Title: POLY(ARYLENE SULFIDE)-BASED RESIN COMPOSITION AND MOULDED ARTICLE

발명의背景: 폴리아릴렌 산화아이드계 수지 조성물 및 성형품

Abstract: The present invention relates to a poly(arylene sulfide)-based resin composition and molded article, the resin composition having improved compatibility with other polymeric materials, filler materials, or the like, higher thermal conductivity, and excellent mechanical properties such as tensile strength, impact strength, or the like. The poly(arylene sulfide)-based resin composition comprises poly(arylene sulfide), expandable graphite, and an organic filler including one or more selected from the group consisting of zinc sulfide, magnesium oxide, and zinc oxide.

요약서: 본 발명은 다른 고분자 소재나 증착제 등과의 보다 향상된 상용성을 가지며, 보다 높은 열전도도와 함께 우수한 인장강도 또는 촉격 강도 등의 기계적 물성을 나타내는 폴리아릴렌 산화아이드계 수지 조성물 및 성형품에 관한 것이다. 이러한 폴리아릴렌 산화아이드계 수지 조성물은 폴리아릴렌 산화아이드와, 폐쇄 공포(Expandable Graphite), 젤라틴 포드소, 및 화학 이연, 산화아군음 및 산화아이드으로 이루어진 중에서 선택한 1종 이상을 포함한 무기 편입을 포함하는 것이다.
【명세서】

【발명의 명칭】
폴리아릴렌 설파이드계 수지 조성물 및 성형품

【기술분야】
본 발명은 다른 고분자 소재나 충전제 등과의 보다 향상된 상용성을 가지며, 보다 높은 열전도와 함께 우수한 인장강도 또는 충격 강도 등의 기계적 물성을 나타내는 폴리아릴렌 설파이드계 수지 조성물 및 성형품에 관한 것이다.

【배경기술】
현재 폴리아릴렌 설파이드는 대표적인 엔지니어링 플라스틱(Engineering Plastic)으로, 높은 내열성과 내화성, 내화염성(flame resistance), 전기 절연성 등으로 인해 고온과 부식성 환경에서 사용되는 각종 제품이나 전자 제품에 사용되는 용도로 수요가 증대되고 있다.

이러한 폴리아릴렌 설파이드 중에서 상업적으로 판매되는 것은 현재 폴리페닐렌 설파이드(polyphenylene sulfide; 이하 ‘PPS’)가 유일하다. 현재까지 주로 적용되는 PPS의 상업적 생산 공정은, 파라-디클로로벤젠(p-dichlorobenzene; 이하 ‘pDCB’)과 황화나트륨(sodium sulfide)을 원료로 하여 N-메틸파릴리든(N-methyl pyrroloidone) 등의 극성 유기 용매에서 용액종합 반응시키는 방법이다. 이 방법은 맥컬럼 공정(Macallum process)으로 알려져 있다.

그러나, 이러한 용액종합 방식의 맥컬럼 공정으로 제조한 폴리아릴렌설파이드의 경우, 고온에서 인장강도 등 기계적 물성이 열악하고, 이의 생산성 또한 우수하지 않은 단점이 있다.

이에 따라, 요오드 방향족 화합물과 황 원소를 포함하는 반응물을 용액종합하는 방법으로 상기 PPS 등의 폴리아릴렌 설파이드를 제조하는 방법이 제안된 바 있다. 이렇게 제조된 폴리아릴렌 설파이드는 고온에서도 우수한 기계적 물성을 가지고, 유기 용매의 사용이 요구되지 않을 뿐 아니라, 생산성 또한 우수한 장점이 있다.

그렇게, 상기 용액종합 방식으로 제조된 폴리아릴렌 설파이드의 경우, 그 주요 발단이 요오드와 대부분이 아릴기(대표적으로, 벤젠)으로 이루어져
있다. 이러한 폴리아릴렌 설파이드의 경우, 주효 구조의 특성상 다른 고분자 소재 또는 유리 섬유 등 각종 강화재나 충전재와의 상용성이 떨어지는 단점이 있다.

이로 인해, 상기 용융증합 방식으로 제조된 폴리아릴렌 설파이드의 경우, 다양한 용도에 적합한 최적화된 물성을 나타내게 하기 위해 다른 고분자 소재 또는 충전재 등과 컴파운딩하기가 혼들었으며, 컴파운딩하더라도 원하는 최적화된 물성을 나타내기 어려운 단점이 있었다. 이러한 문제점으로 인해, 이전에 알려진 폴리아릴렌 설파이드계 수지 조성물의 경우, 각 용도에 맞는 충분한 물성을 나타내기 어려웠고, 다양한 용도에의 적용에 있어 한계가 있었던 것이 사실이다.

반면, 최근 전자소재 및 기기의 경박 단소화에 의해 고밀도 실장이 되고 기능화물에 따라, 제품 내부에 발열 부품에 의한 내부 온도 상승이 이루어지고, 온도 상승을 통해 전자부품의 속도 저하 등의 문제가 발생하고 있으며 이에 따라 절연성 떨어 5W/mK 이상의 고방열 플라스틱의 개발이 요구되고 있다.

이전부터 이러한 고방열 플라스틱으로 적용 가능한 여러 가지 열전도성 플라스틱이 알려진 바 있지만, 상대적으로 다량의 무기 필러를 첨가하여야 당업계에서 요구되는 열전도도의 발현이 가능하였으며, 이러한 다량의 무기 필러를 사용할 경우, 기계적 물성, 성형성 또는 경제성 등이 저하되는 단점이 있었다.

이에 따라, 기존의 열전도 플라스틱의 단점을 극복하고 무기 필러의 작은 사용량으로도 우수한 열전도도의 발현이 가능하고, 이에 따라 우수한 기계적 물성 등을 발현 및 유지하는 플라스틱 방열 소재가 계속적으로 요구되고 있다.

【발명의 내용】
【해결하려는 과제】

본 발명은 다른 고분자 소재나 충전재 등과의 보다 향상된 상용성을 가지며, 보다 높은 열전도도와 함께 우수한 인장강도 또는 충격 강도 등의 기계적 물성을 나타내는 폴리아릴렌 설파이드계 수지 조성물을 제공하는 것이다.
또한, 본 발명은 상기 폴리아릴렌 설폰의 1차 수지 조성물을 포함하여 각 용도에 최적화된 물성을 나타내는 성형품을 제공하는 것이다.
【과제의 해결 수단】

본 발명은 폴리아릴렌 설폰의 1차 수지 조성물 및 형상 흑연(expandable graphite); 절화봉소; 및 형화아연, 산화마그네슘 및 산화아연으로 이루어진 군에서 선택된 1종 이상을 포함한 무기 필리를 포함하는 폴리아릴렌 설폰의 수지 조성물을 제공한다.

또한, 본 발명은 상기 폴리아릴렌 설폰의 수지 조성물을 포함하는 성형품을 제공한다.

이하, 발명의 구체적인 구현예에 따른 폴리아릴렌 설폰의 수지 조성물 및 이를 포함하는 성형품에 대하여 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리범위가 한정되는 것은 아니며, 발명의 권리범위 내에서 구현예에 대한 다양한 변형이 가능함은 당연히 자명하다.

본 명세서 전체에서 특별한 언급이 없는 한 "포함" 또는 "함유"라 함은 어떤 구성 요소(또는 구성 성분)를 별다른 제한 없이 포함함을 지칭하며, 다른 구성 요소(또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.

발명의 일 구현예에 따르면, 폴리아릴렌 설폰의 1차 수지 조성물 및 형상 흑연(expandable graphite); 절화봉소; 및 형화아연, 산화마그네슘 및 산화아연으로 이루어진 군에서 선택된 1종 이상을 포함한 무기 필리를 포함하는 폴리아릴렌 설폰의 수지 조성물이 제공된다.

본 발명중들은 상기 형상 흑연; 절화봉소; 및 형화아연, 산화마그네슘 또는 산화아연의 3 종의 무기 필리를 폴리아릴렌 설폰의 수지 조성물에 혼합함에 따라, 상대적으로 그 면적이 많은 양의 무기 필리를 사용하면서도 우수한 열전도도 등을 나타내는 폴리아릴렌 설폰의 수지 조성물을 제공할 수 있음을 밝혀내고 발명을 완성하였다. 이러한 수지 조성물은 무기 필리의 사용량을 상대적으로 줄이면서도 우수한 열 전도도를 발현할 수
있어, 폴리아릴렌 실피아이드 특유의 우수한 기계적 물성을 나타낼 수 있으며, 당업계의 요구에 부응하여 우수한 물성을 갖는 플라스틱 방열 소재의 제공을 가능케 함이 확인되었다.

그리고, 일 구현예의 수지 조성물에서, 상기 폴리아릴렌 실피아이드는 주체의 말단기(End Group) 중 적어도 일부에 카르복시기 (-COOH) 또는 아민기(-NH₂) 등의 반응성기가 도입될 수 있는데, 이러한 반응성기가 도입된 폴리아릴렌 실피아이드는 상기 무기 필러뿐만 아니라 다른 성분과의 보다 높은 상용성을 나타낼 수 있다. 따라서, 상기 반응성기가 도입된 폴리아릴렌 실피아이드의 사용으로 인해, 일 구현예의 수지 조성물은 보다 향상된 열전도도 및 기계적 물성을 나타낼 수 있을 뿐 아니라, 여타 다양한 소재와의 접합운동을 통해 보다 뛰어난 상승 효과를 발현할 수 있다.

이러한 반응성기의 도입에 따른 우수한 상용성은 다음의 기술적 원리에 기인하는 것으로 예측될 수 있다.

이전에 융용중합 방식으로 제조된 폴리아릴렌 실피아이드의 경우, 그 주체 말단이 요오드와 대부분의 아릴기(대표적으로, 벤젠)으로 이루어져 있기 때문에, 주체 말단에 반응성기가 실질적으로 존재하지 않는다. 이 때문에, 상기 폴리아릴렌 실피아이드가 다른 고분자 소재 또는 유리 섬유 등 각종 강화재나 무기 필러를 포함한 충전재와의 상용성이 떨어지는 단점을 나타내게 되는 것으로 보인다.

이에 비해, 주체 말단의 적어도 일부에 카르복시기 (-COOH) 또는 아민기(-NH₂) 등의 반응성기가 도입된 폴리아릴렌 실피아이드의 경우, 상기 반응성기의 존재로 인해 다른 고분자 소재나, 충전재 또는 열전도도 향상을 위한 무기 필러 등과의 우수한 상용성을 나타낼 수 확실히 확인되었다. 그 결과, 일 구현예의 수지 조성물이 이러한 폴리아릴렌 실피아이드와 함께 상술한 무기 필러를 포함하는 경우, 폴리아릴렌 실피아이드 특유의 우수한 내열성, 내화성능 및 뛰어난 기계적 물성 등을 나타내면서도, 무기 필러 등의 다른 소재와의 혼합에 있어서도, 물성의 상승이 최적화되어 보다 향상된 열전도도 및 기계적 물성을 나타낼 수 있을 뿐 아니라, 추가적으로 다른 성분과의 혼합을 통해 다양한 용도에 적합한 뛰어난 물성을 나타내는 성형품의 제공을 가능케 한다.
이러한 일 구현예의 수지 조성물에서, 상기 반응성기가 도입된 폴리아릴렌 성형재는 FT-IR 분광법으로 분석하였을 때, FT-IR 스펙트럼에서 상기 주체 발단의 카르복시기에서 유래한 약 1600 내지 1800cm⁻¹의 피크 또는 아민기에서 유래한 약 3300 내지 3500cm⁻¹를 나타낼 수 있다. 이러한 각 피크의 강도는 주체 발단기에 결합된 각각의 반응성기의 함량에 대응할 수 있다.

