제목: PROTEIN TRANSDUCTION DOMAIN BASED ON GOLD NANOPARTICLE-APTAMER CONJUGATE AND METHOD FOR PRODUCING SAME

발명의 목표: 금나노입자-에플리의 결합체를 기반으로 하는 단백질 전달체 및 이의 제조 방법

발명의 설명: 본 발명은 금나노입자 및 상기 금나노입자의 표면에 결합되는 에플리(aptamer)를 포함하는 단백질 전달체에 관한 것이다. 본 발명에 따른 단백질 전달체는 금나노입자의 표면에 다양한 aptamer 또는 단백질 특이적 에플리가 결합하고 있는 단백질 전달체로 결합하여 세포 내로 단백질을 효과적으로 전달할 수 있고, 매우 적은 세포독성을 가진 금나노입자를 이용하여 인체에 무해할 뿐만 아니라, 다양한 과정에서 빠르고 반복하여 세포 내의 위치를 쉽게 확인할 수 있으며, 질병의 진단 또는 치료에 유용하게 이용될 수 있을 것으로 기대된다.
명세서
발명의 명칭: 근주노입자-/aptamer 결합체를 기반으로 하는 단백질 전달체 및 이의 제조 방법

기술분야
본 발명은 단백질 전달체 및 이의 제조 방법에 관한 것으로서, 보다 상세하게는 근주노입자에 다양한 tag의 aptamer 또는 단백질 특이적 aptamer를 결합하여 세포 내로 단백질 전달능이 향상된 단백질 전달체 및 이의 제조 방법에 관한 것이다.

배경기술

한편, 나노입자(nanoparticle)는 약물 전달, 유전자 전달, 세포 내 영양, 광선치료와 같은 생체의학 분야에서 촉망되는 도구로서 사용되어 왔으며, 특히 금 나노입자는 항성과 작용의 용이성, 화학적 안정성, 생체 적합성, 및 조정 가능한 광학적 및 전기적 특성으로 인해 많은 관심을 받고 있다.

일반적으로, 진단 또는 치료를 위해 제조되는 물질들은 이것은 진단 또는 치료학적 유호량이 세포 내에 전달되어야 하는데, 세포는 단백질 등과 같은 기대 분자에 대해서 불투과성이기 때문에, 이러한 단백질을 이용한 진단 또는 치료에는 한계가 있는 문제점이 있다.

이러한 문제점을 해결하기 위하여, 전기충격(electroporation), 리포좀을 이용한 박용합, 단일 세포로 직접 미세 주입하는 방법 등과 같이 단백질 등의 기대 분자들을 세포 외부나 표적 세포의 표면에서 작용시켜 세포 내에 전달시키기 위한 여러 가지 방법들이 개발되었으나, 이러한 방법들은 세포 내 전달능이 떨어져 전달하고자 하는 전체 세포 수 중 단지 일부에만 전달할 수 있을 뿐이며, 다른 많은 수의 세포에 바람직하지 않은 영향을 주는 경향을 나타내는 단점이 있다.

발명의 상세한 설명
기술적 과제
본 발명은 상기와 같은 종래 기술상의 문제점을 해결하기 위하여 금 나노입자 및 상기 금 나노입자의 표면에 결합된 aptamer를 포함하는 단백질 전달체를 제공하는 것을 그 목적으로 한다.
또한 본 발명은 금 나노입자와 엠타미어(aptamer)를 결합시키는 단계를 포함하는 단백질 전달체 제조 방법을 제공하는 것을 또 다른 목적으로 한다.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.

파세 해결 수단

본 발명은 금 나노입자 및 상기 금 나노입자의 표면에 결합되는 엠타미어(aptamer)를 포함하는 단백질 전달체를 제공한다.

본 발명의 일 구현예로, 상기 금 나노입자는 10-20 nm의 크기를 가지는 것을 특징으로 한다.

본 발명의 다른 구현예로, 상기 엠타미어는 윤바인은 단백질에 특이적으로 결합하는 것을 특징으로 한다.

본 발명의 또 다른 구현예로, 상기 단백질은 표지물질(tag)로 표지된 단백질인 것을 특징으로 한다.

본 발명의 또 다른 구현예로, 상기 표지물질은 허스터신 및 또는 글루타티온 S-전달효소(GST; glutathione S-transferase)인 것을 특징으로 한다.

또한 본 발명은 금 나노입자와 엠타미어(aptamer)를 결합시키는 단계를 포함하는 단백질 전달체 제조 방법을 제공한다.

다음이, 본 발명은 단백질 전달체와 단백질이 결합하여 이루어진 복합체를 제공한다.

또한 아니라, 본 발명은 상기 복합체를 개체에 투여하는 단계를 포함하는 단백질 전달 방법을 제공한다.

발명의 효과

본 발명에 따른 단백질 전달체는 금 나노입자에 결합한 다양한 tag의 엠타미어 또는 단백질 특이적 엠타미어가 전달하고자 하는 단백질에 특이적으로 결합하여 세포 내로 단백질을 효과적으로 전달할 수 있고, 매우 적은 세포독성을 갖는 금 나노입자를 이용하여 인체에 무해한 뿐만 아니라, 다양한 과장에서 빛을 반사하여 세포 내에서의 위치를 쉽게 확인할 수 있는바, 질병의 진단 또는 치료에 유용하게 이용될 수 있을 것으로 기대된다.

도면의 간단한 설명

도 1은 금속 나노입자에 His-엠타미어와 His-tagged 단백질을 결합하여 엠타미어-금나노입자-단백질 복합체를 제조하는 개략적인 모식도를 나타낸 도면이다.

도 2는 이차형체가 Rabbit-488(Green)로 표지된 대장균 AcrA 단백질 전달에 대한 중소단 현미경 분석 결과를 나타낸 도면이다.
[21] 도 3에 이차항체가 Rabbit-584(Red)로 표지된 대장균 AcrA 단백질 전달에 대한 공조접 현미경 분석 결과를 나타낸 도면이다.

[22] 도 4는 AuNP-His-Apt와 결합하거나 결합하지 않은 AcrA 또는 His-AcrA 단백질을 HeLa 세포에 처리한 경우의 AcrA 단백질 전달에 대한 공조접 현미경 분석 결과를 나타낸 도면이다.

[23] 도 5는 대장균 AcrA 단백질 검출을 위한 웨스트턴 블로팅 분석 결과를 나타낸 도면이다.

[25] 도 7에 이차항체가 Rabbit-488(Green)로 표지된 BCL-xL 단백질 전달에 대한 공조접 현미경 분석 결과를 나타낸 도면이다.

[26] 도 8는 AuNP-His-Apt와 결합하거나 결합하지 않은 BCL-xL 또는 His-BCL-xL 단백질을 HeLa 세포에 처리한 경우의 BCL-xL 단백질 전달에 대한 공조접 현미경 분석 결과를 나타낸 도면이다.

[27] 도 9는 BCL-xL 단백질 검출을 위한 웨스트턴 블로팅 분석 결과를 나타낸 도면이다.

[28] 도 10은 AuNP-His-Apt와 결합하거나 결합하지 않은 BCL-xL 또는 His-BCL-xL 단백질을 HeLa 세포에 처리한 경우의 BCL-xL 단백질 전달에 대한 웨스트턴 블로팅 분석 결과를 나타낸 도면이다.

[29] 도 11은 Alexa488로 표지된 BCL-xL 단백질 전달에 대한 유세포 분석기 결과를 나타낸 도면이다.

[30] 도 12는 Cy5(Red)가 표지된 His-암마juries로 난소 전달체와 Alexa488(Green)로 표지된 BCL-xL 단백질 전달에 대한 유세포 분석기 결과를 나타낸 도면이다.

[31] 도 13은 AuNP-His-Apt와 결합하거나 결합하지 않은 BCL-xL 또는 His-BCL-xL 단백질을 HeLa 세포에 처리한 경우의 BCL-xL 단백질 전달에 대한 유세포 분석 결과를 나타낸 도면이다.

[32] 도 14는 이차항체가 Rabbit-Rodamine(Red)로 표지된 FOXL2 단백질 전달에 대한 공조접 현미경 분석 결과를 나타낸 도면이다.

[33] 도 15는 FOXL2 단백질 검출을 위한 웨스트턴 블로팅 분석 결과를 나타낸 도면이다.

[34] 도 16은 AuNP-GST-Apt에 의한 GST-FOXL2 단백질의 내재화(internalization) 확인을 위해 AuNP-GST-Apt-GST-FOXL2를 처리하여 배양한 HeLa 세포를 공조접 현미경으로 분석한 결과를 나타낸 도면이다.

