Title: METHODS AND COMPOSITIONS FOR CHIMERIC CORONAVIRUS SPIKE PROTEINS

Abstract: The present invention provides compositions and methods comprising a chimeric coronavirus spike protein.
METHODS AND COMPOSITIONS FOR CHIMERIC CORONAVIRUS SPIKE PROTEINS

STATEMENT OF PRIORITY

This application claims the benefit, under 35 U.S.C. § 119(e), of U.S. Provisional Application Serial No. 61/968,279, filed March 20, 2014, the disclosure of which is incorporated by reference herein in its entirety.

STATEMENT OF FEDERAL SUPPORT

This invention was made with government support under Grant No. U54AI057157 awarded by the National Institutes of Health. The government has certain rights in the invention.

FIELD OF THE INVENTION

The present invention relates to methods and compositions comprising a chimeric coronavirus spike protein for treating and/or preventing a disease or disorder caused by a coronavirus infection.

BACKGROUND OF THE INVENTION

Updated approaches are needed to rapidly respond to new emerging diseases, especially early in the epidemic when prompt public health intervention strategies can limit mortality and epidemic spread. In particular, emerging respiratory coronaviruses offer a considerable threat to the health of global populations and the economy. Coronaviruses (CoVs) constitute a group of phylogenetically diverse enveloped viruses that encode the largest plus strand RNA genomes and replicate efficiently in most mammals. Human CoV (HCoVs-229E, OC43, NL63, and HKU1) infections typically result in mild to severe upper and lower respiratory tract disease. Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) emerged in 2002-2003 causing acute respiratory distress syndrome (ARDS) with 10% mortality overall and up to 50% mortality in aged individuals. Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) emerged in the Middle East in April of 2012, manifesting as severe pneumonia, acute respiratory distress syndrome (ARDS) and acute renal failure. The virus is still circulating and has been shown to have a mortality rate of
-49%. Platforms for generating reagents and therapeutics are needed to detect and control the emergence of new strains, especially early in an outbreak prior to the development of type specific serologic reagents and therapeutics.

The present invention overcomes previous shortcomings in the art by providing methods and compositions comprising a chimeric coronavirus spike protein for treating/and or preventing diseases and disorders caused by infection by a coronavirus.

SUMMARY OF THE INVENTION

In one aspect, the present invention provides a chimeric coronavirus spike protein comprising, in orientation from amino to carboxy terminus: a) a first region comprising a portion of a coronavirus spike protein ectodomain that precedes the receptor binding domain (RBD) as located in a nonchimeric coronavirus spike protein, of a first coronavirus; b) a second region comprising a coronavirus spike protein receptor binding domain (RBD) of a second coronavirus that is different from said first coronavirus; c) a third region comprising a portion of a coronavirus spike protein S1 domain as located in a nonchimeric coronavirus spike protein immediately downstream of the RBD, contiguous with a portion comprising a coronavirus spike protein S2 domain as located immediately upstream of a fusion protein domain in a nonchimeric coronavirus spike protein, wherein said third region is of said first coronavirus; and d) a fourth region comprising a portion of a coronavirus spike protein from the start of the fusion protein domain through the carboxy terminal end as located in a nonchimeric coronavirus spike protein of a third coronavirus that is different from said first coronavirus and said second coronavirus.

In further aspects, the present invention further provides an isolated nucleic acid molecule encoding the chimeric coronavirus spike protein of this invention, as well as a vector comprising the isolated nucleic acid molecule. Also provided are compositions comprising the chimeric coronavirus spike proteins, isolated nucleic acid molecules and/or vectors of this invention in a pharmaceutically acceptable carrier.

In further aspects, the present invention provides a method of producing an immune response to a coronavirus in a subject, treating a coronavirus infection in a subject, preventing a disease or disorder caused by coronavirus infection in a subject and/or protecting a subject from the effects of coronavirus infection, comprising administering to the subject an effective amount of the chimeric coronavirus spike protein, the isolated nucleic acid molecule the
vector and/or the composition of this invention, or any combination thereof, thereby producing an immune response to a coronavirus in the subject, treating a coronavirus infection in the subject, preventing a disease or disorder caused by coronavirus infection in the subject and/or protecting the subject from the effects of coronavirus infection.

In further aspects, the present invention provides a method of identifying a coronavirus spike protein for administration to elicit an immune response to coronavirus in a subject infected by a coronavirus and/or a subject at risk of coronavirus infection and/or to a subject for whom eliciting an immune response to a coronavirus is needed or desired, comprising: a) contacting a sample obtained from a subject infected with a coronavirus with a panel of proteins comprising: 1) one or more chimeric coronavirus spike proteins from a subgroup 2c coronavirus, 2) one or more chimeric coronavirus spike proteins from a subgroup 2b coronavirus, 3) one or more spike proteins from a subgroup 2a coronavirus, 4) one or more chimeric coronavirus spike proteins from a subgroup 2d coronavirus, 5) one or more chimeric coronavirus spike proteins from a subgroup 1a coronavirus, 6) one or more chimeric coronavirus spike proteins from a subgroup 1b coronavirus, and 7) any combination of (1) through (6) above, under conditions whereby an antigen/antibody complex can form; and b) detecting formation of an antigen/antibody complex, whereby detection of formation of the antigen/antibody complex comprising the chimeric coronavirus spike protein(s) of any of (1)-(6) identifies the presence of antibodies to a spike protein of the coronavirus that is infecting the subject of (a), thereby identifying a coronavirus spike protein for administration to the subject of (a) and/or to a subject infected with a coronavirus and/or to a subject at risk of coronavirus infection and/or to a subject for whom eliciting an immune response to a coronavirus is needed or desired.

Also provided herein is a method of identifying an antibody that neutralizes a coronavirus infecting a subject, comprising: a) isolating a coronavirus from a sample of a subject infected with a coronavirus and/or suspected of being infected with a coronavirus; b) contacting the coronavirus of (a) with a panel of antibodies comprising: 1) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2c coronavirus, 2) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2b coronavirus, 3) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2a coronavirus, 4) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2d coronavirus, 5) an antibody reactive with a chimeric coronavirus spike protein
from a subgroup 1a coronavirus, 6) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 1b coronavirus, and 7) any combination of (1) through (6) above, to form respective coronavirus/antibody compositions, each comprising a respective antibody of the panel; c) contacting each of the respective coronavirus/antibody compositions of (b) with cells susceptible to coronavirus infection under conditions whereby coronavirus infection can occur; and d) detecting the presence or absence of infection of the cells, whereby absence of detection of infection of the cells contacted with any of the coronavirus/antibody compositions of (b) identifies the antibody of that coronavirus/antibody composition as an antibody that neutralizes the coronavirus infecting the subject.

The foregoing and other objects and aspects of the present invention are explained in detail in the specification set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1. Phylogenetic tree of the coronaviruses. The chimeric spike antigen HKU3-Smix belongs to subgroup 2b, and the antigenic components of the chimeric antigen are derived from BtCoV HKU 3S, SARS CoV S, and BtCoV 279 S, all of which are circled. The other S antigens representing other subgroups of CoVs are indicated in dashed circles as controls.

Fig. 2. Design of the chimeric spike antigen. The chimeric spike antigen HKU3-Smix has components from HKU3 S, SARS CoV S RBD, and BtCoV 279S. The specific amino acid residues adopted from each of the spike proteins are indicated in the figure. The S1/S2 boundary is indicated (761aa). S2/Tm domain is indicated (1194aa). The top panel represents the spike protein organization in the SARS-CoV Spike, showing the spread of the neutralizing epitope across various domains of the SARS-CoV spike protein.

Fig. 3. Cross reactivity of antisera to chimeric spike antigen, with spike proteins from different CoVs. Mouse antisera to chimeric spike antigen (HKU 3 S \text{MIX}), SARS S, BAT 1A S, HKU2.298 S, HKU 4.2 S, and HKU9.4S were analyzed for their cross reactivity with these antigens. Antisera to chimeric spike antigen recognizes SARS S (Panel B) and vice versa (Panel A). Note that there is no cross reactivity between S proteins of other subgroups.
Fig. 4. Chimeric antigen HKU 3 S\textsubscript{MIX} protects against lethal SARS CoV challenge. Panel A. Percent weight loss of young Balb/C mice immunized with chimeric Antigen HKU 3 S\textsubscript{MIX}, SARS S and HKU9.4S (negative control) and challenged with lethal dose of mouse adapted SARS CoV (MA 15 virus). Mice immunized with chimeric antigen, SARS S show no weight loss. Panel B. Lung titers on Day 2 post infection of the same groups of mice shown above. Note that there is no virus detected in groups of mice vaccinated with HKU 3 S\textsubscript{MIX} and SARS S.

Fig. 5. Chimeric antigen HKU 3 S\textsubscript{MIX} protects against lethal SARS CoV heterologous challenge. Panel A. Percent weight loss of young Balb/C mice immunized with chimeric spike antigen HKU 3 S\textsubscript{MIX}, SARS S and HKU9.4S (negative control) and challenged with lethal dose of heterologous mouse adapted SARS CoV (GD03 MA virus). Mice immunized with chimeric spike antigen, SARS S show no weight loss. Panel B. Lung titers on Day 2 post infection of the same groups of mice shown above. Viral replication is reduced on D2 and no virus is detected in groups of mice vaccinated with HKU 3 S\textsubscript{MIX} and SARS S.

Fig. 6. Schematic of the HKU2 virus with the chimeric antigen HKU 3 S\textsubscript{MIX}. Panel A. The HKU3 virus which has the chimeric antigen HKU 3 S\textsubscript{MIX} is shown. The open reading frames are indicated. Panel B. Growth curve of HKU 3 virus with the chimeric spike antigen HKU 3 S\textsubscript{MIX}. The HKU3 virus which has the chimeric spike antigen HKU 3 S\textsubscript{MIX} grows similar to SARS CoV in Vero cells.

Fig. 7. Schematic of the BAT-SRBDMAv. This virus has the I-HKU3 backbone, with the spike protein containing a chimera of HKU3 spike and receptor binding domain from SARS-CoV spike 210aa. This virus was created by serial passage of the parent virus in 20 week old Balb/C mice, resulting in virulent phenotype. The amino acid mutations essential for mouse adaptation are indicated and for comparison, the mouse adapted SARS-CoV is shown with the mouse adapted mutations.

Fig. 8. Chimeric spike antigen HKU 3 S\textsubscript{MIX} protects against lethal challenge with BAT-SRBD-Mav when compared. Panels A and B. Percent weight loss of young Balb/C mice immunized with chimeric antigen HKU 3 S\textsubscript{MIX}, SARS S, BtCoV 279 S, and BtCoV HKU S and challenged with lethal dose of heterologous mouse adapted BAT-SRBD-MAv. Mice immunized with chimeric antigen, SARS S show no weight loss, whereas there is about 3-5% weight loss with HKU3 S and BtCoV 279 S. Panel C. Lung titers on Day 2 post
infection of the same groups of mice shown above. Viral replication is reduced on D2 in BtCoV 279 S and HKU3 S group, but no virus is detected in groups of mice vaccinated with HKU 3 S MIX and SARS S.

Fig. 9. Design of the chimeric spike antigen for subgroup 2c. The chimeric spike antigen 2c has components from HKU4.2 S, MERS-CoV S RBD, and BtCoV 5.5S. The specific amino acid residues adopted from each of the spike proteins are indicated. S1/S2 boundary is indicated (730aa). S2/Tm domain is indicated (~1 190aa).

Fig. 10. Characterization of VRP 3526 Platform. Panel A. VEE 3526 replicon CoV S protein expression construct. The capsid and E glycoprotein genes from Venezuelan equine encephalitis virus are replaced with the Coronavirus Spike Protein gene S. The VEE capsid and E glycoproteins are supplied in separate constructs. When cells are transfected with all three constructs, VEE replicons encoding CoV S are formed. Panel B. Titer of S protein vaccines from all three different coats determined on BHK cells by an IFA assay. Panel C. Western blot from independent experiments showing expression of SARS-CoV S protein from VRP 3526 S and VRP 3000 S vaccines in Vero cells. Lower panel indicates actin.

Fig. 11. Young adult mice are protected from homologous (MA15) and heterologous (MA 15 GD03S) SARS-CoV challenge by VRP 3526 S vaccine. Panels A & B. Percent weight loss of young adult mice immunized with indicated vaccines, and challenged with 105 pfu of rMA15 (homologous) and rMA15-GD03S (heterologous) respectively. Panels C&D. Lung titer on 2DPI infection determined by plaque assay Vero cells from experiments in Panel A and B respectively. Error bars indicate SEM. * indicates (p<0.05 in Mann-Whitney Test).

Fig. 12. Aged mice are protected from homologous (MA15) SARS-CoV challenge by VRP 3526 S vaccine. Panel A. Percent weight loss of one year old mice immunized with S protein based vaccines from three different coats, and challenged with 05 pfu of rMA15. Panel B and C. Lung titer on 2DPI (Panel B), and 4DPI (Panel C) determined by plaque assay Vero cells. Error bars indicate SEM. Significance as determined by Mann-Whitney test (p<0.05, indicated by asterisk).

Fig. 13. VRP 3526 elicits high Antibody response in young and aged animals. Panels A and B. ELISA results showing IgG titer to S protein, elicited in young mice (Panel A) and aged mice (Panel B) by indicated vaccine groups. Panels C and D. Neutralization
potential (to SARS-CoV) of antibodies elicited by indicated vaccine groups in young mice (Panel C), and aged mice (Panel D), as measured by PRNT\textsubscript{50} assay. Error bars indicate SD.

Fig. 14. Design of a Chimeric Spike based CoV Vaccine. Panel A. Phylogenetic tree showing Coronaviruses in subgroup 2b. The circles represent three viruses from which specific regions of S proteins are combined to form the chimeric spike. Panel B. Western blots showing that serum raised to the Chimera S or SARS-CoV Urbani S recognize the Chimeric Spike due to overlapping epitopes. Panel C. Design of the Chimeric Spike antigen utilizing portions of SARS-CoV, BtCoV HKU3 and BtCoV 279 Spike. The Chimera S contains the following epitopes from N terminus: a portion of ectodomain from BtCoV HKU3; a portion of Receptor Binding Domain (RBD) from SARS-CoV; a region from S1/S2 from BtCoV HKU3; followed by a region containing S2/Tm from the BtCoV 279 Spike.

