The present invention provides a compound having an excellent efficacy for controlling pests. A tetrazolinone compound of a formula (1): wherein R1 represents an C6-C16 aryl group, an C1-C12 alkyl group, or a C3-C12 cycloalkyl group, etc., which each optionally be substituted; R2, R3, R4 and R5 represent independently of each other a hydrogen atom, a halogen atom, a heteroatom, an alkyl group, an aryl group, an alkyl group having halogen substituents, an aryl group having halogen substituents, etc.; R6 represents an C1-C6 alkyl group, a C3-C6 cycloalkyl group, a heteroarene, a C1-C6 alkenyl group, an C1-C6 alkyl group, an C1-C6 alkoxy group, etc.; R7, R8 and R9 represent independently of each other a hydrogen atom, a halogen atom, a heteroatom, an alkyl group, a heteroarene, an alkyl group having halogen substituents, an heteroarene having halogen substituents, etc.; X represents an oxygen atom or a sulfur atom; and R10 represents an C1-C6 alkyl group, etc.] shows an excellent controlling efficacy on pests.

Formula (1):
DESCRIPTION

TETRAZOLINONE COMPOUNDS AND ITS USE AS PESTICIDES

[0001]

TECHNICAL FIELD

[0002]

The present invention relates to tetrazolinone compounds and its use.

[0003]

BACKGROUND ART

Heretofore, various drugs for controlling pests have been widely developed and provides in practice use, but in some cases, these drugs may not exert enough efficacy.

Also, as compounds having tetrazolinone ring, compounds represented by the following formula (A):

\[
\begin{array}{c}
\text{F} \\
\text{N} \\
\text{O} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{CH}_3
\end{array}
\]

have been known (see Patent Document 1).

CITATION LIST

PATENT DOCUMENT
SUMMARY OF THE INVENTION

An object of the present invention is to provide a compound having an excellent efficacy for controlling pests.

The present inventors have intensively studied to find that compounds having an excellent efficacy for controlling pests and as a result, found that a tetrazolinone compound of the following formula (I) has an excellent efficacy for controlling pests, which thus have completed the present invention.

Specifically, the present invention includes the following [1] to [36].

![Chemical Structure](image)

[wherein

R¹ represents an C6-C16 aryl group optionally having one or more atoms or groups selected from Group P, an Cl-C12 alkyl group optionally having one or more atoms or groups selected from Group P, a C3-C12 cycloalkyl group
optionally having one or more atoms or groups selected from Group P, an C2-C12 alkenyl group optionally having one or more atoms or groups selected from Group P, a C3-C12 cycloalkenyl group optionally having one or more atom or groups selected from Group P, an C2-C12 alkynyl group optionally having one or more atoms or groups selected from Group P, an C2-C12 acyl group optionally having one or more atoms or groups selected from Group P or a hydrogen atom (with the proviso that when the C6-C16 aryl group, the C1-C12 alkyl group, the C3-C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12 cycloalkenyl group, the C2-C12 alkynyl group or the C2-C12 acyl group has two or more atoms or groups selected from Group P, the substituents consisting of the atoms and the groups may be same or different to each other);

R² and R³ represent independently of each other a hydrogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C12 alkoxy carbony group, a hydroxycarbonyl group, or a halogen atom;

R⁴ and R⁵ represent independently of each other a hydrogen atom, a halogen atom or an C1-C3 alkyl group;

R⁶ represents an C1-C6 alkyl group, a C3-C6 cycloalkyl group, a halogen atom, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, an C1-C6 alkoxy group, an C1-C6 alkylthio group, an C2-C6
alkynyl group, a nitro group, a cyano group, an aminocarbonyl group optionally having C1-C6 alkyl group, an C2-C6 haloalkenyl group, a C2-C6 haloalkynyl group, a C3-C6 halocycloalkyl group, a C1-C6 haloalkoxy group, a C1-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 cycloalkylthio group, an C3-C6 alkenyloxy group, an C3-C6 alkynyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynoxy group, a C3-C6 alkenylthio group, an C3-C6 alkynylthio group, a C3-C6 haloalkenylthio group, a C3-C6 haloalkynylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, an C2-C6 alkoxy carbonyl group, a hydroxyl group, a thiol group, an amino group, an C1-C6 alkylamino group, a pentfluorosulfuranyl group, a C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C4 alkylsulfonyl group, a C1-C4 haloalkylsulf onyl group, an C1-C4 alkylsulf inyl group, a C1-C4 haloalkylsulf inyl group, an C2-C5 alkoxyalkyl group, or an C2-C5 alkylthioalkyl group;

R^7$, R^8 and R^9 represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R^{10} represents an C1-C6 alkyl group, a C1-C6 haloalkyl
group, an C2-C6 alkenyl group, an C2-C6 haloalkenyl group, an C2-C6 alkoxyalkyl group, a C3-C6 cycloalkyl group or a C3-C6 halocycloalkyl group; and

\[X \] represents an oxygen atom or a sulfur atom;

Group \(P \): a group consisting of a halogen atom, an Cl-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, an C3-C6 cycloalkyl group, a C3-C6 haloalkynyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkythio group, a C1-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 haloalkyloxy group, a C3-C6 alkenyloxy group, an C3-C6 alknyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynloxy group, an C3-C6 alkynylthio group, a C3-C6 haloalkynylthio group, a C2-C6 acyl group, a C2-G6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, a hydroxycarbonyl group, a formyl group, an C2-C6 alkoxy carbonyl group, a nitro group, a cyano group, a hydroxyl group, an C6-C16 aryl group, a C6-C16 haloaryl group, an C6-C16 aryloxy group, a C6-C16 haloaryloxy group, an C6-C16 arylthio group, a C6-C16 haloarylthio group, an C7-C18 aralkyl group, a C7-C18 haloaralkyl group, an C7-C18 arylalkoxy group, a C7-C18 haloarylalkoxy group, a thiol group, a
pentfluorosulfuranyl group, a C3-C12 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C6 alkylsulfonylethynyl group, a C1-C6 haloalkylsulfonylethynyl group, an C6-C16 arylsulfonylethynyl group, a C6-C16 haloarylsulfonylethynyl group, an C1-C6 alkylsulfinyl group, a C1-C6 haloalkylsulfinyl group, an C6-C16 arylsulfinyl group, a C6-C16 haloarylsulfinyl group, an aminosulfonylethynyl group optionally having C1-C6 alkyl group or C6-C12 aryl group, and an aminocarbonyl group optionally having C1-C6 alkyl group].

R², R³, R⁴ and R⁵ represent a hydrogen atom;
R¹⁰ represents a methyl group; and
X represents an oxygen atom.

R¹ represents an C6-C16 aryl group optionally having one or more atoms and groups selected from Group P (with the proviso that when the C6-C16 aryl group has two or more atoms or groups selected from Group P, the substituents consisting of the atoms and the groups may be same or different to each other);
R², R³, R⁴ and R⁵ represent a hydrogen atom;
R¹⁰ represents a methyl group; and
X represents an oxygen atom.

R¹ represents an C1-C12 alkyl group optionally having
one or more atoms or groups selected from Group \(P \), a C3-C12 cycloalkyl group optionally having one or more atoms or groups selected from Group \(P \), an C2-C12 alkenyl group optionally having one or more atoms or groups selected from Group \(P \), a C3-C12 cycloalkenyl group optionally having one or more atoms or groups selected from Group \(P \), an C2-C12 alkynyl group optionally having one or more atoms or groups selected from Group \(P \), an C2-C12 acyl group optionally having one or more atoms or groups selected from Group \(P \) (with the proviso that when the C1-C12 alkyl group, the C3-C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12 cycloalkenyl group, the C2-C12 alkynyl group or the C2-C12 acyl group has two or more atoms or groups selected from Group \(P \), the substituents consisting of the atoms and the groups may be same or different to each other);

\[R^2, R^3, R^4 \text{ and } R^5 \text{ represent a hydrogen atom;} \]

\[R^{10} \text{ represents a methyl group;} \text{ and} \]

\[X \text{ represents an oxygen atom.} \]

The tetrazolinone compound according to [1] wherein

\[R^1 \text{ represents a group represented by a formula (2)}: \]

![Formula (2)](image)

[wherein

\[R^{11} \text{ represents a halogen atom, a hydrogen atom, an C1-C6} \]

...
alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, an C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 alkynyl group, a C2-C6 haloalkynyl group, a C3-C6 alkenyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 halenylthio group, a C3-C6 haloalkenylthio group, a C3-C6 cycloalkylthio group, a C3-C6 halocycloalkylthio group, a C3-C6 akyl group, a C2-C6 haloalkyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, an C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 alkynyl group, a C2-C6 haloalkynyl group, a C3-C6 alkenyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 halenylthio group, a C3-C6 haloalkenylthio group, a C3-C6 cycloalkylthio group, a C3-C6 halocycloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, C2-C6 acyloxy group, C2-C6 acylthio group, a hydroxycarbonyl group, formyl group, C2-C6 alkoxy carbonyl group, a nitro group, a cyano group, a hydroxy group, an C6-C16 aryl group, a C6-C16 haloaryl group, an C6-C16 aryloxy group, a C6-C16 haloaryloxy group, an C6-C16 arylthio group, a C6-C16 haloarylthio group, an C7-C18 aralkyl group, a C7-C18 haloaralkyl group, an C7-C18 arylalkoxy group, a C7-C18 haloarylalkoxy group, a thiol group, a pentfluorosulfuranyl group, a C3-C12 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C6 alkylsulfonyl group, a C1-C6 haloalkylsulf onyl group, an C6-C16 arylsulf onyl group, a C6-C16 haloaryl sulf onyl group, an C1-C6 alkylsulf inyl group, a C1-C6 haloalkylsulf inyl group, an C6-C16 arylsulf inyl group, a
C6-C16 haloarylsulf inyl group, an aminosulf onyl group optionally having C1-C6 alkyl group or C6-C12 aryl group, or an arainocarbonyl group optionally having C1-C6 alkyl group; and

R12, R13, R14 and R15 represent independently of each other a hydrogen atom or a halogen atom; R2, R3, R4 and R5 represent a hydrogen atom; R7, R8 and R9 represent independently of each other a hydrogen atom or fluorine atom;

R10 represents a methyl group; and X represents an oxygen atom.

[6] The tetrazolinone compound according to [5] wherein R6 represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group;

R7, R8 and R9 represent independently of each other a hydrogen atom;

R11 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkythio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group.

R represents a C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C2-C3 alkynyl group or a C1-C3 haloalkoxy group;

R represents a halogen atom, a hydrogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C3 alkylthio group, a C1-C3 haloalkylthio group, a nitro group or a cyano group.

R represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

R represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R, R and R represent independently of each other a hydrogen atom or a fluorine atom.

[9] The tetrazolinone compound according to [1] wherein

R represents a group represented by a formula (2):

[wherein

R represents a halogen atom, a hydrogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C3 alkylthio group,
a C1-C3 haloalkythio group, a nitro group or a cyano group;

\(R^{1}, R^{2}, R^{3}, R^{4} \) and \(R^{5} \) represent independently of each other a hydrogen atom or a halogen atom;

\(R^{2}, R^{3}, R^{4}, R^{5}, R^{7}, R^{8} \) and \(R^{9} \) represent independently of each other a hydrogen atom;

\(R^{6} \) represents an C1-C3 alkyl group, a halogen atom, a C1-C3 haloalkyl group, an C1-C3 alkoxy group or a C1-C3 haloalkoxy group;

\(R^{10} \) represents a methyl group; and

\(X \) represents an oxygen atom.

[10] The tetrazolinone compound according to [9] wherein

\(R^{11} \) represents a halogen atom, a methyl group, an ethyl group or a methoxy group,

\(R^{12}, R^{13}, R^{14} \) and \(R^{15} \) represent independently of each other a hydrogen atom or a fluorine atom;

\(R^{6} \) represents a methyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group.

\(R^{6} \) represents an C3-C6 cycloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkylthio group, a C1-C6 haloalkythio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 cycloalkylthio group, an
C3-C6 alkenyloxy group, a C3-C6 alkynyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynyloxy group, a C3-C6 alkenylthio group, an C3-C6 alkynylthio group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, an C2-C6 alkoxy carbonyl group, a hydroxyl group, a thiol group, an amino group, an C1-C6 alkylamino group, a pentfluorosulfuranyl group, an C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C4 alkylsulfonyl group, a C1-C4 haloalkylsulfonyl group, an C1-C4 alkylsulfinyl group, a C1-C4 haloalkylsulf inyl group, an C2-C5 alkoxyalkyl group, an C2-C5 alkylthioalkyl group or an aminocarbonyl group optionally having C1-C6 alkyl group.

[12] The tetrazolinone compound according to [1] wherein

\[\text{R}^1 \] represents a group represented by a formula (3):

\[
\begin{array}{c}
\text{R}^{31} \\
\text{R}^{32} \\
\text{R}^{33} \\
\text{R}^{34} \\
\end{array}
\]

(3)

[wherein

\[\text{R}^{31} \] represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;]
R³⁰, R³², R³³ and R³⁴ represent independently of each other a hydrogen atom or a halogen atom;

R², R³, R⁴ and R⁵ represent independently of each other a hydrogen atom;

R⁶ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom,-

R¹⁰ represents a methyl group; and

X represents an oxygen atom.

R⁶ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C2-C3 alkynyl group or a C1-C3 haloalkoxy group;

R³¹ represents an C1-C3 alkoxy group, a halogen atom,

a hydrogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, a C1-C3 haloalkoxy group, an C1-C3 alkylthio group, a C1-C3 haloalkythio group, a nitro group or a cyano group.

[14] The tetrazolinone compound according to [12] wherein

R⁶ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy
group;

\[R^{31} \] represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

\[R^{30}, R^{32}, R^{33} \] and \(R^{34} \) represent independently of each other a hydrogen atom or a fluorine atom.

The tetrazolinone compound according to [1] wherein \(R^{1} \) represents a group represented by a formula (4): [15]

\[
\begin{array}{c}
\text{R}^{35} \quad \text{R}^{36} \\
\text{R}^{37} \\
\text{R}^{38} \quad \text{R}^{39}
\end{array}
\]

(4)

[wherein

\[R^{35}, R^{36}, R^{37}, R^{38} \] and \(R^{39} \) represent independently of each other a hydrogen atom, an C1-C6 alkoxy group, a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacil group, a C3-C4 cycloalkyl group, a C3-C4 cycloalkyloxy group, a nitro group or a cyano group];

\[R^{2}, R^{3}, R^{4} \] and \(R^{5} \) represent independently of each other a hydrogen atom;

\[R^{8} \] represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom;
R¹⁰ represents a methyl group; and
X represents an oxygen atom.

[16] The tetrazolinone compound according to [15] wherein
R⁶ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C2-C3 alkynyl group or a C1-C3 haloalkoxy group; and
R³⁵, R³⁶, R³⁷, R³⁸ and R³⁹ represent independently of each other a hydrogen atom, an C1-C3 alkoxy group, a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, a C1-C3 haloalkoxy group, an C1-C3 alkylthio group, a C1-C3 haloalkylthio group, a nitro group or a cyano group.

R⁶ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;
R³⁵, R³⁶, R³⁷, R³⁸ and R³⁹ represent independently of each other a hydrogen atom, a methoxy group, an ethoxy group, a halogen atom, a methyl group or an ethyl group.

[18] An agent for controlling pests comprising the tetrazolinone compound according to any one of [1] to [17].

[19] A method for controlling pests comprising applying an effective amount of the tetrazolinone compound according to
any one of [1] to [17] to plant or soil.

[21] A tetrazolinone compound represented by a formula (5):

\[
\begin{align*}
R^{21} &\text{ represents a halogen atom, a hydrogen atom, an } C_1-C_6 \text{ alkyl group, a } C_1-C_6 \text{ haloalkyl group, an } C_1-C_6 \text{ alkoxy group, a } C_1-C_6 \text{ haloalkoxy group, an } C_1-C_6 \text{ alkylthio group, a } C_1-C_6 \text{ haloalkylthio group, an } C_2-C_6 \text{ acyl group, a } C_2-C_6 \text{ haloacyl group, a nitro group or a cyano group;} \\
R^{22}, R^{23}, R^{24} \text{ and } R^{25} &\text{ represent independently of each other a hydrogen atom or a halogen atom, and} \\
R^{26} &\text{ represents an } C_1-C_3 \text{ alkyl group, a } C_3-C_4 \text{ cycloalkyl group, a halogen atom, a } C_1-C_3 \text{ haloalkyl group, an } C_2-C_3 \text{ alkenyl group, an } C_1-C_3 \text{ alkoxy group, an } C_1-C_2 \text{ alkylthio group, an } C_2-C_3 \text{ alkynyl group, a } C_1-C_3 \text{ haloalkoxy group, a } C_1-C_2 \text{ haloalkylthio group or an } C_1-C_4 \text{ alkylamino group.}
\end{align*}
\]

[22] The tetrazolinone compound according to [21] wherein

\[
R^{21} \text{ represents a halogen atom, a methyl group, an ethyl group or a methoxy group;}
\]
R^2_6 represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group; and

R^{22}, R^{23}, R^{24} and R^{25} represent independently of each other a hydrogen atom or fluorine atom.

[23] A tetrazolinone compound represented by a formula (6):

![Diagram](image)

[wherein]

R^{42} represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R^{43}, R^{44} and R^{45} represent independently of each other a hydrogen atom or a halogen atom;

R^{46} represents an C1-G3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, C1-C2 haloalkylthio group or an C1-C4 alkylamino group].

[24] The tetrazolinone compound according to [23] wherein
R42 represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R46 represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group; and

R41, R43, R44 and R45 represent independently of each other a hydrogen atom or a fluorine atom.

[25] A tetrazolinone compound represented by a formula (7):

[wherein]

R51 represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R54, R52, R54 and R55 represent independently of each other a hydrogen atom or a halogen atom;

R56 represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group.
[26] The tetrazolinone compound according to [25] wherein

R$_5^3$ represents a methoxy group, an ethoxy group, a halogen atom, a methyl group or an ethyl group;

R$_5^6$ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group.

[27] A tetrazolinone compound represented by a formula (8):

\[
\begin{array}{c}
\text{R}^27 \\
\text{A} \\
\text{N}^28 \\
\text{N-N} \\
\text{N-N} \\
\text{H} \\
\text{H} \\
\end{array}
\]

(8)

[wherein

R$_{27}^7$ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkythio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group.

R$_{28}^8$ represents a methyl group or a hydrogen atom;

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, a (C1-C6 haloalkylsulf onyloxy) methyl group, an (C6-C16 group).
arylsulfonoyloxy) methyl group, a (C6-C16 haloarylsulfonoyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having a heterocyclyl group (with the proviso that the heterocyclyl group includes one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group].

[28] The tetrazolinone compound according to [27] wherein

R27 represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonoyloxy) methyl group, an (C6-C16 arylsulfonoyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[29] The tetrazolinone compound according to [27] wherein

R27 represents a methyl group, an ethyl group, a halogen atom, a trifluoromethyl group or a methoxy group; and

A represents a methyl group, a chloromethyl group or bromomethyl group.
The tetrazolinone compound according to [27] wherein

R_{27}^{27} represents an C2-C3 alkyl group, a C3-C4 cycloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group.

A pyrazole compound represented by a formula (9):

![Pyrazole Compound](image)

[wherein

R^{211}_{211} represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkythio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R^{221}_{221}, R^{231}_{231}, R^{241}_{241} and R^{251}_{251} represent independently of each other a hydrogen atom or a halogen atom;

R^{281}_{281} represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group;

and

L^1 represents a nitro group, an amino group, an
isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON$_3$, CONH$_2$, CONHC$_1$, CONHBr or CONHOH).

[32] The pyrazole compound according to [31] wherein

$R^{2_{11}}$ represents a halogen atom, a methyl group, an ethyl group or methoxy group;

$R^{2_{61}}$ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group; and

$R^{2_{21}}, R^{2_{31}}, R^{2_{41}}$ and $R^{2_{51}}$ represent independently of each other a hydrogen atom or fluorine atom.

[33] A pyrazole compound represented by a formula (10):

![Pyrazole compound](image)

[wherein

$R^{4_{21}}$ represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

$R^{4_{11}}, R^{4_{31}}, R^{4_{41}}$ and $R^{4_{51}}$ represent independently of each other a hydrogen atom or a halogen atom;

$R^{4_{61}}$ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group,
an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L² represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, C0N₃, C0NH₂, C0NHCl, CONHBr or CONHOH].

[34] The pyrazole compound according to [33] wherein

\[R^{421} \] represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

\[R^{461} \] represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group; and

\[R^{411}, R^{431}, R^{441} \text{ and } R^{451} \] represent independently of each other a hydrogen atom or a fluorine atom.

[35] A pyrazole compound represented by a formula (11):

\[
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{L}^3 \\
\end{array}
\]

[wherein

\[R^{531} \] represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6...
haloacyl group, a nitro group or a cyano group;

\[R_{511}^{511}, R_{521}^{521}, R_{543}^{543} \text{ and } R_{551}^{551} \text{ represent independently of each other a hydrogen atom or a halogen atom; } \]

\[R_{561}^{561} \text{ represents an } C1-C3 \text{ alkyl group, a } C3-C4 \]

cycloalkyl group, a halogen atom, a } C1-C3 \text{ haloalkyl group, an } C2-C3 \text{ alkenyl group, an } C1-C3 \text{ alkoxy group, an } C1-C2 \text{ alkylthio group, an } C2-C3 \text{ alkynyl group, a } C1-C3 \text{ haloalkoxy group, a } C1-C2 \text{ haloalkylthio group or an } C1-C4 \text{ alkylamino group; } \]

and

\[L_3 \text{ represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an } C2-C6 \text{ alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON}_3, \]

\[\text{CONH}_2, \text{CONHCl, CONHBr or CONHOH}] . \]

[36] The pyrazole compound according to [35] wherein

\[R_{511}^{531} \text{ represents a methoxy group, an ethoxy group, a halogen atom, a methyl group or an ethyl group; and } \]

\[R_{561}^{561} \text{ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group a methoxy group. } \]

[0007]

The present invention can control pests.

DESCRIPTION OF EMBODIMENTS

[0008]

The compound of the present invention (hereinafter,
sometimes referred to as 'the present compound') is a
tetrazolinone compound of a formula (1):

\begin{equation}
\text{R}^1 \text{ represents an C6-C16 aryl group optionally having one or more atoms or groups selected from Group P, an C1-C12 alkyl group optionally having one or more atoms or groups selected from Group P, a C3-C12 cycloalkyl group optionally having one or more atoms or groups selected from Group P, an C2-C12 alkenyl group optionally having one or more atoms or groups selected from Group P, a C3-C12 cycloalkenyl group optionally having one or more atoms or groups selected from Group P, an C2-C12 alkynyl group optionally having one or more atoms or groups selected from Group P, an C2-C12 acyl group optionally having one or more atoms or groups selected from Group P or a hydrogen atom (with the proviso that when the C6-C16 aryl group, the C1-C12 alkyl group, the C3-C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12 cycloalkenyl group, the C2-C12 alkynyl group or the C2-C12 acyl group has two or more atoms or groups selected from Group P, the substituents consisting of the atoms and the groups may be same or different to each other).}
\end{equation}
R^2 and R^3 represent independently of each other a hydrogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C12 alkoxy carbonyl group, a hydroxycarbonyl group, or a halogen atom;

R^4 and R^5 represent independently of each other a hydrogen atom, a halogen atom or an C1-C3 alkyl group;

R^6 represents an C1-C6 alkyl group, a C3-C6 cyclo alkyl group, a halogen atom, a C1-C6 halo alkyl group, an C2-C6 alkenyl group, an C1-C6 alkoxy group, an C1-C6 alkylthio group, an C2-C6 alkynyl group, a nitro group, a cyano group, an aminocarbonyl group optionally having C1-C6 alkyl group, a C2-C6 haloalkenyl group, a C2-C6 haloalkynyl group, a C3-C6 halocycloalkyl group, a C1-C6 haloalkoxy group, a C1-C6 haloalkythio group, a C3-C6 cyclo alkyl oxo group, a C3-C6 halocycloalkyloxo group, a C3-C6 cyclo alkylthio group, an C3-C6 alkenyloxy group, an C3-C6 alkynylloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynylloxy group, an C3-C6 alkenylthio group, an C3-C6 alkylthio group, an C3-C6 alkylthio group, a C3-C6 haloalkenylthio group, a C3-C6 haloalkynylthio group, a C3-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, an C2-C6 alkoxy carbonyl group, a hydroxyl group, a thiol group, an amino group, an C1-C6 alkylamino group, a pentafluorosulfuranyl group, a C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl
group, an C1-C4 alkylsulf onyl group, a C1-C4 haloalkylsulf onyl group, an C1-C4 alkylsulf inyl group, a C1-C4 haloalkylsulf inyl group, an C2-C5 alkoxyalkyl group, or an C2-C5 alkylthioalkyl group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R¹⁰ represents an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, an C2-C6 haloalkenyl group, an C2-C6 alkoxyalkyl group, a C3-C6 cycloalkyl group or a C3-C6 halocycloalkyl group, and

X represents an oxygen atom or a sulfur atom;

Group P: a group consisting of a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, an C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 alkenyloxy group, an C3-C6 alkynyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynyloxy group, a C3-C6 alkenylthio group, an C3-C6 alkynylthio group, a C3-C6
haloalkenylthio group, a C3-C6 haloalkynylthio group, an
C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy
group, an C2-C6 acylthio group, a hydroxycarbonyl group, a
formyl group, an C2-C6 alkoxycarbonyl group, a nitro group,
a cyano group, a hydroxyl group, an C6-C16 aryl group, a
C6-C16 haloaryl group, an C6-C16 arylxy group, a C6-C16
haloaryloxy group, an C6-C16 arylthio group, a C6-C16
haloarylthio group, an C7-C18 aralkyl group, a C7-C18
haloaralkyl group, an C7-C18 arylalkoxy group, a C7-C18
haloarylaikoxy group, a thiol group, a
pentafluorosulfuranyl group, a C3-C12 trialkysilyl group,
a C5-C14 trialkylsilylethynyl group, an C1-C6 alkysulf onyl
group, a C1-C6 haloalkysulf onyl group, an C6-C16
arylsulfonyl group, a C6-C16 haloarylsulf onyl group, an C1-
C6 alkylsulf inyl group, a C1-C6 haloalkylsulf inyl group, an
C6-C16 arylsulfinyl group, a C6-C16 haloarylsulf inyl group,
an aminosulf onyl group optionally having C1-C6 alkyl group
or C6-C12 aryl group, and an aminocarbonyl group optionally
having C1-C6 alkyl group].
[0009]

Also, the present invention provides a tetrazolinone
compound represented by a formula (II):

WO 2013/162072
PCT/JP2013/062875
[wherein

R^{1p} represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R^{2p} represents a halogen atom;

m represents 0, 1, 2, 3 or 4; and

R^{6p} represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group]

which is used in a preparation of the present compound and has an excellent efficacy for controlling pests.

Specifically, the following compounds are included.

A tetrazolinone compound represented by a formula (5):
[wherein

\(R^2 \) represents a halogen atom, a hydrogen atom, an \(\text{C}1-\text{C}6 \) alkyl group, a \(\text{C}1-\text{C}6 \) haloalkyl group, an \(\text{C}1-\text{C}6 \) alkoxy group, a \(\text{C}1-\text{C}6 \) haloalkoxy group, an \(\text{C}1-\text{C}6 \) alkylthio group, a \(\text{C}1-\text{C}6 \) haloalkylthio group, an \(\text{C}2-\text{C}6 \) acyl group, a \(\text{C}2-\text{C}6 \) haloacyl group, a nitro group or a cyano group, -

\(R^{22}, R^{23}, R^{24} \) and \(R^{25} \) represent independently of each other a hydrogen atom or a halogen atom; and

\(R^{26} \) represents an \(\text{C}1-\text{C}3 \) alkyl group, a \(\text{C}3-\text{C}4 \) cycloalkyl group, a halogen atom, a \(\text{C}1-\text{C}3 \) haloalkyl group, an \(\text{C}2-\text{C}3 \) alkenyl group, an \(\text{C}1-\text{C}3 \) alkoxy group, an \(\text{C}1-\text{C}2 \) alkylthio group, an \(\text{C}2-\text{C}3 \) alkynyl group, a \(\text{C}1-\text{C}3 \) haloalkoxy group, a \(\text{C}1-\text{C}2 \) haloalkylthio group or an \(\text{C}1-\text{C}4 \) alkylamino group] (hereinafter, referred to as "the present tetrazolinone compound X");

A tetrazolinone compound represented by a formula (6):

[wherein
R42 represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R41, R43, R44 and R45 represent independently of each other a hydrogen atom or a halogen atom;

R46 represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, C1-C2 haloalkylthio group or an C1-C4 alkylamino group] (hereinafter, referred to as 'the present tetrazolinone compound X2''); and

A tetrazolinone compound represented by a formula (7):

![Formula Image]

[wherein

R53 represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;]
R^1, R^2, R^4 and R^5 represent independently of each other a hydrogen atom or a halogen atom;

R^6 represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group] (hereinafter, referred to as 'the present tetrazolinone compound X3').

[0010]

The present invention provides a tetrazolinone compound represented by a formula (8):

![Chemical Structure](image)

[wherein

R^{27} represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group

R^{28} represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a
hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a methyl group having a heterocyclyl group (with the proviso that the heterocyclyl group includes one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group] (hereinafter, referred to as 'the present tetrazolinone compound Y'), which is used in a preparation of the present compound and has an excellent efficacy for controlling pests.

[0011]

The present invention provides a pyrazole compound represented by a formula (III):

![Chemical Structure](image)

[wherein

R_{1p} represents a halogen atom, a hydrogen atom, an C1-
C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

\[R^{2p} \text{ represents a halogen atom; } \]

\[m \text{ represents } 0, 1, 2, 3 \text{ or } 4; \]

\[R^{6p} \text{ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and } \]

\[L^p \text{ represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON}_3, CONH}_2, CONHC1, CONHBr or CONHOH] \]

which is used in a preparation of the present compound and has an excellent efficacy for controlling pests.

Specifically, the following compounds are included.

A pyrazole compound represented by a formula (9):

[wherein]

\[R^{211} \text{ represents a halogen atom, a hydrogen atom, an CI-} \]
C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy
group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group,
a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6
haloacyl group, a nitro group or a cyano group;

R221, R231, R241 and R251 represent independently of each
other a hydrogen atom or a halogen atom;

R261 represents an C1-C3 alkyl group, a C3-C4
cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group,
an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2
alkythio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy
group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino
group; and

L1 represents a nitro group, an amino group, an
isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl
group, a halogen atom, a halogenated acyl group, NSO, CON\textsubscript{3},
CON\textsubscript{2}, CONHC\textsubscript{1}, CONHBr or CONHOH] (hereinafter, referred to
as 'the present pyrazole compound Z');

A pyrazole compound represented by a formula (10):

![Pyrazole Compound](image)

[wherein

R421 represents an C1-C6 alkoxy group, a halogen atom,
a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl
group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group,
a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R^{441}, R^{431}, R^{441} and R^{451} represent independently of each other a hydrogen atom or a halogen atom;

R^{461} represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L^2 represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON$_3$, CONH$_2$, CONHCl, CONHBr or CONHOH] (hereinafter, referred to as 'the present pyrazole compound Z2') and

A pyrazole compound represented by a formula (11):

\[
\begin{array}{c}
\text{R}^{531} \\
\text{R}^{541} \\
\text{R}^{551} \\
\end{array}
\begin{array}{c}
\text{N} \\
\text{H} \\
\text{H} \\
\end{array}
\begin{array}{c}
\text{O} \\
\text{H} \\
\text{H} \\
\end{array}
\begin{array}{c}
\text{R}^{561} \\
\text{R}^{561} \\
\text{L}^3 \\
\end{array}
\]

[wherein

R^{531} represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, a nitro group or a cyano group;
R_{511}^{5}, R_{521}^{5}, R_{541}^{5} and R_{551}^{5} represent independently of each other a hydrogen atom or a halogen atom;

R_{561}^{5} represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L_{3}^{3} represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON_{3}, CONH_{2}, CONHCl, CONHBr or CONHOH] (hereinafter, referred to as 'the present pyrazole compound Z_{3}').

[0012]

Hereinafter, the present invention is explained in detail.

The substituent to be used herein is specifically described below.

[0013]

The term 'halogen atom' includes, for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

[0014]

The term 'C1-C6 alkyl group' represents a straight or branched alkyl group, and includes, for example, a
methyl group, an ethyl group, a propyl group, an isopropyl
group, a butyl group, an isobutyl group, a sec-butyl group,
a tert-butyl group, a pentyl group, and a hexyl group.

The term '"C1-C6 haloalkyl group '" represents a group
wherein at least one hydrogen atom of the straight or branched C1-C6 alkyl group is substituted with a halogen atom, and includes, for example, a monofluoromethyl group, a monochloromethyl group, a dichloromethyl group, a difluoromethyl group, a trifluoromethyl group, a trichloromethyl group, a tribromomethyl group, a 2,2,2-trifluoroethyl group, a 2,2,2-trichloroethyl group, a pentafluorethyl group, a chlorofluoromethyl group, a dichlorofluoromethyl group, a chlorodifluoromethyl group, a 2,2-difluoroethyl group, a 2-chloro-2-fluoroethyl group, a 2-chloro-2,2-difluoroethyl group, a 2,2-dichloro-2-fluoroethyl group, a 2-fluoropropyl group, a 3-fluoropropyl group, a 2,2-difluoropropyl group, a 3,3,3-trifluoropropyl group, a 4-fluorobutyl group, and a 2,2-difluoroethyl group. The halogen atom that can be substituted for a hydrogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

[0015]

The term '"C2-C6 alkenyl group' '" represents a straight or branched alkenyl group, and includes, for example, a vinyl group, a 1-propenyl group, an isopropenyl group, a 2-
propenyl group, a 1-butenyl group, a 1-methyl-1-propenyl
group, a 2-butenyl group, a 1-methyl-2-propenyl group, a 3-
butenyl group, a 2-methyl-1-propenyl group, a 2-methyl-2-
propenyl group, a 1,3-butadienyl group, a 1-pentenyl group,
an 1-ethyl-2-propenyl group, a 2-pentenyl group, a 1-
methyl-1-butenyl group, a 3-pentenyl group, a 1-methyl-2-
butenyl group, a 4-pentenyl group, a 1-methyl-3-butenyl
group, a 3-methyl-1-butenyl group, a 1,2-dimethyl-2-
propenyl group, a 1,1-dimethyl-2-propenyl group, a 2-
methyl-2-butenyl group, a 3-methyl-2-butenyl group, a 1,2-
dimethyl-1-propenyl group, a 2-methyl-3-butenyl group, a 3-
methyl-3-butenyl group, a 1,3-pentadienyl group, a 1-vinyl-
2-propenyl group, a 1-hexenyl group, and a 5-hexenyl group.

A term '"C2-C6 haloalkenyl group'" represents a group
wherein at least one hydrogen atom of the straight or
branched C2-C6 alkenyl group is substituted with a halogen
atom, and includes, for example, a 2-chlorovinyl group, a
2-bromovinyl group, an 2-iodovinyl group, a 3-chloro-2-
propenyl group, a 3-bromo-2-propenyl group, a 1-
chloromethylvinyl group, a 2-bromo-1-methylvinyl group, a
1-trifluoromethylvinyl group, a 3,3,3-trichloro-1-propenyl
group, a 3-bromo-3,3-difluoro-1-propenyl group, a 2,3,3-
tetrachloro-1-propenyl group, a 1-trifluoromethyl-2,2-
difluorovinyl group, a 2-chloro-2-propenyl group, a 3,3-
difluoro-2-propenyl group, a 2,3,3-trichloro-2-propenyl
The halogen atom that can be substituted for a hydrogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

[0016] The term "C2-C6 alkynyl group" represents a straight...
or branched alkynyl group, and includes, for example, an ethynyl group, a propargyl group, a 1-butynyl group, a 3-methyl-1-butynyl group, a 2-butynyl group, a 3-butynyl group, a 2-pentynyl group, a 3-pentynyl group, a 4-pentynyl group, a 1-hexynyl group, and a 5-hexynyl group.

The term "C2-C6 haloalkynyl group" represents a group wherein at least one hydrogen atom of the straight or branched C2-C6 alkynyl group is substituted with a halogen atom, and includes, for example, a fluoroethynyl group, a 3-chloro-2-propynyl group, a 3-bromo-2-propynyl group, a 3-iodo-2-propynyl group, an 3-chloro-1-propynyl group, a 5-chloro-4-pentynyl group, a 3,3,3-trifluoro-1-propynyl group, a 3,3,3-trifluoro-2-propynyl group, a 3-fluoro-2-propynyl group, a perfluoro-2-butynyl group, a perfluoro-2-pentynyl group, a perfluoro-3-pentynyl group, and a perfluoro-1-hexynyl group. The halogen atom that can be substituted for a hydrogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

[0017]

The term "C3-C6 cycloalkyl group" includes, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.

The term "C3-C6 halocycloalkyl group" represents a group wherein at least one hydrogen atom of the C3-C6 cycloalkyl group is substituted with a halogen atom, and
includes, for example a 2-fluorocyclopropyl group, a 2,2-difluorocyclopropyl group, a 2-chloro-2-f luorocyclopropyl group, a 2,2-dichlorocyclopropyl group, a 2,2-dibromocyclopropyl group, a 2,2-difluoro-1-methylcyclopropyl group, a 2,2-dichloro-1-methylcyclopropyl group, a 2,2-dibromo-1-methylcyclopropyl group, a 1-(trifluoromethyl) cyclopropyl group, a 2,2,3,3-tetrafloorocyclobutyl group, a 2-chlorocyclohexyl group, a 4,4-difluorocyclohexyl group, and a 4-chlorocyclohexyl group. The halogen atom that can be substituted for a hydrogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

[0018]

The term 'C1-C6 alkoxy group' represents a straight or branched alkoxy group, and includes, for example, a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butyloxy group, an isobutyloxy group, a sec-butyloxy group, a tert-butyloxy group, a pentyloxy group, an isoamyloxy group, a neopentyloxy group, a 2-pentyloxy group, a 3-pentyloxy group, a 2-methylbutyloxy group, a hexyloxy group, an isohexyloxy group, a 3-methylpentyl group, and a 4-methylpentyl group.

The term 'C1-C6 haloalkoxy group' represents a group wherein at least one hydrogen atom of the straight or branched C1-C6 alkoxy group is substituted with a halogen.
atom, and includes, for example, a trifluoromethoxy group, a trichloromethoxy group, a chloromethoxy group, a dichloromethoxy group, a fluoromethoxy group, a difluoromethoxy group, a chlorofluoromethoxy group, a dichlorofluoromethoxy group, a chlorodifluoromethoxy group, a dichlorodifluoromethoxy group, a chlorofluorodifluoromethoxy group, a dichlorofluorodifluoromethoxy group, a chlorodifluorodifluoromethoxy group, a dichlorodifluorodifluoromethoxy group, a pentafluoroethoxy group, a pentachloroethoxy group, a 2,2,2-trichloroethoxy group, a 2,2,2-trifluoroethoxy group, a 2,2,2-tribromoethoxy group, a 2,2,2-triiodoethoxy group, a 2-fluoroethoxy group, a 2-chloroethoxy group, a 2,2-difluoroethoxy group, a 2-chloro-2-fluoroethoxy group, a 2-chloro-2,2-difluoroethoxy group, a heptafluoroproxy group, a heptachloroproxy group, a heptabromoproxy group, a heptaiodoproxy group, a 3,3,3-trifluoroproxy group, a 3,3,3-trichloroproxy group, a 3,3,3-tribromoproxy group, a 3,3,3-triiodoproxy group, a 2-fluoroproxy group, a 2,2-difluoroproxy group, a 2,3-difluoroproxy group, a 2-chloroproxy group, a 3-chloroproxy group, a 2,3-dichloroproxy group, a 2-bromoproxy group, a 3-bromoproxy group, a 3,3,3-trifluoroproxy group, a nonafluorobutoxy group, a nonachlorobutoxy group, a nonabromobutoxy group, a nonaiodobutoxy group, a perfluoropentyloxy group, a perchloropentyloxy group, a perbromopentyloxy group, a perfluorohexyloxy group, a perchlorohexyloxy group, a perbromohexyloxy group, and a periodohexyloxy group. The
halogen atom that can be substituted for a hydrogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

[0019]

5 The term '"C1-C6 alkylthio group'" represents a straight or branched alkylthio group, and includes, for example, a methylthio group, an ethylthio group, a propylthio group, an isopropylthio group, a n-butylthio group, a sec-butylthio group, a tert-butylthio group, a pentylthio group, an isopentylthio group, a neopentylthio group, a n-hexylthio group, an iso/hexylthio group, and a sec-hexylthio group.

The term '"C1-C6 haloalkylthio group'" represents a group wherein at least one hydrogen atom of the straight or branched C1-C6 alkylthio group is substituted with a halogen atom, and includes, for example, a monofluoromethylthio group, a difluoromethylthio group, a trifluoromethylthio group, a trichloromethylthio group, a tribromomethylthio group, a triiodomethylthio group, a chlorofluoromethylthio group, a pentafluoroethylthio group, a pentachloroethylthio group, a pentabromoethylthio group, a pentaiodoethylthio group, a 2,2,2-trichloroethylthio group, a 2,2,2-trifluoroethylthio group, a 2,2,2-tribromoethylthio group, a 2,2,2-triiodoethylthio group, a 2,2-difluoroethylthio group, a heptafluoropropylthio group,
a heptachloropropylthio group, a heptabromopropylthio group,
a heptaiodopropylthio group, a 3,3,3-trifluoropropylthio group,
a 3,3,3-trichloropropylthio group, a 3,3,3-tribromopropylthio group, a 3,3,3-triiodopropylthio group,
a 3,3,3-trifluoropropylthio group, a 3,3,3-trichloropropylthio group,
a 3,3,3-tribromopropylthio group, a 3,3,3-triiodopropylthio group,
a 2,2-difluoropropylthio group, a 2,3,3-trifluoropropylthio group,
a nonafluorobutylthio group, a nonachlorobutylthio group,
a nonabromobutylthio group, a nonaiodobutylthio group,
a perfluoropentylthio group, a perchloropentylthio group,
a perbromopentylthio group, a perfluorohexylthio group,
a perchlorohexylthio group, a perbromohexylthio group,
and a periodohexylthio group. The halogen atom that
can be substituted for a hydrogen atom includes a fluorine
atom, a chlorine atom, a bromine atom and an iodine atom.

[0020]

The term "C3-C6 cycloalkyloxy group" includes, for
eexample, a cyclopropyloxy group, a cyclobutyloxy group, a
cyclopentyloxy group, and a cyclohexyloxy group.

The term "C3-C6 halocycloalkyloxy group" represents
a group wherein at least one hydrogen atom of the C3-C6
cycloalkyloxy group is substituted with a halogen atom, and
includes, for example, a 2-fluorocyclopropyloxy group, a
2,2-difluorocyclopropyloxy group, a 2-chloro-2-
fluorocyclopropyloxy group, a 2,2-dichlorocyclopropyloxy
group, a 2,2-dibromocyclopropyloxy group, a 2,2-difluoro-1-
methylcyclopropyloxy group, a 2,2-dichloro-1-
methylcyclopropyloxy group, a 2,2-dibromo-1-
methyl cyclopropyloxy group, a 1-
(trifluoromethyl) cyclopropyloxy group, a 2,2,3,3-
tetrafluorocyclobutyloxy group, a 2-chlorocyclohexyloxy
group, a 4,4-difluorocyclohexyloxy group, and a 4-
chlorocyclohexyloxy group. The halogen atom that can be
substituted for a hydrogen atom includes a fluorine atom, a
chlorine atom, a bromine atom and an iodine atom.

[0021]

The term ''C3-C6 cycloalkylthio group'' includes, for
example, a cyclopropylthio group, a cyclobutylthio group, a
cyclopentylthio group, and a cyclohexylthio group.

[0022]

The term ''C2-C6 alkenyloxy group'' represents a
straight or branched alkenyloxy group, and includes, for
example, a 2-propenyloxy group, a 2-butenyloxy group, a 1-
methyl-2-propenyloxy group, a 3-butenyloxy group, a 2-
methyl-2-propenyloxy group, a 2-pentenyloxy group, a 3-
pentenyloxy group, a 4-pentenyloxy group, a 1-methyl-3-
butyloxy group, a 1,2-dimethyl-2-propenyloxy group, a
1,1-dimethyl-2-propenyloxy group, a 2-methyl-2-butenyloxy
group, a 3-methyl-2-butenyloxy group, a 2-methyl-3-
butyloxy group, a 3-methyl-2-butenyloxy group, a 2-
methyl-3-butenyloxy group, a 3-methyl-3-butenyloxy group, a
1-vinyl-2-propenyloxy group, and a 5-hexenyloxy group.
The term "C3-C6 alkynyloxy group" represents a straight or branched alkynyloxy group, and includes, for example, a propargyloxy group, a 1-butyne-3-yloxy group, a 3-methyl-1-butyne-3-yloxy group, a 2-butynyloxy group, a 3-butynyloxy group, a 2-pentynyloxy group, a 3-pentynyloxy group, a 4-pentynyloxy group, and a 5-hexynyloxy group.

The term "C3-C6 haloalkenyloxy group" represents a group wherein at least one hydrogen atom of the straight or branched an C3-C6 alkenyloxy group is substituted with a halogen atom, and includes, for example, a 3-chloro-2-propenyloxy group, a 3-bromo-2-propenyloxy group, a 3-bromo-3,3-difluoro-1-propenyloxy group, a 2,3,3,3-tetrachloro-1-propenyloxy group, a 2-chloro-2-propenyloxy group, a 3,3-difluoro-2-propenyloxy group, a 2,3,3-trichloro-2-propenyloxy group, a 3,3-dichloro-2-propenyloxy group, a 3,3-dibromo-2-propenyloxy group, a 3-fluoro-3-chloro-2-propenyloxy group, a 4-bromo-3-chloro-3,4,4-trifluoro-1-butenyloxy group, a 1-bromomethyl-2-propenyloxy group, a 3-chloro-2-butenyloxy group, a 4,4,4-trifluoro-2-butenyloxy group, a 4-bromo-4,4-difluoro-2-butenyloxy group, a 3-bromo-3-butenyloxy group, a 3,4,4-trifluoro-3-butenyloxy group, a 3,4,4-tribromo-3-butenyloxy group, a 3-bromo-2-methyl-2-propenyloxy group, a 3,3-difluoro-2-methyl-2-propenyloxy group, a 3-chloro-4,4,4-trifluoro-2-butenyloxy group, a 4,4-difluoro-3-methyl-3-butenyloxy group, a 4,4-difluoro-3-methyl-3-butenyloxy
group, a 5,5-difluoro-4-pentenyloxy group, a 4,5,5-trifluoro-4-pentenyloxy group, a 4,4,4-trifluoromethyl-3-methyl-2-butenyloxy group, a 3,5,5-trifluoro-2,4-pentadienyloxy group, a 4,4,5,5,6,6,6-heptafluoro-2-hexenyloxy group, a 4,5,5,5-tetrafluoro-4-trifluoromethyl-2-pentenyloxy group, and a 5-bromo-4,5,5-trifluoro-4-trifluoromethyl-2-pentenyloxy group. The halogen atom that can be substituted for a hydrogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

The term ''C3-C6 haloalkynyloxy group'' represents a group wherein at least one hydrogen atom of the straight or branched C3-C6 alkynyloxy group is substituted with a halogen atom, and includes, for example, a 3-chloro-2-propynyloxy group, a 3-bromo-2-propynyloxy group, an 3-iodo-2-propynyloxy group, a 5-chloro-4-pentynyloxy group, an 3-fluoro-2-propynyloxy group, a perfluoro-2-butynyloxy group, a perfluoro-3-butynyloxy group, a perfluoro-2-pentynyloxy group, a perfluoro-3-pentynyloxy group, a perfluoro-4-pentynyloxy group, and a perfluoro-5-hexynyloxy group. The halogen atom that can be substituted for a hydrogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

[0023]

The term ''C3-C6 alkenylthio group'' represents a straight or branched alkenylthio group, and includes, for
example, a 2-propenylthio group, a 2-butenylthio group, a 1-methyl-2-propenylthio group, a 3-butenylthio group, a 2-methyl-2-propenylthio group, a 2-pentenylthio group, a 3-pentenylthio group, a 4-pentenylthio group, a 1-methyl-3-butenylthio group, a 1,2-dimethyl-2-propenylthio group, a 1,1-dimethyl-2-propenylthio group, a 2-methyl-2-butenylthio group, a 3-methyl-2-butenylthio group, a 2-methyl-3-butenylthio group, a 3-methyl-3-butenylthio group, a 1-vinyl-2-propenylthio group, and a 5-hexenylthio group.

The term "C3-C6 alkynylthio group" represents a straight or branched alkynylthio group, and includes, for example, a propargylthio group, a 1-butyne-3-ylthio group, a 3-methyl-1-butyne-3-ylthio group, a 2-butylnylthio group, a 3-butynylthio group, a 2-pentynylthio group, a 3-pentynylthio group, a 4-pentynylthio group, and a 5-pentynylthio group.

The term "C3-C6 haloalkenythio group" represents a group wherein at least one hydrogen atom of the straight or branched C3-C6 alkynylthio group is substituted with a halogen atom, and includes, for example, a 3-chloro-2-propenylthio group, a 3-bromo-2-propenylthio group, a 3-bromo-3,3-difluoro-1-propenylthio group, a 2,3,3,3-tetrachloro-1-propenylthio group, a 2-chloro-2-propenylthio group, a 3,3-difluoro-2-propenylthio group, a 2,3,3-trichloro-2-propenylthio group, a 3,3-dichloro-2-
propenylthio group, a 3,3-dibromo-2-propenylthio group, a 3-fluoro-3-chloro-2-propenylthio group, a 4-bromo-3-chloro-3,4,4-trifluoro-1-butenylthio group, a 1-bromoraethyl-2-propenylthio group, a 3-chloro-2-butenylthio group, a 4,4,4-trifluoro-2-butenylthio group, a 4-bromo-4,4-difluoro-2-butenylthio group, a 3-bromo-3-butenylthio group, a 3,4,4-trifluoro-3-butenylthio group, a 3,4,4-tribromo-3-butenylthio group, a 3-bromo-2-methyl-2-propenylthio group, a 3,3-difluoro-2-methyl-2-propenylthio group, a 3-chloro-4,4,4-trifluoro-2-butenylthio group, a 4,4-difluoro-3-methyl-3-butenylthio group, a 5,5-difluoro-4-pentenylthio group, a 4,5,5-trifluoro-4-pentenylthio group, a 4,4,4-trifluoromethyl-3-methyl-2-butenylthio group, a 3,5,5-trifluoro-2,4-pentadienylthio group, a 4,4,5,5,6,6,6-heptafluoro-2-hexenylthio group, a 4,5,5,5-tetrafluoro-4-trifluoromethyl-2-pentenylthio group, and a 5-bromo-4,5,5-trifluoro-4-trifluoromethyl-2-pentenylthio group. The halogen atom that can be substituted for a hydrogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

The term of "C3-C6 haloalkynythio group" represents a group wherein at least one hydrogen atom of the straight or branched an C3-C6 alkynythio group is substituted with a halogen atom, and includes, for example, a 3-chloro-2-propynylthio group, a 3-bromo-2-propynylthio group, an 3-
iodo-2-propynylthio group, a 5-chloro-4-pentynylthio group, an 3-fluoro-2-propynylthio group, a perfluoro-2-butynylthio group, a perfluoro-3-butynylthio group, a perfluoro-2-pentynylthio group, a perfluoro-3-pentynylthio group, a perfluoro-4-pentynylthio group, a perfluoro-5-hexynylthio group. The halogen atom that can be substituted for a hydrogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

[0024]

The term "C2-C6 acyl group' represents a straight or branched aliphatic acyl group, wherein the total number of carbon atoms including a carbon atom of a carbonyl group is two to six, and includes, for example, an acetyl group, a propionyl group, a butanoyl group, a pentanoyl group, and a hexanoyl group.

The term "C2-C6 haloacyl group' represents a group wherein at least one hydrogen atom of the C2-C6 straight or branched aliphatic acyl group is substituted with a halogen atom and includes, for example, a trichloroacetyl group, a fluoroacetyl group, a difluoroacetyl group, a trifluoroacetyl group, a pentfluoropropionyl group, a pentachloropropionyl group, a pentabromopropionyl group, a pentaiodopropionyl group, a 3,3,3-trichloropropionyl group, a 3,3,3-trifluoropropionyl group, a 3,3,3-tribromopropionyl group, a 3,3,3-triiodopropionyl group, a
heptfluorobutanoyl group, a heptachlorobutanoyl group, a heptabromobutanoyl group, a heptaiodobutanoyl group, a 4,4,4-trifluorobutanoyl group, a 4,4,4-trichlorobutanoyl group, a 4,4,4-tribromobutanoyl group, a 4,4,4-tribromobutanoyl group, a nonafluoropentanoyl group, a nonachloropentanoyl group, a nonabromopentanoyl group, a nonaiodopentanoyl group, and a perfluorohexanoyl group. The halogen atom that can be substituted for a hydrogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

The term '"C2-C6 acyloxy group'" represents a straight or branched aliphatic acyloxy group, wherein the total number of carbon atoms including a carbon atom of a carbonyl group is two to six, and includes, for example, an acetoxy group, a propionyloxy group, a butanoyloxy group, a pentanoyloxy group, and a hexanoyloxy group.