[36] 도 18은 GST-FOXL2의 핵내 위치(nuclear localization)를 확인하기 위해, 핵
추출물(nuclear extract)의 웨스턴 블로팅을 실시한 결과를 나타낸 도면이다.
[37] 도 19는 AuNP-GST-Apt-GST-FOXL2를 처리하여 배양한 HeLa 세포로부터 분리된 RNA로부터 합성된 cDNA library를 사용하여 Real time-PCR을 실시한 결과를 나타낸 도면이다.
[38] 도 20은 본 발명의 금 나노입자-/aptamer 결합체(AuNP-His-Apt)에 의한 HeLa cell 내 BIM 단백질의 전달을 공조점 현미경으로 확인한 결과를 나타낸 도면이다.
[39] 도 21은 본 발명의 금 나노입자-/aptamer 결합체(AuNP-His-Apt)에 의한 HeLa cell 내 BIM 단백질의 전달을 유세포 분석법으로 확인한 결과를 나타낸 도면이다.
[40] 도 22는 본 발명의 금 나노입자-/aptamer 결합체(AuNP-His-Apt)에 의한 HeLa cell 내 BIM 단백질의 전달을 웨스턴 블로팅 분석법으로 확인한 결과를 나타낸 도면이다.
[41] 도 23는 본 발명의 금 나노입자-/aptamer 결합체(AuNP-His-Apt)에 의한 HeLa cell 내 BIM 단백질의 전달을 유세포 분석법으로 확인한 결과를 나타낸 도면이다.
[42] 도 24는 AuNP-His-Apt-BIM을 HeLa 세포에 처리한 후, 세포 생존능을 확인한 결과를 나타낸 도면이다.
[43] 도 25는 본 발명의 금 나노입자-/aptamer 결합체(AuNP-His-Apt)에 의한 Human primary granulosa cell 내 BIM 단백질의 전달을 공조점 현미경으로 확인한 결과를 나타낸 도면이다.
[44] 도 26은 본 발명의 금 나노입자-/aptamer 결합체(AuNP-His-Apt)에 의한 Human primary granulosa cell 내 BIM 단백질의 전달을 웨스턴 블로팅 분석법으로 확인한 결과를 나타낸 도면이다.
[45] 도 27은 본 발명의 금 나노입자-/aptamer 결합체(AuNP-His-Apt)에 의한 KGN cells 내 BIM 단백질의 전달을 공조점 현미경으로 확인한 결과를 나타낸 도면이다.
[46] 도 28은 본 발명의 금 나노입자-/aptamer 결합체(AuNP-His-Apt)에 의한 KGN cells 내 BIM 단백질의 전달을 웨스턴 블로팅 분석법으로 확인한 결과를 나타낸 도면이다.
[47] 도 29는 Cy5-AuNP-His-Apt-BIM을 HeLa 세포에 처리한 후, AuNP-His-Apt (Red) 및 His-BIM (Green)이 세포 내에서 공존(colocalization)하고 있음을 공조점 현미경으로 확인한 결과를 나타낸 도면이다.
[48] 도 30은 endosomal marker proteins(early endosome antigen 1 (EEA), or lysosomal-associated membrane protein 1 (LAMP1))의 공조점 현미경 분석 결과를 나타낸 도면이다.
[49] 도 31은 도 29의 세포를 FBS의 존재 또는 부존재 상에서 유세포 분석을 실시한 결과를 나타낸 도면이다.
도 33은 금 나노입자(AuNP)의 엠타미 용제 능력(loading capacity)을 평가하기 위해 엠타미의 정량분석을 실시한 결과를 나타낸 도면이다.

도 34는 AuNP-His-Apt 또는 AuNP-GST-Apt의 단백질 결합 능력을 측정한 결과를 나타낸 도면이다.

도 35는 HeLa 세포에 AuNP-His-Apt 농도를 달리하여(0, 0.5, 1.0 및 2nM) 처리하고 배양한 후 세포 생존율을 측정한 결과를 나타낸 도면이다.

도 36은 His-tag 및 GST-tag 엠타미 모두와 결합된 AuNP이 두 개의 각 단백질(His-BCL-xl 및 GST-FOXl2)을 적절한 세포 내 구획(compartment) 내로 전달하였음을 공조절 현미경 및 웨스턴 블로팅 분석을 통해 확인한 결과를 나타낸 도면이다.

도 37은 In vivo 마우스 이종이식 모델에서 AuNP-His-Apt-His-BIM 복합체 주입에 의한 시간별 종양 채적 및 무게 변화를 측정한 결과를 나타낸 도면이다.

도 38는 In vivo 마우스 이종이식 모델에서 AuNP-His-Apt 결합체에 의한 종양조직으로의 His-BIM 전달을 공조절 현미경으로 확인한 결과를 나타낸 도면이다.

도 39는 In vivo 마우스 이종이식 모델에서 AuNP-His-Apt 결합체에 의한 종양조직으로의 His-BIM 전달을 웨스턴 블로팅 분석을 통해 확인한 결과를 나타낸 도면이다.

도 40은 In vivo 마우스 이종이식 모델에서 AuNP-His-Apt 결합체에 의한 종양조직으로의 His-BIM 전달을 면역조직화학 분석을 통해 확인한 결과를 나타낸 도면이다.

도 41은 In vivo 마우스 이종이식 모델에서 AuNP-His-Apt에 의한 단백질의 표적 전달능을 공조절 현미경으로 확인한 결과를 나타낸 도면이다.

도 42는 In vivo 마우스 이종이식 모델에서 AuNP-His-Apt에 의한 단백질의 표적 전달능을 확인하기 위해, 종양과 장기 단면에서 형광의 상대적 강도를 Image J software를 사용하여 측정한 결과를 나타낸 도면이다.

도 43은 In vivo 마우스 이종이식 모델에서 AuNP-His-Apt에 의한 단백질의 표적 전달능을 확인하기 위해, anti-BIM 항체를 사용하여 종양 조직의 면역조직화학 분석을 실시한 결과를 나타낸 도면이다.

도 44는 AuNP-His-Apt-Alexa488-His-BIM 복합체의 생체 내 분포(biodistribution) 확인을 위해, AuNP-His-aapt에 의한 His-BIM 단백질의 전신 분포를 공조절 현미경 및 웨스턴 블로팅 분석을 통해 확인한 결과를 나타낸 도면이다.

도 45는 AuNP-His-Apt-Alexa488-His-BIM 복합체의 생체 내 분포(biodistribution) 확인을 위해, 조직에서의 형광의 상대적 강도를 Image J software를 사용하여 측정한 결과를 나타낸 도면이다.

도 46은 AuNP-His-Apt-Alexa488-His-BIM 복합체의 생체 내 분포(biodistribution) 확인을 위해, AuNP-His-Apt-Alexa488-His-BIM에 의한 AST 및
LDH 함량의 방출 변화를 확인한 결과를 나타낸 도면이다.

발명의 실시를 위한 최선의 형태

본 발명자는 매우 적은 세포독성을 가지고 세포 내로 단백질 전달능이 우수한 단백질 전달체에 대하여 연구한 결과 본 발명을 완성하게 되었다.

이하, 본 발명을 상세히 설명한다.

본 발명은 금나노입자 및 장기 금나노입자의 표면에 결합되는 아프타미(aptamer)를 포함하는 단백질 전달체를 제공한다.

본 발명에서 "나노입자(nanoparticle)"는, 나노 단위의 직경을 가지는 다양한 물질의 입자를 의미하며, 장기 나노입자라는 나노크기의 입자라면 특별히 제한되는 않는다.

본 발명에서 "금나노입자"란, 나노 단위의 직경을 가지는 금의 금속입자를 의미하며, 이러한 작은 입자 크기는 본 발명의 나노입자가 목적의 세포(예컨대, 인간 세포)로 침투하는 것을 용이하게 하여 세포 내에 단백질 전달체의 침투를 가능하게 한다.

금나노입자는 안정한 입자의 형태로 제조가 쉬울 뿐만 아니라 0.8nm에서 200nm까지 다양하게 사용목적에 맞추어 크기를 변화시킬 수 있다. 또한, 금은 다양한 종류의 분자들, 예컨대 펩타이드, 단백질, 핵산 등과 함께 결합하여 구조를 변형시킬 수 있고, 다양한 과정에서 빛에 반사하는바, 이를 이용해 세포 내에서의 위치를 쉽게 확인할 수 있다. 더욱이, 금나노입자는 망간, 알루미늄, 카드뮴, 납, 수소, 코발트, 니켈, 베릴륨 등의 중금속과 달리 인체에 무해하여 높은 생체친화성을 가지며, 매우 적은 세포 독성을 가지는 장점이 있다.

금나노입자는 직경이 100 nm 이상으로 커질 경우 나노 입자로서의 특성이 소멸될 뿐 아니라, 나노 물질의 특성이 없는 금 표면과 펌프기 등의 작용기와의 결합이 어렵다고, 직경이 10-20 nm 이하의 금나노입자는 세포독성을 유발하기 때문에, 본 발명의 금나노입자는 직경은 10~20 nm의 크기를 가지는 것이 바람직하다.

본 발명에서, "아프타미(aptamer)"란 그 자체로 안정된 삼자구조를 가지고서 표적분자에 높은 친화성과 특이성으로 결합할 수 있는 특성을 가진 단일가타 핵산 (DNA, RNA 또는 변형핵산)을 의미하며, SELEX(Systematic Evolution of Ligands of Exponential enrichment)라는 방법으로 얻는 다양한 복합물질 (단백질, 당, 암 соответ질, DNA, 금속이온, 세포 등)에 대한 아프타미를 개발할 수 있다.

또한, 본 발명의 단백질 전달체로서, 금나노입자와 결합하는 아프타미는 다양한 tag의 아프타미 또는 단백질 특이적 아프타미의 어떠한 종류도 사용할 수 있으며, 특별히 제한되는 것은 아니다.

본 발명에 따른 단백질 전달체는 금나노입자에 결합한 다양한 tag의 아프타미 또는 단백질 특이적 아프타미가 전달하고자 하는 단백질에 특이적으로 결합하여 세포 내로 단백질을 효과적으로 전달할 수 있는바, 질병의 진단 또는 치료에
유용하게 이용될 수 있다.

[75] 이에, 본 발명은 상기 단백질 전달체와 단백질이 결합하여 이루어진 복합체를 제공한다.

[76] 또한, 본 발명은 상기 복합체가 결합하는 단계를 포함하는 단백질 전달 방법을 제공한다. 본 발명에서 "결합"란 결합의 전단 또는 치료를 필요로 하는 대상을 의미하고, 보다 구체적으로는 인간 또는 비-인간인 영장류, 생쥐 (mouse), 쥐 (rat), 개, 고양이, 말 및 소 등의 포유류를 의미한다.

[77] 본 발명의 일실시에서는, 금 나노입자에 허스터던 태그 토마버 또는 GST-tag 염체버를 결합하여 단백질 전달체를 제조하고(실시예 2 참조), 상기 단백질 전달체에 의한 AcrA 단백질(실시예 3), BCL-xL 단백질(실시예 4), FOXL2 단백질(실시예 5), BIM 단백질(실시예 7)의 세포 전달능을 확인한 결과, 본 발명의 단백질 전달체에 의해 상기 단백질들이 세포 내로 효과적으로 전달되었음을 확인하였다.

[78] 또한, 본 발명의 다른 실시예에서는 금 나노입자(AuNP)의 염체버 적재 능력(loading capacity)을 평가한 결과, 25 염체버가 하나의 AuNP에 적재됨을 확인하였다(실시예 9 참조).

[79] 더욱이, 본 발명의 또 다른 실시예에서는 본 발명의 단백질 전달체(금나노입자-염체버 결합체)는 세포독성이 없을 뿐만 아니라(실시예 10 참조), 복수의 단백질을 동시에 전달할 수 있음을 확인하였다(실시예 11 참조).

