolymerisates of (meth)acrylic acid and (meth)acrylic acid esters, and further co-polymerisates of methacrylic acid and methacrylic acid esters which are neutralized with alkalimetal hydroxide and also condensation products of optionally substituted naphthalene sulfonic acid salts with formaldehyde.

It is possible to use dyes such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic dyes such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.

Antifoams which may be present in the formulations include e.g. silicone emulsions, longchain alcohols, fatty acids and their salts as well as fluoroorganic substances and mixtures thereof.

Examples of thickeners are polysaccharides, e.g. xanthan gum or veegum, silicates, e.g. attapulgite, bentonite as well as fine-particle silica.

If appropriate, it is also possible for other additional components to be present, for example protective colloids, binders, adhesives, thickeners, thixotropic substances, penetrants, stabilizers, sequestrants, complexing agents. In general, the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.

The inventive mixtures or compositions can be used as such or, depending on their particular physical and/or chemical properties, in the form of their formulations or the use forms prepared therefrom, such as aerosols, capsule suspensions, cold-fogging concentrates, warm-fogging concentrates, encapsulated granules, fine granules, flowable concentrates for the treatment of seed, ready-to-use solutions, dustable powders, emulsifiable concentrates, oil-in-water emulsions, water-in-oil emulsions, microgranules, macrogranules, oil-dispersible powders, oil-miscible flowable concentrates, oil-miscible liquids, gas (under pressure), gas generating product, foams, pastes, pesticide coated seed, suspension concentrates, suspoemulsion concentrates, soluble concentrates, suspensions, wettable powders, soluble powders, dusts and granules, water-soluble and water-dispersible granules or tablets, water-soluble and water-dispersible powders for the treatment of seed, wettable powders, natural products and synthetic substances impregnated with active
ingredient, and also microencapsulations in polymeric substances and in coating materials for seed, and also ULV cold-fogging and warm-fogging formulations.

The inventive compositions include not only formulations which are already ready for use and can be applied with a suitable apparatus to the plant or the seed, but also commercial concentrates which have to be diluted with water prior to use. Customary applications are for example dilution in water and subsequent spraying of the resulting spray liquor, application after dilution in oil, direct application without dilution, seed treatment or soil application of granules.

The inventive mixtures, compositions and formulations generally contain between 0.05 and 99 % by weight, 0.01 and 98 % by weight, preferably between 0.1 and 95 % by weight, more preferably between 0.5 and 90 % of active ingredient, most preferably between 10 and 70 % by weight. For special applications, e.g. for protection of wood and derived timber products the inventive mixtures, compositions and formulations generally contain between 0.0001 and 95 % by weight, preferably 0.001 to 60 % by weight of active ingredient.

The contents of active ingredient in the application forms prepared from the formulations may vary in a broad range. The concentration of the active ingredients in the application forms is generally between 0.000001 to 95 % by weight, preferably between 0.0001 and 2 % by weight.

The formulations mentioned can be prepared in a manner known per se, for example by mixing the active ingredients with at least one customary extender, solvent or diluent, adjuvant, emulsifier, dispersant, and/or binder or fixative, wetting agent, water repellent, if appropriate desiccants and UV stabilizers and, if appropriate, dyes and pigments, antifoams, preservatives, inorganic and organic thickeners, adhesives, gibberellins and also further processing auxiliaries and also water. Depending on the formulation type to be prepared further processing steps are necessary, e.g. wet grinding, dry grinding and granulation.

The inventive mixtures or compositions may be present as such or in their (commercial) formulations and in the use forms prepared from these formulations as a mixture with other (known) active ingredients, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, fertilizers, safeners and/or semiochemicals.

The inventive treatment of the plants and plant parts with the mixtures or compositions is effected directly or by action on their surroundings, habitat or storage space by the customary treatment methods, for example by dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading-on, watering (drenching), drip irrigating and, in the case of propagation material, especially in the case of seeds, also by dry seed treatment, wet seed treatment, slurry treatment, incrustation, coating with one or more coats, etc. It is also possible to deploy the mixtures or compositions by the ultra-low volume method or to inject the mixtures or compositions preparation or the active ingredient itself into the soil.
Plant/Crop Protection

The mixtures or compositions have potent microbicidal activity and can be used for control of harmful microorganisms, such as fungi and bacteria, in crop protection and in the protection of materials.

The invention also relates to a method for controlling harmful microorganisms, characterized in that the inventive mixtures or compositions are applied to the phytopathogenic fungi, phytopathogenic bacteria and/or their habitat.

Fungicides can be used in crop protection for control of phytopathogenic fungi. They are characterized by an outstanding efficacy against a broad spectrum of phytopathogenic fungi, including soilborne pathogens, which are in particular members of the classes Plasmodiophoromycetes, Peronosporomycetes (Syn. Oomycetes), Chytridiomycetes, Zygomyces, Ascomycetes, Basidiomycetes and Deuteromycetes (Syn. Fungi imperfecti). Some fungicides are systemically active and can be used in plant protection as foliar, seed dressing or soil fungicide. Furthermore, they are suitable for combating fungi, which inter alia infest wood or roots of plant.

Bactericides can be used in crop protection for control of Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae.

Non-limiting examples of pathogens of fungal diseases which can be treated in accordance with the invention include:

- Diseases caused by powdery mildew pathogens, for example Blumeria species, for example Blumeria graminis; Podosphaera species, for example Podosphaera leucotricha; Sphaerotheca species, for example Sphaerotheca fuliginea; Uncinula species, for example Uncinula necator;

- Diseases caused by rust disease pathogens, for example Gymnosporangium species, for example Gymnosporangium sabinae; Hemileia species, for example Hemileia vastatrix; Phakopsora species, for example Phakopsora pachyrhizi and Phakopsora meibomiae; Puccinia species, for example Puccinia recondite, P. triticina, P. graminis or P. striiformis; Uromyces species, for example Uromyces appendiculatus;

- Diseases caused by pathogens from the group of the Oomycetes, for example Albugo species, for example Albugo Candida; Bremia species, for example Bremia lactucae; Peronospora species, for example Peronospora pisi or P. brassicae; Phytophthora species, for example Phytophthora infestans; Plasmodiophora species, for example Plasmodiophora viticola; Pseudoperonospora species, for example Pseudoperonospora humuli or Pseudoperonospora cubensis; Pythium species, for example Pythium ultimum;
leaf blotch diseases and leaf wilt diseases caused, for example, by *Alternaria* species, for example *Alternaria solani*; *Cercospora* species, for example *Cercospora beticola*; *Cladosporium* species, for example *Cladosporium cucumerinum*; *Cochliobolus* species, for example *Cochliobolus sativus* (conidia form: Drechslera, Syn: Helminthosporium), *Cochliobolus miyabeanus*; *Colletotrichum* species, for example *Colletotrichum lindemuthianum*; *Cycloconium* species, for example *Cycloconium oleaginum*; *Diaporthe* species, for example *Diaporthe citri*; *Elsineae* species, for example *Elsineae fawcettii*; *Gloeosporium* species, for example *Gloeosporium laeticolor*; *Glomerella* species, for example *Glomerella cingulata*; *Guignardia* species, for example *Guignardia bidwelli*; *Leptosphaeria* species, for example *Leptosphaeria maculans*, *Leptosphaeria nodorum*; *Magnaporthe* species, for example *Magnaporthe grisea*; *Microdochium* species, for example *Microdochium nivale*; *Mycosphaerella* species, for example *Mycosphaerella graminicola*, *M. arachidicola* and *M. fijiensis*; *Phaeosphaeria* species, for example *Phaeosphaeria nodorum*; *Pyrenophora* species, for example *Pyrenophora teres*, *Pyrenophora tritici repens*; *Ramularia* species, for example *Ramularia collo-cygni*, *Ramularia areola*; *Rhychosporium* species, for example *Rhychosporium secalis*; *Septoria* species, for example *Septoria apii*, *Septoria lycopersici*; *Typhula* species, for example *Typhula incarnata*; *Venturia* species, for example *Venturia inaequalis*;

root and stem diseases caused, for example, by *Corticium* species, for example *Corticium graminearum*; *Fusarium* species, for example *Fusarium oxysporum*; *Gaeumannomyces* species, for example *Gaeumannomyces graminis*; *Rhizoctonia* species, such as, for example *Rhizoctonia solani*; *Sarodadium* diseases caused for example by *Sarodadium oryzae*; *Sderotium* diseases caused for example by *Sderotium oryzae*; *Tapesia* species, for example *Tapesia acuformis*; *Thielaviopsis* species, for example *Thielaviopsis basicola*;

ear and panicle diseases (including corn cobs) caused, for example, by *Alternaria* species, for example *Alternaria* spp.; *Aspergillus* species, for example *Aspergillus flavus*; *Cladosporium* species, for example *Cladosporium cladosporioides*; *Claviceps* species, for example *Claviceps purpurea*; *Fusarium* species, for example *Fusarium culmorum*; *Gibberella* species, for example *Gibberella zeae*; *Monographella* species, for example *Monographella nivalis*; *Septoria* species, for example *Septoria nodorum*;

diseases caused by smut fungi, for example *Sphacelotheca* species, for example *Sphacelotheca reiliana*; *Tilletia* species, for example *Tilletia caries*, *T. controversa*; *Urocystis* species, for example *Urocystis occulta*; *Ustilago* species, for example *Ustilago nuda*, *U. nuda tritici*;