The term '"C2-C6 acylthio group'" represents a straight or branched aliphatic acylthio group, wherein the total number of carbon atoms including a carbon atom of a carbonyl group is two to six, and includes, for example, an acetylthio group, a propionylthio group, a butanoylthio group, a pentanoylthio group, and a hexanoylthio group.

[0025]

The term '"C2-C6 alkoxycarbonyl group'" may be either straight or branched, wherein the total number of carbon
The term 'aminocarbonyl group optionally having C1-C6 alkyl group' represents a group wherein one or two hydrogen atom on nitrogen atom of the aminocarbonyl group is substituted with the straight or branched C1-C6 alkyl group and the C1-C6 alkyl group may be same or different from each other, and includes, for example, an aminocarbonyl group, a methylaminocarbonyl group, an ethylaminocarbonyl group, a propylaminocarbonyl group, an isopropylaminocarbonyl group, a butylaminocarbonyl group, a dimethylaminocarbonyl group, a diethylaminocarbonyl group, a dipropylaminocarbonyl group, a di-isopropylaminocarbonyl group, a pentylamnocarbonyl group and a hexylaminocarbonyl group.

The term 'C6-C16 aryl group' includes, for example, a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an
1-acenaphthyl group, a 1-phenanthryl group, a 9-anthryl group, and a 1-pyrenyl group.

The term "C6-C16 haloaryl group" represents a group wherein at least one hydrogen atom of the C6-C16 aryl group is substituted with a halogen atom, and includes, for example, a 2-fluorophenyl group, a 3-fluorophenyl group, a 4-fluorophenyl group, a 2-chlorophenyl group, a 3-chlorophenyl group, a 4-chlorophenyl group, a 2-bromophenyl group, a 3-bromophenyl group, a 4-bromophenyl group, an 2-iodophenyl group, an 3-iodophenyl group, an 4-iodophenyl group, a 2,4-difluorophenyl group, a 2,5-difluorophenyl group, a 2,6-difluorophenyl group, a 3,5-difluorophenyl group, a 2,4-dichlorophenyl group, a 2,5-dichlorophenyl group, a 2,6-dichlorophenyl group, a 3,5-dichlorophenyl group, a 2,4,6-trifluorophenyl group, a 2,3,4-trifluorophenyl group, a 2,4,5-trifluorophenyl group, a 3,4,5-trifluorophenyl group, a 2,4,6-trichlorophenyl group, a 2,3,4-trichlorophenyl group, a 2,4,5-trichlorophenyl group, a 3,4,5-trichlorophenyl group, a pentfluorophenyl group, a pentachlorophenyl group, a 2-bromo-3-fluorophenyl group, a 2-bromo-4-fluorophenyl group, a 2-bromo-5-fluorophenyl group, a 2-bromo-6-fluorophenyl group, a 3-bromo-2-fluorophenyl group, a 3-bromo-4-fluorophenyl group, a 3-bromo-5-fluorophenyl group, a 3-bromo-6-fluorophenyl group, a 4-bromo-2-fluorophenyl group, a 4-bromo-3-
fluorophenyl group, a 4-bromo-5-fluorophenyl group, a 4-bromo-6-fluorophenyl group, a 5-bromo-2-fluorophenyl group, a 5-bromo-3-fluorophenyl group, a 5-bromo-4-fluorophenyl group, a 5-bromo-6-fluorophenyl group, a 6-bromo-2-fluorophenyl group, a 6-bromo-3-fluorophenyl group, a 6-bromo-4-fluorophenyl group, a 6-bromo-5-fluorophenyl group, a 2-chloro-3-fluorophenyl group, a 2-chloro-4-fluorophenyl group, a 2-chloro-5-fluorophenyl group, a 2-chloro-6-fluorophenyl group, a 3-chloro-2-fluorophenyl group, a 3-chloro-4-fluorophenyl group, a 3-chloro-5-fluorophenyl group, a 3-chloro-6-fluorophenyl group, a 4-chloro-2-fluorophenyl group, a 4-chloro-3-fluorophenyl group, a 4-chloro-5-fluorophenyl group, a 4-chloro-6-fluorophenyl group, a 5-chloro-2-fluorophenyl group, a 5-chloro-3-fluorophenyl group, a 5-chloro-4-fluorophenyl group, a 5-chloro-6-fluorophenyl group, a 6-chloro-2-fluorophenyl group, a 6-chloro-3-fluorophenyl group, a 6-chloro-4-fluorophenyl group, a 6-chloro-5-fluorophenyl group, a 2-fluoro-1-naphthyl group, a 3-fluoro-1-naphthyl group, a 4-fluoro-1-naphthyl group, a 5-fluoro-1-naphthyl group, a 6-fluoro-1-naphthyl group, a 7-fluoro-1-naphthyl group, a 2-chloro-1-naphthyl group, a 3-chloro-1-naphthyl group, a 4-chloro-1-naphthyl group, a 5-chloro-1-naphthyl group, a 6-chloro-1-naphthyl group, a 7-chloro-1-naphthyl group, a 2-bromo-1-naphthyl group, a 3-bromo-1-naphthyl group, a 4-
bromo-1-naphthyl group, a 5-bromo-1-naphthyl group, a 6-bromo-1-naphthyl group, a 7-bromo-1-naphthyl group, a heptachloro-1-naphthyl group, a heptfluoro-1-naphthyl group, a 1-fluoro-2-naphthyl group, a 3-fluoro-2-naphthyl group, a 4-fluoro-2-naphthyl group, a 5-fluoro-2-naphthyl group, a 6-fluoro-2-naphthyl group, a 7-fluoro-2-naphthyl group, a 1-chloro-2-naphthyl group, a 3-chloro-2-naphthyl group, a 4-chloro-2-naphthyl group, a 5-chloro-2-naphthyl group, a 6-chloro-2-naphthyl group, a 7-chloro-2-naphthyl group, a 1-bromo-2-naphthyl group, a 3-bromo-2-naphthyl group, a 4-bromo-2-naphthyl group, a 5-bromo-2-naphthyl group, a 6-bromo-2-naphthyl group, a 7-bromo-2-naphthyl group, a heptachloro-2-naphthyl group, a heptfluoro-2-naphthyl group, a 3-fluoro-1-acenaphthyl group, a 9-fluoro-1-phenanthryl group, a 10-fluoro-9-anthryl group, and a 6-fluoro-1-pyrenyl group. The halogen atom that can be substituted for a hydrogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

[0027]

The term 'C6-C16 aryloxy group' includes, for example, a phenyloxy group, a 1-naphthoxy group, a 2-naphthoxy group, an 1-acenaphthoxy group, a 1-phenanthroyloxy group, an 9-anthroyloxy group, and a 1-pyrenyloxy group.

[0028] The term 'C6-C16 haloaryloxy group' represents a
group wherein at least one hydrogen atom of the C6-C16 aryloxy group is substituted with a halogen atom, and includes, for example, a 2-fluorophenyl group, a 3-fluorophenyl group, a 4-fluorophenyl group, a 2-chlorophenyl group, a 3-chlorophenyl group, a 4-chlorophenyl group, a 2-bromophenyl group, a 3-bromophenyl group, a 4-bromophenyl group, an 2-iodophenyl group, an 3-iodophenyl group, an 4-iodophenyl group, a 2,4-difluorophenyl group, a 2,5-difluorophenyl group, a 2,6-difluorophenyl group, a 3,5-difluorophenyl group, a 2,4-dichlorophenyl group, a 2,5-dichlorophenyl group, a 2,6-dichlorophenyl group, a 3,5-dichlorophenyl group, a 2,4,6-trifluorophenyl group, a 2,3,4-trifluorophenyl group, a 2,4,5-trifluorophenyl group, a 3,4,5-trifluorophenyl group, a 2,3,4-trichlorophenyl group, a 2,4,5-trichlorophenyl group, a 3,4,5-trichlorophenyl group, a pentfluorophenyl group, a pentachlorophenyl group, a 2-bromo-3-fluorophenyl group, a 2-bromo-4-fluorophenyl group, a 2-bromo-5-fluorophenyl group, a 2-bromo-6-fluorophenyl group, a 3-bromo-2-fluorophenyl group, a 3-bromo-4-fluorophenyl group, a 3-bromo-5-fluorophenyl group, a 3-bromo-6-fluorophenyl group, a 4-bromo-2-fluorophenyl group, a
4-bromo-3-fluorophenyloxy group, a 4-bromo-5-fluorophenyloxy group, a 4-bromo-6-fluorophenyloxy group, a 5-bromo-2-fluorophenyloxy group, a 5-bromo-3-fluorophenyloxy group, a 5-bromo-4-fluorophenyloxy group, a 5-bromo-6-fluorophenyloxy group, a 6-bromo-2-fluorophenyloxy group, a 6-bromo-3-fluorophenyloxy group, a 6-bromo-4-fluorophenyloxy group, a 6-bromo-5-fluorophenyloxy group, a 2-chloro-3-fluorophenyloxy group, a 2-chloro-4-fluorophenyloxy group, a 2-chloro-5-fluorophenyloxy group, a 2-chloro-6-fluorophenyloxy group, a 3-chloro-2-fluorophenyloxy group, a 3-chloro-4-fluorophenyloxy group, a 3-chloro-5-fluorophenyloxy group, a 3-chloro-6-fluorophenyloxy group, a 4-chloro-2-fluorophenyloxy group, a 4-chloro-3-fluorophenyloxy group, a 4-chloro-4-fluorophenyloxy group, a 4-chloro-5-fluorophenyloxy group, a 4-chloro-6-fluorophenyloxy group, a 5-chloro-2-fluorophenyloxy group, a 5-chloro-3-fluorophenyloxy group, a 5-chloro-4-fluorophenyloxy group, a 5-chloro-6-fluorophenyloxy group, a 6-chloro-2-fluorophenyloxy group, a 6-chloro-3-fluorophenyloxy group, a 6-chloro-4-fluorophenyloxy group, a 6-chloro-5-fluorophenyloxy group, a 2-fluoro-1-naphthyloxy group, a 3-fluoro-1-naphthyloxy group, a 4-fluoro-1-naphthyloxy group, a 5-fluoro-1-naphthyloxy group, a 6-fluoro-1-naphthyloxy group, a 7-fluoro-1-naphthyloxy group, a 2-chloro-1-naphthyloxy group, a 3-chloro-1-naphthyloxy group.
naphthyloxy group, a 4-chloro-1-naphthyloxy group, a 5-chloro-1-naphthyloxy group, a 6-chloro-1-naphthyloxy group, a 7-chloro-1-naphthyloxy group, a 2-bromo-1-naphthyloxy group, a 3-bromo-1-naphthyloxy group, a 4-bromo-1-naphthyloxy group, a 5-bromo-1-naphthyloxy group, a 6-bromo-1-naphthyloxy group, a 7-bromo-1-naphthyloxy group, a heptachloro-1-naphthyloxy group, a heptafluoro-1-naphthyloxy group, a 1-fluoro-2-naphthyloxy group, a 3-fluoro-2-naphthyloxy group, a 4-fluoro-2-naphthyloxy group, a 5-fluoro-2-naphthyloxy group, a 6-fluoro-2-naphthyloxy group, a 7-fluoro-2-naphthyloxy group, a 1-chloro-2-naphthyloxy group, a 3-chloro-2-naphthyloxy group, a 4-chloro-2-naphthyloxy group, a 5-chloro-2-naphthyloxy group, a 6-chloro-2-naphthyloxy group, a 7-chloro-2-naphthyloxy group, a 1-bromo-2-naphthyloxy group, a 3-bromo-2-naphthyloxy group, a 4-bromo-2-naphthyloxy group, a 5-bromo-2-naphthyloxy group, a 6-bromo-2-naphthyloxy group, a 7-bromo-2-naphthyloxy group, a heptachloro-2-naphthyloxy group, a heptafluoro-2-naphthyloxy group, a 3-fluoro-1-acenaphthyloxy group, a 9-fluoro-1-phenanthryloxy group, a 10-fluoro-9-anthryloxy group, and a 6-fluoro-1-pyrenyloxy group. The halogen atom that can be substituted for a hydrogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
The term ''C6-C16 arylthio group'' includes, for example, a phenyl thio group, a 1-naphthylthio group, a 2-naphthylthio group, an 1-acenaphthylthio group, a 1-phenanthrylthio group, an 9-anthrylthio group, and a 1-pyrenylthio group.

The term ''C6-C16 haloarylthio group'' represents a group wherein at least one hydrogen atom of the C6-C16 arylthio group is substituted with a halogen atom, and includes, for example, a 2-fluorophenylthio group, a 3-fluorophenylthio group, a 4-fluorophenylthio group, a 2-chlorophenylthio group, a 3-chlorophenylthio group, a 4-chlorophenylthio group, a 2-bromophenylthio group, a 3-bromophenylthio group, a 4-bromophenylthio group, an 2-iodophenylthio group, an 3-iodophenylthio group, an 4-iodophenylthio group, a 2,4-difluorophenylthio group, a 2.5-difluorophenylthio group, a 2,6-difluorophenylthio group, a 3,5-difluorophenylthio group, a 2,4-dichlorophenylthio group, a 2,5-dichlorophenylthio group, a 2,4-dichlorophenylthio group, a 2,6-dichlorophenylthio group, a 3,5-dichlorophenylthio group, a 2,4,6-trifluorophenylthio group, a 2,3,4-trifluorophenylthio group, a 2,4,5-trifluorophenylthio group, a 3,4,5-trifluorophenylthio group, a 2,4,6-trichlorophenylthio group, a 2,3,4-trichlorophenylthio group, a 2,4,5-trichlorophenylthio group, a 3,4,5-trichlorophenylthio group, a pentafluorophenylthio group, a
pentachlorophenylthio group, a 2-bromo-3-fluorophenylthio group, a 2-bromo-4-fluorophenylthio group, a 2-bromo-5-fluorophenylthio group, a 2-bromo-6-fluorophenylthio group, a 3-bromo-2-fluorophenylthio group, a 3-bromo-4-fluorophenylthio group, a 3-bromo-5-fluorophenylthio group, a 3-bromo-6-fluorophenylthio group, a 4-bromo-2-fluorophenylthio group, a 4-bromo-3-fluorophenylthio group, a 4-bromo-5-fluorophenylthio group, a 4-bromo-6-fluorophenylthio group, a 5-bromo-2-fluorophenylthio group, a 5-bromo-3-fluorophenylthio group, a 5-bromo-4-fluorophenylthio group, a 5-bromo-6-fluorophenylthio group, a 6-bromo-2-fluorophenylthio group, a 6-bromo-3-fluorophenylthio group, a 6-bromo-4-fluorophenylthio group, a 6-bromo-5-fluorophenylthio group, a 2-chloro-3-fluorophenylthio group, a 2-chloro-4-fluorophenylthio group, a 2-chloro-5-fluorophenylthio group, a 2-chloro-6-fluorophenylthio group, a 3-chloro-2-fluorophenylthio group, a 3-chloro-4-fluorophenylthio group, a 3-chloro-5-fluorophenylthio group, a 3-chloro-6-fluorophenylthio group, a 4-chloro-2-fluorophenylthio group, a 4-chloro-3-fluorophenylthio group, a 4-chloro-5-fluorophenylthio group, a 4-chloro-6-fluorophenylthio group, a 5-chloro-2-fluorophenylthio group, a 5-chloro-3-fluorophenylthio group, a 5-chloro-4-fluorophenylthio group, a 5-chloro-5-fluorophenylthio group, a 5-chloro-6-fluorophenylthio group, a 6-chloro-2-fluorophenylthio group,
a 6-chloro-3-fluorophenylthio group, a 6-chloro-4-fluorophenylthio group, a 6-chloro-5-fluorophenylthio group, a 2-fluoro-1-naphthylthio group, a 3-fluoro-1-naphthylthio group, a 4-fluoro-1-naphthylthio group, a 5-fluoro-1-naphthylthio group, a 6-fluoro-1-naphthylthio group, a 7-fluoro-1-naphthylthio group, a 2-chloro-1-naphthylthio group, a 3-chloro-1-naphthylthio group, a 4-chloro-1-naphthylthio group, a 5-chloro-1-naphthylthio group, a 6-chloro-1-naphthylthio group, a 7-chloro-1-naphthylthio group, a 2-bromo-1-naphthylthio group, a 3-bromo-1-naphthylthio group, a 4-bromo-1-naphthylthio group, a 5-bromo-1-naphthylthio group, a 6-bromo-1-naphthylthio group, a 7-bromo-1-naphthylthio group, a heptachloro-1-naphthylthio group, a 1-fluoro-2-naphthylthio group, a 3-fluoro-2-naphthylthio group, a 4-fluoro-2-naphthylthio group, a 5-fluoro-2-naphthylthio group, a 6-fluoro-2-naphthylthio group, a 7-fluoro-2-naphthylthio group, a 1-chloro-2-naphthylthio group, a 3-chloro-2-naphthylthio group, a 4-chloro-2-naphthylthio group, a 5-chloro-2-naphthylthio group, a 6-chloro-2-naphthylthio group, a 7-chloro-2-naphthylthio group, a 1-bromo-2-naphthylthio group, a 3-bromo-2-naphthylthio group, a 4-bromo-2-naphthylthio group, a 5-bromo-2-naphthylthio group, a 6-bromo-2-naphthylthio group, a 7-bromo-2-naphthylthio group, a heptachloro-2-
naphthylthio group, a heptafluoro-2-naphthylthio group, a 3-fluoro-1-acenaphthylthio group, a 9-fluoro-1-phenanthrylthio group, a 10-fluoro-9-anthrylthio group, and a 6-fluoro-1-pyrenylthio group. The halogen atom that can be substituted for a hydrogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

[0029] The term "C7-C18 aralkyl group" includes, for example, a benzyl group, a phenethyl group, a 3-phenylpropyl group, a 4-phenylbutyl group, a 5-phenylpentyl group, a 6-phenylhexyl group, a 7-phenylheptyl group, a 8-phenyloctyl group, a 9-phenylnonyl group, a 10-phenyldecyl group, a 11-phenylundecyl group, a 12-phenylundecyl group, a 1-naphthylmethyl group, a 2-(1-naphthyl) ethyl group, a 3-(1-naphthyl) propyl group, a 4-(1-naphthyl) butyl group, a 5-(1-naphthyl) pentyl group, a 6-(1-naphthyl) hexyl group, a 7-(1-naphthyl) heptyl group, a 8-(1-naphthyl) octyl group, a 2-naphthylmethyl group, a 2-(2-naphthyl) ethyl group, a 3-(2-naphthyl) propyl group, a 4-(2-naphthyl) butyl group, a 5-(2-naphthyl) pentyl group, a 6-(2-naphthyl) hexyl group, a 7-(2-naphthyl) heptyl group, a 8-(2-naphthyl) octyl group, an 1-anthrylmethyl group, an 2-(1-anthryl) ethyl group, an 3-(1-anthryl) propyl group, an 4-(1-anthryl) butyl group, an 2-anthrylmethyl group, an 2-(2-anthryl) ethyl group, an 3-(2-anthryl) propyl group, an 4-(2-anthryl)butyl group, an 9-
anthrylmethyl group, an 2-(9-anthryl) ethyl group, an 3-(9-anthryl) propyl group, and an 4-(9-anthryl) butyl group.

The term 'C7-C18 haloaralkyl group' represents a group wherein at least one hydrogen atom of the C7-C18 aralkyl group is substituted with a halogen atom, and includes, for example, a 2-fluorobenzyl group, a 3-fluorobenzyl group, a 4-fluorobenzyl group, a 2-chlorobenzyl group, a 3-chlorobenzyl group, a 4-chlorobenzyl group, a 2-bromobenzyl group, a 3-bromobenzyl group, a 4-bromobenzyl group, an 2-iodobenzyl group, an 3-iodobenzyl group, an 4-iodobenzyl group, a 2,4-difluorobenzyl group, a 2,5-difluorobenzyl group, a 2,6-difluorobenzyl group, a 3,5-difluorobenzyl group, a 2,4-dichlorobenzyl group, a 2,5-dichlorobenzyl group, a 2,6-dichlorobenzyl group, a 3,5-dichlorobenzyl group, a 2,4,6-trifluorobenzyl group, a 2,3,4-trifluorobenzyl group, a 2,4,5-trifluorobenzyl group, a 3,4,5-trifluorobenzyl group, a 2,4,6-trichlorobenzyl group, a 2,3,4-trichlorobenzyl group, a 2,4,5-trichlorobenzyl group, a pentafluorobenzyl group, a pentachlorobenzyl group, a 2-bromo-3-fluorobenzyl group, a 2-bromo-4-fluorobenzyl group, a 2-bromo-5-fluorobenzyl group, a 2-bromo-6-fluorobenzyl group, a 3-bromo-2-fluorobenzyl group, a 3-bromo-4-fluorobenzyl group, a 3-bromo-5-fluorobenzyl group, a 3-bromo-6-fluorobenzyl group,
a 4-bromo-2-fluorobenzyl group, a 4-bromo-3-fluorobenzyl group, a 4-bromo-5-fluorobenzyl group, a 4-bromo-6-fluorobenzyl group, a 5-bromo-2-fluorobenzyl group, a 5-bromo-3-fluorobenzyl group, a 5-bromo-4-fluorobenzyl group, a 5-bromo-6-fluorobenzyl group, a 6-bromo-2-fluorobenzyl group, a 6-bromo-3-fluorobenzyl group, a 6-bromo-4-fluorobenzyl group, a 6-bromo-5-fluorobenzyl group, a 2-chloro-3-fluorobenzyl group, a 2-chloro-4-fluorobenzyl group, a 2-chloro-5-fluorobenzyl group, a 2-chloro-6-fluorobenzyl group, a 3-chloro-2-fluorobenzyl group, a 3-chloro-4-fluorobenzyl group, a 3-chloro-5-fluorobenzyl group, a 3-chloro-6-fluorobenzyl group, a 4-chloro-2-fluorobenzyl group, a 4-chloro-3-fluorobenzyl group, a 4-chloro-4-fluorobenzyl group, a 4-chloro-5-fluorobenzyl group, a 4-chloro-6-fluorobenzyl group, a 5-chloro-2-fluorobenzyl group, a 5-chloro-3-fluorobenzyl group, a 5-chloro-4-fluorobenzyl group, a 5-chloro-6-fluorobenzyl group, a 6-chloro-2-fluorobenzyl group, a 6-chloro-3-fluorobenzyl group, a 6-chloro-4-fluorobenzyl group, a 6-chloro-5-fluorobenzyl group, a 2-(4-fluorophenyl) ethyl group, a 2-(4-chlorophenyl)ethyl group, a 2-(4-bromophenyl)ethyl group, an 2-(4-iodophenyl)ethyl group, a 2-(3-fluorophenyl)ethyl group, a 2-(3-chlorophenyl)ethyl group, a 2-(3-bromophenyl)ethyl group, an 2-(3-iodophenyl)ethyl group, a 2-(2-fluorophenyl)ethyl group, a 2-(2-chlorophenyl)ethyl group,
a 2-(2-bromophenyl)ethyl group, an 2-(2-iodophenyl)ethyl group, a 3-(4-fluorophenyl)propyl group, a 3-(4-chlorophenyl)propyl group, a 3-(4-bromophenyl)propyl group, an 3-(4-iodophenyl)propyl group, a 3-(3-fluorophenyl)propyl group, a 3-(3-chlorophenyl)propyl group, a 3-(3-bromophenyl)propyl group, an 3-(3-iodophenyl)propyl group, a 3-(2-fluorophenyl)propyl group, a 3-(2-chlorophenyl)propyl group, a 3-(2-bromophenyl)propyl group, an 3-(2-iodophenyl)propyl group, a 4-(4-fluorophenyl)butyl group, a 4-(4-chlorophenyl)butyl group, a 4-(4-bromophenyl)butyl group, an 4-(4-iodophenyl)butyl group, a 5-(4-fluorophenyl)pentyl group, a 5-(4-chlorophenyl)pentyl group, a 5-(4-bromophenyl)pentyl group, an 5-(4-iodophenyl)pentyl group, a 6-(4-fluorophenyl)hexyl group, a 6-(4-chlorophenyl)hexyl group, a 6-(4-bromophenyl)hexyl group, an 6-(4-iodophenyl)hexyl group, a 7-(4-fluorophenyl)heptyl group, a 7-(4-chlorophenyl)heptyl group, a 7-(4-bromophenyl)heptyl group, an 7-(4-iodophenyl)heptyl group, a 8-(4-fluorophenyl)octyl group, a 8-(4-chlorophenyl)octyl group, a 8-(4-bromophenyl)octyl group, an 8-(4-iodophenyl)octyl group, a 9-(4-fluorophenyl)nonyl group, a 9-(4-chlorophenyl)nonyl group, a 9-(4-bromophenyl)nonyl group, an 9-(4-iodophenyl)nonyl group, a 10-(4-fluorophenyl)decyl group, a 10-(4-chlorophenyl)decyl group, a 10-(4-bromophenyl)decyl group, an 10-(4-
iodophenyl) decyl group, a 11- (4-fluorophenyl)undecyl group, a 11- (4-
chlorophenyl)undecyl group, an 11- (4-iodophenyl)undecyl group, a 12-
(4-fluorophenyl)dodecyl group, a 12- (4-chlorophenyl)dodecyl group, a 12-
(4-iodophenyl)dodecyl group, a 2-fluoro-1-naphthylmethyl group, a 3-fluoro-
1-naphthylmethyl group, a 4-fluoro-1-naphthylmethyl group, a 5-fluoro-
1-naphthylmethyl group, a 6-fluoro-1-naphthylmethyl group, a 7-fluoro-
1-naphthylmethyl group, a 2-chloro-1-naphthylmethyl group, a 3-chloro-
1-naphthylmethyl group, a 4-chloro-1-naphthylmethyl group, a 5-chloro-
1-naphthylmethyl group, a 6-chloro-1-naphthylmethyl group, a 7-chloro-
1-naphthylmethyl group, a 2-bromo-1-naphthylmethyl group, a 3-bromo-
1-naphthylmethyl group, a 4-bromo-1-naphthylmethyl group, a 5-
bromo-1-naphthylmethyl group, a 6-bromo-1-naphthylmethyl group, a 7-
bromo-1-naphthylmethyl group, a heptachloro-1-naphthylmethyl group, a hepta-
fluoro-1-naphthylmethyl group, a 1-fluoro-2-naphthylmethyl group, a 3-
fluoro-2-naphthylmethyl group, a 4-fluoro-2-naphthylmethyl group, a 5-
fluoro-2-naphthylmethyl group, a 6-fluoro-2-naphthylmethyl group, a 7-
fluoro-2-naphthylmethyl group, a 1-chloro-2-naphthylmethyl group, a 3-
chloro-2-naphthylmethyl group, a 4-chloro-2-naphthylmethyl group, a 5-
chloro-2-naphthylmethyl group, a 6-chloro-2-naphthylmethyl group, a 7-
chloro-2-naphthylmethyl group, a 1-fluoro-2-naphthylmethyl group, a 3-
fluoro-2-naphthylmethyl group, a 4-fluoro-2-naphthylmethyl group, a 5-
fluoro-2-naphthylmethyl group, a 6-fluoro-2-naphthylmethyl group, a 7-
fluoro-2-naphthylmethyl group, a 1-chloro-2-naphthylmethyl group, a 3-
chloro-2-naphthylmethyl group, a 4-chloro-2-naphthylmethyl group, a 5-
chloro-2-naphthylmethyl group, a 6-chloro-2-naphthylmethyl group, a 7-
chloro-2-naphthylmethyl group, a 1-fluoro-2-naphthylmethyl group, a 3-
fluoro-2-naphthylmethyl group, a 4-fluoro-2-naphthylmethyl group, a 5-
fluoro-2-naphthylmethyl group, a 6-fluoro-2-naphthylmethyl group, a 7-
fluoro-2-naphthylmethyl group, a 1-chloro-2-naphthylmethyl group, a 3-
chloro-2-naphthylmethyl group, a 4-chloro-2-naphthylmethyl group, a 5-
chloro-2-naphthylmethyl group, a 6-chloro-2-naphthylmethyl group, a 7-
chloro-2-naphthylmethyl group, a 1-fluoro-2-naphthylmethyl group, a 3-
fluoro-2-naphthylmethyl group, a 4-fluoro-2-naphthylmethyl group, a 5-
fluoro-2-naphthylmethyl group, a 6-fluoro-2-naphthylmethyl group, a 7-
fluoro-2-naphthylmethyl group, a 1-chloro-2-naphthylmethyl group, a 3-
chloro-2-naphthylmethyl group, a 4-chloro-2-naphthylmethyl group, a 5-
chloro-2-naphthylmethyl group, a 6-chloro-2-naphthylmethyl group, a 7-
chloro-2-naphthylmethyl group, a 1-fluoro-2-naphthylmethyl group, a 3-
fluoro-2-naphthylmethyl group, a 4-fluoro-2-naphthylmethyl group, a 5-
fluoro-2-naphthylmethyl group, a 6-fluoro-2-naphthylmethyl group, a 7-
fluoro-2-naphthylmethyl group, a 1-chloro-2-naphthylmethyl group, a 3-
chloro-2-naphthylmethyl group, a 4-chloro-2-naphthylmethyl group, a 5-
chloro-2-naphthylmethyl group, a 6-chloro-2-naphthylmethyl group, a 7-
chloro-2-naphthylmethyl group, a 1-fluoro-2-naphthylmethyl group, a 3-
fluoro-2-naphthylmethyl group, a 4-fluoro-2-naphthylmethyl group, a 5-
fluoro-2-naphthylmethyl group, a 6-fluoro-2-naphthylmethyl group, a 7-
fluoro-2-naphthylmethyl group, a 1-chloro-2-naphthylmethyl group, a 3-
chloro-2-naphthylmethyl group, a 4-chloro-2-naphthylmethyl group, a 5-
chloro-2-naphthylmethyl group, a 6-chloro-2-naphthylmethyl group, a 7-
chloro-2-naphthylmethyl group, a 1-fluoro-2-naphthylmethyl group, a 3-
fluoro-2-naphthylmethyl group, a 4-fluoro-2-naphthylmethyl group, a 5-
fluoro-2-naphthylmethyl group, a 6-fluoro-2-naphthylmethyl group, a 7-
fluoro-2-naphthylmethyl group, a 1-chloro-2-naphthylmethyl group, a 3-
chloro-2-naphthylmethyl group, a 4-chloro-2-naphthylmethyl group, a 5-
chloro-2-naphthylmethyl group, a 6-chloro-2-naphthylmethyl group, a 7-
chloro-2-naphthylmethyl group, a 1-fluoro-2-naphthylmethyl group, a 3-
fluoro-2-naphthylmethyl group, a 4-fluoro-2-naphthylmethyl group, a 5-
fluoro-2-naphthylmethyl group, a 6-fluoro-2-naphthylmethyl group, a 7-
fluoro-2-naphthylmethyl group, a 1-chloro-2-naphthylmethyl group, a 3-
chloro-2-naphthylmethyl group, a 4-chloro-2-naphthylmethyl group, a 5-
chloro-2-naphthylmethyl group, a 6-chloro-2-naphthylmethyl group, a 7-
chloro-2-naphthylmethyl group, a 1-fluoro-2-naphthylmethyl group, a 3-
fluoro-2-naphthylmethyl group, a 4-fluoro-2-naphthylmethyl group, a 5-
fluoro-2-naphthylmethyl group, a 6-fluoro-2-naphthylmethyl group, a 7-
fluoro-2-naphthylmethyl group, a 1-chloro-2-naphthylmethyl group, a 3-
chloro-2-naphthylmethyl group, a 4-chloro-2-naphthylmethyl group, a 5-
chloro-2-naphthylmethyl group, a 6-chloro-2-naphthylmethyl group, a 7-
chloro-2-naphthylmethyl group, a 1-fluoro-2-naphthylmethyl group, a 3-
fluoro-2-naphthylmethyl group, a 4-fluoro-2-naphthylmethyl group, a 5-
fluoro-2-naphthylmethyl group, a 6-fluoro-2-naphthylmethyl group, a 7-
fluoro-2-naphthylmethyl group, a 1-chloro-2-naphthylmethyl group, a 3-
chloro-2-naphthylmethyl group, a 4-chloro-2-naphthylmethyl group, a 5-
chloro-2-naphthylmethyl group, a 6-chloro-2-naphthylmethyl group, a 7-
chloro-2-naphthylmethyl group, a 1-fluoro-2-naphthylmethyl group, a 3-
fluoro-2-naphthylmethyl group, a 4-fluoro-2-naphthylmethyl group, a 5-
fluoro-2-naphthylmethyl group, a 6-fluoro-2-naphthylmethyl group, a 7-
fluoro-2-naphthylmethyl group, a 1-chloro-2-naphthylmethyl group, a 3-
chloro-2-naphthylmethyl }
6-chloro-2-naphthylmethyl group, a 7-chloro-2-naphthylmethyl group, a 1-bromo-2-naphthylmethyl group, a 3-bromo-2-naphthylmethyl group, a 4-bromo-2-naphthylmethyl group, a 5-bromo-2-naphthylmethyl group, a 6-bromo-2-naphthylmethyl group, a 7-bromo-2-naphthylmethyl group, a heptachloro-2-naphthylmethyl group, a heptafluoro-2-naphthylmethyl group, a 2-(5-fluoro-1-naphthyl) ethyl group, a 2-(5-chloro-1-naphthyl) ethyl group, a 2-(5-bromo-1-naphthyl) ethyl group, a 2-(6-fluoro-2-naphthyl)ethyl group, a 2-(6-chloro-2-naphthyl)ethyl group, a 2-(6-bromo-2-naphthyl)ethyl group, a 3-(5-fluoro-1-naphthyl) propyl group, a 3-(5-chloro-1-naphthyl) propyl group, a 3-(5-bromo-1-naphthyl)propyl group, a 3-(6-fluoro-2-naphthyl)propyl group, a 3-(6-chloro-2-naphthyl)propyl group, a 3-(6-bromo-2-naphthyl)propyl group, a 4-(5-fluoro-1-naphthyl) butyl group, a 4-(5-chloro-1-naphthyl) butyl group, a 4-(5-bromo-1-naphthyl) butyl group, a 4-(6-fluoro-2-naphthyl)butyl group, a 4-(6-chloro-2-naphthyl)butyl group, a 4-(6-bromo-2-naphthyl)butyl group, a 5-(5-fluoro-1-naphthyl) pentyl group, a 5-(5-chloro-1-naphthyl) pentyl group, a 5-(5-bromo-1-naphthyl) pentyl group, a 5-(6-fluoro-2-naphthyl) pentyl group, a 5-(6-chloro-2-naphthyl) pentyl group, a 5-(6-bromo-2-naphthyl) pentyl group, a 6-(5-fluoro-1-naphthyl) hexyl group, a 6-(5-chloro-1-naphthyl) hexyl group, a 6-(5-bromo-1-naphthyl) hexyl group, a 6-(6-fluoro-2-naphthyl)hexyl group.
group, a 6-(6-chloro-2-naphthyl)hexyl group, a 6-(6-bromo-2-naphthyl)hexyl group, a 6-(5-fluoro-1-naphthyl)heptyl group, a 6-(5-chloro-1-naphthyl)heptyl group, a 6-(5-bromo-1-naphthyl)heptyl group, a 6-(6-fluoro-2-naphthyl)heptyl group, a 6-(6-chloro-2-naphthyl)heptyl group, a 6-(6-bromo-2-naphthyl)heptyl group, a 6-(5-fluoro-1-naphthyl)octyl group, a 6-(5-chloro-1-naphthyl)octyl group, a 6-(5-bromo-1-naphthyl)octyl group, a 6-(6-fluoro-2-naphthyl)octyl group, a 6-(6-chloro-2-naphthyl)octyl group, a 6-(6-bromo-2-naphthyl)octyl group, a 3-fluoro-1-acenaphthylmethyl group, a 9-fluoro-1-phenanthrylmethyl group, a 10-fluoro-9-anthrylmethyl group, a 6-fluoro-1-pyrenylmethyl group, and a 1,1-difluoro(1-phenyl)methyl group. The halogen atom that can be substituted for a hydrogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

[0030]

The term 'C7-C18 arylalkoxy group' includes, for example, a benzyloxy group, a phenethyloxy group, a 3-phenylpropyloxy group, a 4-phenylbutyloxy group, a 5-phenylpentyloxy group, a 6-phenylhexyloxy group, a 7-phenylheptyloxy group, a 8-phenyloctyloxy group, a 9-phenylnonyloxy group, a 10-phenyloctyloxy group, a 11-phenylundecyloxy group, a 12-phenyldodecyloxy group, a naphthylmethyloxy group, a naphthylethyloxy group, a
naphthylpropyloxy group, a naphthylbutyloxy group, a
naphthylpentyloxy group, a naphthylhexyloxy group, a
naphthyleptyloxy group, a naphthylheptyloxy group, an
anthrylmethyloxy group, an anthrylethyloxy group, an
anthrylpropyloxy group, and an anthrylbutyloxy group.

The term 'C7-C18 haloarylalkoxy group' represents a
group wherein at least one hydrogen atom on the aryl moiety
of the C7-C18 arylalkoxy group is substituted with a
halogen atom, and includes, for example, a 2-
fluorobenzyloxy group, a 3-fluorobenzyloxy group, a 4-
fluorobenzyloxy group, a 2-chlorobenzyloxy group, a 3-
chlorobenzyloxy group, a 4-chlorobenzyloxy group, a 2-
bromobenzyloxy group, a 3-bromobenzyloxy group, a 4-
bromobenzyloxy group, an 2-iodobenzyloxy group, an 3-
iodobenzyloxy group, an 4-iodobenzyloxy group, a 2,4-
difluorobenzyloxy group, a 2,5-difluorobenzyloxy group, a
2,6-difluorobenzyloxy group, a 3,5-difluorobenzyloxy group,
a 2,4-dichlorobenzyloxy group, a 2,5-dichlorobenzyloxy
group, a 2,6-dichlorobenzyloxy group, a 3,5-
dichlorobenzyloxy group, a 2,4,6-trifluorobenzyloxy group,
a 2,3,4-trifluorobenzyloxy group, a 2,4,5-
trifluorobenzyloxy group, a 3,4,5-trifluorobenzyloxy group,
a 2,4,6-trichlorobenzyloxy group, a 2,3,4-
trichlorobenzyloxy group, a 2,4,5-trichlorobenzyloxy group,
a 3,4,5-trichlorobenzyloxy group, a pentafluorobenzyloxy
group, a pentachlorobenzyloxy group, a 2-bromo-3-fluorobenzyloxy group, a 2-bromo-4-fluorobenzyloxy group, a 2-bromo-5-fluorobenzyloxy group, a 3-bromo-2-fluorobenzyloxy group, a 3-bromo-4-fluorobenzyloxy group, a 3-bromo-5-fluorobenzyloxy group, a 3-bromo-6-fluorobenzyloxy group, a 4-bromo-2-fluorobenzyloxy group, a 4-bromo-3-fluorobenzyloxy group, a 4-bromo-5-fluorobenzyloxy group, a 4-bromo-6-fluorobenzyloxy group, a 5-bromo-2-fluorobenzyloxy group, a 5-bromo-3-fluorobenzyloxy group, a 5-bromo-4-fluorobenzyloxy group, a 5-bromo-6-fluorobenzyloxy group, a 6-bromo-2-fluorobenzyloxy group, a 6-bromo-3-fluorobenzyloxy group, a 6-bromo-4-fluorobenzyloxy group, a 6-bromo-5-fluorobenzyloxy group, a 6-bromo-6-fluorobenzyloxy group, a 2-chloro-3-fluorobenzyloxy group, a 2-chloro-4-fluorobenzyloxy group, a 2-chloro-5-fluorobenzyloxy group, a 2-chloro-6-fluorobenzyloxy group, a 3-chloro-2-fluorobenzyloxy group, a 3-chloro-4-fluorobenzyloxy group, a 3-chloro-5-fluorobenzyloxy group, a 3-chloro-6-fluorobenzyloxy group, a 4-chloro-2-fluorobenzyloxy group, a 4-chloro-3-fluorobenzyloxy group, a 4-chloro-5-fluorobenzyloxy group, a 4-chloro-6-fluorobenzyloxy group, a 5-chloro-2-fluorobenzyloxy group, a 5-chloro-3-fluorobenzyloxy group, a 5-chloro-4-fluorobenzyloxy group, a 5-chloro-6-fluorobenzyloxy group, a 6-chloro-2-
fluorobenzyloxy group, a 6-chloro-3-fluorobenzyloxy group, a 6-chloro-4-fluorobenzyloxy group, a 6-chloro-5-fluorobenzyloxy group, a 2-(4-fluorophenyl) ethyloxy group, a 2-(4-chlorophenyl) ethyloxy group, a 6-chloro-3-fluorobenzyloxy group, a 6-chloro-5-fluorobenzyloxy group, a 2-(4-fluorophenyl) ethyloxy group, a 6-chloro-3-fluorobenzyloxy group, a 2-(4-chlorophenyl) ethyloxy group, an 2-(3-chlorophenyl) ethyloxy group, a 2-(3-bromophenyl) ethyloxy group, an 2-(3-iodophenyl) ethyloxy group, a 2-(2-fluorophenyl) ethyloxy group, a 2-(2-chlorophenyl) ethyloxy group, a 2-(2-bromophenyl) ethyloxy group, an 2-(2-iodophenyl) ethyloxy group, a 3-(4-fluorophenyl) propyloxy group, a 3-(4-chlorophenyl) propyloxy group, a 3-(4-bromophenyl) propyloxy group, an 3-(4-iodophenyl) propyloxy group, a 3-(3-fluorophenyl) propyloxy group, a 3-(3-chlorophenyl) propyloxy group, a 3-(3-bromophenyl) propyloxy group, an 3-(3-iodophenyl) propyloxy group, a 3-(2-fluorophenyl) propyloxy group, a 3-(2-chlorophenyl) propyloxy group, a 3-(2-bromophenyl) propyloxy group, an 3-(2-iodophenyl) propyloxy group, a 4-(4-fluorophenyl) butyloxy group, a 4-(4-chlorophenyl) butyloxy group, a 4-(4-bromophenyl) butyloxy group, an 4-(4-iodophenyl) butyloxy group, a 5-(4-fluorophenyl) pentyloxy group, a 5-(4-chlorophenyl) pentyloxy group, a 5-(4-bromophenyl) pentyloxy group, an 5-(4-iodophenyl) pentyloxy group, a 6-(4-fluorophenyl) hexyloxy group, a 6-(4-chlorophenyl) hexyloxy group, a 6-(4-bromophenyl) hexyloxy group, a 6-(4-iodophenyl) hexyloxy group.
group, a 6-(4-bromophenyl) hexyloxy group, an 6-(4-iodophenyl) hexyloxy group, a 7-(4-fluorophenyl) heptyloxy group, a 7-(4-chlorophenyl) heptyloxy group, a 7-(4-bromophenyl) heptyloxy group, an 7-(4-iodophenyl) heptyloxy group, a 8-(4-fluorophenyl) octyloxy group, a 8-(4-chlorophenyl) octyloxy group, a 8-(4-bromophenyl) octyloxy group, an 8-(4-iodophenyl) octyloxy group, a 9-(4-fluorophenyl) nonyloxy group, a 9-(4-chlorophenyl) nonyloxy group, a 9-(4-bromophenyl) nonyloxy group, an 9-(4-iodophenyl) nonyloxy group, a 10-(4-fluorophenyl) decyloxy group, a 10-(4-chlorophenyl) decyloxy group, a 10-(4-bromophenyl) decyloxy group, an 10-(4-iodophenyl) decyloxy group, a 11-(4-fluorophenyl) undecyloxy group, a 11-(4-chlorophenyl) undecyloxy group, a 11-(4-bromophenyl) undecyloxy group, an 11-(4-iodophenyl) undecyloxy group, a 12-(4-fluorophenyl) dodecyloxy group, a 12-(4-chlorophenyl) dodecyloxy group, a 12-(4-bromophenyl) dodecyloxy group, an 12-(4-iodophenyl) dodecyloxy group, a 2-fluoro-1-naphthylmethyloxy group, a 3-fluoro-1-naphthylmethyloxy group, a 4-fluoro-1-naphthylmethyloxy group, a 5-fluoro-1-naphthylmethyloxy group, a 6-fluoro-1-naphthylmethyloxy group, a 7-fluoro-1-naphthylmethyloxy group, a 2-chloro-1-naphthylmethyloxy group, a 3-chloro-1-naphthylmethyloxy group, a 4-chloro-1-
naphthylmethyloxy group, a 5-chloro-1-naphthylmethyloxy group, a 6-chloro-1-naphthylmethyloxy group, a 7-chloro-1-naphthylmethyloxy group, a 2-bromo-1-naphthylmethyloxy group, a 3-bromo-1-naphthylmethyloxy group, a 4-bromo-1-naphthylmethyloxy group, a 5-bromo-1-naphthylmethyloxy group, a 6-bromo-1-naphthylmethyloxy group, a 7-bromo-1-naphthylmethyloxy group, a heptachloro-1-naphthylmethyloxy group, a heptafluoro-1-naphthylmethyloxy group, a 1-fluoro-2-naphthylmethyloxy group, a 3-fluoro-2-naphthylmethyloxy group, a 4-fluoro-2-naphthylmethyloxy group, a 5-fluoro-2-naphthylmethyloxy group, a 6-fluoro-2-naphthylmethyloxy group, a 7-fluoro-2-naphthylmethyloxy group, a 1-chloro-2-naphthylmethyloxy group, a 3-chloro-2-naphthylmethyloxy group, a 4-chloro-2-naphthylmethyloxy group, a 5-chloro-2-naphthylmethyloxy group, a 6-chloro-2-naphthylmethyloxy group, a 7-chloro-2-naphthylmethyloxy group, a 1-bromo-2-naphthylmethyloxy group, a 3-bromo-2-naphthylmethyloxy group, a 4-bromo-2-naphthylmethyloxy group, a 5-bromo-2-naphthylmethyloxy group, a 6-bromo-2-naphthylmethyloxy group, a 7-bromo-2-naphthylmethyloxy group, a heptachloro-2-naphthylmethyloxy group, a heptafluoro-2-naphthylmethyloxy group, a 2-(5-fluoro-1-naphthyl) ethyloxy group, a 2-(5-chloro-1-naphthyl) ethyloxy group, a 2-(5-bromo-1-naphthyl) ethyloxy group, a 2-(6-fluoro-2-naphthyl) ethyloxy group, a 2-(6-chloro-2-naphthyl) ethyloxy group.
group, a 2-(6-bromo-2-naphthyl) ethyloxy group, a 3-(5-fluoro-1-naphthyl) propyloxy group, a 3-(5-chloro-1-naphthyl) propyloxy group, a 3-(5-bromo-1-naphthyl) propyloxy group, a 3-(6-fluoro-2-naphthyl) propyloxy group, a 3-(6-chloro-2-naphthyl) propyloxy group, a 3-(6-bromo-2-naphthyl) propyloxy group, a 4-(5-fluoro-1-naphthyl) butyloxy group, a 4-(5-chloro-1-naphthyl) butyloxy group, a 4-(5-bromo-1-naphthyl) butyloxy group, a 4-(6-fluoro-2-naphthyl) butyloxy group, a 4-(6-chloro-2-naphthyl) butyloxy group, a 4-(6-bromo-2-naphthyl) butyloxy group, a 5-(5-fluoro-1-naphthyl) pentyloxy group, a 5-(5-chloro-1-naphthyl) pentyloxy group, a 5-(5-bromo-1-naphthyl) pentyloxy group, a 5-(6-fluoro-2-naphthyl) pentyloxy group, a 5-(6-chloro-2-naphthyl) pentyloxy group, a 5-(6-bromo-2-naphthyl) pentyloxy group, a 6-(5-fluoro-1-naphthyl) hexyloxy group, a 6-(5-chloro-1-naphthyl) hexyloxy group, a 6-(5-bromo-1-naphthyl) hexyloxy group, a 6-(6-fluoro-2-naphthyl) hexyloxy group, a 6-(6-chloro-2-naphthyl) hexyloxy group, a 6-(6-bromo-2-naphthyl) hexyloxy group, a 6-(5-fluoro-1-naphthyl) heptyloxy group, a 6-(5-chloro-1-naphthyl) heptyloxy group, a 6-(5-bromo-1-naphthyl) heptyloxy group, a 6-(6-fluoro-2-naphthyl) heptyloxy group, a 6-(6-chloro-2-naphthyl) heptyloxy group, a 6-(6-bromo-2-naphthyl) heptyloxy group, a 6-(5-fluoro-1-naphthyl) octyloxy group, a 6-(5-chloro-1-naphthyl) octyloxy group, a 6-(5-
bromo-1-naphthyl) octyloxy group, a 6-(6-fluoro-2-naphthyl) octyloxy group, a 6-(6-chloro-2-naphthyl) octyloxy group, a 6-(6-bromo-2-naphthyl) octyloxy group, a 3-fluoro-1-acenaphthylmethyloxy group, a 9-fluoro-1-phenanthrylmethyloxy group, a 10-fluoro-9-anthrylmethyloxy group, a 6-fluoro-1-pyrenylmethyloxy group, and a 1,1-difluoro-1-phenylmethyloxy group.

[0031]

The term 'C3-C12 trialkylsilyl group' includes, for example, a trimethylsilyl group, a tert-butyldimethylsilyl group, a triethylsilyl group, an isopropylidimethylsilyl group, a triisopropylsilyl group, a tri(tert-butyl) silyl group, and a tri(n-butyl)silyl group.

The term 'C5-C14 trialkylsilylethynyl group' represents an ethynyl group connecting to an alkylsilyl group, wherein the total number of carbon atoms including carbon atoms of the ethynyl group and three hydrogen atoms on the silyl group are substituted with the straight or branched C1-C4 alkyl group and the C1-C4 alkyl group may be same or different from each other, and includes, for example, a trimethylsilylethynyl group, a tert-butyldimethylsilylethynyl group, a triethylsilylethynyl group, an isopropylidimethylsilylethynyl group, a triisopropylsilylethynyl group, a tri(tert-butyl) silylethynyl group, and a tri(n-butyl)silylethynyl group.
The term 'aminosulf onyl group optionally having C1-C6 alkyl group or C6-C12 aryl group' represents a aminosulf onyl group wherein one or two hydrogen atom on the nitrogen atom may be optionally substituted with a straight or branched C1-C6 alkyl group or an C6-C12 aryl group, wherein the substituents on the nitrogen atom may be same or different from each other, and includes, for example, an aminosulf onyl group, a N-methylaminosulf onyl group, an N-ethylaminosulf onyl group, a N-propylaminosulf onyl group, an N-isopropylaminosulfonyl group, a N-butylaminosulf onyl group, a N-pentylaminosulf onyl group, a N-hexylaminosulf onyl group, a N,N-dimethylaminosulf onyl group, a N,N-diethylaminosulf onyl group, a N,N-dipropylaminosulf onyl group, a N,N-diisopropylaminosulf onyl group, an N-ethyl-N-methylaminosulf onyl group, a N-propyl-N-methylaminosulf onyl group, a N-butyl-N-methylaminosulf onyl group, a N-pentyl-N-methylaminosulf onyl group, a N-phenylaminosulf onyl group, a N,N-diphenylaminosulf onyl group, a N,N-methyl-N-phenylaminosulf onyl group, an N-ethyl-N-phenylaminosulf onyl group, a N-propyl-N-phenylaminosulf onyl group, a N-butyl-N-phenylaminosulf onyl group, a N-pentyl-N-phenylaminosulf onyl group, a N-hexyl-N-phenylaminosulf onyl group, a N-(1-
naphthyl) aminosulf onyl group, a N-(1-naphthyl)-N-methylaminosulf onyl group, a N-(2-naphthyl) aminosulf onyl group, and a N-(2-naphthyl)-N-methylaminosulf onyl group.

[0033] The term 'C1-C6 alkylsulf onyl group' represents a straight or branched alkylsulf onyl group, and includes, for example, a methyl sulf onyl group, an ethyl sulf onyl group, a propylsulf onyl group, an isopropyl sulf onyl group, a butylsulf onyl group, an isobutylsulf onyl group, a sec-butylsulf onyl group, a pentylsulf onyl group, an isoamyl sulf onyl group, a neopentyl sulf onyl group, a 2-pentylsulf onyl group, a 3-pentylsulf onyl group, a 2-methylbutylsulf onyl group, a hexylsulf onyl group, an isohexyl sulf onyl group, a 3-methylpentylsulf onyl group, and a 4-methylpentylsulf onyl group.