[80] 뿐만 아니라, 본 발명의 또 다른 실시예에서는 in vivo에서의 AuNP-His-Aptis-BIM 주입에 의해 항종양 활성(실시예 12 참조) 및 생체 내 분포(실시예 14 참조)를 확인한 결과, in vivo에서도 AuNP-His-Aptis-BIM 주입에 의해 His-BIM 단백질이 효과적으로 전달됨을 확인하였다.

[81] 이에, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.

[82] [실시예]

실시예 1. 실험 방법

1-1. 동물 준비

18-20g의 6주령 만력결립 BALB/c- nu/nu 마우스(Central Lab Animal Inc, Korea)와 18일자 Sprague-Dawley 밴트(Samtako, Korea)에 2 mg의 diethylstilbestrol (DES: Sigma)을 3일 동안 매일 피하주사하였고, 동물사육실은 30-40% 습도와 22±1°C의 온도를 유지하였다. 실내의 조명은 12-h light/dark 주기로 하였다. 동물 프로토콜은 동물 실험에 대한 중앙대 Support Center에 의해 승인되었고, 동물은 프로토콜에 기재된 대로 처리되었다.
1-2. 동물세포배양(mammalian cell culture)
HeLa (Human cervical carcinoma) 세포는 Dulbecco's modified Eagle's medium (DMEM)에서 배양되었다. A431 (Human epidermoid carcinoma) 세포는 2.5 mM HEPE (N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonate) 버퍼를 포함한 RPMI 배지에서 배양되었다. Human adult-type granulosa cell tumor-derived KGN 및 primary rat granulosa 세포는 Dulbecco's modified Eagle's medium/F12에서 배양되었다. 모든 배지에는 10% heat-inactivated fetal bovine serum (Caisson, USA) 및 1% penicillin-streptomycin (Welgene, Korea)을 포함한다.

1-3. 금나노입자-아미타미-단백질 복합체 제조(Preparation of the AuNP-Apt-protein complex)
금나노입자-아미타미 결합체는 이차 구조의 형성을 방지하기 위해 80℃에서 5분간 pre-incubate 시켰다. AuNP-His/GST-Apt (1 nM) 및 정제된 His/GST-tagged 단백질은 5 mM MgCl2 (pH 7.2)가 포함된 1x PBS에서 상온에서 10분 동안 반응시켰고, 이후 13,000 x g에서 원심분리 후 상층액을 제거하였다. AuNP-Apt-protein 복합체는 500 mM NaCl 및 1M KCl이 추가된 TBST를 사용하여 세척되었다.

1-4. In vivo 마우스 아종이식 모델(In vivo mouse xenograft model)
HeLa 세포(1 x 10^7)를 18-20g의 6주령 면역결핍 BALB/c-nu/nu 마우스(Central Lab Animal Inc, Korea)에 피하주사하였고, AuNP-GST-Apt-His-BIM 또는 AuNP-His-Apt-His-BIM 복합체(complex)를 종양(tumor volume ~ 0.1 cm³)에 직접 주사하였다. 종양의 길고 폭은 측의 길이를 베일 측정하였다. 복합체의 최초 주입 후 30일째에 마우스를 흑색시킨 후, 추가 분석을 위해 종양 샘플을 수집하였다. 결과는 각 그룹 내 5마리 마우스의 종양의 평균±S.E.M.으로 나타내었고, *표시는 대응하는 대조군(P < 0.05)과 비교할 때 유의한 값을 나타낸다.

1-5. 재조합 단백질 정제(Recombinant protein purification)
히스티딘-tag가 참가된 단백질은 BL21 (DE3) E. coli 세포에서 생성되었고, Ni-NTA agarose resin (Qiagen, USA) 또는 GST Sepharose 4B bead (GE Life science, USA)에 의해 정제되었다. 정제된 단백질에서 His-tag 또는 GST-tag를 제거하기 위해, TAGZyme 시스템(Qiagen) 및 Thrombin (GE Life science)을 이용하였다. 단백질 흡수(uptake) 실험을 위해, 단백질은 Alexa Fluor® 488 Microscale Protein Labeling Kit (Invitrogen, USA) 또는 Texas Red® X Protein Labeling Kit (Invitrogen)로 표지되었다.

1-6. 공조질 현미경을 이용한 금 나노입자-아미타미 결합체에 의한 단백질 전달능
분석
[102] 세포 내로 단백질 전달을 관찰하기 위해, 라이선 코팅된 10mm 커버 슬립(coverslip) 상에서 배양된 세포에 금 나노입자-엔터미-단백질 복합체(AuNP-Apt-protein complex)를 처리한 후 1시간 동안 배양하였다. 배양 후 4% 파라포름알데하이드(parafomaldehyde)(Sigma, USA)로 고정시켰다. 공조점 현미경(laser scanning confocal microscopy (Carl Zeiss ZEN 2011, Germany)을 통하여 Alexa488 (495 nm excitation, 519 nm emission), Alexa546 (556 nm excitation, 573 nm emission), 및 Cy5 (646 nm excitation, 670 nm emission) 형광을 탐지하였다. 상대적인 형광 강도는 Image J software (NIH, USA)를 사용하여 측정하였다.

[103]
[104] 1-7. 세포 생존능 분석(Cell viability assay)

[106]
[107] 1-8. 추위심세포분획법(Subcellular fractionation)
[108] HeLa 세포에 AuNP-His-Apt-His-BIM을 처리하여 1시간 배양 후, mitochondria isolation kit(Thermo, USA)를 사용하여 미토콘드리아 분획을 얻었다.
[109] HeLa 세포에 AuNP-GST-Apt-GST-FOXL2를 처리하여 1시간 배양 후, NE-PER® nuclear and cytoplasmic extraction reagents (Thermo)를 사용하여핵 분획을 분리하였다.

[110]
[111] 1-9. 염전사 및 real-time PCR analysis
[112] 염전사 및 real-time PCR은 기존에 공지된 방법에 따라 진행되었다(Kim, J.H. et al. Differential apoptotic activities of wild-type FOXL2 and the adult-type granulosa cell tumor-associated mutant FOXL2 (C134W). Oncogene 30, 1653-1663 (2010)).

[113]
[114] 1-10. 면역조직화학적 분석(Immunohistochemical analysis)
[115] 종양 단면을 준비하고, 면역 염색을 하였다(Biomaterials). 항체 회석액(antibody diluent)(Dako, USA)에 회석된 풀리플로날 anti-BIM 항체 (1:100) (Santa Cruz Biotechnology, USA)를 사용하였다.

[116]
[117] 1-11. 통계 분석
[118] 측정된 값들의 비교분석은 Student-Newman-Keuls test (SAS, USA)에 의해 수행되었고, 유의한 값들은 Student's t-test (SAS)를 사용하여 대조군과의 비교에
의해 분석되었다. 데이터는 평균±SEM으로 나타내었고, \(P < 0.05 \)는 통계적으로 유의한 것으로 고려되었다. 중요한 결과의 \(P \)값이 표시되었다.

[119] 실시예 2. 극소노임자-에타머 결합체의 단백질 전달체 제조
[120] his-tag 엠타머 및 글루타티온 S-전달효소(GST; glutathione S-transferase) 엠타머를 이용하여 단백질 전달체를 제조하였고, 이의 구조적 모식도는 도 1에 나타내었다.
[122]
[123] 2-1. his-tag 엠타머를 이용한 단백질 전달체(AuNP-His-Apt) 제조
[124] 가) DNA 엠타머 전처리
[125] 본 발명에 따른 단백질 전달체를 제조하기 위해, 허스티딘(histidine)을 탑기하여 이에 특이적으로 결합하는 DNA 엠타머(his-tag aptamer)를 사용하였다. 보다 구체적으로, 상기 허스티딘-tag DNA 엠타머는 3'말단이 티출기로 변형된 엠타머로서,
5'-GCTATGGGTGCTGTTGGGATGTCGCCCCCGGAGCTGCGAAAAAAAACA-3'(SH)(서열번호 1)의 염기서열로 이루어졌다. 건조된 상기 DNA 엠타머를 최종 농도가 100 \(\mu \)M이 되도록 물에 녹인 후, 50 \(\mu \)L의 용리고에 10 \(\mu \)L의 1\% DTT(dithiothreitol)를 넣고, 실온에서 15분간 반응시켰다. 원하지 않은 티출기 분자를 포함한 DTT를 제거하기 위해, 에틸아세테이트(Ethyl acetate) 50 \(\mu \)L을 넣고 섞은 후, 원심분리하여 상층액을 제거하였으며, 이 과정을 3회 반복하였다. 에탄올 침전법(ethanol precipitating method)을 이용하여 엠타머를 침전시켰다.
[126]
[127] 나) 금 나노입자와 DNA 엠타머 결합
[128] 실시예 2-1의 가)를 통해 전처리되어 침전된 DNA 엠타머를 물에 녹인 후, 이를 금 나노입자에 침입하였다. 본 발명자들은 금 나노입자(AuNP)로 영국 BBI Life Science로부터 구입한 Gold colloid-15nm(#EM.GC15)을 사용하였다. 한편, 금 나노입자(AuNP)의 localization을 확인하기 위해, 금 나노입자(AuNP)를 5'-Cy5-labeled His-aptamer (Bioneer)와 결합하였다.
[129] 2 nM의 금 나노입자에 엠타머를 냉고(DNA: AuNP = 100:1) 충분히 섞은 후, 최종 농도가 10 mM이 되도록 0.5 M citrate buffer(pH3)를 점차하여 혼합하였다. 실온에서 3-5분간 반응시킨 후, 반응이 끝나면 금의 중화를 위해 최종농도가 30 mM이 되도록 0.5 M HEPES buffer(pH7.6)를 넣고 실온에서 10분간 반응시켰다. 엠타머와 금의 혼합률은 \(\sim 10,000 \times \text{g} \)에서 20 분간 원심분리하여 모든 뒤 상층액에 있는 반응하지 않은 용리고를 제거하였고, 이 과정을 3회 반복하였다. 최종 엠타머-금 혼합물은 5 mM HEPES buffer(pH 7.6)에 넣고 분산시켰다.
[130]
[131] 2-2. GST-tag 엠타머를 이용한 단백질 전달체(AuNP-GST-Apt) 제조
[132] 가) DNA 엠타머 전처리
본 발명에 따른 단백질 전달체를 제조하기 위해, 글루타티온 S-전달효소(GST: glutathione S-transferase)를 탐지하여 이에 특이적으로 결합하는 DNA 염타머(GST-tag aptamer)를 사용하였다. 보다 구체적으로, 상기 GST-tag DNA 염타머는 3'-말단이 티올기로 변경된 염타머로서, 5'-GCGCTGCACACCCCGTGGGCAATGTTGCAAAAAAAAAAAA A-3'(SH)(서열번호 2)의 염기서열로 이루어진 염타머이고, 상기 설계에 2-1의 가와 동일한 방법으로 상기 GST-tag DNA 염타머를 전처리하였다.