fruit rot caused, for example, by *Aspergillus* species, for example *Aspergillus flavus*; *Botrytis* species, for example *Botrytis cinerea*; *Penicillium* species, for example *Penicillium expansum* and *P. purpurogenum*; *Sderotinia* species, for example *Sderotinia sderotiorum*; *Verticillium* species, for example *Verticillium alboatrum*;

seed and soilborne decay, mould, wilt, rot and damping-off diseases caused, for example, by *Alternaria* species, caused for example by *Alternaria brassicicola*; *Aphanomyces* species, caused for example by
Aphanomyces euteiches; Ascochyta species, caused for example by Ascochyta lentis; Aspergillus species, caused for example by Aspergillus flavus; Cladosporium species, caused for example by Cladosporium herbarum; Cochliobolus species, caused for example by Cochliobolus sativus; (Conidiaform: Drechlera, Bipolaris Syn: Helminthosporium); Colletotrichum species, caused for example by Colletotrichum coccodes; Fusarium species, caused for example by Fusarium culmorum; Gibberella species, caused for example by Gibberella zeae; Macrophomina species, caused for example by Macrophomina phaseolina; Monographella species, caused for example by Monographella nivalis; Penicillium species, caused for example by Penicillium expansum; Phoma species, caused for example by Phoma lingam; Phomopsis species, caused for example by Phomopsis sojae; Phytophthora species, caused for example by Phytophthora cactorum; Pyrenophora species, caused for example by Pyrenophora graminea; Pyricularia species, caused for example by Pyricularia oryzae; Pythium species, caused for example by Pythium ultimum; Rhizoctonia species, caused for example by Rhizoctonia solani; Rhizopus species, caused for example by Rhizopus oryzae; Sclerotium species, caused for example by Sclerotium rolfsii; Septoria species, caused for example by Septoria nodorum; Typhula species, caused for example by Typhula incarnata; Verticillium species, caused for example by Verticillium dahliae;

cancers, galls and witches' broom caused, for example, by Nectria species, for example Nectria galligena;

wilt diseases caused, for example, by Monilinia species, for example Monilinia laxa;

leaf blister or leaf curl diseases caused, for example, by Exobasidium species, for example Exobasidium vexans;

Taphrina species, for example Taphrina deformans;

decline diseases of wooden plants caused, for example, by Esca disease, caused for example by Phaemoniella damydospora, Phaeoacremonium aleophilum and Fomitiporia mediterranea; Eutypa dyeback, caused for example by Eutypa lata; Ganoderma diseases caused for example by Ganoderma boninense; Rigidopus diseases caused for example by Rigidopus lignosus;

diseases of flowers and seeds caused, for example, by Botrytis species, for example Botrytis cinerea;

diseases of plant tubers caused, for example, by Rhizoctonia species, for example Rhizoctonia solani; Helminthosporium species, for example Helminthosporium solani;

Club root caused, for example, by Plasmodiophora species, for example Plasmodiophora brassicae;
diseases caused by bacterial pathogens, for example Xanthomonas species, for example Xanthomonas campestris pv. oryzae; Pseudomonas species, for example Pseudomonas syringae pv. lachrymans; Erwinia species, for example Erwinia amylovora.

The following diseases of soya beans can be controlled with preference:

Fungal diseases on leaves, stems, pods and seeds caused, for example, by Alternaria leaf spot (Alternaria spec, atrans tenuissima), Anthracnose (Colletotrichum gloeosporioides dematium var. truncatum), brown spot (Septoria glycines), cercospora leaf spot and blight (Cercospora kikuchii), choanephora leaf blight (Choanephora infundibulifera trispora (Syn.)), dactuliophora leaf spot (Dactuliophora glycines), downy mildew (Peronospora manshurica), drechslera blight (Drechslera glycini), frogeye leaf spot (Cercospora sojina), leptosphaerulina leaf spot (Leptosphaerulina trifolii), phyllosticta leaf spot (Phyllosticta sojaecola), pod and stem blight (Phomopsis sojae), powdery mildew (Microsphaera diffusa), pyrenochaeta leaf spot (Pyrenochaeta glycines), rhizoctonia aerial, foliage, and web blight (Rhizoctonia solani), rust (Phakopsora pachyrhizi, Phakopsora meibomiae), scab (Sphaceloma glycines), stemphylium leaf blight (Stemphylium botryosum), target spot (Corynespora cassiicola).

Fungal diseases on roots and the stem base caused, for example, by black root rot (Calonectria crotalariae), charcoal rot (Macrophomina phaseolina), fusarium blight or wilt, root rot, and pod and collar rot (Fusarium oxysporum, Fusarium orthoceras, Fusarium semitectum, Fusarium equisetii), mycoleptodiscus root rot (Mycoceltrum terrestris), neocosmospora (Neocosmospora vasinfecta), pod and stem blight (Diaporthe phaseolorum), stem canker (Diaporthe phaseolorum var. cailovora), phytophthora rot (Phytophthora megasperma), brown stem rot (Phialophora gregata), pythium root (Pythium aphanidermatum, Pythium irregulare, Pythium debaryanum, Pythium myriotylum, Pythium ultimum), rhizoctonia root rot, stem decay, and damping-off (Rhizoctonia solani), sclerotinia stem decay (Sclerotinia sclerotiorum), sclerotinia southern blight (Sclerotinia rolfsii), thielaviopsis root rot (Thielaviopsis basicola).

The inventive fungicidal mixtures or compositions can be used for curative or protective/preventive control of phytopathogenic fungi. The invention therefore also relates to curative and protective methods for controlling phytopathogenic fungi by the use of the inventive active ingredients or compositions, which are applied to the seed, the plant or plant parts, the fruit or the soil in which the plants grow.

The fact that the active ingredients are well tolerated by plants at the concentrations required for controlling plant diseases allows the treatment of above-ground parts of plants, of propagation stock and seeds, and of the soil.

According to the invention all plants and plant parts can be treated. By plants is meant all plants and plant populations such as desirable and undesirable wild plants, cultivars and plant varieties (whether or not protectable by plant variety or plant breeder's rights). Cultivars and plant varieties can be plants obtained by conventional propagation and breeding methods which can be assisted or supplemented by
one or more biotechnological methods such as by use of double haploids, protoplast fusion, random and directed mutagenesis, molecular or genetic markers or by bioengineering and genetic engineering methods. By plant parts is meant all above ground and below ground parts and organs of plants such as shoot, leaf, blossom and root, whereby for example leaves, needles, stems, branches, blossoms, fruiting bodies, fruits and seed as well as roots, corms and rhizomes are listed. Crops and vegetative and generative propagating material, for example cuttings, corms, rhizomes, runners and seeds also belong to plant parts.

The inventive mixtures or compositions, when they are well tolerated by plants, have favourable homeothermic toxicity and are well tolerated by the environment, are suitable for protecting plants and plant organs, for enhancing harvest yields, for improving the quality of the harvested material. They can preferably be used as crop protection compositions. They are active against normally sensitive and resistant species and against all or some stages of development.

Plants which can be treated in accordance with the invention include the following main crop plants: maize, soya bean, alfalfa, cotton, sunflower, Brassica oil seeds such as brassica napus (e.g. canola, rapeseed), Brassica rapa, B. juncea (e.g. field mustard) and Brassica carinata, Arecaecae sp. (e.g. oilpalm, coconut), rice, wheat, sugar beet, sugar cane, oats, rye, barley, millet and sorghum, triticale, flax, nuts, grapes and vine and various fruit and vegetables from various botanic taxa, e.g. Rosaceae sp. (e.g. pome fruits such as apples and pears, but also stone fruits such as apricots, cherries, almonds, plums and peaches, and berry fruits such as strawberries, raspberries, red and black currant and gooseberry), Ribesioideae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp. (e.g. olive tree), Actinidaceae sp., Lauraceae sp. (e.g. avocado, cinnamon, camphor), Musaceae sp. (e.g. banana trees and plantations), Rubiaceae sp. (e.g. coffee), Theaceae sp. (e.g. tea), Sterculiceae sp., Rutaceae sp. (e.g. lemons, oranges, mandarins and grapefruit); Solanaceae sp. (e.g. tomatoes, potatoes, peppers, capsicum, aubergines, tobacco), Liliaceae sp., Compositae sp. (e.g. lettuce, artichokes and chicory - including root chicory, endive or common chicory), Umbelliferae sp. (e.g. carrots, parsley, celery and celeriac), Cucurbitaceae sp. (e.g. cucumbers - including gherkins, pumpkins, watermelons, calabashes and melons), Alliaceae sp. (e.g. leeks and onions), Cruciferae sp. (e.g. white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes, horseradish, cress and Chinese cabbage), Leguminosae sp. (e.g. peanuts, peas, lentils and beans - e.g. common beans and broad beans), Chenopodiaceae sp. (e.g. Swiss chard, fodder beet, spinach, beetroot), Linaceae sp. (e.g. hemp), Cannabeacea sp. (e.g. cannabis), Malvaeceae sp. (e.g. okra, cocoa), Papaveraceae (e.g. poppy), Asparagaceae (e.g. asparagus); useful plants and ornamental plants in the garden and woods including turf, lawn, grass and Stevia rebaudiana; and in each case genetically modified types of these plants. A particularly preferred plant is soybean.