The term 'C1-C6 haloalkylsulf onyl group' represents a group wherein at least one hydrogen atom of the straight or branched an C1-C6 alkylsulf onyl group is substituted with a halogen atom, and includes, for example, a trifluoromethylsulf onyl group, a trichloromethylsulf onyl group, a tribromomethyl sulf onyl group, a triiodomethylsulf onyl group, a pentfluoroethylsulf onyl group, a pentachloroethylsulf onyl group, a pentabromoethyl sulf onyl group, a pentaiodoethyl sulf onyl group, a 2,2,2-trichloroethylsulf onyl group, a 2,2,2-
trifluoroethylsulfonyl group, a 2,2,2-
trifluoroethylsulfonyl group, a 2,2,2-tribromoethylsulfonyl group, a 2,2,2-triiodoethylsulfonyl group, a heptafluoropropylsulfonyl group, a heptachloropropylsulfonyl group, a heptabromopropylsulfonyl group, a heptaiodopropylsulfonyl group, a 3,3,3-trifluoropropylsulfonyl group, a 3,3,3-trichloropropylsulfonyl group, a 3,3,3-tribromopropylsulfonyl group, a 3,3,3-triiodopropylsulfonyl group, a nonafluorobutylsulfonyl group, a nonachlorobutylsulfonyl group, a nonabromobutylsulfonyl group, a nonaiodobutylsulfonyl group, a perfluoropentylsulfonyl group, a perchloropentylsulfonyl group, a perbromopentylsulfonyl group, a perfluorohexylsulfonyl group, a perchlorohexylsulfonyl group, a perbromohexylsulfonyl group, and a periodohexylsulfonyl group. The halogen atom that can be substituted for a hydrogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

The term 'C6-C16 arylsulfonfyl group' includes, for example, a phenyl sulfonfyl group, a 1-naphthylsulf onyl group, a 2-naphthylsulf onyl group, an 1-acenaphthylsulf onyl group, a 1-phenanthryl sulfonyl group, an 9-anthrylsulf onyl group, and a 1-pyrenylsulf onyl group.
The term "C6-C16 haloarylsulf onyl group" represents a group wherein at least one hydrogen atom of the C6-C16 arylsulfonyl group is substituted with a halogen atom, and includes, for example, a 2-fluorophenylsulf onyl group, a 3-fluorophenylsulf onyl group, a 4-fluorophenyl groupsulf onyl group, a 2-chlorophenylsulf onyl group, a 3-chlorophenyl sulfonyl group, a 4-chlorophenylsulf onyl group, a 2-bromophenylsulf onyl group, a 3-bromophenyl sulfonyl group, a 4-bromophenyl sulfonyl group, an 2-iodophenylsulf onyl group, an 3-iodophenyl sulfonyl group, an 4-iodophenylsulf onyl group, a 2,4-difluorophenylsulf onyl group, a 2,5-difluorophenylsulf onyl group, a 2,6-difluorophenylsulf onyl group, a 3,5-difluorophenylsulf onyl group, a 2,4-dichlorophenylsulf onyl group, a 2,5-dichlorophenylsulf onyl group, a 2,6-dichlorophenylsulf onyl group, a 3,5-dichlorophenylsulf onyl group, a 2,4,6-trifluorophenylsulf onyl group, a 2,3,4-trifluorophenylsulf onyl group, a 2,4,5-trifluorophenylsulf onyl group, a 3,4,5-trifluorophenylsulf onyl group, a 2,4,6-trichlorophenyl sulfonyl group, a 2,3,4-trichlorophenyl sulfonyl group, a 2,4,5-trichlorophenyl sulfonyl group, a 3,4,5-trichlorophenyl sulfonyl group, a pentfluorophenylsulf onyl group, a pentachlorophenylsulf onyl group, a 2-bromo-3-
<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
<th>Index</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>2-bromo-4-</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>2-bromo-5-</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>2-bromo-6-</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>3-bromo-2-</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>3-bromo-4-</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>3-bromo-5-</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>3-bromo-6-</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>4-bromo-2-</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>4-bromo-3-</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>4-bromo-5-</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>4-bromo-6-</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>5-bromo-2-</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>5-bromo-3-</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>5-bromo-4-</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>5-bromo-6-</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>6-bromo-2-</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>6-bromo-3-</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>6-bromo-4-</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>6-bromo-5-</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>2-chloro-3-</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>2-chloro-4-</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>2-chloro-5-</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>2-chloro-6-</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>3-chloro-2-</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>fluorophenyl sulfonyl group, a</td>
<td>3-chloro-4-</td>
<td></td>
</tr>
</tbody>
</table>
fluorophenyl sulfonyl group, a 3-chloro-5-fluorophenyl sulfonyl group, a 3-chloro-6-fluorophenyl sulfonyl group, a 4-chloro-2-fluorophenyl sulfonyl group, a 4-chloro-3-fluorophenyl sulfonyl group, a 4-chloro-6-fluorophenyl sulfonyl group, a 5-chloro-2-fluorophenyl sulfonyl group, a 5-chloro-3-fluorophenyl sulfonyl group, a 5-chloro-4-fluorophenyl sulfonyl group, a 5-chloro-6-fluorophenyl sulfonyl group, a 6-chloro-2-fluorophenyl sulfonyl group, a 6-chloro-3-fluorophenyl sulfonyl group, a 6-chloro-4-fluorophenyl sulfonyl group, a 6-chloro-5-fluorophenyl sulfonyl group, a 2-fluoro-1-naphthylsulfonyl group, a 3-fluoro-1-naphthylsulfonyl group, a 4-fluoro-1-naphthylsulfonyl group, a 5-fluoro-1-naphthylsulfonyl group, a 6-fluoro-1-naphthylsulfonyl group, a 7-fluoro-1-naphthylsulfonyl group, a 2-chloro-1-naphthylsulfonyl group, a 3-chloro-1-naphthylsulfonyl group, a 4-chloro-1-naphthylsulfonyl group, a 5-chloro-1-naphthylsulfonyl group, a 6-chloro-1-naphthylsulfonyl group, a 7-chloro-1-naphthylsulfonyl group, a 2-bromo-1-naphthylsulfonyl group, a 3-bromo-1-naphthylsulfonyl group, a 4-bromo-1-naphthylsulfonyl group, a 5-bromo-1-naphthylsulfonyl group,
a 6-bromo-1-naphthylsulfonyl group, a 7-bromo-1-naphthylsulfonyl group, a heptachloro-1-naphthylsulfonyl group, a heptafluoro-1-naphthylsulfonyl group, a 1-fluoro-2-naphthylsulfonyl group, a 3-fluoro-2-naphthylsulfonyl group, a 4-fluoro-2-naphthylsulfonyl group, a 5-fluoro-2-naphthylsulfonyl group, a 6-fluoro-2-naphthylsulfonyl group, a 7-fluoro-2-naphthylsulfonyl group, a 1-chloro-2-naphthylsulfonyl group, a 3-chloro-2-naphthylsulfonyl group, a 4-chloro-2-naphthylsulfonyl group, a 5-chloro-2-naphthylsulfonyl group, a 6-chloro-2-naphthylsulfonyl group, a 7-chloro-2-naphthylsulfonyl group, a 1-bromo-2-naphthylsulfonyl group, a 3-bromo-2-naphthylsulfonyl group, a 4-bromo-2-naphthylsulfonyl group, a 5-bromo-2-naphthylsulfonyl group, a 6- bromo-2-naphthylsulfonyl group, a 7-bromo-2-naphthylsulfonyl group, a heptachloro-2-naphthylsulfonyl group, a heptafluoro-2-naphthylsulfonyl group, a 3-fluoro-1-acenaphthylsulfonyl group, a 9-fluoro-1-phenanthrylsulfonyl group, a 10-fluoro-9-anthrylsulfonyl group, and a 6-fluoro-1-pyrenylsulfonyl group. The halogen atom that can be substituted for a halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. [0035] The term "'C1-C6 alkylsulfonyl group" represents a straight or branched alkylsulfonyl group, and includes, for
example, a methylsulf inyl group, an ethylsulf inyl group, a propyl sulfinyl group, an isopropylsulf inyl group, a butylsulf inyl group, an isobutylsulf inyl group, a sec-butyl sulfinyl group, a pentyl sulfinyl group, an isoamylsulf inyl group, a neopentylsulf inyl group, a 2-pentylsulf inyl group, a 3-pentylsulf inyl group, a 2-methylbutyl sulfinyl group, a hexyl sulfinyl group, an isohexylsulf inyl group, a 3-methylpentylsulf inyl group, and a 4-methylpentylsulf inyl group.

The term "C1-C6 haloalkylsulf inyl group" represents a group wherein at least one hydrogen atom of the straight or branched an C1-C6 alkyl sulfinyl group is substituted with a halogen atom, and includes, for example, a trifluoromethylsulf inyl group, a trichloromethylsulf inyl group, a tribromomethylsulf inyl group, a triiodomethylsulf inyl group, a pentfluoroethylsulf inyl group, a pentachloroethylsulf inyl group, a pentabromoethylsulf inyl group, a pentaiodoethylsulf inyl group, a 2,2,2-trichloroethylsulf inyl group, a 2,2,2-trifluoroethylsulf inyl group, a 2,2,2-trifluoroethylsulf inyl group, a 2,2,2-tribromoethylsulf inyl group, a 2,2,2-triiodoethylsulf inyl group, a heptafluoropropylsulf inyl group, a heptachloropropylsulf inyl group, a heptabromopropylsulf inyl group, a heptaiodoethylsulf inyl group, a 3,3,3-
trifluoropropylsulf inyl group, a 3,3,3-
trichloropropylsulf inyl group, a 3,3,3-
tribromopropyl sulf inyl group, a 3,3,3-triiodopropylsulf inyl
group, a perfluoropentylsulf inyl group, a
perchloropentylsulf inyl group, a perbromopentylsulf inyl
group, a perfluorohexylsulf inyl group, a
perchlorohexylsulf inyl group, a perbromohexylsulf inyl group,
and a periodohexylsulf inyl group. The halogen atom that
can be substituted for a hydrogen atom includes a fluorine
atom, a chlorine atom, a bromine atom and an iodine atom.

[0036]

The term 'C6-C16 arylsulf inyl group' includes, for example, a phenyl sulf inyl group, a 1-naphthylsulf inyl group,
a 2-naphthylsulf inyl group, an 1-acenaphthyl sulf inyl group,
a 1-phenanthryl sulf inyl group, an 9-anthrylsulf inyl group,
and a 1-pyrenyl sulf inyl group.

The term 'C6-C16 haloaryl sulf inyl group' represents
a group wherein at least one hydrogen atom of the C6-C16
aryl sulf inyl group is substituted with a halogen atom, and
includes, for example, a 2-fluorophenyl sulf inyl group, a 3-
fluorophenyl sulf inyl group, a 4-fluorophenyl groupsulf inyl
group, a 2-chlorophenylsulf inyl group, a 3-
chlorophenylsulf inyl group, a 4-chlorophenylsulf inyl group,
a 2-bromophenylsulf inyl group, a 3-bromophenylsulf inyl
group, a 4-bromophenylsulf inyl group, an 2-
iodophenylsulf inyl group, an 3-iodophenylsulf inyl group, an 4-iodophenylsulf inyl group, a 2,4-difluorophenyl sulf inyl group, a 2,5-difluorophenylsulf inyl group, a 2,6-difluorophenylsulf inyl group, a 3,5-difluorophenylsulf inyl group, a 2,4-dichlorophenylsulf inyl group, a 2,5-dichlorophenylsulf inyl group, a 2,6-dichlorophenylsulf inyl group, a 3,5-dichlorophenylsulf inyl group, a 2,4,6-trifluorophenylsulf inyl group, a 2,3,4-trifluorophenylsulf inyl group, a 2,4,5-trifluorophenylsulf inyl group, a 3,4,5-trifluorophenylsulf inyl group, a 2,4,6-trichlorophenylsulf inyl group, a 2,3,4-trichlorophenylsulf inyl group, a 2,4,5-trichlorophenylsulf inyl group, a 3,4,5-trichlorophenylsulf inyl group, a pentfluorophenylsulf inyl group, a pentachlorophenylsulf inyl group, a 2-bromo-3-fluorophenylsulf inyl group, a 2-bromo-4-fluorophenylsulf inyl group, a 2-bromo-5-fluorophenylsulf inyl group, a 2-bromo-6-fluorophenylsulf inyl group, a 3-bromo-2-fluorophenylsulf inyl group, a 3-bromo-4-fluorophenylsulf inyl group, a 3-bromo-5-fluorophenylsulf inyl group, a 3-bromo-6-fluorophenylsulf inyl group, a 4-bromo-2-fluorophenylsulf inyl group, a 4-bromo-3-fluorophenylsulf inyl group.
| | Fluorophenyl Sulfinyl Group | | 4-Bromo-5- | 4-Bromo-6- | 5-Bromo-2- | 5-Bromo-3- | 5-Bromo-4- | 5-Bromo-6- | 6-Bromo-2- | 6-Bromo-3- | 6-Bromo-4- | 6-Bromo-5- | 2-Chloro-3- | 2-Chloro-4- | 2-Chloro-5- | 2-Chloro-6- | 3-Chloro-2- | 3-Chloro-4- | 3-Chloro-5- | 3-Chloro-6- | 4-Chloro-2- | 4-Chloro-3- | 4-Chloro-5- | 4-Chloro-6- | 5-Chloro-2- | 5-Chloro-3- | 5-Chloro-4- |
|-------|-----------------------------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|
| 87 | Fluorophenyl Sulfinyl Group | a | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | Fluorophenyl Sulfinyl Group | a | | | | | | | | | | | | | | | | | | | | | | | |
| 10 | Fluorophenyl Sulfinyl Group | a | | | | | | | | | | | | | | | | | | | | | | | |
| 15 | Fluorophenyl Sulfinyl Group | a | | | | | | | | | | | | | | | | | | | | | | | |
| 20 | Fluorophenyl Sulfinyl Group | a | | | | | | | | | | | | | | | | | | | | | | | |
| 25 | Fluorophenyl Sulfinyl Group | a | | | | | | | | | | | | | | | | | | | | | | | |
fluorophenyl sulfinyl group, a 5-chloro-6-fluorophenylsulf inyl group, a 6-chloro-2-fluorophenylsulf inyl group, a 6-chloro-3-fluorophenylsulf inyl group, a 6-chloro-4-fluorophenylsulf inyl group, a 6-chloro-5-fluorophenylsulf inyl group, a 2-fluoro-1-naphthylsulf inyl group, a 3-fluoro-1-naphthylsulf inyl group, a 4-fluoro-1-naphthyl sulfinyl group, a 5-fluoro-1-naphthylsulf inyl group, a 6-fluoro-1-naphthylsulf inyl group, a 7-fluoro-1-naphthylsulf inyl group, a 2-chloro-1-naphthylsulf inyl group, a 3-chloro-1-naphthylsulf inyl group, a 4-chloro-1-naphthyl sulfinyl group, a 5-chloro-1-naphthylsulf inyl group, a 6-chloro-1-naphthylsulf inyl group, a 7-chloro-1-naphthyl sulfinyl group, a 2-bromo-1-naphthylsulf inyl group, a 3-bromo-1-naphthylsulf inyl group, a 4-bromo-1-naphthyl sulfinyl group, a 5-bromo-1-naphthylsulf inyl group, a 6-bromo-1-naphthylsulf inyl group, a 7-bromo-1-naphthylsulf inyl group, a heptachloro-1-naphthylsulf inyl group, a heptafluoro-1-naphthylsulf inyl group, a 1-fluoro-2-naphthylsulf inyl group, a 3-fluoro-2-naphthylsulf inyl group, a 4-fluoro-2-naphthylsulf inyl group, a 5-fluoro-2-naphthylsulf inyl group, a 6-fluoro-2-naphthylsulf inyl group, a 7-fluoro-2-naphthylsulf inyl group, a 1-chloro-2-naphthyl sulfinyl group, a 3-chloro-2-naphthylsulf inyl group, a 4-chloro-2-naphthylsulf inyl group, a 5-chloro-2-
naphthylsulf inyl group, a 6-chloro-2-naphthylsulf inyl group, a 7-chloro-2-naphthylsulf inyl group, a 1-bromo-2-naphthylsulf inyl group, a 3-bromo-2-naphthylsulf inyl group, a 4-bromo-2-naphthylsulf inyl group, a 5-bromo-2-naphthylsulf inyl group, a 6-bromo-2-naphthylsulf inyl group, a 7-bromo-2-naphthylsulf inyl group, a heptachloro-2-naphthylsulf inyl group, a heptfluoro-2-naphthylsulf inyl group, a 3-fluoro-1-acenaphthylsulf inyl group, a 9-fluoro-1-phenanthrylsulf inyl group, a 10-fluoro-9-anthrylsulf inyl group, and a 6-fluoro-1-pyrenylsulf inyl group. The halogen atom that can be substituted includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

[0037] The term 'C1-C12 alkyl group' represents a straight or branched alkyl group, and includes, for example, a methyl group, an ethyl group, a n-propyl group, an n-butyl group, a n-pentyl group, a n-hexyl group, a n-heptyl group, an n-octyl group, a n-nonyl group, a n-decyl group, an n-undecyl group, and a n-dodecyl group.

The term 'C3-C12 cycloalkyl group' includes, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecyl group, a cycloundecyl group, and a cyclododecyl group.

The term 'C2-C12 alkenyl group' includes, for
example, a vinyl group, a 1-propenyl group, an isopropenyl group, a 2-propenyl group, a 1-butenyl group, a 1-methyl-1-propenyl group, a 2-butenyl group, a 1-methyl-2-propenyl group, a 3-butenyl group, a 2-methyl-1-propenyl group, a 2-methyl-2-propenyl group, a 1,3-butadienyl group, a 1-pentenyl group, a 1-ethyl-2-propenyl group, a 2-pentenyl group, a 1-methyl-1-butenyl group, a 3-pentenyl group, a 1-methyl-2-butenyl group, a 4-pentenyl group, a 1-methyl-3-butenyl group, a 3-methyl-1-butenyl group, a 1,2-dimethyl-2-propenyl group, a 1,1-dimethyl-2-propenyl group, a 2-methyl-2-butenyl group, a 3-methyl-2-butenyl group, a 1,2-dimethyl-1-propenyl group, a 2-methyl-3-butenyl group, a 3-methyl-3-butenyl group, a 1,3-pentadienyl group, a 1-vinyl-2-propenyl group, a 1-hexenyl group, a 1-heptenyl group, an 1-octenyl group, a 1-nonenyln group, a 1-decenyl group, an 1-undecenyl group, and a 1-dodecenyl group.

The term "C3-C12 cycloalkenyl group" includes, for example, a 1-cyclopropenyl group, a 1-cyclobutenyl group, a 1-cyclopentenyl group, a 1-cyclohexenyl group, a 2-cyclohexenyl group, a 3-cyclohexenyl group, a 1-cycloheptenyl group, a 1-cyclooctenyl group, a 1-cyclononenyln group, a 1-cyclooctadienyl group, a 1-cycloundecenyl group, a 1-cyclododecenyl group, a 1-cyclopentadienyl group, a 1,3-cyclohexadienyl group, a 1,4-cyclohexadienyl group, and a 1,5-cyclooctadienyl group.
The term ''C2-C12 alkynyl group'' includes, for example, an ethynyl group, a 1-propynyl group, a 1-butynyl group, a 1-pentylnyl group, a 2-pentylnyl group, a 3-pentylnyl group, a 1-hexynyl group, a 1-heptylnyl group, an 1-octynyl group, a 1-nonylnyl group, a 1-decynyl group, an 1-undecynyl group, and a 1-dodecynyl group.

The term ''C2-C12 acyl group'' represents includes, for example, an acetyl group, a propionyl group, a butanoyl group, a pentanoyl group, a hexanoyl group, a heptanoyl group, an octanoyl group, a nonanoyl group, a decanoyl group, an undecanoyl group, and a decanoyl group.

The term ''C1-C3 alkyl group'' includes, for example, a methyl group, an ethyl group, a propyl group, and a isopropyl group.

The term ''C1-C3 haloalkyl group'' includes, for example, a chloromethyl group, a dichloromethyl group, a fluoromethyl group, a difluoromethyl group, a chlorofluoromethyl group, a dichlorofluoromethyl group, a trifluoromethyl group, a trichloromethyl group, a tribromomethyl group, a fluoroethyl group, a 2,2-difluoroethyl group, a 2,2,2-trifluoroethyl group, a 2-chloroethyl group, a 2,2-dichloroethyl group, a 2,2,2-trichloroethyl group, a pentasfluoroethyl group, a pentachloroethyl group, 2-chloro-2-fluoroethyl group, a 2-
chloro-2-fluoroethyl group, a 2-chloro-2,2-difluoroethyl group, a 2-fluoropropyl group, a 3-fluoropropyl group, a 2,2-difluoropropyl group, a 2,3-difluoropropyl group, a 3,3,3-trifluoropropyl group, a heptafluoropropyl group, and 1-(fluoromethyl)-2-fluoroethyl group.

The term 'C2-C12 alkoxy carbonyl group' may be either straight or branched, and includes, for example, a methoxycarbonyl group, an ethoxycarbonyl group, a propyloxycarbonyl group, an isopropyloxycarbonyl group, a butyloxycarbonyl group, an isobutyloxycarbonyl group, a sec-butyloxycarbonyl group, a pentyloxycarbonyl group, an isoamyloxycarbonyl group, a neopentyloxycarbonyl group, a 2-pentyloxycarbonyl group, a 3-pentyloxycarbonyl group, a 2-methylbutoxy carbonyl group, a hexyloxycarbonyl group, an isohexyloxycarbonyl group, a 3-methylpent oxy carbonyl group, a 4-methylpent oxy carbonyl group, a heptyloxycarbonyl group, a 2-heptyloxycarbonyl group, an octyloxycarbonyl group, a decyloxycarbonyl group, and an undecyloxycarbonyl group.

The term 'C1-C4 alkyl group' may be either straight or branched, and includes, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
The term 'C1-C4 haloalkyl group' represents a group wherein at least one hydrogen atom of the straight or branched C1-C4 alkyl group is substituted with a halogen atom, and includes, for example, a monofluoromethyl group, a monochloromethyl group, a dichloromethyl group, a difluoromethyl group, a trifluoromethyl group, a trichloromethyl group, a tribromomethyl group, a 2,2,2-trifluoroethyl group, a 2,2,2-trichloroethyl group, a pentfluoroethyl group, a chlorofluoromethyl group, a dichlorofluoromethyl group, a chlorodifluoromethyl group, a dichlorofluoromethyl group, a 2,2-difluoroethyl group, a 2-chloro-2-fluoroethyl group, a 2-chloro-2,2-difluoroethyl group, a 2,2-dichloro-2-fluoroethyl group, a 2-fluoropropyl group, a 3-fluoropropyl group, a 2,2-difluoropropyl group, a 3,3,3-trifluoropropyl group, 3-(fluoromethyl)-2-fluoroethyl group, and a 4-fluorobutyl group.

The term 'C3-C5 cycloalkyl group' encompasses a cycloalkyl group having an alkyl group, and includes, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a 2-methylcyclopropyl group, a 2,2-dimethylcyclopropyl group, and a 2,3-dimethylcyclopropyl group.

The term 'C3-C5 halocycloalkyl group' represents a group wherein at least one hydrogen atom of the C3-C5 cycloalkyl group is substituted with a halogen atom, and
includes, for example, a 2-fluorocyclopropyl group, a 2,2-difluorocyclopropyl group, a 2-chloro-2-fluorocyclopropyl group, a 2,2-dichlorocyclopropyl group, a 2,2-dibromocyclopropyl group, a 2,2-difluoro-1-methylcyclopropyl group, a 2,2-dichloro-1-methylcyclopropyl group, a 2,2-dibromo-1-methylcyclopropyl group, a 1-(trifluoromethyl) cyclopropyl group, a 2,2,3,3-tetrafluorocyclobutyl group, a 2-chlorocyclopentyl group, and a 3-chlorocyclopentyl group.

The term "C1-C4 alkoxy group' may be either straight or branched, and includes, for example, a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butyloxy group, an isobutyloxy group, a sec-butyloxy group, and a tert-butyloxy group.

The term "C1-C4 haloalkoxy group' represents a group wherein at least one hydrogen atom of the straight or branched C1-C4 alkoxy group is substituted with a halogen atom, and includes, for example, a trifluoromethoxy group, a trichloromethoxy group, a chloromethoxy group, a dichloromethoxy group, a fluoromethoxy group, a difluoromethoxy group, a chlorofluoromethoxy group, a dichlorofluoromethoxy group, a chlorodifluoromethoxy group, a pentfluoroethoxy group, a pentachloroethoxy group, a 2,2,2-trichloroethoxy group, a 2,2,2-trifluoroethoxy group,
a 2,2,2-tribromoethoxy group, a 2,2,2-triiodoethoxy group, a 2-fluoroethoxy group, a 2-chloroethoxy group, a 2,2-difluoroethoxy group, a 2,2,2-trifluoroethoxy group, a 2-chloro-2-fluoroethoxy group, a 2-chloro-2,2-difluoroethoxy group, a heptafluoropropoxy group, a heptachloropropoxy group, a heptabromopropoxy group, a heptaiodopropoxy group, a 3,3,3-trifluoropropoxy group, a 3,3,3-trichloropropoxy group, a 3,3,3-triiodopropoxy group, a 2-fluoropropoxy group, a 3-fluoropropoxy group, a 2,2-difluoropropoxy group, a 2,3-difluoropropoxy group, a 2-chloropropoxy group, a 3-chloropropoxy group, a 2,3-dichloropropoxy group, a 2-bromopropoxy group, a 3-bromopropoxy group, a 2,3,3-trifluoropropoxy group, a nonafluorobutoxy group, a nonachlorobutoxy group, a nonabromobutoxy group, and a nonaiodobutoxy group.

[0041]

The term ''C2-C6 alkoxyalkyl group'' may be either a straight or a branched group wherein the total number of carbon atoms of the alkoxy moiety and the alkyl moiety is two to six carbon atoms, and includes, for example, a methoxymethyl group, an ethoxymethyl group, a propyloxymethyl group, an isopropyloxymethyl group, a butyloxymethyl group, an isobutyloxymethyl group, a sec-butyloxymethyl group, a pentyloxymethyl group, a 1-
methoxyethyl group, a 2-methoxyethyl group, an 2-ethoxyethyl group, a 2-propyloxyethyl group, an 2-isopropoxyethyl group, a 2-butyloxyethyl group, a 3-methoxypropyl group, an 3-ethoxypropyl group, a 3-propoxypropyl group, a 3-methoxybutyl group, an 3-ethoxybutyl group, a 4-methoxybutyl group, an 4-ethoxybutyl group, and a 5-methoxypentyl group.

The term ''C1-C6 alkylamino group'" includes, for example, a N-methylamino group, an N-ethylamino group, a N-propylamino group, an N-isopropylamino group, a N-butylamino group, a N,N-dimethylamino group, a N,N-diethylamino group, a N,N-dipropylamino group, an N-ethyl-N-methylamino group and a N-propyl-N-methylamino group.

The term ''C3-C9 trialkylsilyl group'" includes, for example, a trimethylsilyl group, a tert-butyldimethylsilyl group, a triethylsilyl group, an isopropyldimethylsilyl group, and a triisopropylsilyl group.

The term ''C1-C4 alkylsulf onyl group'" may be either straight or branched, and includes, for example, a methylsulf onyl group, an ethylsulf onyl group, a propyl sulf onyl group, an isopropylsulf onyl group, a butylsulf onyl group, an isobutylsulf onyl group, and a sec-butylsulf onyl group.

The term ''C1-C4 haloalkylsulf onyl group'" represents a group wherein at least one hydrogen atom of the straight
or branched C1-C4 alkylsulfonyl group is substituted with a halogen atom, and includes, for example, a trifluoromethylsulfonyl group, a trichloromethylsulfonyl group, a tribromomethylsulfonyl group, a triiodomethylsulfonyl group, a pentfluoroethylsulfonyl group, a pentachloroethylsulfonyl group, a pentabromoethylsulfonyl group, a pentaiodoethylsulfonyl group, a 2,2,2-trichloroethylsulfonyl group, a 2,2,2-trifluoroethylsulfonyl group, a 2,2,2-tribromoethylsulfonyl group, a 2,2,2-triiodoethylsulfonyl group, a heptafluoropropylsulfonyl group, a heptachloropropylsulfonyl group, a heptabromopropylsulfonyl group, a heptaiodoethylsulfonyl group, a 3,3,3-trifluoropropylsulfonyl group, a 3,3,3-trichloropropylsulfonyl group, a 3,3,3-tribromopropylsulfonyl group, a 3,3,3-triiodopropylsulfonyl group, a nonafluorobutylsulfonyl group, a nonachlorobutylsulfonyl group, a nonabromobutylsulfonyl group, and a nonaiodo-butylsulfonyl group.

The term 'C1-C4 alkylsulfinyl group' may be either straight or branched, and includes, for example, a methylsulfinyl group, an ethylsulfinyl group, a propylsulfinyl group, an isopropylsulfinyl group, a butylsulfinyl group, an isobutylsulfinyl group, and a sec-butylsulfinyl group.
The term "C1-C4 haloalkylsulf inyl group" represents a group wherein at least one hydrogen atom of the straight or branched C1-C4 alkylsulf inyl group is substituted with a halogen atom, and includes, for example, a trifluoromethysulf inyl group, a trichloromethysulf inyl group, a tribromomethysulf inyl group, a triiodomethysulf inyl group, a pentaf luoroethylsulf inyl group, a pentachlorooethylsulf inyl group, a pentabromoethylsulf inyl group, a pentaiodoethylsulf inyl group, a 2,2,2-trichloroethylsulf inyl group, a 2,2,2-trifluoroethylsulf inyl group, a 2,2,2-tribromoethylsulf inyl group, a 2,2,2-triiodoethylsulf inyl group, a heptaf luoropropylsulf inyl group, a heptachloropropylsulf inyl group, a heptabromopropylsulf inyl group, a heptaiodopropylsulf inyl group, a 3,3,3-trifluoropropylsulf inyl group, a 3,3,3-trichloropropylsulf inyl group, a 3,3,3-tribromopropylsulf inyl group, a 3,3,3-triiodopropylsulf inyl group, a nonafluorobutylsulf inyl group, a nonachlorobutylsulf inyl group, a nonabromobutylsulf inyl group, and a nonaiodobutylsulf inyl group.

The term "C2-C5 alkoxyalkyl group" may be either a straight or a branched group wherein the total number of carbon atoms of the alkoxy moiety and the alkyl moiety is
two to five carbon atoms, and includes, for example, a methoxymethyl group, an ethoxymethyl group, a propyloxymethyl group, an isopropyloxymethyl group, a butyloxymethyl group, an isobutyloxymethyl group, a sec-butyloxymethyl group, a 1-methoxyethyl group, a 2-methoxyethyl group, an 2-ethoxyethyl group, a 2-propyloxethyl group, an 2-isopropyloxethyl group, a 3-methoxypropyl group, an 3-ethoxypropyl group, a 3-methoxybutyl group, and an 4-methoxybutyl group.

The term ''C2-C5 alkylthioalkyl group'' may be either straight or branched, and includes, for example, a methylthiomethyl group, an ethylthiomethyl group, a propylthiomethyl group, an isopropylthiomethyl group, a butylthiomethyl group, an isobutylthiomethyl group, a sec-butylthiomethyl group, a 1-methylthioethyl group, a 2-methylthioethyl group, a 2-propylthioethyl group, an 2-isopropylthioethyl group, a 3-methylthiopropyl group, an 3-ethylthiopropyl group, a 3-methylthiobutyl group, and a 4-methylthiobutyl group.

The term ''C2-C3 alkenyl group'' includes, for example, a vinyl group, a 1-propenyl group, and a 2-propenyl group.

The term ''C2-C3 alkynyl group'' includes, for example, an ethynyl group, a 1-propynyl group, and a 2-propynyl group.
The term "C3-C4 cycloalkyl group" includes, for example, a cyclopropyl group and a cyclobutyl group.

The term "C1-C3 alkoxy group" includes, for example, a methoxy group, an ethoxy group, a propyloxy group, and an isopropyloxy group.

The term "C1-C3 haloalkoxy group" represents a group wherein at least one hydrogen atom of the straight or branched C1-C3 alkoxy group is substituted with a halogen atom, and includes, for example, a trifluoromethoxy group, a trichloromethoxy group, a dichloromethoxy group, a fluoromethoxy group, a difluoromethoxy group, a chlorofluoromethoxy group, a dichlorofluoromethoxy group, a chlorodifluoromethoxy group, a pentachloroethoxy group, a 2,2,2-trichloroethoxy group, a 2,2,2-trifluoroethoxy group, a 2,2,2-tribromomethoxy group, a 2,2,2-tribromoethoxy group, a 2-fluoroethoxy group, a 2-chloroethoxy group, a 2,2-difluoroethoxy group, a 2,2,2-trifluoroethoxy group, a 2-chloro-2-fluoroethoxy group, a 2-fluoro-2-difluoroethoxy group, a 3-fluoropropoxy group, a 3-chloro-3-fluoropropoxy group, a 3,3,3-trifluoropropoxy group, a 3,3,3-trichloropropoxy group, a 3,3,3-tribromopropoxy group, a 3,3,3-triiodopropoxy group, a 2-fluoropropoxy group, a 3-fluoropropoxy group, a 2,2-
difluoropropoxy group, a 2,3-difluoropropoxy group, a 2-chloropropoxy group, a 3-chloropropoxy group, a 2,3-dichloropropoxy group, a 2-bromopropoxy group, a 3-bromopropoxy group, and a 3,3,3-trifluoropropoxy group.

The term "C1-C4 alkylamino group" includes, for example, a N-methylamino group, an N-ethylamino group, a N-propylamino group, an N-isopropylamino group, a N,N-dimethylamino group, a N,N-diethylamino group, and an N-ethyl-N-methylamino group.

The term "C1-C2 alkylthio group" includes, for example, a methylthio group and an ethylthio group.

The term "C1-C2 haloalkylthio group" represents a group wherein at least one hydrogen atom of the straight or branched C1-C2 alkylthio group is substituted with a halogen atom, and includes, for example, a monofluoromethylthio group, a difluoromethylthio group, a trifluoromethylthio group, a trichloromethylthio group, a tribromomethylthio group, a triiodomethylthio group, a chlorofluoromethylthio group, a pentafluoroethylthio group, a pentachloroethylthio group, a pentabromoethylthio group, a pentaiodoethylthio group, a 2,2,2-trichloroethylthio group, a 2,2,2-trifluoroethylthio group, a 2,2,2-tribromoethylthio group, a 2,2,2-triiodoethylthio group, and a 2,2-difluoroethylthio group.
The term ''halomethyl group'' includes, for example, a chloromethyl group, a bromomethyl group and an iodomethyl group.

The term ''(C1-C3 alkoxy)methyl group includes, for example, a methoxymethyl group, an ethoxymethyl group, a n-propyloxymethyl group, and an isopropyloxymethyl group.

The term ''(C1-C3 alkylthio)methyl group includes, for example, a methylthiomethyl group, an ethylthiomethyl group, a n-propylthiomethyl group and an isopropylthiomethyl group.

The term ''(C1-C6 acyloxy)methyl group includes, for example, a formyloxymethyl group, an acetoxyethyl group, a propionyloxymethyl group, a butanoyloxymethyl group, a pentanoyloxymethyl group, and a hexanoyloxymethyl group.

The term ''(C1-C6 alkylsulfonyloxy)methyl group includes, for example, a methyl sulfonyloxymethyl group, an ethylsulf onyloxymethyl group, a propylsulf onyloxymethyl group, an isopropylsulf onyloxymethyl group, a butylsulf onyloxymethyl group, an isobutylsulf onyloxymethyl group, a sec-butylsulf onyloxymethyl group, a pentylsulf onyloxymethyl group, an isopentylsulf onyl group, an isoamylsulf onyloxymethyl group, a neopentylsulf onyloxymethyl group, a 2-pentyl sulfonyloxymethyl group, a 3-pentylsulf onyloxymethyl group, a 2-methylbutylsulf onyloxymethyl group, a hexyl sulfonyloxymethyl group, an isoheptylsulf onyloxymethyl group,
group, a 3-methylpentylsulf onyloxymethyl group, and a 4-methylpentylsulf onyloxymethyl group.

The term '(C1-C6 haloalkylsulf onyloxy)methyl group' includes, for example, a trifluoromethylsulf onyloxymethyl group, a trichloromethylsulf onyloxymethyl group, a tribromomethylsulf onyloxymethyl group, a triiodomethylsulf onyloxymethyl group, a pentfluoromethylsulf onyloxymethyl group, a pentachloromethylsulf onyloxymethyl group, a pentabromomethylsulf onyloxymethyl group, a pentafluoropropylsulf onyloxymethyl group, a pentachloropropylsulf onyloxymethyl group, a pentabromopropylsulf onyloxymethyl group, a pentachloropropylsulf onyloxymethyl group, a 3,3,3-trifluoropropl sulf onyloxymethyl group, a 3,3,3-trichloropropyl sulf onyloxymethyl group, a 3,3,3-tribromopropyl sulf onyloxymethyl group, a 3,3,3-triiodopropyl sulf onyloxymethyl group, a 2,2,2-trifluoroethyl sulf onyloxymethyl group, a 2,2,2-trichloroethyl sulf onyloxymethyl group, a 2,2,2-tribromoethyl sulf onyloxymethyl group, a 2,2,2-triiodoethyl sulf onyloxymethyl group, a heptfluorobutyl sulf onyloxymethyl group, a heptachlorobutyl sulf onyloxymethyl group, a heptabromobutyl sulf onyloxymethyl group, a nonafluorobutyl sulf onyloxymethyl group, a nonachlorobutyl sulf onyloxymethyl group, and a nonaiodoethyl sulf onyloxymethyl group.
nonabromobutylsulf onyloxymethyl group, a
nonaiodobutylsulf onyloxymethyl group, a
perfluoropentylsulf onyloxymethyl group, a
perchloropentylsulf onyloxymethyl group, a
perbromopentylsulf onyloxymethyl group, a
perfluorohexylsulf onyloxymethyl group, a
perchlorohexylsulf onyloxymethyl group, a
perbromohexylsulf onyloxymethyl group, and an
periodohexylsulf onyloxymethyl group.

The term '(C6-C16 arylsulf onyloxy) methyl group includes, for example, a phenylsulf onyloxymethyl group, a
4-methylbenzenesulf onyloxymethyl group, a 1-
naphthylsulf onyloxymethyl group, a 2-
naphthylsulf onyloxymethyl group, an 1-
acenaphthylsulf onyloxymethyl group, a 1-
phenanthrylsulf onyloxymethyl group, an 9-
anthrylsulf onyloxymethyl group, and a 1-
pyrenylsulf onyloxymethyl group.

The term '(C6-C16 haloaryl sulf onyloxy) methyl group includes, for example, a 2-fluorophenylsulf onyloxymethyl group, a 3-fluorophenylsulf onyloxymethyl group, a 4-
fluorophenylsulf onyloxymethyl group, a 2-
chlorophenylsulf onyloxymethyl group, a 3-

chlorophenylsulfonyloxymethyl group, a 4-
chlorophenylsulfonyloxymethyl group, a 2-
bromophenylsulfonyloxymethyl group, a 3-
bromophenylsulfonyloxymethyl group, a 4-
5 bromophenylsulfonyloxymethyl group, an 2-
iodophenylsulfonyloxymethyl group, an 3-
iodophenylsulfonyloxymethyl group, an 4-
iodophenylsulfonyloxymethyl group, a 2,4-
difluorophenylsulfonyloxymethyl group, a 2,5-
10 difluorophenylsulfonyloxymethyl group, a 2,6-
difluorophenylsulfonyloxymethyl group, a 3,5-
difluorophenylsulfonyloxymethyl group, a 2,4-
dichlorophenylsulfonyloxymethyl group, a 2,5-
dichlorophenylsulfonyloxymethyl group, a 2,6-
15 dichlorophenylsulfonyloxymethyl group, a 3,5-
dichlorophenylsulfonyloxymethyl group, a 2,4,6-
trifluorophenylsulfonyloxymethyl group, a 2,3,4-
trifluorophenylsulfonyloxymethyl group, a 2,4,5-
trifluorophenylsulfonyloxymethyl group, a 3,4,5-
20 trifluorophenylsulfonyloxymethyl group, a 2,4,6-
trichlorophenylsulfonyloxymethyl group, a 2,3,4-
trichlorophenylsulfonyloxymethyl group, a 2,4,5-
trichlorophenylsulfonyloxymethyl group, a 3,4,5-
trichlorophenylsulfonyloxymethyl group, a
25 pentfluorophenylsulfonyloxymethyl group, a
pentachlorophenylsulfonoyloxymethyl group, a 2-bromo-3-fluorophenylsulfonoyloxymethyl group, a 2-bromo-4-fluorophenylsulfonoyloxymethyl group, a 2-bromo-5-fluorophenylsulfonoyloxymethyl group, a 2-bromo-6-fluorophenylsulfonoyloxymethyl group, a 3-bromo-2-fluorophenylsulfonoyloxymethyl group, a 3-bromo-4-fluorophenylsulfonoyloxymethyl group, a 3-bromo-5-fluorophenylsulfonoyloxymethyl group, a 3-bromo-6-fluorophenylsulfonoyloxymethyl group, a 4-bromo-2-fluorophenylsulfonoyloxymethyl group, a 4-bromo-3-fluorophenylsulfonoyloxymethyl group, a 4-bromo-5-fluorophenylsulfonoyloxymethyl group, a 4-bromo-6-fluorophenylsulfonoyloxymethyl group, a 5-bromo-2-fluorophenylsulfonoyloxymethyl group, a 5-bromo-3-fluorophenylsulfonoyloxymethyl group, a 5-bromo-4-fluorophenylsulfonoyloxymethyl group, a 5-bromo-6-fluorophenylsulfonoyloxymethyl group, a 6-bromo-2-fluorophenylsulfonoyloxymethyl group, a 6-bromo-3-fluorophenylsulfonoyloxymethyl group, a 6-bromo-4-fluorophenylsulfonoyloxymethyl group, a 6-bromo-5-fluorophenylsulfonoyloxymethyl group, a 2-chloro-3-fluorophenylsulfonoyloxymethyl group, a 2-chloro-4-fluorophenylsulfonoyloxymethyl group, a 2-chloro-5-fluorophenylsulfonoyloxymethyl group, a 2-chloro-6-fluorophenylsulfonoyloxymethyl group, a 3-chloro-2-fluorophenylsulfonoyloxymethyl group.
fluorophenyl sulfonyloxymethyl group, a 3-chloro-4-
naphthylsulf onyloxymethyl group, a 3-fluoro-1-
naphthylsulf onyloxymethyl group, a 4-fluoro-1-
naphthylsulf onyloxymethyl group, a 5-fluoro-1-
naphthylsulf onyloxymethyl group, a 6-fluoro-1-
naphthylsulf onyloxymethyl group, a 7-fluoro-1-
naphthylsulf onyloxymethyl group, a 2-chloro-1-
naphthylsulf onyloxymethyl group, a 3-chloro-1-
naphthylsulf onyloxymethyl group, a 4-chloro-1-
naphthylsulf onyloxymethyl group, a 5-chloro-1-

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Groups</th>
<th>Substituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>6-chloro-1-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>7-chloro-1-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>2-bromo-1-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>3-bromo-1-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>4-bromo-1-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>5-bromo-1-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>6-bromo-1-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>7-bromo-1-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>heptachloro-1-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>heptafluoro-1-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>1-fluoro-2-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>3-fluoro-2-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>4-fluoro-2-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>5-fluoro-2-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>6-fluoro-2-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>7-fluoro-2-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>1-chloro-2-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>3-chloro-2-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>4-chloro-2-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>5-chloro-2-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>6-chloro-2-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>7-chloro-2-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>1-bromo-2-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>3-bromao-2-</td>
</tr>
<tr>
<td>naphthylsulfonyloxymethyl</td>
<td>group, a</td>
<td>4-bromo-2-</td>
</tr>
</tbody>
</table>
naphthylsulf onyloxymethyl group, a 5-bromo-2-
naphthylsulf onyloxymethyl group, a 6-bromo-2-
naphthylsulf onyloxymethyl group, a 7-bromo-2-
naphthylsulf onyloxymethyl group, a heptachloro-2-
5 naphthylsulf onyloxymethyl group, a heptafluoro-2-
naphthylsulf onyloxymethyl group, a 3-fluoro-1-
acenaphthylsulf onyloxymethyl group, a 9-fluoro-1-
phenanthrylsulf onyloxymethyl group, a 10-fluoro-9-
anthrylsulf onyloxymethyl group, and a 6-fluoro-1-
10 pyrenylsulf onyloxymethyl group.

[0048] The term ''(C1-C6 alkylamino) methyl group' ' includes, for example, a N-methylaminomethyl group, an N-
ethylaminomethyl group, a N-propylaminomethyl group, an N-
15 isopropylaminomethyl group, a N-butylaminomethyl group, a N-
,N-dimethylaminomethyl group, a N,N-diethylaminomethyl
group, a N,N-dipropylaminomethyl group, a N,N-
diisopropylaminomethyl group, an N-ethyl -N-
methylaminomethyl group, a N-propyl -N-methylaminomethyl
group, a N-butyl -N-methylaminomethyl group, a N-pentyl-N-
methylaminomethyl group, a N-propyl -N-ethylaminomethyl
group, and a N-butyl-N-ethylaminomethyl group.

[0049] The term ''a methyl group having heterocyclyl group
20 (with the proviso that the heterocyclyl group is a five-
membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other) includes, for example, a pyrroldinylmethyl group, a piperidinylmethyl group, a piperazinylmethyl group, a morpholinylmethyl group, a thiomorpholinylmethyl group, and an azepanymethyl group.

The term "C1-C5 alkyl group" represents a straight or branched alkyl group, and includes, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and a pentyl group.

The term "C1-C3 alkylthio group" includes, for example, a methylthio group, an ethylthio group, an n-propylthio group, and an isopropylthio group.

The term "C1-C3 haloalkylthio group" represents a group wherein at least one hydrogen atom of the straight or branched C1-C3 alkylthio group is substituted with a halogen atom, and includes, for example, a monofluoromethylthio group, a difluoromethylthio group, a trifluoromethylthio group, a trichloromethylthio group, a tribromomethylthio group, a triiodomethylthio group, a
chlorofluoromethylthio group, a pentafluoroethylthio group, a pentachloroethylthio group, a pentabromoethylthio group, a pentaiodoethylthio group, a 2,2,2-trichloroethylthio group, a 2,2,2-trifluoroethylthio group, a 2,2,2-tribromoethylthio group, a 2,2,2-triiodoethylthio group, a 2,2,2-trifluoropropylthio group, a 2,2,2-trichloropropylthio group, a 2,2,2-triiodopropylthio group, a 2,2-difluoroethylthio group, a heptfluoropropylthio group, a heptachloropropylthio group, a heptabromopropylthio group, a heptaiodopropylthio group, a 3,3,3-trifluoropropylthio group, a 3,3,3-trichloropropylthio group, a 3,3,3-triiodopropylthio group, a 2,2-difluoropropylthio group, and a 2,2,2-trifluoropropylthio group.

The term 'C2-C3 alkyl group' includes, for example, an ethyl group, a propyl group, and an isopropyl group.

The term 'C2-C3 alkoxy group' includes, for example, an ethoxy group, a propyloxy group, and an isopropyloxy group.