Fig. 15. Chimera S Vaccine Protects from Homologous and Heterologous SARS-CoV Challenge. Panels A & B. Percent weight loss of young adult mice immunized with S protein based or Chimera S vaccine and challenged with 10^5 pfu of rMA15 (homologous) and rMA15-GD03S (heterologous) respectively. Panels C & D. Lung titers on 2DPI infection determined by plaque assay Vero cells from experiments in Panel A and B respectively. Error bars indicate SEM. * indicates (p<0.05 in Mann-Whitney Test).

Fig. 16. Generation and Mouse Adaptation of a lethal Zoonotic Challenge Virus (BtCoV HKU3) from subgroup 2b. Panel A. Schematic of chimeric HKU3 virus (HKU3-SRBD-MA) containing the Receptor binding domain (green color) from SARS-CoV S protein. The Open Reading Frames are Indicated. The asterisk indicates Y436H mutation which enhances replication in mice. HKU3-SRBD-MA was serially passaged in 20 week old BALB/c mice (schematic below) at 2 day intervals to create a lethal challenge virus. Panel B. Mouse adaptation leads to mutations in nsp5, Spike, Membrane and ORF 7b. The mutations are indicated by lollipops, and the table shows the exact nucleotide and amino acid mutations are indicated in the table.

Fig.17. HKU-3-SRBD-MA\textsubscript{v} causes severe respiratory disease in 20wk old Balb/c mice culminating in lethality. Panel A. Percent weight loss of 20 wk old Balb/c mice infected with 10^5 pfu of HKU3-SRBD-MA \textsubscript{v}, through 4 days post infection. Note that the infected mice lose 20% of their body weight 4 days post infection. Panel B. Viral titers in lungs of mice at Day 2 and 4 post infection. Panel C. Histopathology of H&E stained lung
sections at day 4 P.I. showing denuded airways, perivascular cuffing and formation of hyaline membranes (black arrow), which are markers of severe lung disease.

Fig. 18. Chimera S vaccine protects mice from HKU3-SRBD-MAv Challenge.
Panel A. Percent weight loss of 20 wk old Balb/C mice immunized with SARS CoV S,
5 BtCoV HKU3S, BtCoV 279S, Chimera S or mock vaccinated and challenged with 10^5 pfu of HKU3-SRBD-MAv. Panel B. Lung titers on 2DPI infection determined by plaque assay Vero cells Error bars indicate SEM. * indicates (p<0.05 in Mann-Whitney Test).

DETAILED DESCRIPTION OF THE INVENTION

The present invention is based on the production and development of a chimeric coronavirus spike protein which induces a neutralizing immune response to coronavirus, for use for example, in the treatment and/or prevention of a disease or disorder caused by infection by a variety of different coronavirus strains.

Thus, in one aspect, the present invention provides a chimeric coronavirus spike protein comprising, in orientation from amino to carboxy terminus: a) a first region comprising a portion of a coronavirus spike protein ectodomain that precedes the receptor binding domain (RBD) as located in a nonchimeric coronavirus spike protein, of a first coronavirus; b) a second region comprising a coronavirus spike protein receptor binding domain (RBD) of a second coronavirus that is different from said first coronavirus; c) a third region comprising a portion of a coronavirus spike protein S1 domain as located in a nonchimeric coronavirus spike protein immediately downstream of the RBD, contiguous with a portion comprising a coronavirus spike protein S2 domain as located immediately upstream of a fusion protein domain in a nonchimeric coronavirus spike protein, wherein said third region is of said first coronavirus; and d) a fourth region comprising a portion of a coronavirus spike protein from the start of the fusion protein domain through the carboxy terminal end as located in a nonchimeric coronavirus spike protein of a third coronavirus that is different from said first coronavirus and said second coronavirus.

By "orientation from amino to carboxy terminus" it is meant that the regions of the chimeric coronavirus spike protein are present from left to right in the same orientation as the amino terminus and carboxy terminus of a protein. This term is intended to describe orientation only and does not mean that the first region as described in the chimeric coronavirus structural protein is present at the exact amino terminus in all embodiments.
although that could be the case in some embodiments. Similarly this term does not mean that the fourth region as described in the chimeric coronavirus structural protein is present at the exact carboxy terminus in all embodiments although that could be the case in some embodiments.

Representative nonlimiting examples of a chimeric coronavirus spike protein of this invention are shown in Figures 2 and 9, each of which show a schematic of a subgroup b coronavirus spike protein and a subgroup c coronavirus spike protein, respectively with the regions described above shown in their locations in a nonchimeric (e.g., wild type) coronavirus spike protein.

The chimeric coronavirus spike protein of this invention can be produced by combining domains or portions of coronavirus spike proteins as described above from subgroup 1a coronaviruses, subgroup 1b coronaviruses, subgroup 2a coronaviruses, subgroup 2b coronaviruses, subgroup 2c coronaviruses, or subgroup 2d coronaviruses. As one nonlimiting example, the present invention provides a chimeric subgroup 2b coronavirus spike protein comprising, in orientation from amino to carboxy terminus: a) a first region comprising amino acids 1-325 of a spike protein of a first subgroup 2b coronavirus; b) a second region comprising amino acids 322-500 of a spike protein of a second subgroup 2b coronavirus; c) a third region comprising amino acids 488-842 of a spike protein of said first subgroup 2b coronavirus; and) a fourth region comprising amino acids 842-1241 of a spike protein of a third subgroup 2b coronavirus. The amino acid sequence of the chimeric coronavirus spike protein of this example is shown below, with these four regions identified (first and third regions from said first subgroup 2b coronavirus shown in bold; second region from said second subgroup 2b coronavirus shown with underline; and fourth region from said third subgroup 2b coronavirus shown in italics).

\[
\begin{align*}
1 & \text{MKILIFAFLA} \text{NIAKADTEGCG} \text{IIIRKIPQPKM} \text{AQVSSSSRGG} \text{VYYNDIDFSD} \text{VHLTLQDYFL} \\
61 & \text{PFDSNLTVQF} \text{SLNVSDDRTY} \text{YFDNPILDFG} \text{DGYYFAATEK} \text{SNVIRGWFIF} \text{SSFDTTQSA} \\
121 & \text{VIVNNSTHII} \text{TNCFMNLCK} \text{EMYTVSRTG} \text{QQNAWVYQA} \text{FNCTYDRVER} \text{SFQLDTPKT} \\
181 & \text{GNFKDLREYV} \text{FKNRDGFLSV} \text{YQTYTAVNLP} \text{RGLPTGFSVL} \text{KIPLKLPGFI} \text{NITSYRWMA} \\
241 & \text{MFSQTTNSFL} \text{PESAAAYGN} \text{LKYSTFMLRF} \text{NENGTITDAV} \text{DCSNQPLAE} \text{KCTIKNFND} \\
301 & \text{KGIYQTSNFR} \text{VSPTQEVIRF} \text{VPHNNTLCFPG} \text{EIVFNATKFPS} \text{VYAWERKISK} \text{NVCADYSVLY} \\
361 & \text{NSYFFSTFKRC} \text{YGVSSATKLND} \text{LCFSNVYADS} \text{FWRGDDVRQ} \text{IAPQGTQVIA} \text{DYNYKLPDD} \\
421 & \text{MGCVLAWNTR} \text{NDIDATSTGY} \text{NKKYRILRHG} \text{KLPRFERDIS} \text{NVSSFDPDKP} \text{CTPPALCNYW} \\
481 & \text{PLNDYGFYTT} \text{TGIGQPYRV} \text{WLS_FELLNA} \text{PATVCGPKLS} \text{TDLKYKQCNV} \text{FNFNGLKG} \\
541 & \text{VLSSSSKRFQ} \text{SFQFFGDRDS} \text{DTFTDSVRDPQ} \text{TLEILDISP} \text{SFQGSVITIP} \text{GTKASSEVAV} \\
601 & \text{LYQDVNCTDV} \text{PTAIRADQLT} \text{PAWRYSTGV} \text{NVFQTQAGCL} \text{IGAEHVNASY} \text{ECDIFPGAGI} \\
661 & \text{CASYHTASVL} \text{RSTQKKSIVA} \text{YTLSLGAENS} \text{IAYANNSIAI} \text{PTNFISVTET} \text{EVMVPASMAKT}
\end{align*}
\]
The exemplary chimeric coronavirus spike protein shown above was produced from the following three subgroup 2b coronaviruses:

Bat SARS CoV-HKU3 spike protein (GenBank® Accession No. ACJ60694.1) (first subgroup)

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>781</td>
<td>AVDCTMYICG DSLECSNLLE QYGSCFTQQLN RALTGIAIEQ DKNTQEVFAQ VKQMYKTPAI</td>
</tr>
<tr>
<td>841</td>
<td>901</td>
<td>FNLTVLEPLL LTDLDEAAY QDFGGFNFSQ ILPDPSKPTK RSFIEDLLFN KVTLADAGFM KQYDGCGLDV SARDLICAQK</td>
</tr>
<tr>
<td>1021</td>
<td>1081</td>
<td>QSLNIDEVCPF KGVYHLMSFPF AAFFGWHELI VTVSMQRFNQ ITTTDNFVAG NCDWIGSKT TIDYDLOPER LDSSKDEELK</td>
</tr>
<tr>
<td>1141</td>
<td>1201</td>
<td>YFKHNHTSPPV DLGIDISGINA SWNIQKEID RLNEVAKNLNL ESLIDLQELG KVEQYIKFW</td>
</tr>
<tr>
<td>1201</td>
<td>1261</td>
<td>YVNLGFIALGL IAVIMVTLDD CCMTSCCSSCL KGACSCGSSC KFDEDDESPF VAGVKVLHTY</td>
</tr>
</tbody>
</table>

SARS CoV Urbani spike protein (Accession No. AAC 1344.1) (second subgroup)

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>421</td>
<td>481</td>
<td>LSQNYGSFCCT QNLNALTGIA IEQDQKNTQEQ VAFQVKMYKITY PAIKDFGGFS FSGILPDPSK</td>
</tr>
<tr>
<td>541</td>
<td>601</td>
<td>DTSDPTFLSDP PQDTELELDI SPCSFPGGFGV ITSIPVSNLAVL VSYVQDNV TDVPTAIRAD</td>
</tr>
<tr>
<td>661</td>
<td>721</td>
<td>IVAYTMSLGA ENSIYANFS IVEAVTDS MAFKTVLDA GFKMNGYGDCL VGSDVARDLC AQKFNGFLTVL PPLLDEMA</td>
</tr>
<tr>
<td>841</td>
<td>901</td>
<td>AYAAALVSGT ATAGWTFGAG AALQIPFAMQ MAYRFNGIGV TQNVLYENQK LIANQFNSAI</td>
</tr>
<tr>
<td>901</td>
<td>961</td>
<td>GKIQESLSST ASALGKLYQV VQNQAQLNT LVKQLSSNGF AISSVLNDIL SRLDKVEAE</td>
</tr>
<tr>
<td>961</td>
<td>1021</td>
<td>QI DLIRTHV RLSQYTVQTO LIRAARIAE ELKAMTETO LCMLQGKSRV FCCKGYLHMS</td>
</tr>
<tr>
<td>1021</td>
<td>1081</td>
<td>FPQSAPHGW FHJTVYVPSQ EKNTFAPAI CHEKAYFPR EGVPVSTGNTS WFTIQRNQFYS</td>
</tr>
<tr>
<td>1081</td>
<td>1141</td>
<td>PQPQITDNFD VSNGCDNIQ INNTVDPPL QPELDSDKFLE LDKFYKNHST PDVDLGIDSG</td>
</tr>
<tr>
<td>1141</td>
<td>1201</td>
<td>INASNWIQK EIDRNLNEVAK NLNESLIDLQL ELGKYEIQK WPWYVWGLF AGLIAIMVMT</td>
</tr>
<tr>
<td>1201</td>
<td>1261</td>
<td>ILLCCMTSCC SCLKGACSCC SCCKFDEDDESPF VPAGVFLKVLHTY</td>
</tr>
</tbody>
</table>

SARS-CoV-2 Spike protein (GenBank® Accession No. EPI_5679) (third subgroup)

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>MIIFLLFLTL TSGDLDRCT TFDDVQAPNY TQHTSSMRGV YYPDEIFRSD TLYLTDQDFL</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>PFYNSVTVGF TINHTNGFNP IFPKDQGYFA ATEKSNWRF WIFGTMNKK SQSVIIIINN</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>TNIRWACNY ELCDNPFFAV SKPMQTQHT MTFDNAMKRN FEYISDAFSL DEVSSNGE</td>
</tr>
<tr>
<td>18</td>
<td>24</td>
<td>HLREEVFKNK DGFLYVYKGG QPIDWRDLP YQPYRWVLS TSTGNYNYKY AALQIPFAMQ MAYRFNGIGV</td>
</tr>
<tr>
<td>24</td>
<td>30</td>
<td>AQDINGTSA AYVFYVLKLPT TFMRLYDENG TITDADVCQ NLPLAECKSV KSFEIDRKGY</td>
</tr>
<tr>
<td>30</td>
<td>36</td>
<td>QTSNFRPSWD GIDWRPSNL NLCPTFGEVFN ATKFPSFYAW ERKKISNCA DYSVLNSTF</td>
</tr>
<tr>
<td>36</td>
<td>42</td>
<td>FSFTRCRQGVS ATKLNDLCFS NYASSFWSK NGYDVRQIAQPQ TQGTVIADYN KLFDDFMGCV</td>
</tr>
<tr>
<td>42</td>
<td>48</td>
<td>LAWTRMNIDA TSSGMYKYK TYRHGKLKLP FERDISNVPF SDPPAKCFTP ALNMYWNDL</td>
</tr>
<tr>
<td>48</td>
<td>54</td>
<td>YGFTTYTTGQ YQPYRWML TFDDVQAPNY TQHTSSMRGV YYPDEIFRSD TLYLTDQDFL</td>
</tr>
<tr>
<td>54</td>
<td>60</td>
<td>SSRRQPFOFP GFDVDSOFTD SVRDPKTSFI LIDPSCFPGG VSITPQFTNA SSEAVLYQYD</td>
</tr>
<tr>
<td>60</td>
<td>66</td>
<td>VNCTDSTVAI HADQILPTAW YISTGNIVNPF TQACGLCIAE HVDTVESDII PIGACIACSY</td>
</tr>
<tr>
<td>66</td>
<td>72</td>
<td>HTVSLRSTTS QSKSAYTMYC LGADSAISSA NTIAYFLNPF SISITTEYMP VSMKASVXDC</td>
</tr>
<tr>
<td>72</td>
<td>78</td>
<td>NZMYCQDSTE CANNLLLQYGS FCTQINNLRRS GIAAEQQDNTQ REVFAQXVQMK YKPTIKLQF</td>
</tr>
<tr>
<td>78</td>
<td>84</td>
<td>GFNSQFILPD PLKPKTSSFI EDLILNFKVLAD ADAGFMISK ECLGDINAR CIAQCRKENF</td>
</tr>
<tr>
<td>84</td>
<td>90</td>
<td>TVLPLLSTDD MIAAYAALVL SGTATAGWTF GAGAALQIPF AMQQMAYRFN GVTQNQLYLE</td>
</tr>
</tbody>
</table>
901 NQKQIANQFN KAISQIQESL TTTSTALGKL QDWNQNAQA LNTLVKQLSS NFGAISSVLN
961 DILSRLDKVE AEVQIDRLIT GRLOLITQTV TQOLIRAIAEI RASANLAATK MSECVLQQSK
1021 RVDFCGKKH SWPQPAAPF GWFLHVTYV PSQENRTTA PAICHEGKAY FPREGVFFSN
1081 GTSWFQITQRN FFSQPQIATT NTFVSIGNCVD VIGIINTVTY DLQPLQELDFE KEELDKKTFRN
1141 HTSFRQDSLGD ISGINAASN IQKEIDRLEN VAKNILESIL DLQELKNYE IQKFPFVWVL
1201 GFIAGLIAIV MVITLCCMT SCCSLKGAQ CGSCCKDFD DESSFVLLGG KLVHT