In particular, the mixtures and compositions according to the invention are suitable for controlling the following plant diseases:
Albugo spp. (white rust) on ornamental plants, vegetable crops (e.g. A. Candida) and sunflowers (e.g. A. tragopogonis); Alternaria spp. (black spot disease, black blotch) on vegetables, oilseed rape (e.g. A. brassicola or A. brassicae), sugar beet (e.g. A. tenuis), fruit, rice, soybeans and also on potatoes (e.g. A. solani or A. alternata) and tomatoes (e.g. A. solani or A. alternata) and Alternaria spp. (black head) on wheat; Aphanomyces spp. on sugar beet and vegetables; Ascochyta spp. on cereals and vegetables, e.g. A. tritici (Ascochyta leaf blight) on wheat and A. hordei on barley; Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e.g. leaf spot diseases (D. maydis and B. zeicola) on corn, e.g. glume blotch (B. sorokiniana) on cereals and e.g. B. oryzae on rice and on lawn; Blumeria (old name: Erysiphe) graminis (powdery mildew) on cereals (e.g. wheat or barley); Botryosphaeria spp. ('Slack Dead Arm Disease') on grapevines (e.g. B. obtusa); Botrytis cinerea (teleomorph: Botryotinia fuckeliana: gray mold, gray rot) on soft fruit and pomaceous fruit (inter alia strawberries), vegetables (inter alia lettuce, carrots, celeriac and cabbage), oilseed rape, flowers, grapevines, forest crops and wheat (ear mold); Bremia lactuca (downy mildew) on lettuce; Ceratocystis (syn. Ophiostoma) spp. (blue stain fungus) on deciduous trees and coniferous trees, e.g. C. ulmi (Dutch elm disease) on elms; Cercospora spp. (Cercospora leat spot) on corn (e.g. C. zeae-maydis), rice, sugar beet (e.g. C. beticola), sugar cane, vegetables, coffee, soybeans (e.g. C. sojina or C. kikuchil) and rice; Cladosporium spp. on tomato (e.g. C. fulvum: tomato leaf mold) and cereals, e.g. C. herbarum (ear rot) on wheat; Claviceps purpurea (ergot) on cereals; Cochliobolus (anamorph: Helminthosporium or Bipolaris) spp. (leaf spot) on corn (e.g. C. carbonum), cereals (e.g. C. sativus, anamorph: B. sorokiniana: glume blotch) and rice (tor example C. miyabeanus, anamorph: H. oryzae); Colletotrichum (teleomorph: Glomerella) spp. (anthracnosis) on cotton (e.g. C. gossypii), corn (e.g. C. graminicola: stem rot and anthracnosis), soft fruit, potatoes (e.g. C. coccodes: wilt disease), beans (e.g. C. lindemuthianum) and soybeans (e.g. C. truncatum); Corticium spp., e.g. C. sasakii (sheath blight) on rice; Corynespora cassiicola (leaf spot) on soybeans and ornamental plants; Cycloconium spp., e.g. C. oleaginum on olives; Cylindrocarpon spp. (e.g. fruit tree cancer or black foot disease of grapevine, teleomorph: Nectria or Neonectria spp.) on fruit trees, grapevines (e.g. C. Uriodendri; teleomorph: Neonectria Uriodendri, black foot disease) and many ornamental trees; Dematophora (teleomorph: Rosellinia) necatrix (root/stem rot) on soybeans; Diaporthe spp. e.g. D. phaseolorum (stem disease) on soybeans; Drechslera (syn. Helminthosporium, teleomorph: Pyrenophora) spp. on corn, cereals, such as barley (e.g. D. teres, net blotch) and on wheat (e.g. D. tritici-repentis: DTR leaf spot), rice and lawn; Esca disease (dieback of grapevine, apoplexia) on grapevines, caused by Formitiporia (syn. Phellinus) punctata, F. mediterranea. Phaeomoniella chlamydospora (old name Phaeoacremonium chlamydosporum), Phaeoacremonium aleophilum and/or Botryosphaeria obtusa; Elsinoe spp. on pome fruit (E. pyri) and soft fruit (E. veneta: anthracnosis) and also grapevines (E. ampelina: anthracnosis); Eutypa oryzae (leaf smut) on rice; Epicoccum spp. (black head) on wheat; Erysiphe spp. (powdery mildew) on sugar beet (E. betae), vegetables (e.g. E. pisi), such as cucumber species (e.g. E. cichoracearum) and cabbage species, such as oilseed rape (e.g. E. cruciferarum); Eutypa fata (Eutypa cancer or dieback, anamorph: Cytosporina lata, syn. Libertella blepharis) on fruit trees, grapevines and many ornamental trees; Exserohilum (syn. Helminthosporium)
spp. on corn (e.g. *E. turcicum*); *Fusarium* (teleomorph: *Gibberella*) spp. (wilt disease, root and stem rot) on various plants, such as e.g. *F. graminearum* or *F. culmorum* (root rot and silver-top) on cereals (e.g. wheat or barley), *F. oxysporum* on tomatoes, *F. solani* on soybeans and *F. verticillioides* on corn; *Gaeumannomyces graminis* (takeall) on cereals (e.g. wheat or barley) and corn; *Gibberella* spp. on cereals (e.g. *G. zeae*) and rice (e.g. *G. fujikuroi*; bakanai disease); *Glomerella cingulata* on grapevines, pomaceous fruit and other plants and *G. gossypii* on cotton; grainstaining complex on rice; *Guignardia bidwellii* (black rot) on grapevines; *Gymnosporangium* spp. on Rosaceae and juniper, e.g. *G. sabinae* (pear rust) on pears; *Helminthosporium* spp. (syn. *Drechslera*, teleomorph: *Cochliobolus*) on corn, cereals and rice; *Helminthosporium* spp., e.g. *H. vastatrix* (coffee leaf rust) on coffee; *Isariopsis clavispora* (syn. *Cladosporium vitis*) on grapevines; *Macrophomina phaseolina* (syn. *phaseoli*) (root/stem rot) on soybeans and cotton; *Microdochium* (syn. *Fusarium*) *nivale* (pink snow mold) on cereals (e.g. wheat or barley); *Microsphaera diffusa* (powdery mildew) on soybeans; *Monilinia* spp., e.g. *M. laxa*. *M. fructicola* and *M. fructigena* (blossom and twig blight) on stone fruit and other Rosaceae; *Mycosphaerella* spp. on cereals, bananas, soft fruit and peanuts, such as e.g. *M. graminicola* (anamorph: *Septoria tritici*). Septoria leaf blotch) on wheat or *M. fijiensis* (Sigatoka disease) on bananas; *Peronospora* spp. (downy mildew) on cabbage (e.g. *P. brassicae*), oilseed rape (e.g. *P. parasitica*), bulbous plants (e.g. *P. destructor*), tobacco (*P. tabacina*) and soybeans (e.g. *P. manshurica*); *Phakopsora pachyrhizi* and *P. meibomiae* (soybean rust) on soybeans; *Phialophora* spp. e.g. on grapevines (e.g. *P. tracheiphila* and *P. tetraspora*) and soybeans (e.g. *P. gregata*; stem disease); *Phoma lingam* (root and stem rot) on oilseed rape and cabbage and *P. betae* (leaf spot) on sugar beet; *Phomopsis* spp. on sunflowers, grapevines (e.g. *P. viticola*; dead-arm disease) and soybeans (e.g. stem canker/stem blight: *P. phaseoli*, teleomorph: *Diaporthe phaseolorum*); *Physoderma maydis* (brown spot) on corn; *Phytophthora* spp. (wilt disease, root, leaf, stem and fruit rot) on various plants, such as on bell peppers and cucumber species (e.g. *P. capsici*), soybeans (e.g. *P. megasperma*, syn. *P. sojae*), potatoes and tomatoes (e.g. *P. infestans*. late blight and brown rot) and deciduous trees (e.g. *P. ramorum* sudden oak death); *Plasmodiophora brassicae* (club-root) on cabbage, oilseed rape, radish and other plants; *Plasmodina* spp., e.g. *P. viticola* (peronospora of grapevines, downy mildew) on grapevines and *P. halstedii* on sunflowers; *Podosphaera* spp. (powdery mildew) on Rosaceae, hops, pomaceaus fruit and soft fruit, e.g. *P. leucotricha* on apple; *Polymyxa* spp., e.g. on cereals, such as barley and wheat (*P. graminis*) and sugar beet (*P. betae*) and the viral diseases transmitted thereby; *Pseudocercosporella herpotrichoides* (eyespot/stem break, teleomorph: *Tapesia yallundae*) on cereals, e.g. wheat or barley; *Pseudoperonospora* (downy mildew) on various plants, e.g. *P. cubensis* on cucumber species or *P. humili* on hops; *Pseudopezicula tracheiphila* (angular leaf scorch, anamorph *Phialophora*) on grapevines; *Puccinia* spp. (rust disease) on various plants, e.g. *P. triticina* (brown rust of wheat), *P. striiformis* (yellow rust). *P. hordei* (dwarf leaf rust), *P. graminis* (black rust) or *P. recondita* (brown rust of rye) on cereals, such as e.g. wheat, barley or rye. *P. kuehni* on sugar cane and, e.g., on asparagus (e.g. *P. asparagi*); *Pyrenophora* (anamorph: *Drechslera* *tritici-repentis* (speckled leaf blotch) on wheat or *P. teres* (net blotch) on barley; *Pyricularia* spp., e.g. *P. oryzae* (teleomorph: *Magnaporthe grisea*. rice
blast) on rice and *P. grisea* on lawn and cereals; *Pythium* spp. (damping-off disease) on lawn, rice, corn, wheat, cotton, oilseed rape, sunflowers, sugar beet, vegetables and other plants (e.g. *P. ultimum* or *P. aphanidermatum*); Ramularia spp., e.g. *R. collo-cygni* (Ramularia leaf and lawn spot/physiological leaf spot) on barley and *R. beticola* on sugar beet; Rhizoctonia spp. on cotton, rice, potatoes, lawn, corn, oilseed rape, potatoes, sugar beet, vegetables and on various other plants, for example *R. solani* (root and stern rot) on soybeans, *R. solani* (sheath blight) on rice or *R. cerealis* (sharp eyespot) on wheat or barley; Rhizopus stolonifer (soft rot) on strawberries, carrots, cabbage, grapevines and tomato; Rhyncosporium secalis (leaf spot) on barley, rye and triticale; Saprolegnia oryzae and *S. attenuatum* (sheath rot) on rice; Sclerotinia spp. (stem or white rot) on vegetable and field crops, such as oilseed rape, sunflowers (e.g. *Sclerotinia sclerotiorum*) and soybeans (e.g. *S. rolfsii*); *Septoria* spp. on various plants, e.g. *S. glycines* (leaf spot) on soybeans, *S. tritici* (*Septoria* leaf blotch) on wheat and *S. (syn. Stagonospora) nodorum* (leaf blotch and glume blotch) on cereals; Ucinula (syn. *Erysiphe*) necator (powdery mildew, anamorph: *Oidium tuckeri*) on grapevines; *Setosphaeria* spp. (leaf spot) on corn (e.g. *S. turcicum*, syn. *Helminthosporium turcicum*) and lawn; *Sphacelotheca* spp. (head smut) on corn, (e.g. *S. reiliana*: kernel smut), millet and sugar cane; *Sphaerotheca fuliginea* (powdery mildew) on cucumber species; *Spongospora subterranea* (powdery scab) on potatoes and the viral diseases transmitted thereby; *Stagonospora* spp. on cereals, e.g. *S. nodorum* (leaf blotch and glume blotch, teleomorph: *Leptosphaeria* [syn. *Phaeosphaeria*] *nodorum*) on wheat; *Synchytrium endobioticum* on potatoes (potato wart disease); *Taphrina* spp., e.g. *T. deformans* (curly-leaf disease) on peach and *T. pruni* (plum-pocket disease) on pears; *Thielaviopsis* spp. (black root rot) on tobacco, pome fruit, vegetable crops, soybeans and cotton, e.g. *T. basicola* (syn. *Chalara elegans*); *Tilletia* spp. (bunt or stinking smut) on cereals, such as e.g. *T. tritici* (syn. *T. caries*, wheat bunt) and *T. controversa* (dwarf bunt) on wheat; *Typhula incarnata* (gray snow mold) on barley or wheat; *Urocystis* spp., e.g. *U. occulta* (flag smut) on rye; *Uromyces* spp. (rust) on vegetable plants, such as beans (e.g. *U. appendiculatus*, syn. *U. phaseoli*) and sugar beet (e.g. *U. betae*); *Ustilago* spp. (loose smut) on cereals (e.g. *U. nuda* and *U. avenae*), corn (e.g. *U. maydis*: corn smut) and sugar cane; *Venturia* spp. (scab) on apples (e.g. *V. inaequalis*) and pears and *Verticillium* spp. (leaf and shoot wilt) on various plants, such as fruit trees and ornamental trees, grapevines, soft fruit, vegetable and field crops, such as e.g. *V. dahliae* on strawberries, oilseed rape, potatoes and tomatoes.