일 예에 따르면, 상기 카르복시기 또는 아민기와 도입된 폴리아릴렌 성형재는 FT-IR 스펙트럼 상에서, 약 1500 내지 1600cm⁻¹에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 1600 내지 1800cm⁻¹ 또는 약 3300 내지 3500cm⁻¹의 피크의 상대적 높이 강도가 약 0.001 내지 10%, 혹은 약 0.01 내지 7%, 혹은 약 0.1 내지 4%, 혹은 약 0.5 내지 3.5%로 될 수 있다. 이때, 상기 1500 내지 1600cm⁻¹에서 나타나는 Ring stretch 피크는 폴리아릴렌 성형재의 주체 중에 포함된 폐닐렌 등의 아릴렌기에서 유래한 것으로 될 수 있다. 상기 카르복시기에서 유래한 약 1600 내지 1800cm⁻¹의 피크 또는 아민기에서 유래한 약 3300 내지 3500cm⁻¹의 피크가 아릴렌기(예를 들어, 폐닐렌기)에서 유래한 피크의 높이 강도에 대해 상호간의 높이 강도를 나타냄에 따라, 일 구현예의 수지 조성물에 포함된 폴리아릴렌 성형재는 다른 고분자 소재 또는 무기 필러를 포함한 중전제 동과의 보다 우수한 성능성을 나타내면서도, 폴리아릴렌 성형재 특유의 우수한 물성을 유지할 수 있다. 따라서, 이를 포함하는 일 구현예의 수지 조성물은 소정의 무기 필러와의 혼합에 따른 보다 우수한 열전도도 및 기계적 물성을 나타낼 수 있고, 더 나아가, 다른 고분자 소재나 중전제의 전파음량에 따른 보다 뛰어난 상승 효과를 나타낼 수 있다.

한편, 상술한 폴리아릴렌 성형재는 주체의 반복 단위 중에 디실사이드 반복 단위를 포함하는 것으로 될 수 있다. 이때, 디실사이드 반복 단위는 헤히 일반식 1로 표시되는 폴리아릴렌 성형재의 일반적인 반복 단위에서, 황 결합 대신 디실사이드 결합(-S-S- 결합)을 포함하는 일반식 2의 폴리아릴렌 디실사이드 반복 단위를 지정할 수 있다:

[일반식 1]
[일반식 2]

\[
\begin{align*}
\text{Ar} & \quad \text{S} \\
\text{Ar} & \quad \text{S} \quad \text{S}
\end{align*}
\]

상기 일반식 1 및 2에서, Ar은 치환 또는 비치환된 아릴렌기를 나타낸다.

이와 같이, 상기 일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드가 디설파이드 반복 단위를 포함함에 따라, 상기 폴리아릴렌 설파이드 중에 분자량이 지나치게 낮은 올리고머 형태의 고분자 셰가 상당 함량 포함되는 것을 억제할 수 있다. 이는 상기 디설파이드 반복 단위 중의 디설파이드 결합이 폴리아릴렌 설파이드에 포함된 고분자 셰들 간의 황교환 반응을 계속적으로 일으키면서 폴리아릴렌 설파이드에 포함된 고분자 셰들의 분자량을 대체로 균일화할 수 있기 때문으로 보인다. 그 결과, 일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드는 분자량이 지나치게 낮은 올리고머 형태의 고분자 셰를 최소한의 함량으로 포함할 수 있고, 전체 고분자 셰들의 분자량 분포가 균일화되어 분자량 분포 곡선이 비교적 좁고 정규 분포 곡선에 가까운 대칭형으로 도출될 수 있다. 따라서, 이러한 폴리아릴렌 설파이드를 포함하는 일 구현예의 수지 조성물은 이를 사용해 높은 정밀도가 요구되는 제품을 성형하고자 하는 경우에도 바리(Flash)의 발생량을 크게 줄일 수 있고, 보다 향상된 가공성을 나타낼 수 있다.

또, 이러한 디설파이드 반복 단위는 전체 폴리아릴렌 설파이드에 대해 약 3 중량% 이하, 혹은 약 0.01 내지 3.0 중량%, 혹은 약 0.1 내지 2.0 중량%로 포함될 수 있다. 이에 따라, 상기 디설파이드 반복 단위에 기인한 가공성 향상 효과가 최적화될 수 있고, 이러한 디설파이드 반복 단위가 지나치게 많아지지 상기 폴리아릴렌 설파이드의 물성이 오히려 저하되는 것을 억제할 수 있다.

한편, 일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드는 용점이 약 265 내지 290℃, 혹은 약 270 내지 285℃, 혹은 약 275 내지 283℃로 될 수 있다. 이러한 용점 범위를 가짐에 따라, 반응성기가 도입되며
용융중합 방식으로 얻어진 상기 폴리아릴렌 성판드와 이를 포함하는 일
구현예의 수지 조성물은 우수한 내열성 및 난연성을 나타낼 수 있다.
또한, 상기 폴리아릴렌 성판드는 수 평균 분자량이 약 5,000 내지
50,000, 혹은 약 8,000 내지 40,000, 혹은 약 10,000 내지 30,000으로 될 수
있다. 그리고, 상기 폴리아릴렌 성판드는 수평균 분자량에 대한 중량평균
분자량으로 정의되는 분산도가 약 2.0 내지 4.5, 혹은 약 2.0 내지 4.0, 혹은
약 2.0 내지 3.5로 될 수 있다. 상기 폴리아릴렌 성판드가 상술한 범위의
분산도 및 분자량을 가진에 따라, 이를 포함하는 일 구현예의 수지 조성물이
우수한 기계적 물성及 가공성 등을 나타낼 수 있고, 보다 다양한 용도로
사용 가능한 여러 가지 성형품으로 가공될 수 있다.

그리고, 상술한 폴리아릴렌 성판드는 화전 원판 점도계로
300 ℃에서 측정한 용융 점도가 약 10 내지 50,000 poise, 혹은 약 1,00 내지
20,000, 혹은 약 3,00 내지 10,000으로 될 수 있다. 이러한 용융 점도를
나타내는 폴리아릴렌 성판드 및 이를 포함하는 일 구현예의 수지
조성물은 우수한 가공성과 함께, 뛰어난 기계적 물성 등을 나타낼 수 있다.

예를 들어, 일 구현예의 수지 조성물에 포함된 폴리아릴렌 성판드는
ASTM D 638에 따라 측정한 인장강도 값이 약 100 내지 900 kgf/cm², 혹은 약
200 내지 800 kgf/cm², 혹은 약 300 내지 700 kgf/cm²일 수 있으며, ASTM D
638에 따라 측정한 신율이 약 1 내지 10%, 혹은 약 1 내지 8%, 혹은 약 1
내지 6%로 될 수 있다. 또, 상기 폴리아릴렌 성판드는 ASTM D 790에 따라
측정한 굴곡강도 값이 약 100 내지 2000 kgf/cm², 혹은 약 500 내지 2000
kgf/cm², 혹은 약 1000 내지 2000 kgf/cm²으로 될 수 있고, ASTM D 256에 따라
측정한 충격강도가 약 1 내지 100J/m, 혹은 약 5 내지 50 J/m, 혹은 약 10
내지 20 J/m로 될 수 있다. 이와 같이, 일 구현예의 수지 조성물에 포함된
폴리아릴렌 성판드는 우수한 기계적 물성 등 제반 물성을 나타낼 수
있으며, 이와 함께, 다른 고분자 소재 또는 무기 필리를 포함한 충전제와의
우수한 상용성을 나타낼 수 있기 때문에, 일 구현예의 수지 조성물은 각
성분의 혼합에 따른 보다 높은 상승 효과 및 다양한 용도에 적합한 뛰어난
물성을 나타낼 수 있다.

한편, 일 구현예의 수지 조성물은 상술한 폴리아릴렌 성판드와 함께,
소정의 무기 필리, 예를 들어, 평창 흑연(expandable graphite), 질화 붕소; 및 황화 아연, 산화마그네슘 및 산화아연으로 이루어진 군에서 선택된 1종 이상으로 되는 3종 이상의 무기 필리를 포함한다. 일 구현예의 수지 조성물에서, 이들 3종의 무기 필리는 고분자 매트릭스로 되는 폴리아릴렌 설폴아이드 내에서 서로 표면 접촉하여 구조적으로 연결되어 있는 형태로 분산되어 존재할 수 있다. 이들 3종의 무기 필리의 상호 작용으로 인해, 일 구현예의 수지 조성물은 보다 우수한 열전도도를 나타낼 수 있게 되며, 상대적으로 작은 양의 무기 필리의 사용이 가능하게 되어 우수한 기계적 특성 등을 발현 및 유지할 수 있다.

또한, 상기 무기 필리는 별도의 표면 처리되지 않은 상태로 포함될 수도 있지만, 적어도 1종 이상의 무기 필리, 예를 들어, 질화 붕소가 표면이 유기 코팅 처리된 상태로 포함될 수도 있다. 이러한 무기 필리의 유기 코팅 처리는 당업자에게 널리 알려진 임의의 방법으로 수행될 수 있고, 예를 들어, 스테아르산(stearic acid), 유기 티타네이트, 유기 지르코니아트 또는 폴리디메틸실록산 등으로 질화 붕소를 유기 코팅 처리할 수 있다.

이렇게 유기 코팅 처리된 무기 필리를 포함함에 따라, 무기 필리와 폴리아릴렌 설폴아이드를 포함한 고분자 매트릭스와의 실질적 접촉 면적, 친화성 및 상용성이 보다 향상될 수 있으며, 그 결과 일 구현예의 수지 조성물의 열전도도 및 계면 물성이 보다 최적화될 수 있다.

한편, 상기 3종의 무기 필리 중에서, 평창 흑연(expandable graphite)으로는, 1 내지 1000 μm의 평균 입경 및 50 이상의 편평비(Aspect ratio)를 갖는 것을 사용할 수 있다. 이러한 평창 흑연(expanded graphite)은 천연 graphite를 물리화학적으로 충 분리하여 얻어진 것일 수 있으며, 결정구조가 hexagonal 형태일 수 있다. 그리고, 상기 수지 조성물에서는 서로 다른 편평비 또는 평균 입경 등을 갖는 2종 이상의 평창 흑연을 혼합하여 사용할 수도 있다. 만일, 이러한 평창 흑연과 다른 형태의 천연 흑연 등을 사용하는 경우 등에 있어서는, 일 구현예의 수지 조성물의 열전도도나 다른 물성이 크게 저하됨이 확인되었다.

또, 상기 질화 붕소는 5 내지 1000 μm의 평균 입경 및 50 내지 300의 편평비(Aspect ratio)를 가질 수 있으며, 결정 구조가 육방정제(hexagonal)일 수
있다. 그리고, 상기 수지 조성물에서는 서로 다른 평균 입경을 갖는 2종 이상의 절화 봉사를 혼합하여 사용할 수 있다. 이러한 절화 봉소의 혼합 사용에 따라, 무기 필러의 백정 밀도(packing density)가 보다 최적화되어 일 구현에의 수지 조성물이 보다 향상된 열전도도를 나타낼 수 있다.

그리고, 일 구현에의 수지 조성물은 황화 아연, 산화마그네슘 또는 산화아연을 1종 이상 포함할 수 있는데, 상기 황화 아연은 50 내지 300 m²/g의 비표면적을 가질 수 있으며, 섬야연석형구조(zinc blende structure)의 결정 구조를 가질 수 있다. 그리고, 상기 산화마그네슘은 속도가 약 97%이상이고 평균 입경이 약 3 내지 5μm이며, 비표면적이 약 30 내지 200m²/g, 혹은 약 30 내지 100m²/g 일 것을 적절히 사용할 수 있다. 그리고, 산화마그네슘의 공기 중의 반응을 억제하기 위해, 표면 코팅된 형태로 사용될 수 있다. 또, 상기 산화아연은 속도가 약 99%이상이고 평균 입경이 약 0.3 내지 0.8μm이며, 비표면적이 약 3 내지 7m²/g, 혹은 약 3.5 내지 6m²/g 일 것을 적절히 사용할 수 있다.

그리고, 상기 수지 조성물에서는 이들 성분을 2종 이상 사용하거나, 각각의 성분으로서 서로 다른 비표면적 등을 갖는 2종 이상의 성분을 혼합하여 사용할 수도 있다.