Bt SARS CoV 279/2005 spike protein (Accession No. ABG47069) (third coronavirus)

1 MKVLILALLF SLAAQGGCGG IISRKPQPKM EKVSSSRGTV YYNDIFRSD VHNLTDQYFL
10 FDNSLITQFY SLNDSSHNTY YFDPNILDFE DGVYFAATEK VSNNVGRF SFSFDNTQSA
15 IIVYNSTHII IRVCNFIQLK EPMYTVSKGT QQDSWVYQSA FNCTYDRVEK SFQDLTAPKT
20 GNFDLREYV FNKNQGSFSV YQTYTAVNLP RGFPAGFSVL RIPKLPFGI NITSYRNM
241 MFQFQNSNFL PESAAYYVGN LKYYTTFMSF NENGITIDAV DCSQNFSAEL KCIKIFNS
30 KGITYQTFNFR VIPQEQWRF PNITNRCFED KVFNARFSPN VYWAMEKIKS DCDAYTVLYS
361 NTSFSTFKC YGVSPSKLLD LCFTSYVADT FLIRSSERVQ VAPGETGIA DYNKLPPDF
421 TGCVIAWNTA QQQOQQOYYR SYRGEKLFQF ERDLSSDENF VLYTLTDYFY SPISQPEYQAT
481 RVWSLFELL NAPATCVGPK LSSTLVKNQG VNFNFLGRG TGVLTSSKR FQSQQQGRDR
541 TSDFTDSVDR PQTLELINDS PCSSFGGVSI TPSGTNASSF AVLYQDVNQCT DPTSVHADQ
601 ITPAWRYYST GNVQPQOQAG CLIGAEHNV A SYECIDPIGA GCASHTAS VLRSTQGKSI
661 VATYMSLGAE NISIAYANNSI AIPFNSISST TTEAIVMVPSIA KTSVDCTMY CGDGSLSCNL
721 LLQYGFSFTQV LRNLATGIAI EQDQKNTQEVF AGVQNYQKTP A1KDFGGFNFQ SQLLPDPSPK
781 TKRSFJIELQ FNKVLADAG FMQNGYCEGL DISRDLICA QRFQNLTVLP PLIDEMIAAA
841 YTAALVSQTA TAGWTTFQAGS ALQIPFAMQMN AYRFINGQMT QNKLVYNQKQ IAQFQNAKIS
901 QIQESITTILS TALGGKLDW NDNQAINTVL VKQWLSNFAG ISSVLYNDLS RLDKVEAEVQ
961 IDRLITGRLO SLQTVYVQLL IRAAEIRASA LNAATKMEC VLGQSKRDFV CGGKYLHMSF
1021 PQAAPHGWF LHVTYVPSOF RNFITAPAIC HEGKAYFRE GVFVSNSTSW FITQRNFLYS
1081 QITTTDNTFP AGNCDWIGI INNTVYPDQ PELDSTREEF DKYKFKNTHPK DVDQGDISGI
1141 NASW NQKF IDRLNEVAKN LNESLIDLIE LGKYEIQYKW PWYVWLGPAIA GLIAIMVTI
1201 LLCCMTSCCS CLKGACSCGS CCKFDEDDSE PVLKGVKLLY T

It is to be understood that this example is not intended to be limiting and any of these
three subgroup 2b coronaviruses can be combined with any other subgroup 2b coronavirus
in any combination of first coronavirus, second coronavirus and third coronavirus, provided that
they are different from each other one.

Furthermore, the length in amino acid residues of the respective regions of the
chimeric subgroup 2b coronavirus spike protein can vary. For example, the first region can
comprise amino acid 1 through amino acid 320, amino acid 1 through amino acid 321, amino
acid 1 through amino acid 322, amino acid 1 through amino acid 323, amino acid 1 through
amino acid 324, amino acid 1 through amino acid 325, amino acid 1 through amino acid 326,
amino acid 1 through amino acid 327, amino acid 1 through amino acid 328, amino acid 1 through
amino acid 329, amino acid 1 through amino acid 330 of a subgroup 2b coronavirus
spike protein, which is a first coronavirus. Numbering is based on amino acid residues
in a subgroup 2b coronavirus spike protein, representative examples of which are provided herein.
For the second region of the chimeric subgroup 2b coronavirus spike protein of this invention, the amino end of the second region can begin at amino acid 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329 or 330 of a subgroup 2b coronavirus spike protein and be contiguous through amino acid 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524 or 525 of a subgroup 2b coronavirus spike protein of a second coronavirus that is different from the first coronavirus.

For the third region of the chimeric subgroup 2b coronavirus spike protein of this invention, the amino end of the third region can begin at amino acid 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509 or 510 of a subgroup 2b coronavirus spike protein and be contiguous through amino acid 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849 or 850 of a subgroup 2b coronavirus spike protein. As noted above, the third region of the chimeric coronavirus spike protein is from the coronavirus that is the first coronavirus.

For the fourth region of the chimeric subgroup 2b coronavirus spike protein of this invention, the amino end of the fourth region can begin at amino acid 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 846, 847, 848, 849 or 850 of a subgroup 2b coronavirus spike protein and be contiguous through amino acid 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1240, 1241, 1242 or the final amino acid at the carboxy terminus of a subgroup 2b coronavirus spike protein. As noted above the fourth region of the chimeric coronavirus spike protein is from a third coronavirus that is different from the first coronavirus and the second coronavirus used to produce the chimeric coronavirus spike protein.

As a further nonlimiting example, the present invention provides a chimeric subgroup 2c coronavirus spike protein comprising, in orientation from amino to carboxy terminus: a) a first region comprising amino acids 1-371 of a spike protein of a first subgroup 2c coronavirus; b) a second region comprising amino acids 367-588 of a spike protein of a second subgroup 2c coronavirus; c) a third region comprising amino acids 594-983 of the spike protein of said first subgroup 2c coronavirus; and) a fourth region comprising amino acids 986-1357 of a spike protein of a third subgroup 2c coronavirus. The amino acid sequence of the chimeric coronavirus spike protein of this example is shown below, with
these four regions identified (first and third regions from said first subgroup 2c coronavirus shown in bold; second region from said second subgroup 2c coronavirus shown with underline; and fourth region from said third subgroup 2c coronavirus shown in italics).

The exemplary chimeric coronavirus spike protein shown above was produced from the following three subgroup 2c coronaviruses:

Bat CoV HKU4-2 spike protein (Accession No. ABN10848.1):

```plaintext
1 MTLLCMCLMS LLIFVRCDS QFVDMSPASN TSECELSQVD AAFSDKLMWP YPIDPSKVDG
121 NGFWRIGAA ANSTGTIVIS PSVNTRIKEKA YPAFILGSLSL TNSAGQFLPY ANSTIITID
241 NGCFTFFNSWI TADETKEFWG ITQDTQGVLH YSSRKGDLGY GNMFRATLP YVEGKYTTYV
901 DPGYMQGYDD CMKQGPQSAR DLICAQYVSG YKVLPPLYDP NMEAAYTSSL LGSIAGAGWT
```

1 MTLLCMCLMS LLIFVRCDS QFVDMSPASN TSECELSQVD AAFSDKLMWP YPIDPSKVDG
121 NGFWRIGAA ANSTGTIVIS PSVNTRIKEKA YPAFILGSLSL TNSAGQFLPY ANSTIITID
241 NGCFTFFNSWI TADETKEFWG ITQDTQGVLH YSSRKGDLGY GNMFRATLP YVEGKYTTYV
901 DPGYMQGYDD CMKQGPQSAR DLICAQYVSG YKVLPPLYDP NMEAAYTSSL LGSIAGAGWT

541 EDGQYMQGYDD SPLEGGWLV ASEGTVATME QLQMFQGITY VYQDTNSVCI PKDLGDSLTL
601 ITNRLKCVCD YSLYGTVGAL VQCNCTATVG KQFQFVYDSF DNVLGYSDD GNYCVRPCCV
661 SVPSVSVDYDK STLNNALVPG SVACEHTTM MSQFSLTQS NLRRDSDNIP LQTVAGCVIG
721 LSNNNSLSWD CKLPLGQSLC AVPFPVSTFRS YASAOFQLAV NLTWSIPNT PINGGITCAA
781 ITPQFNSSTVT YQIESLSTQK VTDVCKQVGY NGFTRECKLL VEGQFGCSKI NQALHAGLR
841 QDESYSULYS NIKTTSTQTL EYGLNGDNLN TLLQVFQIGG QSSYRSARIE DLLFDVKTIA
901 DPGYMQGYDD CMKQGPQSAR DLICAQYVSG YKVLPPLYDP NMEAAYTSSL LGSIAGAGWT
961 AGLSLSFAAI FPAGSMFYRL NGVITQQLVS ENQKI IANKF NQALGAMQQT FTINNLAFNK
1021 VQAVANVANAR ALSKLAADSS NTGAGISSS SDLARLDTLV EQEAEQIDRLI NGLRLTLNFA
1081 VAITQCMARTE AARSAQIAEQ VQCNCTATVG KQFQFVYDSF DNVLGYSDD GNYCVRPCCV
1141 QPTSHVNALAY GCLNCTEMP PKCIAIPGYY VFNQLSTSS RSGSHQWYY TGGSFHHEPP
1201 IEANSKYVXS KPLNNPNTK LPPLLPNSNS TLDFODKLEL EFRKKSSQSG PNSQEKISK
1261 TTLNLNTLET MLSEWQQL NELYIDLKEI GNYTFQKWP WYIWLFGIFG LVALALCVIG
1321 ILCTCGGCTS CLGKLKCNRC CDSYDEYEVE KIWH

WO 2015/143335
PCT/US2015/021773

13
It is to be understood that this example is not intended to be limiting and any of these three subgroup 2c coronaviruses can be combined with any other subgroup 2c coronavirus in any combination of first coronavirus, second coronavirus and third coronavirus, provided that they are all different from one another.

Furthermore, the length in amino acid residues of the respective regions of the chimeric subgroup 2c coronavirus spike protein can vary. For example, the first region can comprise amino acid 1 through amino acid 365, amino acid 1 through amino acid 366, amino acid 1 through amino acid 367, amino acid 1 through amino acid 368, amino acid 1 through amino acid 369, amino acid 1 through amino acid 370, amino acid 1 through amino acid 371, amino acid 1 through amino acid 372, amino acid 1 through amino acid 373, amino acid 1 through amino acid 374 or amino acid 1 through amino acid 375 of a subgroup 2c coronavirus spike protein, which is a first coronavirus. Amino acid numbering is based on the numbering of amino acid residues in a subgroup 2c coronavirus spike protein, representative examples of which are provided herein.

For the second region of the chimeric subgroup 2c coronavirus spike protein of this invention, the amino end of the second region can begin at amino acid 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374 or 375 of a subgroup 2c coronavirus spike protein and be contiguous through amino acid 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599 or 600 of a subgroup 2c coronavirus spike protein of a second coronavirus that is different from the first coronavirus.

For the third region of the chimeric subgroup 2c coronavirus spike protein of this invention, the amino end of the third region can begin at amino acid 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599 or 600 of a subgroup 2c coronavirus spike protein and be contiguous through amino acid 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999 or 1000 of a subgroup 2c coronavirus spike protein. As noted above, the third region of the chimeric coronavirus spike protein is from the subgroup 2c coronavirus that is the first coronavirus.
For the fourth region of the chimeric subgroup 2c coronavirus spike protein of this invention, the amino end of the fourth region can begin at amino acid 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999 or 1000 of a subgroup 2c coronavirus spike protein and be contiguous through amino acid 1345, 1346, 1347, 1348, 1349, 1350, 1351, 1352, 1353, 1354, 1355, 1356, 1357, 1358, 1359, 1360, 1361, 1362, 1363, 1364, 1365, 1366, 1367, 1368, 1369, 1370 or the final amino acid at the carboxy terminus of a subgroup 2c coronavirus spike protein. As noted above the fourth region of the chimeric coronavirus spike protein is from a third subgroup 2c coronavirus that is different from the first subgroup 2c coronavirus and the second subgroup 2c coronavirus used to produce this chimeric coronavirus spike protein.

Although the examples set forth above describe a chimeric spike protein produced from subgroup 2b coronaviruses and a chimeric spike protein produced from subgroup 2c coronaviruses, it is to be understood that a chimeric coronavirus spike protein of this invention can be made from any combination of three different coronaviruses from any subgroup, including subgroup la, subgroup lb, subgroup 2a, subgroup 2d and subgroup 3 in addition to subgroup 2b and subgroup 2c. The same arrangement of the first, second, third and fourth regions as described above would be applicable to a chimeric coronavirus spike protein of any subgroup and the same variability with regard to the amino acids that define the beginning and end of each of these four regions would be applicable to a chimeric coronavirus spike protein of any subgroup.

Furthermore, the chimeric coronavirus spike proteins produced from the respective coronavirus subgroups la, lb, 2a, 2b, 2c, 2d and 3 can be included in the methods and compositions of this invention in any combination and/or in any ratio relative to one another, as would be well understood to one of ordinary skill in the art.