The mixtures and compositions according to the present inventions are in particular preferred for controlling the following plant diseases: Soybean diseases: Cercospora kikuchii, Elsinoe glycines, Diaporthe phaseolorum var. sojae, Septaria glycines, Cercospora sojina, Phakopsora pachyrhizii, Phytophthora sojae, Rhizoctonia solani, Corynespora casiacola, and Sclerotinia sclerotiorum.

Plant Health

The mixtures and compositions according to the present inventions are suitable for enhancing plant health.
Enhancing plant health shall mean that the inventive (mixtures or compositions can be used as plant growth regulators as defined below, as plant strengthening/resistance inducing compound as defined below, for effecting plant physiology as defined below, and for increasing yield in crops as defined below.

5 *Plant Growth Regulation*

In some cases, the inventive mixtures or compositions can, at particular concentrations or application rates, also be used as herbicides, safeners, growth regulators or agents to improve plant properties, or as microbicides, for example as fungicides, antimycotics, bactericides, viricides (including compositions against viroids) or as compositions against MLO (Mycoplasma-like organisms) and RLO (Rickettsia-like organisms). If appropriate, they can also be used as intermediates or precursors for the synthesis of other active ingredients.

The active ingredients of the inventive mixture or composition intervene in the metabolism of the plants and can therefore also be used as growth regulators.

Plant growth regulators may exert various effects on plants. The effect of the substances depends essentially on the time of application in relation to the developmental stage of the plant, and also on the amounts of active ingredient applied to the plants or their environment and on the type of application. In each case, growth regulators should have a particular desired effect on the crop plants.

Plant growth-regulating compounds can be used, for example, to inhibit the vegetative growth of the plants. Such inhibition of growth is of economic interest, for example, in the case of grasses, since it is thus possible to reduce the frequency of grass cutting in ornamental gardens, parks and sport facilities, on roadsides, at airports or in fruit crops. Also of significance is the inhibition of the growth of herbaceous and woody plants on roadsides and in the vicinity of pipelines or overhead cables, or quite generally in areas where vigorous plant growth is unwanted.

Also important is the use of growth regulators for inhibition of the longitudinal growth of cereal. This reduces or completely eliminates the risk of lodging of the plants prior to harvest. In addition, growth regulators in the case of cereals can strengthen the culm, which also counteracts lodging. The employment of growth regulators for shortening and strengthening culms allows the deployment of higher fertilizer volumes to increase the yield, without any risk of lodging of the cereal crop.

In many crop plants, inhibition of vegetative growth allows denser planting, and it is thus possible to achieve higher yields based on the soil surface. Another advantage of the smaller plants obtained in this way is that the crop is easier to cultivate and harvest.

Inhibition of the vegetative plant growth may also lead to enhanced yields because the nutrients and assimilates are of more benefit to flower and fruit formation than to the vegetative parts of the plants.
Frequently, growth regulators can also be used to promote vegetative growth. This is of great benefit when harvesting the vegetative plant parts. However, promoting vegetative growth may also promote generative growth in that more assimilates are formed, resulting in more or larger fruits.

In some cases, yield increases may be achieved by manipulating the metabolism of the plant, without any detectable changes in vegetative growth. In addition, growth regulators can be used to alter the composition of the plants, which in turn may result in an improvement in quality of the harvested products. For example, it is possible to increase the sugar content in sugar beet, sugar cane, pineapples and in citrus fruit, or to increase the protein content in soya or cereals. It is also possible, for example, to use growth regulators to inhibit the degradation of desirable ingredients, for example sugar in sugar beet or sugar cane, before or after harvest. It is also possible to positively influence the production or the elimination of secondary plant ingredients. One example is the stimulation of the flow of latex in rubber trees.

Under the influence of growth regulators, parthenocarpic fruits may be formed. In addition, it is possible to influence the sex of the flowers. It is also possible to produce sterile pollen, which is of great importance in the breeding and production of hybrid seed.

Use of growth regulators can control the branching of the plants. On the one hand, by breaking apical dominance, it is possible to promote the development of side shoots, which may be highly desirable particularly in the cultivation of ornamental plants, also in combination with an inhibition of growth. On the other hand, however, it is also possible to inhibit the growth of the side shoots. This effect is of particular interest, for example, in the cultivation of tobacco or in the cultivation of tomatoes.

Under the influence of growth regulators, the amount of leaves on the plants can be controlled such that defoliation of the plants is achieved at a desired time. Such defoliation plays a major role in the mechanical harvesting of coton, but is also of interest for facilitating harvesting in other crops, for example in viticulture. Defoliation of the plants can also be undertaken to lower the transpiration of the plants before they are transplanted.

Growth regulators can likewise be used to regulate fruit dehiscence. On the one hand, it is possible to prevent premature fruit dehiscence. On the other hand, it is also possible to promote fruit dehiscence or even flower abortion to achieve a desired mass ("thinning"), in order to eliminate alternation. Alternation is understood to mean the characteristic of some fruit species, for endogenous reasons, to deliver very different yields from year to year. Finally, it is possible to use growth regulators at the time of harvest to reduce the forces required to detach the fruits, in order to allow mechanical harvesting or to facilitate manual harvesting.

Growth regulators can also be used to achieve faster or else delayed ripening of the harvested material before or after harvest. This is particularly advantageous as it allows optimal adjustment to the requirements of the
market. Moreover, growth regulators in some cases can improve the fruit colour. In addition, growth regulators can also be used to concentrate maturation within a certain period of time. This establishes the prerequisites for complete mechanical or manual harvesting in a single operation, for example in the case of tobacco, tomatoes or coffee.

By using growth regulators, it is additionally possible to influence the resting of seed or buds of the plants, such that plants such as pineapple or ornamental plants in nurseries, for example, germinate, sprout or flower at a time when they are normally not inclined to do so. In areas where there is a risk of frost, it may be desirable to delay budding or germination of seeds with the aid of growth regulators, in order to avoid damage resulting from late frosts.

Finally, growth regulators can induce resistance of the plants to frost, drought or high salinity of the soil. This allows the cultivation of plants in regions which are normally unsuitable for this purpose.

Resistance Induction

The active compounds according to the invention also exhibit a potent strengthening effect in plants. Accordingly, they can be used for mobilizing the defences of the plant against attack by undesirable microorganisms.