[0051]

Examples of an embodiment of the present compound include the compounds of the formula (1) wherein the substituents represent the following ones.

a compound wherein R^1 represents a haloaryl group;

a compound wherein R^1 represents an aryl group having an C1-C3 alkyl group;

a compound wherein R^1 represents an aryl group having
an C1-C3 alkoxy group;
a compound wherein R\(^1\) represents an aryl group having
an C1-C3 haloalkoxy group;
a compound wherein R\(^1\) represents a 4-chlorophenyl
group;
a compound wherein R\(^1\) represents a 4-fluorophenyl
group;
a compound wherein R\(^1\) represents a 4-bromophenyl
group;
a compound wherein R\(^1\) represents a 4-methoxyphenyl
group;
a compound wherein R\(^1\) represents a 4-methylphenyl
group;
a compound wherein R\(^1\) represents a 4-
trifluoromethoxyphenyl group;
a compound wherein R\(^2\) represents a hydrogen atom;
a compound wherein R\(^3\) represents a hydrogen atom;
a compound wherein R\(^4\) represents a hydrogen atom;
a compound wherein R\(^5\) represents a hydrogen atom;
a compound wherein R\(^6\) represents an C1-C3 alkyl group;
a compound wherein R\(^6\) represents a C3-C4 cycloalkyl
group;
a compound wherein R\(^6\) represents a halogen atom;
a compound wherein R\(^6\) represents a C1-C3 haloalkyl
group;
a compound wherein R^6 represents an C2-C3 alkenyl group;
a compound wherein R^6 represents an C1-C3 alkoxy group;
a compound wherein R^6 represents a methyl group;
a compound wherein R^6 represents an ethyl group;
a compound wherein R^6 represents n-propyl group;
a compound wherein R^6 represents a cyclopropyl group;
a compound wherein R^6 represents a trifluoromethyl group;
a compound wherein R^6 represents a difluoromethyl group;
a compound wherein R^6 represents a 2-propenyl group;
a compound wherein R^6 represents a chlorine atom;
a compound wherein R^6 represents a bromine atom;
a compound wherein R^6 represents an iodine atom;
a compound wherein R^6 represents a fluorine atom;
a compound wherein R^6 represents a vinyl group;
a compound wherein R^6 represents a methoxy group;
a compound wherein R^7 represents a hydrogen atom;
a compound wherein R^8 represents a hydrogen atom;
a compound wherein R^9 represents a hydrogen atom;
a compound wherein R^{10} represents a methyl group;
a compound wherein X represents an oxygen atom;
a compound wherein X represents a sulfur atom;
[0052]
a compound wherein \(R^1 \) represents a haloaryl group and \(R^6 \) represents a C1-C3 alkyl group;
a compound wherein \(R^1 \) represents a haloaryl group and \(R^6 \) represents a C3-C4 cycloalkyl group;
a compound wherein \(R^1 \) represents a haloaryl group and \(R^6 \) represents a halogen atom;
a compound wherein \(R^1 \) represents a haloaryl group and \(R^6 \) represents a C1-C3 haloalkyl group;
a compound wherein \(R^1 \) represents a haloaryl group and \(R^6 \) represents an C2-C3 alkenyl group;
a compound wherein \(R^1 \) represents a haloaryl group and \(R^6 \) represents an C1-C3 alkoxy group;
a compound wherein \(R^1 \) represents a haloaryl group and \(R^6 \) represents a methyl group;
a compound wherein \(R^1 \) represents a haloaryl group and \(R^6 \) represents an ethyl group;
a compound wherein \(R^1 \) represents a haloaryl group and \(R^6 \) represents a n-propyl group;
a compound wherein \(R^1 \) represents a haloaryl group and \(R^6 \) represents a cyclopropyl group;
a compound wherein \(R^1 \) represents a haloaryl group and \(R^6 \) represents a trifluoromethyl group;
a compound wherein \(R^1 \) represents a haloaryl group and \(R^6 \) represents a difluoromethyl group;
a compound wherein \(R^1 \) represents a haloaryl group and
\(R^6 \) represents a 2-propenyl group;
a compound wherein \(R^1 \) represents a haloaryl group and
\(R^6 \) represents a chlorine atom;
a compound wherein \(R^1 \) represents a haloaryl group and
\(R^6 \) represents a bromine atom;
a compound wherein \(R^1 \) represents a haloaryl group and
\(R^6 \) represents an iodine atom;
a compound wherein \(R^1 \) represents a haloaryl group and
\(R^6 \) represents a fluorine atom;
a compound wherein \(R^1 \) represents a haloaryl group and
\(R^6 \) represents a vinyl group;
a compound wherein \(R^1 \) represents a haloaryl group and
\(R^6 \) represents a methoxy group;
a compound wherein \(R^1 \) represents an aryl group having
an \(\text{C}_1-\text{C}_3 \) alkyl group and \(R^6 \) represents an \(\text{C}_1-\text{C}_3 \) alkyl
group;
a compound wherein \(R^1 \) represents an aryl group having
an \(\text{C}_1-\text{C}_3 \) alkyl group and \(R^6 \) represents a \(\text{C}_3-\text{C}_4 \) cycloalkyl
group;
a compound wherein \(R^1 \) represents an aryl group having
an \(\text{C}_1-\text{C}_3 \) alkyl group and \(R^6 \) represents a halogen atom;
a compound wherein \(R^1 \) represents an aryl group having
an \(\text{C}_1-\text{C}_3 \) alkyl group and \(R^6 \) represents a \(\text{C}_1-\text{C}_3 \) haloalkyl
group;
a compound wherein R^1 represents an aryl group having an C1-C3 alkyl group and R^6 represents an C2-C3 alkenyl group;

a compound wherein R^1 represents an aryl group having an C1-C3 alkyl group and R^6 represents an C1-C3 alkoxy group;

a compound wherein R^1 represents an aryl group having an C1-C3 alkyl group and R^6 represents a methyl group;

a compound wherein R^1 represents an aryl group having an C1-C3 alkyl group and R^6 represents an ethyl group;

a compound wherein R^1 represents an aryl group having an C1-C3 alkyl group and R^6 represents a n-propyl group;

a compound wherein R^1 represents an aryl group having an C1-C3 alkyl group and R^6 represents a cyclopropyl group;

a compound wherein R^1 represents an aryl group having an C1-C3 alkyl group and R^6 represents a trifluoromethyl group;

a compound wherein R^1 represents an aryl group having an C1-C3 alkyl group and R^6 represents a difluoromethyl group;

a compound wherein R^1 represents an aryl group having an C1-C3 alkyl group and R^6 represents a 2-propenyl group;

a compound wherein R^1 represents an aryl group having an C1-C3 alkyl group and R^6 represents a chlorine atom;

a compound wherein R^1 represents an aryl group having
an C1-C3 alkyl group and R^6 represents a bromine atom;
a compound wherein R^1 represents an aryl group having
an C1-C3 alkyl group and R^6 represents an iodine atom;
a compound wherein R^1 represents an aryl group having
an C1-C3 alkyl group and R^6 represents a fluorine atom;
a compound wherein R^1 represents an aryl group having
an C1-C3 alkyl group and R^6 represents a vinyl group;
a compound wherein R^1 represents an aryl group having
an C1-C3 alkyl group and R^6 represents a methoxy group;

a compound wherein R^1 represents an aryl group having
an C1-C3 alkoxy group and R^6 represents a C1-C3 alkyl
group;
a compound wherein R^1 represents an aryl group having
an C1-C3 alkoxy group and R^6 represents a C3-C4 cycloalkyl
group;
a compound wherein R^1 represents an aryl group having
an C1-C3 alkoxy group and R^6 represents a halogen atom;
a compound wherein R^1 represents an aryl group having
an C1-C3 alkoxy group and R^6 represents a C1-C3 haloalkyl
group;
a compound wherein R^1 represents an aryl group having
an C1-C3 alkoxy group and R^6 represents an C2-C3 alkenyl
group;
a compound wherein R^1 represents an aryl group having
an C1-C3 alkoxy group and R⁶ represents an C1-C3 alkoxy group;
a compound wherein R¹ represents an aryl group having an C1-C3 alkoxy group and R⁶ represents a methyl group;
a compound wherein R¹ represents an aryl group having an C1-C3 alkoxy group and R⁶ represents an ethyl group;
a compound wherein R¹ represents an aryl group having an C1-C3 alkoxy group and R⁶ represents a n-propyl group;
a compound wherein R¹ represents an aryl group having an C1-C3 alkoxy group and R⁶ represents a cyclopropyl group;
a compound wherein R¹ represents an aryl group having an C1-C3 alkoxy group and R⁶ represents a trifluoromethyl group;
a compound wherein R¹ represents an aryl group having an C1-C3 alkoxy group and R⁶ represents a difluoromethyl group;
a compound wherein R¹ represents an aryl group having an C1-C3 alkoxy group and R⁶ represents a 2-propenyl group;
a compound wherein R¹ represents an aryl group having an C1-C3 alkoxy group and R⁶ represents a chlorine atom;
a compound wherein R¹ represents an aryl group having an C1-C3 alkoxy group and R⁶ represents a bromine atom;
a compound wherein R¹ represents an aryl group having an C1-C3 alkoxy group and R⁶ represents an iodine atom;
a compound wherein R^1 represents an aryl group having
an C1-C3 alkoxy group and R^6 represents a fluorine atom;
a compound wherein R^1 represents an aryl group having
an C1-C3 alkoxy group and R^6 represents a vinyl group;
a compound wherein R^1 represents an aryl group having
an C1-C3 alkoxy group and R^6 represents a methoxy group;
a compound wherein R^1 represents an aryl group having
an C1-C3 haloalkoxy group and R^6 represents an C1-C3 alkyl group;
a compound wherein R^1 represents an aryl group having
an C1-C3 haloalkoxy group and R^6 represents a C3-C4 cycloalkyl group;
a compound wherein R^1 represents an aryl group having
an C1-C3 haloalkoxy group and R^8 represents a halogen atom;
a compound wherein R^1 represents an aryl group having
an C1-C3 haloalkoxy group and R^6 represents a C1-C3 haloalkyl group;
a compound wherein R^1 represents an aryl group having
an C1-C3 haloalkoxy group and R^6 represents an C2-C3 alkenyl group;
a compound wherein R^1 represents an aryl group having
an C1-C3 haloalkoxy group and R^6 represents an C1-C3 alkoxy group;
a compound wherein R^1 represents an aryl group having
an C1-C3 haloalkoxy group and R^6 represents a methyl group;
a compound wherein \(R^1 \) represents an aryl group having
an C1-C3 haloalkoxy group and \(R^6 \) represents an ethyl group;

a compound wherein \(R^1 \) represents an aryl group having
an C1-C3 haloalkoxy group and \(R^6 \) represents a n-propyl
group;

a compound wherein \(R^1 \) represents an aryl group having
an C1-C3 haloalkoxy group and \(R^6 \) represents a cyclopropyl
group;

a compound wherein \(R^1 \) represents an aryl group having
an C1-C3 haloalkoxy group and \(R^6 \) represents a trifluoromethyl group;

a compound wherein \(R^1 \) represents an aryl group having
an C1-C3 haloalkoxy group and \(R^6 \) represents a difluoromethyl group;

a compound wherein \(R^1 \) represents an aryl group having
an C1-C3 haloalkoxy group and \(R^6 \) represents a 2-propenyl
group;

a compound wherein \(R^1 \) represents an aryl group having
an C1-C3 haloalkoxy group and \(R^6 \) represents a chlorine
atom;

a compound wherein \(R^1 \) represents an aryl group having
an C1-C3 haloalkoxy group and \(R^6 \) represents a bromine atom;

a compound wherein \(R^1 \) represents an aryl group having
an C1-C3 haloalkoxy group and \(R^6 \) represents an iodine atom;

a compound wherein \(R^1 \) represents an aryl group having
an C1-C3 haloalkoxy group and R^6 represents a fluorine atom;

a compound wherein R^1 represents an aryl group having
an C1-C3 haloalkoxy group and R^6 represents a vinyl group;

a compound wherein R^1 represents an aryl group having
an C1-C3 haloalkoxy group and R^6 represents a methoxy group;

[0054]
a compound wherein R^1 represents a 4-chlorophenyl
group and R^6 represents a methyl group;

a compound wherein R^1 represents a 4-chlorophenyl
group and R^6 represents an ethyl group;

a compound wherein R^1 represents a 4-chlorophenyl
group and R^6 represents a n-propyl group;

a compound wherein R^1 represents a 4-chlorophenyl
group and R^6 represents a cyclopropyl group;

a compound wherein R^1 represents a 4-chlorophenyl
group and R^6 represents a trifluoromethyl group;

a compound wherein R^1 represents a 4-chlorophenyl
group and R^6 represents a difluoromethyl group;

a compound wherein R^1 represents a 4-chlorophenyl
group and R^6 represents a 2-propenyl group;

a compound wherein R^1 represents a 4-chlorophenyl
group and R^6 represents a chlorine atom;

a compound wherein R^1 represents a 4-chlorophenyl
A compound wherein R^1 represents a 4-chlorophenyl group and R^6 represents a bromine atom;
an compound wherein R^1 represents a 4-chlorophenyl group and R^6 represents an iodine atom;
an compound wherein R^1 represents a 4-chlorophenyl group and R^6 represents a fluorine atom;
an compound wherein R^1 represents a 4-chlorophenyl group and R^6 represents a vinyl group;
an compound wherein R^1 represents a 4-chlorophenyl group and R^6 represents a methoxy group;
an compound wherein R^1 represents a 4-fluorophenyl group and R^6 represents a methyl group;
an compound wherein R^1 represents a 4-fluorophenyl group and R^6 represents an ethyl group;
an compound wherein R^1 represents a 4-fluorophenyl group and R^6 represents a n-propyl group;
an compound wherein R^1 represents a 4-fluorophenyl group and R^6 represents a cyclopropyl group;
an compound wherein R^1 represents a 4-fluorophenyl group and R^6 represents a trifluoromethyl group;
an compound wherein R^1 represents a 4-fluorophenyl group and R^6 represents a difluoromethyl group;
an compound wherein R^1 represents a 4-fluorophenyl group and R^6 represents a 2-propenyl group;
an compound wherein R^1 represents a 4-fluorophenyl group and R^6 represents a chlorine atom;
a compound wherein \(R^1 \) represents a 4-fluorophenyl group and \(R^6 \) represents a bromine atom;

a compound wherein \(R^1 \) represents a 4-fluorophenyl group and \(R^6 \) represents a fluorine atom;

a compound wherein \(R^1 \) represents a 4-fluorophenyl group and \(R^6 \) represents a vinyl group;

a compound wherein \(R^1 \) represents a 4-fluorophenyl group and \(R^6 \) represents a methoxy group;

a compound wherein \(R^1 \) represents a 4-bromophenyl group and \(R^6 \) represents a methyl group;

a compound wherein \(R^1 \) represents a 4-bromophenyl group and \(R^6 \) represents a n-propyl group;

a compound wherein \(R^1 \) represents a 4-bromophenyl group and \(R^6 \) represents a cyclopropyl group;

a compound wherein \(R^1 \) represents a 4-bromophenyl group and \(R^6 \) represents a trifluoromethyl group;

a compound wherein \(R^1 \) represents a 4-bromophenyl group and \(R^6 \) represents a difluoromethyl group;

a compound wherein \(R^1 \) represents a 4-bromophenyl group and \(R^6 \) represents a 2-propanoyl group;

a compound wherein \(R^1 \) represents a 4-bromophenyl group and \(R^6 \) represents a chlorine atom;

a compound wherein \(R^1 \) represents a 4-bromophenyl group
and \(R^6 \) represents a bromine atom;

- a compound wherein \(R^1 \) represents a 4-bromophenyl group and \(R^6 \) represents an iodine atom;
- a compound wherein \(R^1 \) represents a 4-bromophenyl group and \(R^6 \) represents a fluorine atom;
- a compound wherein \(R^1 \) represents a 4-bromophenyl group and \(R^6 \) represents a vinyl group;
- a compound wherein \(R^1 \) represents a 4-bromophenyl group and \(R^6 \) represents a methoxy group;

[0055]

- a compound wherein \(R^1 \) represents a 4-methoxyphenyl group and \(R^6 \) represents a methyl group;
- a compound wherein \(R^1 \) represents a 4-methoxyphenyl group and \(R^6 \) represents an ethyl group;
- a compound wherein \(R^1 \) represents a 4-methoxyphenyl group and \(R^6 \) represents a n-propyl group;
- a compound wherein \(R^1 \) represents a 4-methoxyphenyl group and \(R^6 \) represents a cyclopropyl group;
- a compound wherein \(R^1 \) represents a 4-methoxyphenyl group and \(R^6 \) represents a trifluoromethyl group;
- a compound wherein \(R^1 \) represents a 4-methoxyphenyl group and \(R^6 \) represents a difluoromethyl group;
- a compound wherein \(R^1 \) represents a 4-methoxyphenyl group and \(R^6 \) represents a 2-propenyl group;
- a compound wherein \(R^1 \) represents a 4-methoxyphenyl
group and \(R^6 \) represents a chlorine atom;

- a compound wherein \(R^1 \) represents a 4-methoxyphenyl group and \(R^6 \) represents a bromine atom;
- a compound wherein \(R^1 \) represents a 4-methoxyphenyl group and \(R^6 \) represents an iodine atom;
- a compound wherein \(R^1 \) represents a 4-methoxyphenyl group and \(R^6 \) represents a fluorine atom;
- a compound wherein \(R^1 \) represents a 4-methoxyphenyl group and \(R^6 \) represents a vinyl group;
- a compound wherein \(R^1 \) represents a 4-methoxyphenyl group and \(R^6 \) represents a methoxy group;
- a compound wherein \(R^1 \) represents a 4-methylphenyl group and \(R^6 \) represents a methyl group;
- a compound wherein \(R^1 \) represents a 4-methylphenyl group and \(R^6 \) represents an ethyl group;
- a compound wherein \(R^1 \) represents a 4-methylphenyl group and \(R^6 \) represents a n-propyl group;
- a compound wherein \(R^1 \) represents a 4-methylphenyl group and \(R^6 \) represents a cyclopropyl group;
- a compound wherein \(R^1 \) represents a 4-methylphenyl group and \(R^6 \) represents a trifluoromethyl group;
- a compound wherein \(R^1 \) represents a 4-methylphenyl group and \(R^6 \) represents a difluoromethyl group;
- a compound wherein \(R^1 \) represents a 4-methylphenyl group and \(R^6 \) represents a 2-propenyl group;
a compound wherein R^1 represents a 4-methylphenyl group and R^6 represents a chlorine atom;

a compound wherein R^1 represents a 4-methylphenyl group and R^6 represents a bromine atom;

a compound wherein R^1 represents a 4-methylphenyl group and R^6 represents an iodine atom;

a compound wherein R^1 represents a 4-methylphenyl group and R^6 represents a fluorine atom;

a compound wherein R^1 represents a 4-methylphenyl group and R^6 represents a vinyl group;

a compound wherein R^1 represents a 4-methylphenyl group and R^6 represents a methoxy group;

a compound wherein R^1 represents a 4-trifluoromethoxyphenyl group and R^6 represents an ethyl group;

a compound wherein R^1 represents a 4-trifluoromethoxyphenyl group and R^6 represents a n-propyl group;

a compound wherein R^1 represents a 4-trifluoromethoxyphenyl group and R^6 represents a cyclopropyl group;

a compound wherein R^1 represents a 4-trifluoromethoxyphenyl group and R^6 represents a trifluoromethyl group;

a compound wherein R^1 represents a 4-
trifluoromethoxyphenyl group and R⁶ represents a difluoromethyl group;
a compound wherein R¹ represents a 4-
trifluoromethoxyphenyl group and R⁶ represents a 2-propenyl
group;
a compound wherein R¹ represents a 4-
trifluoromethoxyphenyl group and R⁶ represents a chlorine atom;
a compound wherein R¹ represents a 4-
trifluoromethoxyphenyl group and R⁶ represents a bromine atom;
a compound wherein R¹ represents a 4-
trifluoromethoxyphenyl group and R⁶ represents an iodine atom;
a compound wherein R¹ represents a 4-
trifluoromethoxyphenyl group and R⁶ represents a fluorine atom;
a compound wherein R³ represents a 4-
trifluoromethoxyphenyl group and R⁶ represents a vinyl group;
a compound wherein R¹ represents a 4-
trifluoromethoxyphenyl group and R⁶ represents a methoxy group;
[0056]
a compound wherein R² represents a hydrogen atom, R³
represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an ethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a n-propyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a cyclopropyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a trifluoromethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methyl group, and \(X \) represents an oxygen atom;
represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a difluoromethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a 2-propenyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a chlorine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a bromine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an iodine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methyl group, and \(X \) represents an oxygen atom;
represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a fluorine atom, R^{10} represents a methyl group, and X represents an oxygen atom;

5 a compound wherein R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a vinyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

10 a compound wherein R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a methoxy group, R^{10} represents a methyl group, and X represents an oxygen atom;

15 [0057]

a compound wherein R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a methyl group, R^{10} represents a methyl group, and X represents a sulfur atom;

20 a compound wherein R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an ethyl group, R^{10} represents a methyl group, and X represents a sulfur atom;

25
a compound wherein R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents a n-propyl group, R10 represents a methyl group, and X represents a sulfur atom;

a compound wherein R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents a cyclopropyl group, R10 represents a methyl group, and X represents a sulfur atom;

a compound wherein R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents a trifluoromethyl group, R10 represents a methyl group, and X represents a sulfur atom;

a compound wherein R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents a difluoromethyl group, R10 represents a methyl group, and X represents a sulfur atom;

a compound wherein R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents a 2-propenyl group, R10 represents a methyl group, and X represents a sulfur atom;
a compound wherein R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents a chlorine atom, R10 represents a methyl group, and X represents a sulfur atom;

a compound wherein R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents a bromine atom, R10 represents a methyl group, and X represents a sulfur atom;

a compound wherein R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents an iodine atom, R10 represents a methyl group, and X represents a sulfur atom;

a compound wherein R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents a fluorine atom, R10 represents a methyl group, and X represents a sulfur atom;

a compound wherein R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents a vinyl group, R10 represents a methyl group, and X represents a sulfur atom;
a compound wherein \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methoxy group, \(R^{10} \) represents a methyl group, and \(X \) represents a sulfur atom.

[0058]
a compound wherein \(R^2 \) represents a haloaryl group, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 haloalkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents a sulfur atom.
a compound wherein \(R^1 \) represents a 4-chlorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-fluorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-bromophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methoxyphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
represents an oxygen atom;

a compound wherein R^1 represents a 4-
trifluoromethoxyphenyl group, R^2 represents a hydrogen atom,
R^3 represents a hydrogen atom, R^4 represents a hydrogen
atom, R^5 represents a hydrogen atom, R^{10} represents a methyl
group, and X represents an oxygen atom;

a compound wherein R^1 represents a haloaryl group, R^2
represents a hydrogen atom, R^3 represents a hydrogen atom,
R^4 represents a hydrogen atom, R^5 represents a hydrogen
atom, R^{10} represents a methyl group, and X represents a
sulfur atom;

a compound wherein R^1 represents an aryl group having
an C1-C3 alkoxy group, R^2 represents a hydrogen atom, R^3
represents a hydrogen atom, R^4 represents a hydrogen atom,
R^5 represents a hydrogen atom, R^{10} represents a methyl group,
and X represents a sulfur atom;

a compound wherein R^1 represents an aryl group having
an C1-C3 haloalkoxy group, R^2 represents a hydrogen atom, R^3
represents a hydrogen atom, R^4 represents a hydrogen atom,
R^5 represents a hydrogen atom, R^{10} represents a methyl group,
and X represents a sulfur atom;
atom, \(R^5 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents a sulfur atom;

a compound wherein \(R^1 \) represents a 4-chlorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents a sulfur atom;

a compound wherein \(R^1 \) represents a 4-fluorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents a sulfur atom;

a compound wherein \(R^1 \) represents a 4-bromophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents a sulfur atom;

a compound wherein \(R^1 \) represents a 4-methoxyphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents a sulfur atom;

a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents a sulfur atom;
a hydrogen atom, R^1 represents a methyl group, and X represents a sulfur atom;

a compound wherein R^1 represents a 4-trifluoromethoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^{10} represents a methyl group, and X represents a sulfur atom;

[0060]

a compound wherein R^1 represents a haloaryl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an C1-C3 alkyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a haloaryl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a C3-C4 cycloalkyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a haloaryl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a halogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a haloaryl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom,
R\(^4\) represents a hydrogen atom, R\(^5\) represents a hydrogen atom, R\(^6\) represents a C1-C3 haloalkyl group, R\(^{10}\) represents a methyl group, and X represents an oxygen atom;

a compound wherein R\(^1\) represents a haloaryl group, R\(^2\) represents a hydrogen atom, R\(^3\) represents a hydrogen atom, R\(^4\) represents a hydrogen atom, R\(^5\) represents a hydrogen atom, R\(^6\) represents an C2-C3 alkenyl group, R\(^{10}\) represents a methyl group, and X represents an oxygen atom;

[0061]
a compound wherein R\(^1\) represents a haloaryl group, R\(^2\) represents a hydrogen atom, R\(^3\) represents a hydrogen atom, R\(^4\) represents a hydrogen atom, R\(^5\) represents a hydrogen atom, R\(^6\) represents a C1-C3 alkoxy group, R\(^{10}\) represents a methyl group, and X represents an oxygen atom;

a compound wherein R\(^1\) represents a haloaryl group, R\(^2\) represents a hydrogen atom, R\(^3\) represents a hydrogen atom, R\(^4\) represents a hydrogen atom, R\(^5\) represents a hydrogen atom, R\(^6\) represents a methyl group, R\(^{10}\) represents a methyl group, and X represents an oxygen atom;

[0061]
a compound wherein R\(^1\) represents a haloaryl group, R\(^2\) represents a hydrogen atom, R\(^3\) represents a hydrogen atom, R\(^4\) represents a hydrogen atom, R\(^5\) represents a hydrogen atom, R\(^6\) represents an ethyl group, R\(^{10}\) represents a methyl group, and X represents an oxygen atom;

a compound wherein R\(^1\) represents a haloaryl group, R\(^2\)
represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a n-propyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a haloaryl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a cyclopropyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a haloaryl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a trifluoromethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a haloaryl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a difluoromethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a haloaryl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a 2-propenyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a haloaryl group, \(R^2 \)
represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a chlorine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom.

- a compound wherein \(R^3 \) represents a haloaryl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a bromine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

- a compound wherein \(R^3 \) represents a haloaryl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an iodine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

- a compound wherein \(R^3 \) represents a haloaryl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a fluorine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

- a compound wherein \(R^3 \) represents a haloaryl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a vinyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

- a compound wherein \(R^3 \) represents a haloaryl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a vinyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methoxy group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

[0062] a compound wherein \(R^1 \) represents an aryl group having an \(\text{C}_1-\text{C}_3 \) alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an \(\text{C}_1-\text{C}_3 \) alkyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an \(\text{C}_1-\text{C}_3 \) alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a \(\text{C}_3-\text{C}_4 \) cycloalkyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an \(\text{C}_1-\text{C}_3 \) alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a halogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an \(\text{C}_1-\text{C}_3 \) alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a halogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
represents a hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a hydrogen atom, \(R^6\) represents a C1-C3 haloalkyl group, \(R^{10}\) represents a methyl group, and \(X\) represents an oxygen atom;

a compound wherein \(R^1\) represents an aryl group having an C1-C3 alkyl group, \(R^2\) represents a hydrogen atom, \(R^3\) represents a hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a hydrogen atom, \(R^6\) represents an C2-C3 alkenyl group, \(R^{10}\) represents a methyl group, and \(X\) represents an oxygen atom;

a compound wherein \(R^1\) represents an aryl group having an C1-C3 alkyl group, \(R^2\) represents a hydrogen atom, \(R^3\) represents a hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a hydrogen atom, \(R^6\) represents an C1-C3 alkoxy group, \(R^{10}\) represents a methyl group, and \(X\) represents an oxygen atom;

[0063]
a compound wherein \(R^1\) represents an aryl group having an C1-C3 alkyl group, \(R^2\) represents a hydrogen atom, \(R^3\) represents a hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a hydrogen atom, \(R^6\) represents a methyl group, \(R^{10}\) represents a methyl group, and \(X\) represents an oxygen atom;

a compound wherein \(R^1\) represents an aryl group having an C1-C3 alkyl group, \(R^2\) represents a hydrogen atom, \(R^3\) represents a hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a hydrogen atom, \(R^6\) represents a methyl group, \(R^{10}\) represents a methyl group, and \(X\) represents an oxygen atom;
represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an ethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an \(\text{C}1-\text{C}3 \) alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a \(n \)-propyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an \(\text{C}1-\text{C}3 \) alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a cyclopropyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an \(\text{C}1-\text{C}3 \) alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a trifluoromethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an \(\text{C}1-\text{C}3 \) alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom,
R⁵ represents a hydrogen atom, R⁶ represents a difluoromethyl group, R⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents an aryl group having an C1-C3 alkyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a 2-propenyl group, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents an aryl group having an C1-C3 alkyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a chlorine atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents an aryl group having an C1-C3 alkyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a bromine atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents an aryl group having an C1-C3 alkyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a iodine atom, R¹⁰ represents a methyl group, and X represents an iodine atom,
R^0 represents a methyl group, and X represents an oxygen atom;
a compound wherein R^1 represents an aryl group having an C1-C3 alkyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a fluorine atom, R^{10} represents a methyl group, and X represents an oxygen atom;
a compound wherein R^1 represents an aryl group having an C1-C3 alkyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a vinyl group, R^{10} represents a methyl group, and X represents an oxygen atom;
a compound wherein R^1 represents an aryl group having an C1-C3 alkyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a methoxy group, R^{10} represents a methyl group, and X represents an oxygen atom;
a compound wherein R^1 represents an aryl group having an C1-C3 alkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a C1-C3 alkyl
group, \(R^0 \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a C3-C4 cycloalkyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a halogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a C1-C3 haloalkyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a C2-C3 alkenyl group, \(R^{10} \) represents a methyl group, and \(X \)
represents an oxygen atom;
a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an C1-C3 alkoxy group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

[0065]
a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom,

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an ethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a n-propyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a cyclopropyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a trifluoromethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a difluoromethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a 2-propenyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
a compound wherein R^1 represents an aryl group having an C1-C3 alkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a chlorine atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having an C1-C3 alkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a bromine atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having an C1-C3 alkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an iodine atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having an C1-C3 alkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a fluorine atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having
an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a vinyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methoxy group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

\[\text{[0066]} \]
a compound wherein \(R^1 \) represents an aryl group having an C1-C3 haloalkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an C1-C3 alkyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 haloalkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^8 \) represents a C3-C4 cycloalkyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having
an C1-C3 haloalkoxy group, \(R^2 \) represents a hydrogen atom,
\(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom,
\(R^5 \) represents a hydrogen atom, \(R^6 \) represents a halogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 haloalkoxy group, \(R^2 \) represents a hydrogen atom,
\(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a C1-C3 haloalkyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 haloalkoxy group, \(R^2 \) represents a hydrogen atom,
\(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an C2-C3 alkenyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 haloalkoxy group, \(R^2 \) represents a hydrogen atom,
\(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an C1-C3 alkoxy group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

[0067]

a compound wherein \(R^1 \) represents an aryl group having
an C1-C3 haloalkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a methyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having an C1-C3 haloalkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an ethyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having an C1-C3 haloalkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a n-propyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having an C1-C3 haloalkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a cyclopropyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having an C1-C3 haloalkoxy group, R^2 represents a hydrogen atom,
R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a trifluoromethyl group, R¹⁰ represents a methyl group, and X represents an oxygen atom.

a compound wherein R³ represents an aryl group having an C1-C3 haloalkoxy group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a difluoromethyl group, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R³ represents an aryl group having an C1-C3 haloalkoxy group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a 2-propenyl group, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R³ represents an aryl group having an C1-C3 haloalkoxy group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a chlorine atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R³ represents an aryl group having an C1-C3 haloalkoxy group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a chlorine atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;
atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a bromine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an \(\text{C1-C3 haloalkoxy} \) group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an iodine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an \(\text{C1-C3 haloalkoxy} \) group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a fluorine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an \(\text{C1-C3 haloalkoxy} \) group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a vinyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an \(\text{C1-C3 haloalkoxy} \) group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a
methoxy group, R_0 represents a methyl group, and X represents an oxygen atom;

[0068]
a compound wherein R^1 represents a 4-chlorophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a methyl group, R_0 represents a methyl group, and X represents an oxygen atom;
a compound wherein R^1 represents a 4-chlorophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an ethyl group, R_0 represents a methyl group, and X represents an oxygen atom;
a compound wherein R^1 represents a 4-chlorophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a n-propyl group, R_0 represents a methyl group, and X represents an oxygen atom;
a compound wherein R^1 represents a 4-chlorophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a cyclopropyl group, R_0 represents a methyl group, and X represents an oxygen atom;
a compound wherein R^1 represents a 4-chlorophenyl group, R^2 represents a hydrogen atom, R^3 represents a
hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a trifluoromethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

- a compound wherein \(R^1 \) represents a 4-chlorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a difluoromethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

- a compound wherein \(R^1 \) represents a 4-chlorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a 2-propenyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

- a compound wherein \(R^1 \) represents a 4-chlorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a chlorine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

- a compound wherein \(R^1 \) represents a 4-chlorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a bromine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

- a compound wherein \(R^1 \) represents a 4-chlorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a chlorine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an iodine atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-chlorophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a fluorine atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-chlorophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a vinyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-chlorophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a methoxy group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-fluorophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a methyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-fluorophenyl
group, \(R_2 \) represents a hydrogen atom, \(R_3 \) represents a hydrogen atom, \(R_4 \) represents a hydrogen atom, \(R_5 \) represents a hydrogen atom, \(R_6 \) represents an ethyl group, \(R_{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

5 a compound wherein \(R_1 \) represents a 4-fluorophenyl group, \(R_2 \) represents a hydrogen atom, \(R_3 \) represents a hydrogen atom, \(R_4 \) represents a hydrogen atom, \(R_5 \) represents a hydrogen atom, \(R_6 \) represents a n-propyl group, \(R_{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

10 a compound wherein \(R_1 \) represents a 4-fluorophenyl group, \(R_2 \) represents a hydrogen atom, \(R_3 \) represents a hydrogen atom, \(R_4 \) represents a hydrogen atom, \(R_5 \) represents a hydrogen atom, \(R_6 \) represents a cyclopropyl group, \(R_{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

15 a compound wherein \(R_1 \) represents a 4-fluorophenyl group, \(R_2 \) represents a hydrogen atom, \(R_3 \) represents a hydrogen atom, \(R_4 \) represents a hydrogen atom, \(R_5 \) represents a hydrogen atom, \(R_6 \) represents a trifluoromethyl group, \(R_{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

20 a compound wherein \(R_1 \) represents a 4-fluorophenyl group, \(R_2 \) represents a hydrogen atom, \(R_3 \) represents a hydrogen atom, \(R_4 \) represents a hydrogen atom, \(R_5 \) represents a hydrogen atom, \(R_6 \) represents a difluoromethyl group, \(R_{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

25 a compound wherein \(R_1 \) represents a 4-fluorophenyl
group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^6 represents a 2-propenyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-fluorophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a chlorine atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-fluorophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a bromine atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-fluorophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an iodine atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-fluorophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a fluorine atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-fluorophenyl
group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a vinyl group, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents a 4-fluorophenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a methoxy group, R¹⁰ represents a methyl group, and X represents an oxygen atom;

[0070]
a compound wherein R¹ represents a 4-bromophenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a methyl group, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents a 4-bromophenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents an ethyl group, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents a 4-bromophenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a n-propyl group, R¹⁰ represents a methyl group, and X represents an oxygen atom;
a compound wherein R^1 represents a 4-bromophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a cyclopropyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-bromophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a trifluoromethyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-bromophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a difluoromethyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-bromophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a 2-propenyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-bromophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a chlorine atom, R^{10} represents a methyl group, and X represents an oxygen atom;
a compound wherein R¹ represents a 4-bromophenyl group,
R² represents a hydrogen atom, R³ represents a hydrogen
atom, R⁴ represents a hydrogen atom, R⁵ represents a
hydrogen atom, R⁶ represents a bromine atom, R¹⁰ represents
a methyl group, and X represents an oxygen atom,

a compound wherein R¹ represents a 4-bromophenyl group,
R² represents a hydrogen atom, R³ represents a hydrogen
atom, R⁴ represents a hydrogen atom, R⁵ represents a
hydrogen atom, R⁶ represents an iodine atom, R¹⁰ represents
a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents a 4-bromophenyl group,
R² represents a hydrogen atom, R³ represents a hydrogen
atom, R⁴ represents a hydrogen atom, R⁵ represents a
hydrogen atom, R⁶ represents a fluorine atom, R¹⁰ represents
a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents a 4-bromophenyl group,
R² represents a hydrogen atom, R³ represents a hydrogen
atom, R⁴ represents a hydrogen atom, R⁵ represents a
hydrogen atom, R⁶ represents a vinyl group, R¹⁰ represents a
methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents a 4-bromophenyl group,
R² represents a hydrogen atom, R³ represents a hydrogen
atom, R⁴ represents a hydrogen atom, R⁵ represents a
hydrogen atom, R⁶ represents a methoxy group, R¹⁰ represents
a methyl group, and X represents an oxygen atom;
a compound wherein \(R^1 \) represents a 4-methoxyphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methoxyphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methoxyphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an ethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methoxyphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an n-propyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methoxyphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a cyclopropyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methoxyphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a trifluoromethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
represents a methyl group, and X represents an oxygen atom;
a compound wherein R represents a 4-methoxyphenyl
group, R represents a hydrogen atom, R represents a
hydrogen atom, R represents a hydrogen atom, R represents
a hydrogen atom, R represents a difluoromethyl group, R represents a methyl group, and X represents an oxygen atom,-
a compound wherein R represents a 4-methoxyphenyl
group, R represents a hydrogen atom, R represents a
hydrogen atom, R represents a hydrogen atom, R represents
a hydrogen atom, R represents a 2-propenyl group, R represents a methyl group, and X represents an oxygen atom;
a compound wherein R represents a 4-methoxyphenyl
group, R represents a hydrogen atom, R represents a
hydrogen atom, R represents a hydrogen atom, R represents
a hydrogen atom, R represents a chlorine atom, R represents a methyl group, and X represents an oxygen atom;
a compound wherein R represents a 4-methoxyphenyl
group, R represents a hydrogen atom, R represents a
hydrogen atom, R represents a hydrogen atom, R represents
a hydrogen atom, R represents a bromine atom, R represents a methyl group, and X represents an oxygen atom,-
a compound wherein R represents a 4-methoxyphenyl
group, R represents a hydrogen atom, R represents a
hydrogen atom, R represents a hydrogen atom, R represents
a hydrogen atom, R represents a iodine atom, R represents
a hydrogen atom, R represents an iodine atom, R represents
represents a methyl group, and X represents an oxygen atom;
a compound wherein R^1 represents a 4-methoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a fluorine atom, R^{10} represents a methyl group, and X represents an oxygen atom;
a compound wherein R^1 represents a 4-methoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a vinyl group, R^{10} represents a methyl group, and X represents an oxygen atom;
a compound wherein R^1 represents a 4-methoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a methoxy group, R^{10} represents a methyl group, and X represents an oxygen atom;
a compound wherein R^1 represents a 4-methylphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a methyl group, R^{10} represents a methyl group, and X represents an oxygen atom;
a compound wherein R^1 represents a 4-methylphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a methyl group, and X represents an oxygen atom;
a hydrogen atom, \(R^6 \) represents an ethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a n-propyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a cyclopropyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a trifluoromethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a difluoromethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a n-propyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
a hydrogen atom, \(R^6 \) represents a 2-propenyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

- a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a chlorine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

- a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a bromine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

- a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an iodine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

- a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a fluorine atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

- a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
a hydrogen atom, \(R^6 \) represents a vinyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methoxy group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

[0073]

a compound wherein \(R^1 \) represents a 4-trifluoromethoxyphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-trifluoromethoxyphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an ethyl group, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-trifluoromethoxyphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a n-propyl group, \(R^{10} \) represents a methyl group, and \(X \)
represents an oxygen atom;

a compound wherein R^1 represents a 4-trifluoromethoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a trifluoromethyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-trifluoromethoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a trifluoromethyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-trifluoromethoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a difluoromethyl group, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-trifluoromethoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a 2-propenyl group, R^{10} represents a methyl group, and X represents an oxygen atom;
a compound wherein \(R^1\) represents a 4-trifluoromethoxyphenyl group, \(R^2\) represents a hydrogen atom, \(R^3\) represents a hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a chlorine atom, \(R^{10}\) represents a methyl group, and \(X\) represents an oxygen atom;

a compound wherein \(R^1\) represents a 4-trifluoromethoxyphenyl group, \(R^2\) represents a hydrogen atom, \(R^3\) represents a hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a bromine atom, \(R^{10}\) represents a methyl group, and \(X\) represents an oxygen atom;

a compound wherein \(R^1\) represents a 4-trifluoromethoxyphenyl group, \(R^2\) represents a hydrogen atom, \(R^3\) represents a hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a hydrogen atom, \(R^6\) represents a bromine atom, \(R^{10}\) represents a methyl group, and \(X\) represents an oxygen atom;

a compound wherein \(R^1\) represents a 4-trifluoromethoxyphenyl group, \(R^2\) represents a hydrogen atom, \(R^3\) represents a hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a hydrogen atom, \(R^6\) represents a fluorine atom, \(R^{10}\) represents a methyl group, and \(X\) represents an oxygen atom;

a compound wherein \(R^3\) represents a 4-
trifluoromethoxyphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a vinyl group, \(R^7 \) represents a methyl group, and \(X \) represents an oxygen atom.

A compound wherein \(R^1 \) represents a 4-trifluoromethoxyphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methoxy group, \(R^7 \) represents a methyl group, and \(X \) represents an oxygen atom;

A compound wherein \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

A compound wherein \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an ethyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

A compound wherein \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methyl group, and \(X \) represents an oxygen atom;
represents a hydrogen atom, R_4 represents a hydrogen atom, R_5 represents a hydrogen atom, R_7 represents a hydrogen atom, R_8 represents a hydrogen atom, R_9 represents a hydrogen atom, R_{10} represents a methyl group, and X represents an oxygen atom.

a compound wherein R_2 represents a hydrogen atom, R_3 represents a hydrogen atom, R_4 represents a hydrogen atom, R_5 represents a hydrogen atom, R_6 represents a cyclopropyl group, R_7 represents a hydrogen atom, R_8 represents a hydrogen atom, R_9 represents a hydrogen atom, R_{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R_2 represents a hydrogen atom, R_3 represents a hydrogen atom, R_4 represents a hydrogen atom, R_5 represents a hydrogen atom, R_6 represents a trifluoromethyl group, R_7 represents a hydrogen atom, R_8 represents a hydrogen atom, R_9 represents a hydrogen atom, R_{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R_2 represents a hydrogen atom, R_3 represents a hydrogen atom, R_4 represents a hydrogen atom, R_5 represents a hydrogen atom, R_6 represents a difluoromethyl group, R_7 represents a hydrogen atom, R_8 represents a hydrogen atom, R_9 represents a hydrogen atom, R_{10} represents a methyl group, and X represents an oxygen atom;
a compound wherein R₂ represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a 2-propenyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R₁₀ represents a methyl group, and X represents an oxygen atom;

a compound wherein R₂ represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a chlorine atom, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R₁₀ represents a methyl group, and X represents an oxygen atom;

a compound wherein R₂ represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a bromine atom, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R₁₀ represents a methyl group, and X represents an oxygen atom;

a compound wherein R₂ represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents an iodine atom, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R₁₀ represents a methyl group, and X represents an oxygen atom;

a compound wherein R₂ represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents an iodine atom, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R₁₀ represents a methyl group, and X represents an oxygen atom;
represents a hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a hydrogen atom, \(R^6\) represents a fluorine atom, \(R^7\) represents a hydrogen atom, \(R^8\) represents a hydrogen atom, \(R^9\) represents a hydrogen atom, \(R^{10}\) represents a methyl group, and \(X\) represents an oxygen atom.

a compound wherein \(R^2\) represents a hydrogen atom, \(R^3\) represents a hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a hydrogen atom, \(R^6\) represents a vinyl group, \(R^7\) represents a hydrogen atom, \(R^8\) represents a hydrogen atom, \(R^9\) represents a hydrogen atom, \(R^{10}\) represents a methyl group, and \(X\) represents an oxygen atom;

a compound wherein \(R^2\) represents a hydrogen atom, \(R^3\) represents a hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a hydrogen atom, \(R^6\) represents a methoxy group, \(R^7\) represents a hydrogen atom, \(R^8\) represents a hydrogen atom, \(R^9\) represents a hydrogen atom, \(R^{10}\) represents a methyl group, and \(X\) represents an oxygen atom;

[0075]
a compound wherein \(R^3\) represents a haloaryl group, \(R^2\) represents a hydrogen atom, \(R^3\) represents a hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a hydrogen atom, \(R^7\) represents a hydrogen atom, \(R^8\) represents a hydrogen atom, \(R^9\) represents a hydrogen atom, \(R^{10}\) represents a methyl group, and \(X\) represents an oxygen atom;

a compound wherein \(R^1\) represents an aryl group having
an C1-C3 alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having an C1-C3 haloalkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-chlorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
R₁₀ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents a 4-fluorophenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents a 4-bromophenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents a 4-methoxyphenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents a 4-methylphenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom,
a hydrogen atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

5 a compound wherein \(R^1 \) represents a 4-trifluoromethoxyphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

[0076] a compound wherein \(R^1 \) represents a haloaryl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a C1-C3 alkyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

15 a compound wherein \(R^1 \) represents a haloaryl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a C3-C4 cycloalkyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group,

20 a compound wherein \(R^1 \) represents a haloaryl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a C3-C4 cycloalkyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group,
and X represents an oxygen atom;

a compound wherein R^3 represents a haloaryl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a halogen atom, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a haloaryl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a Cl-C3 haloalkyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a haloaryl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an C2-C3 alkenyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a haloaryl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, and X represents an oxygen atom.
atom, R^6 represents an C1-C3 alkoxy group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

5 [0077]

a compound wherein R^1 represents a haloaryl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a methyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

10 a compound wherein R^1 represents a haloaryl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an ethyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

15 a compound wherein R^1 represents a haloaryl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a n-propyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

20 a compound wherein R^1 represents a haloaryl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a n-propyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X
represents an oxygen atom;

a compound wherein \(R_1 \) represents a haloaryl group, \(R_2 \)
represents a hydrogen atom, \(R_3 \) represents a hydrogen atom,
\(R_4 \) represents a hydrogen atom, \(R_5 \) represents a hydrogen
atom, \(R_6 \) represents a cyclopropyl group, \(R_7 \) represents a
hydrogen atom, \(R_8 \) represents a hydrogen atom, \(R_9 \) represents
a hydrogen atom, \(R_{10} \) represents a methyl group, and \(X \)
represents an oxygen atom;

a compound wherein \(R_1 \) represents a haloaryl group, \(R_2 \)
represents a hydrogen atom, \(R_3 \) represents a hydrogen atom,
\(R_4 \) represents a hydrogen atom, \(R_5 \) represents a hydrogen
atom, \(R_6 \) represents a trifluoromethyl group, \(R_7 \) represents a
hydrogen atom, \(R_8 \) represents a hydrogen atom, \(R_9 \)
represents a hydrogen atom, \(R_{10} \) represents a methyl group,
and \(X \) represents an oxygen atom;

a compound wherein \(R_1 \) represents a haloaryl group, \(R_2 \)
represents a hydrogen atom, \(R_3 \) represents a hydrogen atom,
\(R_4 \) represents a hydrogen atom, \(R_5 \) represents a hydrogen
atom, \(R_6 \) represents a difluoromethyl group, \(R_7 \) represents a
hydrogen atom, \(R_8 \) represents a hydrogen atom, \(R_9 \)
represents a hydrogen atom, \(R_{10} \) represents a methyl group, and \(X \)
represents an oxygen atom;

a compound wherein \(R_1 \) represents a haloaryl group, \(R_2 \)
represents a hydrogen atom, \(R_3 \) represents a hydrogen atom,
\(R_4 \) represents a hydrogen atom, \(R_5 \) represents a hydrogen
atom, \(R_6 \) represents a hydrogen atom, \(R_7 \) represents a
hydrogen atom, \(R_8 \) represents a hydrogen atom, \(R_9 \)
represents a hydrogen atom, \(R_{10} \) represents a methyl group, and \(X \)
represents an oxygen atom;
atom, R^6 represents a 2-propenyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

5 a compound wherein R^1 represents a haloaryl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a chlorine atom, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

10 a compound wherein R^1 represents a haloaryl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a bromine atom, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

15 a compound wherein R^1 represents a haloaryl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an iodine atom, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;
a compound wherein R¹ represents a haloaryl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a fluorine atom, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents a haloaryl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a vinyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents a haloaryl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a methoxy group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

[0078]
a compound wherein R¹ represents an aryl group having a C1-C3 alkyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom,
R^5 represents a hydrogen atom, R^6 represents an C1-C3 alkyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having a C1-C3 alkyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a C3-C4 cycloalkyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having a C1-C3 alkyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a halogen atom, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having a C1-C3 alkyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a C1-C3 haloalkyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;
R10 represents a methyl group, and X represents an oxygen atom;

a compound wherein R1 represents an aryl group having a C\textsubscript{1}-C\textsubscript{3} alkyl group, R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents an C\textsubscript{2}-C\textsubscript{3} alkenyl group, R7 represents a hydrogen atom, R8 represents a hydrogen atom, R9 represents a hydrogen atom, R10 represents a methyl group, and X represents an oxygen atom;

[a0079]

a compound wherein R1 represents an aryl group having a C\textsubscript{1}-C\textsubscript{3} alkyl group, R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents an C\textsubscript{1}-C\textsubscript{3} alkoxy group, R7 represents a hydrogen atom, R8 represents a hydrogen atom, R9 represents a hydrogen atom, R10 represents a methyl group, and X represents an oxygen atom;

a compound wherein R1 represents an aryl group having a C\textsubscript{1}-C\textsubscript{3} alkyl group, R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents a methyl group, R7 represents a hydrogen atom, R8 represents a hydrogen atom, R9 represents a hydrogen atom, R10 represents a methyl group, and X represents an oxygen atom;

[a0079]

a compound wherein R1 represents an aryl group having a C\textsubscript{1}-C\textsubscript{3} alkyl group, R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents a methyl group, R7 represents a hydrogen atom, R8 represents a hydrogen atom, R9 represents a hydrogen atom, R10 represents a methyl group, and X represents an oxygen atom;
a C1-C3 alkyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents an ethyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents an aryl group having a C1-C3 alkyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents an n-propyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents an aryl group having a C1-C3 alkyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a cyclopropyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents an aryl group having a C1-C3 alkyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a cyclopropyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents an aryl group having a C1-C3 alkyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a cyclopropyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a trifluoromethyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;
represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a difluoromethyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a 2-propenyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a chlorine atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
a compound wherein \(R^3 \) represents an aryl group having a C1-C3 alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a bromine atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an iodine atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a fluorine atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 alkyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a vinyl group,
R7 represents a hydrogen atom, R8 represents a hydrogen atom, R9 represents a hydrogen atom, R10 represents a methyl group, and X represents an oxygen atom;

a compound wherein R1 represents an aryl group having a C\textsubscript{1}-C\textsubscript{3} alkyl group, R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents a methoxy group, R7 represents a hydrogen atom, R8 represents a hydrogen atom, R9 represents a hydrogen atom, R10 represents a methyl group, and X represents an oxygen atom;

[0080]

a compound wherein R1 represents an aryl group having a C\textsubscript{1}-C\textsubscript{3} alkoxy group, R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents an C\textsubscript{1}-C\textsubscript{3} alkyl group, R7 represents a hydrogen atom, R8 represents a hydrogen atom, R9 represents a hydrogen atom, R10 represents a methyl group, and X represents an oxygen atom;

a compound wherein R1 represents an aryl group having a C\textsubscript{1}-C\textsubscript{3} alkoxy group, R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents a C\textsubscript{3}-C\textsubscript{4} cycloalkyl group, R7 represents a hydrogen atom, R8 represents a hydrogen atom, R9 represents a hydrogen atom, R10 represents a methyl group, and X represents an oxygen atom,
atom;

5 a compound wherein R¹ represents an aryl group having

a C1-C3 alkoxy group, R² represents a hydrogen atom, R³

represents a hydrogen atom, R⁴ represents a hydrogen atom,

R⁵ represents a hydrogen atom, R⁶ represents a halogen atom,

R⁷ represents a hydrogen atom, R⁸ represents a hydrogen

atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl

group, and X represents an oxygen atom;

10 a compound wherein R¹ represents an aryl group having

a C1-C3 alkoxy group, R² represents a hydrogen atom, R³

represents a hydrogen atom, R⁴ represents a hydrogen atom,

R⁵ represents a hydrogen atom, R⁶ represents a C1-C3

haloalkyl group, R⁷ represents a hydrogen atom, R⁸

represents a hydrogen atom, R⁹ represents a hydrogen atom,

15 R¹⁰ represents a methyl group, and X represents an oxygen

atom;

20 a compound wherein R¹ represents an aryl group having

a C1-C3 alkoxy group, R² represents a hydrogen atom, R³

represents a hydrogen atom, R⁴ represents a hydrogen atom,

R⁵ represents a hydrogen atom, R⁶ represents an C2-C3

alkenyl group, R⁷ represents a hydrogen atom, R⁸ represents

a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰

represents a methyl group, and X represents an oxygen atom;

25 a compound wherein R¹ represents an aryl group having

a C1-C3 alkoxy group, R² represents a hydrogen atom, R³
represents a hydrogen atom, \(R^4 \) represents a hydrogen atom,
\(R^5 \) represents a hydrogen atom, \(R^6 \) represents an C1-C3 alkoxy group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

[0081]

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom,
\(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom,
\(R^5 \) represents a hydrogen atom, \(R^6 \) represents an ethyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom,
\(R^5 \) represents a hydrogen atom, \(R^6 \) represents a n-propyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a
hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a cyclopropyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a trifluoromethyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 alkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a difluoromethyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
a compound wherein R^1 represents an aryl group having a C1-C3 alkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a 2-propenyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having a C1-C3 alkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a chlorine atom, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having a C1-C3 alkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a bromine atom, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having a C1-C3 alkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an iodine atom,
R\(^7\) represents a hydrogen atom, R\(^8\) represents a hydrogen atom, R\(^9\) represents a hydrogen atom, R\(^{10}\) represents a methyl group, and X represents an oxygen atom.

a compound wherein R\(^1\) represents an aryl group having a C\(1-3\) alkoxy group, R\(^2\) represents a hydrogen atom, R\(^3\) represents a hydrogen atom, R\(^4\) represents a hydrogen atom, R\(^5\) represents a hydrogen atom, R\(^6\) represents a fluorine atom, R\(^7\) represents a hydrogen atom, R\(^8\) represents a hydrogen atom, R\(^9\) represents a hydrogen atom, R\(^{10}\) represents a methyl group, and X represents an oxygen atom;

a compound wherein R\(^1\) represents an aryl group having a C\(1-3\) alkoxy group, R\(^2\) represents a hydrogen atom, R\(^3\) represents a hydrogen atom, R\(^4\) represents a hydrogen atom, R\(^5\) represents a hydrogen atom, R\(^6\) represents a vinyl group, R\(^7\) represents a hydrogen atom, R\(^8\) represents a hydrogen atom, R\(^9\) represents a hydrogen atom, R\(^{10}\) represents a methyl group, and X represents an oxygen atom;

a compound wherein R\(^1\) represents an aryl group having a C\(1-3\) alkoxy group, R\(^2\) represents a hydrogen atom, R\(^3\) represents a hydrogen atom, R\(^4\) represents a hydrogen atom, R\(^5\) represents a hydrogen atom, R\(^6\) represents a methoxy group, R\(^7\) represents a hydrogen atom, R\(^8\) represents a hydrogen atom, R\(^9\) represents a hydrogen atom, R\(^{10}\) represents a methyl group, and X represents an oxygen atom;
a compound wherein \(R^1 \) represents an aryl group having a C1-C3 haloalkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an C1-C3 alkyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 haloalkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a C3-C4 cycloalkyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 haloalkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a halogen atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 haloalkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a halogen atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
R^5 represents a hydrogen atom, R^6 represents a C1-C3 haloalkyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having a C1-C3 haloalkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an C2-C3 alkenyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

[0083]
a compound wherein R^1 represents an aryl group having a C1-C3 haloalkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an C1-C3 alkoxy group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

[0083]
atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having a C1-C3 haloalkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an ethyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having a C1-C3 haloalkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a n-propyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having a C1-C3 haloalkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a cyclopropyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having a C1-C3 haloalkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a methyl group, and X represents an oxygen atom.
represents a hydrogen atom, \(R^4 \) represents a hydrogen atom,
\(R^5 \) represents a hydrogen atom, \(R^6 \) represents a trifluoromethyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom,
\(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 haloalkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom,
\(R^5 \) represents a hydrogen atom, \(R^6 \) represents a difluoromethyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom,
\(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 haloalkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom,
\(R^5 \) represents a hydrogen atom, \(R^6 \) represents a 2-propenyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom,
\(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents an aryl group having a C1-C3 haloalkoxy group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom,
\(R^5 \) represents a hydrogen atom, \(R^6 \) represents a chlorine
atom, \(R_7 \) represents a hydrogen atom, \(R_8 \) represents a hydrogen atom, \(R_9 \) represents a hydrogen atom, \(R_{10} \) represents a methyl group, and \(X \) represents an oxygen atom.