Nonlimiting examples of subgroup 2b coronaviruses that can be used to produce the chimeric coronavirus spike protein of this invention include Bat SARS CoV (GenBank Accession No. FJ211859), SARS CoV (GenBank Accession No. FJ211860), BtSARS.HKIB.1 (GenBank Accession No. DQ022305), BtSARS.HKU3.2 (GenBank Accession No. DQ084199), BtSARS.HKU3.3 (GenBank Accession No. DQ084200), BtSARS.Rml (GenBank Accession No. DQ412043), BtCoV.279.2005 (GenBank Accession No. DQ648857), BtSARS.Rfl (GenBank Accession No. DQ412042), BtCoV.273.2005 (GenBank Accession No. DQ648856), BtSARS.Rp3 (GenBank Accession No. DQ071615),
SARS CoV.A022 (GenBank Accession No. AY686863), SARS-CoV.CUHK-W1 (GenBank Accession No. AY278554), SARS-CoV.GDOI (GenBank Accession No. AY278489), SARS-CoV.HC.SZ.61.03 (GenBank Accession No. AY515512), SARS-CoV.SZI6 (GenBank Accession No. AY304488), SARS-CoV.Urbani (GenBank Accession No. AY278741), SARS-CoV.civetOIO (GenBank Accession No. AY572035), and SARS-CoV.MA.15 (GenBank Accession No. DQ497008), Rs SHCo 14 (GenBank® Accession No. KC881005), Rs3367 (GenBank® Accession No. KC881006). WiV1 S (GenBank® Accession No. KC881007) as well as any other subgroup 2b coronavirus now known (e.g., as can be found in the GenBank® Database) or later identified, and any combination thereof.

Nonlimiting examples of subgroup 2c coronaviruses that can be used to produce the chimeric coronavirus capsid protein of this invention include: Middle East respiratory syndrome coronavirus isolate Riyadh_2_2012 (GenBank Accession No. KF600652.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_18_2013 (GenBank Accession No. KF600651.1), Middle East respiratory syndrome coronavirus isolate Al-Illasa_17_2013 (GenBank Accession No. KF600647.1), Middle East respiratory syndrome coronavirus isolate Al-Illasa_15_2013 (GenBank Accession No. KF600645.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_16_2013 (GenBank Accession No. KF600644.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_21_2013 (GenBank Accession No. KF600634), Middle East respiratory syndrome coronavirus isolate Al-Illasa_19_2013 (GenBank Accession No. KF600632.), Middle East respiratory syndrome coronavirus isolate Buraidah_1_2013 (GenBank Accession No. KF600630.1), Middle East respiratory syndrome coronavirus isolate Hafr-Al-Batin_1_2013 (GenBank Accession No. KF600628.1), Middle East respiratory syndrome coronavirus isolate Al-Illasa_12_2013 (GenBank Accession No. KF600627.1), Middle East respiratory syndrome coronavirus isolate Bisha_1_2012 (GenBank Accession No. KF600620.1), Middle East respiratory syndrome coronavirus isolate Riyadh_3_2013 (GenBank Accession No. KF600613.1), Middle East respiratory syndrome coronavirus isolate Riyadh_1_2012 (GenBank Accession No. KF600612.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_3_2013 (GenBank Accession No. KF186565.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_1_2013 (GenBank Accession No. KF186567.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_2_2013 (GenBank Accession No. KF186566.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_4_2013 (GenBank Accession No. KF186568.1).
No. KF186564.1), Middle East respiratory syndrome coronavirus (GenBank Accession No. KF192507.1), Betacoronavirus England 1-Nl (GenBank Accession No. NC_019843), MERS-CoV SA-Nl (GenBank Accession No. KC667074), following isolates of Middle East Respiratory Syndrome Coronavirus (GenBank Accession No: KF600656.1, GenBank Accession No: KF600655.1, GenBank Accession No: KF600649.1, GenBank Accession No: KF600643.1, GenBank Accession No: KF600642.1, GenBank Accession No: KF600640.1, GenBank Accession No: KF600639.1, GenBank Accession No: KF600637.1, GenBank Accession No: KF600636.1, GenBank Accession No: KF600635.1, GenBank Accession No: KF60Q625.1, GenBank Accession No: KF600624.1, GenBank Accession No: KF600623.1, GenBank Accession No: KF600622.1, GenBank Accession No: KF600621.1, GenBank Accession No: KF600619.1, GenBank Accession No: KF600618.1, GenBank Accession No: KF600616.1, GenBank Accession No: KF600615.1, GenBank Accession No: KF600614.1, GenBank Accession No: KF600641.1, GenBank Accession No: KF600633.1, GenBank Accession No: KF600629.1, GenBank Accession No: KF600617.1), Coronavirus Neoromicia/PML-PHEI/RS A/2011 GenBank Accession: KC869678.2, Bat Coronavirus Taper/CII_KSA_287/Bisha/Saudi Arabia/GenBank Accession No: KF493885.1, Bat coronavirus Rhhar/CII_KSA_003/Bisha/Saudi Arabia/2013 GenBank Accession No: KF493888.1, Bat coronavirus Pikuh/CII_KSA_00/1/Riyadh/Saudi Arabia/2013 GenBank Accession No: KF493887.1, Bat coronavirus Rhhar/CII_KSA_002/Bisha/Saudi Arabia/2013 GenBank Accession No: KF493886.1, Bat Coronavirus Rhhar/CII_KSA_004/Bisha/Saudi Arabia/2013 GenBank Accession No: KF493884.1, BtCoV.HKU4.2 (GenBank Accession No. EF065506), BtCoV.HKIM.1 (GenBank Accession No. NC_009019), BtCoV.HKU4.3 (GenBank Accession No. EF065507), BtCoV.HKU4.4 (GenBank Accession No. EF065508), BtCoV 133.2005 (GenBank Accession No. NC_008315), BtCoV.HKU5.5 (GenBank Accession No. EF065512), BtCoV.HKU5.1 (GenBank Accession No. NC_009020), BtCoV.HKU5.2 (GenBank Accession No. EF065510), BtCoV.HKU5.3 (GenBank Accession No. EF065511), human betacoronavirus 2c Jordan-N3/2012 (GenBank Accession No. KC776174.1), human betacoronavirus 2c EMC/2012 (GenBank Accession No. JX869059.2), Pipistrellus bat coronavirus HKU5 isolates (GenBank Accession No: KC522089.1, GenBank
No:KC522060.1 GenBank Accession No:KC522059.1 GenBank Accession No:KC522058.1 GenBank Accession No:KC522057.1 GenBank Accession No:KC522056.1 GenBank Accession No:KC522055.1 GenBank Accession No:KC522054.1 GenBank Accession No:KC522053.1 GenBank Accession No:KC522052.1 GenBank Accession No:KC522051.1 GenBank Accession No:KC522050.1 GenBank Accession No:KC522049.1 GenBank Accession No:KC522074.1 GenBank Accession No:KC522073.1 GenBank Accession No:KC522072.1 GenBank Accession No:KC522071.1 GenBank Accession No:KC522070.1 GenBank Accession No:KC522069.1 GenBank Accession No:KC522068.1 GenBank Accession No:KC522067.1 GenBank Accession No:KC522066.1 GenBank Accession No:KC522065.1 GenBank Accession No:KC522064.1, GenBank Accession No:KC522063.1, or GenBank Accession No:KC522062.1, as well as any other subgroup 2b coronavirus now known (e.g., as can be found in the GenBank® Database) or later identified, and any combination thereof.

Nonlimiting examples of a subgroup 1a coronavirus of this invention include FCoV.FiPV.79.1 146.VR.2202 (GenBank Accession No. NV_007025), transmissible gastroenteritis virus (TGEV) (GenBank Accession No. NCJ302306; GenBank Accession No. Q811789.2; GenBank Accession No. DQ811786.2; GenBank Accession No. DQ811788.1; GenBank Accession No. DQ811785.1; GenBank Accession No. X52157.1; GenBank Accession No. AJ011482.1; GenBank Accession No. KC962433.1; GenBank Accession No. AJ271965.2; GenBank Accession No. JQ693060.1; GenBank Accession No. KC609371.1; GenBank Accession No. JQ693060.1; GenBank Accession No. JQ693059.1; GenBank Accession No. JQ693058.1; GenBank Accession No. JQ693057.1; GenBank Accession No. JQ693052.1; GenBank Accession No. JQ693051.1; GenBank Accession No. JQ693050.1), porcine reproductive and respiratory syndrome virus (PRRSV) (GenBank Accession No. NC_001961.1; GenBank Accession No. DQ811787), as well as any other subgroup 1a coronavirus now known (e.g., as can be found in the GenBank® Database) or later identified, and any combination thereof.

Nonlimiting examples of a subgroup 1b coronavirus of this invention include BtCoV.lA.AFCD62 (GenBank Accession No. NC_0 10437), BtCoV.lB.AFCD307 (GenBank Accession No. NC_0 10436), BtCov.HKU8.AFCD77 (GenBank Accession No. NC_0 10438), BtCoV.5.12.2005 (GenBank Accession No. DQ648858), porcine epidemic diarrhea virus PEDV.CV777 (GenBank Accession No. NC_003436, GenBank Accession No. 20
DQ355224.1, GenBank Accession No. DQ355223.1, GenBank Accession No. DQ355221.1,
GenBank Accession No. JN60 1062.1, GenBank Accession No. JN601061.1, GenBank
Accession No. JN601060.1, GenBank Accession N0.JN60 1059.1, GenBank Accession No.
JN601058.1, GenBank Accession N0.JN60 1057.1, GenBank Accession N0.JN60 1056.1,
GenBank Accession No.JN60 1055.1, GenBank Accession No. JN60 1054.1, GenBank
Accession No.JN60 1053.1, GenBank Accession No. JN601052.1, GenBank Accession No.
JN400902.1, GenBank Accession No.JN547395.1, GenBank Accession No. FJ687473.1,
GenBank Accession No.FJ687472.1, GenBank Accession No. FJ687471.1, GenBank
Accession No. FJ687470.1, GenBank Accession No. FJ687469.1, GenBank Accession
No.FJ687468.1, GenBank Accession No. FJ687467.1, GenBank Accession No. FJ687466.1,
GenBank Accession No. FJ687465.1, GenBank Accession No. FJ687464.1, GenBank
Accession No. FJ687463.1, GenBank Accession No.FJ687462.1, GenBank Accession No.
FJ687461.1, GenBank Accession No. FJ687460.1, GenBank Accession No. FJ687459.1,
GenBank Accession No. FJ687458.1, GenBank Accession No. FJ687457.1, GenBank
Accession No. FJ687456.1, GenBank Accession No. FJ687455.1, GenBank Accession No.
FJ687454.1, GenBank Accession No. FJ687453 GenBank Accession No. FJ687452.1,
GenBank Accession No. FJ687451.1, GenBank Accession No. FJ687450.1, GenBank
Accession NO.FJ687449.1, GenBank Accession No. AF500215.1, GenBank Accession No.
KF476061.1, GenBank Accession No. KF476060.1, GenBank Accession No. KF476059.1,
GenBank Accession No. KF476058.1, GenBank Accession No. KF476057.1, GenBank
Accession No. KF476056.1, GenBank Accession No. KF476055.1, GenBank Accession No.
KF476054.1, GenBank Accession No. KF476053.1, GenBank Accession No. KF476052.1,
GenBank Accession No. KF476051.1, GenBank Accession No. KF476050.1, GenBank
Accession No. KF476049.1, GenBank Accession No. KF476048.1, GenBank Accession No.
KF177258.1, GenBank Accession No. KF177257.1, GenBank Accession No. KF177256.1,
GenBank Accession No. KF177255.1, HCoV.229E (GenBank Accession No. NCJ302645),
HCoV.NL63 .Amsterdam.] (GenBank Accession No. NC_005831),
BtCoV.HKU2.11K.298.2 006 (GenBank Accession No. EF203066),
BtCoV.HKU2.HK.33.2006 (GenBank Accession No. EF203067), BtCoV.HKU2.HK.46.2006
(GenBank Accession No. EF203065), BtCoV.HKU2.GD.430.2006 (GenBank Accession No.
EF203064), as well as any other subgroup 1b coronavirus now known (e.g., as can be found
in the GenBank®Database) or later identified, and any combination thereof.
Nonlimiting examples of a subgroup 2a coronavirus of this invention include HCoV.IlKUl.CN5 (GenBank Accession No. DQ339101), MHV.A59 (GenBank Accession No. NC_001846), PHEV.VW572 (GenBank Accession No. NC_007732), HCoV.OC43.ATCC.VR.759 (GenBank Accession No. NC_005147), bovine enteric coronavirus (BCoV.ENT) (GenBank Accession No. NC_003045), as well as any other subgroup 2a coronavirus now known (e.g., as can be found in the GenBank® Database) or later identified, and any combination thereof.

Nonlimiting examples of a subgroup 2d coronavirus of this invention include BtCoV.HKU9.2 (GenBank Accession No. EF065514), BtCoV.HKU9.1 (GenBank Accession No. NC_009021), BtCoV.HkU9.3 (GenBank Accession No. EF065515), BtCoV.HKU9.4 (GenBank Accession No. EF065516), as well as any other subgroup 2d coronavirus now known (e.g., as can be found in the GenBank® Database) or later identified, and any combination thereof.

Nonlimiting examples of a subgroup 3 coronavirus of this invention include

Nonlimiting examples of a subgroup 3 coronavirus of this invention include IBV.Beaudette.IBV.p65 (GenBank Accession No. DQ001339), as well as any other subgroup 3 coronavirus now known (e.g., as can be found in the GenBank® Database) or later identified, and any combination thereof.

The present invention further provides an isolated nucleic acid molecule encoding the chimeric coronavirus spike protein of this invention. In some embodiments, a nucleic acid molecule of this invention can be a cDNA. Also provided is a vector (e.g., a viral or bacterial vector), plasmid or other nucleic acid construct comprising the isolated nucleic acid molecule of this invention.

Further provided herein is a Venezuelan equine encephalitis replicon particle (VRP) comprising the isolated nucleic acid molecule encoding the chimeric coronavirus spike protein of this invention.

In addition, the present invention provides a virus like particle (VLP) comprising the chimeric coronavirus spike protein of any of this invention and a matrix protein of any virus that can form a VLP.

The present invention also provides a coronavirus particle comprising the chimeric coronavirus spike protein of this invention.
Also provided are cells (e.g., isolated cells) comprising the vectors, nucleic acid molecules, VLPs, VRPs, and/or coronavirus particles of the invention.