한편, 상술한 폴리아릴렌 설흔아드계 수지 조성물은 폴리아릴렌 설피아드 10 내지 80중량%, 평창 흑연 1 내지 50 중량% 그리고 질화 봉소 1 내지 50중량%, 및 황화 아연, 산화마그네슘 및 산화아연으로 이루어진 군에서 선택된 1종 이상의 1 내지 50중량%를 포함할 수 있다. 각 성분을 이러한 함량 범위로 포함함에 따라, 일 구현에의 수지 조성물은 폴리아릴렌 설피아드 특유의 우수한 물성을 유지하면서도, 소정의 무기 필러와의 혼합에 따른 보다 우수한 열전도도 및 기계적 물성을 나타낼 수 있다.

한편, 상기 일 구현에의 수지 조성물에 포함된 폴리아릴렌 설피아드, 예를 들어, 반응성기가 도입된 폴리아릴렌 설피아드가 다른 다양한 고분자 소재나 충전재 등과 우수한 상용성을 나타낼 수 있음은 이미 상술한 바와 같다. 따라서, 일 구현에의 수지 조성물은 다양한 다른 고분자 소재나 충전재 등과 혼합(예를 들어, 컨포운딩)되어 뛰어난 상승 효과를 나타낼 수
이고, 다양한 용도에 맞는 최적화된 물성을 나타낼 수 있게 된다.

이에 일 구현예의 수지 조성물은 상술한 성분 외에 열가소성 수지 또는 열가소성 엘라스토머의 다른 고분자 소재나, 충전제 등을 포함할 수 있다. 이때, 일 구현예의 수지 조성물에 포함될 수 있는 고분자 소재의 예로는, 폴리비닐알코올계 수지, 염화비닐계 수지, 폴리아미드계 수지, 폴리올레핀계 수지 또는 폴리에스테르계 수지 등의 다양한 열가소성 수지; 혹은 폴리염화비닐계 엘라스토머, 폴리올레핀계 엘라스토머, 폴리우레탄계 엘라스토머, 폴리에스테르계 엘라스토머, 폴리아미드계 엘라스토머 또는 폴리부타디엔계 엘라스토머 등의 다양한 열가소성 엘라스토머 등을 들 수 있다.

또, 상기 소정의 무기 펄러 외에 수지 조성물에 추가로 포함할 수 있는 충전제는 섬유, 비드, 플레이크, 또는 분말 형태의 유기 또는 무기 충전제로 될 수 있고, 이의 구체적인 예로는, 유리 섬유, 탄소 섬유, 봉소 섬유, 유리 비드, 유리 플레이크, 탈코 또는 탄산칼슘 등의 다양한 강화제/충전제를 들 수 있다.

이러한 충전제의 대표적인 예로서, 유리 섬유를 들 수 있는데, 이러한 유리 섬유의 점에서 의해 일 구현예의 수지 조성물 및 성형품의 기계적 물성을 보강할 수 있다. 이러한 유리 섬유는 그 표면이 실란 커폴링제 등으로 처리되거나 미처리된 형태로 사용될 수도 있다. 다만, 실란 커폴링제로 표면 처리시 상기 충전제와 폴리아릴렌 설폴 아이드의 응집력 또는 상용성이 보다 향상될 수 있다. 또, 상기 유리 섬유는 2 네지 5mm의 평균 입경 및 10 내지 15 μm의 두께를 가질 수 있다. 그리고, 상기 수지 조성물 중 유리 섬유(glass fiber)의 함량은 1 내지 50 중량%으로 될 수 있다.

한편, 상술한 일 구현예의 수지 조성물은, 상술한 각 성분 외에도, 폴리아릴렌 설폴 아이드와 무기 펄러의 상용성 및 계면 접착력을 보다 향상시키기 위하여 상용화제를 더 포함할 수 있다. 이러한 상용화제의 예로는, 실란 화합물, 말레익 안하이드라이드(Maleic anhydride), 티타산업(titanate), 지르콘산염(zirconate), 푸마르산(fumaric acid), 포스페이트(Phosphate), 스테아르산(Stearic Acid), 금속 스테아레이트 (Metal Stearate) 또는 왕스 등을 들 수 있고, 이들 중에 선택된 2종 이상의 혼합물을 사용할 수도
있다. 이러한 상용화제는 수지 조성물 중 0.1 내지 20중량%로 더 포함될 수 있다.

과로, 일 구현예의 수지 조성물에서, 각 무기 필리들은 폴리아릴렌 섬파이드를 포함하는 메트릭스 내에 고르게 분산되고, 서로 표면 접촉하여 구조적, 유기적으로 연결될 필요가 있다. 이러한 요건을 충족하여야, 각 무기 필리 간의 연결 및 상승 작용으로 인해, 일 구현예의 수지 조성물이 보다 향상된 열전도도를 나타낼 수 있다. 이를 위해, 상기 상용화제를 더 포함할 수 있고, 이로 인해, 일 구현예의 수지 조성물이 보다 향상된 열전도도 및 기계적 물성을 나타낼 수 있다.

한편, 일 구현예의 수지 조성물의 제조에서, 보다 높은 열전도도를 얻고자 하는 경우에는, 보다 많은 양의 무기 필리의 첨가가 필요한 경우가 있다. 이러한 경우, 무기 필리의 투입을 위한 별도의 분당 장치가 사용될 수 있다.

그리고, 상기 일 구현예의 수지 조성물은 이의 기계적 물성, 내열성, 내후성 또는 성형성 등을 추가적으로 향상시키기 위해 추가적인 첨가제 및/또는 안정제 등을 더 포함할 수도 있다. 이러한 첨가제 등의 종류는 별달리 한정되지 않는 않지만, 예를 들어, 산화 안정제, 광 안정제(UV 안정제 등), 가소제, 합제, 핵제 또는 충격 보강제 등을 들 수 있으며, 이들 중에 선택된 2종 이상을 더 포함할 수도 있다.

이들 첨가제 중, 산화 안정제로는 1차 또는 2차 산화 방지제를 사용할 수 있고, 보다 구체적인 예로는, 허니드 페놀계, 아미네, 유황계, 또는 인계 산화 방지제를 들 수 있다. 또, 상기 광안정제는 일 구현예의 수지 조성물이 외장제에 적용될 경우 포함될 수 있는데, 특히 UV 안정제가 대표적으로 사용되며, 예를 들면,ベンゾ트리아졸 또는 벤조페놀 등을 들 수 있다.

그리고, 합체는 일 구현예의 수지 조성물을 성형, 가공함에 있어 성형성의 향상을 위해 사용되는 성분으로서, 단화수소계 합제를 대표적으로 사용할 수 있다. 이러한 합제의 사용으로, 수지 조성물과 금형 금속과의 마찰방지나, 금형에서의 탈착 등 이형성의 부여가 가능해진다.

또한, 수지 조성물의 성형 과정에서 결정화 속도 개선을 위해 다양한
핵제를 사용할 수 있고, 이를 통해 압, 사출시 제품의 고화 속도 향상, 제품제조 시간 (Cycle time) 단축 등이 가능해진다.

다만, 위에서 나열된 고분자 소재, 충전제 또는 첨가제 등 외에도, 다른 여러 가지 고분자 소재, 강화재/충전제 또는 첨가제 등이 일 구현에의 수지 조성물에 상호한 폴리아닐렌 설폴아이드와 함께 포함되어 보다 우수한 품성을 나타낼 수 있음을 확인하였다. 보다 구체적으로, 수지 조성물의 기계적 특성, 내연성, 내후성 또는 성형성 등을 보다 향상시키기 위한 다양한 고분자 소재 또는 충전제 등이 별다른 제한없이 일 구현에의 수지 조성물에 포함될 수 있다.

한편, 상술한 일 구현에의 수지 조성물은 주된 수지 성분으로서 주쇄 발단에 카르복시기 (-COOH) 또는 아미기(-NH₂) 등의 반응성 기가 도입된 용융중합형 폴리아닐렌 설폴아이드가 포함될 수 있다. 이러한 폴리아닐렌 설폴아이드는, 예를 들어, 디요오트 방향족 화합물과 황 원소를 포함하는 반응물들을 중합반응시키는 단계; 및 상기 중합반응 단계를 진행하면서, 카르복시기 또는 아미기의 반응성 기를 갖는 화합물을 추가로 첨가하는 단계를 포함하는 방법으로 제조될 수 있다. 또, 상기 폴리아닐렌 설폴아이드에 포함된 디설폴아이드 반복 단위의 함량을 적절한 범위로 조절하기 위해, 예를 들어, 상기 중합반응 단계를 진행하면서, 상기 반응물에 포함된 황 원소 100 중량부에 대해, 0.01 내지 30 중량부의 황 원소를 추가로 가하는 단계를 더 포함할 수도 있다.

이하 이러한 폴리아릴렌 설폴아이드의 제조 방법에 대해 설명하기로 한다.

상기 폴리아릴렌 설폴아이드의 제조 방법에서, 상기 반응성 기를 갖는 화합물을 목표 첨도에 대한 현재 첨도의 비율로 중합반응의 진행 정도를 측정하였을 때, 상기 디요오트 방향족 화합물과 황 원소 간의 중합반응이 약 90% 이상, 혹은 약 90% 이상 100% 미만으로 진행되었을 때(예를 들어, 중합반응 후기에는) 첨가될 수 있다. 상기 중합반응의 진행 정도는 양고자 하는 폴리아릴렌 설폴아이드의 분자량 및 이에 따른 중합 산물의 목표 점도를 설정하고, 중합 반응의 진행 정도에 따른 현재 점도를 측정하여 상기 목표 점도에 대한 현재 점도의 비율로서 측정할 수 있다. 이때, 현재 점도를
측정하는 방법은 반응기 스케일에 따라 당업자에게 자명한 방법으로 결정할 수 있다. 예를 들어, 상대적으로 소형 축합 반응기에서 축합을 진행하는 경우, 반응기에서 축합 반응이 진행 중인 샘플을 취하여 점도계로 측정할 수 있다. 이와 달리, 대형의 연속 축합 반응기에서 축합을 진행하는 경우, 반응기 자체에 설치된 점도계로 연속적, 실시간으로 현재 점도가 자동 측정될 수 있다.

이와 같이, 상기 디오오드 방향족 화합물과 황 원소를 포함하는 반응물을 종합반응시키는 과정에서, 종합반응 후기에 카르복시기 또는 아민기의 반응성 기를 갖는 화합물을 점가하여 반응시간에 따라, 폴리아릴렌 실파이드 주체의 말단기(End Group) 중 적어도 일부에 이러한 반응성기 이 도입된 용융중합형 폴리아릴렌 실파이드를 제조할 수 있다. 특히, 상기 중합반응 후기에 반응성기를 갖는 화합물을 추가로 점가하여, 주체 말단기에 적절한 함량의 반응성을 도입되어 상술했던 다른 고분자 소재 또는 소정의 무기 편리를 포함한 충전제 등과의 우수한 상용성을 나타내면서도, 폴리아릴렌 실파이드 특유의 우수한 물성을 갖는 일 구현성에 폴리아릴렌 실파이드가 효과적으로 제조될 수 있다.

또한, 상기 폴리아릴렌 실파이드의 제조 방법에서, 상기 카르복시기 또는 아민기를 갖는 화합물로는, 카르복시기 또는 아민기를 갖는 일의 모노미(단분자) 형태의 화합물을 사용할 수 있다. 이러한 카르복시기 또는 아민기를 갖는 화합물의 보다 구체적인 예로는, 2-요오드벤조산 (2-Iodobenzoic acid), 3-요오드벤조산 (3-Iodobenzoic acid), 4-요오드벤조산 (4-Iodobenzoic acid), 2,2'-디티오벤조산 (2,2'-Dithiobenzoic acid), 2-요오드아닐린 (2-Iodoaniline), 3-요오드아닐린 (3-Iodoaniline), 4-요오드아닐린 (4-Iodoaniline), 2,2'-디티오아닐린 (2,2'-Dithiodianiline), 또는 4,4'-디티오아닐린 (4,4'-Dithiodianiline) 등을 들 수 있고, 이외에도 다양한 카르복시기 또는 아민기를 갖는 화합물을 사용할 수 있다.