A compound wherein \(R^1 \) represents an aryl group having
\[\text{a C1-C3 haloalkoxy group, } R^2 \text{ represents a hydrogen atom, } R^3 \text{ represents a hydrogen atom, } R^4 \text{ represents a hydrogen atom, } R^5 \text{ represents a hydrogen atom, } R^6 \text{ represents a bromine atom, } \]
\[R^7 \text{ represents a hydrogen atom, } R^8 \text{ represents a hydrogen atom, } R^9 \text{ represents a hydrogen atom, } R_{10} \text{ represents a methyl group, and } X \text{ represents an oxygen atom; } \]

A compound wherein \(R^1 \) represents an aryl group having
\[\text{a C1-C3 haloalkoxy group, } R^2 \text{ represents a hydrogen atom, } R^3 \text{ represents a hydrogen atom, } R^4 \text{ represents a hydrogen atom, } R^5 \text{ represents a hydrogen atom, } R^6 \text{ represents an iodine atom, } \]
\[R^7 \text{ represents a hydrogen atom, } R^8 \text{ represents a hydrogen atom, } R^9 \text{ represents a hydrogen atom, } R_{10} \text{ represents a methyl group, and } X \text{ represents an oxygen atom; } \]

A compound wherein \(R^1 \) represents an aryl group having
\[\text{a C1-C3 haloalkoxy group, } R^2 \text{ represents a hydrogen atom, } R^3 \text{ represents a hydrogen atom, } R^4 \text{ represents a hydrogen atom, } R^5 \text{ represents a hydrogen atom, } R^6 \text{ represents a fluorine atom, } \]
\[R^7 \text{ represents a hydrogen atom, } R^8 \text{ represents a hydrogen atom, } R^9 \text{ represents a hydrogen atom, } R_{10} \text{ represents a methyl group, and } X \text{ represents an oxygen atom; } \]

A compound wherein \(R^1 \) represents an aryl group having
a C1-C3 haloalkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a vinyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents an aryl group having a C1-C3 haloalkoxy group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a methoxy group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

[0084]
a compound wherein R^1 represents a 4-chlorophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a methyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-chlorophenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an ethyl group, R^7
represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-chlorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a n-propyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-chlorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a cyclopropyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-chlorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a trifluoromethyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-chlorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a hydrogen atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
group, \(R_2 \) represents a hydrogen atom, \(R_3 \) represents a hydrogen atom, \(R_4 \) represents a hydrogen atom, \(R_5 \) represents a hydrogen atom, \(R_6 \) represents a difluoromethyl group, \(R_7 \) represents a hydrogen atom, \(R_8 \) represents a hydrogen atom, \(R_9 \) represents a hydrogen atom, \(R_{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R_1 \) represents a 4-chlorophenyl group, \(R_2 \) represents a hydrogen atom, \(R_3 \) represents a hydrogen atom, \(R_4 \) represents a hydrogen atom, \(R_5 \) represents a hydrogen atom, \(R_6 \) represents a 2-propenyl group, \(R_7 \) represents a hydrogen atom, \(R_8 \) represents a hydrogen atom, \(R_9 \) represents a hydrogen atom, \(R_{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R_1 \) represents a 4-chlorophenyl group, \(R_2 \) represents a hydrogen atom, \(R_3 \) represents a hydrogen atom, \(R_4 \) represents a hydrogen atom, \(R_5 \) represents a hydrogen atom, \(R_6 \) represents a chlorine atom, \(R_7 \) represents a hydrogen atom, \(R_8 \) represents a hydrogen atom, \(R_9 \) represents a hydrogen atom, \(R_{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R_1 \) represents a 4-chlorophenyl group, \(R_2 \) represents a hydrogen atom, \(R_3 \) represents a hydrogen atom, \(R_4 \) represents a hydrogen atom, \(R_5 \) represents a hydrogen atom, \(R_6 \) represents a bromine atom, \(R_7 \) represents a hydrogen atom, \(R_8 \) represents a hydrogen atom, \(R_{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
R¹ represents a hydrogen atom, R² represents a methyl group,
and X represents an oxygen atom;
a compound wherein R¹ represents a 4-chlorophenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents an iodine atom, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹₀ represents a methyl group, and X represents an oxygen atom;
a compound wherein R¹ represents a 4-chlorophenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a fluorine atom, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹₀ represents a methyl group, and X represents an oxygen atom;
a compound wherein R¹ represents a 4-chlorophenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a vinyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹₀ represents a methyl group, and X represents an oxygen atom;
a compound wherein R¹ represents a 4-chlorophenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a fluorine atom, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹₀ represents a methyl group, and X represents an oxygen atom;
hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methoxy group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

[0085] a compound wherein \(R^1 \) represents a 4-fluorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-fluorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an ethyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-fluorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a n-propyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, and \(X \) represents a hydrogen atom,
R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

5 a compound wherein R¹ represents a 4-fluorophenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a cyclopropyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

10 a compound wherein R¹ represents a 4-fluorophenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a trifluoromethyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

15 a compound wherein R¹ represents a 4-fluorophenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a difluoromethyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

20 a compound wherein R¹ represents a 4-fluorophenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a trifluoromethyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

25 a compound wherein R¹ represents a 4-fluorophenyl group, R² represents a hydrogen atom, R³ represents a
hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a hydrogen atom, \(R^6\) represents a 2-propenyl group, \(R^7\) represents a hydrogen atom, \(R^8\) represents a hydrogen atom, \(R^9\) represents a hydrogen atom, \(R^{10}\) represents a methyl group, and \(X\) represents an oxygen atom;

- a compound wherein \(R^1\) represents a 4-fluorophenyl group, \(R^2\) represents a hydrogen atom, \(R^3\) represents a hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a hydrogen atom, \(R^6\) represents a chlorine atom, \(R^7\) represents a hydrogen atom, \(R^8\) represents a hydrogen atom, \(R^9\) represents a hydrogen atom, \(R^{10}\) represents a methyl group, and \(X\) represents an oxygen atom;

- a compound wherein \(R^1\) represents a 4-fluorophenyl group, \(R^2\) represents a hydrogen atom, \(R^3\) represents a hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a hydrogen atom, \(R^6\) represents a bromine atom, \(R^7\) represents a hydrogen atom, \(R^8\) represents a hydrogen atom, \(R^9\) represents a hydrogen atom, \(R^{10}\) represents a methyl group, and \(X\) represents an oxygen atom;

- a compound wherein \(R^1\) represents a 4-fluorophenyl group, \(R^2\) represents a hydrogen atom, \(R^3\) represents a hydrogen atom, \(R^4\) represents a hydrogen atom, \(R^5\) represents a hydrogen atom, \(R^6\) represents an iodine atom, \(R^7\) represents a hydrogen atom, \(R^8\) represents a hydrogen atom, \(R^9\) represents a hydrogen atom, \(R^{10}\) represents a methyl group,
and X represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-fluorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a fluorine atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and X represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-fluorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a vinyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and X represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-fluorophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methoxy group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and X represents an oxygen atom;

[0086]

a compound wherein \(R^1 \) represents a 4-bromophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen
atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a methyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom.

A compound wherein \(R^1 \) represents a 4-bromophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an ethyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

A compound wherein \(R^1 \) represents a 4-bromophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an n-propyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

A compound wherein \(R^1 \) represents a 4-bromophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a cyclopropyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group,
and X represents an oxygen atom;
a compound wherein R1 represents a 4-bromophenyl group, R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents a trifluoromethyl group, R7 represents a hydrogen atom, R8 represents a hydrogen atom, R9 represents a hydrogen atom, R10 represents a methyl group, and X represents an oxygen atom;
a compound wherein R1 represents a 4-bromophenyl group, R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents a difluoromethyl group, R7 represents a hydrogen atom, R8 represents a hydrogen atom, R9 represents a hydrogen atom, R10 represents a methyl group, and X represents an oxygen atom;
a compound wherein R1 represents a 4-bromophenyl group, R2 represents a hydrogen atom, R3 represents a hydrogen atom, R4 represents a hydrogen atom, R5 represents a hydrogen atom, R6 represents a 2-propenyl group, R7 represents a hydrogen atom, R8 represents a hydrogen atom, R9 represents a hydrogen atom, R10 represents a methyl group, and X represents an oxygen atom;
hydrogen atom, \(R^6 \) represents a chlorine atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-bromophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a bromine atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-bromophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents an iodine atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-bromophenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a fluorine atom, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
a compound wherein R₁ represents a 4-bromophenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a vinyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R₁₀ represents a methyl group, and X represents an oxygen atom;

a compound wherein R₁ represents a 4-bromophenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a methoxy group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R₁₀ represents a methyl group, and X represents an oxygen atom;

[0087]

a compound wherein R₁ represents a 4-methoxyphenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a methoxy group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R₁₀ represents a methyl group, and X represents an oxygen atom;

a compound wherein R₁ represents a 4-methoxyphenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a methoxy group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R₁₀ represents a methyl group, and X represents an oxygen atom;
a hydrogen atom, \(R_6 \) represents an ethyl group, \(R_7 \) represents a hydrogen atom, \(R_8 \) represents a hydrogen atom, \(R_9 \) represents a hydrogen atom, \(R_{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R_1 \) represents a 4-methoxyphenyl group, \(R_2 \) represents a hydrogen atom, \(R_3 \) represents a hydrogen atom, \(R_4 \) represents a hydrogen atom, \(R_5 \) represents a hydrogen atom, \(R_6 \) represents a n-propyl group, \(R_7 \) represents a hydrogen atom, \(R_8 \) represents a hydrogen atom, \(R_9 \) represents a hydrogen atom, \(R_{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R_1 \) represents a 4-methoxyphenyl group, \(R_2 \) represents a hydrogen atom, \(R_3 \) represents a hydrogen atom, \(R_4 \) represents a hydrogen atom, \(R_5 \) represents a hydrogen atom, \(R_6 \) represents a cyclopropyl group, \(R_7 \) represents a hydrogen atom, \(R_8 \) represents a hydrogen atom, \(R_9 \) represents a hydrogen atom, \(R_{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R_1 \) represents a 4-methoxyphenyl group, \(R_2 \) represents a hydrogen atom, \(R_3 \) represents a hydrogen atom, \(R_4 \) represents a hydrogen atom, \(R_5 \) represents a hydrogen atom, \(R_6 \) represents a trifluoromethyl group, \(R_7 \) represents a hydrogen atom, \(R_8 \) represents a hydrogen atom, \(R_9 \) represents a hydrogen atom, \(R_{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
a compound wherein R¹ represents a 4-methoxyphenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a difluoromethyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;
a compound wherein R¹ represents a 4-methoxyphenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a 2-propenyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;
a compound wherein R¹ represents a 4-methoxyphenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a chlorine atom, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;
a compound wherein R¹ represents a 4-methoxyphenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a bromine atom, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;
represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-methoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an iodine atom, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-methoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a fluorine atom, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-methoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a vinyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-methoxyphenyl
group, \(\text{R}^2 \) represents a hydrogen atom, \(\text{R}^3 \) represents a hydrogen atom, \(\text{R}^4 \) represents a hydrogen atom, \(\text{R}^5 \) represents a hydrogen atom, \(\text{R}^6 \) represents a methoxy group, \(\text{R}^7 \) represents a hydrogen atom, \(\text{R}^8 \) represents a hydrogen atom, \(\text{R}^9 \) represents a hydrogen atom, \(\text{R}^{10} \) represents a methyl group, and \(\text{X} \) represents an oxygen atom;

[0088]

a compound wherein \(\text{R}^1 \) represents a 4-methylphenyl group, \(\text{R}^2 \) represents a hydrogen atom, \(\text{R}^3 \) represents a hydrogen atom, \(\text{R}^4 \) represents a hydrogen atom, \(\text{R}^5 \) represents a hydrogen atom, \(\text{R}^6 \) represents a methyl group, \(\text{R}^7 \) represents a hydrogen atom, \(\text{R}^8 \) represents a hydrogen atom, \(\text{R}^9 \) represents a hydrogen atom, \(\text{R}^{10} \) represents a methyl group, and \(\text{X} \) represents an oxygen atom;

10

a compound wherein \(\text{R}^1 \) represents a 4-methylphenyl group, \(\text{R}^2 \) represents a hydrogen atom, \(\text{R}^3 \) represents a hydrogen atom, \(\text{R}^4 \) represents a hydrogen atom, \(\text{R}^5 \) represents a hydrogen atom, \(\text{R}^6 \) represents an ethyl group, \(\text{R}^7 \) represents a hydrogen atom, \(\text{R}^8 \) represents a hydrogen atom, \(\text{R}^9 \) represents a hydrogen atom, \(\text{R}^{10} \) represents a methyl group, and \(\text{X} \) represents an oxygen atom;

15

a compound wherein \(\text{R}^1 \) represents a 4-methylphenyl group, \(\text{R}^2 \) represents a hydrogen atom, \(\text{R}^3 \) represents a hydrogen atom, \(\text{R}^4 \) represents a hydrogen atom, \(\text{R}^5 \) represents a hydrogen atom, \(\text{R}^6 \) represents a n-propyl group, \(\text{R}^7 \) represents a hydrogen atom, \(\text{R}^{10} \) represents a methyl group, and \(\text{X} \) represents an oxygen atom;
represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a cyclopropyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a trifluoromethyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a difluoromethyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;

a compound wherein \(R^1 \) represents a 4-methylphenyl group, \(R^2 \) represents a hydrogen atom, \(R^3 \) represents a hydrogen atom, \(R^4 \) represents a hydrogen atom, \(R^5 \) represents a hydrogen atom, \(R^6 \) represents a difluoromethyl group, \(R^7 \) represents a hydrogen atom, \(R^8 \) represents a hydrogen atom, \(R^9 \) represents a hydrogen atom, \(R^{10} \) represents a methyl group, and \(X \) represents an oxygen atom;
group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a 2-propenyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-methylphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a chlorine atom, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-methylphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a bromine atom, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-methylphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a bromine atom, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-methylphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a bromine atom, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom.

a compound wherein R^1 represents a 4-methylphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an iodine atom, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom,
R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents a 4-methylphenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a fluorine atom, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents a 4-methylphenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a vinyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

a compound wherein R¹ represents a 4-methylphenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a methoxy group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;

[0089]

a compound wherein R¹ represents a 4-
trifluoromethoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a methyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-trifluoromethoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an ethyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-trifluoromethoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents an n-propyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-trifluoromethoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a cyclopropyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;
represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom;

a compound wherein R^1 represents a 4-trifluoromethoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a trifluoromethyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom.

- a compound wherein R^1 represents a 4-trifluoromethoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a difluoromethyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom.

- a compound wherein R^1 represents a 4-trifluoromethoxyphenyl group, R^2 represents a hydrogen atom, R^3 represents a hydrogen atom, R^4 represents a hydrogen atom, R^5 represents a hydrogen atom, R^6 represents a 2-propenyl group, R^7 represents a hydrogen atom, R^8 represents a hydrogen atom, R^9 represents a hydrogen atom, R^{10} represents a methyl group, and X represents an oxygen atom.
R\(^1\) represents a methyl group, and X represents an oxygen atom;

a compound wherein R\(^1\) represents a 4-trifluoromethoxyphenyl group, R\(^2\) represents a hydrogen atom, R\(^3\) represents a hydrogen atom, R\(^4\) represents a hydrogen atom, R\(^5\) represents a hydrogen atom, R\(^6\) represents a chlorine atom, R\(^7\) represents a hydrogen atom, R\(^8\) represents a hydrogen atom, R\(^9\) represents a hydrogen atom, R\(^{10}\) represents a methyl group, and X represents an oxygen atom;

a compound wherein R\(^1\) represents a 4-trifluoromethoxyphenyl group, R\(^2\) represents a hydrogen atom, R\(^3\) represents a hydrogen atom, R\(^4\) represents a hydrogen atom, R\(^5\) represents a hydrogen atom, R\(^6\) represents a bromine atom, R\(^7\) represents a hydrogen atom, R\(^8\) represents a hydrogen atom, R\(^9\) represents a hydrogen atom, R\(^{10}\) represents a methyl group, and X represents an oxygen atom;

a compound wherein R\(^1\) represents a 4-trifluoromethoxyphenyl group, R\(^2\) represents a hydrogen atom, R\(^3\) represents a hydrogen atom, R\(^4\) represents a hydrogen atom, R\(^5\) represents a hydrogen atom, R\(^6\) represents a chlorine atom, R\(^7\) represents a hydrogen atom, R\(^8\) represents a hydrogen atom, R\(^9\) represents a hydrogen atom, R\(^{10}\) represents a methyl group, and X represents an oxygen atom;

a compound wherein R\(^3\) represents a 4-trifluoromethoxyphenyl group, R\(^2\) represents a hydrogen atom,
R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a fluorine atom, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;
a compound wherein R¹ represents a 4-trifluoromethoxyphenyl group, R² represents a hydrogen atom, R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a vinyl group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom;
a compound wherein R³ represents a hydrogen atom, R⁴ represents a hydrogen atom, R⁵ represents a hydrogen atom, R⁶ represents a methoxy group, R⁷ represents a hydrogen atom, R⁸ represents a hydrogen atom, R⁹ represents a hydrogen atom, R¹⁰ represents a methyl group, and X represents an oxygen atom.

[0090]
a tetrazolinone compound wherein
R¹ represents an C1-C4 alkyl group or a hydrogen atom
(with the proviso that when the C1-C4 alkyl group has two or more atoms or groups selected from a group P, the substituents consisting of the atoms or the groups may be
same or different to each other);
R² and R³ represent independently of each other a hydrogen atom, an C₁-C₃ alkyl group, a C₁-C₃ haloalkyl group, an C₂-C₁₂ alkoxy carbonyl group, a hydroxycarbonyl group or a halogen atom;
R⁴ and R⁵ represent independently of each other a hydrogen atom, a halogen atom or an C₁-C₃ alkyl group;
R⁶ represents an aminocarbonyl group optionally having C₁-C₆ alkyl group, a halogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, an C₂-C₆ alkenyl group, C₂-C₆ haloalkenyl group, an C₂-C₆ alkynyl group, a C₂-C₆ haloalkynyl group, a C₃-C₆ cycloalkyl group, a C₃-C₆ halocycloalkyl group, an C₁-C₆ alkoxy group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group, a C₁-C₆ haloalkylthio group, a C₃-C₆ cycloalkyloxy group, a C₃-C₆ cycloalkylthio group, an C₃-C₆ alkenyloxy group, an C₃-C₆ alknyloxy group, a C₃-C₆ haloalkenyloxy group, a C₃-C₆ haloalknyloxy group, a C₃-C₆ alkenylthio group, an C₃-C₆ alknylthio group, a C₃-C₆ haloalkenythio group, a C₃-C₆ haloalknylthio group, an C₂-C₆ acyl group, a C₂-C₆ haloacyl group, an C₂-C₆ acyloxy group, an C₂-C₆ acylthio group, an C₂-C₆ alkoxy carbonyl group, a nitro group, a cyano group, a hydroxyl group, a thiol group, an amino group, an C₁-C₆ alkylamino group, a pentfluorosulfuranyl group, a C₃-C₉ trialkylsilyl group, a
C5-C14 trialkysilylethynyl group, an C1-C4 alkylsulf onyl group, C1-C4 haloalkylsulf onyl group, C1-C4 alkylsulf inyl group, a C1-C4 haloalkylsulf inyl group, an C2-C5 alkoxyalkyl group or an C2-C5 alkylthioalkyl group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R¹⁰ represents an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkoxyalkyl group, a C3-C6 cycloalkyl group or a C3-C6 halocycloalkyl group; and

X represents an oxygen atom or a sulfur atom.

[0091] a tetrazolinone compound wherein

R¹ represents an C1-C4 alkyl group or a hydrogen atom (with the proviso that when the C1-C4 alkyl group has two or more atoms or groups selected from a group P, the substituents consisting of the atoms or the groups may be same or different to each other);

R², R³, R⁴ and R⁵ represent a hydrogen atom;

R⁶ represents an aminocarbonyl group optionally having C1-C6 alkyl group, a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, C2-C6
haloalkenyl group, an C2-C6 alkynyl group, a C2-C6 halalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkoxy group, a CI-C6 haloalkoxy group, an C1-C6 alkylthio group, a CI-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group,, a C3-C6 cycloalkylthio group, an C3-C6 alkenyloxy group, an C3-C6 alkynyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynyloxy group, a C3-C6 alkenylthio group, an C3-C6 alkynylthio group, an C3-C6 haloalkenylthio group, a C3-C6 haloalkynylthio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, an C2-C6 alkoxy carbonyl group, a nitro group, a cyano group, a hydroxyl group, a thiol group, an amino group, an C1-C6 alkylamino group, a pentaf luorosulfuranyl group, a C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C4 alkylsulf onyl group, C1-C4 haloalkylsulf onyl group, C1-C4 alkylsulf inyl group, a C1-C4 haloalkylsulf inyl group, an C2-C5 alkoxyalkyl group or an C2-C5 alkylthioalkyl group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R₁⁰ represents a methyl group; and
X represents an oxygen atom.

[0092]
a tetrazolinone compound wherein

R represents a n C1-C4 alkyl group (with the proviso that when the C1-C4 alkyl group has two or more atoms or groups selected from a group P, the substituents consisting of the atoms or the groups may be same or different to each other);

R², R³, R⁴ and R⁵ represent a hydrogen atom;

R⁶ represents an aminocarbonyl group optionally having C1-C6 alkyl group, a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 cycloalkylthio group, an C3-C6 alkenyloxy group, an C3-C6 alkynyloxy group, an C3-C6 haloalkenyloxy group, a C3-C6 haloalkynylthio group, a C3-C6 acyl group, a C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, an C2-C6 alkoxy group, a nitro group, a cyano group, a hydroxyl group, a
thiol group, an amino group, an C1-C6 alkylamino group, a pentaf luorosulfuranyl group, a C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C4 alkylsulf onyl group, C1-C4 haloalkylsulf onyl group, C1-C4 alkylsulf inyl group, a C1-C4 haloalkylsulf inyl group, an C2-C5 alkoxyalkyl group or an C2-C5 alkylthioalkyl group;

R7, R8 and R9 represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R10 represents a methyl group; and

X represents an oxygen atom.

[0093]
a tetrazolinone compound wherein

R1 represents an C1-C4 alkyl group (with the proviso that when the C1-C4 alkyl group has two or more atoms or groups selected from a group P, the substituents consisting of the atoms or the groups may be same or different to each other);

R2, R3, R4 and R5 represent a hydrogen atom;

R6 represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R7, R8 and R9 represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-
C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R1 represents a methyl group; and

X represents an oxygen atom.

[0094]
a tetrazolinone compound wherein

R1 represents an C1-C4 alkyl group (with the proviso that when the C1-C4 alkyl group has two or more atoms or groups selected from a group P., the substituents consisting of the atoms or the groups may be same or different to each other);

R2, R3, R4 and R5 represent a hydrogen atom;

R6 represents an aminocarbonyl group optionally having

C1-C6 alkyl group, an C2-C6 alkyl group, an C1-C6 haloalkyl group excluding trifluoromethyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C2-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkythio group, a C3-C6 cycloalkylthio group, a C3-C6 halocycloalkylthio group, an C3-C6 alkenyloxy group, an C3-C6 alkynylthio group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynylthio group, a C3-C6 alkenylthio group, an C3-C6 alkynylthio group, a C3-C6
haloalkenylthio group, a C3-C6 haloalkynylthio group, an
C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy
group, an C2-C6 acylthio group, an C2-C6 alkoxy carbonyl
group, a nitro group, a cyano group, a hydroxyl group, a
thiol group, an amino group, an C1-C6 alkylamino group, a
pentafluorosulfuranyl group, a C3-C9 trialkylsilyl group, a
C5-C14 trialkylsilylethynyl group, an C1-C4 alkylsulf onyl
group, a C1-C4 haloalkylsulf onyl group, an C1-C4 alkylsulf inyl group, a C1-C4 haloalkylsulf inyl group, an
C2-C5 alkoxyalkyl group or an C2-C5 alkylthioalkyl group;

R^7, R^8 and R^9 represent independently of each other a
hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-
C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5
halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4
haloalkoxy group;

R^{10} represents a methyl group; and

X represents an oxygen atom.

[0095]
a tetrazolinone compound wherein

R^1 represents a hydrogen atom;

R^2, R^3, R^4 and R^5 represent a hydrogen atom;

R^6 represents an aminocarbonyl group optionally having
C1-C6 alkyl group, a halogen atom, an C1-C6 alkyl group, a
C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6
haloalkenyl group, an C2-C6 alkynyl group, a C2-C6
haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkoxy group, a CI-C6 haloalkoxy group, an C1-C6 alkylthio group, a CI-C6 haloalkythio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 cycloalkylthio group, a CI-C6 haloalkylthio group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynyloxy group, an C3-C6 alkenylthio group, a CI-C6 haloalkenylthio group, an C3-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, an C2-C6 alkoxy carbonyl group, a nitro group, a cyano group, a hydroxyl group, a thiol group, an amino group, an C1-C6 alkylamino group, a pentfluorosulfuranyl group, a C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C4 alkyl sulfonyl group, a C1-C4 haloalkyl sulfonyl group, an C1-C4 alkylsulf inyl group, a C1-C4 haloalkyl sulf inyl group, an C2-C5 alkoxyalkyl group or an C2-C5 alkylthioalkyl group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R¹⁰ represents a methyl group; and

X represents an oxygen atom.
a tetrazolinone compound wherein

R¹ represents a hydrogen atom;
R², R³, R⁴ and R⁵ represent a hydrogen atom;
R⁶ represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;
R¹⁰ represents a methyl group; and
X represents an oxygen atom.

[0097]
a tetrazolinone compound wherein

R¹ represents a hydrogen atom;
R², R³, R⁴ and R⁵ represent a hydrogen atom;
R⁶ represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom or a fluorine atom;
R¹⁰ represents a methyl group; and
X represents an oxygen atom.

[0098]
a tetrazolinone compound wherein
R\(^1\) represents a hydrogen atom;
R\(^2\), R\(^3\), R\(^4\) and R\(^5\) represent a hydrogen atom;
R\(^6\) represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R\(^7\), R\(^8\) and R\(^9\) represent independently of each other a hydrogen atom or a fluorine atom;
R\(^{10}\) represents a methyl group; and
X represents an oxygen atom.

[0099]
a tetrazolinone compound wherein
R\(^1\) represents a hydrogen atom;
R\(^2\), R\(^3\), R\(^4\) and R\(^5\) represent a hydrogen atom;
R\(^6\) represents an aminocarbonyl group optionally having C1-C6 alkyl group, an C2-C6 alkyl group, an C1-C6 haloalkyl group excluding trifluoromethyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C2-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C3-C6 alkylthio group, a C3-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 cycloalkylthio group, an C3-C6 alkenyloxy group, an C3-C6 alknyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynyl group, an C3-C6 cycloalkynyl group, a C3-C6 haloalkynyl group, an C3-C6 haloalkynylthio group, a C3-C6 haloalkynylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 cycloalkylthio group, an C3-C6 alkenyloxy group, an C3-C6 alknyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynyl group, an C3-C6 alkynylthio group, a C3-C6 haloalkynylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 cycloalkylthio group, an C3-C6 alkenyloxy group, an C3-C6 alknyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynyl group, an C3-C6 alkynylthio group, a C3-C6 haloalkynylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 cycloalkylthio group, an C3-C6 alkenyloxy group, an C3-C6 alknyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynyl group, an C3-C6 alkynylthio group, a C3-C6 haloalkynylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 cycloalkylthio group, an C3-C6 alkenyloxy group, an C3-C6 alknyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynyl group, an C3-C6 alkynylthio group, a C3-C6 haloalkynylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 cycloalkylthio group, an C3-C6 alkenyloxy group, an C3-C6 alknyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 Haloalkynylthio group, a C3-C6 haloalkynylthio group, an
C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, an C2-C6 alkoxy carbonyl group, a nitro group, a cyano group, a hydroxyl group, a thiol group, an amino group, an C1-C6 alkylamino group, a pentfluorosulfuranyl group, a C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C4 alkylsulf onyl group, a C1-C4 haloalkylsulf onyl group, an C1-C4 alkylsulf inyl group, a C1-C4 haloalkylsulf inyl group, an C2-C5 alkox yalkyl group or an C2-C5 alkylthioalkyl group;

R7, R8 and R9 represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R10 represents a methyl group; and

X represents an oxygen atom.

[0100]

a tetrazolinone compound wherein
R1 represents a hydrogen atom;

R2, R3, R4 and R5 represent a hydrogen atom;

R6 represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, a C2-C3 alkoxy group or C1-C3 haloalkoxy group;

R7, R8 and R9 represent independently of each other a
hydrogen atom or a fluorine atom;
R^{10} represents a methyl group; and
X represents an oxygen atom.

[0101]

a tetrazolinone compound wherein
R^{1} represents a hydrogen atom;
R^{2}, R^{3}, R^{4} and R^{5} represent a hydrogen atom;
R^{6} represents an ethyl group or a cyclopropyl group;
R^{7}, R^{8} and R^{9} represent independently of each other a hydrogen atom or a fluorine atom;
R^{10} represents a methyl group; and
X represents an oxygen atom.

[0102]

a tetrazolinone compound wherein
R^{1} represents an C6-C16 aryl group optionally having one or more atoms and groups selected from Group P, an C5-C12 alkyl group optionally having one or more atoms and groups selected from Group P, a C3-C12 cycloalkyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkenyl group optionally having one or more atoms and groups selected from Group P, a C3-C12 cycloalkenyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkynyl group optionally having one or more atoms and groups selected from Group P, or an C2-C12 acyl group optionally having one
or more atoms and groups selected from Group P (with the proviso that when the C6-C16 aryl group, the C5-C12 alkyl group, the C3-C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12 cycloalkeny1 group, the C2-C12 alkynyl group or the C2-C12 acyl group has two or more atoms and groups selected from Group P, the substituents consisting of the atoms and the groups may be same of different from each other);

R² and R³ represent independently of each other a hydrogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C12 alkoxy carbonyl group, a hydroxycarbonyl group or a halogen atom;

R⁴ and R⁵ represent independently of each other a hydrogen atom, a halogen atom or an C1-C3 alkyl group;

R⁶ represents an aminocarbonyl group optionally having C1-C6 alkyl group, a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkeny1 group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 cycloalkylthio group, a C3-C6 alkenyloxy group, an C3-C6 alknyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynlyloxy group, an C3-
C6 alkenylthio group, an C3-C6 alkynylthio group, C3-C6 haloalkenylthio group, C3-C6 haloalkynylthio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, an C2-C6 alkoxy carbonyl group, a nitro group, a cyano group, a hydroxyl group, a thiol group, an amino group, an C1-C6 alkylamino group, a pentafluorosulfuryl group, a C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C4 alkylsulfanyl group, a C1-C4 haloalkylsulfanyl group, an C1-C4 alkylsulfynyl group, a C1-C4 haloalkylsulfynyl group, a C2-C5 alkoxyalkyl group or an C2-C5 alkylthioalkyl group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R¹⁰ represents an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkoxyalkyl group, a C3-C6 cycloalkyl group or a C3-C6 halocycloalkyl group; and

X represents an oxygen atom or a sulfur atom.

[0103]
a tetrazolinone compound wherein

R¹ represents an C6-C16 aryl group optionally having one or more atoms and groups selected from Group P, a C3-
C12 cycloalkyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkenyl group optionally having one or more atoms and groups selected from Group P, a C3-C12 cycloalkenyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkynyl group optionally having one or more atoms and groups selected from Group P, or an C2-C12 acyl group optionally having one or more atoms and groups selected from Group P (with the proviso that when the C6-C16 aryl group, the C3-C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12 cycloalkenyl group, the C2-C12 alkynyl group or the C2-C12 acyl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);

R² and R³ represent independently of each other a hydrogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C12 alkoxy carbonyl group, a hydroxycarbonyl group or a halogen atom;

R⁴ and R⁵ represent independently of each other a hydrogen atom, a halogen atom or an C1-C3 alkyl group;

R⁶ represents an aminocarbonyl group optionally having C1-C6 alkyl group, a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a C2-C6
haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 alkenyloxy group, an C3-C6 alkyloxy group, a C3-C6 haloalkenylthio group, a C3-C6 haloalkynylthio group, a C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, an C2-C6 alkoxy group, a nitro group, a cyano group, a hydroxy group, a thiol group, an amino group, an C1-C6 alkylamino group, a pentfluorosulfuranyl group, a C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C4 alkylsulf onyl group, a C1-C4 haloalkylsulf onyl group, an C1-C4 alkylsulf inyl group, a C1-C4 haloalkylsulf inyl group, an C2-C5 alkoxyalkyl group or an C2-C5 alkylthioalkyl group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R¹⁰ represents an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group,
an C2-C6 alkoxyalkyl group, a C3-C6 cycloalkyl group or a C3-C6 halocycloalkyl group; and

X represents an oxygen atom or a sulfur atom.

[0104]

a tetrazolinone compound wherein

R¹ represents an C6-C16 aryl group optionally having one or more atoms and groups selected from Group P, a C3-C12 cycloalkyl group optionally having one or more atoms and groups selected from Group P, or a C3-C12 cycloalkenyl group optionally having one or more atoms and groups selected from Group P (with the proviso that when the C6-C16 aryl group, the C3-C12 cycloalkyl group or the C3-C12 cycloalkenyl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);

R² and R³ represent independently of each other a hydrogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C12 alkoxy carbonyl group, a hydroxycarbonyl group or a halogen atom;

R⁴ and R⁵ represent independently of each other a hydrogen atom, a halogen atom or an C1-C3 alkyl group;

R⁶ represents an aminocarbonyl group optionally having C1-C6 alkyl group, a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a C2-C6
haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, a C3-CS cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 cycloalkylthio group, a C3-C6 haloalkoxy group, a C3-C6 haloalkyloxy group, a C3-C6 alkenylthio group, a C3-C6 alkynylthio group, a C3-C6 haloalkenylthio group, a C3-C6 haloalkynylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, an C2-C6 alkoxy carbonyl group, a nitro group, a cyano group, a hydroxyl group, a thiol group, an amino group, an C1-C6 alkylamino group, a pentfluorosulfuranyl group, a C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C4 alkylsulf onyl group, a C1-C4 haloalkylsulf onyl group, an C1-C4 alkylsulf inyl group, a C1-C4 haloalkylsulf inyl group, an C2-C5 alkoxyalkyl group or an C2-C5 alkylthioalkyl group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R¹⁰ represents an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group,
an C2-C6 alkoxyalkyl group, a C3-C6 cycloalkyl group or a C3-C6 halocycloalkyl group; and

X represents an oxygen atom or a sulfur atom.

[0105] a tetrazolinone compound wherein

R1 represents an C6-C16 aryl group optionally having one or more atoms and groups selected from Group P, an C5-C12 alkyl group optionally having one or more atoms and groups selected from Group P, a C3-C12 cycloalkyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkenyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkynyl group optionally having one or more atoms and groups selected from Group P, or C2-C12 acyl group optionally having one or more atoms and groups selected from Group P (with the proviso that when the C6-C16 aryl group, the C5-C12 alkyl group, the C3-C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12 cycloalkenyl group, the C2-C12 alkynyl group or the C2-C12 acyl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);

R2, R3, R4 and R5 represent a hydrogen atom;
R6 represents an aminocarbonyl group optionally having
C1-C6 alkyl group, a halogen atom, an C1-C6 alkyl group, a
C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6
haloalkenyl group, an C2-C6 alkynyl group, a C2-C6
haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6
halocycloalkyl group, an C1-C6 alkoxy group, a C1-C6
haloalkoxy group, an C1-C6 alkylthio group, a C1-C6
haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6
halocycloalkyloxy group, a C3-C6 cycloalkylthio group, an
C3-C6 alkenyloxy group, an C3-C6 alknyloxy group, a C3-C6
haloalkenyloxy group, a C3-C6 haloalknyloxy group, an C3-
C6 alkenylthio group, an C3-C6 alkynylthio group, a C3-C6
haloalkenylthio group, a C3-C6 haloalkynylthio group, an
C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy
group, an C2-C6 acylthio group, an C2-C6 alkoxy carbonyl
group, a nitro group, a cyano group, a hydroxyl group, a
thiol group, an amino group, an C1-C6 alkylamino group, a
pentafluorosulfuranyl group, a C3-C9 trialkylsilyl group, a
C5-C14 trialkylsilylethynyl group, an C1-C4 alkylsulfonyl
group, a C1-C4 haloalkyl sulfonyl group, an C1-C4
alkylsulfanyl group, a C1-C4 haloalkylsulfanyl group, an
C2-C5 alkoxyalkyl group or an C2-C5 alkylthioalkyl group;

R7, R8 and R9 represent independently of each other a
hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-
C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5
halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group

R^{10} represents a methyl group; and

X represents an oxygen atom.

[0106]
a tetrazolinone compound wherein

R^1 represents an C6-C16 aryl group optionally having one or more atoms and groups selected from Group P, an C1-C12 alkyl group optionally having one or more atoms and groups selected from Group P, a C3-C12 cycloalkyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkenyl group optionally having one or more atoms and groups selected from Group P, a C3-C12 cycloalkenyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkynyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 acyl group optionally having one or more atoms and groups selected from Group P, or a hydrogen atom (with the proviso that when the C6-C16 aryl group, the C1-C12 alkyl group, the C3-C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12 cycloalkenyl group, the C2-C12 alkynyl group or the C2-C12 acyl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);
R² and R³ represent independently of each other a hydrogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C12 alkoxy carbonyl group, a hydroxycarbonyl group or a halogen atom;

R⁴ and R⁵ represent independently of each other a hydrogen atom, a halogen atom or an C1-C3 alkyl group;

R⁶ represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a nitro group or a cyano group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R¹⁰ represents an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkoxy alkyl group, a C3-C6 cycloalkyl group or a C3-C6 halocycloalkyl group;

X represents an oxygen atom or a sulfur atom.

[0107] a tetrazolinone compound wherein

R¹ represents a phenyl group optionally having one or more atoms and groups selected from Group P (with the proviso that when the phenyl group has two or more atoms or groups selected from Group P, the substituent consisting of
the atoms and the groups may be same or different to each other);

R\(^2\) and R\(^3\) represent independently of each other a hydrogen atom, an C1-C3 alkyl group or a halogen atom;

R\(^4\) and R\(^5\) represent a hydrogen atom;

R\(^6\) represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a nitro group or a cyano group;

R\(^7\), R\(^8\) and R\(^9\) represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R\(^{10}\) represents an C1-C4 alkyl group; and

X represents an oxygen atom.

[0108]

a tetrazolinone compound wherein

R\(^1\) represents an C10-C16 aryl group optionally having one or more atoms and groups selected from Group P, an C1-C12 alkyl group optionally having one or more atoms and groups selected from Group P, a C7-C12 cycloalkyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkenyl group optionally having one or more atoms and groups selected from Group P, a C3-C12 cycloalkenyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkynyl group
optionally having one or more atoms and groups selected from Group P, an C2-C12 acyl group optionally having one or more atoms and groups selected from Group P or a hydrogen atom (with the proviso that when the C10-C16 aryl group, the C7-C12 alkyl group, the C7-C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12 cycloalkenyl group, the C2-C12 alkynyl group or the C2-C12 acyl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);

R² and R³ represent independently of each other a hydrogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C12 alkoxy carbonyl group, a hydroxycarbonyl group or a halogen atom;

R⁴ and R⁵ represent independently of each other a hydrogen atom, a halogen atom or an C1-C3 alkyl group;

R⁶ represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a nitro group or a cyano group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R¹⁰ represents an C1-C6 alkyl group, a C1-C6 haloalkyl
group, an C2-C6 alkenyl group, a C2-C6 haloalkeny1 group, an C2-C6 alkoxyalkyl group, a C3-C6 cycloalkyl group or a C3-C6 haloctycoalkyl group; and

X represents an oxygen atom or a sulfur atom.

[0109]

a tetrazolinone compound wherein

R^1 represents an C6-C16 aryl group optionally having one or more atoms and groups selected from Group P, an C1-C12 alkyl group optionally having one or more atoms and groups selected from Group P, a C3-C12 cycloalkyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkenyl group optionally having one or more atoms and groups selected from Group P, a C3-C12 cycloalkenyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkynyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 acyl group optionally having one or more atoms and groups selected from Group P, or a hydrogen atom (with the proviso that when the C6-C16 aryl group, the C1-C12 alkyl group, the C3-C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12 cycloalkeny1 group, the C2-C12 alkynyl group or the C2-C12 acyl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);
R² and R³ represent independently of each other a hydrogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C12 alkoxy carbonyl group, a hydroxycarbonyl group or a halogen atom;

R⁴ and R⁵ represent independently of each other a hydrogen atom, a halogen atom or an C1-C3 alkyl group (with the proviso that any one or more of R⁴ and R⁵ represent a halogen atom or an C1-C3 alkyl group);

R⁶ represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a nitro group or a cyano group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R¹⁰ represents an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkoxyalkyl group, a C3-C6 cycloalkyl group or a C3-C6 halocycloalkyl group; and

X represents an oxygen atom or a sulfur atom.

[0110]

a tetrazolinone compound wherein

R¹ represents an C6-C16 aryl optionally having one or more atoms and groups selected from Group P, an C1-C2
alkyl group optionally having one or more atoms and groups selected from Group P, a C3-C12 cycloalkyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkenyl group optionally having one or more atoms and groups selected from Group P, a C3-C12 cycloalkenyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkynyl group optionally having one or more atoms and groups selected from Group P, a C2-C12 acyl group optionally having one or more atoms and groups selected from Group P, or a hydrogen atom (with the proviso that when the C6-C16 aryl group, the C1-C12 alkyl group, the C3-C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12 cycloalkenyl group, the C2-C12 alkynyl group or the C2-C12 acyl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);

R² and R³ represent independently of each other a hydrogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C12 alkoxy carbonyl group, a hydroxycarbonyl group or a halogen atom;

R⁴ and R⁵ represent independently of each other a hydrogen atom, a halogen atom or an C1-C3 alkyl group;

R⁶ represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6...
haloalkoxy group, a nitro group or a cyano group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C₁-C₄ alkyl group, a C₁-C₄ haloalkyl group, a C₃-C₅ cycloalkyl group, a C₃-C₅ halocycloalkyl group, an C₁-C₄ alkoxy group or a C₁-C₄ haloalkoxy group (with the proviso that any one or more of R⁷, R⁸ and R⁹ represent a C₃-C₅ cycloalkyl group or a C₃-C₅ halocycloalkyl group);

R¹⁰ represents an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, an C₂-C₆ alkenyl group, a C₂-C₆ haloalkenyl group, an C₂-C₆ alkoxyalkyl group, a C₃-C₆ cycloalkyl group or a C₃-C₆ halocycloalkyl group;

X represents an oxygen atom or a sulfur atom.

[0111]

a tetrazolinone compound wherein

R¹ represents an C₆-C₁₆ aryl group optionally having one or more atoms and groups selected from Group P, an C₁-C₁₂ alkyl group optionally having one or more atoms and groups selected from Group P, a C₃-C₁₂ cycloalkyl group optionally having one or more atoms and groups selected from Group P, an C₂-C₁₂ alkenyl group optionally having one or more atoms and groups selected from Group P, a C₃-C₁₂ cycloalkenyl group optionally having one or more atoms and groups selected from Group P, an C₂-C₁₂ alkynyl group optionally having one or more atoms and groups selected...
from Group P, an C2-C12 acyl group optionally having one or more atoms and groups selected from Group P, or a hydrogen atom (with the proviso that when the C6-C16 aryl group, the C1-C12 alkyl group, the C3-C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12 cycloalkenyl group, the C2-C12 alkynyl group or the C2-C12 acyl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);

R² and R³ represent independently of each other a hydrogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C12 alkoxy carbonyl group, a hydroxycarbonyl group or a halogen atom;

R⁴ and R⁵ represent independently of each other a hydrogen atom, a halogen atom or an C1-C3 alkyl group;

R⁶ represents a halogen atom, an C1-CS alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a nitro group or a cyano group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R¹⁰ represent independently of each other an C5-C6 alkyl group, a C1-C6 haloalkyl group, a C2-C6 alkenyl
group, a C2-C6 haloalkenyl group, an C2-C6 alkoxyalkyl
group, a C3-C6 cycloalkyl group or a C3-C6 halocycloalkyl
group; and

X represents an oxygen atom or a sulfur atom.

[0112]

a tetrazolinone compound wherein

R¹ represents an C6-C16 aryl group optionally having
one or more atoms and groups selected from Group P, an C1-C12 alkyl group optionally having one or more atoms and
groups selected from Group P, a C3-C12 cycloalkyl group
optionally having one or more atoms and groups selected
from Group P, an C2-C12 alkenyl group optionally having one
or more atoms and groups selected from Group P, a C3-C12
cycloalkenyl group optionally having one or more atoms and
groups selected from Group P, an C2-C12 alkynyl group
optionally having one or more atoms and groups selected
from Group P, an C2-C12 acyl group optionally having one or
more atoms and groups selected from Group P, or a hydrogen
atom (with the proviso that when the C6-C16 aryl group, the
C1-C12 alkyl group, the C3-C12 cycloalkyl group, the C2-C12
alkenyl group, the C3-C12 cycloalkenyl group, the C2-C12
alkynyl group or the C2-C12 acyl group has two or more
atoms or groups selected from Group P, the substituent
consisting of the atoms and the groups may be same or
different to each other);
R² and R³ represent independently of each other a hydrogen atom, an C₁-C₃ alkyl group, a C₁-C₃ haloalkyl group, an C₂-C₁₂ alkoxy carbonyl group, a hydroxycarbonyl group or a halogen atom;

R⁴ and R⁵ represent independently of each other a hydrogen atom, a halogen atom or an C₁-C₃ alkyl group;

R⁶ represents a halogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, an C₁-C₆ alkoxy group, a C₁-C₆ haloalkoxy group, a nitro group or a cyano group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C₁-C₄ alkyl group, a C₁-C₄ haloalkyl group, a C₃-C₅ cycloalkyl group, a C₃-C₅ halocycloalkyl group, an C₁-C₄ alkoxy group or a C₁-C₄ haloalkoxy group;

R¹⁰ represent independently of each other an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, an C₂-C₆ alkenyl group, a C₂-C₆ haloalkenyl group, an C₂-C₆ alkoxyalkyl group, a C₃-C₆ cycloalkyl group or a C₃-C₆ halocycloalkyl group; and

X represents a sulfur atom.

[0113]

a tetrazolinone compound wherein

R¹ represents an C₆-C₁₆ aryl group optionally having one or more atoms and groups selected from Group P, an C₁-C₁₂ alkyl group optionally having one or more atoms and
groups selected from Group P, a C3-C12 cycloalkyl group
optionally having one or more atoms and groups selected
from Group P, an C2-C12 alkenyl group optionally having one
or more atoms and groups selected from Group P, a C3-C12
cycloalkenyl group optionally having one or more atoms and
groups selected from Group P, an C2-C12 alkynyl group
optionally having one or more atoms and groups selected
from Group P, an C2-C12 acyl group optionally having one or
more atoms and groups selected from Group P, or a hydrogen
atom (with the proviso that when the C6-C16 aryl group, the
C1-C12 alkyl group, the C3-C12 cycloalkyl group, the C2-C12
alkenyl group, the C3-C12 cycloalkenyl group, the C2-C12
alkynyl group or the C2-C12 acyl group has two or more
atoms or groups selected from Group P, the substituent
consisting of the atoms and the groups may be same or
different to each other);

R², R³, R⁴ and R⁵ represent a hydrogen atom,-
R⁶ represents a halogen atom, an C1-C6 alkyl group, a
C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6
haloalkoxy group, a nitro group or a cyano group;

R⁷, R⁸ and R⁹ represent independently of each other a
hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-
C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5
halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4
haloalkoxy group;
R represents a methyl group; and
X represents an oxygen atom.

[0114]
a tetrazolinone compound wherein

R1 represents a phenyl group optionally having one or more atoms and groups selected from Group P (with the proviso that when the phenyl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);

R2, R3, R4 and R5 represent a hydrogen atom;

R6 represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a nitro group or a cyano group;

R7, R8 and R9 represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R10 represents a methyl group; and

X represents an oxygen atom.

[0115]
a tetrazolinone compound wherein

R1 represents an C10-C16 aryl group optionally having one or more atoms and groups selected from Group P, an C7-C12 alkyl group optionally having one or more atoms and
groups selected from Group P, a C7-C12 cycloalkyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkenyl group optionally having one or more atoms and groups selected from Group P, a C3-C12 cycloalkenyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkynyl group optionally having one or more atoms and groups selected from Group P, a C2-C12 acyl group optionally having one or more atoms and groups selected from Group P, or a hydrogen atom (with the proviso that when the C6-C16 aryl group, the C1-C12 alkyl group, the C3-C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12 cycloalkenyl group, the C2-C12 alkynyl group or the C2-C12 acyl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);

R², R³, R⁴ and R⁵ represent a hydrogen atom;

R⁶ represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a nitro group or a cyano group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;
R represents a methyl group; and
X represents an oxygen atom.

[0116] a tetrazolinone compound wherein

R represents an C6-C16 aryl group optionally having one or more atoms and groups selected from Group P, an C1-C12 alkyl group optionally having one or more atoms and groups selected from Group P, a C3-C12 cycloalkyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkenyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkynyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 acyl group optionally having one or more atoms and groups selected from Group, or a hydrogen atom (with the proviso that when the C6-C16 aryl group, the C1-C12 alkyl group, the C3-C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12 cycloalkenyl group, the C2-C12 alkynyl group or the C2-C12 acyl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);

R^2, R^3, R^4 and R^5 represent a hydrogen atom;
R^6 represents a halogen atom, an C1-C6 alkyl group, a
C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a nitro group or a cyano group;

R^7, R^8 and R^9 represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group (with the proviso that any one or more of R^7, R^8 and R^9 represent a C3-C5 cycloalkyl group or a C3-C5 halocycloalkyl group);

R^{10} represents a methyl group; and

X represents an oxygen atom.

[0117] a tetrazolinone compound wherein

R^1 represents an C6-C16 aryl group optionally having one or more atoms and groups selected from Group P (with the proviso that when the C6-C16 aryl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other)

R^2, R^3, R^4 and R^5 represent a hydrogen atom;

R^6 represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a nitro group or a cyano group;

R^7, R^8 and R^9 represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-
C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R10 represents a methyl group; and

X represents an oxygen atom.

[0118]
a tetrazolinone compound wherein

R1 represents a phenyl group optionally having one or more atoms and groups selected from Group P (with the proviso that when the phenyl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);

R2, R3, R4 and R5 represent a hydrogen atom;

R6 represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a nitro group or a cyano group;

R7, R8 and R9 represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R10 represents a methyl group; and

X represents an oxygen atom.

[0119]
a tetrazolinone compound wherein
R represents an C10-C16 aryl group optionally having one or more atoms and groups selected from Group (with the proviso that when the C10-C16 aryl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);

R², R³, R⁴ and R⁵ represent a hydrogen atom;

R⁶ represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a nitro group or a cyano group,

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group,

R¹⁰ represents a methyl group; and

X represents an oxygen atom.

[0120]

a tetrazolinone compound wherein

R¹ represents an C6-C16 aryl group optionally having one or more atoms and groups selected from Group P (with the proviso that when the C6-C16 aryl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);
R², R³, R⁴ and R⁵ represent a hydrogen atom;

R⁶ represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a nitro group or a cyano group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group (with the proviso that any one or more of R⁷, R⁸ and R⁹ represent a C3-C5 cycloalkyl group or a C3-C5 halocycloalkyl group);

R¹⁰ represents a methyl group, and

X represents an oxygen atom.

[0121]

a tetrazolinone compound wherein

R¹ represents an C1-C12 alkyl group optionally having one or more atoms and groups selected from Group P, a C3-C12 cycloalkyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkenyl group optionally having one or more atoms and groups selected from Group P, a C3-C12 cycloalkenyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 alkynyl group optionally having one or more atoms and groups selected from Group P, an C2-C12 acyl group optionally having one or more atoms and groups selected
from Group P, or a hydrogen atom (with the proviso that when the C1-C12 alkyl group, the C3-C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12 cycloalkenyl group, the C2-C12 alkynyl group or the C2-C12 acyl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);

\(R^2, R^3, R^4 \) and \(R^5 \) represent a hydrogen atom;

\(R^6 \) represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a nitro group or a cyano group;

\(R^7, R^8 \) and \(R^9 \) represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

\(R^{10} \) represents a methyl group, - and

\(X \) represents an oxygen atom.