Additionally provided herein is a population of any of the VLPs, VRPs and/or coronavirus particles of this invention, as well as a population of virus particles that are used as viral vectors encoding the chimeric coronavirus spike protein of this invention.

The chimeric coronavirus spike proteins of this invention can be produced as recombinant proteins, e.g., in a eukaryotic cell system for recombination protein production.

The invention also provides immunogenic compositions comprising the cells, vectors, nucleic acid molecules, VLPs, VRPs, coronavirus particles and/or populations of the invention. The composition can further comprise a pharmaceutically acceptable carrier.

The present invention further provides a method of producing an immune response to a coronavirus in a subject, comprising administering to the subject an effective amount of a chimeric coronavirus spike protein, a nucleic acid molecule, a vector, a VRP, a VLP, a coronavirus particle, population and/or a composition of this invention, including any combination thereof, thereby producing an immune response to a coronavirus in the subject.

In further embodiments, the present invention provides a method of treating a coronavirus infection in a subject in need thereof, comprising administering to the subject an effective amount of a chimeric coronavirus spike protein, a nucleic acid molecule, a vector, a VRP, a VLP, a coronavirus particle, population and/or a composition of this invention, including any combination thereof, thereby treating a coronavirus infection in the subject.

Additionally provided herein is a method of preventing a disease or disorder caused by a coronavirus infection in a subject, comprising administering to the subject an effective amount of a chimeric coronavirus spike protein, a nucleic acid molecule, a vector, a VRP, a VLP, a coronavirus particle, population and/or a composition of this invention, including any combination thereof, thereby preventing a disease or disorder caused by a coronavirus infection in the subject.

Furthermore the present invention provides a method of protecting a subject from the effects of coronavirus infection, comprising administering to the subject an effective amount of a chimeric coronavirus spike protein, a nucleic acid molecule, a vector, a VRP, a VLP, a coronavirus particle, population and/or a composition of this invention, including any combination thereof, thereby protecting the subject from the effects of coronavirus infection.
The chimeric coronavirus spike proteins of this invention can be used to immunize a subject against infection by a newly emerging coronavirus, as well as treat a subject infected with a newly emerging coronavirus. For example, the chimeric subgroup 2b coronavirus spike proteins of this invention can be used to immunize against and/or treat infection by bat SARS CoV like virus strains such as Rs SHC014 (GenBank® Accession No. KC881005), Rs3367 (GenBank® Accession No. KC881006) and/or WiV1 S (GenBank® Accession No. KC881007).

In yet further embodiments, the present invention provides a method of identifying a coronavirus spike protein for administration to elicit an immune response to coronavirus in a subject infected by a coronavirus and/or a subject at risk of coronavirus infection and/or to a subject for whom eliciting an immune response to a coronavirus is needed or desired, comprising: a) contacting a sample obtained from a subject infected with a coronavirus with a panel of proteins comprising: 1) one or more chimeric coronavirus spike proteins from a subgroup 2c coronavirus, 2) one or more chimeric coronavirus spike proteins from a subgroup 2b coronavirus, 3) one or more spike proteins from a subgroup 2a coronavirus, 4) one or more chimeric coronavirus spike proteins from a subgroup 2d coronavirus, 5) one or more chimeric coronavirus spike proteins from a subgroup 1a coronavirus, 6) one or more chimeric coronavirus spike proteins from a subgroup 1b coronavirus, 7) one or more chimeric coronavirus spike proteins from a subgroup 3 coronavirus and 8) any combination of (1) through (7) above, under conditions whereby an antigen/antibody complex can form; and b) detecting formation of an antigen/antibody complex, whereby detection of formation of the antigen/antibody complex comprising the chimeric coronavirus spike protein(s) of any of (1)-(6) identifies the presence of antibodies to a spike protein of the coronavirus that is infecting the subject of (a), thereby identifying a coronavirus spike protein for administration to the subject of (a) and/or to a subject infected with a coronavirus and/or to a subject at risk of coronavirus infection and/or to a subject for whom eliciting an immune response to a coronavirus is needed or desired.

In some embodiments, the method set forth above can further comprise the step of administering the coronavirus spike protein identified according to the method to the subject of (a) and/or to a subject at risk of coronavirus infection and/or to a subject infected with a coronavirus and/or to a subject for whom eliciting an immune response to a coronavirus is needed or desired.
A method is also provided herein of identifying an antibody that neutralizes a coronavirus infecting a subject, comprising: a) isolating a coronavirus from a sample of a subject infected with a coronavirus and/or suspected of being infected with a coronavirus; b) contacting the coronavirus of (a) with a panel of antibodies comprising: 1) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2c coronavirus, 2) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2b coronavirus, 3) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2a coronavirus, 4) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2d coronavirus, 5) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 1a coronavirus, 6) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 1b coronavirus, 7) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 3 coronavirus, and 8) any combination of (1) through (7) above, to form respective coronavirus/antibody compositions, each comprising a respective antibody of the panel; c) contacting each of the respective coronavirus/antibody compositions of (b) with cells susceptible to coronavirus infection under conditions whereby coronavirus infection can occur; and d) detecting the presence or absence of infection of the cells, whereby absence of detection of infection of the cells contacted with any of the coronavirus/antibody compositions of (b) identifies the antibody of that coronavirus/antibody composition as an antibody that neutralizes the coronavirus infecting the subject.

In some embodiments, the method set forth above can further comprise the step of administering the antibody identified according to the method to the subject of (a) and/or to a subject infected with a coronavirus and/or to a subject at risk of coronavirus infection and/or to a subject for whom eliciting an immune response to a coronavirus is needed or desired.

As used herein, "a" or "an" or "the" can mean one or more than one. For example, "a" cell can mean one cell or a plurality of cells.

Also as used herein, "and/or" refers to and encompasses any and all possible combinations of one or more of the associated listed items, as well as the lack of combinations when interpreted in the alternative ("or").

Furthermore, the term "about," as used herein when referring to a measurable value such as an amount of a compound or agent of this invention, dose, time, temperature, and the like, is meant to encompass variations of ± 20%, ± 10%, ± 5%, ± 1%, ± 0.5%, or even ± 0.1% of the specified amount.
As used herein, the transitional phrase "consisting essentially of means that the scope of a claim is to be interpreted to encompass the specified materials or steps recited in the claim, "and those that do not materially affect the basic and novel characteristic(s)" of the claimed invention. See, In re Herz, 537 F.2d 549, 551-52, 190 USPQ 461, 463 (CCPA 1976) (emphasis in the original); see also MPEP § 2111.03.

A "sample" or "biological sample" of this invention can be any biological material, such as a biological fluid, an extract from a cell, an extracellular matrix isolated from a cell, a cell (in solution or bound to a solid support), a tissue, a tissue homogenate, and the like as are well known in the art.

In the methods of this invention in which formation of an antigen/antibody complex is detected, a variety of assays can be employed for such detection. For example, various immunoassays can be used to detect antibodies or proteins (antigens) of this invention. Such immunoassays typically involve the measurement of antigen/antibody complex formation between a protein or peptide (i.e., an antigen) and its specific antibody.

The immunoassays of the invention can be either competitive or noncompetitive and both types of assays are well-known and well-developed in the art. In competitive binding assays, antigen or antibody competes with a detectably labeled antigen or antibody for specific binding to a capture site bound to a solid surface. The concentration of labeled antigen or antibody bound to the capture agent is inversely proportional to the amount of free antigen or antibody present in the sample.

Noncompetitive assays of this invention can be, for example, sandwich assays, in which, for example, the antigen is bound between two antibodies. One of the antibodies is used as a capture agent and is bound to a solid surface. The other antibody is labeled and is used to measure or detect the resultant antigen/antibody complex by e.g., visual or instrument means. A number of combinations of antibody and labeled antibody can be used, as are well known in the art. In some embodiments, the antigen/antibody complex can be detected by other proteins capable of specifically binding human immunoglobulin constant regions, such as protein A, protein L or protein G. These proteins are normal constituents of the cell walls of streptococcal bacteria. They exhibit a strong nonimmunogenic reactivity with immunoglobulin constant regions from a variety of species. (See, e.g., Kronval et al. J. Immunol. 111:1401-1406 (1973); Akerstrom et al. J Immunol. 135:2589-2542 (1985)).
In some embodiments, the non-competitive assays need not be sandwich assays. For instance, the antibodies or antigens in the sample can be bound directly to the solid surface. The presence of antibodies or antigens in the sample can then be detected using labeled antigen or antibody, respectively.

In some embodiments, antibodies and/or proteins can be conjugated or otherwise linked or connected (e.g., covalently or noncovalently) to a solid support (e.g., bead, plate, slide, dish, membrane or well) in accordance with known techniques. Antibodies can also be conjugated or otherwise linked or connected to detectable groups such as radiolabels (e.g., \(^{35}\text{S},^{125}\text{I},^{32}\text{P},^{13}\text{H},^{14}\text{C},^{1}\text{I}\)), enzyme labels (e.g., horseradish peroxidase, alkaline phosphatase), gold beads, chemiluminescence labels, ligands (e.g., biotin) and/or fluorescence labels (e.g., fluorescein) in accordance with known techniques.

A variety of organic and inorganic polymers, both natural and synthetic can be used as the material for the solid surface. Nonlimiting examples of polymers include polyethylene, polypropylene, poly(4-methylbutene), polystyrene, polymethacrylate, poly(ethylene terephthalate), rayon, nylon, poly(vinyl butyrate), polyvinilidene difluoride (PVDF), silicones, polyformaldehyde, cellulose, cellulose acetate, nitrocellulose, and the like. Other materials that can be used include, but are not limited to, paper, glass, ceramic, metal, metalloids, semiconductive materials, cements and the like. In addition, substances that form gels, such as proteins (e.g., gelatins), lipopolysaccharides, silicates, agarose and polyacrylamides can be used. Polymers that form several aqueous phases, such as dextrans, polyalkylene glycols or surfactants, such as phospholipids, long chain (12-24 carbon atoms) alkyl ammonium salts and the like are also suitable. Where the solid surface is porous, various pore sizes can be employed depending upon the nature of the system.

A variety of immunoassay systems can be used, including but not limited to, radio-immunoassays (R1A), enzyme-linked immunosorbent assays (ELISA) assays, enzyme immunoassays (EIA), "sandwich" assays, gel diffusion precipitation reactions, immunodiffusion assays, agglutination assays, immunofluorescence assays, fluorescence activated cell sorting (FACS) assays, immunohistochemical assays, protein A immunoassays, protein G immunoassays, protein L immunoassays, biotin/avidin assays, biotin/streptavidin assays, Immunoelectrophoresis assays, precipitation/flocculation reactions, immunoblots (Western blot; dot/slot blot); immunodiffusion assays; liposome immunoassay, chemiluminescence assays, library screens, expression arrays, immunoprecipitation,
competitive binding assays and immunohistochemical staining. These and other assays are described, among other places, in Hampton et al. (Serological Methods, a Laboratory Manual, APS Press, St Paul, Minn (1990)) and Maddox et al. (J Exp. Med. 158:121 1-1216 (1993); the entire contents of which are incorporated herein by reference for teachings directed to immunoassays).

The methods of this invention can also be carried out using a variety of solid phase systems, such as described in U.S. Patent No. 5,879,881, as well as in a dry strip lateral flow system (e.g., a "dipstick" system), such as described, for example, in U.S. Patent Publication No. 20030073147, the entire contents of each of which are incorporated by reference herein.

Embodiments of the present invention include monoclonal antibodies produced from B cells isolated from a subject of this invention that has produced an immune response against the chimeric coronavirus spike protein of this invention, wherein said monoclonal antibodies are specific to epitopes present on the chimeric coronavirus spike protein. Such monoclonal antibodies can be specific for an epitope in any of the first, second, third or fourth regions of the chimeric coronavirus spike protein of this invention as described herein.

The term "antibody" or "antibodies" as used herein refers to all types of immunoglobulins, including IgG, IgM, IgA, IgD, and IgE. The antibody can be monoclonal or polyclonal and can be of any species of origin, including, for example, mouse, rat, rabbit, horse, goat, sheep or human, or can be a chimeric or humanized antibody. See, e.g., Walker et al., Molec. Immunol. 26:403-11 (1989). The antibodies can be recombinant monoclonal antibodies produced according to the methods disclosed in U.S. Patent No. 4,474,893 or U.S. Patent No. 4,816,567. The antibodies can also be chemically constructed according to the method disclosed in U.S. Patent No. 4,676,980. The antibody can further be a single chain antibody or bispecific antibody. The antibody can also be humanized for administration to a human subject.

Antibody fragments included within the scope of the present invention include, for example, Fab, F(ab')2, and Fc fragments, and the corresponding fragments obtained from antibodies other than IgG. Such fragments can be produced by known techniques. For example, F(ab')2 fragments can be produced by pepsin digestion of the antibody molecule, and Fab fragments can be generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries can be constructed to allow rapid and easy

Monoclonal antibodies can be produced in a hybridoma cell line according to the technique of Kohler and Milstein, (1975) Nature 265:495-97. For example, a solution containing the appropriate antigen can be injected into a mouse and, after a sufficient time, the mouse sacrificed and spleen cells obtained. The spleen cells are then immortalized by fusing them with myeloma cells or with lymphoma cells, typically in the presence of polyethylene glycol, to produce hybridoma cells. The hybridoma cells are then grown in a suitable medium and the supernatant screened for monoclonal antibodies having the desired specificity. Monoclonal Fab fragments can be produced in bacterial cell such as E. coli by recombinant techniques known to those skilled in the art. See, e.g., W. Huse, (1989) Science 246:1275-81.

Antibodies can also be obtained by phage display techniques known in the art or by immunizing a heterologous host with a cell containing an epitope of interest.

"Nidovirus" as used herein refers to viruses within the order Nidovirales, including the families Coronaviridae and Arteriviridae. All viruses within the order Nidovirales share the unique feature of synthesizing a nested set of multiple subgenomic mRNAs. See M. Lai and K. Holmes, Coronaviridae: The Viruses and Their Replication, in Fields Virology, pg 1163, (4th Ed. 2001). Particular examples of Coronaviridae include, but are not limited to, toroviruses and coronaviruses.