또, 상술한 반응성을 갖는 화합물은 디오오드 방향족 화합물의 약 100 중량부에 대해 약 0.0001 내지 5 중량부, 혹은 약 0.001 내지 3 중량부, 혹은 약 0.01 내지 2 중량부로 점가될 수 있다. 이러한 함량으로 반응성을 갖는 화합물을 점가하여, 주체 말단기에 적절한 함량의 반응성을 도입할
수 있고, 그 결과, 다른 고분자 소재 또는 무기 필러 등의 충진제와의 우수한 상용성을 나타내면서도, 폴리아릴렌 싸피아이드 특유의 우수한 물성을 갖는 폴리아릴렌 싸피아이드가 효과적으로 제조될 수 있다.

또한, 상술한 폴리아릴렌 싸피아이드는 기본적으로 디오오드 방향측 화합물과 황 원소를 포함하는 반응물을 중합반응시키는 방법으로 제조되며, 이에 따라 중독의 맥락 hiểm로 제조된 것에 비해 보다 우수한 기계적 물성을 갖을 수 있다.

이때, 상기 중합반응에 사용 가능한 디오오드 방향측 화합물로는 디오오드화벤젠디(iiodobenzene; DIB), 디오오드화나프탈렌(diiodonaphthalene), 디오오드화비페닐(iiodobiphenyl), 디오오드화비스페닐(diiodobisphenol), 및 디오오드화벤조페놀(diiodobenzopheone)로 이루어진 군에서 선택되는 1종 이상을 들 수 있지만, 이에 한정되지 않고, 이러한 화합물들에 알킬 원자단(alkyl group)이나 술폰 원자단(sulfone group) 등이 차원기로 결합되어 있거나, 방향족기에 산소나 질소 등의 원자가 핵유된 형태의 디오오드 방향족 화합물도 사용될 수 있다. 또, 상기 디오오드 방향족 화합물에는 요오드 원자가 붙은 위치에 따라 여러 가지 요오드 화합물의 이성질체(isomer)가 있는데, 이 중에서도 파라-디오오드벤젠(pDIB), 2,6-디오오도나프탈렌, 또는 p,p'-디오오도비페닐처럼 파라 위치에 요오드가 결합된 화합물이 보다 적합하게 사용될 수 있다.

그러고, 상기 디오오드 방향족 화합물과 반응하는 황 원소의 형태에는 별다른 제한이 없다. 보통 황 원소는 상온에서 원자 8개가 연결된 고리 형태(cyclooctasulfur; S8)로 존재하는데, 이러한 형태가 아니더라도 상업적으로 사용 가능한 고체 또는 액체 상태의 황이라면 별다른 한정 없이 모두 사용할 수 있다.

또, 이미 상술한 바와 같이, 상술한 폴리아릴렌 싸피아이드에 포함된 디سهل파이드 반복 단위의 함량을, 예를 들어, 약 3 중량% 이상의 적절한 범위로 조절하기 위해, 상기 황 원소는 중합반응 단계 중에 추가적으로 가해질 수도 있다. 이렇게 추가적으로 가해지는 황 원소의 양은 적절한 디سهل파이드 반복 단위의 함량을 고려하여 당업자가 적절히 결정할 수 있지만, 예를 들어, 상기 최초 반응물에 포함된 황 원소 100 중량부에 대해,
0.01 내지 30 중량부의 양으로 가해질 수 있다. 이렇게 추가적으로 가해지는
황 원소는, 예를 들어, 중합반응이 약 50 내지 99% 정도 진행되었을 때,
가해질 수 있고, 이와 상술한 반응성기를 갖는 화합물과 별도로 가해지거나,
이와 함께 가해질 수도 있다.

한편, 상기 폴리아릴렌 설파이드의 제조를 위한 반응물에는 디요오드
방향족 화합물과 황 원소 외에도 중합계제, 안정제, 또는 이들의 혼합물로
추가로 포함시킬 수 있는데, 구체적으로 사용 가능한 중합계제로는 1,3-
디요오드-4-니트로벤젠, 미캅토벤조티아졸, 2, 2'-디티오벤조티아졸,
사이클로헥실폴티아졸 솔벤아미드, 및 부틸벤조티아졸 솔벤아미드로
이루어진 군에서 선택되는 1 종 이상을 사용할 수 있으나, 상술한 예에
한정되는 않는다.

그리고, 상기 안정제로는 통상 수지의 중합반응에 사용되는
안정제이던 그 구성의 한정은 없다.

한편, 상기와 같은 중합반응 도중, 중합이 어느 정도 이루어진 시점에
중합증지제를 첨가할 수 있다. 이때 사용 가능한 중합 증지제는 중합되는
고분자가 포함되는 요오드 그룹을 제거하여 중합을 중지 시킬 수 있는
화합물이면, 그 구성의 한정은 없다. 구체적으로는 디페닐 설파이드(diphenyl
sulfide), 디페닐 에테르(diphenyl ether), 디페닐(diphenyl),
벤조페논(benzenophene), 디벤조티아졸 디설파이드(dibenzothiazole
disulfide),
모노요오도아릴화합물(monoiodoarylm compound), 벤조티아졸류(benzothiazole)류,
벤조티아졸솔법인미드(benzothiazolesulfenamide)류,
티우람(mercaptobenzothiazole), 2,2'-디티오비스벤조티아졸(2,2'-dithiobisbenzothiazole), N-
시클로헥실폴티아졸-2-솔법인미드(N-cyclohexylbenzothiazole-2-sulfenamide), 2-
모르필로티오벤조티아졸(2-morpholinothiobenzothiazole), N,N-
디시클로헥실폴티아졸-2-솔법인미드(N,N-dicyclohexylbenzothiazole-2-
sulfenamide), 테트라메틸티우람 모노닐파이드(tetramethylthiuram monosulfide),
테트라메틸티우람 디닐파이드(tetramethylthiuram disulfide), 아연
디메틸디티오타바메이트(Zinc dimethylthiocarbamate), 아연
디에틸디티오타바메이트(Zinc diethylthiocarbamate) 및 디페닐 디
성파이드(diphenyl disulfide)로 이루어지는 군에서 선택되는 1종 이상일 수
있다.

한편, 종합증지제의 투여 시점은 최종 종합시키고자 하는 폴리아릴렌
성파이드의 분자량을 고려하여 그 시기를 결정할 수 있다. 예를 들어, 초기
반응물 내에 포함된 디요오드 방향족 화합물이 70 내지 100 중량%이
반응되어 소진된 시점에서 투여할 수 있다.

그리고, 상기와 같은 종합반응은 디요오드 방향족 화합물과 황 원소를
포함하는 반응물의 중합이 개시될 수 있는 조건이면 어떠한 조건에서도
이행될 수 있다. 예를 들어, 상기 종합반응은 온도 감압 반응 조건에서
이행될 수 있는데, 이 경우, 온도 약 180 내지 250℃ 및 압력 약 50 내지
450 torr의 초기 반응조건에서 온도 상승 및 압력 강하를 수행하여 최종
반응조건인 온도 약 270 내지 350 ℃ 및 압력 약 0.001 내지 20 torr로
변화시키며, 약 1 내지 30시간 동안 진행할 수 있다. 보다 구체적인 예로서,
최종 반응조건은 온도 약 280 내지 300℃ 및 압력 약 0.1내지 0.5 torr로 하여
종합반응을 진행할 수 있다.

한편, 상술한 폴리아릴렌 성파이드의 제조 방법은 상기 종합반응 전에,
디요오드 방향족 화합물과 황 원소를 포함하는 반응물을 용융 혼합하는
단계를 추가로 포함할 수 있다. 이와 같은 용융 혼합은 상술한 반응물들이
모두 용융 혼합될 수 있는 조건이면 그 구성의 한정은 없으나, 예를 들어,
약 130 ℃ 내지 200 ℃, 혹은 약 160 ℃ 내지 190 ℃의 온도에서 진행할 수
있다.

이와 같이 종합반응 전에 용융 혼합 단계를 진행하여, 추후 행해지는
종합반응을 보다 용이하게 진행할 수 있다.

그리고, 상술한 폴리아릴렌 성파이드의 제조 방법에 있어서,
종합반응은 니트로벤젠계 측매의 존재 하에서 진행될 수 있다. 또한, 상술한
바와 같이 종합반응 전에 용융혼합 단계를 거치는 경우, 상기 측매는
용용혼합 단계에서 추가될 수 있다. 니트로벤젠계 축매의 종류로는 1,3-디오드-4-니트로벤젠, 또는 1-요오드-4-니트로벤젠 등을 들 수 있으나, 상술한 예에 한정되는 것은 아니다.

상술한 제조 방법으로, 주재말단에 소정의 반응성기가 도입된 용용중합형 플리아릴렌 설파이드가 얻어질 수 있고, 이러한 플리아릴렌 설파이드는 다른 고분자 소재 또는 무기 패러 등의 충전체 등과의 우수한 상용성을 나타내므로, 이를 이용해 우수한 열전도도 및 기계적 물성을 포함한 제반 물성을 나타내는 일 구현예의 수지 조성물을 얻을 수 있게 된다.

한편, 발명의 다른 구현예에 따르면, 상술한 일 구현예의 플리아릴렌 설파이드계 수지 조성물을 포함하는 성형품 및 이의 제조 방법이 제공된다. 상기 성형품은 상기 일 구현예의 수지 조성물을 압출하는 단계를 포함하는 방법으로 제조될 수 있다.

이하 이러한 성형품 및 제조 방법에 대해 보다 구체적으로 설명하기로 한다. 다만, 상기 성형품에 포함될 수 있는 성분의 종류 및 함량에 대해서는 이미 일 구현예의 수지 조성물에 대해 설명한 바가 있으므로, 이에 대한 추가적인 구체적인 설명은 생략하기로 한다.

다른 구현예의 성형품은 선택적으로 소정의 반응성기가 도입된 용용중합형 플리아릴렌 설파이드, 소정의 무기 패러와, 선택적으로 다른 첨가제 등을 포함하게 되는데, 이들 각 성분을 혼합하여 일 구현예의 수지 조성물을 얻은 후 이를 압출하여 제조될 수 있다.

또한, 상술한 각 성분을 포함하는 수지 조성물을 혼합 및 압출하여 성형품을 제조함에 있어서는, 예를 들어, 이축 압출기 (Twin Screw Extruder)를 사용할 수 있으며, 이러한 이축 압출기의 직경비 (L/D)는 약 30에서 50 내외로 될 수 있다.

일 예에 따르면, 먼저 소량 첨가되는 기타 첨가제 등을 수피믹서 등의 혼합기로 플리아릴렌 설파이드와 사전에 혼합할 수 있고, 사전 혼합된 1차 조성물을 2축 압출기의 주 투입구를 통해 투입할 수 있다. 또한, 소정의 무기 패러 등은 압출기의 측면에 위치한 투입구(side feeder)를 통해 별도로 투입할 수 있다. 이때, 측면 투입하는 위치는 압출기 전체 베릴의 배출구
측으로부터 대략 1/3~1/2 지점으로 될 수 있다. 이렇게 하면, 상기 무기 필러 등의 압출기 내에서 압출기 스크루에 의한 회전 및 마찰에 의해 깨지는 것이 방지할 수 있다.

이러한 방식으로 일 구현에의 수지 조성물의 각 성분을 혼합한 후, 이축 압출기로 압출함으로서, 다른 구현에의 성형품을 얻을 수 있다.

이러한 다른 구현에의 성형품은 필름, 시트, 또는 섬유 등의 다양한 형태로 될 수 있다. 또, 상기 성형품은 사출 성형품, 압출 성형품, 또는 불로우 성형품일 수 있다. 사출 성형하는 경우의 금형 온도는, 결정화의 관점에서, 약 50 ℃ 이상, 약 60 ℃ 이상, 혹은 약 80 ℃ 이상으로 될 수 있고, 시험편의 변형의 관점에서, 약 190 ℃ 이하, 혹은 약 170 ℃ 이하, 혹은 약 160 ℃ 이하로 될 수 있다.