Plant-strengthening (resistance-inducing) substances are to be understood as meaning, in the present context, those substances which are capable of stimulating the defence system of plants in such a way that the treated plants, when subsequently inoculated with undesirable microorganisms, develop a high degree of resistance to these microorganisms.

The active compounds according to the invention are also suitable for increasing the yield of crops. In addition, they show reduced toxicity and are well tolerated by plants.

Further, in context with the present invention plant physiology effects comprise the following:

Abiotic stress tolerance, comprising temperature tolerance, drought tolerance and recovery after drought stress, water use efficiency (correlating to reduced water consumption), flood tolerance, ozone stress and UV tolerance, tolerance towards chemicals like heavy metals, salts, pesticides (safener) etc..

Biotic stress tolerance, comprising increased fungal resistance and increased resistance against nematodes, viruses and bacteria. In context with the present invention, biotic stress tolerance preferably comprises increased fungal resistance and increased resistance against nematodes

Increased plant vigor, comprising plant quality and seed vigor, reduced stand failure, improved appearance, increased recovery, improved greening effect and improved photosynthetic efficiency.

Effects on plant hormones and/or functional enzymes.
Effects on growth regulators (promoters), comprising earlier germination, better emergence, more developed root system and/or improved root growth, increased ability of tillering, more productive tillers, earlier flowering, increased plant height and/or biomass, shorting of stems, improvements in shoot growth, number of kernels/ear, number of ears/m², number of stolons and/or number of flowers, enhanced harvest index, bigger leaves, less dead basal leaves, improved phyllotaxy, earlier maturation / earlier fruit finish, homogenous riping, increased duration of grain filling, better fruit finish, bigger fruit/vegetable size, sprouting resistance and reduced lodging.

Increased yield, referring to total biomass per hectare, yield per hectare, kernel/fruit weight, seed size and/or hectolitre weight as well as to increased product quality, comprising:

- improved processability relating to size distribution (kernel, fruit, etc.), homogenous riping, grain moisture, better milling, better vinification, better brewing, increased juice yield, harvestability, digestibility, sedimentation value, falling number, pod stability, storage stability, improved fiber length/strength/uniformity, increase of milk and/or meet quality of silage fed animals, adaption to cooking and frying;

- further comprising improved marketability relating to improved fruit/grain quality, size distribution (kernel, fruit, etc.), increased storage / shelf-life, firmness / softness, taste (aroma, texture, etc.), grade (size, shape, number of berries, etc.), number of berries/fruits per bunch, crispness, freshness, coverage with wax, frequency of physiological disorders, colour, etc.;

- further comprising increased desired ingredients such as e.g. protein content, fatty acids, oil content, oil quality, aminoacid composition, sugar content, acid content (pH), sugar/acid ratio (Brix), polyphenols, starch content, nutritional quality, gluten content/index, energy content, taste, etc.;

- and further comprising decreased undesired ingredients such as e.g. less mycotoxines, less aflatoxines, geosmin level, phenolic aromas, lacchase, polyphenol oxidases and peroxidases, nitrate content etc.

Sustainable agriculture, comprising nutrient use efficiency, especially nitrogen (N)-use efficiency, phosphours (P)-use efficiency, water use efficiency, improved transpiration, respiration and/or CO2 assimilation rate, better nodulation, improved Ca-metabolism etc..

Delayed senescence, comprising improvement of plant physiology which is manifested, for example, in a longer grain filling phase, leading to higher yield, a longer duration of green leaf colouration of the plant and thus comprising colour (greening), water content, dryness etc.. Accordingly, in the context of the present invention, it has been found that the specific inventive application of the active compound combination makes it possible to prolong the green leaf area duration, which delays the maturation (senescence) of the plant. The main advantage to the farmer is a longer grain filling phase leading to
higher yield. There is also an advantage to the farmer on the basis of greater flexibility in the harvesting time.

Therein "sedimentation value" is a measure for protein quality and describes according to Zeleny (Zeleny value) the degree of sedimentation of flour suspended in a lactic acid solution during a standard time interval. This is taken as a measure of the baking quality. Swelling of the gluten fraction of flour in lactic acid solution affects the rate of sedimentation of a flour suspension. Both a higher gluten content and a better gluten quality give rise to slower sedimentation and higher Zeleny test values. The sedimentation value of flour depends on the wheat protein composition and is mostly correlated to the protein content, the wheat hardness, and the volume of pan and hearth loaves. A stronger correlation between loaf volume and Zeleny sedimentation volume compared to SDS sedimentation volume could be due to the protein content influencing both the volume and Zeleny value (Czech J. Food Sci. Vol. 21, No. 3: 91-96, 2000).

Further the "falling number" as mentioned herein is a measure for the baking quality of cereals, especially of wheat. The falling number test indicates that sprout damage may have occurred. It means that changes to the physical properties of the starch portion of the wheat kernel has already happened. Therein, the falling number instrument analyzes viscosity by measuring the resistance of a flour and water paste to a falling plunger. The time (in seconds) for this to happen is known as the falling number. The falling number results are recorded as an index of enzyme activity in a wheat or flour sample and results are expressed in time as seconds. A high falling number (for example, above 300 seconds) indicates minimal enzyme activity and sound quality wheat or flour. A low falling number (for example, below 250 seconds) indicates substantial enzyme activity and sprout-damaged wheat or flour.

The term "more developed root system" / "improved root growth" refers to longer root system, deeper root growth, faster root growth, higher root dry/fresh weight, higher root volume, larger root surface area, bigger root diameter, higher root stability, more root branching, higher number of root hairs, and/or more root tips and can be measured by analyzing the root architecture with suitable methodologies and Image analysis programmes (e.g. WinRhizo).

The term "crop water use efficiency" refers technically to the mass of agriculture produce per unit water consumed and economically to the value of product(s) produced per unit water volume consumed and can e.g. be measured in terms of yield per ha, biomass of the plants, thousand-kernel mass, and the number of ears per m2.

The term "nitrogen-use efficiency" refers technically to the mass of agriculture produce per unit nitrogen consumed and economically to the value of product(s) produced per unit nitrogen consumed, reflecting uptake and utilization efficiency.
Improvement in greening / improved colour and improved photosynthetic efficiency as well as the delay of senescence can be measured with well-known techniques such as a HandyPea system (Hansatech). Fv/Fm is a parameter widely used to indicate the maximum quantum efficiency of photosystem II (PSII). This parameter is widely considered to be a selective indication of plant photosynthetic performance with healthy samples typically achieving a maximum Fv/Fm value of approx. 0.85. Values lower than this will be observed if a sample has been exposed to some type of biotic or abiotic stress factor which has reduced the capacity for photochemical quenching of energy within PSII. Fv/Fm is presented as a ratio of variable fluorescence (Fv) over the maximum fluorescence value (Fm). The Performance Index is essentially an indicator of sample vitality. (See e.g. Advanced Techniques in Soil Microbiology, 2007, 11, 319-341; Applied Soil Ecology, 2000, 15, 169-182.).

The improvement in greening / improved colour and improved photosynthetic efficiency as well as the delay of senescence can also be assessed by measurement of the net photosynthetic rate (Pn), measurement of the chlorophyll content, e.g. by the pigment extraction method of Ziegler and Ehle, measurement of the photochemical efficiency (Fv/Fm ratio), determination of shoot growth and final root and/or canopy biomass, determination of tiller density as well as of root mortality.

Within the context of the present invention preference is given to improving plant physiology effects which are selected from the group comprising: enhanced root growth / more developed root system, improved greening, improved water use efficiency (correlating to reduced water consumption), improved nutrient use efficiency, comprising especially improved nitrogen (N)-use efficiency, delayed senescence and enhanced yield.

Within the enhancement of yield preference is given as to an improvement in the sedimentation value and the falling number as well as to the improvement of the protein and sugar content - especially with plants selected from the group of cereals (preferably wheat).

Preferably the novel use of the fungicidal compositions of the present invention relates to a combined use of a) preventively and/or curatively controlling pathogenic fungi and/or nematodes, with or without resistance management, and b) at least one of enhanced root growth, improved greening, improved water use efficiency, delayed senescence and enhanced yield. From group b) enhancement of root system, water use efficiency and N-use efficiency is particularly preferred.

Seed Treatment

The invention further comprises a method for treating seed.

The invention further relates to seed which has been treated by one of the methods described in the previous paragraph. The inventive seeds are employed in methods for the protection of seed from
harmful microorganisms. In these methods, seed treated with at least one inventive active ingredient is used.

The inventive mixtures or compositions are also suitable for treating seed. A large part of the damage to crop plants caused by harmful organisms is triggered by the infection of the seed during storage or after sowing, and also during and after germination of the plant. This phase is particularly critical since the roots and shoots of the growing plant are particularly sensitive, and even minor damage may result in the death of the plant. There is therefore a great interest in protecting the seed and the germinating plant by using appropriate compositions.

The control of phytopathogenic fungi by treating the seed of plants has been known for a long time and is the subject of constant improvements. However, the treatment of seed entails a series of problems which cannot always be solved in a satisfactory manner. For instance, it is desirable to develop methods for protecting the seed and the germinating plant, which dispense with, or at least significantly reduce, the additional deployment of crop protection compositions after planting or after emergence of the plants. It is also desirable to optimize the amount of the active ingredient used so as to provide the best possible protection for the seed and the germinating plant from attack by phytopathogenic fungi, but without damaging the plant itself by the active ingredient employed. In particular, methods for the treatment of seed should also take account of the intrinsic fungicidal properties of transgenic plants in order to achieve optimal protection of the seed and the germinating plant with a minimum expenditure of crop protection compositions.