"Coronavirus" as used herein refers to a genus in the family Coronaviridae, which family is in turn classified within the order Nidovirales. The coronaviruses are large, enveloped, positive-stranded RNA viruses. They have the largest genomes of all RNA viruses and replicate by a unique mechanism that results in a high frequency of recombination. The coronaviruses include antigenic groups I, II, and III. Nonlimiting examples of coronaviruses include SARS coronavirus, MERS coronavirus, transmissible gastroenteritis virus (TGEV), human respiratory coronavirus, porcine respiratory coronavirus, canine coronavirus, feline enteric coronavirus, feline infectious peritonitis virus, rabbit coronavirus, murine hepatitis virus, sialodacryoadenitis virus, porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, avian infectious bronchitis virus, and turkey coronavirus, as well as chimeras of any of the foregoing. See Lai and Holmes "Coronaviridae: The Viruses and Their Replication" in Fields Virology, (4th Ed. 2001).
A "nidovirus permissive cell" or "coronavirus permissive cell" as used herein can be any cell in which a coronavirus can at least replicate, including both naturally occurring and recombinant cells. In some embodiments the permissive cell is also one that the nidovirus or coronavirus can infect. The permissive cell can be one that has been modified by recombinant means to produce a cell surface receptor for the nidovirus or coronavirus.

An "isolated" nucleic acid molecule is one that is chemically synthesized (e.g., derived from reverse transcription) or is separated from other nucleic acid molecules that are present in the natural source of the nucleic acid molecule. Preferably, an "isolated" nucleic acid molecule is free of sequences (preferably protein encoding sequences) that naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kB, 4 kB, 3 kB, 2 kB, 1 kB, 0.5 kB or 0.1 kB of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized, (e.g., as described in Sambrook et al., eds., "Molecular Cloning: A Laboratory Manual," 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).

In particular embodiments, a nucleic acid of this invention has at least about 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or more nucleic acid sequence homology with the sequences specifically disclosed herein. The term "homology" as used herein refers to a degree of similarity between two or more sequences. There can be partial homology or complete homology (i.e., identity). A partially homologous sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to using the functional term "substantially homologous." The inhibition of hybridization to the target sequence can be examined using a hybridization assay (Southern or northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or hybridization probe will compete for and inhibit the binding of a completely homologous sequence to the target sequence under conditions of low stringency. This is not to say that conditions of low stringency are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific
(i.e., selective) interaction. The absence of non-specific binding can be tested by the use of a second target sequence, which lacks even a partial degree of complementarity (e.g., less than about 30% identity). In the absence of non-specific binding, the probe will not hybridize to the second non-complementary target sequence.

Alternatively stated, in particular embodiments, nucleic acids encoding a cDNA of a coronavirus that hybridize under the conditions described herein to the complement of the sequences specifically disclosed herein can also be used according to the present invention. The term "hybridization" as used herein refers to any process by which a first strand of nucleic acid binds with a second strand of nucleic acid through base pairing.

The term "stringent" as used here refers to hybridization conditions that are commonly understood in the art to define the commodities of the hybridization procedure. High stringency hybridization conditions that will permit homologous nucleotide sequences to hybridize to a nucleotide sequence as given herein are well known in the art. As one example, hybridization of such sequences to the nucleic acid molecules disclosed herein can be carried out in 25% formamide, 5X SSC, 5X Denhardt's solution and 5% dextran sulfate at 42°C, with wash conditions of 25% formamide, 5X SSC and 0.1% SDS at 42°C, to allow hybridization of sequences of about 60% homology. Another example includes hybridization conditions of 6X SSC, 0.1% SDS at about 45°C, followed by wash conditions of 0.2X SSC, 0.1% SDS at 50-65°C. Another example of stringent conditions is represented by a wash stringency of 0.3 M NaCl, 0.03M sodium citrate, 0.1% SDS at 60-70°C using a standard hybridization assay (see SAMBROOK et al, EDS., MOLECULAR CLONING: A LABORATORY MANUAL 2d ed. (Cold Spring Harbor, NY 1989, the entire contents of which are incorporated by reference herein).

The nucleic acids, proteins, peptides, viruses, vectors, particles, antibodies and populations of this invention are intended for use as therapeutic agents and immunological reagents, for example, as antigens, immunogens, vaccines, and/or nucleic acid delivery vehicles. Thus, in various embodiments, the present invention provides a composition comprising the nucleic acid, virus, vector, particle, antibody and/or population of this invention in a pharmaceutically acceptable carrier. The compositions described herein can be formulated for use as reagents (e.g., to produce antibodies) and/or for administration in a pharmaceutical carrier in accordance with known techniques. See, e.g., Remington, The Science And Practice of Pharmacy (latest edition).
In embodiments of this invention wherein a chimeric coronavirus spike protein is being administered, delivered and/or introduced into a subject, e.g., to elicit or induce an immune response, the protein can be administered, delivered and/or introduced into the subject as a protein present in an inactivated (e.g., inactivated through UV irradiation or formalin treatment) coronavirus. The protein or active fragment thereof of this invention can be administered, delivered and/or introduced into the subject according to any method now known or later identified for administration, introduction and/or delivery of protein or active fragment thereof, as would be well known to one of ordinary skill in the art. Nonlimiting examples include administration of the protein or fragment with a protease inhibitor or other agent to protect it from degradation and/or with a polyalkylene glycol moiety (e.g., polyethylene glycol).

In some embodiments, the coronavirus protein or active fragment thereof can be administered to a subject as a nucleic acid molecule, which can be a naked nucleic acid molecule or a nucleic acid molecule present in a vector (e.g., a delivery vector, which in some embodiments can be a VRP). The nucleic acids and vectors of this invention can be administered orally, intranasally, parenterally (e.g., intravenously), by intramuscular injection, by intraperitoneal injection, transdermally, extracorporeally, topically or the like. In the methods described herein which include the administration and uptake of exogenous DNA into the cells of a subject (i.e., gene transduction or transfection), the nucleic acids of the present invention can be in the form of naked DNA or the nucleic acids can be in a vector for delivering the nucleic acids to the cells for expression of the polypeptides and/or fragments of this invention. The vector can be a commercially available preparation or can be constructed in the laboratory according to methods well known in the art.

Delivery of the nucleic acid or vector to cells can be via a variety of mechanisms, including but not limited to recombinant vectors including bacterial, viral and fungal vectors, liposomal delivery agents, nanoparticles, and gene gun related-mechanisms.

As one example, delivery can be via a liposome, using commercially available liposome preparations such as LIPOFECTIN, LIPOFECTAMINE (Gibco-BRL, Inc., Gaithersburg, MD), SUPERFECT (Qiagen, Inc. Hilden, Germany) and TRANSFECTAM (Promega Biotec, Inc., Madison, WI), as well as other liposomes developed according to procedures standard in the art. In addition, the nucleic acid or vector of this invention can be delivered in vivo by electroporation, the technology for which is available from Genetronics,
Inc. (San Diego, CA) as well as by means of a SONOPORATION machine (ImaRx Pharmaceutical Corp., Tucson, AZ).

As one example, vector delivery can be via a viral system, such as a retroviral vector system, which can package a recombinant retroviral genome. The recombinant retrovirus can then be used to infect and thereby deliver to the infected cells nucleic acid encoding the polypeptide and/or fragment of this invention. The exact method of introducing the exogenous nucleic acid into mammalian cells is, of course, not limited to the use of retroviral vectors. Other techniques are widely available for this procedure including the use of adenoviral vectors, alphaviral vectors (e.g., VRPs), adeno-associated viral (AAV) vectors, lentiviral vectors, pseudotyped retroviral vectors and vaccinia viral vectors, as well as any other viral vectors now known or developed in the future. Physical transduction techniques can also be used, such as liposome delivery and receptor-mediated and other endocytosis mechanisms. This invention can be used in conjunction with any of these or other commonly used gene transfer methods.

If ex vivo methods are employed, cells or tissues can be removed and maintained outside the body according to standard protocols well known in the art. The nucleic acids and vectors of this invention can be introduced into the cells via any gene transfer mechanism, such as, for example, virus-mediated gene delivery, calcium phosphate mediated gene delivery, electroporation, microinjection or proteoliposomes. The transduced cells can then be infused (e.g., in a pharmaceutically acceptable carrier) or transplanted back into the subject per standard methods for the cell or tissue type. Standard methods are known for transplantation or infusion of various cells into a subject.

Parenteral administration of the peptides, polypeptides, nucleic acids and/or vectors of the present invention, if used, is generally characterized by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution of suspension in liquid prior to injection, or as emulsions. As used herein, "parenteral administration" includes intradermal, intranasal, subcutaneous, intramuscular, intraperitoneal, intravenous and intratracheal routes, as well as a slow release or sustained release system such that a constant dosage is maintained. See, e.g., U.S. Patent No. 3,610,795, which is incorporated by reference herein in its entirety.

In the manufacture of a pharmaceutical composition according to embodiments of the present invention, the composition of this invention is typically admixed with, inter alia, a
pharmaceutically acceptable carrier. By "pharmacologically acceptable carrier" is meant a carrier that is compatible with other ingredients in the pharmaceutical composition and that is not harmful or deleterious to the subject. A "pharmacologically acceptable" component such as a salt, carrier, excipient or diluent of a composition according to the present invention is a component that (i) is compatible with the other ingredients of the composition in that it can be combined with the compositions of the present invention without rendering the composition unsuitable for its intended purpose, and (ii) is suitable for use with subjects as provided herein without undue adverse side effects (such as toxicity, irritation, and allergic response). Side effects are "undue" when their risk outweighs the benefit provided by the composition. Non-limiting examples of pharmaceutically acceptable components include, without limitation, any of the standard pharmaceutical carriers such as phosphate buffered saline solutions, water, emulsions such as oil/water emulsion, microemulsions and various types of wetting agents. A pharmaceutically acceptable carrier can comprise, consist essentially of or consist of one or more synthetic components (e.g., components that do not naturally occur in nature), as are known in the art.

The carrier may be a solid or a liquid, or both, and is preferably formulated with the composition of this invention as a unit-dose formulation. The pharmaceutical compositions are prepared by any of the well-known techniques of pharmacy including, but not limited to, admixing the components, optionally including one or more accessory ingredients.

Exemplary pharmaceutically acceptable carriers include, but are not limited to, sterile pyrogen-free water and sterile pyrogen-free physiological saline solution. Such carriers can further include protein (e.g., serum albumin) and sugar (sucrose, sorbitol, glucose, etc.)

The pharmaceutical compositions of this invention include those suitable for oral, rectal, topical, inhalation (e.g., via an aerosol) buccal (e.g., sub-lingual), vaginal, parenteral (e.g., subcutaneous, intramuscular, intradermal, intraarticular, intrapleural, intraperitoneal, intracerebral, intraarterial, or intravenous), topical (i.e., both skin and mucosal surfaces, including airway surfaces) and transdermal administration. The compositions herein may also be administered via a skin scarification method, or transdermally via a patch or liquid. The compositions may be delivered subdermally in the form of a biodegradable material that releases the compositions over a period of time. The most suitable route in any given case will depend, as is well known in the art, on such factors as the species, age, gender and overall condition of the subject, the nature and severity of the condition being treated and/or
on the nature of the particular composition (i.e., dosage, formulation) that is being administered.

A subject of this invention is any animal that is capable of producing an immune response against a coronavirus. A subject of this invention can also be any animal that is susceptible to infection by coronavirus and/or susceptible to diseases or disorders caused by coronavirus infection. A subject of this invention can be a mammal and in particular embodiments is a human, which can be an infant, a child, an adult or an elderly adult. A "subject at risk of infection by a coronavirus" or a "subject at risk of coronavirus infection" is any subject who may or has been exposed to a coronavirus.

As used herein, an "effective amount" refers to an amount of a compound or composition that is sufficient to produce a desired effect, which can be a therapeutic, prophylactic and/or beneficial effect.

Thus, the present invention provides a method of inducing or eliciting an immune response in a subject, comprising administering to the subject an effective amount of a virus, vector, particle, population and/or composition of this invention.

The present invention also provides a method of treating and/or preventing a coronavirus infection in a subject, comprising administering to the subject an effective amount of a virus, vector, particle, population and/or composition of this invention.

Also as used herein, the terms "treat," "treating" and "treatment" include any type of mechanism, action or activity that results in a change in the medical status of a subject, including an improvement in the condition of the subject (e.g., change or improvement in one or more symptoms and/or clinical parameters), delay in the progression of the condition, delay of the onset of a disease or illness, etc.

One nonlimiting example of an effective amount of a virus or virus particle (e.g., VRP) of this invention is from about 10^4 to about 10^{10}, preferably from about 10^5 to about 10^9, and in particular from about 10^6 to about 10^8 infectious units (IU, as measured by indirect immunofluorescence assay), or virus particles, per dose, which can be administered to a subject, depending upon the age, species and/or condition of the subject being treated. For subunit vaccines (e.g., purified antigens) a dose range of from about 1 to about 100 micrograms can be used. As would be well known to one of ordinary skill in the art, the optimal dosage would need to be determined for any given antigen or vaccine, e.g., according to the method of production and resulting immune response.
As one example, if the nucleic acid of this invention is delivered to the cells of a subject in an adenovirus vector, the dosage for administration of adenovirus to humans can range from about 10^7 to 10^9 plaque forming units (pfu) per injection, but can be as high as 10^{12}, 10^{15} and/or 10^{20} pfu per injection. Ideally, a subject will receive a single injection. If additional injections are necessary, they can be repeated at daily/weekly/monthly intervals for an indefinite period and/or until the efficacy of the treatment has been established. As set forth herein, the efficacy of treatment can be determined by evaluating the symptoms and clinical parameters described herein and/or by detecting a desired immunological response.

The exact amount of the nucleic acid or vector required will vary from subject to subject, depending on the species, age, weight and general condition of the subject, the particular nucleic acid or vector used, its mode of administration and the like. Thus, it is not possible to specify an exact amount for every nucleic acid or vector. However, an appropriate amount can be determined by one of ordinary skill in the art using only routine experimentation given the teachings herein.

For administration of serum or antibodies, as one nonlimiting example, a dosage range of from about 20 to about 40 international Units/Kilogram can be used, although it would be well understood that optimal dosage for administration to a subject of this invention needs to be determined, e.g., according to the method of production and resulting immune response.

In some embodiments of the present invention, the compositions can be administered with an adjuvant. As used herein, "adjuvant" describes a substance, which can be any immunomodulating substance capable of being combined with the polypeptide or nucleic acid vaccine to enhance, improve or otherwise modulate an immune response in a subject without deleterious effect on the subject.