그리고, 상기 성형품이 필름 또는 시트 형태로 되는 경우, 미연신, 1축 연신, 2축 연신 등의 각종 필름 또는 시트로 제조할 수 있다. 섬유로서는, 미연신사, 연신사, 또는 초연신사 등 각종 섬유로 하고, 직물, 편품, 부직포(스판본드, 멜트블로우, 스테이플), 로프, 또는 네트로서 이용할 수 있다.

이러한 성형품은 컴퓨터 부속품 등의 전기·전자 부품, 건축 부재, 자동차 부품, 기계 부품, 일용품 또는 화학물질이 접촉하는 부분의 코팅, 산업용 내화학성 섬유 등으로서 이용할 수 있다. 특히, 상기 성형품은 보다 우수한 열 전도도 및 기계적 물성을 나타낼 수 있으므로, 전자제품 등에 적용되는 고방열 플라스틱으로서 매우 적합하게 적용될 수 있다.

본 발명에 있어서 상기 기재된 내용 이외의 사항은 필요에 따라 가감이 가능한 것이므로, 본 발명에서는 특별히 한정하지 아니한다.

【발명의 효과】

본 발명은 다른 고분자 소재나 충전제 등과의 보다 향상된 상용성을 가지며, 보다 높은 열전도도와 함께 우수한 인장강도 또는 충격 강도 등의 기계적 물성을 나타내는 플라미들렌 설탕이드계 수지 조성물 및 이로부터 제조되는 수지 성형품을 제공할 수 있다.

이러한 수지 조성물은 전자제품의 고방열 플라스틱으로 매우 적합하게 적용될 수 있으며, 이를 포함한 각 용도에 최적화된 우수한 물성을 나타낼
수 있으면서도, 폴리아릴렌 성과이드 특유의 우수한 물성을 나타낼 수 있다. 이는 수지 조성물의 각 성분의 상용성이 향상되어 각 성분의 물성이 상승 효과를 나타낼 수 있기 때문으로 보인다.

【발명을 실시하기 위한 구체적인 내용】

5. 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.

합성예 1: 카르복시기 또는 아민기를 주쇄 발단에 포함하는 폴리아릴렌 성과이드의 합성

반응기의 내온 측정이 가능한 썸머플, 그리고 질소 촉진 및 진공을 결 수 있는 진공라인과 부착된 5L 반응기에 파라디오오드벤젠(p-DIB) 5130g, 황 450g, 반응개시제로 1,3-디요오드-4-니트로벤젠 4g을 포함한 반응물을 180℃로 가열하여 완전히 용융 및 혼합한 후, 220℃ 및 350Torr의 초기 반응 조건에서 시작하여, 최종 반응온도는 300℃, 압력은 1Torr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하면서 중합반응을 진행하였다. 상기 중합반응이 80% 진행되었을 때(이러한 중합반응의 진행 정도는 “(현재점도/목표점도)*100%”의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.), 중합중지제로 2,2'-디티오기스텐조트리아졸을 25g 첨가하고 1시간 반응을 진행하였다. 이어서, 상기 중합반응이 90% 진행되었을 때, 4-Iodoaniline을 51g 첨가하고 10분 동안 질소 본위기 하에서 반응을 진행한 후, 0.5Torr 이하로 서서히 진공을 가하여 1시간 반응을 진행한 후 종료하여, 카르복시기 또는 아민기를 주쇄 발단에 포함하는 폴리아릴렌 성과이드 수지를 합성하였다. 반응이 완료된 수지를 소형 스톤드 커터기를 사용하여 필렛 형태로 제조하였다.

이러한 합성예 1의 폴리아릴렌 성과이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3300 내지 3500cm⁻¹의 아민기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1500 내지 1600cm⁻¹에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 3300
내지 3500cm⁻¹ 피크의 상대적 높이 강도는 약 1.4%임이 확인되었다.

합성예2: 카르복시기 또는 아민기를 갖지 않는 폴리아릴렌
셀파이드의 합성

반응기의 내온 측정이 가능한 셔모커버, 그리고 질소 충전 및 진공을
جل 수 있는 진공라인이 부착된 5L 반응기에 파라디오오드벤젠(p-DIB)
5130g, 황 450g, 반응개시제로 1,3-디오오드-4-니트로벤젠 4g을 포함한 반응물을
180℃로 가열하여 완전히 용융 및 혼합한 후, 220℃ 및 350Torr의 초기 반응
조건에서 시작하여, 최종 반응온도는 300℃, 압력은 1Torr 이하까지
단계적으로 온도 상승 및 압력 강하를 수행하면서 중합반응을 진행하였다.
상기 중합반응이 80% 진행되었을 때(이러한 중합반응의 진행 정도는
“(현재점도/목표점도)*100%”의 식으로, 목표 점도에 대한 현재 점도의 상대
비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로
측정하였다.), 중합종지제로 2,2’-디티오플로벤조트리아졸을 25g 첨가하고
10분 동안 질소 분위기 하에서 반응을 진행한 후, 0.5Torr 이하로 서서히
진공을 가하여 목표점도에 도달한 후 반응을 종료하여, 카르복시기 또는
아민기를 주쇄 밀도에 포함하지 않은 폴리아릴렌 셀파이드 수지를
함성하였다. 반응이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펌렛
형태로 제조하였다.

이러한 비교예 1의 폴리아릴렌 셀파이드 수지를 FT-IR로 분석하여
스펙트럼 상에서, 약 1600 내지 1800cm⁻¹ 또는 약 3300 내지 3500cm⁻¹의
카르복시기 또는 아민기 피크가 없음을 확인하였다.

[실시예 및 비교예: 폴리아릴렌 셀파이드 계 수지 조성물의 제조]

하지 표 1 및 표 2의 조성을 갖는 폴리아릴렌 셀파이드 계 수지
조성물을 다음의 방법으로 제조하였다.

실시예 1 내지 6 및 비교예 1 내지 4: 폴리아릴렌 셀파이드 계 수지
조성물의 제조

하기 표 1 및 2의 조성에 따라, 산화방지제, PPS 수지, 상용화제 및
HDPE를 수퍼믹서로 미리 균일하게 혼합하고, 이렇게 혼합된 1차 조성물을 2축 압출기 (40mm Extruder, L/D : 40)의 Hopper로 자동 계량 투입하였다.

한편, 카본파이브, 절화봉소(BN), 그래프트, 향화아연, 산화아연 및 산화마그네슘 등의 무기 펌러리를 포함한 총제를 각 조성에 따라 계량하여, 사전에 수퍼믹서나 블렌더를 이용하여 균일하게 혼합하고, 이축 압출기의 앞에서 1차 Side Feeder를 이용하여 측면 투입하였다. 무기 펌러리의 함량을 일정하게 투입하기 위해서, 별도의 정량 계량 공급설비를 이용하여 Side Feeder에 무기 펌러리를 공급하고, Side Feeder를 이용하여 이축 압출기의 내부로 무기 펌러리를 투입하였다.

이렇게 투입된 무기 펌러리는 이축 압출기내에 있는 혼합 (Kneading)스크류에 의해 1차 조성물과 균일하게 혼합되었다.

2차 Side Feeder를 이용하여 유효 섬유를 투입한 후, 혼합 및 휘발성 개수를 감압제거하고, 방열 Compound 스트래드를 Chip Cutting기를 사용하여 펌렛 (Pellet) 형태로 제조하였다.

[표 1] 실시예의 수지 조성물

<table>
<thead>
<tr>
<th>항 목</th>
<th>실시예1</th>
<th>실시예2</th>
<th>실시예3</th>
<th>실시예4</th>
<th>실시예5</th>
<th>실시예6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPS-1</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>31.8</td>
<td>30.8</td>
<td>34.8</td>
</tr>
<tr>
<td>PPS-2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BN-1</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>BN-2</td>
<td>22</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>BN-3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZnS</td>
<td>5</td>
<td>15</td>
<td>-</td>
<td>5</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>MgO</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZnO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Graphite 1</td>
<td>-</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Graphite 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Graphite 3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Carbon fiber</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glass fiber</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>상용화제</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>항 목</td>
<td>비교예 1</td>
<td>비교예 2</td>
<td>비교예 3</td>
<td>비교예 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPS-1</td>
<td>41.8</td>
<td>32.8</td>
<td>32.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPS-2</td>
<td></td>
<td></td>
<td></td>
<td>41.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BN-1</td>
<td>7</td>
<td>5</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BN-2</td>
<td>7</td>
<td>10</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BN-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnS</td>
<td>15</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnO</td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphite 1</td>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphite 2</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphite 3</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass fiber</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>상용화제</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>산화방지제</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[표 3] 실시예 및 비교예에서 사용한 각 성분

<table>
<thead>
<tr>
<th>항 목</th>
<th>특 성</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPS</td>
<td>PPS-1(합성예1: MV:600, 알단기 치환), PPS-2(합성예2: MV:600, 알단기 치환)</td>
</tr>
<tr>
<td>BN</td>
<td>BN-1(평균입경:5μm, 스테아르산 표면코팅),BN-2(평균입경:20μm, 스테아르산 표면코팅),BN-3(평균입경:5μm, non-coating)</td>
</tr>
<tr>
<td>ZnS</td>
<td>평균입경:0.5~0.7μm, ZnS합량(96%이상), mossc도:3</td>
</tr>
<tr>
<td>MgO</td>
<td>평균입경: 3.5 μm, 비중: 3.3, 순도 99.6%이상</td>
</tr>
<tr>
<td>ZnO</td>
<td>평균입경: 0.3~0.8 μm, 비중 5.4, 순도 99.5%</td>
</tr>
<tr>
<td>Graphite</td>
<td>G/P-1(Expanded graphite,ash: 0.3%), G/P-2: (Expanded graphite, ash: 0.3%), G/P-3:천연흑연</td>
</tr>
<tr>
<td>Glass Fiber</td>
<td>두께:13μm,길이3mm</td>
</tr>
<tr>
<td>HDPE</td>
<td>MI:5(190℃,2.16kg)</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>상용화제</td>
<td>Epoxy silane(분자량 278)</td>
</tr>
</tbody>
</table>

[실험 예]
상기 실험에 및 비교에에서 얻어진 수지 조성물에 대하여 하기 물성을 측정하였다. 참고로, 이하의 물성은 이축 압출기를 통하여 각 수지 조성물에 제조하고 그 물성 샘플 및 약 1.2mm 크기의 평판 샘플을 제조해 상온(23℃) 측정한 결과를 기준으로 하는 것이다.

1. 열전도도(ASTM D1461): 네취(Netzsch, LFA 427) 레이저플래쉬 장치를 이용하여 실시예 및 비교예에서 얻어진 수지 조성물 샘플의 열용량 및 열확산율을 측정하고, 밀도구배관을 이용하여 밀도를 측정한 후, 열용량, 열확산율 및 밀도를 곱하여 열전도율을 계산하였다.

2. 체적저항 (전기 전도도) (ASTM D257): 각 수지 조성물 샘플의 전기전도도는 ASTM D257에 따라 체적저항을 측정해 평가하였다.

 일반적으로 10^12 Ω.cm 이면 절연 Type (전기가 통하지 않는) 소재이며, 10^6 Ω.cm 이하인 경우 전도-type (전기가 통하는) 소재로 지정될 수 있다.

체적저항(Volume Resistance, Ω.cm)은 주어진 순수한 물질의 고유저항으로, 측정 표면의 저항과 면적 그리고 물체의 두께를 고려한 값이다. 일정 두께의 평판 샘플의 상, 하부에 전극을 배치하고 저항을 측정하여 다음과 같은 식에 의해 구하였다.

\[\text{체적저항} = \frac{A}{t} \cdot R_m \ (\Omega \cdot \text{cm}) \]

A: 전극의 접촉 단면적(cm^2), t: 측정물의 두께(cm), R_m: 측정저항(Ω)

3. 인장강도: ASTM D 638법에 따라, 실시예 및 비교예에서 얻어진 수지 조성물 샘플의 인장강도를 측정하였다.