The present invention therefore also relates to a method for protection of seed and germinating plants from attack by phytopathogenic fungi, by treating the seed with an inventive composition. The invention likewise relates to the use of the inventive compositions for treatment of seed to protect the seed and the germinating plant from phytopathogenic fungi. The invention further relates to seed which has been treated with an inventive composition for protection from phytopathogenic fungi.

The control of phytopathogenic fungi which damage plants post-emergence is effected primarily by treating the soil and the above-ground parts of plants with crop protection compositions. Owing to the concerns regarding a possible influence of the crop protection compositions on the environment and the health of humans and animals, there are efforts to reduce the amount of active ingredients deployed.

One of the advantages of the present invention is that the particular systemic properties of the inventive mixtures and compositions mean that treatment of the seed with these mixtures and compositions not only protects the seed itself, but also the resulting plants after emergence, from phytopathogenic fungi. In this way, the immediate treatment of the crop at the time of sowing or shortly thereafter can be dispensed with.

It is likewise considered to be advantageous that the inventive mixtures or compositions can especially also be used with transgenic seed, in which case the plant growing from this seed is capable of expressing a
protein which acts against pests. By virtue of the treatment of such seed with the inventive mixtures or compositions, merely the expression of the protein, for example an insecticidal protein, can control certain pests. Surprisingly, a further synergistic effect can be observed in this case, which additionally increases the effectiveness for protection against attack by pests.

5 The inventive compositions are suitable for protecting seed of any plant variety which is used in agriculture, in greenhouses, in forests or in horticulture and viticulture. In particular, this is the seed of cereals (such as wheat, barley, rye, triticale, sorghum/millet and oats), maize, cotton, soya beans, rice, potatoes, sunflower, bean, coffee, beet (for example sugar beet and fodder beet), peanut, oilseed rape, poppy, olive, coconut, cocoa, sugar cane, tobacco, vegetables (such as tomato, cucumbers, onions and lettuce), turf and ornamentals (see also below). The treatment of the seed of cereals (such as wheat, barley, rye, triticale and oats), maize and rice is of particular significance. Particularly preferred are the seeds of soybean.

As also described below, the treatment of transgenic seed with the inventive mixtures or compositions is of particular significance. This relates to the seed of plants containing at least one heterologous gene which enables the expression of a polypeptide or protein having insecticidal properties. The heterologous gene in transgenic seed can originate, for example, from microorganisms of the species *Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus* or *Gliocladium*. This heterologous gene preferably originates from *Bacillus* sp., in which case the gene product is effective against the European maize borer and/or the Western maize rootworm. The heterologous gene more preferably originates from *Bacillus thuringiensis*.

20 In the context of the present invention, the inventive composition is applied to the seed alone or in a suitable formulation. Preferably, the seed is treated in a state in which it is sufficiently stable for no damage to occur in the course of treatment. In general, the seed can be treated at any time between harvest and sowing. It is customary to use seed which has been separated from the plant and freed from cobs, shells, stalks, coats, hairs or the flesh of the fruits. For example, it is possible to use seed which has been harvested, cleaned and dried down to a moisture content of less than 15 % by weight. Alternatively, it is also possible to use seed which, after drying, for example, has been treated with water and then dried again.

When treating the seed, care must generally be taken that the amount of the inventive composition applied to the seed and/or the amount of further additives is selected such that the germination of the seed is not impaired, or that the resulting plant is not damaged. This has to be borne in mind in particular in the case of active ingredients which can have phytotoxic effects at certain application rates.

The inventive compositions can be applied directly, i.e. without containing any other components and without having been diluted. In general, it is preferable to apply the compositions to the seed in the form of a suitable formulation. Suitable formulations and methods for seed treatment are known to those skilled in the

The mixtures or compositions usable in accordance with the invention can be converted to the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating compositions for seed, and also ULV formulations.

These formulations are prepared in a known manner, by mixing the active ingredients or mixtures with customary additives, for example customary extenders and also solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, antifoams, preservatives, secondary thickeners, adhesives, gibberellins and also water.

Useful dyes which may be present in the seed dressing formulations usable in accordance with the invention are all dyes which are customary for such purposes. It is possible to use either pigments, which are sparingly soluble in water, or dyes, which are soluble in water. Examples include the dyes known by the names Rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red 1.

Useful wetting agents which may be present in the seed dressing formulations usable in accordance with the invention are all substances which promote wetting and which are conventionally used for the formulation of active agrochemical ingredients. Preference is given to using alkyl naphthalenesulphonates, such as diisopropyl or diisobutyl naphthalenesulphonates.

Useful dispersants and/or emulsifiers which may be present in the seed dressing formulations usable in accordance with the invention are all nonionic, anionic and cationic dispersants conventionally used for the formulation of active agrochemical ingredients. Usable with preference are nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants. Suitable nonionic dispersants include especially ethylene oxide/propylene oxide block polymers, alkylphenol polyglycol ethers and tristirylylphenol polyglycol ether, and the phosphated or sulphated derivatives thereof. Suitable anionic dispersants are especially lignosulphonates, polyacrylic acid salts and arylsulphonate/formaldehyde condensates.

Antifoams which may be present in the seed dressing formulations usable in accordance with the invention are all foam-inhibiting substances conventionally used for the formulation of active agrochemical ingredients. Silicone antifoams and magnesium stearate can be used with preference.

Preservatives which may be present in the seed dressing formulations usable in accordance with the invention are all substances usable for such purposes in agrochemical compositions. Examples include dichlorophene and benzyl alcohol hemiformal.

Secondary thickeners which may be present in the seed dressing formulations usable in accordance with the invention are all substances usable for such purposes in agrochemical compositions. Preferred examples include cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and finely divided silica.
Adhesives which may be present in the seed dressing formulations usable in accordance with the invention are all customary binders usable in seed dressing products. Preferred examples include polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose.

The gibberellins which may be present in the seed dressing formulations usable in accordance with the invention may preferably be gibberellins A1, A3 (= gibberellic acid), A4 and A7; particular preference is given to using gibberellic acid. The gibberellins are known (cf. R. Wegler "Chemie der Pflanzenschutz- und Schadlingsbekampfungsmittler’ [Chemistry of the Crop Protection Compositions and Pesticides], vol. 2, Springer Verlag, 1970, p. 401-412).

The seed dressing formulations usable in accordance with the invention can be used, either directly or after previously having been diluted with water, for the treatment of a wide range of different seed, including the seed of transgenic plants. In this case, additional synergistic effects may also occur in interaction with the substances formed by expression.

For treatment of seed with the seed dressing formulations usable in accordance with the invention, or the preparations prepared therefrom by adding water, all mixing units usable customarily for the seed dressing are useful. Specifically, the procedure in the seed dressing is to place the seed into a mixer, to add the particular desired amount of seed dressing formulations, either as such or after prior dilution with water, and to mix everything until the formulation is distributed homogeneously on the seed. If appropriate, this is followed by a drying process.

Mycotoxins

In addition, the inventive treatment can reduce the mycotoxin content in the harvested material and the foods and feeds prepared therefrom. Mycotoxins include particularly, but not exclusively, the following: deoxynivalenol (DON), nivalenol, 15-Ac-DON, 3-Ac-DON, T2- and HT2-toxin, fumonisins, zearalenon, moniliformin, fusarin, diacetoxyscirpenol (DAS), beauvericin, enniatin, fusaroproliferin, fusarenol, ochratoxins, patulin, ergot alkaloids and aflatoxins which can be produced, for example, by the following fungi: Fusarium spec, such as F. acuminatum, F. asiaticum, F. avenaceum, F. crookwellense, F. culmorum, F. graminearum (Gibberella zeae), F. equiseti, F. fujikoroi, F. musarum, F. oxysporum, F. proliferatum, F. poae, F. pseudograminearum, F. sambucinum, F. scirpi, F. semitectum, F. solani, F. sporotrichoides, F. langsethiae, F. subglutinans, F. tricinctum, F. verticillioides etc., and also by Aspergillus spec, such as A. flavus, A. parasiticus, A. nomius, A. ochraceus, A. clavatus, A. terreus, A. versicolor, Penicillium spec, such as P. verrucosum, P. viridicatum, P. citrinum, P. expansum, P. claviforme, P. roqueforti, Claviceps spec, such as C. purpurea, C. fusiformis, C. paspali, C. africana, Stachybotrys spec, and others.
Material Protection

The inventive mixtures or compositions can also be used in the protection of materials, for protection of industrial materials against attack and destruction by harmful microorganisms, for example fungi and insects.

In addition, the inventive mixtures or compositions can be used as antifouling compositions, alone or in combinations with other active ingredients.

Industrial materials in the present context are understood to mean inanimate materials which have been prepared for use in industry. For example, industrial materials which are to be protected by inventive mixtures or compositions from microbial alteration or destruction may be adhesives, glues, paper, wallpaper and board/cardboard, textiles, carpets, leather, wood, fibers and tissues, paints and plastic articles, cooling lubricants and other materials which can be infected with or destroyed by microorganisms. Parts of production plants and buildings, for example cooling-water circuits, cooling and heating systems and ventilation and air-conditioning units, which may be impaired by the proliferation of microorganisms may also be mentioned within the scope of the materials to be protected. Industrial materials within the scope of the present invention preferably include adhesives, sizes, paper and card, leather, wood, paints, cooling lubricants and heat transfer fluids, more preferably wood.

The inventive mixtures or compositions may prevent adverse effects, such as rotting, decay, discoloration, decoloration or formation of mould.