Non-limiting examples of adjuvants that can be used in the vaccine of the present invention include the RIBI adjuvant system (Ribi Inc., Hamilton, Mont.), alum, mineral gels such as aluminum hydroxide gel, oil-in-water emulsions, water-in-oil emulsions such as, e.g., Freund's complete and incomplete adjuvants, Block copolymer (CytRx, Atlanta Ga.), QS-21 (Cambridge Biotech Inc., Cambridge Mass.), SAF-M (Chiron, Emeryville Calif.), AMPHIGEN™, adjuvant, saponin, Quil A or other saponin fraction, monophosphoryl lipid A, and Avridine lipid-amine adjuvant. Non-limiting examples of oil-in-water emulsions useful in the vaccine of the invention include modified SEAM62 and SEAM 1/2
formulations. Modified SEAM62 is an oil-in-water emulsion containing 5% (v/v) squalene (Sigma), 1% (v/v) SPAN™ 85 detergent (ICI Surfactants), 0.7% (v/v) TWEEN™ 80 detergent (ICI Surfactants), 2.5% (v/v) ethanol, 200 pg/ml Quil A, 100 ug/ml cholesterol, and 0.5% (v/v) lecithin. Modified SEAM 1/2 is an oil-in-water emulsion comprising 5% (v/v) squalene, 1% (v/v) SPAN™ 85 detergent, 0.7% (v/v) Tween 80 detergent, 2.5% (v/v) ethanol, 100 ug/ml Quil A, and 50 ug/ml cholesterol. Other immunomodulatory agents that can be included in the vaccine include, e.g., one or more interleukins, interferons, or other known cytokines.

in some embodiments, VEE replicon vectors can be used to express coronavirus structural genes in producing combination vaccines. Dendritic cells, which are professional antigen-presenting cells and potent inducers of T-cell responses to viral antigens, are preferred targets of VEE and VEE replicon particle infection, while SARS coronavirus targets the mucosal surfaces of the respiratory and gastrointestinal tract. As the VEE and coronavirus replicon RNAs synergistically interact, two-vector vaccine systems are feasible that may result in increased immunogenicity when compared with either vector alone. Combination prime-boost vaccines (e.g., DNA immunization and vaccinia virus vectors) have dramatically enhanced the immune response (notably cellular responses) against target papillomavirus and lentivirus antigens compared to single-immunization regimens (Chen et al. (2000) Vaccine 18:2015-2022; Gonzalo et al. (1999) Vaccine 17:887-892; Hanke et al. (1998) Vaccine 16:439-445; Pancholi et al. (2000) J Infect. Dis. 182: 18-27). Using different recombinant viral vectors (influenza and vaccinia) to prime and boost may also synergistically enhance the immune response, sometimes by an order of magnitude or more (Gonzalo, et al. (1999) Vaccine 17:887-892). Thus, the present invention also provides methods of combining different recombinant viral vectors (e.g., VEE and coronavirus) in prime boost protocols.

EXAMPLES
A Multivalent Vaccine that Elicits Broader Protection Against Emerging Human Coronaviruses

Replicon particles (VRPs) based on Venezuelan Equine Encephalitis Virus (VEEV) have been successfully used as vector platforms to deliver a variety of antigens. However, the requirement of wild type VEEV proteins for packaging restricts their production to
biological safety laboratory level 3 (BSL3) containment and the risk of generation of wild-type VEEV through recombination imposes a high risk for use of these VRPs in humans. To circumvent this issue, we constructed VRPs using attenuated VEEV strain 3526, which can be packaged under biological safety laboratory level 2 (BSL2). Using Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Spike protein (S) as a model antigen, we show that the VRP 3526 vaccine platform (VRP 3526 S) is equally efficacious in antigen production, antibody induction and protecting young and aged mice from lethal SARS disease caused by homologous and heterologous strains of SARS-CoV.

SARS-CoV originated from a pool of heterologous viruses circulating in bats, confounding vaccine and therapeutic design should future outbreaks emerge. To address this issue, the VRP 3526 platform was used and a synthetically designed chimeric S protein containing different regions of S proteins from of BtCoV HKU3, SARS CoV S and BtCoV 279 S was constructed in V3526 backbone (Chimera S). Chimera S was efficiently expressed and was recognized by polyclonal serum to SARS-CoV. Chimera S was also effective in protecting mice from SARS disease induced by several divergent strains of SARS CoV belonging to subgroup 2b. A zoonotic lethal challenge HKU3 virus from subgroup 2b (HKU3-SRBD-MAv) was then created where receptor binding domain (RBD) from HKU3 Spike was replaced by SARS-CoV RBD. Serial passage of this virus in mice resulted in severe airway disease and lethality. The Chimera S vaccine and SARS-CoV S vaccine was successful in eliciting complete protection from weight loss and viral replication caused by HKU3-SRBD-MAv, where as BtCoV 279 S and BtCoV HKU 3 S elicited partial protection.

Collectively, these studies describe the generation of a safe VRP platform that can be manufactured under BSL2 and also demonstrate a strategy for broadening vaccine efficacy for epidemic and closely related zoonotic pools which may emerge in the future.

The results as shown in Figs. 10-18 demonstrate: 1) the generation of a VRP 3526 platform that can be prepared under BSI2; 2) that the VRP 3526 platform has efficacy in young and aged models of SARS disease; 3) the generation of a subgroup specific Chimeric S protein vaccine for coronaviruses; 4) the creation of a subgroup specific lethal zoonotic challenge virus (HKU3-SRBD-MAv) that is representative of a virus that may emerge into the human population in the future; 5) the generation of a Chimera S vaccine that is effective in protection from divergent strains of lethal SARS CoV and HKU3-SRBD-MAv; 6) that a Chimeric Spike vaccine design can be effectively applied to coronaviruses from other
subgroups; and 7) that the VRP 3526 platform and chimeric spike vaccine design can be broadly applicable to other zoonotic viruses that may emerge into humans.

All publications, patent applications, patents and other references cited herein are incorporated by reference in their entireties for the teachings relevant to the sentence and/or paragraph in which the reference is presented.

The invention is described by the following claims, with equivalents of the claims to be included therein.
What is claimed is:

1. A chimeric coronavirus spike protein comprising, in orientation from amino to carboxy terminus:
 a) a first region comprising a portion of a coronavirus spike protein ectodomain that precedes a coronavirus spike protein receptor binding domain (RBD) as located in a nonchimeric coronavirus spike protein, of a first coronavirus;
 b) a second region comprising a coronavirus spike protein receptor binding domain (RBD) of a second coronavirus that is different from said first coronavirus;
 c) a third region comprising a portion of a coronavirus spike protein S1 domain as located in a nonchimeric coronavirus spike protein immediately downstream of the RBD, contiguous with a portion a coronavirus spike protein S2 domain as located immediately upstream of a fusion protein domain in a nonchimeric coronavirus spike protein, wherein said third region is of said first coronavirus; and
 d) a fourth region comprising a portion of a coronavirus spike protein from the start of the fusion protein domain through the carboxy terminal end as located in a nonchimeric coronavirus spike protein of a third coronavirus that is different from said first coronavirus and said second coronavirus.

2. The chimeric coronavirus spike protein of claim 1, wherein the chimeric coronavirus spike protein is derived from subgroup 1a coronaviruses, subgroup 1b coronaviruses, subgroup 2a coronaviruses, subgroup 2b coronaviruses, subgroup 2c coronaviruses, subgroup 2d coronaviruses or subgroup 3 coronaviruses.

3. The chimeric coronavirus of claim 2, derived from subgroup 2b coronaviruses wherein said first, second and third subgroup 2b coronaviruses are different from one another and wherein the subgroup 2b coronaviruses are selected from the group consisting of Bat SARS CoV (GenBank Accession No. FJ21 1859), SARS CoV (GenBank Accession No. FJ21 1860), BtSARS.HKU3.1 (GenBank Accession No. DQ022305), BtSARS.HKU3.2 (GenBank Accession No. DQ084199), BtSARS.HKU3.3 (GenBank Accession No. DQ084200), BtSARS.Rml (GenBank Accession No. DQ412043), BtCoV.279.2005 (GenBank Accession No. DQ6488877), BtSARS.Rfl (GenBank Accession No. DQ412042), BtCoV.273.2005 (GenBank Accession No. DQ648856), BtSARS.Rp3 (GenBank Accession
No. DQ071615), SARS CoV.A022 (GenBank Accession No. AY686863),
SARSCoV.CUHK-W1 (GenBank Accession No. AY278554), SARSCoV.GDOI (GenBank
Accession No. AY278489), SARSCoV.HC.SZ.61.03 (GenBank Accession No. AYS15512),
SARSCoV.SZ16 (GenBank Accession No. AY304488), SARSCoV.Urbani (GenBank
Accession No. AY278741), SARSCoV.civetOlO (GenBank Accession No. AY572035), or
SARSCoV.MA.15 (GenBank Accession No. DQ497008).

4. The chimeric subgroup 2b coronavirus spike protein of claim 3, wherein said first
subgroup 2b coronavirus is Bat SARS CoV-HKU3 (GenBank Accession No. FJ211859), said
second subgroup 2b coronavirus is SARSCoV.Urbani (GenBank Accession No.
AY278741.1), and said third subgroup 2b coronavirus is BtCoV 279.2005 (DQ648857).

5. The chimeric coronavirus spike protein of claim 1, comprising the amino acid
sequence:

```
1  MKILIFAFPLA NLAKAQQEGCG IISRKPQPKM AQVSSRRGV YYNDIIFRSR VLLHTQDYFL
51  PFDSNLTQYF SLNVSYSRDL AFYMPSQPLG YGGYFAAKE SFVNWGIFG SSFDNTTQA
101  VIVMNSTII IRVCFNLRCK EPMYTVSRGT QNaWYQFAQ NCFYDTRYQ SFQDTPPPTK
151  GNFREDLREY VFKRDFGFLS VQFMYTAVKLP KFLPTSGFSL KFLKIPFGI NITSYRM
201  MFQQTTSNFL PESAAYAVGN LKYSTFMRLF NENGHTDAD LCSQNPLAEL KCTIKNF
251  KG1YQTSNFR VSPTQEVIFR PNITLNCPPG EVFVATKFPS VYAYERKKIS NCVAPYSVLY
301  NSTFFSTFCK YGVSATKLND LCSFNYVD FSFGDDVRQ IAPQGTVIA DNYKLPDDF
351  MGCVLAWNTR NIDATSTGNY NYKRYRLRHG KLRPFERDJS NVPFSPDGK CPFFALNCYW
401  PLNYGYFYRW TGIQYGPRYR WLSFELLLNA PATVCGPKLS TDLVXNQCVM FNFPNLKCGT
451  VLTSSSKRFQ SFQQFGRDTS DFTDSVSRPQ TLEILDIPSC SFQGVSIVTP GINASSEV
501  LYECDNVTCD PTARADQLT PAVRWYSTGV NVFGQTAQCG IGEAGNHASY ECDIPIGAG
551  CASYHTAVSL RSTGQKTVNA YTMISLGAENS IAYANNSTAI PTNFISSTVT EVPMVSMAK
601  AVDCTMYICG DSLECSNNLL QYSGFTCQNL RALTIGIAEIQ DKNTQEFVQA VKQMYKTPAI
651  KDFGGFNSQF ILDPDSKPTK RSFIGEDLLFN KVTLDAGFMP KQYGDCLGDV SARDLICAQK
701  FNGLTLVPLP LTEDMVAAYT AALVSGTATA GWTFGAGSAL QIPFAMQMY RFWGKITQCN
751  VLYENQKQIA NFQNKASIQG QESLITTFSA LGKIQWDNLD NAQALNITLQ VLLSIMNFAIS
801  SVLNDILSRL DVNEAEQVID ITLGRQLQSL KQFTYDQQLR AAEIRASANL AATKMEC
851  GQSKRYDFCC KGYHLSFQPL AAPHGWFLIHT VNVQPSQER FINTTPACHE GKYAPFREG
901  FSNGITSWFQ TQRNFYQPSI ITTDNFTVAG NCDWIGNH NTYVLPQPQ LDFSKEELDK
951  YFKNHTSPDV DLGDISGINA SWNQKEID RLNEVAKNLM ESLIDLQLG KQZYRSKPHYW
1001 YVWLQGGFLAGL LAIMVMTILL CCMTSCSCL KGACSCGCC KFDDDSSEPV LKGVKLHYT
```

6. The chimeric coronavirus of claim 2, derived from subgroup 2c coronaviruses
wherein said first, second and third subgroup 2c coronaviruses are different from one another
and wherein the subgroup 2c coronaviruses are selected from the group consisting of the first
subgroup 2c coronavirus is Middle East respiratory syndrome coronavirus isolate
Riyadh_2_2012 (GenBank Accession No. KF600652.1), Middle East respiratory syndrome
coronavirus isolate Al-Hasa_18_2013 (GenBank Accession No. KF600651.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_17_2013 (GenBank Accession No. KF600647.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_15_2013 (GenBank Accession No. KF600645.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_16_2013 (GenBank Accession No. KF600644.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_21_2013 (GenBank Accession No. KF600634), Middle East respiratory syndrome coronavirus isolate Al-Hasa_19_2013 (GenBank Accession No. KF600632), Middle East respiratory syndrome coronavirus isolate Buraidah_1_2013 (GenBank Accession No. KF600630.1), Middle East respiratory syndrome coronavirus isolate Hafr-Al-Batin_1_2013 (GenBank Accession No. KF600628.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_12_2013 (GenBank Accession No. KF600627.1), Middle East respiratory syndrome coronavirus isolate Bisha_1_2012 (GenBank Accession No. KF600620.1), Middle East respiratory syndrome coronavirus isolate Riyadh_3_2013 (GenBank Accession No. KF600613.1), Middle East respiratory syndrome coronavirus isolate Riyadh_1_2012 (GenBank Accession No. KF600612.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_3_2013 (GenBank Accession No. KF186565.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_1_2013 (GenBank Accession No. KF186567.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_2_2013 (GenBank Accession No. KF186566.1), Middle East respiratory syndrome coronavirus isolate Al-Ilasa_4_2013 (GenBank Accession No. KF186564.1), Middle East respiratory syndrome coronavirus (GenBank Accession No. KF192507.1), Betacoronavirus England 1-Nl (GenBank Accession No. NC_019843), MERS-CoV_SA-Nl (GenBank Accession No. KC667074), following isolates of Middle East Respiratory Syndrome Coronavirus (GenBank Accession No: KF600655.1, GenBank Accession No: KF600654.1, GenBank Accession No: KF600649.1, GenBank Accession No: KF600648.1, GenBank Accession No: KF600646.1, GenBank Accession No: KF600643.1, GenBank Accession No: KF600642.1, GenBank Accession No: KF600640.1, GenBank Accession No: KF600639.1, GenBank Accession No: KF600638.1, GenBank Accession No: KF600637.1, GenBank Accession No: KF600636.1, GenBank Accession No: KF600635.1, GenBank Accession No: KF600631.1, GenBank Accession No: KF600626.1, GenBank Accession No: KF600625.1, GenBank Accession No: KF600624.1, GenBank Accession No: KF600623.1, GenBank Accession No: KF600622.1, GenBank

7. The chimeric subgroup 2c coronavirus spike protein of claim 6, wherein said first subgroup 2c coronavirus is BtCoV HKU4.2 (GenBank Accession No. EF065506.1); said second subgroup 2c coronavirus is MERS-CoV (GenBank Accession No. JX869059.2), and said third subgroup 2c coronavirus is BtCoV HKU5.5 (EF0655 12.1).