4. 충격강도(Izod): ASTM D 256법에 따라, 실시예 및 비교예에서 얻어진 수지 조성물 샘플의 충격 강도를 측정하였다.

하기 측정 결과를 표4 및 표5에 나타내었다.
[표 4] 실시예의 수지 조성물에 대한 실험 결과

<table>
<thead>
<tr>
<th>항 목</th>
<th>단위</th>
<th>실시예1</th>
<th>실시예2</th>
<th>실시예3</th>
<th>실시예4</th>
<th>실시예5</th>
<th>실시예6</th>
</tr>
</thead>
<tbody>
<tr>
<td>열전도도</td>
<td>W/mK</td>
<td>6.7</td>
<td>6.2</td>
<td>5.8</td>
<td>6.0</td>
<td>8.8</td>
<td>10.2</td>
</tr>
<tr>
<td>전기전도</td>
<td>Ohm.cm</td>
<td>1.5E+13</td>
<td>1.2E+13</td>
<td>1.1E+13</td>
<td>1.1E+13</td>
<td>1.0E+14</td>
<td>1.0E+3</td>
</tr>
<tr>
<td>인장강도</td>
<td>kgf/cm²</td>
<td>800</td>
<td>950</td>
<td>830</td>
<td>750</td>
<td>1050</td>
<td>1130</td>
</tr>
<tr>
<td>충격강도</td>
<td>J/m</td>
<td>54</td>
<td>52</td>
<td>53</td>
<td>58</td>
<td>53</td>
<td>52</td>
</tr>
<tr>
<td>TYPE</td>
<td></td>
<td>절연</td>
<td>절연</td>
<td>절연</td>
<td>절연</td>
<td>절연</td>
<td>절연</td>
</tr>
<tr>
<td>COLOR</td>
<td></td>
<td>BLACK</td>
<td>BLACK</td>
<td>BLACK</td>
<td>BLACK</td>
<td>BLACK</td>
<td>BLACK</td>
</tr>
</tbody>
</table>

[표 5] 비교예의 수지 조성물에 대한 실험 결과

<table>
<thead>
<tr>
<th>항 목</th>
<th>단위</th>
<th>비교예1</th>
<th>비교예2</th>
<th>비교예3</th>
<th>비교예4</th>
</tr>
</thead>
<tbody>
<tr>
<td>열전도도</td>
<td>W/mK</td>
<td>2.5</td>
<td>1.8</td>
<td>2.7</td>
<td>3.1</td>
</tr>
<tr>
<td>전기전도</td>
<td>Ohm.cm</td>
<td>1.0E+5</td>
<td>1.0E+12</td>
<td>1.0E+12</td>
<td>1.0E+12</td>
</tr>
<tr>
<td>인장강도</td>
<td>kgf/cm²</td>
<td>620</td>
<td>420</td>
<td>420</td>
<td>515</td>
</tr>
<tr>
<td>충격강도</td>
<td>J/m</td>
<td>32</td>
<td>28</td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>TYPE</td>
<td></td>
<td>전도</td>
<td>절연</td>
<td>절연</td>
<td>절연</td>
</tr>
<tr>
<td>COLOR</td>
<td></td>
<td>BLACK</td>
<td>WHITE</td>
<td>BLACK</td>
<td>BLACK</td>
</tr>
</tbody>
</table>

상기 표 4를 참고하면, 소정의 반응성기가 도입된 PPS와 함께, 3종의 무기 필러를 함께 포함하는 실시예 1 내지 6의 수지 조성물은 우수한 열전도도, 특히, 5W/mK 이상의 고방열 플라스틱으로 적용되기에 적합한 뚜렷한 열전도도를 나타냄이 확인되었다. 또, 이러한 수지 조성물은 인장강도 및 충격강도 등의 기계적 물성에 있어서도, 우수한 특성을 나타내는 절연 TYPE의 열전도성 소지임이 확인되었다.

이러한 실험이 내지 6의 우수한 물성은 소정의 무기 필러가 3종 함께 사용됨에 따른 상승 작용에 따른 것으로 보이며, 더 나아가, 무기 필러와의 상용성이 우수한 반응성기가 도입된 PPS의 사용에 따른 것으로 예측된다. 또, 서로 다른 평균 입경을 갖는 표면 코팅된 절화 봉소의 2종 이상을 함께 사용함에 따라, 보다 우수한 물성의 발현이 가능해진 것으로 예측된다.
이에 비해, 팽창 흑연(expandable graphite) 대신 천연 흑연을 사용한 비교에 1이나, 팽창 흑연 또는 질화 붕소를 포함하지 않는 비교에 2 및 3의 수지 조성물의 경우, 무기 펄리의 전체 함량이 실시에와 유사한 범위인 경우에도, 열전도도 및 기계적 물성이 열악하게 나타남이 확인되었다. 또, 황화 아연, 산화마그네슘 및 산화아연을 전혀 포함하지 않는 비교에 4의 수지 조성물 역시 열전도도 및 기계적 물성이 열악하게 나타남이 확인되었다.
【특허청구범위】

【청구항 1】
폴리아릴렌 설탕화이드와,
팽창 흡연(expandable graphite), 질화 황소; 및 황화 아연, 산화마그네슘
5 및 산화아연으로 이루어진 군에서 선택된 1종 이상을 포함한 무기 필러를
포함하는 폴리아릴렌 설탕화이드계 수지 조성물.

【청구항 2】
제 1 항에 있어서, 상기 폴리아릴렌 설탕화이드는 주쇄의 반복 단위
10 중에 디설탕화이드 반복 단위를 포함하는 폴리아릴렌 설탕화이드계 수지 조성물.

【청구항 3】
제 1 항에 있어서, 상기 디설탕화이드 반복 단위는 전체 폴리아릴렌
설탕화이드에 대해 3 중량% 이하로 포함되는 폴리아릴렌 설탕화이드계 수지
15 조성물.

【청구항 4】
제 1 항에 있어서, 상기 폴리아릴렌 설탕화이드는 수평균 분자량이 5,000
20 내지 50,000인 폴리아릴렌 설탕화이드계 수지 조성물.

【청구항 5】
제 1 항에 있어서, 회전 원판 점도계로 300℃에서 측정한 상기
25 폴리아릴렌 설탕화이드의 용융점도가 10 내지 50,000 poise인 폴리아릴렌
설탕화이드계 수지 조성물.

【청구항 6】
제 1 항에 있어서, 상기 폴리아릴렌 설탕화이드 주쇄의 말단기(End
Group) 중 적어도 일부에 카르복시기 (-COOH) 또는 아민기(-NH2)가
30 도입되어 있는 폴리아릴렌 설탕화이드계 수지 조성물.
【청구항 7】
제 6 항에 있어서, 상기 폴리아릴렌 실험자는 FT-IR 스펜트럼 상에서, 1600 내지 1800 cm\(^{-1}\) 또는 3300 내지 3500 cm\(^{-1}\)의 피크를 나타내는 폴리아릴렌 실험자의 수지 조성물.

【청구항 8】
제 1 항에 있어서, 상기 무기 필리기는 폴리아릴렌 실험자의 내에서 서로 표면 접촉하여 구조적으로 연결되어 있는 폴리아릴렌 실험자의 수지 조성물.

【청구항 9】
제 1 항에 있어서, 상기 무기 필리기는 표면이 유기 코팅 처리되어 있는 폴리아릴렌 실험자의 수지 조성물.

【청구항 10】
제 1 항에 있어서, 상기 평창 희연은 1 내지 1000 μm의 평균 입경 및 50 이상의 면평비(Aspect ratio)를 갖는 1종 이상의 평창 희연을 포함하는 폴리아릴렌 실험자의 수지 조성물.

【청구항 11】
제 1 항에 있어서, 상기 평창 희연은 육방정계(hexagonal) 결정 구조를 갖는 폴리아릴렌 실험자의 수지 조성물.

【청구항 12】
제 1 항에 있어서, 상기 질화 봉소는 5 내지 1000 μm의 평균 입경 및 50 내지 300의 편평비(Aspect ratio)를 갖는 육방정계(hexagonal) 질화 봉소를 1종 이상 포함하는 폴리아릴렌 실험자의 수지 조성물.

【청구항 13】
제 12 항에 있어서, 상기 질화 봉소는 서로 다른 평균 입경을 갖는
2종 이상의 절화 봉소를 포함하는 폴리아릴렌 설펜라이드계 조성물.

【청구항 14】

제 1 항에 있어서,
5 폴리아릴렌 설펜라이드 10 내지 80중량%,
평창 흑연 1 내지 50 중량%,
절화 봉소 1 내지 50중량%, 및
황화 아연, 산화마그네슘 및 산화아연으로 이루어진 균에서 선택된
1종 이상의 1 내지 50중량%를 포함하는 폴리아릴렌 설펜라이드계 수지 조성물.

【청구항 15】

제 1 항에 있어서, 열가소성 수지, 열가소성 엘라스토머 또는 총전제를
더 포함하는 폴리아릴렌 설펜라이드계 수지 조성물.

【청구항 16】

제 1 항에 있어서, 실란 화합물, 말레익 안하이드라이드(Maleic anhydride), 티타산 염(titanate), 지르콘산염(zirconate), 푸마르산(fumaric acid), 포스페이트(Phosphate), 스테아르산 (Stearic Acid), 금속 스테아레이트 (Metal Stearate) 및 황소로 이루어진 균에서 선택된 1종 이상의 상용화제의 0.1 내지
20중량%를 더 포함하는 폴리아릴렌 설펜라이드계 수지 조성물.

【청구항 17】

제 1 항에 있어서, 유리 섬유(glass fiber)의 1 내지 50 중량%를 더
포함하는 폴리아릴렌 설펜라이드계 수지 조성물.

【청구항 18】

제 17 항에 있어서, 상기 유리 섬유가 2 내지 5mm의 평균 입경 및 10
내지 15 μm의 두께를 갖는 폴리아릴렌 설펜라이드계 수지 조성물.

【청구항 19】
제 1 항의 폴리아릴렌실파이드계 수지 조성물을 포함하는 성형품.

【청구항 20】
제 19 항에 있어서, 필름, 시트, 또는 섬유 형태인 성형품.