In the case of treatment of wood the compounds/compositions according to the invention may also be used against fungal diseases liable to grow on or inside timber. The term "timber" means all types of species of wood, and all types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood, and plywood. The method for treating timber according to the invention mainly consists in contacting one or more compounds according to the invention or a composition according to the invention; this includes for example direct application, spraying, dipping, injection or any other suitable means.

In addition, the inventive compounds can be used to protect objects which come into contact with saltwater or brackish water, especially hulls, screens, nets, buildings, moorings and signalling systems, from fouling.

The inventive method for controlling harmful fungi can also be employed for protecting storage goods. Storage goods are understood to mean natural substances of vegetable or animal origin or processed products thereof which are of natural origin, and for which long-term protection is desired. Storage goods of vegetable origin, for example plants or plant parts, such as stems, leaves, tubers, seeds, fruits, grains, can be protected freshly harvested or after processing by (pre)drying, moistening, comminuting, grinding, pressing or roasting. Storage goods also include timber, both unprocessed, such as construction timber, electricity poles and barriers, or in the form of finished products, such as furniture. Storage goods of animal origin are, for
example, hides, leather, furs and hairs. The inventive mixtures or compositions may prevent adverse effects, such as rotting, decay, discoloration, decoloration or formation of mould.

Microorganisms capable of degrading or altering the industrial materials include, for example, bacteria, fungi, yeasts, algae and slime organisms. The inventive mixtures or compositions preferably act against fungi, especially moulds, wood-discoloring and wood-destroying fungi (*Ascomycetes*, *Basidiomycetes*, *Deuteromycetes* and *Zygomycetes*), and against slime organisms and algae. Examples include microorganisms of the following genera: *Alternaria*, such as *Alternaria tenuis*; *Aspergillus*, such as *Aspergillus niger*; *Chaetomium*, such as *Chaetomium globosum*; *Coniophora*, such as *Coniophora puetana*; *Lentinus*, such as *Lentinus tigrinus*; *Penicillium*, such as *Penicillium glaucum*; *Polyporus*, such as *Polyporus versicolor*; *Aureobasidium*, such as *Aureobasidium pullulans*; *Sclerophoma*, such as *Sclerophoma pityophila*; *Trichoderma*, such as *Trichoderma viride*; *Ophiostoma* spp., *Ceratocystis* spp., *Humicola* spp., *Petriella* spp., *Trichurus* spp., *Coriolus* spp., *Gloeophyllum* spp., *Pleurotus* spp., *Poria* spp., *Serpula* spp. and *Tyromyces* spp., *Cladosporium* spp., *Paecilomyces* spp. *Mucor* spp., *Escherichia*, such as *Escherichia coli*; *Pseudomonas*, such as *Pseudomonas aeruginosa*; *Staphylococcus*, such as *Staphylococcus aureus*, *Candida* spp. and *Saccharomyces* spp., such as *Saccharomyces cerevisae*.

Antimycotic Activity

In addition, the inventive mixtures or compositions also have very good antimycotic activity. They have a very broad antimycotic activity spectrum, especially against dermatophytes and yeasts, moulds and diphasic fungi (for example against *Candida* species, such as *C. albicans*, *C. glabrata*), and *Epidermophyton floccosum*, *Aspergillus* species, such as *A. niger* and *A. fumigatus*, *Trichophyton* species, such as *T. mentagrophytes*, *Microsporon* species such as *M. canis* and *M. audouinii*. The list of these fungi by no means constitutes a restriction of the mycotic spectrum covered, and is merely of illustrative character.

The inventive mixtures or compositions can therefore be used both in medical and in non-medical applications.

Genetically modified organisms

As already mentioned above, it is possible to treat all plants and their parts in accordance with the invention. In a preferred embodiment, wild plant species and plant cultivars, or those obtained by conventional biological breeding methods, such as crossing or protoplast fusion, and also parts thereof, are treated. In a further preferred embodiment, transgenic plants and plant cultivars obtained by genetic engineering methods, if appropriate in combination with conventional methods (Genetically Modified Organisms), and parts thereof are treated. The terms "parts" or "parts of plants" or "plant parts" have been explained above. More preferably, plants of the plant cultivars which are commercially available or are in use are treated in accordance with the invention. Plant cultivars are understood to mean plants which have new properties
("traits") and have been obtained by conventional breeding, by mutagenesis or by recombinant DNA techniques. They can be cultivars, varieties, bio- or genotypes.

The method of treatment according to the invention can be used in the treatment of genetically modified organisms (GMOs), e.g. plants or seeds. Genetically modified plants (or transgenic plants) are plants of which a heterologous gene has been stably integrated into genome. The expression "heterologous gene" essentially means a gene which is provided or assembled outside the plant and when introduced in the nuclear, chloroplastic or mitochondrial genome gives the transformed plant new or improved agronomic or other properties by expressing a protein or polypeptide of interest or by downregulating or silencing other gene(s) which are present in the plant (using for example, antisense technology, cosuppression technology, RNA interference - RNAi - technology or microRNA - miRNA - technology). A heterologous gene that is located in the genome is also called a transgene. A transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.

Plants and plant cultivars which are preferably to be treated according to the invention include all plants which have genetic material which impart particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).

Plants and plant cultivars which are also preferably to be treated according to the invention are resistant against one or more biotic stresses, i.e. said plants show a better defense against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and/or viroids.

Plants and plant cultivars which may also be treated according to the invention are those plants which are resistant to one or more abiotic stresses. Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozone exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance.

Plants and plant cultivars which may also be treated according to the invention, are those plants characterized by enhanced yield characteristics. Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation. Yield can furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance. Further yield traits include seed composition, such as carbohydrate content and composition for example cotton or starch, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.
Plants that may be treated according to the invention are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and resistance towards biotic and abiotic stresses).

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may be treated according to the invention are herbicide-tolerant plants, i.e. plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance.

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are insect-resistant transgenic plants, i.e. plants made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such insect resistance.

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are tolerant to abiotic stresses. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance.

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention show altered quantity, quality and/or storage-stability of the harvested product and/or altered properties of specific ingredients of the harvested product.

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as cotton plants, with altered fiber characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered fiber characteristics.

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered oil profile characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered oil profile characteristics.

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered seed shattering characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered seed shattering characteristics and include plants such as oilseed rape plants with delayed or reduced seed shattering.
Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as Tobacco plants, with altered post-translational protein modification patterns.

Application Rates and Timing

When using the inventive mixtures or compositions as fungicides, the application rates can be varied within a relatively wide range, depending on the kind of application. The application rate of the inventive active ingredients is

- in the case of treatment of plant parts, for example leaves: from 0.1 to 10 000 g/ha, preferably from 10 to 1000 g/ha, more preferably from 10 to 800 g/ha, even more preferably from 50 to 300 g/ha (in the case of application by watering or dripping, it is even possible to reduce the application rate, especially when inert substrates such as rockwool or perlite are used);

- in the case of seed treatment: from 2 to 200 g per 100 kg of seed, preferably from 3 to 150 g per 100 kg of seed, more preferably from 2.5 to 25 g per 100 kg of seed, even more preferably from 2.5 to 12.5 g per 100 kg of seed;

- in the case of soil treatment: from 0.1 to 10 000 g/ha, preferably from 1 to 5000 g/ha.

These application rates are merely by way of example and are not limiting for the purposes of the invention.

The inventive mixtures or compositions can thus be used to protect plants from attack by the pathogens mentioned for a certain period of time after treatment. The period for which protection is provided extends generally for 1 to 28 days, preferably for 1 to 14 days, more preferably for 1 to 10 days, most preferably for 1 to 7 days, after the treatment of the plants with the mixtures or compositions, or for up to 200 days after a seed treatment.

The method of treatment according to the invention also provides the use or application of compounds (I) and (II) and/or (III) in a simultaneous, separate or sequential manner. If the single active ingredients are applied in a sequential manner, i.e. at different times, they are applied one after the other within a reasonably short period, such as a few hours or days. Preferably the order of applying the compounds (A) and (B) and/or (C) is not essential for working the present invention.

The plants listed can particularly advantageously be treated in accordance with the invention with the inventive mixtures or compositions. The preferred ranges stated above for the active ingredients or compositions also apply to the treatment of these plants. Particular emphasis is given to the treatment of plants with the compounds or compositions specifically mentioned in the present text.
Examples

The advanced fungicidal activity of the active compound combinations according to the invention is evident from the example below. While the individual active compounds exhibit weaknesses with regard to the fungicidal activity, the combinations have an activity which exceeds a simple addition of activities.

A synergistic effect of fungicides is always present when the fungicidal activity of the active compound combinations exceeds the total of the activities of the active compounds when applied individually. The expected activity for a given combination of two active compounds can be calculated as follows (cf. Colby, S.R., "Calculating Synergistic and Antagonistic Responses of Herbicide Combinations", Weeds 1967, 15, 20-22):

If

\[E_1 = X + Y - \frac{XY}{100} \]

\[E_2 = X + Y + Z - \left(\frac{X \cdot Y + X \cdot Z + Y \cdot Z}{100} \right) + \frac{X \cdot Y \cdot Z}{10000} \]

The degree of efficacy, expressed in % is denoted. 0 % means an efficacy which corresponds to that of the control while an efficacy of 100 % means that no disease is observed.

If the actual fungicidal activity exceeds the calculated value, then the activity of the combination is superadditive, i.e. a synergistic effect exists. In this case, the efficacy which was actually observed must be greater than the value for the expected efficacy (E) calculated from the abovementioned formula.
A further way of demonstrating a synergistic effect is the method of Tammes (cf. "Isoboles, a graphic representation of synergism in pesticides" in _Neth. J. Plant Path._, **1964**, 70, 73-80).