나) 금 나노입자와 DNA 염타머 결함
설계에 2-2의 가를 통해 전처리되어 절편된 DNA 염타머를 설계에 2-1의 나와 동일한 방법으로 금 나노입자와 결합하여, 최종 염타머-금 결합물을 얻었다.

설계에 3. 금 나노입자-염타머 결합체에 의한 대장균 AcrA 단백질의 세포 내 전달능 확인 실험

3-L, 고효율 현미경 분석
설계에 2-1에 의해 제조된 금 나노입자-염타머 결합체 1 nM을 80℃에서 5분간 처리 후 실온까지 온도를 낮혔다. 여기에 1-2 µg/µl의 히스티딘-tag가 절가된 AcrA(His-AcrA) 또는 히스티딘-tag가 제거된 AcrA 단백질(AcrA)과 5 mM MgCl$_2$-PBS 비파에 넣고 실온에서 2시간 동안 반응시켰다. 반응시킨 금 나노입자-염타머-단백질 복합체를 ~10,000 x g에서 20분간 원심분리 후 상층액을 제거하였다.

상층액을 제거한 금 나노입자-염타머-단백질 복합체를 인간주관세포주(HeLa cell)에 처리한 후 1시간 동안 배양하였다. 배양 후 PBS로 세척한 뒤 4% 파라포름알데히드(parafomaldehyde)로 고정시키고, 고정시간 샘플을 면역염색(immunostaining)한 후 공조점현미경(confocal microscope)으로 관찰하였고, 그 결과를 도 2 및 도 3에 나타내었다.

보다 구체적으로, 도 2는 Rabbit-488(Green)로 표지된 이차항체를 사용한 대장균 AcrA 단백질 전달에 대한 공조점 현미경 분석 결과를 나타낸 것이고, 도 3은 Rabbit-584(Red)로 표지된 이차항체로 대장균 AcrA 단백질 전달에 대한 공조점 현미경 분석 결과를 나타낸 것이다. 히스티딘-tag 염타머-금 나노입자 결합체에서 히스티딘-tag 염타머는 히스티딘을 탐지하여 이에 특이적으로 결합할 수 있기 때문에, 도 2 및 도 3에 나타낸 바와 같이, 히스티딘-tag 염타머-금 나노입자 결합체를 히스티딘-tag가 절가된 AcrA 단백질과 결합시킨 경우가 히스티딘-tag가 제거된 AcrA 단백질과 결합시킨 경우보다 세포 내 단백질 전달능이 매우 우수함을 확인할 수 있었다.

추가적으로, AuNP-His-Apt와 결합하거나 결합하지 않은 AcrA 또는 His-AcrA 단백질을 HeLa 세포에 처리하고 1시간 동안 배양한 후, anti-AcrA 항체 및 Alexa
546 rabbit-IgG 항체를 이용하여 면역염색을 실시하고, 이를 공조점 형광 현미경을 통해 확인하였고, 그 결과를 도 4에 나타내었다. 대표적인 공조점 형광 이미지는 40 x 수침 대물렌즈(water immersion objective), 556nm에서의 여기(excitation) 및 573nm에서의 방출(emission)에서 얻었고, 스케일 바(scale bar)는 20 μm이었다.

[145] 3-2. 웨스턴 블로팅 분석
[146] 세포 내로 전달된 단백질 검출을 위해 웨스턴 블로팅(western blotting) 분석을 수행하였고, 그 결과를 도 5에 나타내었다.
[147] 도 5에 나타낸 바와 같이, 히스티딘-tag 업타커-금 나노입자 결합체를 히스티딘-tag가 참가된 AcrA 단백질과 결합시간 경우에(레인 2 및 레인 3), AcrA 단백질이 검출됨을 확인할 수 있었다.
[148] 추가적으로, AuNP-His-Apt와 결합하거나 결합하지 않은 AcrA 또는 His-AcrA 단백질을 HeLa 세포에 처리하고 1시간 동안 배양한 후, anti-AcrA 항체를 이용하여 웨스턴 블로팅 분석을 수행하였으며, 그 결과를 도 6에 나타내었다.
[149] 추가적으로, AuNP-His-Apt와 결합하거나 결합하지 않은 AcrA 또는 His-AcrA 단백질을 HeLa 세포에 처리하고 1시간 동안 배양한 후, anti-AcrA 항체를 이용하여 웨스턴 블로팅 분석을 수행하였으며, 그 결과를 도 6에 나타내었다.
[150] 실험에 4, 큰 나노입자- 업타커 결합체의 과한 사람 BCL-xL 단백질의 세포 내 전달능 확인 실험
[151] 4-1. 공조점 현미경 분석
[152] 실험에 3-1과 동일한 방법으로 BCL-xL 단백질의 세포 내 전달능을 확인하였고, 그 결과를 도 7에 나타내었다.
[153] 토다 구체적으로, 도 7은 이차항체가 Rabbit-488(Green)로 표시된 BCL-xL단백질 전달에 대한 공조점 현미경 분석 결과를 나타낸 것이며, 도 7에 나타낸 바와 같이, 히스티딘-tag 업타커-금 나노입자 결합체를 히스티딘-tag가 참가된 BCL-xL 단백질과 결합시간 경우가 히스티딘-tag가 제거된 BCL-xL 단백질과 결합시간 경우보다 세포 내 단백질 전달능이 매우 우수함을 확인할 수 있었다.
[154] 추가적으로, AuNP-His-Apt와 결합하거나 결합하지 않은 BCL-xL 또는 His-BCL-xL 단백질을 HeLa 세포에 처리하고 1시간 동안 배양한 후, anti-BCL-xL 및 Alexa 488로 표시된 마우스 IgG를 사용하여 면역염색을 실시하고, 이를 공조점 형광 현미경을 통해 확인하였고, 그 결과를 도 8에 나타내었다. 대표적인 공조점 형광 이미지는 40 x 수침 대물렌즈(water immersion objective)에서 얻었고, 스케일 바(scale bar)는 20 μm이었다.
[155] 4-2. 웨스턴 블로팅 분석
[156] 실험에 3-2와 동일한 방법으로 웨스턴 블로팅을 수행하여 BCL-xL 단백질의
세포 내 전달능을 확인하였고, 그 결과를 도 9에 나타내었다.

보다 구체적으로, 도 9는 BCL-xL 단백질 검출을 위한 웨스턴 블로팅 분석 결과를 나타낸 것이며, 도 9에 나타낸 바와 같이, 히스티딘-tag 염تا머-금 나노입자 결합체를 히스티딘-tag가 첨가된 BCL-xL 단백질과 결합시킨 경우에(레인 3), BCL-xL 단백질이 검출됨을 확인할 수 있었다.

추가적으로, AuNP-His-Apt와 결합하거나 결합하지 않은 BCL-xL 또는 His-BCL-xL 단백질을 HeLa 세포에 처리하고 1시간 동안 배양한 후, 웨스턴 블로팅 분석을 수행하였으며, 그 결과를 도 10에 나타내었다.

4.3. 유세포 분석기 분석

실시에 2-1에 의해 제조된 His-tag 염타머-금 나노입자 전달제에 의한 세포내 전달능을 다시 확인하기 위해 Alexa488-His-BCL-xL 단백질과 Alexa488-BCL-xL 단백질을 이용하여 실시에 3-1과 동일한 방법으로 복합체를 제조하였다. 복합체 제조 후, 상층액을 제거한 염타머-금 나노입자-단백질 복합체를 인간지공막세포주(HeLa cell)에 처리한 후 1시간 동안 배양하였다. 배양 후 PBS로 세척한 뒤 다시 1 ml PBS 비료에 세포를 분산시켰다. 샘플을 유세포 분석기 (Flow cytometry)로 이용해 관찰했고, 그 결과를 도 11 및 도 12에 나타내었다.

보다 구체적으로, 도 11은 Alexa488 (Green) 형광물질로 레이블 시킨 His-BCL-xL 단백질과 BCL-xL 단백질 전달에 대한 유세포 분석기 결과를 나타낸 것이고, 도 12는 cy5 (Red)로 레이블 시킨 금나노-염타머 결합체에 Alexa488 (Green) 형광물질로 레이블 시킨 His-BCL-xL 단백질과 BCL-xL 단백질 복합체를 제조하여 금나노 입자의 Red 경로과 단백질의 Green 경로를 동시에 가지고 있는 세포의 수를 나타낸 유세포 분석기 결과를 나타낸 것이다.

도 11에 나타낸 바와 같이, His-tag 염타머-금 나노입자 결합체를 His-tag가 첨가된 BCL-xL 단백질과 결합시킨 경우가 His-tag가 첨가된 BCL-xL 단백질과 결합시킨 경우보다 세포 내 단백질 전달능이 매우 우수함을 확인할 수 있었다. 또한, 도 12에 나타낸 바와 같이, His-tag 염타머-금 나노입자 결합체가 His-tag가 첨가된 BCL-xL 단백질과 함께 세포 속에 존재함을 확인할 수 있었다.

추가적으로, AuNP-His-Apt와 결합하거나 결합하지 않은 BCL-xL 또는 His-BCL-xL 단백질을 HeLa 세포에 처리하고 1시간 동안 배양한 후, Alexa 488-positive 세포의 유세포 분석을 실시하였고, 그 결과를 도 13에 나타내었다.

실시에 5. 금 나노입자-염타머 결합체에 의한 사람 FOXL2 단백질의 세포 내 전달능 확인 확인 실험

5.1. 곡조집 현미경 분석
실시예 2-2에 의해 제조된 금 나노입자-앰타며 결합체를 가지고 실시예 3-1과 동일한 방법으로 GST-FOXL2 단백질의 세포 내 전달능을 확인하였고, 그 결과를 도 14에 나타내었다.