[0122]
a tetrazolinone compound wherein

\(R^1 \) represents a group represented by a formula (2):

\[
\begin{array}{c}
\text{R}^{11} \\
\text{R}^{12} \\
\text{R}^{13} \\
\text{R}^{14} \\
\text{R}^{15} \\
\end{array}
\]

\[
\text{(2)}
\]

[wherein

\(R^{12}, R^{13}, R^{14}, R^{15} \) represent halogen atoms, halogenated alkyl groups, haloalkyl groups, alkoxy groups, halokalkoxy groups, nitro groups, cyano groups, methyl groups, a nitrogen atom and a sulfur atom, respectively.
R^{11} represents an aminosulfonyl group optionally having C1-C6 alkyl group or C6-C12 aryl group, an aminocarbonyl group optionally having C1-C6 alkyl group, a hydrogen atom, a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, C2-C6 haloalkynyl group, C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkythio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, an C3-C6 alkenyloxy group, an C3-C6 alknyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynlyloxy group, an C3-C6 alkenylthio group, an C3-C6 alkynylthio group, a C3-C6 haloalkenyl thio group, a C3-C6 haloalkynylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 aclylthio group, a hydroxycarbonyl group, a formyl group, an C2-C6 alkoxy carbonyl group, a nitro group, a cyano group, a hydroxyl group, an C6-C16 aryl group, a C6-C16 haloaryl group, an C6-C16 arloxy group, a C6-C16 haloaryloxy group, an C6-C16 arlythio group, a C6-C16 haloarylthio group, an C7-C18 aralkyl group, a C7-C18 haloaralkyl group, an C7-C18 arylalkoxy group, a C7-C18 haloarylalkoxy group, a thiol group, a pentaf luorosulfuranyl group, a C3-C12 trialkylsilyl group,
a C5-C14 trialkylsilylethynyl group, an C1-C6 alkylsulf onyl group, a C1-C6 haloalkylsulf onyl group, an C6-C16 arylsulf onyl group, a C6-C16 haloarylsulf onyl group, an C1-C6 alkylsulf inyl group, an C1-C6 haloalkylsulf inyl group, a C6-C16 arylsulf inyl group, or a C6-C16 haloarylsulf inyl group;

R^{12}, R^{13}, R^{14} and R^{15} represent independently of each other a hydrogen atom or a halogen atom;

R^2, R^3, R^4 and R^5 represent a hydrogen atom;

R^6 represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a nitro group or a cyano group;

R^7, R^8 and R^9 represent independently of each other a hydrogen atom or a -fluorine atom;

R^{10} represents a methyl group; and

X represents an oxygen atom.

[0123]
a tetrazolinone compound wherein

R^1 represents a group represented by a formula (2):

\[
\begin{array}{c}
\text{R}^{12} \\
\text{R}^{13} \\
\text{R}^{14} \\
\text{R}^{15}
\end{array}
\]

[wherein

R^{11} represents a hydrogen atom, a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy
group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;
R₁², R₁³, R₁⁴ and R₁⁵ represent independently of each other a hydrogen atom or a halogen atom]

R², R³, R⁴, R⁵, R⁶ and R⁹ represent a hydrogen atom;
R⁶ represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C1-C3 alkoxy group or a C1-C3 haloalkoxy group;

R₁⁰ represents a methyl group; and
X represents an oxygen atom.

[0124]
a tetrazolinone compound wherein
R¹ represents a group represented by a formula (2):

[wherein
R¹¹ represents a hydrogen atom, a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C3 alkylthio group, a C1-C3 haloalkyl thio group, a nitro group or a cyano group;
R¹², R¹³, R¹⁴ and R¹⁵ represent independently of each other a hydrogen atom or a halogen atom];
R², R³, R⁴, R⁵, R⁷, R⁸ and R⁹ represent a hydrogen atom;
R⁶ represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C1-C3 alkoxy group or a C1-C3 haloalkoxy group;
R¹⁰ represents a methyl group; and
X represents an oxygen atom.

[0125]
a tetrazolinone compound wherein
R¹ represents a group represented by a formula (2):

```
R¹₂
/  \
R¹³
```

(2)

[wherein
R¹¹ represents a halogen atom, a methyl group, an ethyl group a methoxy group;
R¹², R¹³, R¹⁴ and R¹⁵ represent independently of each other a hydrogen atom or fluorine atom];
R², R³, R⁴, R⁵, R⁷, R⁸ and R⁹ represent a hydrogen atom;
R⁶ represents a chlorine atom, a bromine atom, a methyl group, an ethyl group or a methoxy group,
R¹⁰ represents a methyl group,— and
X represents an oxygen atom.

[0126]
a tetrazolinone compound wherein
R¹ represents an C6-C16 aryl group optionally having
one or more atoms and groups selected from Group P, an \(\text{C}1-\text{C}12 \) alkyl group optionally having one or more atoms and groups selected from Group P, a \(\text{C}3-\text{C}12 \) cycloalkyl group optionally having one or more atoms and groups selected from Group P, an \(\text{C}2-\text{C}12 \) alkenyl group optionally having one or more atoms and groups selected from Group P, a \(\text{C}3-\text{C}12 \) cycloalkenyl group optionally having one or more atoms and groups selected from Group P, an \(\text{C}2-\text{C}12 \) alkynyl group optionally having one or more atoms and groups selected from Group P, a \(\text{C}2-\text{C}12 \) acyl group optionally having one or more atoms and groups selected from Group P, or a hydrogen atom (with the proviso that when the \(\text{C}6-\text{C}16 \) aryl group, the \(\text{C}1-\text{C}12 \) alkyl group, the \(\text{C}3-\text{C}12 \) cycloalkyl group, the \(\text{C}2-\text{C}12 \) alkenyl group, the \(\text{C}3-\text{C}12 \) cycloalkenyl group, the \(\text{C}2-\text{C}12 \) alkynyl group or the \(\text{C}2-\text{C}12 \) acyl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other).

\(\text{R}^2 \) and \(\text{R}^3 \) represent independently of each other a hydrogen atom, an \(\text{C}1-\text{C}3 \) alkyl group, a \(\text{C}1-\text{C}3 \) haloalkyl group, an \(\text{C}2-\text{C}12 \) alkoxy carbonyl group, a hydroxycarbonyl group or a halogen atom;

\(\text{R}^4 \) and \(\text{R}^5 \) represent independently of each other a hydrogen atom, a halogen atom or an \(\text{C}1-\text{C}3 \) alkyl group;

\(\text{R}^6 \) represents an aminocarbonyl group optionally having
C1-C6 alkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 alkenyloxy group, an C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, a C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C4 alkylsulfonyl group, a C1-C4 haloalkylsulf onyl group, an C1-C4 alkylsulf inyl group, a C1-C4 haloalkylsulf inyl group, an C2-C5 alkoxyalkyl group or an C2-C5 alkylthioalkyl group;

R^7, R^8 and R^9 represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R^{10} represents an C1-C6 alkyl group, a C1-C6 haloalkyl
group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group,
an C2-C6 alkoxyalkyl group, a C3-C6 cycloalkyl group or a
C3-C6 halocycloalkyl group;

X represents an oxygen atom or a sulfur atom.

[0127]
a tetrazolinone compound wherein

R represents an C6-C16 aryl group optionally having
one or more atoms and groups selected from Group P, C1-C12
alkyl group optionally having one or more atoms and groups
selected from Group P, a C3-C12 cycloalkyl group optionally
having one or more atoms and groups selected from Group P, an
C2-C12 alkenyl group optionally having one or more atoms and
and groups selected from Group P, a C3-C12 cycloalkenyl
group optionally having one or more atoms and groups
selected from Group P, an C2-C12 alkynyl group optionally
having one or more atoms and groups selected from Group P, C2-C12
acyl group optionally having one or more atoms and groups
selected from Group P, or a hydrogen atom (with the
proviso that when the C6-C16 aryl group, the C1-C12 alkyl
group, the C3-C12 cycloalkyl group, the C2-C12 alkenyl
group, the C3-C12 cycloalkenyl group, the C2-C12 alkynyl
group or the C2-C12 acyl group has two or more atoms or
groups selected from Group P, the substituent consisting of
the atoms and the groups may be same or different to each
other) ;
R², R³, R⁴ and R⁵ represent a hydrogen atom;

R⁶ represents an aminocarbonyl group optionally having C¹-C⁶ alkyl group, an C²-C⁶ alkenyl group, a C²-C⁶ haloalkenyl group, an C²-C⁶ alkynyl group, a C²-C⁶ haloalkynyl group, a C³-C⁶ cycloalkyl group, a C³-C⁶ halocycloalkyl group, an C¹-C⁶ alkylthio group, a C¹-C⁶ haloalkylthio group, a C³-C⁶ cycloalkylthio group, a C³-C⁶ haloalkylthio group, an C¹-C⁶ alkenyloxy group, an C¹-C⁶ alkynylthio group, a C¹-C⁶ haloalkyloxy group, an C¹-C⁶ haloalkynylthio group, a C¹-C⁶ alkenylthio group, an C¹-C⁶ alkenyloxy group, an C¹-C⁶ alkynylthio group, an C¹-C⁶ haloalkyloxy group, an C¹-C⁶ haloalkynylthio group, a C¹-C⁶ acyl group, a C¹-C⁶ haloacyl group, a C¹-C⁶ acyloxy group, a C¹-C⁶ acylthio group, a C¹-C⁶ alkoxyalkyl group, a hydroxyl group, a thiol group, an amino group, an C¹-C⁶ alkylamino group, a pentafluorosulfuranyl group, a C³-C⁹ trialkylsilyl group, a C⁵-C¹⁴ trialkylsilylethynyl group, an C¹-C⁴ alkylsulfonyl group, a C¹-C⁴ haloalkylsulfonyl group, an C¹-C⁴ alkylsulfinylnyl group, a C¹-C⁴ haloalkylsulfinylnyl group, an C¹-C⁵ alkoxyalkyl group or an C¹-C⁵ alkylthioalkyl group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C¹-C⁴ alkyl group, a C¹-C⁴ haloalkyl group, a C³-C⁵ cycloalkyl group, a C³-C⁵ halocycloalkyl group, an C¹-C⁴ alkoxy group or a C¹-C⁴
haloalkoxy group;

\(R^0 \) represents a methyl group; and

\(X \) represents an oxygen atom.

[0128] a tetrazolinone compound wherein

\(R^1 \) represents an C6-C16 aryl group optionally having one or more atoms and groups selected from Group P (with the proviso that when the C6-C16 aryl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);

\(R^2, R^3, R^4 \) and \(R^5 \) represent a hydrogen atom;

\(R^6 \) represents an aminocarbonyl group optionally having C1-C6 alkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, a C1-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 cycloalkyloxy group, a C3-C6 alkenyloxy group, an C3-C6 alkynyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynyloxy group, a C3-C6 alkynylthio group, a C3-C6 haloalkynylthio group, a C3-C6 haloalkynylthio group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynyloxy group, a C3-C6 alkynylthio group, a C3-C6 haloalkynylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, an C2-C6 alkoxy carbonyl
group, a hydroxyl group, a thiol group, an amino group, an
C1-C6 alkylamino group, a pentfluorosulfuranyl group, a
C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl
group, an Cl-C4 alkylsulfonyl group, a Cl-C4
haloalkylsulfonyl group, an Cl-C4 alkylsulfynyl group, a
Cl-C4 haloalkylsulfynyl group, an C2-C5 alkoxyalkyl group
or an C2-C5 alkylthioalkyl group;
R7, R8 and R9 represent independently of each other a
hydrogen atom, a halogen atom, an Cl-C4 alkyl group, a Cl-
C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5
halocycloalkyl group, an Cl-C4 alkoxy group or a Cl-C4
haloalkoxy group;
R10 represents a methyl group; and
X represents an oxygen atom.

[0129]
a tetraazolinone compound wherein
R1 represents an Cl-C12 alkyl group optionally having
one or more atoms and groups selected from Group P, a C3-
C12 cycloalkyl group optionally having one or more atoms
and groups selected from Group P, a C2-C12 alkenyl group
optionally having one or more atoms and groups selected
from Group P, a C3-C12 cycloalkenyl group optionally having
one or more atoms and groups selected from Group P, an C2-
C12 alkynyl group optionally having one or more atoms and
groups selected from Group P or an C2-C12 acyl group
optionally having one or more atoms and groups selected from Group P (with the proviso that when the C1-C12 alkyl group, the C3-C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12 cycloalkenyl group, the C2-C12 alkynyl group, or the C2-C12 acyl group has two or more atoms or groups selected from Group P, the substituent consisting of the atoms and the groups may be same or different to each other);

R², R³, R⁴ and R⁵ represent a hydrogen atom,

R⁶ represents an aminocarbonyl group optionally having C1-C6 alkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyln group, an C2-C6 alkynyl group, a C2-C6 haloalkynyln group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 cycloalkyl thio group, an C3-C6 alkenyloxy group, an C3-C6 alknyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalknyloxy group, an C3-C6 alkenylthio group, an C3-C6 alkynyl thio group, a C3-C6 haloalkenylthio group, a C3-C6 haloalkynylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, an C2-C6 alkoxy carbonyl group, a hydroxyl group, a thiol group, an amino group, an C1-C6 alkylamino group, a pentaf luorosulf uranyl group, a C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl
group, an C1-C4 alkylsulfonyl group, a C1-C4 haloalkylsulfonyl group, an C1-C4 alkylsulfinyl group, a C1-C4 haloalkylsulfinyl group, an C2-C5 alkoxyalkyl group or an C2-C5 alkylthioalkyl group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R¹⁰ represents a methyl group; and

X represents an oxygen atom.

[0130]

a tetrazolinone compound wherein

R¹ represents an C6-C16 aryl group optionally having one or more atoms or groups selected from Group PI, an C1-C12 alkyl group, a C3-C12 cycloalkyl group, an C2-C12 acyl group or a hydrogen atom (with the proviso that when the C6-C16 aryl group has two or more atoms or groups selected from Group PI, the substituent consisting of the atoms and the groups may be same or different to each other);

R² and R³ represent a hydrogen atom;

R⁴ and R⁵ represent a hydrogen atom;

R⁶ represents an C1-C6 alkyl group, a C3-C6 cycloalkyl group, a halogen atom, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, an C1-C6 alkoxy group, an C1-C6 alkylthio
group, an C2-C6 alkynyl group, a nitro group, a cyano group, or a C5-C14 trialkysilylethynyl group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom or an C1-C4 alkyl group;

R¹⁰ represents an C1-C6 alkyl group or an C2-C6 alkoxyalkyl group; and

X represents an oxygen atom or a sulfur atom;

Group PI: a halogen atom, an C1-C6 alkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C2-C6 haloacyl group, a nitro group and a cyano group.

[0131]

a tetrazolinone compound wherein

R¹ represents an C6-C16 aryl group optionally having one or more atoms or groups selected from Group PI, an C1-C12 alkyl group, a C3-C12 cycloalkyl group, an C2-C12 acyl group or a hydrogen atom (with the proviso that when the C6-C16 aryl group has two or more atoms or groups selected from Group PI, the substituent consisting of the atoms and the groups may be same or different to each other);

R² and R³ represent a hydrogen atom;

R⁴ and R⁵ represent a hydrogen atom;

R⁶ represents a C3-C6 cycloalkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, an C1-C6 alkylthio group, an C2-C6 alkynyl group or a C5-C14
trialkylsilylethynyl group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom or an C1-C4 alkyl group,

R¹⁰ represents an C1-C6 alkyl group or an C2-C6 alkoxyalkyl group; and

X represents an oxygen atom.

[0132]

a tetrazolinone compound wherein

R¹ represents an C6-C16 aryl group optionally having one or more atoms or groups selected from Group PI, a C1-C12 alkyl group, a C3-C12 cycloalkyl group, an C2-C12 acyl group, or a hydrogen atom (with the proviso that when the C6-C16 aryl group has two or more atoms or groups selected from Group PI, the substituent consisting of the atoms and the groups may be same or different to each other);

R² and R³ represent a hydrogen atom,-

R⁴ and R⁵ represent a hydrogen atom;

R⁶ represents an C1-C6 alkyl group, a halogen atom, an C1-C4 alkoxy group, a nitro group or a cyano group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom, a halogen atom or an C1-C4 alkyl group;

R¹⁰ represents an C1-C6 alkyl group or an C2-C6 alkoxyalkyl group; and

X represents an oxygen atom.

[0133]
a tetrazolinone compound wherein

R^1 represents a group represented by a formula (2):

\[
\begin{array}{c}
\text{R}^{11} \\
\text{R}^{12} \\
\text{R}^{13} \\
\text{R}^{14} \\
\text{R}^{15}
\end{array}
\]

(2)

wherein

R^{11} represents an aminosulfonyle group optionally having C1-C6 alkyl group or C6-C12 aryl group, an aminocarbonyl group optionally having an C1-C6 alkyl group, a hydrogen atom, a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkylnyl group, a C2-C6 haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 cycloalkylthio group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynylthio group, a C3-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, a hydroxycarbonyl group, a formyl group, an C2-C6 alkoxy carbonyl group, a nitro group, a cyano group, a hydroxyl group, an C6-C16 aryl group, a
C6-C16 haloaryl group, an C6-C16 aryloxy group, a C6-C16 haloaryloxy group, an C6-C16 arylthio group, a C6-C16 haloarylthio group, an C7-C18 aralkyl group, a C7-C18 haloaralkyl group, an C7-C18 arylalkoxy group, a C7-C18 haloarylalkoxy group, a thiol group, a pentfluorosulfuranyl group, a C3-C12 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C6 alkylsulfonyl group, a C1-C6 haloalkylsulfonyl group, an C6-C16 arylsulfonylnyl group, a C6-C16 haloaryl sulfonyl group, an C1-C6 alkylsulfanyl group, a C1-C6 haloalkylsulfanyl group, or a C6-C16 haloaryl sulfanyl group; and

R$_2$, R$_3$, R$_4$ and R$_5$ represent independently of each other a hydrogen atom or a halogen atom;

R$_2$, R$_3$, R$_4$ and R$_5$ represent a hydrogen atom;

R$_6$ represents an aminocarbonyl group optionally having C1-C6 alkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkylthio group, a C1-G6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 cycloalkylthio group, an C3-C6 alkenyloxy group, an C3-C6 alkynyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynyloxy group, an C3-C6 alkenylthio group, an C3-C6 alkynylthio group, a C3-C6
haloalkenylthio group, a C3-C6 haloalkynylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, a C2-C6 alkoxy carbonyl group, a hydroxy group, a thiol group, an amino group, an C1-C6 alkylamino group, a pentfluorosulfuryl group, a C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C4 alkylsulfonyl group, a C1-C4 haloalkylsulf onyl group, an C1-C4 alkylsulf inyl group, a C1-C4 haloalkylsulf inyl group, an C2-C5 alkoxyalkyl group or an C2-C5 alkylthioalkyl group;

5 R7, R8 and R9 represent independently of each other a hydrogen atom or a fluorine atom

10 R10 represents a methyl group; and

X represents an oxygen atom.

[0134]
a tetrazolinone compound wherein

R1 represents a group represented by a formula (2):

\[
\begin{array}{c}
\text{R}^{11} \text{R}^{12} \\
\text{R}^{13} \text{R}^{14} \\
\text{R}^{15}
\end{array}
\]

[wherein

20 R11 represents a hydrogen atom, a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6}
haloacetyl group, a nitro group or a cyano group; and

R12, R13, R14 and R15 represent independently of each
other a hydrogen atom or halogen atom;

R2, R3, R4, R5, R7, R8 and R9 represent a hydrogen atom;

R6 represents an C2-C3 alkenyl group, an C2-C3 alkynyl

group, a C3-C4 cycloalkyl group, an C1-C2 alkylthio group,
a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R10 represents a methyl group; and

X represents an oxygen atom.

[0135]

a tetrazolinone compound wherein

R1 represents a group represented by a formula (2):

![Formula Diagram](image_url)

[wherein

R11 represents a hydrogen atom, a halogen atom, an C1-

C3 alkyl group, a C1-C3 haloalkyl group, an C1-C3 alkoxy
group, a C1-C3 haloalkoxy group, an C1-C3 alkylthio group,
an C1-C3 haloalkylthio group, a nitro group or a cyano
group; and

R12, R13, R14 and R15 represent independently of each
other a hydrogen atom or halogen atom];

R2, R3, R4, R5, R7, R8 and R9 represent a hydrogen atom;

R6 represents an C2-C3 alkenyl group, an C2-C3 alkynyl
group or a C3-C4 cycloalkyl group;

R^{10} represents a methyl group; and

X represents an oxygen atom.

[0136]

a tetrazolinone compound wherein

R^1 represents a group represented by a formula (2):

\[
\begin{array}{c}
\text{R}^{11} \\
\text{R}^{12} \quad \text{R}^{13} \\
\text{R}^{14} \quad \text{R}^{15}
\end{array}
\]

[wherein

R^{11} represents a halogen atom, a methyl group, an ethyl group or a methoxy group; and

R^{12}, R^{13}, R^{14} and R^{15} represent independently of each other a hydrogen atom or a fluorine atom];

R^2, R^3, R^4, R^5, R^7, R^8 and R^9 represent a hydrogen atom;

R^6 represents a cyclopropyl group;

R^{10} represents a methyl group; and

X represents an oxygen atom.

[0137]

a tetrazolinone compound wherein

R^1 represents a group represented by a formula (2):

\[
\begin{array}{c}
\text{R}^{11} \\
\text{R}^{12} \quad \text{R}^{13} \\
\text{R}^{14} \quad \text{R}^{15}
\end{array}
\]

[wherein

...
\[\text{R}^{11} \text{ represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a cyano group, a nitro group or a hydrogen atom; and} \]

\[\text{R}^{12}, \text{R}^{13}, \text{R}^{14} \text{ and } \text{R}^{15} \text{ represent independently of each other a halogen atom or a hydrogen atom}; \]

\[\text{R}^2, \text{R}^3, \text{R}^4, \text{R}^5 \text{ and } \text{R}^8 \text{ represent a hydrogen atom}; \]

\[\text{R}^6 \text{ represents an C1-C6 alkyl group, a halogen atom, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, an C2-C6 alkynyl group, a C3-C6 cycloalkyl group, an C1-C6 alkoxy group, an C1-C6 alkylthio group, a cyano group or a nitro group}; \]

\[\text{R}^7 \text{ represents a halogen atom or a hydrogen atom}; \]

\[\text{R}^9 \text{ represents a halogen atom, an C1-C4 alkyl group or a hydrogen atom}; \]

\[\text{R}^{10} \text{ represents an C1-C6 alkyl group or an C2-C6 alkoxyalkyl group; and} \]

\[\text{X represents an oxygen atom or a sulfur atom.} \]

\[\text{[0138]} \]

\[\text{a tetrazolinone compound wherein} \]

\[\text{R}^1 \text{ represents a group represented by a formula (2) :} \]

\[\text{[wherein} \]

\[\text{R}^{12}, \text{R}^{13} \text{, and } \text{R}^{15} \text{ represent independently of each other a halogen atom or a hydrogen atom];} \]

\[\text{R}^2, \text{R}^3, \text{R}^4, \text{R}^5 \text{ and } \text{R}^8 \text{ represent a hydrogen atom;} \]

\[\text{R}^6 \text{ represents an C1-C6 alkyl group, a halogen atom, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, an C2-C6 alkynyl group, a C3-C6 cycloalkyl group, an C1-C6 alkoxy group, an C1-C6 alkylthio group, a cyano group or a nitro group;} \]

\[\text{R}^7 \text{ represents a halogen atom or a hydrogen atom;} \]

\[\text{R}^9 \text{ represents a halogen atom, an C1-C4 alkyl group or a hydrogen atom}; \]

\[\text{R}^{10} \text{ represents an C1-C6 alkyl group or an C2-C6 alkoxyalkyl group; and} \]

\[\text{X represents an oxygen atom or a sulfur atom.} \]

\[\text{[0138]} \]

\[\text{a tetrazolinone compound wherein} \]

\[\text{R}^1 \text{ represents a group represented by a formula (2) :} \]

\[\text{[wherein} \]

\[\text{R}^{12}, \text{R}^{13} \text{, and } \text{R}^{15} \text{ represent independently of each other a halogen atom or a hydrogen atom];} \]

\[\text{R}^2, \text{R}^3, \text{R}^4, \text{R}^5 \text{ and } \text{R}^8 \text{ represent a hydrogen atom;} \]

\[\text{R}^6 \text{ represents an C1-C6 alkyl group, a halogen atom, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, an C2-C6 alkynyl group, a C3-C6 cycloalkyl group, an C1-C6 alkoxy group, an C1-C6 alkylthio group, a cyano group or a nitro group;} \]

\[\text{R}^7 \text{ represents a halogen atom or a hydrogen atom;} \]

\[\text{R}^9 \text{ represents a halogen atom, an C1-C4 alkyl group or a hydrogen atom}; \]

\[\text{R}^{10} \text{ represents an C1-C6 alkyl group or an C2-C6 alkoxyalkyl group; and} \]

\[\text{X represents an oxygen atom or a sulfur atom.} \]

\[\text{[0138]} \]

\[\text{a tetrazolinone compound wherein} \]

\[\text{R}^1 \text{ represents a group represented by a formula (2) :} \]

\[\text{[wherein} \]
R^{11} represents a fluorine atom, a chlorine atom, a bromine atom, a methyl group, a methoxy group, an ethoxy group, a methylthio group, a trifluoromethoxy group, a cyano group, a nitro group, a trifluoromethylcarbonyl group or a hydrogen atom; and

R^{12}, R^{13}, R^{14} and R^{15} represent independently of each other fluorine atom or a hydrogen atom;

R^{2}, R^{3}, R^{4}, R^{5} and R^{8} represent a hydrogen atom;

R^{6} represents a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a vinyl group, a propenyl group, an ethynyl group, a 2-trimethylsilylethynyl group, a cyclopropyl group, a difluoromethyl group, a trifluoromethyl group, a methoxy group, an ethoxy group, a methylthio group, a cyano group or a nitro group;

R^{7} represents a fluorine atom or a hydrogen atom;

R^{9} represents a fluorine atom, a methyl group or a hydrogen atom;

R^{10} represents a methyl group, an ethyl group or a methoxymethyl group; and

X represents an oxygen atom or a sulfur atom.

The tetrazolinone compound wherein

R^{1} represents a group represented by a formula (2):
[wherein

\(R_{\text{11}} \) represents a halogen atom, an \(\text{C1-C6} \) alkyl group, a \n\(\text{C1-C6} \) haloalkyl group, an \(\text{C1-C6} \) alkoxy group, a \n\(\text{C1-C6} \) haloalkoxy group, an \(\text{C1-C6} \) alkyl thio group, a cyano group,
a nitro group or a hydrogen atom; and

\(R_{\text{12}}, R_{\text{13}}, R_{\text{14}}, \text{and } R_{\text{15}} \) represent independently of each
other a halogen atom or a hydrogen atom];

\(R_{\text{2}}, R_{\text{3}}, R_{\text{4}}, R_{\text{5}} \) and \(R_{\text{8}} \) represent a hydrogen atom.

\(R_{\text{6}} \) represents an \(\text{C1-C6} \) alkyl group;

\(R_{\text{7}} \) represents a halogen atom or a hydrogen atom;

\(R_{\text{9}} \) represents a halogen atom, an \(\text{C1-C4} \) alkyl group or
a hydrogen atom;

\(R_{\text{10}} \) represents an \(\text{C1-C6} \) alkyl group or an \(\text{C2-C6} \)
alkoxyalkyl group; and

\(X \) represents an oxygen atom or a sulfur atom.

[0140]
a tetrazolinone compound wherein

\(R_{\text{1}} \) represents a group represented by a formula (2):

\[
\begin{align*}
\text{(2)} & \\
\end{align*}
\]
\(R^{11} \) represents a fluorine atom, a chlorine atom, a bromine atom, a methyl group, a methoxy group, an ethoxy group, a methylthio group, a trifluoromethoxy group, a cyano group, a nitro group, a trifluoromethylcarbonyl group or a hydrogen atom; and
\(R^{12}, R^{13}, R^{14} \) and \(R^{15} \) represent independently of each other a fluorine atom or a hydrogen atom;
\(R^2, R^3, R^4, R^5 \) and \(R^8 \) represent a hydrogen atom;
\(R^6 \) represents a methyl group or an ethyl group;
\(R^7 \) represents a fluorine atom or a hydrogen atom;
\(R^9 \) represents a fluorine atom, a methyl group or a hydrogen atom;
\(R^{10} \) represents a methyl group, an ethyl group or a methoxymethyl group; and
\(X \) represents an oxygen atom or a sulfur atom.

[0141]
a tetrazolinone compound wherein
\(R^1 \) represents a group represented by a formula (2):
\[
\begin{array}{c}
\text{[wherein}
\end{array}
\]
\(R^{11} \) represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a cyano group,
a nitro group or a hydrogen atom; and

\(\text{R}^{1,2}, \text{R}^{1,3}, \text{R}^{1,4} \) and \(\text{R}^{1,5} \) represent independently of each other a halogen atom or a hydrogen atom;

\(\text{R}^{2}, \text{R}^{3}, \text{R}^{4}, \text{R}^{5} \) and \(\text{R}^{8} \) represent a hydrogen atom;

\(\text{R}^{6} \) represents a methyl group;

\(\text{R}^{7} \) represents a halogen atom or a hydrogen atom;

\(\text{R}^{9} \) represents a halogen atom, an C1-C4 alkyl group or a hydrogen atom;

\(\text{R}^{10} \) represents an C1-C6 alkyl group or an C2-C6 alkoxyalkyl group; and

\(\text{X} \) represents an oxygen atom or a sulfur atom.

[0142]

A tetrazolinone compound wherein

\(\text{R}^{1} \) represents a group represented by a formula (2):

\[
\begin{array}{c}
\text{R}^{10} \\
\text{R}^{11} \\
\text{R}^{12} \\
\text{R}^{13} \\
\text{R}^{14} \\
\text{R}^{15}
\end{array}
\]

(2)

[wherein

\(\text{R}^{11} \) represents a fluorine atom, a chlorine atom, a bromine atom, a methyl group, a methoxy group, an ethoxy group, a methylthio group, a trifluoromethoxy group, a cyano group, a nitro group or a hydrogen atom; and

\(\text{R}^{1,2}, \text{R}^{1,3}, \text{R}^{1,4} \) and \(\text{R}^{1,5} \) represent independently of each other a fluorine atom or a hydrogen atom];

\(\text{R}^{2}, \text{R}^{3}, \text{R}^{4}, \text{R}^{5} \) and \(\text{R}^{8} \) represent a hydrogen atom;
R₆ represents a methyl group;
R₇ represents a fluorine atom or a hydrogen atom;
R₉ represents a fluorine atom, a methyl group or a hydrogen atom;
R₁₀ represents a methyl group, an ethyl group or a methoxymethyl group; and
X represents an oxygen atom or a sulfur atom.

[0143]

A tetrazolinone compound wherein
R¹ represents a group represented by a formula (2):

[wherein
R¹₁ represents a halogen atom, an C₁-C₆ alkyl group, or an C₁-C₆ alkoxy group; and
R¹₂, R¹₃, R¹₄ and R¹₅ represent a hydrogen atom];
R², R³, R⁴, R⁵, R⁷, R⁸ and R⁹ represent a hydrogen atom;
R₆ represents a C₃-C₆ cycloalkyl group;
R₁₀ represents an C₁-C₆ alkyl group; and
X represents an oxygen atom.

[0144]

A tetrazolinone compound wherein
R¹ represents a group represented by a formula (2):
a tetrazolinone compound wherein
R represents a fluorine atom, a chlorine atom, a bromine atom, a methyl group or a methoxy group; and
R₂, R₃, R₄, R₅, R₇, R₈ and R₉ represent a hydrogen atom;
R₆ represents a cyclopropyl group;
R₁₀ represents a methyl group; and
X represents an oxygen atom.

R¹¹ represents a halogen atom, an C₁-C₆ alkyl group, or an C₁-C₆ alkoxy group; and
R¹₂, R¹₃, R¹₄ and R¹₅ represent a hydrogen atom;
R², R³, R⁴, R⁵, R⁷, R⁸ and R⁹ represent a hydrogen atom;
R⁶ represents a halogen atom;
R¹₀ represents an C₁-C₆ alkyl group; and
X represents an oxygen atom.
[0146]
a tetrazolinone compound wherein

R\(^1\) represents a group represented by a formula (2):

\[
\begin{array}{c}
\text{R}^1 \\
\text{R}^2 \\
\text{R}^3 \\
\text{R}^4 \\
\text{R}^5 \\
\text{R}^6 \\
\text{R}^7 \\
\text{R}^8 \\
\text{R}^9 \\
\end{array}
\] (2)

[0147]

[wherein

R\(^{11}\) represents a fluorine atom, a chlorine atom, a bromine atom, a methyl group or a methoxy group; and

R\(^{12}\), R\(^{13}\), R\(^{14}\) and R\(^{15}\) represent a hydrogen atom];

R\(^2\), R\(^3\), R\(^4\), R\(^5\), R\(^7\), R\(^8\) and R\(^9\) represent a hydrogen atom;

R\(^6\) represents a fluorine atom, a chlorine atom, a bromine atom or an iodine atom;

R\(^{10}\) represents a methyl group,- and

X represents an oxygen atom.

[0147]
a tetrazolinone compound wherein

R\(^1\) represents a group represented by a formula (2):

\[
\begin{array}{c}
\text{R}^1 \\
\text{R}^2 \\
\text{R}^3 \\
\text{R}^4 \\
\text{R}^5 \\
\text{R}^6 \\
\text{R}^7 \\
\text{R}^8 \\
\text{R}^9 \\
\end{array}
\] (2)

[wherein

R\(^{11}\) represents a halogen atom, an Cl-C6 alkyl group,
an Cl-C6 alkoxy group or a hydrogen atom; and

R\(^{12}\), R\(^{13}\), R\(^{14}\) and R\(^{15}\) represent a hydrogen atom];
R₂, R₃, R⁴, R⁵, R⁷, R⁸ and R⁹ represent a hydrogen atom;
R₆ represents an C₁-C₆ alkoxy group;
R¹⁰ represents an C₁-C₆ alkyl group; and
X represents an oxygen atom.

[0148]
a tetrazolinone compound wherein
R¹ represents a group represented by a formula (2):

[wherein

R¹¹ represents a fluorine atom, a chlorine atom, a bromine atom, a methyl group, a methoxy group or a hydrogen atom, - and
R¹₂, R¹₃, R¹₄ and R¹₅ represent a hydrogen atom;]
R², R³, R⁴, R⁵, R⁷, R⁸ and R⁹ represent a hydrogen atom;
R₆ represents a methoxy group or an ethoxy group;
R¹₀ represents a methyl group; and
X represents an oxygen atom.

[0149]
a tetrazolinone compound wherein
R¹ represents a group represented by a formula (2):

[wherein

\(R^{11} \) represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group; and

\(R^{12}, R^{13}, R^{14} \) and \(R^{15} \) represent a hydrogen atom or a halogen atom;]

\(R^2, R^3, R^4, R^5, R^7, R^8 \) and \(R^9 \) represent a hydrogen atom;

\(R^6 \) represents an C1-C3 alkyl group;

\(R^{10} \) represents a methyl group; and

\(X \) represents an oxygen atom.

[0150]
a tetrazolinone compound wherein

\(R^1 \) represents a group represented by a formula (2):

\[\begin{array}{c}
\text{R}^{12} \\
\text{R}^{13}
\end{array}\]

(2)

[wherein

\(R^{11} \) represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group; and

\(R^{12}, R^{13}, R^{14} \) and \(R^{15} \) represent a hydrogen atom or a
halogen atom;
R², R³, R⁴, R⁵, R⁷, R⁸ and R⁹ represent a hydrogen atom;
R⁶ represents a C3-C4 cycloalkyl group;
R₁⁰ represents a methyl group; and
X represents an oxygen atom.

[0151]
a tetrazolinone compound wherein
R¹ represents a group represented by a formula (2):

[wherein
R¹¹ represents a halogen atom, a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, an C₁-C₆ alkoxy group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group, a C₁-C₆ haloalkylthio group, an C₂-C₆ acyl group, a C₂-C₆ haloacyl group, a nitro group or a cyano group; and
R¹₂, R¹³, R¹⁴ and R¹⁵ represent a hydrogen atom or a halogen atom];
R², R³, R⁴, R⁵, R⁷, R⁸ and R⁹ represent a hydrogen atom;
R⁶ represents a halogen atom;
R₁⁰ represents a methyl group; and
X represents an oxygen atom.

[0152]
a tetrazolinone compound wherein
R1 represents a group represented by a formula (2):

\begin{equation}
\begin{array}{c}
\text{R}^{11} \\
\text{R}^{12} \quad \text{R}^{13} \\
\text{R}^{14} \quad \text{R}^{15}
\end{array}
\end{equation}

[wherein

R11 represents a halogen atom, a hydrogen atom, an Cl-C6 alkyl group, a C1-C6 haloalkyl group, an Cl-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, a C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group; and

R12, R13, R14 and R15 represent a hydrogen atom or a halogen atom];

R2, R3, R4, R5, R7, R8 and R9 represent a hydrogen atom;

R6 represents a C1-C3 haloalkyl group;

R10 represents a methyl group; and

X represents an oxygen atom.

[0153]

a tetrazolinone compound wherein

R1 represents a group represented by a formula (2):

\begin{equation}
\begin{array}{c}
\text{R}^{11} \\
\text{R}^{12} \quad \text{R}^{13} \\
\text{R}^{14} \quad \text{R}^{15}
\end{array}
\end{equation}

[wherein

R11 represents a halogen atom, a hydrogen atom, an Cl-C6 alkyl group, a C1-C6 haloalkyl group, an Cl-C6 alkoxy group, a C1-C6 haloalkoxy group, an Cl-C6 alkylthio group,
a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group; and

\[R^{12}, R^{13}, R^{14} \text{ and } R^{15} \text{ represent a hydrogen atom or a halogen atom]; \]

\[R^2, R^3, R^4, R^5, R^7, R^8 \text{ and } R^9 \text{ represent a hydrogen atom}; \]
\[R^6 \text{ represents an C2-C3 alkenyl group}; \]
\[R^{10} \text{ represents a methyl group}; \text{ and} \]
\[X \text{ represents an oxygen atom.} \]

\[\text{[0154]} \]

a tetrazolinone compound wherein

\[R^1 \text{ represents a group represented by a formula (2)}: \]

\[\text{[wherein} \]
\[R^{11} \text{ represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;} \]
\[R^{12}, R^{13}, R^{14} \text{ and } R^{15} \text{ represent a hydrogen atom or a halogen atom];} \]
\[R^2, R^3, R^4, R^5, R^7, R^8 \text{ and } R^9 \text{ represent a hydrogen atom;} \]
\[R^6 \text{ represents an C1-C3 alkoxy group}; \]
\[R^{10} \text{ represents a methyl group}; \text{ and} \]
X represents an oxygen atom.

[0155]

da tetrazolinone compound wherein

\[R^1 \]

represents a group represented by a formula (2):

\[
\begin{array}{c}
\text{R}^{11} \\
\text{R}^{12} \\
\hline
\text{R}^{13} \\
\text{R}^{14} \\
\hline
\text{R}^{15}
\end{array}
\]

(wherein

\[R^{11} \]

represents a halogen atom, a hydrogen atom, an Cl-C6 alkyl group, a Cl-C6 haloalkyl group, an Cl-C6 alkoxy group, a Cl-C6 haloalkoxy group, an Cl-C6 alkylthio group, a Cl-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group; and

\[R^{12}, R^{13}, R^{14} \text{ and } R^{15} \]

represent a hydrogen atom or a halogen atom);

\[R^{2}, R^{3}, R^{4}, R^{5}, R^{7}, R^{8} \text{ and } R^{9} \]

represent a hydrogen atom;

\[R^{6} \]

represents an Cl-C2 alkylthio group;

\[R^{10} \]

represents a methyl group; and

\[X \]

represents an oxygen atom.

[0156]

a tetrazolinone compound wherein

\[R^1 \]

represents a group represented by a formula (2):

\[
\begin{array}{c}
\text{R}^{11} \\
\text{R}^{12} \\
\hline
\text{R}^{13} \\
\text{R}^{14} \\
\hline
\text{R}^{15}
\end{array}
\]

(wherein
R^{11} represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group; and

R^{12}, R^{13}, R^{14} and R^{15} represent a hydrogen atom or a halogen atom;

R^{2}, R^{3}, R^{4}, R^{5}, R^{7}, R^{8} and R^{9} represent a hydrogen atom;

R^{6} represents an C2-C3 alkynyl group;

R^{10} represents a methyl group; and

X represents an oxygen atom.

[0157]

A tetrazolinone compound wherein

R^{i} represents a group represented by a formula (2):

\[
\begin{array}{c}
 \text{R}^{11} \\
 \text{R}^{12} \\
 \text{R}^{13} \\
 \text{R}^{14} \\
 \text{R}^{15}
\end{array}
\] (2)

[wherein

R^{11} represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R^{12}, R^{13}, R^{14} and R^{15} represent a hydrogen atom or a halogen atom];
R2, R3, R4, R5, R7, R8 and R9 represent a hydrogen atom;
R6 represents a C1-C3 haloalkoxy group;
R10 represents a methyl group; and
X represents an oxygen atom.

[0158]
a tetrazolinone compound wherein

R1 represents a group represented by a formula (2):

```
\( R^{11} \)
```

[wherein]

R11 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group; and

R12, R13, R14 and R15 represent a hydrogen atom or a halogen atom;

R2, R3, R4, R5, R7, R8 and R9 represent a hydrogen atom;
R6 represents a C1-C2 haloalkylthio group;
R10 represents a methyl group; and
X represents an oxygen atom.

[0159]
a tetrazolinone compound wherein

R1 represents a group represented by a formula (2):

```
\( R^{11} \)
```
R11 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkythio group, a nitro group or a cyano group; and R12, R13, R14 and R15 represent a hydrogen atom or a halogen atom.

R2, R3, R4, R5, R7, R8 and R9 represent a hydrogen atom;

R6 represents an C1-C4 alkylamino group;

R10 represents a methyl group; and

X represents an oxygen atom.

A tetrazolinone compound wherein

R1 represents a group represented by a formula (2):

[wherein

R11 represents a halogen atom, a methyl group, an ethyl group or a methoxy group; and

R12, R13, R14 and R15 represent a hydrogen atom or a fluorine atom]
R², R³, R⁴, R⁵, R⁷, R⁸ and R⁹ represent a hydrogen atom; R⁶ represents a methyl group; R¹⁰ represents a methyl group; and X represents an oxygen atom.

[0161]
a tetrazolinone compound wherein
R¹ represents a group represented by a formula (2):

\[
\begin{array}{c}
R^{11} \quad R^{12} \\
\quad \quad \quad \quad R^{13}
\end{array}
\]

[wherein]
R¹¹ represents a halogen atom, a methyl group, an ethyl group or a methoxy group; and
R¹², R¹³, R¹⁴ and R¹⁵ represent a hydrogen atom or a fluorine atom];
R², R³, R⁴, R⁵, R⁷, R⁸ and R⁹ represent a hydrogen atom;
R⁶ represents a chlorine atom;
R¹⁰ represents a methyl group; and
X represents an oxygen atom.

[0162]
a tetrazolinone compound wherein
R¹ represents a group represented by a formula (2):

\[
\begin{array}{c}
R^{11} \quad R^{12} \\
\quad \quad \quad \quad R^{13}
\end{array}
\]

[wherein]
R represents a halogen atom, a methyl group, an ethyl group or a methoxy group; and
R\textsubscript{12}, R\textsubscript{13}, R\textsubscript{14} and R\textsubscript{15} represent a hydrogen atom or a fluorine atom;

R\textsubscript{2}, R\textsubscript{3}, R\textsubscript{4}, R\textsubscript{5}, R\textsubscript{7}, R\textsubscript{8} and R\textsubscript{9} represent a hydrogen atom;
R\textsubscript{6} represents a bromine atom;
R\textsubscript{10} represents a methyl group; and
X represents an oxygen atom.

[0163]

a tetrazolinone compound wherein

R1 represents a group represented by a formula (2):

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\begin{tabular}{c}
{R}^{12} & {R}^{13} \\
{R}^{11} & \\
{R}^{14} & {R}^{15}
\end{tabular}};
\end{tikzpicture}
\end{center}

[wherein

R\textsubscript{11} represents a halogen atom, a methyl group, an ethyl group or a methoxy group; and

R\textsubscript{12}, R\textsubscript{13}, R\textsubscript{14} and R\textsubscript{15} represent a hydrogen atom or a fluorine atom];

R\textsubscript{2}, R\textsubscript{3}, R\textsubscript{4}, R\textsubscript{5}, R\textsubscript{7}, R\textsubscript{8} and R\textsubscript{9} represent a hydrogen atom;
R\textsubscript{6} represents an ethyl group;
R\textsubscript{10} represents a methyl group; and
X represents an oxygen atom.

[0164]

a tetrazolinone compound wherein
R\(^1\) represents a group represented by a formula (2):

\[\text{(2)} \]

[wherein

R\(^{11}\) represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R\(^{12}\), R\(^{13}\), R\(^{14}\) and R\(^{15}\) represent a hydrogen atom or a fluorine atom];

R\(^2\), R\(^3\), R\(^4\), R\(^5\), R\(^7\), R\(^8\) and R\(^9\) represent a hydrogen atom;

R\(^6\) represents a methoxy group;

R\(^{10}\) represents a methyl group, and

X represents an oxygen atom.

[0165]

a tetrazolinone compound wherein

R\(^1\) represents a group represented by a formula (30):

\[\text{(30)} \]

[wherein

R\(^{310}\) represents an aminosulf onyl group optionally having C1-C6 alkyl group or C6-C12 aryl group, an aminocarbonyl group optionally having C1-C6 alkyl group, a hydrogen atom, a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6
haloalkenyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkoxy group, a CI-C6 haloalkoxy group, an C1-C6 alkylthio group, a CI-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 cycloalkylthio group, a C3-C6 halocycloalkylthio group, a C3-C6 alkenyl group, a C2-C6 haloalkenyl group, a C2-C6 alkenyloxy group, a C2-C6 haloalkenyloxy group, a C3-C6 alkynyloxy group, a C3-C6 haloalkynylthio group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynylthio group, a C3-C6 alkylsulfanyl group, an C1-C6 haloalkylsulfanyl group, an C6-C16 arylsulfinyl group, a C6-C16 haloaryl group, an C6-C16 arylthio group, a C6-C16 haloarylthio group, an C7-C18 aralkyl group, a C7-C18 haloaralkyl group, an C7-C18 arylalkoxy group, a C7-C18 haloarylalkoxy group, a thiol group, a pentfluorosulfuranyl group, a C3-C12 trialkylsilyl group, a C5-C14 trialkylsilylthynyl group, an C1-C6 alkylsulfonylethynyl group, a C1-C6 haloalkylsulfonylethynyl group, an C1-C6 alkylsulfonylethynyl group, a C6-C16 haloaryl group, an C6-C16 arylsulfanyl group, a C6-C16 arylsulfonium group, a C6-C16 haloaryl group, an C6-C16 haloaryl group, a C6-C16 arylsulfanyl group, an C6-C16 haloaryl group, an C6-C16 arylsulfonium group, a C6-C16 haloaryl group, an C6-C16 haloaryl group, or a C6-C16 haloaryl group.
group; and

R^{300}, R^{320}, R^{330} and R^{340} represent independently of each other a hydrogen atom or a halogen atom;

R^2, R^3, R^4 and R^5 represent a hydrogen atom;

R^6 represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a nitro group or a cyano group;

R^7, R^8 and R^9 represent independently of each other a hydrogen atom or a fluorine atom;

R^{10} represents a methyl group; and

X represents an oxygen atom.

[0166]

a tetrazolinone compound wherein

R^1 represents a group represented by a formula (3):

\[
\begin{array}{c}
\text{R}^{31} \\
\text{R}^{30} \\
\text{R}^{33} \\
\text{R}^{34}
\end{array}
\]

(3)

[wherein

R^{31} represents a hydrogen atom, a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, a C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group; and

R^{30}, R^{32}, R^{33} and R^{34} represent independently of each other a hydrogen atom or a halogen atom];
R^2, R^3, R^4, R^5, R^7, R^8 and R^9 represent a hydrogen atom; R^6 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C1-C3 alkoxy group or a C1-C3 haloalkoxy group.

R^{10} represents a methyl group; and X represents an oxygen atom.

[0167]
a tetrazolinone compound wherein

R^1 represents a group represented by a formula (3):

![Diagram](image)

[wherein

R^{31} represents a hydrogen atom, a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C3 alkylthio group, a C1-C3 haloalkyl thio group, a nitro group or a cyano group; and

R^{30}, R^{32}, R^{33} and R^{34} represent independently of each other a hydrogen atom or a halogen atom];

R^2, R^3, R^4, R^5, R^7, R^8 and R^9 represent a hydrogen atom;

R^6 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C1-C3 alkoxy group or a C1-C3 haloalkoxy group;

R^{10} represents a methyl group; and
X represents an oxygen atom.

[0168]
a tetrazolinone compound wherein

\(
R^1 \) represents a group represented by a formula (3):

\[
\begin{array}{c}
R^{31} \\
R^{30} \\
R^{32} \\
R^{33} \\
R^{34}
\end{array}
\]

(3)

[wherein

\(R^{31} \) represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

\(R^{30}, R^{32}, R^{33} \) and \(R^{34} \) represent independently of each other a hydrogen atom or a fluorine atom;]

\(R^2, R^3, R^4, R^5, R^7, R^8 \) and \(R^9 \) represent a hydrogen atom;

\(R^6 \) represents a chlorine atom, a bromine atom, a methyl group, an ethyl group or a methoxy group;

\(R^{10} \) represents a methyl group; and

\(X \) represents an oxygen atom.

[0169]
a tetrazolinone compound wherein

\(R^1 \) represents a group represented by a formula (30):

\[
\begin{array}{c}
R^{310} \\
R^{300} \\
R^{320} \\
R^{330} \\
R^{340}
\end{array}
\]

(30)

[wherein

\(R^{310} \) represents an aminosulf onyl group optionally having C1-C6 alkyl group or C6-C12 aryl group, an
aminocarbonyl group optionally having C1-C6 alkyl group, a hydrogen atom, a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkeny1 group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 cy cloalkylthio group, an C3-C6 alkenyloxy group, an C3-C6 alknyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynylthio group, a C3-C6 haloalkynyl thio group, a C3-C6 haloalkynylthio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, a hydroxycarbonyl group, a formyl group, an C2-C6 alkoxy carbonyl group, a nitro group, a cyano group, a hydroxy 1 group, an C6-C16 aryl group, a C6-C16 haloaryl group, an C6-C16 aryl alkoxy group, a C6-C16 haloaryloxy group, an C6-C16 arylthio group, a C6-C16 haloarylthio group, an C7-C18 aralkyl group, a C7-C18 haloaralkyl group, an C7-C18 arylalkoxy group, a C7-C18 haloarylalkoxy group, a thiol group, a pentafluorosulfuranyl group, a C3-C12 trialkylsilyl group, a C5-C14 trialkylsilyl ethynyl group, an C1-C6 alkylsulfon yl group, a C1-C6 haloalkylsulf onyl group, a C6-C16
arylsulfonylnyl group, a C6-C16 haloarylsulfonyl group, an
C1-C6 alkylsulf inyl group, a C1-C6 haloalkylsulfonyl group,
an C6-C16 arylsulfonyl group or a C6-C16 haloarylsulfonyl group; and

R^{300}, R^{320}, R^{330} and R^{340} represent independently of each
other a hydrogen atom or a halogen atom;

R^2, R^3, R^4 and R^5 represent a hydrogen atom;

R^6 represents an aminocarbonyl group optionally having
C1-C6 alkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenylnyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, a C3-C6 cycloalkynyl group, a C3-C6 halocycloalkynyl group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, a C3-C6 cycloalkylthio group, a C3-C6 halocycloalkylthio group, an
C3-C6 alkenyloxynly group, an C3-C6 alkynlyloxynly group, a C3-C6 haloalkenyloxynly group, a C3-C6 haloalkynlyloxynly group, an C3-C6 alkylthiol group, an C3-C6 haloalkylthiol group, a C3-C6 cycloalkylthiol group, a C3-C6 halocycloalkylthiol group, an
C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy
group, an C2-C6 acylthio group, an C2-C6 alkoxy carbonyl
group, a hydroxyl group, a thiol group, an amino group, an
C1-C6 alkylamino group, a pentfluorosulfuranyl group, a
C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl
group, an C1-C4 alkylsulfonyl group, a C1-C4 haloalkylsulfonyl group, an C1-C4 alkylsulf inyl group, a
C1-C4 haloalkylsulf inyl group, an C2-C5 alkoxyalkyl group
or an C2-C5 alkylthioalkyl group;
R\(^7\), R\(^8\) and R\(^9\) represent independently of each other a hydrogen atom or a fluorine atom;
R\(^{10}\) represents a methyl group; and
X represents an oxygen atom.

[0170]
a tetrazolinone compound wherein
R\(^1\) represents a group represented by a formula (3):

![Formula](image)

[wherein
R\(^{31}\) represents a hydrogen atom, a halogen atom, an Cl-C6 alkyl group, a Cl-C6 haloalkyl group, an Cl-C6 alkoxy group, a Cl-C6 haloalkoxy group, an Cl-C6 alkylthio group, a Cl-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group; and
R\(^{30}\), R\(^{32}\), R\(^{33}\) and R\(^{34}\) represent independently of each other a hydrogen atom or a halogen atom);
R\(^2\), R\(^3\), R\(^4\), R\(^5\), R\(^7\), R\(^8\) and R\(^9\) represent a hydrogen atom;
R\(^6\) represents an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R\(^{10}\) represents a methyl group; and
X represents an oxygen atom.