The invention is illustrated by the following example. However the invention is not limited to the example.
Example A: in vivo preventive test on Phytophthora test (tomatoes)

Solvent: 24.5 parts by weight of acetone
 24.5 parts by weight of dimethylacetamide

Emulsifier: 1 part by weight of alkylaryl polyglycol ether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration. To test for preventive activity, young plants are sprayed with the preparation of active compound at the stated rate of application. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of Phytophthora infestans. The plants are then placed in an incubation cabinet at approximately 20 °C and a relative atmospheric humidity of 100%.

The test is evaluated 3 days after the inoculation. 0%> means an efficacy which corresponds to that of the untreated control, while an efficacy of 100%> means that no disease is observed. The table below clearly shows that the observed activity of the active compound combination according to the invention is greater than the calculated activity, i.e. a synergistic effect is present.

Table A-1: in vivo preventive test on Phytophthora test (tomatoes)

<table>
<thead>
<tr>
<th>Active compounds</th>
<th>Application rate of active compound in ppm a.i.</th>
<th>Efficacy in % found*</th>
<th>calc.**</th>
<th>diff.***</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) 2-[3-[2-(1-{{3,5-bis(difluoromethyl)-1H-pyrazol-1-yl}acetyl)piperidin-4-yl}-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl]-3-chlorophenyl methanesulfonate</td>
<td>0.02</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B) fosetyl-Al</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C-1) propineb</td>
<td>3.2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A) + (B) + (C-1)</td>
<td>1:200:160</td>
<td>0.02 + 4 + 3.2</td>
<td>78</td>
<td>51</td>
</tr>
</tbody>
</table>

* found = activity found
** calc. = activity calculated using Colby's formula
*** diff. = difference between activity found and activity calculated
Table A-2: in vivo preventive test on *Phytophthora test (tomatoes)*

<table>
<thead>
<tr>
<th>Active compounds</th>
<th>Application rate of active compound in ppm a.i.</th>
<th>Efficacy in % found*</th>
<th>calc.**</th>
<th>diff.***</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) 2-{3-[2-(1-{{3,5-bis(difluoromethyl)-1H-pyrazol-1-yl}acetyl}piperidin-4-yl]-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}-3-chlorophenyl methanesulphonate</td>
<td>0.02</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B) fosetyl-Al</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C-2) folpet</td>
<td>2.66</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A) + (B) + (C-2)</td>
<td>1:200:133</td>
<td>0.02 + 4 + 2.66</td>
<td>85</td>
<td>51</td>
</tr>
</tbody>
</table>

* found = activity found
** calc. = activity calculated using Colby's formula
*** diff. = difference between activity found and activity calculated
Example B: in vivo preventive test on Venturia test (apples)

Solvent: 24.5 parts by weight of acetone
24.5 parts by weight of dimethylacetamide

Emulsifier: 1 part by weight of alkylaryl polyglycol ether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration. To test for preventive activity, young plants are sprayed with the preparation of active compound at the stated rate of application. After the spray coating has dried on, the plants are inoculated with an aqueous conidia suspension of the causal agent of apple scab (Venturia inaequalis) and then remain for 1 day in an incubation cabinet at approximately 20 °C and a relative atmospheric humidity of 100%. The plants are then placed in a greenhouse at approximately 21 °C and a relative atmospheric humidity of approximately 90%.

The test is evaluated 10 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed. The table below clearly shows that the observed activity of the active compound combination according to the invention is greater than the calculated activity, i.e. a synergistic effect is present.

Table B-1 : in vivo preventive test on Venturia test (apples)

<table>
<thead>
<tr>
<th>Active compounds</th>
<th>Application rate of active compound in ppm a.i.</th>
<th>Efficacy in %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>found*</td>
<td>calc.*)</td>
</tr>
<tr>
<td>(A) 2-(3-[2-(1 - {[3,5-bis(difluoromethyl)-IH-pyrazol-1-yl]acetyl}piperidin-4-yl]-1,3-thiazol-4-yl]-4,5-dihydro-l,2-oxazol-5-yl]-3-chlorophenyl methanesulfonate</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>(B) fosetyl-Al</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>(C-3) 2,6-dimethyl-lH,5H-[l,4]dithiino[2,3-c:5,6-c']dipyrrrole-l,3,5,7(2H,6H)-tetrone</td>
<td>4.16</td>
<td>8</td>
</tr>
<tr>
<td>(A) + (B) + (C-3)</td>
<td>1:200:33.25</td>
<td>0.125 + 25 + 4.16</td>
</tr>
</tbody>
</table>
found = activity found

calc. = activity calculated using Colby's formula

diff. = difference between activity found and activity calculated
Claims

1. Synergistic fungicidal active compound combinations, comprising

(A) 2-{3-[2-(l-{[3,5-bis(difluoromethyl)-lH-pyrazol-l-yl]acetyl}piperidin-4-yl)-l,3-thiazol-4-yl]-4,5-
dihydro-l,2-oxazol-5-yl}-3-chlorophenyl methanesulfonate and

(B) Fosetyl-aluminium and

(C) Propineb, Folpet or 2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c’]dipyrrrole-1,3,5,7(2H,6H)-tetrone.

2. Use of active compound combinations according to Claim 1 for controlling unwanted phytopathogenic fungi.

3. Use of active compound combinations according to Claim 1 for treating seed.

4. Use of active compound combinations according to Claim 1 for treating transgenic plants.

5. Use of active compound combinations according to Claim 1 for treating seed of transgenic plants.

6. Seed treated with an active compound combination according to Claim 1.

7. Method for controlling unwanted phytopathogenic fungi, characterized in that active compound combinations according to Claim 1 are applied to the unwanted phytopathogenic fungi and/or their habitat and/or seed.

8. Process for preparing fungicidal compositions, characterized in that active compound combinations according to Claim 1 are mixed with extenders and/or surfactants.
INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2015/060407

A. CLASSIFICATION OF SUBJECT MATTER

INV. A01N43/80 A01N57/12 A01N47/14 A01N47/04 A01N43/90 A01P3/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 2013/127704 AI (BAYER AG [DE]) 6 September 2013 (2013-09-06) cited in the application</td>
<td>1-8</td>
</tr>
<tr>
<td>Y</td>
<td>page 65; example 2; table 3 ; compounds 1-3, 15.24 page 63; example 1; table 2; compounds 1-3, 5.16, 5.29 page 8; compound 15.60</td>
<td>1-8</td>
</tr>
<tr>
<td>Y</td>
<td>wo 2011/035634 AI (BAYER CROPSCIENCE AG [DE]; STEIGER DOMINIQUE [DE]; TRIBUS LUDGER [DE]) 31 March 2011 (2011-03-31) claim 1</td>
<td>1-8</td>
</tr>
<tr>
<td>Y</td>
<td>us 4 698 334 A (HORRIERE DANIEL [FR] ET AL) 6 October 1987 (1987-10-06) column 5- column 6; example 5; table 5</td>
<td>1-8</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. *X* See patent family annex.

Date of the actual completion of the international search: 15 June 2015

Date of mailing of the international search report: 23/06/2015

Name and mailing address of the ISA:

European Patent Office, P.B. 5018 Patentlaan 2 NL-2280 HV Rijswijk

Tel. (+31-70) 340-2040, Fax. (+31-70) 340-3016

Authorized officer:

Davies, Maxwell
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 2011/029551 A2 (BAYER CROPSCI ENCE AG [DE]; SEITZ THOMAS [DE]; WACHENDORFF-NEUMANN ULRI) 17 March 2011 (2011-03-17) page 38; table A7; compounds I-1, 15.20</td>
<td>1-8</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>wo 2013127704 Al</td>
<td>06-09-2013</td>
<td>AR 090157 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2865300 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104244716 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 7061086 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2819518 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015511579 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140129230 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE 17352014 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2013127704 Al</td>
</tr>
<tr>
<td>wo 2011035834 Al</td>
<td>31-03-2011</td>
<td>AR 077854 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2292094 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201119578 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011105322 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2011035834 Al</td>
</tr>
<tr>
<td>us 4698334 A</td>
<td>06-10-1987</td>
<td>AR 222009 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 518667 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3240178 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE 862903 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 28981 A4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 28982 A4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 7800218 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1113386 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS 196413 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DD 133752 A5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2801428 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EG 12833 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 465751 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2377155 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1594635 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 179278 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 46640 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1174273 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP S5388327 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP S6045508 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU 78863 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 7800434 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OA 5847 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PH 13328 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 203977 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RO 85296 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR 20008 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4698334 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4806445 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 7800198 A</td>
</tr>
<tr>
<td>wo 2011029551 A2</td>
<td>17-03-2011</td>
<td>AR 077956 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2010294602 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2773858 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102595905 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104054723 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 6511232 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CR 20120125 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201290130 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC SP12011725 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2477497 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GT 201200072 A</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 2013504526 A</td>
<td>07-02-2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 20120090049 A</td>
<td>16-08-2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 13562012 Al</td>
<td>05-10-2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 201121421 A</td>
<td>01-07-2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2011064827 Al</td>
<td>17-03-2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2014154336 Al</td>
<td>05-06-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2014357589 Al</td>
<td>04-12-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2014357597 Al</td>
<td>04-12-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2014357635 Al</td>
<td>04-12-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2014357679 Al</td>
<td>04-12-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0 2011029551 A2</td>
<td>17-03-2011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>