보다 구체적으로, 도 14는 이차항체가 Rabbit-Rodamine (Red)로 표지된 FOXL2 단백질 전달에 대한 공조점 현미경 분석 결과를 나타낸 것이고, 도 14에 나타낸 바와 같이, GST-tag 염마마-금 나노입자 결합체를 GST-tag가 절기된 FOXL2 단백질과 결합시킨 경우가 GST-tag가 제거된 FOXL2 단백질과 결합시킨 경우보다 세포 내 단백질 전달능이 매우 우수함을 확인할 수 있었다.

5-2. 웨스턴 블로팅 분석
실시예 2-2에 의해 제조된 금 나노입자-앰타며 결합체를 가지고 실시예 3-2와 동일한 방법으로 웨스턴 블로팅을 수행하여 GST-FOXL2 단백질의 세포 내 전달능을 확인하였고, 그 결과를 도 15에 나타내었다.

보다 구체적으로, 도 15는 FOXL2 단백질 검출을 위한 웨스턴 블로팅 분석 결과를 나타낸 것이고, 도 15에 나타낸 바와 같이, GST-tag 염마마-금 나노입자 결합체를 GST-tag가 절기된 FOXL2 단백질과 결합시킨 경우에(레인 3), FOXL2 단백질이 검출됨을 확인할 수 있었다.

실시예 6. AuNP-GST-Apt에 의한 GST-FOXL2 단백질의 내재화(internalization) 확인
6-1. 공조점 현미경 분석
AuNP-GST-Apt와 GST-tag가 절기된 FOXL2 단백질(GST-FOXL2)을 반응시켜 제조된 염마마-금나노입자-단백질 복합체(AuNP-GST-Apt-GST-FOXL2)를 제조하고, 이를 HeLa 세포에 처리하고 1시간 동안 배양한 후, anti-FOXL2 및 Alexa546-rabbit IgG를 이용하여 면역염색을 하였다. 이후 세포를 공조점 현미경으로 관찰하였고, 그 결과를 도 16에 나타내었다. 이때, 이미지는 40 x 수평 대물렌즈(water immersion objective), 556nm에서의 excitation 및 573nm에서의 emission에서 얻었고, 스케일 바(scale bar)는 20 μm이었다.

도 16에 나타낸 바와 같이, FOXL2가 HeLa 세포 내로 효과적으로 전달되었음을 확인할 수 있었다. 또한, FOXL2 단백질이 세포핵에서 국소화되어있음을 확인할 수 있었다.

6-2. 웨스턴 블로팅 분석
AuNP-GST-Apt-GST-FOXL2를 HeLa 세포에 처리하고 1시간 동안 배양한 후, 웨스턴 블로팅(western blotting) 분석을 수행하였고, 그 결과를 도 17에 나타내었다.

도 17에 나타낸 바와 같이, FOXL2가 HeLa 세포 내로 효과적으로 전달되었음을 확인할 수 있었다.
추가적으로, GST-FOXl2의 핵 위치(nuclear localization)를 확인하기 위해, 핵 추출물(nuclear extract)의 웨스턴 불로팅을 실시하였고, 그 결과를 도 18에 나타내었다. 이때, 핵 및 세포질(cytosolic) 분획은 AuNP-GST-Apt-GST-FOXl2를 처리하고 1시간동안 배양된 세포에서 분리되었고, 적절한 항체를 이용한 웨스턴 불로팅에 의해 분석되었다. 상대적인 핵 특성(nuclear purification)을 확인하기 위해, 모든 분획을 또한 핵 마커(PARP) 및 세포질 마커(β-tubulin)를 탐지하기 위한 항체를 이용하여 웨스턴 불로팅되었다.

도 18에 나타낸 바와 같이, FOXl2 단백질이 세포핵에서 국소화되어있음을 확인할 수 있었다.

6-3. Real time PCR 분석

AuNP-GST-apt 또는 AuNP-GST-apt-GST-FOXl2를 처리하고 1시간 동안 배양한 HeLa 세포로부터 분리된 RNA로부터 합성된 cDNA library를 사용하여 Real time-PCR을 실시하였고, 그 결과를 도 19에 나타내었다. 결과는 glyceraldehydes 3-phosphate dehydrogenase (GAPDH) 발현에 의해 정규화된 후 상대적인 발현양을 폴드(fold)화하여 나타내었고, 상기 결과(평균±SEM)는 세 번 반복 실시하여 얻은 결과로부터 얻었다. 통계적으로 유의한 값은 $P < 0.05$로 나타내었다.

도 19에 나타낸 바와 같이, 세포 내로 전달된 FOXl2 단백질은 TNF-R1 (tumor necrosis factor-receptor 1) 및 Fas (CD95/APO-1)를 포함하는 타겟 유전자를 효과적으로 상향조절시킬 수 확인할 수 있었다.

실험 7. 급 나노입자-/aptamer 결합체에 의한 BIM 단백질의 세포 내 전달능 확인 실험

본 발명의 급 나노입자-/aptamer 결합체(AuNP-His-Apt)에 의한 BIM 단백질의 세포 내 전달을 확인하기 위해 하기와 같이 실험이 수행하였다.

7-1. BIM 단백질의 HeLa cell 내 전달능 확인

가. 공조절 현미경 분석

AuNP-His-Apt와 AuNP-His-Apt에 허스터던-tag가 첨가되고, Alexa 488로 표지된 BIM 단백질(His-BIM)을 반응시켜 제조된 염타마-금나노입자-단백질 복합체(AuNP-His-Apt-His-BIM)를 인간주가암세포주(HeLa cell)에 처리하여 1시간 동안 배양하고, 이를 Mitotracker(red) 및 DAPI 염색을 한 후, 공조적 현장 현미경으로 관찰하였고, 그 결과를 도 20에 나타내었다. 이때, 사용된 AuNP-His-Apt 및 His-BIM의 최종 농도는 각각 1 nM 및 0.4 μM이었고, 세포는 a x 40 수용 대물렌즈(water immersion objective)를 사용하여 시각화되었으며, 스케일 바(scale bar)는 20 μm이었다.
도 20에 나타낸 바와 같이, Alexa 488로 표지된 His-BIM 단백질(Alexa 488-His-BIM)이 적재된 AuNP-His-Apt를 처리하여 배양한 HeLa 세포는 Alexa 488의 녹색 형광을 나타내는 반면, AuNP-His-Apt 단독으로 처리한 세포 내에서는 어떠한 신호도 관찰되지 않음을 확인할 수 있었다. 또한, AuNP-His-Apt에 의해 전달된 His-BIM 단백질은 미토콘드리아로 크게 국소화(localized)되어 있는 것을 확인할 수 있었다. 상기 결과로부터, 본 발명의 염마-글 나노입자 결합체에 의해 His-BIM 단백질이 세포 내로 전달되었음을 알 수 있었다.

나. 유세포 분석

Alexa 488-His-BIM을 AuNP-His-Apt과 반응시키거나 반응시키지 않고 HeLa 세포에 처리하여 1시간 동안 배양한 후, 유세포 분석기(Flow cytometry)를 이용해 관찰했고, 그 결과를 도 21에 나타내었다.

도 21에 나타낸 바와 같이, AuNP-His-Apt에 의한 His-BIM 단백질의 내재화(internalization)는 Alexa 488-positive 세포를 구분하는 유세포 분석에 의해 확인할 수 있었다. 즉, Alexa 488-His-BIM을 AuNP-His-Apt과 반응시간 경우에 His-BIM 단백질 전달이 우수함을 확인할 수 있었다.

또한, 상기 실험을 3번 반복하여 이로부터 His-BIM 단백질의 흡수 효율(uptake efficiency) (평균±SEM)을 산출하였고, 이를 도 21에 나타내었다(right panel).

도 21에 나타낸 바와 같이, Alexa 488-His-BIM을 AuNP-His-Apt과 반응시간 경우에 His-BIM 단백질의 흡수 효율이 우수함을 확인할 수 있었다.

다. 웨스턴 블로팅 분석

AuNP-His-Apt와 His-BIM 단백질을 결합한 염마-글 나노입자-단백질 복합체(AuNP-His-Apt-His-BIM)를 HeLa cell에 처리하여 1시간 동안 배양하고, 웨스턴 블로팅(western blotting) 분석을 수행하였고, 그 결과를 도 22에 나타내었다. 한편, 미토콘드리아 및 세포질 분획의 효율적인 분리는 각각 anti-Cox IV 및 anti-β-actin을 사용한 웨스턴 블로팅에 의해 확인하였다.

도 22에 나타낸 바와 같이, AuNP-His-Apt에 의해 전달된 His-BIM 단백질이 세포 내로 전달되었고, 특히 미토콘드리아로 크게 국소화(localized)되어 있는 것을 확인할 수 있었다.

라. 유세포 분석 (Flow cytometry)

His-BIM 단백질에 의해 유도된 세포 사멸은 Annexin V-positive 사멸 세포(apoptotic cell의 유세포 분석에 의해 경량화하였다. 즉, AuNP-His-Apt와 지정된 농도(0.4 μM 및 0.8 μM)의 His-BIM 단백질을 결합한 염마-글 나노입자-단백질 복합체(AuNP-His-Apt-His-BIM)를 12시간 동안 HeLa
세포에 처리한 후, 유세포 분석을 실시하였고, 그 결과를 도 23에 나타내었다.
결과(평균±SEM)는 3회 반복된 세 개의 독립적인 실험으로부터 얻었고, 달리
인공치정치 없는 할, 통계적으로 유의한 값은 \(P < 0.05 \)로 표시된다.

도 23에 나타낸 바와 같이, 대조군 보다 AuNP-His-Apt-His-BIM을 처리한
경우에 Annexin V-positive 사멸 세포가 증가함을 확인할 수 있었다. 상기
결과로부터, 본 방법의 악타마-급 나노입자 결합체에 의해 His-BIM
단백질이 세포 내로 전달되었음을 알 수 있었다.

한편, His-BIM 단백질의 국소화는 사이토크롬 c(cytochrome c), Smac/DIABLO
및 카스파세(caspases) 활성과 같은 미토콘드리아 상의 세포사멸 유도 인자
조절에 의한 세포사멸-유도 단백질과 같은 생물학적 기능과 잘 조정될 수 있다.
이에, 추가적으로, AuNP-His-Apt-His-BIM을 12시간 동안 HeLa 세포에 처리한 후,
세포 생존능을 확인하였고, 그 결과를 도 24에 나타내었다. 결과(평균±SEM)는
3회 반복된 결과로부터 얻었다.