[0171]

a tetrazolinone compound wherein

\(R^1 \) represents a group represented by a formula (3):

\[
\begin{array}{c}
\text{R}^{31} \\
\text{R}^{32} \\
\text{R}^{33} \\
\text{R}^{34}
\end{array}
\]

(3)

[wherein

\(R^{31} \) represents a hydrogen atom, a halogen atom, an Cl-C3 alkyl group, a 'Cl-C3 haloalkyl group, an Cl-C3 alkoxy group, a Cl-C3 haloalkoxyl group, an Cl-C3 alkylthio group, a Cl-C3 haloalkyl thio group, a nitro group or a cyano group; and

\(R^{30}, R^{32}, R^{33} \) and \(R^{34} \) represent independently of each other a hydrogen atom or a halogen atom;]

\(R^2, R^3, R^4, R^5, R^7, R^8 \) and \(R^9 \) represent a hydrogen atom;

\(R^6 \) represents an C2-C3 alkenyl group, an C2-C3 alkynyl group or a C3-C4 cycloalkyl group;

\(R^{10} \) represents a methyl group; and

\(X \) represents an oxygen atom.

[0172]

a tetrazolinone compound wherein

\(R^1 \) represents a group represented by a formula (3):

\[
\begin{array}{c}
\text{R}^{31} \\
\text{R}^{32} \\
\text{R}^{33} \\
\text{R}^{34}
\end{array}
\]

(3)
[wherein

\(R^3\) represents a halogen atom, a methyl group, an ethyl group or a methoxy group; and

\(R^{30}, R^{32}, R^{33}\) and \(R^{34}\) represent independently of each other a hydrogen atom or a fluorine atom;]

\(R^2, R^3, R^4, R^5, R^7, R^8\) and \(R^9\) represent a hydrogen atom;

\(R^6\) represents a cyclopropyl group;

\(R^{10}\) represents a methyl group; and

\(X\) represents an oxygen atom.

[0173]
a tetrazolinone compound wherein

\(R^1\) represents a group represented by a formula (3):

\[
\begin{array}{c}
\text{R}^3_1 \\
\text{R}^3_2 \\
\text{R}^3_3 \\
\text{X} \\
\end{array}
\]

[wherein

\(R^{31}\) represents a halogen atom, an \(C_1-C_6\) alkyl group, an \(C_1-C_6\) alkoxy group, an \(C_1-C_6\) alkylthio group or a hydrogen atom; and

\(R^{30}, R^{32}, R^{33}\) and \(R^{34}\) represent independently of each other a halogen atom or a hydrogen atom;]

\(R^2, R^3, R^4, R^5, R^7, R^8\) and \(R^9\) represent a hydrogen atom;

\(R^6\) represents an \(C_1-C_6\) alkyl group;

\(R^{10}\) represents an \(C_1-C_6\) alkyl group; and

\(X\) represents an oxygen atom.
a tetrazolinone compound wherein

\[R^1 \text{ represents a group represented by a formula (3):} \]

\[
\begin{array}{c}
R^{31} \\
\downarrow \\
R^{32} \\
\downarrow \\
R^{30} \\
\end{array}
\]

[wherein

\[R^{31} \text{ represents a fluorine atom, a chlorine atom, a bromine atom, a methyl group, a methoxy group, a methylthio group or a hydrogen atom; and} \]

\[R^{30}, R^{32}, R^{33} \text{ and } R^{34} \text{ represent independently of each other a fluorine atom or a hydrogen atom}; \]

\[R^2, R^3, R^4, R^5, R^7, R^8 \text{ and } R^9 \text{ represent a hydrogen atom;} \]

\[R^6 \text{ represents a methyl group;} \]

\[R^{10} \text{ represents a methyl group; and} \]

\[X \text{ represents an oxygen atom.} \]

a tetrazolinone compound wherein

\[R^1 \text{ represents a group represented by a formula (3):} \]

\[
\begin{array}{c}
R^{31} \\
\downarrow \\
R^{32} \\
\downarrow \\
R^{30} \\
\end{array}
\]

[wherein

\[R^{31} \text{ represents a halogen atom, an C1–C6 alkyl group, an C1–C6 alkoxy group, an C1–C6 alkylthio group or a} \]
hydrogen atom; and

R 30, R 32, R 33 and R 34 represent independently of each other a halogen atom or a hydrogen atom;

R 2, R 3, R 4, R 5, R 7, R 8 and R 9 represent a hydrogen atom;

R 6 represents a methyl group;

R 10 represents an C\textsubscript{1}-C\textsubscript{6} alkyl group; and

X represents an oxygen atom.

[0176]
a tetrazolinone compound wherein

R 1 represents a group represented by a formula (40):

[wherein

R 370 represents an aminosulfonyl group optionally having C\textsubscript{1}-C\textsubscript{6} alkyl group or C\textsubscript{6}-C\textsubscript{12} aryl group, an aminocarbonyl group optionally having C\textsubscript{1}-C\textsubscript{6} alkyl group, a hydrogen atom, a halogen atom, an C\textsubscript{1}-C\textsubscript{6} alkyl group, a C\textsubscript{1}-C\textsubscript{6} haloalkyl group, an C\textsubscript{2}-C\textsubscript{6} alkenyl group, a C\textsubscript{2}-C\textsubscript{6} haloalkenyl group, an C\textsubscript{2}-C\textsubscript{6} alkenyl group, a C\textsubscript{2}-C\textsubscript{6} haloalkynyl group, a C\textsubscript{3}-C\textsubscript{6} cycloalkyl group, a C\textsubscript{3}-C\textsubscript{6} cycloalkenyl group, a C\textsubscript{3}-C\textsubscript{6} cycloalkynyl group, a C\textsubscript{3}-C\textsubscript{6} cycloalkyl group, a C\textsubscript{3}-C\textsubscript{6} cycloalkyloxy group, a C\textsubscript{3}-C\textsubscript{6} cycloalkoxy group, a C\textsubscript{3}-C\textsubscript{6} cycloalkythio group, an
C3-C6 alkenyloxy group, an C3-C6 alkynyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynyloxy group, an C3-C6 alkenylthio group, an C3-C6 alkynylthio group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, a C2-C6 haloacyloxy group, a C2-C6 acylthio group, a C2-C6 haloacylthio group, a hydroxycarbonyl group, a formyl group, an C2-C6 alkoxy carbonyl group, a nitro group, a cyano group, a hydroxyl group, an C6-C16 aryl group, a C6-C16 haloaryl group, an C6-C16 aryloxy group, a C6-C16 haloaryloxy group, an C6-C16 arylthio group, a C6-C16 haloarylthio group, an C7-C18 aralkyl group, a C7-G18 haloaralkyl group, an C7-C18 arylalkoxy group, a C7-C18 haloarylalkoxy group, a thiol group, a pentafluorosulfuranyl group, a C3-C12 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C6 alkylsulf onyl group, a C1-C6 haloalkylsulf onyl group, an C6-C16 arylsulf onyl group, a C6-C16 haloarylsulf onyl group, an C1-C6 alkylsulf inyl group, a C1-C6 haloalkylsulf inyl group, an C6-C16 arylsulf inyl group or a C6-C16 haloarylsulf inyl group; and

R350, R360, R380 and R390 represent independently of each other a hydrogen atom or halogen atom; R2, R3, R4 and R5 represent a hydrogen atom; R6 represents a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an
haloalkoxy group, a nitro group or a cyano group;

R\(^7\), R\(^8\) and R\(^9\) represent independently of each other a hydrogen atom or a fluorine atom;

R\(^10\) represents a methyl group; and

X represents an oxygen atom.

[0177]

a tetrazolinone compound wherein

R\(^1\) represents a group represented by a formula (4):

\[
\begin{array}{c}
\text{R}^{36} \\
\text{R}^{37} \\
\text{R}^{35} \\
\text{R}^{38} \\
\text{R}^{39}
\end{array}
\]

(4)

[wherein

R\(^{37}\) represents a hydrogen atom, a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group; and

R\(^{35}\), R\(^{36}\), R\(^{38}\) and R\(^{39}\) represent independently of each other a hydrogen atom or a halogen atom];

R\(^2\), R\(^3\), R\(^4\), R\(^5\), R\(^7\), R\(^8\) and R\(^9\) represent a hydrogen atom;

R\(^6\) represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C1-C3 alkoxy group or a C1-C3 haloalkoxy group;

R\(^{10}\) represents a methyl group; and

X represents an oxygen atom.
a tetrazolinone compound wherein

R^1 represents a group represented by a formula (4):

\[\begin{array}{c}
\text{R}^{35}\text{R}^{36}\text{R}^{37}
\end{array} \]

(wherein

R^{37} represents a hydrogen atom, a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C3 alkylthio group, a C1-C3 haloalkyl thio group, a nitro group or a cyano group; and

R^{35}, R^{36}, R^{38} and R^{39} represent independently of each other a hydrogen atom or a halogen atom);

$R^2, R^3, R^4, R^5, R^7, R^8$ and R^9 represent a hydrogen atom;

R^6 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C1-C3 alkoxy group or a C1-C3 haloalkoxy group;

R^{10} represents a methyl group; and

X represents an oxygen atom.

a tetrazolinone compound wherein

R^1 represents a group represented by a formula (4):

\[\begin{array}{c}
\text{R}^{35}\text{R}^{36}\text{R}^{37}
\end{array} \]
[wherein

R₃⁷ represents a halogen atom, a methyl group, an ethyl group or a methoxy group; and

R₃⁵, R₃⁶, R₃⁸ and R₃⁹ represent independently of each other a hydrogen atom or a fluorine atom];

R², R³, R⁴, R⁵, R⁷, R⁸ and R⁹ represent a hydrogen atom;
R⁶ represents a chlorine atom, a bromine atom, a methyl group, an ethyl group or a methoxy group;
R¹₀ represents a methyl group; and

X represents an oxygen atom.

[0180]

a tetrazolinone compound wherein

R¹ represents a group represented by a formula (40):

\[
\begin{array}{c}
\begin{array}{c}
\text{R}^{350} \quad \text{R}^{370} \\
\text{R}^{360} \\
\text{R}^{380} \\
\text{R}^{390}
\end{array}
\end{array}
\]

(40)

[wherein

R₃⁷₀ represents an aminosulfonlyl group optionally having C₁-C₆ alkyl group or C₆-C₁₂ aryl group, an aminocarbonyl group optionally having C₁-C₆ alkyl group, a hydrogen atom, a halogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, an C₂-C₆ alkenyl group, a C₂-C₆ haloalkenyl group, an C₂-C₆ alkynyl group, a C₂-C₆ haloalkynyl group, a C₃-C₆ cycloalkyl group, a C₃-C₆ halocycloalkyl group, an C₁-C₆ alkoxy group, a C₁-C₆
haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 cycloalkylthio group, an C3-C6 alkenyloxy group, an C3-C6 alkynylthio group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynylthio group, a C3-C6 alkenylthio group, an C3-C6 alkynylthio group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynylthio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, a hydroxycarbonyl group, a formyl group, an C2-C6 alkoxy carbonyl group, a nitro group, a cyano group, a hydroxyl group, an C6-C16 aryl group, a C6-C16 haloaryl group, an C6-C16 arylthio group, a C6-C16 haloarylthio group, an C7-C18 aralkyl group, a C7-C18 haloaralkyl group, an C7-C18 arylalkoxy group, a C7-C18 haloaralkoxy group, a thiol group, a pentafluorosulfuranyl group, a C3-C12 trialkylsilylethynyl group, a C5-C14 trialkylsilylethynyl group, an C1-C6 alkylsulfonyl group, a C1-C6 haloalkylsulfonyl group, an C6-C16 arylsulfonynyl group, a C6-C16 haloaryl sulfonyl group, an C1-C6 alkylsulfiny group, an C1-C6 haloalkylsulfiny group, an C6-C16 arylsulfiny group or C6-C16 haloaryl sulfiny group; and

R^{350}, R^{360}, R^{380} and R^{390} represent independently of each other a hydrogen atom or a halogen atom;
R^2, R^3, R^4 and R^5 represent a hydrogen atom;

R^6 represents an aminocarbonyl group optionally having C1-C6 alkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 cycloalkylthio group, a C3-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, an C2-C6 alkoxy carbonyl group, a hydroxyl group, a thiol group, an amino group, an C1-C6 alkylamino group, a pentfluorosulfuranyl group, a C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C4 alkylsulfonyl group, a C1-C4 haloalkylsulfonyl group, an C1-C4 alkylsulfanyl group, a C1-C4 haloalkylsulfanyl group, an C2-C5 alkoxyalkyl group or an C2-C5 alkylthioalkyl group;

R^7, R^8 and R^9 represent independently of each other a hydrogen atom or a fluorine atom;

R^{10} represents a methyl group; and

X represents an oxygen atom.
[0181]

a tetrazolinone compound wherein

\[R^1 \text{ represents a group represented by a formula (4)}: \]

\[
\begin{array}{c}
R^{36} \\
R^{37} \\
R^{38} \\
R^{39}
\end{array}
\]

(4)

[wherein

R^{37} \text{ represents a hydrogen atom, a halogen atom, an } C_1- \text{C}_6 \text{ alkyl group, a } C_1-\text{C}_6 \text{ haloalkyl group, an } C_1-\text{C}_6 \text{ alkoxy group, a } C_1-\text{C}_6 \text{ haloalkoxy group, an } C_1-\text{C}_6 \text{ alkylthio group, an } C_1-\text{C}_6 \text{ haloalkylthio group, an } C_2-\text{C}_6 \text{ acyl group, a } C_2-\text{C}_6 \text{ haloacyl group, a nitro group or a cyano group; and} \]

R^{35}, R^{36}, R^{38} \text{ and } R^{39} \text{ represent independently of each other a hydrogen atom or a halogen atom};

R^2, R^3, R^4, R^5, R^7, R^8 \text{ and } R^9 \text{ represent a hydrogen atom;}

R^6 \text{ represents an } C_2-\text{C}_3 \text{ alkenyl group, an } C_2-\text{C}_3 \text{ alkynyl group, a } C_3-\text{C}_4 \text{ cycloalkyl group, an } C_1-\text{C}_2 \text{ alkylthio group, a } C_1-\text{C}_2 \text{ haloalkylthio group or an } C_1-\text{C}_4 \text{ alkylamino group;}

R^{10} \text{ represents a methyl group; and}

X \text{ represents an oxygen atom.}]

[0182]

a tetrazolinone compound wherein

\[R^1 \text{ represents a group represented by a formula (4)}: \]

\[
\begin{array}{c}
R^{35} \\
R^{37} \\
R^{38} \\
R^{39}
\end{array}
\]

(4)
[wherein

R_{37} represents a hydrogen atom, a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C3 alkylthio group, a C1-C3 haloalkylthio group, a nitro group or a cyano group; and

R_{35}, R_{36}, R_{38} and R_{39} represent independently of each other a hydrogen atom or a halogen atom;]

R_{2}, R_{3}, R_{4}, R_{5}, R_{7}, R_{8} and R_{9} represent a hydrogen atom;

R_{6} represents an C2-C3 alkenyl group, an C2-C3 alkynyl group or a C3-C4 cycloalkyl group;

R_{10} represents a methyl group; and

X represents an oxygen atom.

[0183]

a tetrazolinone compound wherein

R_{4} represents a group represented by a formula (4)

![Formula (4)]

[wherein

R_{37} represents a halogen atom, a methyl group, an ethyl group or a methoxy group; and

R_{35}, R_{36}, R_{38} and R_{39} represent independently of each other a hydrogen atom or a fluorine atom;]

R_{2}, R_{3}, R_{4}, R_{5}, R_{7}, R_{8} and R_{9} represent a hydrogen atom;
R^6 represents an cyclopropyl group;
R^{10} represents a methyl group; and
X represents an oxygen atom.

[0184]
a tetrazolinone compound wherein

R^1 represents a group represented by a formula (4):

\[
\begin{array}{c}
\text{(4)} \\
\end{array}
\]

[wherein

R^{37} represents a halogen atom, an C1-C6 alkyl group, an C1-C6 alkoxy group, an C1-C6 alkylthio group or a hydrogen atom; and

R^{35}, R^{36}, R^{38} and R^{39} represent independently of each other a halogen atom or a hydrogen atom];

R^2, R^3, R^4, R^5, R^7, R^8 and R^9 represent a hydrogen atom;

R^6 represents an C1-C6 alkyl group, a halogen atom, a C3-C6 cycloalkyl group or an C1-C6 alkoxy group;

R^{10} represents an C1-C6 alkyl group; and

X represents an oxygen atom.

[0185]
a tetrazolinone compound wherein

R^1 represents a group represented by a formula (4):
R_{37} represents a fluorine atom, a chlorine atom, a bromine atom, a methyl group, a methoxy group, a methylthio group or a hydrogen atom; and

R_{35}, R_{36}, R_{38} and R_{39} represent a hydrogen atom;

R_{2}, R_{3}, R_{4}, R_{5}, R_{7}, R_{8} and R_{9} represent a hydrogen atom;

R_{6} represents a methyl group, an ethyl group, a chlorine atom, a cyclopropyl group or a methoxy group;

R_{10} represents a methyl group; and

X represents an oxygen atom.

[0186]
a tetrazolinone compound wherein

R_{1} represents a group represented by a formula (4):

wherein

R_{37} represents a halogen atom, an C1-C6 alkyl group, an C1-C6 alkoxy group, an C1-C6 alkylthio group or a hydrogen atom; and

R_{35}, R_{36}, R_{38} and R_{39} represent independently of each other a halogen atom or a hydrogen atom;
R², R³, R⁴, R⁵, R⁷, R⁸ and R⁹ represent a hydrogen atom; R⁶ represents an C1-C6 alkyl group; R¹⁰ represents an C1-C6 alkyl group; and X represents an oxygen atom.

5 [0187]

a tetrazolinone compound wherein

R¹ represents a group represented by a formula (4):

![Formula 4]

[wherein

R³⁷ represents a fluorine atom, a chlorine atom, a bromine atom, a methyl group, a methoxy group, a methyl thio group or a hydrogen atom; and

R³⁵, R³⁶, R³⁸ and R³⁹ represent independently of each other a fluorine atom or a hydrogen atom];

10 R², R³, R⁴, R⁵, R⁷, R⁸ and R⁹ represent a hydrogen atom; R⁶ represents a methyl group or an ethyl group; R¹⁰ represents a methyl group; and X represents an oxygen atom.

[0188]

a tetrazolinone compound wherein

R¹ represents a group represented by a formula (4):
[wherein

\(R^3 \) represents a halogen atom, an \(\text{C}_1-\text{C}_6 \) alkyl group, an \(\text{C}_1-\text{C}_6 \) alkoxy group, an \(\text{C}_1-\text{C}_6 \) alkylthio group or a hydrogen atom;

\(R^{35}, R^{36}, R^{38} \) and \(R^{39} \) represent independently of each other a halogen atom or a hydrogen atom];

\(R^2, R^3, R^4, R^5, R^7, R^8 \) and \(R^9 \) represent a hydrogen atom;

\(R^6 \) represents a methyl group;

\(R^{10} \) represents an \(\text{C}_1-\text{C}_6 \) alkyl group; and

\(X \) represents an oxygen atom.

[0189]
a tetrazolinone compound wherein

\(R^1 \) represents a group represented by a formula (4):

[wherein

\(R^{37} \) represents a fluorine atom, a chlorine atom, a bromine atom, a methyl group, a methoxy group, a methylthio group or a hydrogen atom;

\(R^{35}, R^{36}, R^{38} \) and \(R^{39} \) represent independently of each other a fluorine atom or a hydrogen atom];
R2, R3, R4, R5, R7, R8 and R9 represent a hydrogen atom;

R6 represents a methyl group;

R10 represents a methyl group; and

X represents an oxygen atom.

[0190]

a tetrazolinone compound wherein

R1 represents a group represented by a formula (4):

\begin{center}
\begin{tikzpicture}
 \node at (0,0) [circle,draw] (c1) {};
 \node at (1,0) [circle,draw] (c2) {};
 \node at (0,-1) [circle,draw] (c3) {};
 \node at (1,-1) [circle,draw] (c4) {};
 \draw (c1) -- (c2);
 \draw (c1) -- (c3);
 \draw (c1) -- (c4);
 \draw (c1) -- (0,-0.5);
 \draw (c1) -- (0,-1.5);
 \draw (c2) -- (1,-0.5);
 \draw (c2) -- (1,-1.5);
 \draw (c3) -- (0,-0.5);
 \draw (c3) -- (0,-1.5);
 \draw (c4) -- (1,-0.5);
 \draw (c4) -- (1,-1.5);
\end{tikzpicture}
\end{center}

\begin{center}
(4)
\end{center}

[wherein

R37 represents an C1-C6 alkoxy group; and

R35, R36, R38 and R39 represent a hydrogen atom];

R2, R3, R4, R5, R7, R8 and R9 represent a hydrogen atom;

R6 represents an C3-C6 cycloalkyl group;

R10 represents an C1-C6 alkyl group; and

X represents an oxygen atom.

[0191]

a tetrazolinone compound wherein

R1 represents a group represented by a formula (4):

\begin{center}
\begin{tikzpicture}
 \node at (0,0) [circle,draw] (c1) {};
 \node at (1,0) [circle,draw] (c2) {};
 \node at (0,-1) [circle,draw] (c3) {};
 \node at (1,-1) [circle,draw] (c4) {};
 \draw (c1) -- (c2);
 \draw (c1) -- (c3);
 \draw (c1) -- (c4);
 \draw (c1) -- (0,-0.5);
 \draw (c1) -- (0,-1.5);
 \draw (c2) -- (1,-0.5);
 \draw (c2) -- (1,-1.5);
 \draw (c3) -- (0,-0.5);
 \draw (c3) -- (0,-1.5);
 \draw (c4) -- (1,-0.5);
 \draw (c4) -- (1,-1.5);
\end{tikzpicture}
\end{center}

\begin{center}
(4)
\end{center}

[wherein

R37 represents a methoxy group; and

R₃₅, R₃₆, R₃₈ and R₃₉ represent a hydrogen atom;
R₂, R₃, R₄, R₅, R₇, R₈ and R₉ represent a hydrogen atom;
R⁶ represents a cyclopropyl group;
R¹⁰ represents a methyl group; and
X represents an oxygen atom.

[0192]
a tetrazolinone compound wherein
R¹ represents a group represented by a formula (4):

![Formula 4]

[wherein]
R₃₇ represents an C1-C6 alkoxy group; and
R₃₅, R₃₆, R₃₈ and R₃₉ represent a hydrogen atom;
R₂, R₃, R₄, R₅, R₇, R₈ and R₉ represent a hydrogen atom;
R⁶ represents a halogen atom;
R¹⁰ represents an C1-C6 alkyl group; and
X represents an oxygen atom.

[0193]
a tetrazolinone compound wherein
R¹ represents a group represented by a formula (4):

![Formula 4]

[wherein]
R37 represents a methoxy group; and
R35, R36, R38 and R39 represent a hydrogen atom;
R2, R3, R4, R5, R7, R8 and R9 represent a hydrogen atom;
R6 represents a chlorine atom;
R10 represents a methyl group; and
X represents an oxygen atom.

[0194]
a tetrazolinone compound wherein
R1 represents a group represented by a formula (4):

![Diagram]

[wherein
R37 represents an C1-C6 alkoxy group or a hydrogen atom, and
R35, R36, R38 and R39 represent a hydrogen atom;
R2, R3, R4, R5, R7, R8 and R9 represent a hydrogen atom;
R6 represents an C1-C6 alkoxy group;
R10 represents an C1-C6 alkyl group; and
X represents an oxygen atom.]

[0195]
a tetrazolinone compound wherein
R1 represents a group represented by a formula (4):
[wherein

R^3_7 represents a methoxy group; and

R^3_5, R^3_6, R^3_8 and R^3_9 represent a hydrogen atom]

R^2, R^3, R^4, R^5, R^7, R^8 and R^9 represent a hydrogen atom;

R^6 represents a methoxy group;

R^{10} represents a methyl group; and

X represents an oxygen atom.

[0196]

Also, examples of an embodiment of the present tetrazolinone compound Y include compounds wherein the substituents in the formula (8) represent the following ones.

[0197]

a tetrazolinone compound wherein

R^2_7 represents a halogen atom, an Cl-C3 alkyl group, a Cl-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an Cl-C3 alkoxy group, a Cl-C3 haloalkoxy group, an Cl-C2 alkylthio group, a Cl-C2 haloalkylthio group or an Cl-C4 alkylamino group.

[0198]

a tetrazolinone compound wherein

R^2_7 represents a chlorine atom, a bromine atom, a
methyl group, an ethyl group, a cyclopropyl group or methoxy group.

[0199]
a tetrazolinone compound wherein

R²⁷ represents a halogen atom, a methyl group, a trifluoromethyl group or methoxy group.

[0200]
a tetrazolinone compound wherein

R²⁷ represents an C₂-C₃ alkyl group, a C₁-C₃ haloalkyl group excluding trifluoromethyl group, an C₂-C₃ alkenyl group, an C₂-C₃ alkynyl group, a C₃-C₄ cycloalkyl group, an C₂-C₃ alkoxy group, a C₁-C₃ haloalkoxy group, an C₁-C₂ alkylthio group, a C₁-C₂ haloalkylthio group or an C₁-C₄ alkylamino group.

[0201]
a tetrazolinone compound wherein R²⁷ represents a halogen atom.

[0202]
a tetrazolinone compound wherein R²⁷ represents an C₁-C₃ alkyl group.

a tetrazolinone compound wherein R²⁷ represents a C₁-C₃ haloalkyl group.

a tetrazolinone compound wherein R²⁷ represents an C₂-C₃ alkenyl group.

a tetrazolinone compound wherein R²⁷ represents an C₂-C₃ alkenyl group.
C3 alkynyl group.

a tetrazolinone compound wherein R\(^{27}\) represents a C3-C4 cycloalkyl group.

a tetrazolinone compound wherein R\(^{27}\) represents an Cl-C3 alkoxy group.

a tetrazolinone compound wherein R\(^{27}\) represents a Cl-C3 haloalkoxy group.

a tetrazolinone compound wherein R\(^{27}\) represents an Cl-C2 alkylthio group.

a tetrazolinone compound wherein R\(^{27}\) represents an Cl-C4 alkylamino group.

[0203]
a tetrazolinone compound wherein R\(^{27}\) represents a chlorine atom, a bromine atom, a methyl group or a methoxy group.

a tetrazolinone compound wherein R\(^{27}\) represents an ethyl group or cyclopropyl group.

a tetrazolinone compound wherein R\(^{27}\) represents a chlorine atom.

a tetrazolinone compound wherein R\(^{27}\) represents a bromine atom.

a tetrazolinone compound wherein R\(^{27}\) represents a methyl group.

a tetrazolinone compound wherein R\(^{27}\) represents an ethyl group.
a tetrazolinone compound wherein R^{27} represents a cyclopropyl group.
a tetrazolinone compound wherein R^{27} represents a methoxy group.

[0204]
a tetrazolinone compound wherein R^{28} represents a methyl group or a hydrogen atom.
a tetrazolinone compound wherein R^{28} represents a methysmethyl group.
a tetrazolinone compound wherein R^{28} represents a hydrogen atom.

[0205]
a tetrazolinone compound wherein A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, a (C1-C6 haloalkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a (C6-C16 haloarylsulf onyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclcyl group (with the proviso that the heterocyclcyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or
sulfur atoms, and the nitrogen atom being the ring-
constituent atom for the heterocyclyl group and a methyl
group connects to each other), a formyl group or an C2-C6
alkoxycarbonyl group.

a tetrazolinone compound wherein A represents a methyl
group, a halomethyl group, a hydroxymethyl group, an (C1-C3
alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl
group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl
group or an C2-C6 alkoxy carbonyl group.

[0206]
a tetrazolinone compound wherein A represents a methyl
group, a chloromethyl group or a bromomethyl group.

[0207]
a tetrazolinone compound wherein A represents a
hydroxymethyl group, a (C1-C3 alkoxy) methyl group, an (C1-
C6 alky lsulf onyloxy) methyl group, an (C6-C16
arylsulfonyloxy) methyl group, a formyl group or an C2-C6
alk oxycarbonyl group.

[0208]
a tetrazolinone compound wherein A represents a methyl
group.

[0209]
a tetrazolinone compound wherein A represents a halomethyl group.

[0210]
a tetrazolinone compound wherein A represents a chloromethyl group.

[0211]
a tetrazolinone compound wherein A represents a
a tetrazolinone compound wherein A represents a hydroxymethyl group.
a tetrazolinone compound wherein A represents an (Cl-C₃ alkoxy) methyl group.
a tetrazolinone compound wherein A represents an (Cl-C₃ alkylthio) methyl group.
a tetrazolinone compound wherein A represents an (Cl-C₆ acyloxy) methyl group.
a tetrazolinone compound wherein A represents an (Cl-C₆ alkylsulfonyloxy) methyl group.
a tetrazolinone compound wherein A represents a (Cl-C₆ haloalkylsulfonyloxy) methyl group.
a tetrazolinone compound wherein A represents an (C₆-C₁₆ arylsulfonyloxy) methyl group.
a tetrazolinone compound wherein A represents a (C₆-C₁₆ haloarylsulfonyloxy) methyl group.
a tetrazolinone compound wherein A represents an (Cl-C₆ alkylamino) methyl group.
a tetrazolinone compound wherein A represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom
being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).

a tetrazolinone compound wherein A represents an C2-C6 alkoxy carbonyl group.

[0208]

a tetrazolinone compound wherein R27 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and R28 represents a methyl group or a hydrogen atom.

a tetrazolinone compound wherein R27 represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group; and R28 represents a methyl group or a hydrogen atom.

a tetrazolinone compound wherein R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and R28 represents a methyl group or a hydrogen atom.

[0209]

a tetrazolinone compound wherein R27 represents a
halogen atom; and R^{28} represents methyl group or a hydrogen atom.

a tetrazolinone compound wherein R^{27} represents an Cl-C3 alkyl group; and R^{28} represents a methyl group or a hydrogen atom.

5

a tetrazolinone compound wherein R^{27} represents a Cl-C3 haloalkyl group; and R^{28} represents a methyl group or a hydrogen atom.

a tetrazolinone compound wherein R^{27} represents an C2-C3 alkenyl group; and R^{28} represents a methyl group or a hydrogen atom.

a tetrazolinone compound wherein R^{27} represents an C2-C3 alkynyl group; and R^{28} represents a methyl group or a hydrogen atom.

10 a tetrazolinone compound wherein R^{27} represents an C3-C4 cycloalkyl group; and R^{28} represents a methyl group or a hydrogen atom.

a tetrazolinone compound wherein R^{27} represents an Cl-C3 alkoxy group; and R^{28} represents a methyl group or a hydrogen atom.

15 a tetrazolinone compound wherein R^{27} represents a Cl-C3 haloalkoxy group; and R^{28} represents a methyl group or a hydrogen atom.

a tetrazolinone compound wherein R^{27} represents an Cl-C2 alkylthio group; and R^{28} represents a methyl group or a
hydrogen atom.
a tetrazolinone compound wherein \(R^{27} \) represents an Cl-C4 alkylamino group; and \(R^{28} \) represents a methyl group or a hydrogen atom.
a tetrazolinone compound wherein \(R^{27} \) represents a chlorine atom, a bromine atom, a methyl group or a methoxy group; and \(R^{28} \) represents a methyl group or a hydrogen atom.
a tetrazolinone compound wherein \(R^{27} \) represents an ethyl group or a cyclopropyl group; and \(R^{28} \) represents a methyl group or a hydrogen atom.
a tetrazolinone compound wherein \(R^{27} \) represents a chlorine atom; and \(R^{28} \) represents a methyl group or a hydrogen atom.
a tetrazolinone compound wherein \(R^{27} \) represents a bromine atom; and \(R^{28} \) represents a methyl group or a hydrogen atom.
a tetrazolinone compound wherein \(R^{27} \) represents an ethyl group; and \(R^{28} \) represents a methyl group or a hydrogen atom.
a tetrazolinone compound wherein \(R^{27} \) represents a cyclopropyl group; and \(R^{28} \) represents a methyl group or a hydrogen atom.
a tetrazolinone compound wherein \(R^{27} \) represents a methoxy group; and \(R^{28} \) represents a methyl group or a hydrogen atom.
a tetrazolinone compound wherein R_{27} represents a halogen atom, an C_1-C_3 alkyl group, a C_1-C_3 haloalkyl group, an C_2-C_3 alkenyl group, an C_2-C_3 alkynyl group, a C_3-C_4 cycloalkyl group, an C_1-C_3 alkoxy group, a C_1-C_3 haloalkoxy group, an C_1-C_2 alkylthio group, a C_1-C_2 haloalkylthio group or an C_1-C_4 alkylamino group; and R_{28} represents a methyl group.

a tetrazolinone compound wherein R_{27} represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group; and R_{28} represents a methyl group.

a tetrazolinone compound wherein R_{27} represents an C_2-C_3 alkyl group, a C_1-C_3 haloalkyl group excluding trifluoromethyl group, an C_2-C_3 alkenyl group, an C_2-C_3 alkynyl group, a C_3-C_4 cycloalkyl group, an C_2-C_3 alkoxy group, a C_1-C_3 haloalkoxy group, an C_1-C_2 alkylthio group, a C_1-C_2 haloalkylthio group or an C_1-C_4 alkylamino group; and R_{28} represents a methyl group.

a tetrazolinone compound wherein R_{27} represents a halogen atom; and R_{28} represents a methyl group.

a tetrazolinone compound wherein R_{27} represents a C_1-C_3 alkyl group; and R_{28} represents a methyl group.

a tetrazolinone compound wherein R_{27} represents a C_1-C_3 haloalkyl group; and R_{28} represents a methyl group.
a tetrazolinone compound wherein R_{27} represents a Cl-C$_3$ alkenyl group; and R_{28} represents a methyl group.

a tetrazolinone compound wherein R_{27} represents a Cl-C$_3$ alkynyl group; and R_{28} represents a methyl group.

a tetrazolinone compound wherein R_{27} represents a C$_3$-C$_4$ cycloalkyl group; and R_{28} represents a methyl group.

a tetrazolinone compound wherein R_{27} represents a Cl-C$_3$ alkoxy group; and R_{28} represents a methyl group.

a tetrazolinone compound wherein R_{27} represents a Cl-C$_3$ haloalkoxy group; and R_{28} represents a methyl group.

a tetrazolinone compound wherein R_{27} represents an Cl-C$_2$ alkylthio group; and R_{28} represents a methyl group.

a tetrazolinone compound wherein R_{27} represents an Cl-C$_4$ alkylamino group; and R_{28} represents a methyl group.

a tetrazolinone compound wherein R_{27} represents a chlorine atom, a bromine atom, a methyl group or a methoxy group; and R_{28} represents a methyl group.

a tetrazolinone compound wherein R_{27} represents an ethyl group or a cyclopropyl group; and R_{28} represents a methyl group.

a tetrazolinone compound wherein R_{27} represents a chlorine atom; and R_{28} represents a methyl group.

a tetrazolinone compound wherein R_{27} represents a bromine atom; and R_{28} represents a methyl group.

a tetrazolinone compound wherein R_{27} represents a
methyl group; and \(R^{28} \) represents a methyl group.

A tetrazolinone compound wherein \(R^{27} \) represents an ethyl group; and \(R^{28} \) represents a methyl group.

A tetrazolinone compound wherein \(R^{27} \) represents a cyclopropyl group; and \(R^{28} \) represents a methyl group.

A tetrazolinone compound wherein \(R^{27} \) represents a methoxy group; and \(R^{28} \) represents a methyl group.

[0212]

A tetrazolinone compound wherein \(R^{27} \) represents a halogen atom, an \(\text{C}_1-\text{C}_3 \) alkyl group, a \(\text{C}_1-\text{C}_3 \) haloalkyl group, an \(\text{C}_2-\text{C}_3 \) alkenyl group, an \(\text{C}_2-\text{C}_3 \) alkynyl group, a \(\text{C}_3-\text{C}_4 \) cycloalkyl group, an \(\text{C}_1-\text{C}_3 \) alkoxy group, a \(\text{C}_1-\text{C}_3 \) haloalkoxy group, an \(\text{C}_1-\text{C}_2 \) alkylthio group, a \(\text{C}_1-\text{C}_2 \) haloalkylthio group or an \(\text{C}_1-\text{C}_4 \) alkylamino group; and \(R^{28} \) represents a hydrogen atom.

A tetrazolinone compound wherein \(R^{27} \) represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group; and \(R^{28} \) represents a hydrogen atom.

A tetrazolinone compound wherein \(R^{27} \) represents an \(\text{C}_2-\text{C}_3 \) alkyl group, a \(\text{C}_1-\text{C}_3 \) haloalkyl group excluding trifluoromethyl group, an \(\text{C}_2-\text{C}_3 \) alkenyl group, an \(\text{C}_2-\text{C}_3 \) alkynyl group, a \(\text{C}_3-\text{C}_4 \) cycloalkyl group, an \(\text{C}_2-\text{C}_3 \) alkoxy group, a \(\text{C}_1-\text{C}_3 \) haloalkoxy group, an \(\text{C}_1-\text{C}_2 \) alkylthio group, a \(\text{C}_1-\text{C}_2 \) haloalkylthio group or an \(\text{C}_1-\text{C}_4 \) alkylamino group; and \(R^{28} \) represents a hydrogen atom.
a tetrazolinone compound wherein \(R^{27} \) represents a halogen atom, and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein \(R^{27} \) represents an \(\text{Cl-C}_3 \) alkyl group; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein \(R^{27} \) represents a ClC3 haloalkyl group; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein \(R^{27} \) represents an \(\text{C}_2-\text{C}_3 \) alkenyl group; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein \(R^{27} \) represents an \(\text{C}_2-\text{C}_3 \) alkynyl group; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein \(R^{27} \) represents a \(\text{C}_3 \) cycloalkyl group; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein \(R^{27} \) represents an \(\text{Cl-C}_3 \) alkoxy group; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein \(R^{27} \) represents a ClC3 haloalkoxy group; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein \(R^{27} \) represents an \(\text{Cl-C}_2 \) alkylthio group; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein \(R^{27} \) represents an \(\text{C}_4 \) alkylamino group; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein \(R^{27} \) represents a chlorine atom, a bromine atom, a methyl group or a methoxy group; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein \(R^{27} \) represents an
ethyl group or a cyclopropyl group; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein \(R^{27} \) represents a chlorine atom; and \(R^{28} \) represents a hydrogen atom.

5 a tetrazolinone compound wherein \(R^{27} \) represents a bromine atom; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein \(R^{27} \) represents a methyl group; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein \(R^{27} \) represents an ethyl group; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein \(R^{27} \) represents a cyclopropyl group; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein \(R^{27} \) represents a methoxy group; and \(R^{28} \) represents a hydrogen atom.

[0214]

a tetrazolinone compound wherein \(A \) represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group; and \(R^{28} \) represents a methyl group or a hydrogen atom.

a tetrazolinone compound wherein \(A \) represents a methyl group, a chloromethyl group or a bromomethyl group, and \(R^{28} \) represents a methyl group or a hydrogen atom.

a tetrazolinone compound wherein \(A \) represents a
hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group; and R²⁸ represents a methyl group or a hydrogen atom.

[0215]
a tetrazolinone compound wherein A represents a methyl group, and R²⁸ represents a methyl group or a hydrogen atom.
a tetrazolinone compound wherein A represents a halomethyl group; and R²⁸ represents a methyl group or a hydrogen atom.
a tetrazolinone compound wherein A represents a hydroxymethyl group; and R²⁸ represents a methyl group or a hydrogen atom.
a tetrazolinone compound wherein A represents an (C1-C3 alkoxy) methyl group; and R²⁸ represents a methyl group or a hydrogen atom.
a tetrazolinone compound wherein A represents an (C1-C3 alkylthio) methyl group; and R²⁸ represents a methyl group or a hydrogen atom.
a tetrazolinone compound wherein A represents an (C1-C6 acyloxy) methyl group; and R²⁸ represents a methyl group or a hydrogen atom.
a tetrazolinone compound wherein A represents an (C1-C6 alkylsulfonxyloxy) methyl group; and R²⁸ represents a
methyl group or a hydrogen atom.

A tetrazolinone compound wherein A represents a (C1-C6 haloalkylsulf onyloxy) methyl group; and R^28 represents a methyl group or a hydrogen atom.

A tetrazolinone compound wherein A represents an (C6-C16 arylsulf onyloxy) methyl group; and R^28 represents a methyl group or a hydrogen atom.

A tetrazolinone compound wherein A represents (C6-C16 haloarylsulf onyloxy) methyl group; and R^28 represents a methyl group or a hydrogen atom.

A tetrazolinone compound wherein A represents an (C1-C6 alkylamino) methyl group; and R^28 represents a methyl group or a hydrogen atom.

A tetrazolinone compound wherein A represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other); and R^28 represents a methyl group or a hydrogen atom.

A tetrazolinone compound wherein A represents a formyl group.

A tetrazolinone compound wherein A represents C2-C6
alkoxycarbonyl group; and R^{28} represents a methyl group or a hydrogen atom.

[0216] a tetrazolinone compound wherein A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxycarbonyl group; and R^{28} represents a methyl group.

5 a tetrazolinone compound wherein A represents a methyl group, a chloromethyl group or a bromomethyl group; and R^{28} represents a methyl group.

10 a tetrazolinone compound wherein A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxycarbonyl group; and R^{28} represents a methyl group.

[0217] a tetrazolinone compound wherein A represents a methyl group; and R^{28} represents a methyl group.

20 a tetrazolinone compound wherein A represents a halomethyl group; and R^{28} represents a methyl group.

25 a tetrazolinone compound wherein A represents a chloromethyl group; and R^{28} represents a methyl group.

a tetrazolinone compound wherein A represents a
bromomethyl group; and R^{28} represents a methyl group.

A tetrazolinone compound wherein A represents a hydroxymethyl group; and R^{28} represents a methyl group.

A tetrazolinone compound wherein A represents an (Cl-C₃ alkoxy) methyl group; and R^{28} represents a methyl group.

A tetrazolinone compound wherein A represents an (Cl-C₃ alkylthio) methyl group; and R^{28} represents a methyl group.

A tetrazolinone compound wherein A represents an (Cl-C₆ acyloxy) methyl group; and R^{28} represents a methyl group.

A tetrazolinone compound wherein A represents an (Cl-C₆ alkylsulfonxyloxy) methyl group; and R^{28} represents a methyl group.

A tetrazolinone compound wherein A represents a (Cl-C₆ haloalkylsulf onxyloxy) methyl group; and R^{28} represents a methyl group.

A tetrazolinone compound wherein A represents an (C₆-C₁₆ arylsulf onxyloxy) methyl group; and R^{28} represents a methyl group.

A tetrazolinone compound wherein A represents an (C₆-C₁₆ haloaryl sulf onxyloxy) methyl group; and R^{28} represents a methyl group.

A tetrazolinone compound wherein A represents an (Cl-C₆ alkylamino) methyl group; and R^{28} represents a methyl group.
a tetrazolinone compound wherein A represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other); and \(R^{28} \) represents a methyl group.

a tetrazolinone compound wherein A represents a formyl group.

a tetrazolinone compound wherein A represents an C2-C6 alkoxy carbonyl group; and \(R^{28} \) represents a methyl group.

a tetrazolinone compound wherein A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein A represents a methyl group, a chloromethyl group or a bromomethyl group; and \(R^{28} \) represents a hydrogen atom.

a tetrazolinone compound wherein A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group,
C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group; and R²₈ represents a hydrogen atom.

[0219]

a tetrazolinone compound wherein A represents a methyl group, and R²₈ represents a hydrogen atom.

a tetrazolinone compound wherein A represents a halomethyl group; and R²₈ represents a hydrogen atom.

a tetrazolinone compound wherein A represents a chloromethyl group; and R²₈ represents a hydrogen atom.

a tetrazolinone compound wherein A represents a bromomethyl group; and R²₈ represents a hydrogen atom.

a tetrazolinone compound wherein A represents a hydroxymethyl group; and R²₈ represents a hydrogen atom.

a tetrazolinone compound wherein A represents an (Cl-C3 alkoxy) methyl group; and R²₈ represents a hydrogen atom.

a tetrazolinone compound wherein A represents an (Cl-C3 alkylthio) methyl group; and R²₈ represents a hydrogen atom.

a tetrazolinone compound wherein A represents an (Cl-C6 acyloxy) methyl group; and R²₈ represents a hydrogen atom.

a tetrazolinone compound wherein A represents an (Cl-C6 alkylsulf onyloxy) methyl group; and R²₈ represents a hydrogen atom.

a tetrazolinone compound wherein A represents a (Cl-C6
haloalkylsulf onyloxy) methyl group; and \(R^{28} \) represents a hydrogen atom.

A tetrazolinone compound wherein \(A \) represents an (C6-C16 arylsulf onyloxy) methyl group; and \(R^{28} \) represents a hydrogen atom.

A tetrazolinone compound wherein \(A \) represents a (C6-C16 haloarylsulfonyloxy) methyl group; and \(R^{28} \) represents a hydrogen atom.

A tetrazolinone compound wherein \(A \) represents a (C6-C16 haloarylsulfonyloxy) methyl group; and \(R^{28} \) represents a hydrogen atom.

A tetrazolinone compound wherein \(A \) represents an (Cl-C6 alkylamino) methyl group; and \(R^{28} \) represents a hydrogen atom.

[0220]

A tetrazolinone compound wherein \(A \) represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other); and \(R^{28} \) represents a hydrogen atom.

A tetrazolinone compound wherein \(R^{28} \) represents a
hydrogen atom.

a tetrazolinone compound wherein R^{28} represents a formyl group.

a tetrazolinone compound wherein A represents an C2-C6 alkoxy carbonyl group; and R^{28} represents a hydrogen atom,

a tetrazolinone compound wherein R^{27} represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group; R^{28} represents a methyl group or a hydrogen atom, and A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkox) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkyl sulfonyloxy) methyl group, a (C1-C6 haloalkylsulf onyloxy) methyl group, an (C6-C16 aryl sulfonyloxy) methyl group, a (C6-C16 haloarylsulf onyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-
constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

[0221] a tetrazolinone compound wherein

R²⁷ represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R²⁸ represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, a (C1-C6 haloalkylsulf onyloxy) methyl group, an (C6-C16 haloaryl sulf onyloxy) methyl group, a (C6-C16 haloarylsulf onyloxy) methyl group, a (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein
R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R28 represents a methyl group or a hydrogen atom, and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, a (C1-C6 haloalkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, an (C6-C16 haloarylsulf onyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

[0222]

a tetrazolinone compound wherein
R^{27} represents a halogen atom;
R^{28} represents a methyl group or a hydrogen atom; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, a (C1-C6 haloalkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a (C6-C16 haloarylsulfonxyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl-group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.
	a tetrazolinone compound wherein

R^{27} represents an C1-C3 alkyl group;
R^{28} represents a methyl group or a hydrogen atom; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkoxy) methyl group, a (C1-C6 haloalkylsulfonxyloxy) methyl group, a (C1-C6 haloarylsulfonxyloxy) methyl group, an (C1-C6 alkoxy carbonyl group.
haloalkylsulf onyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a (C6-C16 haloaryl sulf onyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a C3-C4 cycloalkyl group;

R28 represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, a (C1-C6 haloalkylsulf onyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a (C6-C16 haloaryl sulf onyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring
containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

[0223]
a tetrazolinone compound wherein
R²⁷ represents an C1-C3 alkoxy group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, a (C1-C6 haloalkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a (C6-C16 haloaryl sulf onyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6
alkoxycarbonyl group.

a tetrazolinone compound wherein

R27 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

R28 represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonxy) methyl group, a (C1-C6 haloalkylsulfonxy) methyl group, an (C6-C16 arylsulfonxy) methyl group, a (C6-C16 haloaryl sulfonxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

R28 represents a methyl group or a hydrogen atom; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, a (C6-C16 haloalkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a (C6-C16 haloarylsulf onyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

[0224]
a tetrazolinone compound wherein
R²⁷ represents a chlorine atom;

R²⁸ represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, a (C6-C16 haloalkylsulf onyloxy) methyl group, an (C6-C16...
arylsulfonxyloxy) methyl group, a (C6-C16 haloarylsulfonxyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a bromine atom;

R28 represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, a (C1-C6 haloalkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a (C6-C16 haloarylsulfonxyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent
atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a methyl group;

R28 represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf onylox) methyl group, a (C1-C6 haloalkylsulf onyloxy) methyl group, a (C6-C16 arylsulf onyloxy) methyl group, a (C6-C16 haloaryl sulf onyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

[0225]
a tetrazolinone compound wherein

R²⁷ represents an ethyl group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an \((\text{C1-C3 alkox})\)methyl group, an \((\text{Cl-} \text{C3 alkylthio})\)methyl group, an \((\text{C1-C6 acyloxy})\)methyl group, an \((\text{C1-C6 alkylsulfonyloxy})\)methyl group, a \((\text{C1-C6 haloalkylsulfonyloxy})\)methyl group, an \((\text{C6-C16 arylsulfonyloxy})\)methyl group, a \((\text{C6-C16 haloarylsulfonyloxy})\)methyl group, an \((\text{C1-C6 alkylamino})\)methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an \((\text{C2-C6 alkoxy})\)carbonyl group.

a tetrazolinone compound wherein

R²⁷ represents a cyclopropyl group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an \((\text{C1-C3 alkox})\)methyl group, an \((\text{C1-C3 alkylthio})\)methyl group, an \((\text{C1-C6 acyloxy})\)methyl group,
an (C1-C6 alkylsulfonyloxy) methyl group, a (C1-C6 haloalkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a (C6-C16 haloarylsulfonyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

[0226] a tetrazolinone compound wherein

R²⁷ represents a methoxy group;

R²⁸ represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, a (C1-C6 haloalkylsulfonyloxy) methyl group, a (C6-C16 arylsulfonyloxy) methyl group, a (C6-C16 haloarylsulfonyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl
group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

[0227]

a tetrazolinone compound wherein

R^{27} represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkylnyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R^{28} represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylox) methyl group, a (C1-C6 haloalkysulfonyloxy) methyl group, an (C6-C16 arylox) methyl group, an (C6-C16 haloarylsulfonxyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a
five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

A tetrazolinone compound wherein

R^{27} represents a halogen atom, a methyl group, a trifluororaethyl group or a methoxy group;

R^{28} represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, a (C1-C6 haloalkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a (C6-C16 haloaryl sulfonxyloxy) methyl group, a methyl group having heterocyclic group (with the proviso that the heterocyclic group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl
group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

[0228] A tetrazolinone compound wherein

R^27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R^28 represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkyl sulfonyloxy) methyl group, a (C1-C6 haloalkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a (C6-C16 haloaryl sulfonyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl
group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a C1-C3 alkyl group;

R28 represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf nyoxy) methyl group, a (C1-C6 haloalkylsulf nyoxy) methyl group, an (C6-C16 arylsulf nyoxy) methyl group, an (C6-C16 haloaryl sulf nyoxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

[0229]

a tetrazolinone compound wherein

R27 represents a C3-C4 cycloalkyl group;

R28 represents a methyl group; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, a (C1-C6 haloalkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a (C6-C16 haloaryl sulfonxyloxy) methyl group, an (C6-C16 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a C3-C4 cycloalkyl group;

R28 represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, a (C1-C6 haloalkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a (C6-C16
haloarylsulfonyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

A tetrazolinone compound wherein

R²⁷ represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

R²⁸ represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, a (C1-C6 haloalkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a (C6-C16 haloaryl sulfonxyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent
atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

[0230] a tetrazolinone compound wherein

R²⁷ represents an ethyl group or a cyclopropyl group;
R²⁸ represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C1-C6 haloalkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, an (C6-C16 haloaryl sulfonxyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.
a tetrazolinone compound wherein

R^{27} represents a chlorine atom;
R^{28} represents a methyl group; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, a (C1-C6 haloalkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a (C1-C6 haloarylsulf onyloxy) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R^{27} represents a bromine atom;
R^{28} represents a methyl group; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group,
an (C1-C6 alkylsulfonyloxy) methyl group, a (C1-C6 haloalkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a (C6-C16 haloarylsulfonyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

[0231]
a tetrazolinone compound wherein

R²⁷ represents a methyl group;

R²⁸ represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C1-C6 haloalkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, an (C6-C16 haloarylsulfonyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl
group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein
\[R^{27} \] represents an ethyl group;
\[R^{28} \] represents a methyl group; and
\[A \] represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, a (C1-C6 haloalkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a (C6-C16 haloaryl sulfonyloxy) methyl group, a (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl
group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

A tetrazolinone compound wherein

R$_{27}$ represents a cyclopropyl group;

R$_{28}$ represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, a (C1-C6 haloalkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a (C6-C16 haloarylsulfonyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

A tetrazolinone compound wherein

R$_{27}$ represents a methoxy group;

R$_{28}$ represents a methyl group; and

A represents a methyl group, a halomethyl group, a
hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, a (C1-C6 haloalkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a (C6-C16 haloarylsulfonxyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

[0232]

a tetrazolinone compound wherein

R²⁷ represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R²⁸ represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, a (C1-C6 haloalkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a (C6-C16 haloarylsulfonxyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.
C₃ alkylthio) methyl group, an (C₁-C₆ acyloxy) methyl group, an (C₁-C₆ alkylsulf onyloxy) methyl group, a (C₁-C₆ haloalkylsulf onyloxy) methyl group, an (C₆-C₁₆ arylsulf onyloxy) methyl group, a (C₆-C₁₆ haloarylsulf onyloxy) methyl group, an (C₁-C₆ alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C₂-C₆ alkoxy carbonyl group.

a tetrazolinone compound wherein

R²⁷ represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R²⁸ represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C₁-C₃ alkoxy) methyl group, an (C₁-C₃ alkylthio) methyl group, an (C₁-C₆ acyloxy) methyl group, an (C₁-C₆ alkylsulf onyloxy) methyl group, a (C₁-C₆ haloalkylsulf onyloxy) methyl group, an (C₆-C₁₆ arylsulf onyloxy) methyl group, a (C₆-C₁₆ haloarylsulf onyloxy) methyl group, a (C₁-C₆ haloarylsulf onyloxy) methyl group,
alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R²⁷ represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R²⁸ represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, a (C1-C6 haloalkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a (C6-C16 haloaryl sulf onyloxy) methyl group, an (C1-C6 alkoxy) methyl group, a methyl group having heterocyclyl
group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

[0233]

a tetrazolinone compound wherein

R²⁷ represents a halogen atom;
R²⁸ represents a hydrogen atom; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, a (C1-C6 haloalkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a (C6-C16 haloarylsulfonxyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-
constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

\begin{align*}
R^{27} & \text{ represents an C1-C3 alkyl group;} \\
R^{28} & \text{ represents a hydrogen atom; and } \\
A & \text{ represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkyl sulfonyloxy) methyl group, a (C1-C6 halo alkylsulf onyloxy) methyl group, an (C6-C16 aryl sulfonyloxy) methyl group, a (C6-C16 haloarylsulf onyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.}
\end{align*}

\begin{align*}
a & \text{ tetrazolinone compound wherein} \\
R^{27} & \text{ represents a C3-C4 cycloalkyl group;} \\
R^{28} & \text{ represents a hydrogen atom; and}
\end{align*}
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 haloalkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, an (C1-C6 haloarylsulf onyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

A tetrazolinone compound wherein

R²⁷ represents an C1-C3 alkoxy group;
R²⁸ represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 haloalkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a (C6-C16
haloarylsulf onyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R²⁷ represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

R²⁸ represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, a (C1-C6 haloalkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a (C6-C16 haloarylsulf onyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent
atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents an ethyl group or a cyclopropyl group;

R28 represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, a (C1-C6 haloalkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a (C6-C16 haloarylsulfonyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein
R_{27} represents a chlorine atom;
R_{28} represents a hydrogen atom; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, a (C6-C16 arylsulf onyloxy) methyl group, a (C6-C16 haloaryl sulf onyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

A tetrazolinone compound wherein
R_{27} represents a bromine atom;
R_{28} represents a hydrogen atom; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, a (C1-C6
haloalkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a (C6-C16 haloarylsulf onyloxy) methyl group, an (Cl-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

[0234]
a tetrazolinone compound wherein
R²⁷ represents a methyl group;
R²⁸ represents a hydrogen atom; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, a (C1-C6 haloalkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a (C6-C16 haloarylsulf onyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a
fiv-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R²⁷ represents an ethyl group;

R²₈ represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C₁-C₃ alkoxy) methyl group, an (C₁-C₃ alkylthio) methyl group, an (C₁-C₆ acyloxy) methyl group, an (C₁-C₆ alkylsulfonyloxy) methyl group, a (C₁-C₆ haloalkylsulfonyloxy) methyl group, an (C₆-C₁₆ arylsulfonyloxy) methyl group, a (C₆-C₁₆ haloaryl sulfonloyloxy) methyl group, a (C₁-C₆ alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C₂-C₆
alkoxycarbonyl group.