【청구항 21】
제 19 항에 있어서, 자동차 내장 부품, 자동차 외장 부품, 전기 부품, 전자 부품 또는 산업재로 사용되는 성형품.
A. CLASSIFICATION OF SUBJECT MATTER

C08L 81/02(2006.01)i, C08K 3/04(2006.01)i, C08K 3/38(2006.01)i, C08K 3/22(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C08L 81/02; C08K 7/00; C08G 75/02; C08L 81/06; C08K 7/02; C08K 5/24; C08K 7/12; C08L 71/12; C08G 75/14; C03C 25/02; B32B 27/00; C08K 3/22; C08K 3/04; C08K 3/38

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: polyarylene sulfide, expandable graphite, boron nitride, inorganic filler, zinc sulfide, magnesium oxide, zinc oxide, compatibility

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5500471 A (UOTA, K.) 19 March 1996 See abstract; columns 1-5; and claim 1.</td>
<td>1,4-5,8-21</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>6-7</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>2-3</td>
</tr>
<tr>
<td>Y</td>
<td>KR 10-2006-0074919 A (DAINIPPON INK AND CHEMICALS, INCORPORATED) 03 July 2006 See abstract; pages 2, 9; and claim 1.</td>
<td>6-7</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>1-5,8-21</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2001-0041518 A (PGP INDUSTRIES OHIO, INC.) 25 May 2001 See abstract; and pages 4-10.</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-1999-0077115 A (TORAY INDUSTRIES, INC.) 25 October 1999 See abstract; pages 4-6; and claims 1, 2.</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-0771181 B1 (CHEIL INDUSTRIES INC.) 29 October 2007 See abstract; paragraphs [0046]-[0054]; and claims 1, 6-8.</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2010-0075227 A (CHEIL INDUSTRIES INC.) 02 July 2010 See abstract; claims 1, 5-8.</td>
<td>1-21</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C. ** See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "F" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search
24 SEPTEMBER 2013 (24.09.2013)

Date of mailing of the international search report
25 SEPTEMBER 2013 (25.09.2013)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Daejeon, 389 Seomsa-ro, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2002-188006 A (SUMITOMO BAKE LITE CO LTD) 05 July 2002 See abstract; paragraphs [0010]-[0012] and claim 1.</td>
<td>1-21</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0557088 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 05-230370 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3157582 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0900817 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0900817 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11-080356 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11-286548 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3897140 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 06001934 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1999-27873 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1999-27874 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1999-27889 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1999-27930 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1999-28765 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1999-63914 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1999-64975 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2000-63831 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2000-63851 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2000-63862 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-45851 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-47491 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-47564 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-49257 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-50874 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-52911 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-52915 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-52916 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2320746 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2321663 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2321722 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2322155 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2322156 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2322159 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2348027 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2346111 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2380594 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2380975 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2381171 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2382188 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2403135 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 100366563 C0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 100387642 C0</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>CN 100475882 C</td>
<td>08/04/2009</td>
<td></td>
</tr>
<tr>
<td>CN 100486906 C</td>
<td>20/05/2009</td>
<td></td>
</tr>
<tr>
<td>CN 101117275 A</td>
<td>06/02/2008</td>
<td></td>
</tr>
<tr>
<td>CN 101117275 B</td>
<td>24/10/2012</td>
<td></td>
</tr>
<tr>
<td>CN 101117275 C0</td>
<td>06/02/2008</td>
<td></td>
</tr>
<tr>
<td>CN 1155530 C0</td>
<td>30/06/2004</td>
<td></td>
</tr>
<tr>
<td>CN 1155531 C0</td>
<td>30/06/2004</td>
<td></td>
</tr>
<tr>
<td>CN 1229296 C0</td>
<td>30/11/2005</td>
<td></td>
</tr>
<tr>
<td>CN 1291963 A0</td>
<td>18/04/2001</td>
<td></td>
</tr>
<tr>
<td>CN 1295538 A0</td>
<td>16/05/2001</td>
<td></td>
</tr>
<tr>
<td>CN 1295539 A0</td>
<td>16/05/2001</td>
<td></td>
</tr>
<tr>
<td>CN 1295540 A0</td>
<td>16/05/2001</td>
<td></td>
</tr>
<tr>
<td>CN 1295541 A0</td>
<td>16/05/2001</td>
<td></td>
</tr>
<tr>
<td>CN 1295542 A0</td>
<td>16/05/2001</td>
<td></td>
</tr>
<tr>
<td>CN 1329580 A0</td>
<td>02/01/2002</td>
<td></td>
</tr>
<tr>
<td>CN 1332700 A0</td>
<td>23/01/2002</td>
<td></td>
</tr>
<tr>
<td>CN 1402685 A0</td>
<td>12/03/2003</td>
<td></td>
</tr>
<tr>
<td>CN 1402753 A0</td>
<td>12/03/2003</td>
<td></td>
</tr>
<tr>
<td>CN 1428905 A0</td>
<td>28/05/2003</td>
<td></td>
</tr>
<tr>
<td>CN 1437628 A</td>
<td>20/08/2003</td>
<td></td>
</tr>
<tr>
<td>CN 1437628 C0</td>
<td>08/02/2006</td>
<td></td>
</tr>
<tr>
<td>CN 1726249 A</td>
<td>25/01/2006</td>
<td></td>
</tr>
<tr>
<td>CN 1726249 C0</td>
<td>25/01/2006</td>
<td></td>
</tr>
<tr>
<td>CN 1946647 A</td>
<td>11/04/2007</td>
<td></td>
</tr>
<tr>
<td>CN 1946647 B</td>
<td>28/12/2011</td>
<td></td>
</tr>
<tr>
<td>CN 1946647 C0</td>
<td>11/04/2007</td>
<td></td>
</tr>
<tr>
<td>EP 1060141 B1</td>
<td>30/10/2002</td>
<td></td>
</tr>
<tr>
<td>EP 1060142 B1</td>
<td>14/05/2003</td>
<td></td>
</tr>
<tr>
<td>EP 1060143 B1</td>
<td>05/12/2001</td>
<td></td>
</tr>
<tr>
<td>EP 1060144 A1</td>
<td>14/05/2002</td>
<td></td>
</tr>
<tr>
<td>EP 1060145 B1</td>
<td>05/12/2001</td>
<td></td>
</tr>
<tr>
<td>EP 1065224 A1</td>
<td>10/01/2001</td>
<td></td>
</tr>
<tr>
<td>EP 1065224 B1</td>
<td>12/12/2001</td>
<td></td>
</tr>
<tr>
<td>EP 1124769 A1</td>
<td>22/08/2001</td>
<td></td>
</tr>
<tr>
<td>EP 1124770 A1</td>
<td>22/08/2001</td>
<td></td>
</tr>
<tr>
<td>EP 1204613 A1</td>
<td>15/05/2002</td>
<td></td>
</tr>
<tr>
<td>EP 1204618 A1</td>
<td>15/05/2002</td>
<td></td>
</tr>
<tr>
<td>EP 1204697 A1</td>
<td>15/05/2002</td>
<td></td>
</tr>
<tr>
<td>EP 1204688 A1</td>
<td>15/05/2002</td>
<td></td>
</tr>
<tr>
<td>EP 1272550 A1</td>
<td>12/05/2004</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>JP 2002-505389 A</td>
<td>19/02/2002</td>
<td></td>
</tr>
<tr>
<td>JP 2002-527538 A</td>
<td>27/08/2002</td>
<td></td>
</tr>
<tr>
<td>JP 2004-156197 A</td>
<td>03/06/2004</td>
<td></td>
</tr>
<tr>
<td>JP 2004-500488 A</td>
<td>08/01/2004</td>
<td></td>
</tr>
<tr>
<td>JP 2004-513858 A</td>
<td>13/05/2004</td>
<td></td>
</tr>
<tr>
<td>JP 2004-513976 A</td>
<td>13/05/2004</td>
<td></td>
</tr>
<tr>
<td>JP 2011-102459 A</td>
<td>26/05/2011</td>
<td></td>
</tr>
<tr>
<td>JP 3537394 B2</td>
<td>14/06/2004</td>
<td></td>
</tr>
<tr>
<td>JP 5001658 B2</td>
<td>15/08/2012</td>
<td></td>
</tr>
<tr>
<td>KR 10-0398177 B1</td>
<td>10/10/2003</td>
<td></td>
</tr>
<tr>
<td>KR 10-0398178 B1</td>
<td>10/10/2003</td>
<td></td>
</tr>
<tr>
<td>TW 230698 A</td>
<td>11/04/2005</td>
<td></td>
</tr>
<tr>
<td>TW 230698 B</td>
<td>11/04/2005</td>
<td></td>
</tr>
<tr>
<td>TW 283255 A</td>
<td>01/07/2007</td>
<td></td>
</tr>
<tr>
<td>TW 283255 B</td>
<td>01/07/2007</td>
<td></td>
</tr>
<tr>
<td>TW 436422 A</td>
<td>28/05/2001</td>
<td></td>
</tr>
<tr>
<td>TW 436422 B</td>
<td>28/05/2001</td>
<td></td>
</tr>
<tr>
<td>TW 464639 A</td>
<td>21/11/2001</td>
<td></td>
</tr>
<tr>
<td>TW 464639 B</td>
<td>21/11/2001</td>
<td></td>
</tr>
<tr>
<td>TW 477779 A</td>
<td>01/03/2002</td>
<td></td>
</tr>
<tr>
<td>TW 477779 B</td>
<td>01/03/2002</td>
<td></td>
</tr>
<tr>
<td>TW 544444 A</td>
<td>01/08/2003</td>
<td></td>
</tr>
<tr>
<td>TW 557286 A</td>
<td>11/10/2003</td>
<td></td>
</tr>
<tr>
<td>TW 575620 A</td>
<td>11/02/2004</td>
<td></td>
</tr>
<tr>
<td>TW 575620 B</td>
<td>11/02/2004</td>
<td></td>
</tr>
<tr>
<td>TW 590998 A</td>
<td>11/06/2004</td>
<td></td>
</tr>
<tr>
<td>TW 1230698 B</td>
<td>11/04/2005</td>
<td></td>
</tr>
<tr>
<td>TW 1283255B</td>
<td>01/07/2007</td>
<td></td>
</tr>
<tr>
<td>TW 13714351</td>
<td>01/09/2012</td>
<td></td>
</tr>
<tr>
<td>US 2002-055313 A1</td>
<td>09/05/2002</td>
<td></td>
</tr>
<tr>
<td>US 2005-0025967 A1</td>
<td>03/02/2005</td>
<td></td>
</tr>
<tr>
<td>US 6419981 B1</td>
<td>16/07/2002</td>
<td></td>
</tr>
<tr>
<td>US 6593255 B1</td>
<td>15/07/2003</td>
<td></td>
</tr>
<tr>
<td>US 6609046 B2</td>
<td>26/10/2004</td>
<td></td>
</tr>
<tr>
<td>US 6949289 B1</td>
<td>27/09/2005</td>
<td></td>
</tr>
<tr>
<td>US 8105690 B2</td>
<td>31/01/2012</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>WO 00-21899 A1</td>
<td>20/04/2000</td>
<td></td>
</tr>
<tr>
<td>WO 00-21900 A1</td>
<td>20/04/2000</td>
<td></td>
</tr>
<tr>
<td>WO 01-09054 A1</td>
<td>08/02/2001</td>
<td></td>
</tr>
<tr>
<td>WO 01-09226 A1</td>
<td>08/02/2001</td>
<td></td>
</tr>
<tr>
<td>WO 01-12701 A1</td>
<td>22/02/2001</td>
<td></td>
</tr>
<tr>
<td>WO 01-12702 A1</td>
<td>22/02/2001</td>
<td></td>
</tr>
<tr>
<td>WO 01-68748 A1</td>
<td>20/09/2001</td>
<td></td>
</tr>
<tr>
<td>WO 01-68749 A1</td>
<td>20/09/2001</td>
<td></td>
</tr>
<tr>
<td>WO 01-68750 A1</td>
<td>20/09/2001</td>
<td></td>
</tr>
<tr>
<td>WO 01-68751 A1</td>
<td>20/09/2001</td>
<td></td>
</tr>
<tr>
<td>WO 01-68752 A1</td>
<td>20/09/2001</td>
<td></td>
</tr>
<tr>
<td>WO 01-68753 A1</td>
<td>20/09/2001</td>
<td></td>
</tr>
<tr>
<td>WO 01-68754 A1</td>
<td>20/09/2001</td>
<td></td>
</tr>
<tr>
<td>WO 01-68755 A1</td>
<td>20/09/2001</td>
<td></td>
</tr>
<tr>
<td>WO 2005-077853 A3</td>
<td>22/12/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1212652 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1212652 C0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0900650 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10-138372 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3687312 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 445281 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 445281 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6465506 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 98-21030 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101220205 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101220205 C0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008-0161453 A1</td>
</tr>
<tr>
<td>KR 10-2010-0075227 A</td>
<td>02/07/2010</td>
<td>NONE</td>
</tr>
<tr>
<td>JP 2002-188006 A</td>
<td>05/07/2002</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)
A. 발명이 속하는 기술분야(국제특허분류(IPC))
C08L 81/02(2006.01)i, C08K 3/04(2006.01)i, C08K 3/38(2006.01)i, C08K 3/22(2006.01)i

B. 조사된 문헌
조사된 기술문헌(국제특허분류를 기재):
C08L 81/02; C08K 7/00; C08G 75/02; C08L 81/06; C08K 7/02; C08K 5/24; C08J 5/12; C08L 71/12; C08G 75/14; C08C 25/02; B32B 27/00; C08K 3/22; C08K 3/04; C08K 3/38