도 24에 나타낸 바와 같이, AuNP-His-Apt 결합체에 의해 전달된 His-BIM
단백질의 농도에 의존적으로 HeLa 세포의 생존능이 감소한 것으로 확인할 수
있었다.

7-2. BIM 단백질의 Human primary granulosa cells 내 전달능 확인

가. 공조점 현미경 분석

Human primary granulosa cells에 AuNP-His-Apt (1 nM) 또는 AuNP-His-Apt-Alexa
488-His-BIM 복합체를 처리하여 1시간 동안 배양하고, 이를 공조점 형광
현미경으로 관찰하였고, 그 결과를 도 25에 나타내었다. 이때, 세포는 a x 40 수중
대물렌즈(water immersion objective)를 사용하여 시각화되었으며, 스케일 바(scale
bar)는 20 \(\mu \)m이었다.

나. 웨스턴 블로팅 분석

Human primary granulosa cells에 AuNP-His-Apt (1 nM) 또는 AuNP-His-Apt-Alexa
488-His-BIM 복합체를 처리하여 1시간 동안 배양하고, 이를 웨스턴
블로팅(western blotting) 분석을 수행하였고, 그 결과를 도 26에 나타내었다.

7-3. BIM 단백질의 KGN cells 내 전달능 확인

가. 공조점 현미경 분석

KGN cells에 AuNP-His-Apt (1 nM) 또는 AuNP-His-Apt-Alexa 488-His-BIM
복합체를 처리하여 1시간 동안 배양하고, 이를 공조점 형광 현미경으로
관찰하였고, 그 결과를 도 27에 나타내었다. 이때, 세포는 a x 40 수중
대물렌즈(water immersion objective)를 사용하여 시각화되었으며, 스케일 바(scale
bar)는 20 \(\mu \)m이었다.
제임스서 8. AuNP-His-Apt에 의한 His-BIM 단백질의 내재화(internalization) 확인

[239] 염마머 5' 말단에 Cy5(Cyanine 5) 형광단((fluorophore)으로 표지된 염마머-금나노입자 결합체(Cy5-AuNP-His-Apt)와 상기 Cy5-AuNP-His-Apt와 Alexa 488로 표지된 BIM 단백질(His-BIM)을 반응시켜 제조된 염마머-금나노입자-단백질 복합체(Cy5-AuNP-His-Apt-BIM)를 HeLa 세포에 처리하여 1시간 동안 배양한 후, 이를 공조합 형광 현미경으로 관찰하였고, 그 결과를 도 29에 나타내었다. 이때, 세포는 40 x 수직 대물렌즈(water immersion objective)를 사용하여 시각화되었으며, 스케일바(scale bar)는 20 μm이었다.

[240] 도 29에 나타낸 바와 같이, AuNP-His-Apt (Red) 및 His-BIM (Green)이 세포 내에서 공존(colocalization)하고 있음을 확인할 수 있었다.

[241] 추가적으로, endosomal marker proteins(early endosome antigen 1 (EEA), 또는 lysosomal-associated membrane protein 1 (LAMP1))의 공조합 형광 현미경 분석을 수행하였고, 그 결과를 도 30에 나타내었다. 보다 구체적으로
AuNP-His-Apt-Alexa 488-His-BIM을 HeLa 세포에 처리하고 1시간 또는 3시간 배양하고, 이를 anti-EEA-1 (1:500) 및 anti-LAMP1 (1:100)로 반응시키고 공조합 형광 현미경으로 관찰하였다. 이때, Alexa Fluor 546 goat anti-mouse IgG (1:1,000) 및 Alexa Fluor 546 goat anti-rabbit IgG (1:1,000)으로 대비염색(counterstain)을 하였다.

[242] 또한, 상기 세포를 FBS의 존재 또는 부존재 상에서 유세포 분석을 실시하였고, 그 결과를 도 31에 나타내었다. 도 31에 나타낸 퍼셀트는 Cy5 및 Alexa 488 모두에 대한 양성세포 집단이다.

[243] 뿐만 아니라, AuNP-His-Apt-His-BIM을 HeLa 세포(1 x 10^6)에 처리하고 각각 15분 또는 30분 동안 배양하고, 이를 trypsinized 시키고, 원심분리한 후, PBS(phosphate buffered saline)로 세척하였다. 트립신이 제거되면, 세포 펨렛(cell pellet)을 0.2 M cacodylate buffer (pH 7.4)의 Karnovsky's glutaraldehyde-paraformaldehyde mixture에 상온에서 약 3시간 동안 고정시키고, 고정액(fixative)을 제거하기 위해 상기 펨렛을 cacodylate buffer (pH 7.4)로 세척하였다. 이후, 알코올 계에서 탈수시키고, Spurr's resin 에 붙임하여 70nm
두께로 슬라이스하고, 이를 TEM(Transmission Electron Microscopy)을 통해 확인하였고, 그 결과를 도 32에 나타내었다. 이때, TEM 이미지는 80 kV의 가속 전압 10K 및 25 K 배율에서 촬영되어서 JEOL 모델 JEM-1010에서 촬영되었다.

[247] 상기 결과로부터, His-tagged BIM 단백질이 AuNP-Apt 결합체로 인해
전달되었다는 것을 알 수 있었다.

[248]

[249] 실험 9. 급 나노입자(AuNP)의 엽태머 적재 능력(loading capacity) 평가
[250] His-apt 또는 GST-apt에 대한 AuNP의 적재 능력(loading capacity)을 평가하기 위해 엽태머의 정량분석을 실시하였다.
[251] 보다 구체적으로, 공정된 양(0, 0.5, 1, 2, 4, 및 8 pmol)의 GST-Apt, His-Apt, 및 His-GST-Apt를 아기로스 텐 상에서 전개하고 표준(standard)으로 사용할 수 있도록 정량화하였다.
[252] 그리고, AuNP (1 nM)에 혼성화된 다양한 양(0, 2.5, 5, 10, 20 및 40 pmol)의 상기 엽태머의 반응 응용로부터의 펜실을 정량화하였고, 데이터는 두 개의 독립적인 실험 결과로부터 얻었으며, 그 결과를 도 33에 나타내었다.
[253] 정령 데이터(right panel) 및 분자량을 이용한 계산에 기초하여 약 25 엽태머가 하나의 AuNP에 적재됨을 확인할 수 있었다.

[254]

[256] 도 34에 나타낸 바와 같이, 반응 혼합물에서 AuNP-His-Apt당 단백질의 60%가 결합할 수 있음을 확인할 수 있었다.

[257]

[258] 실험 10. AuNP-His-Apt에 의한 세포생존능 평가
[259] HeLa 세포에 AuNP-His-Apt 농도를 달려하여(0, 0.5, 1.0 및 2nM) 처리하고 12시간 동안 배양한 후 세포 생존능을 측정하였고, 그 결과를 도 35에 나타내었다. 한편, 결과(평균±SEM)는 세 번 반복 실험한 실험결과로부터 얻었다.
[260] 추가적으로, 유세포 분석에 의해 Annexin V-positive 사멸세포를 확인하였고, 그 결과를 도 35에 나타내었다.
[261] 도 35에 나타낸 바와 같이, 본 실험의 AuNP-His-Apt는 세포독성이 없음을
 확인할 수 있었다.

[262] 실시예 11. 골나노임자-에타미 결합체의 복수 단백질 전달능 확인

[263] 골나노임자-에타미 결합체의 복수 단백질 전달능을 확인하기 위하여 하기와 같이 실험을 진행하였다.

[264] 즉, His-Apt 및 GST-Apt 모두와 결합한 AuNP(AuNP-(His-GST)-Apt)에 His-BCL-xL, GST-FOX2L, 또는 His-BCL-xL와 GST-FOX2L 모두를 반응시키고, 이를 HeLa 세포에 처리하고 1시간 동안 배양한 후, anti-BCL-xL 항체 또는 anti-FOX2 항체로 면역염색을 하고, 공조영 현미경으로 관찰하였고, 그 결과를 도 36에 나타내었다. 이때, DAPI는 핵 염색을 위해 사용되고, 세포는 a x 40 수첩 대물렌즈(water immersion objective)(Scale bar; 20 µm)로 이미지화 되었고, Alexa 488-labeled mouse IgG 또는 Alexa 546-labeled-rabbit IgG의 탐지를 통하여 각각의 단백질을 확인할 수 있었다.

[265] 추가적으로, BCL-xL 또는 FOX2 항체를 사용한 웨스턴 블로팅 분석도 수행하였고, 그 결과를 도 36에 나타내었다.

[266] 도 36에 나타낸 바와 같이, His-tag 및 GST-tag 에타미 모두와 결합된 AuNP는 두 개의 각 단백질(His-BCL-xL 및 GST-FOX2L)을 적절한 세포 내 구획(compartment) 내로 전달하였음을 확인할 수 있었다.

[267] 실시예 12. in vivo에서의 AuNP-His-Apt-His-BIM에 의한 항종양 활성 확인

[270] 12-1. 종양 체적(volume) 및 무게(weight) 변화 확인

[273] HeLa 세포를 뉴드 마우스(nude mouse)에 주입하여 자궁경부암을 발생시키고, 0.5 mg/kg AuNP-His-Apt-His-BIM 복합체를 2일마다 이종이식 종양(xenograft tumors)에 주입하고, 시간에 따른 종양 체적(cm³)을 하기의 수학식을 이용하여 계산하였고, 그 결과를 도 37에 나타내었다. 한편, 대조군 마우스에는 AuNP-GST-Apt-His-BIM 복합체를 주입하였다.

[274] [수학식]

[275] (length×width²×π)/6

[276] 또한, 이식 후 30일째, 마우스를 회생시킨 후, 종양의 무게를 측정하였고, 그 결과를 도 37에 나타내었다. 종양의 무게는 대조군 무게의 백분율로 표시되었고, 데이터는 평균±SEM으로 나타냈으며, * 표시는 대조군(n=5)과 비교할 때 통계적으로 유의한 값(P < 0.05)을 나타낸다.