8. The chimeric coronavirus spike protein of claim 1, comprising the amino acid sequence:

```
1 MTLMLCCLMS LLIFVRCGDS QFDMSQPSAN TSECLESQVD AAFSKLMWP YPIDPSVKGD
61 IYPPLGRTYS NITLAYTGLF PLQGDLSQY LYSVSHAVGH GDGPTKAYIS NSLVTNVD
121 NGFWRI GAA ANSTGTVIS PSMNTKIKKA YPAFILGSSL TNSAGQQPPL ANYSTLIIPD
181 GCGTVLHAFY CILXPRTVR CPSTGTVSVY FYIETVHHDC QSTIPRNASL NSFKSDFDLV
241 NCTFFNSWDI TADETKEFWG IQDQTQGVHL YSRRKGDLYG GNMFRPATCH VYEIGIYYTV
301 IPRSSFRSKAN KREAWAFYVF YKLQHLYLQL DFSVGYIRRA AIDGHDLDLS QHLCSYTSFE
361 VDTGQVSYS EYAEPSGSSW QEAEGVECDF SPLSSGTPQ QYNFKRLVFT NCYNNLTKLL
421 SLFSNVDFTC SQISPAAIAS NCYSSLILDY FSYPFLSKSD LSVSSAGPIS QFTNYKQFSN
481 PTCILIALTVP HNLTLTTKPL KSYINKCWR LLSDDRTEVP QLVMANQQYSP CVSIVPSTVM
541 NGFWRI GAA ANSTGTVIS PSMNTKIKKA YPAFILGSSL TNSAGQQPPL ANYSTLIIPD
601 NCTFFNSWDI TADETKEFWG IQDQTQGVHL YSRRKGDLYG GNMFRPATCH VYEIGIYYTV
```


10. A vector comprising the isolated nucleic acid molecule encoding the chimeric coronavirus spike protein of any of claims 1-8.

11. A Venezuelan equine encephalitis replicon particle (VRP) comprising the isolated nucleic acid molecule encoding the chimeric coronavirus spike protein of any of claims 1-8.

12. A virus like particle (VLP) comprising the chimeric coronavirus spike protein of any of claims 1-8 and a matrix protein of any virus that can form a VLP.

14. A population of VLPs of claim 12, VRPs of claim 11 and/or coronavirus particles of claim 13.

15. A composition comprising the chimeric spike protein of any of claims 1-8 in a pharmaceutically acceptable carrier.

16. A composition comprising the nucleic acid molecule of claim 9 in a pharmaceutically acceptable carrier.

17. A composition comprising the vector of claim 10 in a pharmaceutically acceptable carrier.

18. A composition comprising the VRP of claim 11, the VLP of claim 12, and/or the coronavirus particle of claim 13 in a pharmaceutically acceptable carrier.

19. A composition comprising the population of claim 14 in a pharmaceutically acceptable carrier.

20. A method of producing an immune response to a coronavirus in a subject, comprising administering to the subject an effective amount of the chimeric coronavirus spike protein of any of claims 1-8, the nucleic acid molecule of claim 9, the vector of claim 10, the VRP of claim 11, the VLP of claim 12, the coronavirus particle of claim 13, the population of claim 14 and/or the composition of any of claims 15-19, in any combination, thereby producing an immune response to a coronavirus in the subject.

21. A method of treating a coronavirus infection in a subject in need thereof, comprising administering to the subject an effective amount of the chimeric coronavirus spike protein of any of claims 1-8, the nucleic acid molecule of claim 9, the vector of claim 10, the VRP of claim 11, the VLP of claim 12, the coronavirus particle of claim 13, the population of claim
14 and/or the composition of any of claims 15-19, in any combination, thereby treating a coronavirus infection in the subject.

22. A method of preventing a disease or disorder caused by a coronavirus infection in a subject, comprising administering to the subject an effective amount of the chimeric coronavirus spike protein of any of claims 1-8, the nucleic acid molecule of claim 9, the vector of claim 10, the VRP of claim 11, the VLP of claim 12, the coronavirus particle of claim 13, the population of claim 14 and/or the composition of any of claims 15-19, in any combination, thereby preventing a disease or disorder caused by a coronavirus infection in the subject.

23. A method of protecting a subject from the effects of coronavirus infection, comprising administering to the subject an effective amount of the chimeric coronavirus spike protein of any of claims 1-8, the nucleic acid molecule of claim 9, the vector of claim 10, the VRP of claim 11, the VLP of claim 12, the coronavirus particle of claim 13, the population of claim 14 and/or the composition of any of claims 15-19, in any combination, thereby protection the subject from the effects of coronavirus infection.

24. A method of identifying a coronavirus spike protein for administration to elicit an immune response to coronavirus in a subject infected by a coronavirus and/or a subject at risk of coronavirus infection and/or to a subject for whom eliciting an immune response to a coronavirus is needed or desired, comprising:
 a) contacting a sample obtained from a subject infected with a coronavirus with a panel of proteins comprising:
 1) one or more chimeric coronavirus spike proteins from a subgroup 2c coronavirus,
 2) one or more chimeric coronavirus spike proteins from a subgroup 2b coronavirus,
 3) one or more chimeric spike proteins from a subgroup 2a coronavirus,
 4) one or more chimeric coronavirus spike proteins from a subgroup 2d coronavirus,
 5) one or more chimeric coronavirus spike proteins from a subgroup 1a coronavirus,
 6) one or more chimeric coronavirus spike proteins from a subgroup 1b coronavirus,
 7) one or more chimeric coronavirus spike proteins from a subgroup 3 coronavirus; and
8) any combination of (1) through (7) above, under conditions whereby an antigen/antibody complex can form; and
 b) detecting formation of an antigen/antibody complex, whereby detection of formation of the antigen/antibody complex comprising the chimeric coronavirus spike protein(s) of any of (1)-(7) identifies the presence of antibodies to a spike protein of the coronavirus that is infecting the subject of (a), thereby identifying a coronavirus spike protein for administration to the subject of (a) and/or to a subject infected with a coronavirus and/or to a subject at risk of coronavirus infection and/or to a subject for whom eliciting an immune response to a coronavirus is needed or desired.

25. The method of claim 24, further comprising the step of administering the coronavirus spike protein identified according to the method to the subject of (a) and/or to a subject at risk of coronavirus infection and/or to a subject infected with a coronavirus and/or to a subject for whom eliciting an immune response to a coronavirus is needed or desired.

26. A method of identifying an antibody that neutralizes a coronavirus infecting a subject, comprising:
 a) isolating a coronavirus from a sample of a subject infected with a coronavirus and/or suspected of being infected with a coronavirus;
 b) contacting the coronavirus of (a) with a panel of antibodies comprising:
 1) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2c coronavirus,
 2) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2b coronavirus,
 3) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2a coronavirus,
 4) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2d coronavirus,
 5) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 1a coronavirus,
 6) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 1b coronavirus,
7) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 3 coronavirus, and

8) any combination of (1) through (7) above,
to form respective coronavirus/antibody compositions, each comprising a respective antibody of the panel;

c) contacting each of the respective coronavirus/antibody compositions of (b) with cells susceptible to coronavirus infection under conditions whereby coronavirus infection can occur; and

d) detecting the presence or absence of infection of the cells, whereby absence of detection of infection of the cells contacted with any of the coronavirus/antibody compositions of (b) identifies the antibody of that coronavirus/antibody composition as an antibody that neutralizes the coronavirus infecting the subject.

27. The method of claim 26, further comprising the step of administering the antibody identified according to the methods to the subject of (a) and/or to a subject infected with a coronavirus and/or to a subject at risk of coronavirus infection and/or to a subject for whom eliciting an immune response to a coronavirus is needed or desired.
Fig. 3

* No cross reactivity across groups
Fig. 6 (cont’d.)
- nsp5, S and M common to MA 15
- Identifies mutation spectra for cross-species transmission

*Sequencing in progress

Fig. 7
Recombinant S Gene Constructs

Boundaries of each antigen in the Chimera Mix

- MERS-CoV Spike
- BtCoV HKU4.2 Spike
- Chimeric Antigen 2C
- BtCoV HKU 5 Spike

MERSCoV RBD aa 367-588
HKU 4.2 Spike aa 1-371
HKU4.2 Spike aa 593-983
BtCoV HKU 5.5 Spike aa 984-1353

1 371 367-588 730
Ectodomain RBD S1/S2 S2/Tm

Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
A.

BtSARS.HKU3 genomes 1-3

BtSARS.Rm1

BtCoV.279.2005

BtCoV.273.2005

BtSARS.RP3

SARS-CoV reps from All phases/civets/dogs

Subgroup 2b

B.

Mock

CHIMERA S

SARS-CoV S

Urba S

α Chimera S

α SARS-CoV S

C.

Recombinant S Gene Constructs

SARS-CoV (Urban)^

BtCoV/ HKU3^

BtCoV HKU3 Spike

SARS-CoV RBD

BtCoV HKU3 Spike

BtCoV 279 Spike

Ectodomain

RBD

S1/S2

S2/Im:

Chimera S

BtCoV/279/04-S

Fig. 14
Fig. 15

A. Graph showing percent starting weight vs. days post infection for URBANI S, CHIMERA S, and Mock.

B. Graph showing percent starting weight vs. days post infection for Urbani S, Chimera S, and Mock.

C. Graph showing viral titers (pfu/μg lung) for URBANI S, CHIMERA S, and Mock.

D. Graph showing viral titers (pfu/μg lung) for Urbani S, Chimera S, and Mock.

Titers Day 2 PI

Titers D2 PI

LOD
A.

Virus serial passaged in mice 10x to become virulent

B.

<table>
<thead>
<tr>
<th>Virus</th>
<th>Nucleotide Change</th>
<th>Affected Gene</th>
<th>Amino Acid Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>HKU3-SRBD-MAv</td>
<td>C10334T</td>
<td>nsp5</td>
<td>Silent</td>
</tr>
<tr>
<td></td>
<td>T10846C</td>
<td>nsp5</td>
<td>Silent</td>
</tr>
<tr>
<td></td>
<td>C23304T</td>
<td>Spike</td>
<td>P611S</td>
</tr>
<tr>
<td></td>
<td>A24966G</td>
<td>Spike</td>
<td>I1165V</td>
</tr>
<tr>
<td></td>
<td>26397_del_12nt_263</td>
<td>Membrane (M)</td>
<td>Deletes 4 aa (3DNGT6)</td>
</tr>
<tr>
<td></td>
<td>27661^T^27663</td>
<td>ORF7b</td>
<td>Truncates protein at 23 aa (last 10 aa are altered)</td>
</tr>
</tbody>
</table>

Fig. 16
Fig. 17
Fig. 18
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C07K14/165 (2006.01)
C12N15/50 (2006.01)
A61K39/215 (2006.01)
A61P3/12 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07K14/165, C12N15/50, A61K39/215, A61P3/12

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatSearch (RUPTO, internal), USPTO, WIPO, Espacenet, Eapatis, DWPI, ARIPO, OAIP, PubMed, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AGNIHOTHRAM S et al. Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses, J Infect Dis., 2014 Apr 1;209(7):995-1006. Online publication - 2013 Nov 18, pp.995-1006</td>
<td>1-23</td>
</tr>
<tr>
<td>A</td>
<td>WO 1993/023422 A1 (SMITHKLINE BEECH AM CORPORATION et al.) 25.11.1993, claims</td>
<td>1-23</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

01 June 2015 (01.06.2015)

Date of mailing of the international search report

10 June 2015 (10.06.2015)

Name and mailing address of the ISA/RU:
Federal Institute of Industrial Property, Berezkovskaya nab., 30-1, Moscow, G-59, GSP-3, Russia, 125993
Facsimile No: (8-495) 531-63-18, (8-499) 243-33-37

Authorized officer
P. Dzharmakyun
Telephone No. 495 53 165 15

Form PCT/ISA/210 (second sheet) (January 2015)
Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2.☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3.☒ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

(see extra sheet)

1.☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2.☐ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3.☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4.☒ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-23

Remark on Protest

-☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

-☐ No protest accompanied the payment of additional search fees.
According to Rule 13 of the Regulations under the PCT the claimed inventions does not meet the requirement of unity of invention \textit{a priori}, therefore independent claims 1, 9-24, 26 form several groups of inventions, with are not linked as to form a single general inventive concept.

The special technical feature of independent claims 1, 9-23 is a chimeric coronaviruses spike protein comprising, in orientation from amino to carboxy terminus: a) a first region comprising a portion of a coronavirus spike protein ectodomain that precedes a coronavirus spike protein receptor binding domain (RBD) as located in a nonchimeric coronavirus spike protein, of a first coronavirus; b) a second region comprising a coronavirus spike protein receptor binding domain (RBD) of a second coronaviruses that is different from said first coronaviruses; c) a third region comprising a portion of a coronavirus spike protein S1 domain as located in a nonchimeric coronavirus spike protein immediately downstream of the RBD, contiguous with a portion a coronavirus spike protein S2 domain as located immediately upstream of a fusion protein domain in a nonchimeric coronavirus spike protein, wherein said third region is of said first coronavirus; and d) a fourth region comprising a portion of a coronavirus spike protein from the start of the fusion protein domain through the carboxy terminal end as located in a nonchimeric coronavirus spike protein of a third coronaviruses that is different from said first coronavirus and said second coronaviruses.

The special technical features of independent claim 24 are a kit of chimeric coronavirus spike proteins. The special technical feature of independent claim 26 is a kit of antibodies.

Hence, claims comprise 3 groups of inventions, namely:
1 invention - claims 1-23
2 invention - claims 24-25
3 invention- claims 26-27