조사된 기술문헌에 속하는 최소문헌 아더의 문헌
한국특허출원인정 및 한국공개출원신청인정: 조사된 최소문헌관에 기재된 IPC 일본특허출원인정 및 일본공개출원신청인정: 조사된 최소문헌관에 기재된 IPC

국제조사에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))
eKOMPAS(특허청 내부 검색시스템) & 키워드: 콜리아델런 설명, 손상, 결합부, 무기질, 황화아연, 산화아연, 심화경색, 손상성, 상용성

C. 관련 문헌

<table>
<thead>
<tr>
<th>카테고리</th>
<th>인용문헌정 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 첨부항</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5600471 A (Umta, K.) 1996.03.19</td>
<td>1.4-5.8-21</td>
</tr>
<tr>
<td>Y</td>
<td>요약 descr. 제2 1-6 및 정구 항 1 감조.</td>
<td>6-7</td>
</tr>
<tr>
<td>A</td>
<td>요약 descr. 제2 2, 9 및 정구 항 1 감조.</td>
<td>2-3</td>
</tr>
<tr>
<td>Y</td>
<td>ER 10-2006-0074919 A (다이노온 임크 엔드 케미칼즈, 인코피테리드) 2006.07.03</td>
<td>6-7</td>
</tr>
<tr>
<td>A</td>
<td>요약 descr. 제2 2, 9 및 정구 항 1 감조.</td>
<td>2-3</td>
</tr>
<tr>
<td>A</td>
<td>ER 10-2001-0041518 A (파워지 인더스트리스 오피오 인코피테리드) 2001.05.25</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>요약 descr. 제2 1-6 및 정구 항 1, 2 감조.</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>ER 10-1999-007115 A (도레이 가보시가이가이) 1999.10.25</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>요약 descr. 제2 1, 2 감조.</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>ER 10-1990-0076227 A (제일모락주식회사) 2001.07.02</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>요약 descr. 제2 1, 2 감조.</td>
<td>1-21</td>
</tr>
</tbody>
</table>

추가 문헌이 (계속)에 기재되어 있습니다.

대응특허에 관한 별지의 참조하십시오.

* 인용된 문헌의 특별 기재 고附
"A" 특별히 관련이 없는 것으로 보이는 일반적인 기술수준을 강의한 문헌
"B" 국제특허분류보다 다른 문헌의 또는 우선일 기재하거나 국제특허임 이후의 공개된 신청한 또는 특수 문헌
"L" 우선권 주장에 의한 경우를 매기기 위한 문헌 또는 다른 인용문헌의 공개일 또는 다른 특별한 이유(이유 설명)를 매기기 위하여 인용된 문헌
"O" 주요 개요, 사료, 검토 또는 기기 관련을 설명하고 있는 문헌
"P" 우선일 이후에 공개되었거나 국제특허일 이전에 공개된 문헌

T 국제특허임 또는 우선일 후에 공개된 문헌으로 중적인 상용성을 없으며 발명의 기초가 되는 현나 기술을 이해하기 위해 인용된 문헌
X 특별한 관련성이 있는 문헌 해당 문헌 하나만으로 정구된 발명의 신규성 또는 최근도이 없는 것으로 본다.
Y 특별한 관련성이 있는 문헌 해당 문헌이 하나 이상의 다른 문헌과 조합의 경우로 그 조합이 당검수사자 전문가 정구에 일별로 전문성 있는 것으로 본다.
Z 동일한 특허문헌에 속하는 문헌

국제조사의 실제 완료일
2013년 09월 24일 (24.09.2013)

국제조사보고서 발송일
2013년 09월 25일 (25.09.2013)

ISA/KR의 명칭 및 우편주소
대한민국 특허청
302-701 대전광역시 서구 정자로 189, 4층 (부산동, 정부대간청사)

설명서
김동석
전화번호 +82-42-481-8647

서식 PCT/ISA/210 (부 번째 용지) (2009년 7월)
<table>
<thead>
<tr>
<th>카테고리</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 정구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>국제공보지식이</td>
<td>공개일</td>
<td>대응특허문헌</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>US 05500471 A</td>
<td>1996/03/19</td>
<td>EP 0557088 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0557088 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 05-230370 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3157582 B2</td>
</tr>
<tr>
<td>KR 10-2006-0074919 A</td>
<td>2006/07/03</td>
<td>EP 0900817 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0900817 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0900817 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11-080356 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11-286548 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 358296 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3597140 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-0610474 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 06001934 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1999-27873 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1999-27874 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1999-27889 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1999-28590 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1999-63914 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1999-64975 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2000-63851 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2000-63852 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2000-63862 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-45851 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-47491 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-47564 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-49257 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-50874 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-52911 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-52915 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-52916 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2320746 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2321663 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2321722 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2322155 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2322156 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2322159 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2346027 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2346111 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2380594 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2380975 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2381171 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2382188 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2403135 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 100366563 C0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 100387642 C0</td>
</tr>
</tbody>
</table>

서식 PCT/ISA/210 (대응특허 추가용지) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>인용된 특허문헌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 100475882 C</td>
<td>2009/04/08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 100488906 C</td>
<td>2009/05/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 101117275 A</td>
<td>2008/02/06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 101117275 B</td>
<td>2012/10/24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 101117275 C0</td>
<td>2008/02/06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1155530 C0</td>
<td>2004/06/30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1155531 C0</td>
<td>2004/06/30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1229296 C0</td>
<td>2005/11/30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1291963 A0</td>
<td>2001/04/18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1295538 A0</td>
<td>2001/05/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1295539 A0</td>
<td>2001/05/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1295540 A0</td>
<td>2001/05/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1295541 A0</td>
<td>2001/05/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1295542 A0</td>
<td>2001/05/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1329580 A0</td>
<td>2002/01/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1332704 A0</td>
<td>2002/01/23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1402605 A0</td>
<td>2003/03/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1402753 A0</td>
<td>2003/03/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1420905 A0</td>
<td>2003/05/28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1437628 A</td>
<td>2003/08/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1437628 C0</td>
<td>2006/02/08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1726249 A</td>
<td>2006/01/25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1726249 C0</td>
<td>2006/01/25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1946647 A</td>
<td>2007/04/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1946647 B</td>
<td>2011/12/28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1946647 C0</td>
<td>2007/04/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1060141 A1</td>
<td>2000/12/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1060141 B1</td>
<td>2002/10/30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1060142 A1</td>
<td>2000/12/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1060142 B1</td>
<td>2003/05/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1060143 A1</td>
<td>2000/12/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1060143 B1</td>
<td>2001/12/05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1060144 A1</td>
<td>2000/12/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1060145 A1</td>
<td>2000/12/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1060145 B1</td>
<td>2002/05/29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1066224 A1</td>
<td>2001/01/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1066224 B1</td>
<td>2001/12/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1124769 A1</td>
<td>2001/08/22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1124770 A1</td>
<td>2001/08/22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1204613 A1</td>
<td>2002/05/15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1204696 A1</td>
<td>2002/05/15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1204697 A1</td>
<td>2002/05/15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1204698 A1</td>
<td>2002/05/15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1272550 A1</td>
<td>2004/05/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1718575 A2</td>
<td>2006/11/08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2002-505216 A</td>
<td>2002/02/19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2002-505249 A</td>
<td>2002/02/19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2002-505386 A</td>
<td>2002/02/19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2002-505387 A</td>
<td>2002/02/19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2002-505388 A</td>
<td>2002/02/19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 국제조사보고서에서
인용된 특허문헌 | 공개일 | 대응특허문헌 | 공개일 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 2002-505389 A</td>
<td>2002/02/19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2002-527333 A</td>
<td>2002/08/27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2002-527338 A</td>
<td>2002/08/27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2003-527491 A</td>
<td>2003/09/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2004-156197 A</td>
<td>2004/06/03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2004-500488 A</td>
<td>2004/01/08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2004-513858 A</td>
<td>2004/05/13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2004-513976 A</td>
<td>2004/05/13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2007-524774 A</td>
<td>2007/08/30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2011-102459 A</td>
<td>2011/05/26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 3537394 B2</td>
<td>2004/06/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 5001658 B2</td>
<td>2012/08/15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 10-0397900 B1</td>
<td>2003/09/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 10-0398177 B1</td>
<td>2003/10/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 10-0398178 B1</td>
<td>2003/10/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 10-2002-0006956 A</td>
<td>2002/04/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 10-2002-0006957 A</td>
<td>2002/04/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 10-2002-0006958 A</td>
<td>2002/04/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 10-2002-0057947 A</td>
<td>2002/07/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 230698 A</td>
<td>2005/04/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 230698 B</td>
<td>2005/04/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 283255 A</td>
<td>2007/07/01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 283255 B</td>
<td>2007/07/01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 436422 A</td>
<td>2001/05/28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 436422 B</td>
<td>2001/05/28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 464639 A</td>
<td>2001/11/21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 464639 B</td>
<td>2001/11/21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 477779 A</td>
<td>2002/03/01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 477779 B</td>
<td>2002/03/01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 544444 A</td>
<td>2003/06/01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 657288 A</td>
<td>2003/10/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 575620 A</td>
<td>2004/02/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 575620 B</td>
<td>2004/02/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 595998 A</td>
<td>2004/06/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 1230693B</td>
<td>2005/04/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 123255B</td>
<td>2007/07/01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 13714351</td>
<td>2012/09/01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2002-055313 A1</td>
<td>2002/05/09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2005-0025967 A1</td>
<td>2005/02/03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 6419981 B1</td>
<td>2002/07/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 6593255 B1</td>
<td>2003/07/15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 6809046 B2</td>
<td>2004/10/26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 6949289 B1</td>
<td>2005/09/27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 8105690 B2</td>
<td>2012/01/31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

서식 PCT/ISA/210 (대응특허 추가용지) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 00-21899 A1</td>
<td>2000/04/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 00-21900 A1</td>
<td>2000/04/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 01-09054 A1</td>
<td>2001/02/08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 01-09226 A1</td>
<td>2001/02/08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 01-12701 A1</td>
<td>2001/02/22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 01-12702 A1</td>
<td>2001/02/22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 01-68748 A1</td>
<td>2001/09/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 01-68750 A1</td>
<td>2001/09/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 01-68751 A1</td>
<td>2001/09/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 01-68752 A1</td>
<td>2001/09/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 01-68753 A1</td>
<td>2001/09/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 01-68754 A1</td>
<td>2001/09/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 01-68755 A1</td>
<td>2001/09/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2005-077853 A2</td>
<td>2005/06/25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2005-077853 A3</td>
<td>2005/12/22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 99-44955 A1</td>
<td>1999/09/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 99-44956 A1</td>
<td>1999/09/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 99-44957 A1</td>
<td>1999/09/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 99-44958 A1</td>
<td>1999/09/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 99-44959 A1</td>
<td>1999/09/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 99-44960 A1</td>
<td>1999/09/10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KR 10-1999-0077115 A 1999/10/25
CN 1074984 C 2001/11/21
CN 1212652 A 1999/03/31
CN 1212652 C0 1999/03/31
EP 0900650 A1 1999/03/10
JP 10-138372 A 1998/05/26
JP 10-180911 A 1998/07/07
JP 10-182969 A 1998/07/07
JP 10-182970 A 1998/07/07
JP 10-298431 A 1998/11/10
JP 3687312 B2 2005/06/24
JP 3890783 B2 2006/07/26
JP 3969461 B2 2007/09/05
JP 4025205 B2 2007/12/26
TW 445281 A 2001/07/11
TW 445281 B 2001/07/11
US 6485806 B1 2002/11/26
WO 98-21030 A1 1998/05/22

KR 10-0771181 B1 2007/10/29
CN 101220205 A 2008/07/16
CN 101220205 B 2011/02/16
CN 101220205 C0 2008/07/16
US 2008-0161453 A1 2008/07/03

KR 10-2010-0075227 A 2010/07/02
없음

JP 2002-188006 A 2002/07/05
없음