[277] 도 37에 나타낸 바와 같이, AuNP-His-Apt-His-BIM이 주입된 종양의 체적 및 무게 모두 대조군과 비교할 때 현저히 줄어들었음을 확인하였고, 상기
결과로부터 AuNP-His-Apt-His-BIM의 주입에 의해 종양의 성장이 억제되었음을 알 수 있었다.

12-2. 종양 조직으로의 His-BIM 단백질 전달 확인

AuNP-His-Apt 결합체에 의해 종양조직으로의 His-BIM 전달 효율을 확인하기 위하여, Alexa 488로 표지된 His-BIM 단백질(Alexa 488-His-BIM)이 적재된 AuNP-His-Apt을 주입한 마우스로부터 준비된 종양 단면을 공조영 형광 현미경으로 확인하였고, 그 결과를 도 38에 나타내었다. 이때 스케일 바(scale bar)는 200μm이였다.

도 38에 나타낸 바와 같이, Alexa 488로 표지된 AuNP-His-Apt-His-BIM을 주입한 경우에 Alexa 488의 녹색 형광을 나타낼 수 있었고, 상기 결과로부터, AuNP-His-Apt 결합체에 의해 종양조직으로 His-BIM 단백질이 전달되었음을 알 수 있었다.

추가적으로, 종양 조직에서의 BIM 단백질 발견 수준을 웨스턴 블로팅 분석 및 anti-BIM 항체를 사용한 면역조직화학 분석을 통해 확인하였고, 그 결과를 각각 도 39 및 도 40에 나타내었다.

도 39 및 도 40에 나타낸 바와 같이, AuNP-His-Apt-His-BIM이 주입된 종양에서 증가된 BIM 단백질 수준을 나타낼 수 있었다.

뿐만 아니라, TUNEL 분석을 통해 증가된 BIM 단백질-배계 사멸세포사(apoptotic cell death)를 확인하였고, 그 결과를 도 40에 나타내었다. 보다 구체적으로, 사멸세포는 terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay kit (Roche, USA)을 사용하여 판찰하였다.

도 40에 나타낸 바와 같이, AuNP-His-Apt-His-BIM이 주입된 종양에서 증가된 사멸세포를 확인할 수 있었고(lower panel), 이때 화살표 머리는 TUNEL 양성 세포를 나타낸다.

실시예 13. in vivo에서의 AuNP-His-Apt에 의한 단백질의 표적 전달능 확인

EGFR(epidermal growth factor receptor)-과발현 A431 human epidermoid carcinoma cell을 뉘드 마우스(nude mouse)에 복강 내 주입하여 이종이식 종양(xenograft tumors)을 발생시켰다. 10일 후, 오직 His-BIM만이 적재된 AuNP-(His-GST)-Apt, 또는 His-BIM 및 GST-EGF 모두 적재된 AuNP-(His-GST)-Apt(0.5 mg/kg of body weight)를 종양이 발생한 마우스 내로 꼬리 정맥을 통해 주입하였다. 이때, His-BIM 및 GST-EGF은 각각 Alexa 488 및 Texas Red으로 표지하였다. 주입 12 시간 후, 마우스를 죽여서이고, 장기들(뇌, 간, 비장, 난소)을 회수한 후, 이종이식 종양조직의 단면을 공조영 형광 현미경으로
관찰하였고, 그 결과를 도 41에 나타내었다. 이때 스케일 바(Scale bar)는
200μm이었다. 도 41에 나타낸 바와 같이, 효율적인 BIM 단백질 전달을 반영하는
강한 녹색 신호가 Texas Red가 표지된 EGF 및 Alexa 488가 표지된 BIM이 모두
결합된 AuNP-Apt의 경우에서 관찰된 반면, EGF 단백질의 무게에서는 더 적은
BIM 단백질 전달을 확인할 수 있었다.

[293]

또한, 종양과 장기 단면에서 형광의 상대적 강도를 Image J software를 사용하여
측정하였고, 그 결과를 도 42에 나타내었다. 결과(평균±SEM)는 세 마리의
마우스 결과로부터 얻었고, 통계적으로 유의한 값을 P < 0.05로 나타내었다.

[295]

도 42에 나타낸 바와 같이, 종양 조직과 뇌, 간, 비장, 난소의 다른 장기와 비교할
때, EGFR을 발현하는 종양 내에서 원자리 증가된 BIM 흡수를 나타낸을 확인할
수 있었다.

[296]

추가적으로, anti-BIM 항체를 사용하여 종양 조직의 면역조직화학 분석을
수행하였고, 그 결과를 도 43에 나타내었다.

[298]

장기 결과로부터, 본원의 금나노임자-응타머 결합체는 in vivo에서 단백질의
표적 전달을 할 수 있음을 알 수 있었다.

[300]

실시예 14. AuNP-His-Apt-Alexa488-His-BIM 복합체의 생체 내 분포
(biodistribution) 확인

[302] 14-1. AuNP-His-Apt에 의한 His-BIM 단백질의 전신 분포 확인

[303] 10μg Alexa488-His-BIM과 1mg/kg AuNP-His-Apt를 반응시켜 제조한
AuNP-His-Apt-Alexa488-His-BIM을 맷트로 정맥 주사 후, 각 시간(0, 1, 6, 12, 24
h)에서 장기 생물(뇌, 심장, 신장, 간, 난소, 비장 및 혈소)을 수집하고, 이를
공조체 현미경으로 관찰하였고, 이를 도 44에 나타내었다. 대표 형광 이미지는
뇌, 심장, 신장, 간, 난소, 비장 및 혈소에서 각 시간대별 조직 내
Alexa488-His-BIM을 나타내며, 스케일 바(Scale bar)는 200μm이다.

[304]

또한, anti-BIM, anti-β-actin 항체를 이용하여 장기 용해물(organ lysates)의
웨스트رن 블롯 분석을 수행하였고, 그 결과를 도 44에 나타내었다.

[306]

추가적으로, 조직에서의 형광의 상대적 강도를 Image J software를 사용하여
측정하였고, 그 결과를 도 45에 나타내었다. 값은 AuNP-His-Apt로 처리된
장기로부터의 형광 강도를 1로 세팅함으로써 나타내었고(n = 6/7, respectively),
통계적으로 유의한 값을 P < 0.05로 나타내었다.

[308]

14-2. AuNP-His-Apt-Alexa488-His-BIM에 의한 AST 및 LDH 함량의 발효 변화
[310] 10 μg His-BIM과 1 mg/kg AuNP-His-Apt를 반응시키켜 제조한 AuNP-His-Apt-His-BIM은 4주령 알코 베드에 경맥 주사한 후 24시간 후에 비색분석법(colorimetric assay)을 통해 AST 및 LDH 수준을 측정하였다. 보다 구체적으로, AST(aspartate transaminase) 및 LDH(lactate dehydrogenase)의 혈청 수준(serum level)은 각각 IDTox™ Aspartate Transaminase (AST) Color Endpoint Assay Kit (ID Labs™ Inc, Canada) 및 IDTox™ Lactate Dehydrogenase (LDH) Color Endpoint Assay Kit (ID Labs™ Inc)를 사용하여 측정되었고, 그 결과를 도 46에 나타내었다. 한편, 결과는 각각 평균±SEM(n=3 rat)으로 표현되었다(P value not significant).

[311]

[312] 전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 특수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이에 대해서 기술한 설시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.

산업상 이용가능성

[313] 본 발명에 따른 단백질 전달체는 금 나노입자에 결합한 다양한 tag의 엠타머 또는 단백질 특이적 엠타머가 전달하고자 하는 단백질에 특이적으로 결합하여 세포 내로 단백질을 효과적으로 전달할 수 있고, 매우 적은 세포독성을 갖는 금 나노입자를 이용하여 인체에 무해한 뿐만 아니라, 다양한 과장에서 빛을 반사하여 세포 내에서의 위치를 쉽게 확인할 수 있는바, 질병의 진단 또는 치료에 유용하게 이용될 수 있을 것으로 기대된다.
청구범위

[청구항 1] 금 나노입자 및
상기 금 나노입자의 표면에 결합되는 업타머(aptamer)를 포함하는,
단백질 전달체.

[청구항 2] 제1항에 있어서, 상기 금 나노입자는 10-20 nm의 크기를 가지는
것을 특징으로 하는, 단백질 전달체.

[청구항 3] 제1항에 있어서, 상기 업타머는 운반되는 단백질에 특이적으로
결합하는 것을 특징으로 하는, 단백질 전달체.

[청구항 4] 제3항에 있어서, 상기 단백질은 표지물질(tag)로 표지된 단백질인
것을 특징으로 하는, 단백질 전달체.

[청구항 5] 제4항에 있어서, 상기 업타머는 상기 표지물질에 특이적으로
결합하는 것을 특징으로 하는, 단백질 전달체.

[청구항 6] 제4항에 있어서, 상기 표지물질은 허스터던 및/또는 글루타티온
S-전달효소(GST; glutathione S-transferase)인 것을 특징으로 하는,
단백질 전달체.

[청구항 7] 금 나노입자와 업타머(aptamer)를 결합시키는 단계를 포함하는,
단백질 전달체 제조 방법.

[청구항 8] 제1항의 단백질 전달체와 단백질이 결합하여 이루어진, 복합체.

[청구항 9] 제8항의 복합체를 개체에 투여하는 단계를 포함하는 단백질 전달
방법.
[Fig. 1]

AuNP → His-Apt → AuNP-Apt → AuNP-His-Apt-Protein

Citrate buffer (pH 3) → HEPES buffer (pH 7) → His-tagged protein → MgCl₂

[Fig. 2]

Negative (HeLa cell) → AuNP-His aptamer

His-AcrA (1 µg/µl) → AcrA (1 µg/µl)

AuNP-His aptamer + His-AcrA (0.5 µg/µl) → AuNP-His aptamer + AcrA (0.5 µg/µl)

AuNP-His aptamer + His-AcrA (1 µg/µl) → AuNP-His aptamer + AcrA (1 µg/µl)
1. AuNP-Aptamer
2. AuNP-Aptamer + His-AcrA (0.5 μg/μl)
3. AuNP-Aptamer + His-AcrA (1 μg/μl)
4. AuNP-Aptamer + AcrA (0.5 μg/μl)
5. AuNP-Aptamer + AcrA (1 μg/μl)
[Fig. 8]

BCL-xL

Alexa 488 (BCL-xL) DAPI Bright field Merge

AuNP-His-Apt

+ +

His-BCL-xL

Alexa 488 (BCL-xL) DAPI Bright field Merge

AuNP-His-Apt

+ +

[Fig. 9]

Anti-Bcl-xL

Anti-GAPDH

1. AuNP-Apt
2. AuNP-Apt-Bcl-xL (5 μg/μl)
3. AuNP-Apt-His-Bcl-xL (5 μg/μl)
[Fig. 14]

AuNP-GST aptamer

AuNP-GST aptamer – GST-FoxL2 (5 μg/μl)

AuNP-GST aptamer – FoxL2 (5 μg/μl)
1. AuNP-GST-Apt
2. AuNP-GST-Apt-FoxL2 (5 μg/μl)
3. AuNP-GST-Apt-GST-FoxL2 (5 μg/μl)
[Fig. 20]

AuNP-His-Apt

| His-BIM | — |

Alexa 647 (Bim)

Mitotracker

DAPI

Merge

[Fig. 21]
[Fig. 24]
[Fig. 37]

[Fig. 38]
[Fig. 42]

Relative intensity of fluorescence

I.P xenograft tumor Brain Liver Spleen Ovary

His-BIM - + + + + + +

GST-EGF - - + + + + +
[Fig. 43]
[Fig. 44]
INTERNATIONAL SEARCH REPORT

International application No.
PCT/KR2013/011851

A. CLASSIFICATION OF SUBJECT MATTER
A61K 9/16(2006.01)i, A61K 9/14(2006.01)i, A61K 47/48(2006.01)i, C12N 15/115(2010.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
A61K 9/16; C12Q 1/02; A61K 49/00; C07H 21/02; A61K 48/00; A61K 33/24; A61K 9/14; A61K 47/48; C12N 15/115

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: AnNP(AnNP), aptamer, protein, carrier, protein marker

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>3-6</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>3-6</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2011-0050338 A (CHUNG-ANG UNIVERSITY INDUSTRY-ACADEMY COOPERATION FOUNDATION) 13 May 2011 See abstract, claims 1-10.</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>US 2010-0173347 A1 (BROOK, M. A. et al.) 08 July 2010 See abstract, claims 1-2, 4-5, 7-9, 13.</td>
<td>1-8</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☒ See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
31 MARCH 2014 (31.03.2014)

Date of mailing of the international search report
31 MARCH 2014 (31.03.2014)

Name and mailing address of the ISA/KR
Government Complex-Daejeon, 189 Seoum-ro, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer
Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **Claim Nos.: 9**
 because they relate to subject matter not required to be searched by this Authority, namely:
 Claim 9 pertains to a treatment method of the human, and thus pertains to subject matter on which the International Searching Authority is not required to carry out an international search under the provisions of PCT Article 17(2)(a)(i) and PCT Rule 39.1(iv).

2. **Claim Nos.:**
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. **Claim Nos.:**
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. **Claim Nos.:**
 As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. **Claim Nos.:**
 As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. **Claim Nos.:**
 As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. **Claim Nos.:**
 No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- **Claim Nos.:**
 The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

- **Claim Nos.:**
 The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

- **Claim Nos.:**
 No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2013-0022538 A1</td>
<td>24/01/2013</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012-503494 A</td>
<td>09/02/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-1230913 B1</td>
<td>07/02/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011-055589 A1</td>
<td>12/05/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008-119181 A1</td>
<td>09/10/2008</td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분류(IPC))
A61K 9/16(2006.01)i, A61K 9/14(2006.01)i, A61K 47/48(2006.01)i, C12N 15/115(2010.01)i

B. 조사관 분야
조사관 최소문헌(국제특허분류를 기재).
A61K 9/16: C12Q 1/02; A61K 49/00: C07H 21/02; A61K 48/00: A61K 33/24; A61K 9/14: A61K 47/48: C12N 15/115

조사관 기술분야에 속하는 최소문헌 이외의 문헌
한국특허출원국 및 한국공개출원관련문헌: 조사관 최소문헌관련 기재된 IPC
일본특허출원국 및 일본공개출원관련문헌: 조사관 최소문헌관련 기재된 IPC

국제조사의 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(대체하는 경우))
eKOMPASS(특허청 내부 검색시스템) & 키워드: 금 나노입자(AuNP), aptamer, 단백질 전달체, 단백질 표지물질

C. 관련 문헌

<table>
<thead>
<tr>
<th>카테고리</th>
<th>인용문헌명 및 관련 구절(대체하는 경우)의 기재</th>
<th>관련 청구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>요약, 페이지 593 및 601: 도 10 참조.</td>
<td>3-6</td>
</tr>
<tr>
<td>X</td>
<td>YANG, L. 외, “Aptamer-conjugated nanomaterials and their applications”, Advanced Drug Delivery Reviews, 2011년, 63권, 페이지 1361-1370</td>
<td>1-2,7-8</td>
</tr>
<tr>
<td>A</td>
<td>요약, 페이지 1362 참조.</td>
<td>3-6</td>
</tr>
<tr>
<td>A</td>
<td>US 2013-0022538 A1 (BOSSI, J. J. 외) 2013.01.24</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td>요약, 청구항 1-5, 단락 [0034]-[0036], [0046]-[0047]참조.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2011-0050338 A (중앙대학교 산학협력단) 2011.05.13</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td>요약, 청구항 1-10 참조.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 2010-0173347 A1 (BROOK, M. A. 외) 2010.07.08</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td>요약, 청구항 1-2, 4-5, 7-9, 13 참조.</td>
<td></td>
</tr>
</tbody>
</table>

슈가 문헌이 O(계속)에 기재되어 있습니다.

D. 다음특허에 관한 별지를 참조하십시오.

* 인용된 문헌의 특별 카테고리:
 "A" 특별한 관련이 없는 것으로 보이는 일반적인 기술수준을 정적한 문헌
 "E" 국제출원일보다 1년 이전의 출원일 또는 우선일을 가지지 아니한 출원일 이후에 공개된 신출원 또는 특허 문헌
 "L" 우선협정이외의 의을 제시하는 문헌 또는 다른 인용문헌의 공개일 또는 다른 특별한 이유(이용을 방해)를 말하기 위하여 인용된 문헌
 "O" 구두 개시, 사용, 전시 또는 기타 수면을 연급하고 있는 문헌
 "P" 우선일 이후에 공개되었으나 국제출원일 이후에 공개된 문헌
 "T" 국제출원일 또는 우선일 후에 공개된 문헌으로, 출원과 상충하지 않으며 발명의 기초가 되는 원리이나 이론을 이해하기 위해 인용된 문헌
 "X" 특별한 관련이 있는 문헌, 해당 문헌 하나만으로 정구된 발명의 신규성 또는 신중성이 없는 것으로 본다.
 "Y" 특별한 관련이 있는 문헌, 해당 문헌 하나 이상의 다른 문헌과 조합하는 경우로 그 조합이 명확하게 차별화된 경우 정구된 발명은 신중성이 없는 것으로 본다.
 "&" 동일한 범주에 속하는 문헌

국제조사의 실질 월요일
2014년 03월 31일 (31.03.2014)

국제조사보고서 발송일
2014년 03월 31일 (31.03.2014)
국제조사보고서

PCT 제17조(2)(a)의 규정에 따라 다음과 같은 이유로 일부 청구항이 더하여 본 국제조사보고서가 작성되지 아니하였습니다.

1. ☒ 청구항: 9
 이 청구항은 본 기관이 조사할 필요가 없는 내성에 관련합니다. 즉, 청구항 제9항은 사람의 치료방법에 관한 것이므로 PCT 조약 제17조(2)(a)(j) 및 조약규칙 제39.1(iv)의 규정에 의하여 국제조사기관이 국제 조사할 의무가 없는 내성에 해당합니다.

2. ☐ 청구항:
 이 청구항은 유효한 국제조사를 수행할 수 없는 정도로 소정의 요건을 충족하지 아니하는 국제출원의 부분과 관련합니다. 구체적으로는,

3. ☐ 청구항:
 이 청구항은 종속청구항이나 PCT규칙 6.4(a)의 두 번째 및 세 번째 문장의 규정에 따라 작성되어 있지 않습니다.

제3기계한 발명의 단일성이 결여된 경우의 의견(첫 번째 용지의 3의 계속)

본 국제조사기관은 본 국제출원이 다수의 동일한 발명이 있다고 본다.

1. ☐ 출원인이 모든 추가수수료를 기간 내에 납부하였으므로, 본 국제조사보고서는 모든 조사 가능한 청구항을 대상으로 합니다.

2. ☐ 추가수수료 납부를 요구하지 않고도 모든 조사 가능한 청구항을 조사할 수 있으므로, 본 기관은 추가수수료 납부를 요구하지 아니하였습니다.

3. ☐ 출원인이 추가수수료의 일부만을 기간 내에 납부하였으므로, 본 국제조사보고서는 수수료가 납부된 청구항만을 대상으로 합니다. 구체적인 청구항은 아래와 같습니다.

4. ☐ 출원인이 기간 내에 추가수수료를 납부하지 아니하였습니다. 따라서 본 국제조사보고서는 청구범위에 처음 기재된 발명에 한정되어 있으며, 해당 청구항은 아래와 같습니다.

이의신청에 관한 기재

☐ 출원인의 이의신청 및 이의신청과 함께 추가수수료가 납부되었습니다.
☐ 출원인의 이의신청이 납부되지 아니하였으나 이의신청과 함께 추가수수료가 납부되었으나 이의신청과 보청요구서에 명시된 기간 내에 납부되지 아니하였습니다.
☐ 이의신청 없이 추가수수료가 납부되었습니다.

시행 PCT/ISA/210 (첫 번째 용지의 계속(2)) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 연용된 특허문헌</th>
<th>공개일</th>
<th>다른특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2013-0022538 A1</td>
<td>2013/01/24</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012-503494 A</td>
<td>2012/02/09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-1230913 B1</td>
<td>2013/02/07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011-055888 A1</td>
<td>2011/05/12</td>
</tr>
<tr>
<td>US 2010-0173347 A1</td>
<td>2010/07/08</td>
<td>CA 2682513 A1</td>
<td>2008/10/09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008-119181 A1</td>
<td>2008/10/09</td>
</tr>
</tbody>
</table>