[0235] a tetrazolinone compound wherein
R27 represents a cyclopropyl group;
R28 represents a hydrogen atom; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 haloalkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, an (C6-C16 haloaryl sulf onyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

[0236] a tetrazolinone compound wherein
R27 represents a methoxy group,-
R28 represents a hydrogen atom; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, a (C1-C6 haloalkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, an (C6-C16 haloarylsulfonxyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group.

[0237] a tetrazolinone compound wherein

R27 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group;

R28 represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a
hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R28 represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0238]

a tetrazolinone compound wherein

R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R28 represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16
arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a halogen atom;

R28 represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0239]

a tetrazolinone compound wherein

R27 represents an C1-C3 alkyl group;

R28 represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a C3-C4 cycloalkyl group;

R28 represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, a formyl group or an (C6-C16
arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0240] a tetrazolinone compound wherein

5 R^{27} represents an C1-C3 alkoxy group;

R^{28} represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R^{27} represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

10 R^{28} represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0241] a tetrazolinone compound wherein

R^{27} represents an ethyl group or a cyclopropyl group;

R^{28} represents a methyl group or a hydrogen atom; and

20 A represents a methyl group, a halomethyl group, a
hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R\text{27} represents a chlorine atom;

R\text{28} represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0242]

a tetrazolinone compound wherein

R\text{27} represents a bromine atom;

R\text{28} represents a methyl group or a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0242]
hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[a tetrazolinone compound wherein
R²⁷ represents an ethyl group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0243]
a tetrazolinone compound wherein
R²⁷ represents a cyclopropyl group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0244]
a tetrazolinone compound wherein
R²⁷ represents a methoxy group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an \((C1-C3\) alkoxy) methyl group, an \((C1-C6\) alkylsulf onyloxy) methyl group, an \((C6-C16\) arylsulf onyloxy) methyl group, a formyl group or an \(C2-C6\) alkoxy carbonyl group.

[0245]

A tetrazolinone compound wherein

\(R^{27}\) represents a halogen atom, an \(C1-C3\) alkyl group, a \(C1-C3\) haloalkyl group, an \(C2-C3\) alkenyl group, an \(C2-C3\) alkynyl group, a \(C3-C4\) cycloalkyl group, an \(C1-C3\) alkoxy group, a \(C1-C3\) haloalkoxy group, an \(C1-C2\) alkylthio group, a \(C1-C2\) haloalkylthio group or an \(C1-C4\) alkylamino group;

\(R^{28}\) represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an \((C1-C3\) alkoxy) methyl group, an \((C1-C6\) alkylsulf onyloxy) methyl group, an \((C6-C16\) arylsulf onyloxy) methyl group, a formyl group or an \(C2-C6\) alkoxy carbonyl group.

A tetrazolinone compound wherein

\(R^{27}\) represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

\(R^{28}\) represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an \((C1-C3\) alkoxy) methyl group, an \((C1-C6\) alkylsulf onyloxy) methyl group, an \((C6-C16\) arylsulf onyloxy) methyl group, a formyl group or an \(C2-C6\) alkoxy carbonyl group.
arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R²⁷ represents an C2-C3 alkyl group, a C1-C3 halo alkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 halo alkoxy group, an C1-C2 alkyl thio group, a C1-C2 halo alkoxy thio group or an C1-C4 alkyl amino group;

R²⁸ represents a methyl group,- and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkyl sulf onyloxy) methyl group, an (C6-C16 ary lsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0246]
a tetrazolinone compound wherein

R²⁷ represents a halogen atom;

R²⁸ represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkyl sulf onyloxy) methyl group, an (C6-C16 ary lsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0247]
a tetrazolinone compound wherein
R$_2^7$ represents an C1-C3 alkyl group;
R$_2^8$ represents a methyl group; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (Cl-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0248]
a tetrazolinone compound wherein
R$_2^7$ represents a C3-C4 cycloalkyl group;
R$_2^8$ represents a methyl group; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (Cl-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0249]
a tetrazolinone compound wherein
R$_2^7$ represents an C1-C3 alkoxy group;
R$_2^8$ represents a methyl group; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (Cl-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 arylsulfonyloxy) methyl group, a formyl group or an C2-C6
alkoxycarbonyl group.

[0250]
a tetrazolinone compound wherein
R27 represents a chlorine atom;
R28 represents a methyl group; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C\textsubscript{1}-C\textsubscript{3} alkoxy) methyl group, an (C\textsubscript{1}-C\textsubscript{6} alkylsulf onyloxy) methyl group, an (C\textsubscript{6}-C\textsubscript{16} arylsulf onyloxy) methyl group, a formyl group or an C\textsubscript{2}-C\textsubscript{6} alkoxy carbonyl group.

a tetrazolinone compound wherein
R27 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group,-
R28 represents a methyl group; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C\textsubscript{1}-C\textsubscript{3} alkoxy) methyl group, an (C\textsubscript{1}-C\textsubscript{6} alkylsulf onyloxy) methyl group, an (C\textsubscript{6}-C\textsubscript{16} arylsulf onyloxy) methyl group, a formyl group or an C\textsubscript{2}-C\textsubscript{6} alkoxy carbonyl group.

a tetrazolinone compound wherein
R27 represents an ethyl group or a cyclopropyl group;
R28 represents a methyl group; and
A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C\textsubscript{1}-C\textsubscript{3} alkoxy) methyl group, an (C\textsubscript{1}-C\textsubscript{6} alkylsulf onyloxy) methyl group, a formyl group or an (C\textsubscript{6}-C\textsubscript{16}
arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a chlorine atom;

R28 represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a bromine atom;

R28 represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a methyl group;

R28 represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.
alkoxycarbonyl group.

a tetrazolinone compound wherein

R²⁷ represents an ethyl group;
R²⁸ represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C₁-C₃ alkoxy) methyl group, an (C₁-C₆ alkylsulfonyloxy) methyl group, an (C₆-C₁₆ arylsulfonyloxy) methyl group, a formyl group or an C₂-C₆ alkoxy carbonyl group.

a tetrazolinone compound wherein

R²⁷ represents a cyclopropyl group;
R²⁸ represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C₁-C₃ alkoxy) methyl group, an (C₁-C₆ alkylsulfonyloxy) methyl group, an (C₆-C₁₆ arylsulfonyloxy) methyl group, a formyl group or an C₂-C₆ alkoxy carbonyl group.

a tetrazolinone compound wherein

R²⁷ represents a methoxy group;
R²⁸ represents a methyl group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C₁-C₃ alkoxy) methyl group, an (C₁-C₆ alkylsulfonyloxy) methyl group, an (C₆-C₁₆ arylsulfonyloxy) methyl group, a formyl group or an C₂-C₆ alkoxy carbonyl group.
[0251]
a tetrazolinone compound wherein

R27 represents a halogen atom, an C1-C3 alkyl group, a
C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R28 represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0252]
a tetrazolinone compound wherein

R27 represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R28 represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0252]
a tetrazolinone compound wherein

R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl
group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R28 represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a halogen atom;

R28 represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents an C1-C3 alkyl group;

R28 represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.
ARYLSULFONYLOXY) METHYL GROUP, A FORMYL GROUP OR AN C2-C6 ALKOXYCARBONYL GROUP.

[0253]

A TETRAZOLINONE COMPOUND WHEREIN

R²⁷ REPRESENTS A C3-C4 CYCLOALKYL GROUP;

R²⁸ REPRESENTS A HYDROGEN ATOM; AND

A REPRESENTS A METHYL GROUP, A HALOMETHYL GROUP, A HYDROXYMETHYL GROUP, AN (C1-C3 ALKOXY) METHYL GROUP, AN (C1-C6 ALKYSULFONYLOXY) METHYL GROUP, AN (C6-C16 ARYLSULFONYLOXY) METHYL GROUP, A FORMYL GROUP OR AN C2-C6 ALKOXYCARBONYL GROUP.

A TETRAZOLINONE COMPOUND WHEREIN

R²⁷ REPRESENTS AN C1-C3 ALKOXY GROUP;

R²⁸ REPRESENTS A HYDROGEN ATOM; AND

A REPRESENTS A METHYL GROUP, A HALOMETHYL GROUP, A HYDROXYMETHYL GROUP, AN (C1-C3 ALKOXY) METHYL GROUP, AN (C1-C6 ALKYSULFONYLOXY) METHYL GROUP, AN (C6-C16 ARYLSULFONYLOXY) METHYL GROUP, A FORMYL GROUP OR AN C2-C6 ALKOXYCARBONYL GROUP.

A TETRAZOLINONE COMPOUND WHEREIN

R²⁷ REPRESENTS A CHLORINE ATOM, A BROMINE ATOM, A METHYL GROUP OR A METHOXY GROUP;

R²⁸ REPRESENTS A HYDROGEN ATOM; AND

A REPRESENTS A METHYL GROUP, A HALOMETHYL GROUP, A HYDROXYMETHYL GROUP, AN (C1-C3 ALKOXY) METHYL GROUP, AN (C1-C6 ALKYSULFONYLOXY) METHYL GROUP, A FORMYL GROUP OR AN C2-C6 ALKOXYCARBONYL GROUP.
C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R^{27} represents an ethyl group or a cyclopropyl group;

R^{28} represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0254]

a tetrazolinone compound wherein

R^{27} represents a chlorine atom;

R^{28} represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R^{27} represents a bromine atom;

R^{28} represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R^{27} represents a iodine atom;

R^{28} represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.
a tetrazolinone compound wherein
R²⁷ represents a methyl group;
R²⁸ represents a hydrogen atom; and
A represents a methyl group, a hydroxymethyl group, a

a tetrazolinone compound wherein
R²⁷ represents an ethyl group;
R²⁸ represents a hydrogen atom; and
A represents a methyl group, a hydroxymethyl group, a

a tetrazolinone compound wherein
R²⁷ represents a cyclopropyl group;
R²⁸ represents a hydrogen atom; and
A represents a methyl group, a hydroxymethyl group, a

C6 alkylsulfonyleoxy) methyl group, an (C6-C16 arylsulfonyleoxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R^27 represents a methoxy group;

R^28 represents a hydrogen atom; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyleoxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0256]

a tetrazolinone compound wherein

R^27 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkyl thio group or an C1-C4 alkylamino group;

R^28 represents a methyl group or a hydrogen atom; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

[0257]

a tetrazolinone compound wherein

R^27 represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
R28 represents a methyl group or a hydrogen atom; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.

[0258]
a tetrazolinone compound wherein
R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R28 represents a methyl group or a hydrogen atom; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein
R27 represents a halogen atom;
R28 represents a methyl group or a hydrogen atom; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein
R27 represents an C1-C3 alkyl group;
R28 represents a methyl group or a hydrogen atom; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein
R27 represents a C\textsubscript{3}-C\textsubscript{4} cycloalkyl group;
R28 represents a methyl group or a hydrogen atom; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.

5
a tetrazolinone compound wherein
R27 represents an C\textsubscript{1}-C\textsubscript{3} alkoxy group;
R28 represents a methyl group or a hydrogen atom; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.

10
[0259]
a tetrazolinone compound wherein
R27 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R28 represents a methyl group or a hydrogen atom; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.

15
a tetrazolinone compound wherein
R27 represents an ethyl group or a cyclopropyl group;
R28 represents a methyl group or a hydrogen atom; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.

[0260]
a tetrazolinone compound wherein
R27 represents a chlorine atom;
R28 represents a methyl group or a hydrogen atom; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.
A represents a methyl group, a chloromethyl group or a bromomethyl group.

A tetrazolinone compound wherein

R$_{27}^{}$ represents a bromine atom;

R$_{28}^{}$ represents a methyl group or a hydrogen atom; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

[0261]

A tetrazolinone compound wherein

R$_{27}^{}$ represents a methyl group;

R$_{28}^{}$ represents a methyl group or a hydrogen atom; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

[0262]

A tetrazolinone compound wherein

R$_{27}^{}$ represents an ethyl group;

R$_{28}^{}$ represents a methyl group or a hydrogen atom; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

[0263]

A tetrazolinone compound wherein

R$_{27}^{}$ represents a cyclopropyl group;

R$_{28}^{}$ represents a methyl group or a hydrogen atom; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.
a tetrazolinone compound wherein

R₂₇ represents a methoxy group,

R₂₈ represents a methyl group or a hydrogen atom; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein

R₂₇ represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group;

R₂₈ represents a methyl group; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein

R₂₇ represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R₂₈ represents a methyl group; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein
R^2_7 represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R^2_8 represents a methyl group; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

[0268]
a tetrazolinone compound wherein
R^2_7 represents a halogen atom;

R^2_8 represents a methyl group; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein
R^2_7 represents an C1-C3 alkyl group;

R^2_8 represents a methyl group; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein
R^2_7 represents a C3-C4 cycloalkyl group;

R^2_8 represents a methyl group; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.
a tetrazolinone compound wherein
R27 represents an C\textsubscript{1}-C\textsubscript{3} alkoxy group;
R\textsubscript{28} represents a methyl group; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.

[0269]
a tetrazolinone compound wherein
R27 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R28 represents a methyl group; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein
R27 represents an ethyl group or a cyclopropyl group;
R28 represents a hydrogen atom; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein
R27 represents a chlorine atom;
R28 represents a methyl group; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein
R27 represents a bromine atom;
R28 represents a methyl group; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.
A represents a methyl group, a chloromethyl group or a bromomethyl group.

A tetrazolinone compound wherein

R^{27} represents a methyl group;

R^{28} represents a methyl group; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

A tetrazolinone compound wherein

R^{27} represents an ethyl group;

R^{28} represents a methyl group; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

A tetrazolinone compound wherein

R^{27} represents a cyclopropyl group

R^{28} represents a methyl group; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

A tetrazolinone compound wherein

R^{27} represents a methoxy group;

R^{28} represents a methyl group; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

A tetrazolinone compound wherein

R^{27} represents a halogen atom, an Cl-C3 alkyl group, a
C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; R28 represents a hydrogen atom; and A represents a methyl group, a chloromethyl group or a bromomethyl group.

[0271]
a tetrazolinone compound wherein
R27 represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
R28 represents a hydrogen atom; and A represents a methyl group, a chloromethyl group or a bromomethyl group.

[0272]
a tetrazolinone compound wherein
R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R28 represents a hydrogen atom; and A represents a methyl group, a chloromethyl group or a bromomethyl group.
a tetrazolinone compound wherein
 R$_{27}^2$ represents a halogen atom;
 R$_{28}^2$ represents a hydrogen atom; and
 A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein
 R$_{27}^2$ represents a C1-C3 alkyl group;
 R$_{28}^2$ represents a hydrogen atom; and
 A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein
 R$_{27}^2$ represents a C3-C4 cycloalkyl group;
 R$_{28}^2$ represents a hydrogen atom; and
 A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein
 R$_{27}^2$ represents an alkyl group;
 R$_{28}^2$ represents a hydrogen atom; and
 A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein
 R$_{27}^2$ represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R28 represents a hydrogen atom; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein

R27 represents an ethyl group or a cyclopropyl group;

R28 represents a hydrogen atom; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein

R27 represents a chlorine atom;

R28 represents a hydrogen atom; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein

R27 represents a bromine atom;

R28 represents a hydrogen atom; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein

R27 represents a methyl group;

R28 represents a hydrogen atom; and

A represents a methyl group, a chloromethyl group or a bromomethyl group.

a tetrazolinone compound wherein

R27 represents an ethyl group;
R²⁸ represents a hydrogen atom; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.
a tetrazolinone compound wherein

R²⁷ represents a cyclopropyl group;
R²⁸ represents a hydrogen atom; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.
a tetrazolinone compound wherein

R²⁷ represents a methoxy group;
R²⁸ represents a hydrogen atom; and
A represents a methyl group, a chloromethyl group or a bromomethyl group.

[0275]
a tetrazolinone compound wherein

R²⁷ represents a halogen atom, an C₁-C₃ alkyl group, a C₁-C₃ haloalkyl group, an C₂-C₃ alkenyl group, an C₂-C₃ alkynyl group, a C₃-C₄ cycloalkyl group, an C₁-C₃ alkoxy group, a C₁-C₃ haloalkoxy group, an C₁-C₂ alkylthio group, a C₁-C₂ haloalkythio group or an C₁-C₄ alkylamino group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents a hydroxymethyl group, an (C₁-C₃ alkoxy) methyl group, an (C₁-C₆ alkylsulf onyloxy) methyl group, an (C₆-C₁₆ arylsulf onyloxy) methyl group, a formyl group or an C₂-C₆ alkoxy carbonyl group.
a tetrazolinone compound wherein

R_{27}^2 represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R_{28}^2 represents a methyl group or a hydrogen atom; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R_{27}^2 represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, C2-C3 alkoxy group a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R_{28}^2 represents a methyl group or a hydrogen atom; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R_{27}^2 represents an C1-C3 alkyl group;

R_{28}^2 represents a methyl group or a hydrogen atom; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group.
group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

A tetrazolinone compound wherein

R²⁷ represents a C3-C4 cycloalkyl group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0276]

A tetrazolinone compound wherein

R²⁷ represents an C1-C3 alkoxy group;

R²⁸ represents a methyl group or a hydrogen atom; and
A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

R²⁷ represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

R²⁸ represents a methyl group or a hydrogen atom; and
A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.
a tetrazolinone compound wherein

R27 represents an ethyl group or a cyclopropyl group,

R28 represents a methyl group or a hydrogen atom; and

A represents a hydroxymethyl group, an (C\textsubscript{1-3} alkoxy) methyl group, an (C\textsubscript{1-6} alkylsulfonloxy) methyl group, an (C\textsubscript{6-16} arylsulfonloxy) methyl group, a formyl group or an C\textsubscript{2-6} alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a chlorine atom;

R28 represents a methyl group or a hydrogen atom; and

A represents a hydroxymethyl group, an (C\textsubscript{1-3} alkoxy) methyl group, an (C\textsubscript{1-6} alkylsulfonloxy) methyl group, an (C\textsubscript{6-16} arylsulfonloxy) methyl group, a formyl group or an C\textsubscript{2-6} alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a bromine atom;

R28 represents a methyl group or a hydrogen atom; and

A represents a hydroxymethyl group, an (C\textsubscript{1-3} alkoxy) methyl group, an (C\textsubscript{1-6} alkylsulfonloxy) methyl group, an (C\textsubscript{6-16} arylsulfonloxy) methyl group, a formyl group or an C\textsubscript{2-6} alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a methyl group;

R28 represents a methyl group or a hydrogen atom; and

A represents a hydroxymethyl group, an (C\textsubscript{1-3} alkoxy) methyl group, an (C\textsubscript{1-6} alkylsulfonloxy) methyl group, an (C\textsubscript{6-16} arylsulfonloxy) methyl group, a formyl group or an C\textsubscript{2-6} alkoxy carbonyl group.
alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group,
a tetrazolinone compound wherein

R²⁷ represents an ethyl group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.
a tetrazolinone compound wherein

R²⁷ represents a cyclopropyl group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.
a tetrazolinone compound wherein

R²⁷ represents a methoxy group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.
a tetrazolinone compound wherein
R^{27} represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkyl thio group or an C1-C4 alkylamino group.

R^{28} represents a methyl group; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0277]
a tetrazolinone compound wherein

R^{27} represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group.

R^{28} represents a methyl group; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R^{27} represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkyl thio group or an C1-C4...
alkylamino group, -

R^2_8 represents a methyl group; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group, a tetrazolinone compound wherein

R^{27} represents a halogen atom;

R^{28} represents a methyl group; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group. a tetrazolinone compound wherein

R^{27} represents an C1-C3 alkyl group;

R^{28} represents a methyl group; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group. a tetrazolinone compound wherein

R^{27} represents a C3-C4 cycloalkyl group;

R^{28} represents a methyl group; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl
group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.
a tetrazolinone compound wherein

R²⁷ represents an C1-C3 alkoxy group;
R²⁸ represents a methyl group; and
A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0278]
a tetrazolinone compound wherein

R²⁷ represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R²⁸ represents a methyl group; and
A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.
a tetrazolinone compound wherein

R²⁷ represents an ethyl group or a cyclopropyl group;
R²⁸ represents a methyl group; and
A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.
a tetrazolinone compound wherein

R27 represents a chlorine atom;

R28 represents a methyl group; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a bromine atom;

R28 represents a methyl group; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents a methyl group;

R28 represents a methyl group; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonyloxy) methyl group, an (C6-C16 arylsulfonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R27 represents an ethyl group;

R28 represents a methyl group; and

A represents a hydroxymethyl group, an (C1-C3
alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R²⁷ represents a cyclopropyl group;
R²⁸ represents a methyl group; and
A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R²⁷ represents a methoxy group;
R²⁸ represents a methyl group; and
A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0279]
a tetrazolinone compound wherein

R²⁷ represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R²⁸ represents a hydrogen atom; and
A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

A tetrazolinone compound wherein

R²⁷ represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R²⁸ represents a hydrogen atom; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

A tetrazolinone compound wherein

R²⁷ represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R²⁸ represents a hydrogen atom; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0280]
a tetrazolinone compound wherein

R²⁷ represents a halogen atom;

R²⁸ represents a hydrogen atom; and

A represents a hydroxymethyl group, an (C₁-C₃ alkoxy) methyl group, an (C₁-C₆ alkylsulfonyloxy) methyl group, an (C₆-C₁₆ arylsulfonyloxy) methyl group, a formyl group or an C₂-C₆ alkoxy carbonyl group.

a tetrazolinone compound wherein

R²⁷ represents an C₁-C₃ alkyl group;

R²⁸ represents a hydrogen atom; and

A represents a hydroxymethyl group, an (C₁-C₃ alkoxy) methyl group, an (C₁-C₆ alkylsulfonyloxy) methyl group, an (C₆-C₁₆ arylsulfonyloxy) methyl group, a formyl group or an C₂-C₆ alkoxy carbonyl group.

a tetrazolinone compound wherein

R²⁷ represents a C₃-C₄ cycloalkyl group;

R²⁸ represents a hydrogen atom; and

A represents a hydroxymethyl group, an (C₁-C₃ alkoxy) methyl group, an (C₁-C₆ alkylsulfonyloxy) methyl group, an (C₆-C₁₆ arylsulfonyloxy) methyl group, a formyl group or an C₂-C₆ alkoxy carbonyl group,

a tetrazolinone compound wherein

R²⁷ represents an C₁-C₃ alkoxy group;

R²⁸ represents a hydrogen atom; and

A represents a hydroxymethyl group, an (C₁-C₃
alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.
a tetrazolinone compound wherein

R^{27} represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

R^{28} represents a hydrogen atom; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.
a tetrazolinone compound wherein

R^{27} represents an ethyl group or a cyclopropyl group;

R^{28} represents a hydrogen atom; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.
a tetrazolinone compound wherein

R^{27} represents a chlorine atom;

R^{28} represents a hydrogen atom; and

A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.
a tetrazolinone compound wherein

R²⁷ represents a bromine atom;
R²⁸ represents a hydrogen atom; and
A represents a hydroxymethyl group, an (C₁-C₃ alk oxy) methyl group, an (C₁-C₆ alkylsulf onyloxy) methyl group, an (C₆-C₁₆ arylsulf onyloxy) methyl group, a formyl group or an C₂-C₆ alkoxy carbonyl group.

a tetrazolinone compound wherein

R²⁷ represents a methyl group;
R²⁸ represents a hydrogen atom; and
A represents a hydroxymethyl group, an (C₁-C₃ alk oxy) methyl group, an (C₁-C₆ alkylsulf onyloxy) methyl group, an (C₆-C₁₆ arylsulf onyloxy) methyl group, a formyl group or an C₂-C₆ alkoxy carbonyl group.

a tetrazolinone compound wherein

R²⁷ represents an ethyl group;
R²⁸ represents a hydrogen atom; and
A represents a hydroxymethyl group, an (C₁-C₃ alk oxy) methyl group, an (C₁-C₆ alkylsulf onyloxy) methyl group, an (C₆-C₁₆ arylsulf onyloxy) methyl group, a formyl group or an C₂-C₆ alkoxy carbonyl group.

a tetrazolinone compound wherein

R²⁷ represents a cyclopropyl group;
R²⁸ represents a hydrogen atom; and
A represents a hydroxymethyl group, an (C₁-C₃
alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group, a tetrazolinone compound wherein

5 R^27 represents a methoxy group;
R^28 represents a hydrogen atom, and
A represents a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulf onyloxy) methyl group, an (C6-C16 arylsulf onyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

[0281]
a tetrazolinone compound wherein

10 R^27 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R^28 represents a methyl group or a hydrogen atom, and
A represents a methyl group.

15 a tetrazolinone compound wherein

20 R^27 represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
R^28 represents a methyl group or a hydrogen atom; and
A represents a methyl group.

25 a tetrazolinone compound wherein
R^{27} represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R^{2a} represents a methyl group or a hydrogen atom; and

A represents a methyl group,

a tetrazolinone compound wherein

R^{27} represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkyl thio group or an C1-C4 alkylamino group;

R^{28} represents a methyl group or a hydrogen atom; and

A represents a methyl group,

a tetrazolinone compound wherein

R^{27} represents a halogen atom,

R^{28} represents a methyl group or a hydrogen atom; and

A represents a methyl group,

a tetrazolinone compound wherein

R^{27} represents an C1-C3 alkyl group,

R^{28} represents a methyl group or a hydrogen atom; and

A represents a methyl group,

a tetrazolinone compound wherein

R^{27} represents a C3-C4 cycloalkyl group;

R^{28} represents a methyl group or a hydrogen atom; and

A represents a methyl group.
a tetrazolinone compound wherein

\(R_{27} \) represents an \(\text{C1-C3} \) alkoxy group;
\(R_{28} \) represents a methyl group or a hydrogen atom; and
A represents a methyl group.

[0282]
a tetrazolinone compound wherein

\(R_{27} \) represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
\(R_{28} \) represents a methyl group or a hydrogen atom; and
A represents a methyl group,
a tetrazolinone compound wherein

\(R_{27} \) represents an ethyl group or a cyclopropyl group;
\(R_{28} \) represents a methyl group or a hydrogen atom; and
A represents a methyl group,
a tetrazolinone compound wherein

\(R_{27} \) represents a halogen atom, an \(\text{C1-C3} \) alkyl group, an \(\text{C1-C3} \) haloalkyl group, an \(\text{C2-C3} \) alkenyl group, an \(\text{C2-C3} \) alkynyl group, a \(\text{C3-C4} \) cycloalkyl group, an \(\text{C1-C3} \) alkoxy group, a \(\text{C1-C3} \) haloalkoxy group, an \(\text{C1-C2} \) alkylthio group, a \(\text{C1-C2} \) haloalkyl thio group or an \(\text{C1-C4} \) alkylamino group;
\(R_{28} \) represents a methyl group; and
A represents a methyl group,
a tetrazolinone compound wherein

\(R_{27} \) represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
R²⁸ represents a methyl group; and
A represents a methyl group.

A tetrazolinone compound wherein

R²⁷ represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R²⁸ represents a methyl group; and
A represents a methyl group.

[0283]

A tetrazolinone compound wherein

R²⁷ represents a halogen atom;
R²⁸ represents a methyl group; and
A represents a methyl group,

A tetrazolinone compound wherein

R²⁷ represents an C1-C3 alkyl group;
R²⁸ represents a methyl group; and
A represents a methyl group.

A tetrazolinone compound wherein

R²⁷ represents a C3-C4 cycloalkyl group;
R²⁸ represents a methyl group; and
A represents a methyl group.

A tetrazolinone compound wherein
R^2 represents a C1-C3 alkoxy group; R^2^8 represents a methyl group; and A represents a methyl group.
a tetrazolinone compound wherein

R^2^7 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group; R^2^8 represents a methyl group; and A represents a methyl group.
a tetrazolinone compound wherein

R^2^7 represents an ethyl group or a cyclopropyl group; R^2^8 represents a methyl group; and A represents a methyl group.

[0284]
a tetrazolinone compound wherein

R^2^7 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; R^2^8 represents a hydrogen atom; and A represents a methyl group.
a tetrazolinone compound wherein

R^2^7 represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group; R^2^8 represents a hydrogen atom; and
A represents a methyl group.
a tetrazolinone compound wherein
\[R^{27} \] represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
\[R^{28} \] represents a hydrogen atom; and
A represents a methyl group.
a tetrazolinone compound wherein
\[R^{27} \] represents a halogen atom;
\[R^{28} \] represents a hydrogen atom; and
A represents a methyl group.
a tetrazolinone compound wherein
\[R^{27} \] represents an C1-C3 alkyl group;
\[R^{28} \] represents a hydrogen atom; and
A represents a methyl group.
a tetrazolinone compound wherein
\[R^{27} \] represents a C3-C4 cycloalkyl group;
\[R^{28} \] represents a hydrogen atom; and
A represents a methyl group.
a tetrazolinone compound wherein
\[R^{27} \] represents an C1-C3 alkoxy group;
\[R^{28} \] represents a hydrogen atom; and
A represents a methyl group.

[0285]
a tetrazolinone compound wherein
R$_{27}^{}$ represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R$_{28}^{}$ represents a hydrogen atom; and
A represents a methyl group.

a tetrazolinone compound wherein
R$_{27}^{}$ represents an ethyl group or a cyclopropyl group;
R$_{28}^{}$ represents a hydrogen atom; and
A represents a methyl group.

a tetrazolinone compound wherein
R$_{27}^{}$ represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R$_{28}^{}$ represents a methyl group or a hydrogen atom; and
A represents a chloromethyl group.

a tetrazolinone compound wherein
R$_{27}^{}$ represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
R$_{28}^{}$ represents a methyl group or a hydrogen atom; and
A represents a chloromethyl group.

[0286]
a tetrazolinone compound wherein

R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group.

R28 represents a methyl group or a hydrogen atom; and
A represents a chloromethyl group.

a tetrazolinone compound wherein

R27 represents a halogen atom;
R28 represents a methyl group or a hydrogen atom; and
A represents a chloromethyl group.

a tetrazolinone compound wherein

R27 represents an C1-C3 alkyl group,-
R28 represents a methyl group or a hydrogen atom; and
A represents a chloromethyl group.

a tetrazolinone compound wherein

R27 represents a C3-C4 cycloalkyl group;
R28 represents a methyl group or a hydrogen atom; and
A represents a chloromethyl group.

a tetrazolinone compound wherein

R27 represents an C1-C3 alkoxy group;
R28 represents a methyl group or a hydrogen atom; and
A represents a chloromethyl group.
a tetrazolinone compound wherein
R27 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R28 represents a methyl group or a hydrogen atom; and
A represents a chloromethyl group,
a tetrazolinone compound wherein
R27 represents an ethyl group or a cyclopropyl group;
R28 represents a methyl group or a hydrogen atom; and
A represents a chloromethyl group,
a tetrazolinone compound wherein
R27 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R28 represents a methyl group; and
A represents a chloromethyl group.
[0287]
a tetrazolinone compound wherein
R27 represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
R28 represents a methyl group; and
A represents a chloromethyl group.
a tetrazolinone compound wherein
R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl
group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-G4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R²⁸ represents a methyl group; and
A represents a chloromethyl group,
a tetrazolinone compound wherein

R²⁷ represents a halogen atom,-

R²⁸ represents a methyl group,- and
A represents a chloromethyl group,
a tetrazolinone compound wherein

R²⁷ represents an C1-C3 alkyl group;
R²⁸ represents a methyl group; and
A represents a chloromethyl group,
a tetrazolinone compound wherein

R²⁷ represents a C3-C4 cycloalkyl group;
R²⁸ represents a methyl group; and
A represents a chloromethyl group.
a tetrazolinone compound wherein

R²⁷ represents an C1-C3 alkoxy group;
R²⁸ represents a methyl group; and
A represents a chloromethyl group,
a tetrazolinone compound wherein

R²⁷ represents a chlorine atom, a bromine atom, a
methyl group or a methoxy group;
R^2_8 represents a methyl group; and
A represents a chloromethyl group.

a tetrazolinone compound wherein

R^2_7 represents an ethyl group or a cyclopropyl group;
R^2_8 represents a methyl group; and
A represents a chloromethyl group.

[0288]
a tetrazolinone compound wherein

R^2_7 represents a halogen atom, an C1-C3 alkyl group, a
C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy
group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group,
a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R^2_8 represents a hydrogen atom; and
A represents a chloromethyl group.

a tetrazolinone compound wherein

R^2_7 represents a halogen atom, a methyl group, a
trifluoromethyl group or a methoxy group;
R^2_8 represents a hydrogen atom; and
A represents a chloromethyl group.

a tetrazolinone compound wherein

R^2_7 represents an C2-C3 alkyl group, a C1-C3 haloalkyl
group excluding trifluoromethyl group, an C2-C3 alkenyl
group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an
C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R²⁷ represents a halogen atom; and

A represents a chloromethyl group.

a tetrazolinone compound wherein

R²⁷ represents a halogen atom;

R²⁸ represents a hydrogen atom; and

A represents a chloromethyl group.

a tetrazolinone compound wherein

R²⁷ represents an C1-C3 alkyl group;

R²⁸ represents a hydrogen atom; and

A represents a chloromethyl group.

a tetrazolinone compound wherein

R²⁷ represents a C3-C4 cycloalkyl group;

R²⁸ represents a hydrogen atom; and

A represents a chloromethyl group.

a tetrazolinone compound wherein

R²⁷ represents an C1-C3 alkoxy group;

R²⁸ represents a hydrogen atom; and

A represents a chloromethyl group.

a tetrazolinone compound wherein

R²⁷ represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

R²⁸ represents a hydrogen atom; and
A represents a chloromethyl group.
a tetrazolinone compound wherein
R²⁷ represents an ethyl group or a cyclopropyl group;
R²⁸ represents a hydrogen atom; and
A represents a chloromethyl group,
a tetrazolinone compound wherein
R²⁷ represents a halogen atom, an C¹-C³ alkyl group, a C¹-C³ haloalkyl group, an C²-C³ alkenyl group, an C²-C³ alkynyl group, a C³-C⁴ cycloalkyl group, an C¹-C³ alkoxy group, a C¹-C³ haloalkoxy group, an C¹-C² alkylthio group, an C¹-C³ haloalkylthio group or an C¹-C⁴ alkylamino group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents a bromomethyl group.
a tetrazolinone compound wherein
R²⁷ represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents a bromomethyl group.
a tetrazolinone compound wherein
R²⁷ represents an C²-C³ alkyl group, a C¹-C³ haloalkyl group excluding trifluoromethyl group, an C²-C³ alkenyl group, an C²-C³ alkynyl group, a C³-C⁴ cycloalkyl group, an C²-C³ alkoxy group, a C¹-C³ haloalkoxy group, an C¹-C² alkylthio group, a C¹-C² haloalkylthio group or an C¹-C⁴ alkylamino group;
R28 represents a methyl group or a hydrogen atom; and
A represents a bromomethyl group.

a tetrazolinone compound wherein
R27 represents a halogen atom;

R28 represents a methyl group or a hydrogen atom; and
A represents a bromomethyl group.

a tetrazolinone compound wherein
R27 represents an G1-C3 alkyl group;

R28 represents a methyl group or a hydrogen atom; and
A represents a bromomethyl group.

a tetrazolinone compound wherein
R27 represents a C3-C4 cycloalkyl group;

R28 represents a methyl group or a hydrogen atom; and
A represents a bromomethyl group.

a tetrazolinone compound wherein
R27 represents an C1-C3 alkoxy group;

R28 represents a methyl group or a hydrogen atom; and
A represents a bromomethyl group.

a tetrazolinone compound wherein
R27 represents a chlorine atom, a bromine atom, a
methyl group or a methoxy group;
R28 represents a methyl group or a hydrogen atom; and
A represents a bromomethyl group.

a tetrazolinone compound wherein
R27 represents an ethyl group or a cyclopropyl group;
R28 represents a methyl group or a hydrogen atom; and

A represents a bromomethyl group.

[0289]

a tetrazolinone compound wherein

R27 represents a halogen atom, an C1-C3 alkyl group, a
C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3
alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy
group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group,
a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R28 represents a methyl group; and

A represents a bromomethyl group.

a tetrazolinone compound wherein

R27 represents a halogen atom, a methyl group, a
trifluoromethyl group or a methoxy group;

R28 represents a methyl group; and

A represents a bromomethyl group.

a tetrazolinone compound wherein

R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl
group excluding trifluoromethyl group, an C2-C3 alkenyl
group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an
C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2
alkylthio group, a C1-C2 haloalkylthio group or an C1-C4
alkylamino group;

R28 represents a methyl group; and

A represents a bromomethyl group.
a tetrazolinone compound wherein
R27 represents a halogen atom,
R28 represents a methyl group; and
A represents a bromomethyl group,

a tetrazolinone compound wherein
R27 represents an C\texttextsuperscript{1-3} alkyl group;
R28 represents a methyl group; and
A represents a bromomethyl group,

a tetrazolinone compound wherein
R27 represents a C\texttextsuperscript{3-4} cycloalkyl group;
R28 represents a methyl group; and
A represents a bromomethyl group,

a tetrazolinone compound wherein
R27 represents an C\texttextsuperscript{1-3} alkoxy group;
R28 represents a methyl group; and
A represents a bromomethyl group,

a tetrazolinone compound wherein
R27 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R28 represents a methyl group, and
A represents a bromomethyl group,

a tetrazolinone compound wherein
R27 represents an ethyl group or a cyclopropyl group;
R28 represents a methyl group; and
A represents a bromomethyl group.
a tetrazolinone compound wherein

R^{27} represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R^{28} represents a hydrogen atom; and

A represents a bromomethyl group.

[0290]

a tetrazolinone compound wherein

R^{27} represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R^{28} represents a hydrogen atom; and

A represents a bromomethyl group.

a tetrazolinone compound wherein

R^{27} represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R^{28} represents a hydrogen atom,- and

A represents a bromomethyl group,

a tetrazolinone compound wherein

R^{27} represents a halogen atom;
R²⁸ represents a hydrogen atom; and
A represents a bromomethyl group.

a tetrazolinone compound wherein
R²⁷ represents an C1-C3 alkyl group;
R²⁸ represents a hydrogen atom; and
A represents a bromomethyl group.

a tetrazolinone compound wherein
R²⁷ represents a C3-C4 cycloalkyl group;
R²⁸ represents a hydrogen atom; and
A represents a bromomethyl group.

a tetrazolinone compound wherein
R²⁷ represents an C1-C3 alkoxy group;
R²⁸ represents a hydrogen atom; and
A represents a bromomethyl group.

a tetrazolinone compound wherein
R²⁷ represents a chlorine atom, a bromine atom, a
methy group or a methoxy group;
R²⁸ represents a hydrogen atom; and
A represents a bromomethyl group.

a tetrazolinone compound wherein
R²⁷ represents an ethyl group or a eyelopropyl group;
R²⁸ represents a hydrogen atom; and
A represents a bromomethyl group.

[0291]

a tetrazolinone compound wherein
R^{27} represents a halogen atom, an C1-C3 alkyl group, a
C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3
alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy
group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group,
a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R^{28} represents a methyl group or a hydrogen atom; and

A represents a hydroxymethyl group.

a tetrazolinone compound wherein

R^{27} represents a halogen atom, a methyl group, a
trifluoromethyl group or a methoxy group;

R^{28} represents a methyl group or a hydrogen atom; and

A represents a hydroxymethyl group.
	na tetrazolinone compound wherein

R^{27} represents an C2-C3 alkyl group, a C1-C3 haloalkyl
group excluding trifluoromethyl group, an C2-C3 alkenyl
group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an
C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2
alkylthio group, a C1-C2 haloalkylthio group or an C1-C4
alkylamino group;

R^{28} represents a methyl group or a hydrogen atom; and

A represents a hydroxymethyl group.
	na tetrazolinone compound wherein

R^{27} represents a halogen atom;

R^{28} represents a methyl group or a hydrogen atom; and

A represents a hydroxymethyl group.
a tetrazolinone compound wherein

R27 represents an C1-C3 alkyl group;
R28 represents a methyl group or a hydrogen atom; and
A represents a hydroxymethyl group.

a tetrazolinone compound wherein

R27 represents a C3-C4 cycloalkyl group;
R28 represents a methyl group or a hydrogen atom; and
A represents a hydroxymethyl group.

a tetrazolinone compound wherein

R27 represents an C1-C3 alkoxy group;
R28 represents a methyl group or a hydrogen atom; and
A represents a hydroxymethyl group.

a tetrazolinone compound wherein

R27 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R28 represents a methyl group or a hydrogen atom; and
A represents a hydroxymethyl group.

a tetrazolinone compound wherein

R27 represents an ethyl group or a cyclopropyl group;
R28 represents a methyl group or a hydrogen atom; and
A represents a hydroxymethyl group.

a tetrazolinone compound wherein

R27 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy
group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R^{28} represents a methyl group; and

A represents a hydroxymethyl group.

a tetrazolinone compound wherein

R^{27} represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R^{28} represents a methyl group; and

A represents a hydroxymethyl group.

[0292]

a tetrazolinone compound wherein

R^{27} represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R^{28} represents a methyl group; and

A represents a hydroxymethyl group.

a tetrazolinone compound wherein

R^{27} represents a halogen atom;

R^{28} represents a methyl group; and

A represents a hydroxymethyl group.

a tetrazolinone compound wherein

R^{27} represents an C1-C3 alkyl group;
\[R^2 \text{ represents a methyl group; and} \]
\[A \text{ represents a hydroxymethyl group.} \]

a tetrazolinone compound wherein
\[R^27 \text{ represents a C3-C4 cycloalkyl group;} \]
\[R^28 \text{ represents a methyl group; and} \]
\[A \text{ represents a hydroxymethyl group.} \]

a tetrazolinone compound wherein
\[R^27 \text{ represents an C1-C3 alkoxy group;} \]
\[R^28 \text{ represents a methyl group; and} \]
\[A \text{ represents a hydroxymethyl group.} \]

a tetrazolinone compound wherein
\[R^27 \text{ represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;} \]
\[R^28 \text{ represents a methyl group; and} \]
\[A \text{ represents a hydroxymethyl group.} \]

a tetrazolinone compound wherein
\[R^27 \text{ represents an ethyl group or a cyclopropyl group;} \]
\[R^28 \text{ represents a methyl group; and} \]
\[A \text{ represents a hydroxymethyl group.} \]

[0293]

a tetrazolinone compound wherein
\[R^27 \text{ represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkeny group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group,} \]
a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R²⁸ represents a hydrogen atom; and

A represents a hydroxymethyl group,

a tetrazolinone compound wherein

R²⁷ represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R²⁸ represents a hydrogen atom; and

A represents a hydroxymethyl group,

a tetrazolinone compound wherein

R²⁷ represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R²⁸ represents a hydrogen atom; and

A represents a hydroxymethyl group.

a tetrazolinone compound wherein

R²⁷ represents a halogen atom;

R²⁸ represents a hydrogen atom,- and

A represents a hydroxymethyl group,

a tetrazolinone compound wherein

R²⁷ represents an C1-C3 alkyl group;

R²⁸ represents a hydrogen atom; and

A represents a hydroxymethyl group.
a tetrazolinone compound wherein
 R27 represents a C3-C4 cycloalkyl group;
 R28 represents a hydrogen atom; and
 A represents a hydroxymethyl group.

a tetrazolinone compound wherein
 R27 represents an C1-C3 alkoxy group;
 R28 represents a hydrogen atom; and
 A represents a hydroxymethyl group.

a tetrazolinone compound wherein
 R27 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
 R28 represents a hydrogen atom; and
 A represents a hydroxymethyl group.

a tetrazolinone compound wherein
 R27 represents an ethyl group or a cyclopropyl group;
 R28 represents a hydrogen atom; and
 A represents a hydroxymethyl group.

a tetrazolinone compound wherein
 R27 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
 R28 represents a methyl group or a hydrogen atom; and
 A represents an (C1-C3 alkoxy) methyl group.
a tetrazolinone compound wherein

\(R^{27} \) represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

\(R^{28} \) represents a methyl group or a hydrogen atom; and

\(A \) represents an \((C1-C3 alkoxy)\) methyl group.

[0294]

a tetrazolinone compound wherein

\(R^{27} \) represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

\(R^{28} \) represents a methyl group or a hydrogen atom; and

\(A \) represents an \((C1-C3 alkoxy)\) methyl group.

a tetrazolinone compound wherein

\(R^{27} \) represents a halogen atom;

\(R^{28} \) represents a methyl group or a hydrogen atom; and

\(A \) represents an \((C1-C3 alkoxy)\) methyl group.

a tetrazolinone compound wherein

\(R^{27} \) represents an C1-C3 alkyl group;

\(R^{28} \) represents a methyl group or a hydrogen atom; and

\(A \) represents an \((C1-C3 alkoxy)\) methyl group.

a tetrazolinone compound wherein

\(R^{27} \) represents a C3-C4 cycloalkyl group;
R^2_8 represents a methyl group or a hydrogen atom; and
A represents an (C1-C3 alkoxy) methyl group.
a tetrazolinone compound wherein
R^2_7 represents an C1-C3 alkoxy group;
R^2_8 represents a methyl group or a hydrogen atom; and
A represents an (C1-C3 alkoxy) methyl group.
a tetrazolinone compound wherein
R^2_7 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R^2_8 represents a methyl group or a hydrogen atom; and
A represents an (C1-C3 alkoxy) methyl group.
a tetrazolinone compound wherein
R^2_7 represents an ethyl group or a cyclopropyl group;
R^2_8 represents a methyl group or a hydrogen atom; and
A represents an (C1-C3 alkoxy) methyl group.

[0295]
a tetrazolinone compound wherein
R^2_7 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R^2_8 represents a methyl group; and
A represents an (C1-C3 alkoxy) methyl group.
a tetrazolinone compound wherein
R27 represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
R28 represents a methyl group; and
A represents an (C1-C3 alkoxy) methyl group.

a tetrazolinone compound wherein
R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R28 represents a methyl group; and
A represents an (C1-C3 alkoxy) methyl group.

a tetrazolinone compound wherein
R27 represents a halogen atom;
R28 represents a methyl group; and
A represents an (C1-C3 alkoxy) methyl group.

a tetrazolinone compound wherein
R27 represents an C1-C3 alkyl group;
R28 represents a methyl group; and
A represents an (C1-C3 alkoxy) methyl group.

a tetrazolinone compound wherein
R27 represents a C3-C4 cycloalkyl group;
R28 represents a methyl group; and
A represents an (C1-C3 alkoxy) methyl group.
a tetrazolinone compound wherein

R²⁷ represents an C1-C3 alkoxy group;
R²⁸ represents a methyl group; and
A represents an (C1-C3 alkoxy) methyl group.

a tetrazolinone compound wherein

R²⁷ represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R²⁸ represents a methyl group; and
A represents an (C1-C3 alkoxy) methyl group.

a tetrazolinone compound wherein

R²⁷ represents an ethyl group or a cyclopropyl group;
R²⁸ represents a methyl group; and
A represents an (C1-C3 alkoxy) methyl group.

a tetrazolinone compound wherein

R²⁷ represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group;
R²⁸ represents a hydrogen atom; and
A represents an (C1-C3 alkoxy) methyl group.

a tetrazolinone compound wherein

R²⁷ represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
R28 represents a hydrogen atom; and
A represents an (C1-C3 alkoxy) methyl group.
a tetrazolinone compound wherein
R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl
group excluding trifluoromethyl group, an C2-C3 alkenyl
group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an
C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2
alkythio group, a C1-C2 haloalkythio group or an C1-C4
alkylamino group;
R28 represents a hydrogen atom; and
A represents an (C1-C3 alkoxy) methyl group.
a tetrazolinone compound wherein
R27 represents a halogen atom;
R28 represents a hydrogen atom; and
A represents an (C1-C3 alkoxy) methyl group.
a tetrazolinone compound wherein
R27 represents an C1-C3 alkyl group;
R28 represents a hydrogen atom; and
A represents an (C1-C3 alkoxy) methyl group.
a tetrazolinone compound wherein
R27 represents a C3-C4 cycloalkyl group;
R28 represents a hydrogen atom; and
A represents an (C1-C3 alkoxy) methyl group.
a tetrazolinone compound wherein
R27 represents an C1-C3 alkoxy group;
R28 represents a hydrogen atom; and
A represents an (C1-C3 alkoxy) methyl group.
a tetrazolinone compound wherein
R27 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R28 represents a hydrogen atom; and
A represents an (C1-C3 alkoxy) methyl group.
a tetrazolinone compound wherein
R27 represents an ethyl group or a cyclopropyl group;
R28 represents a hydrogen atom; and
A represents an (C1-C3 alkoxy) methyl group.
[0297]a tetrazolinone compound wherein
R27 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R28 represents a methyl group or a hydrogen atom,- and
A represents an (C1-C6 acyloxy) methyl group,
a tetrazolinone compound wherein
R27 represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
R28 represents a methyl group or a hydrogen atom; and
A represents an (C1-C6 acyloxy) methyl group.
a tetrazolinone compound wherein

R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R28 represents a methyl group or a hydrogen atom; and

A represents an (C1-C6 acyloxy) methyl group.

a tetrazolinone compound wherein

R27 represents a halogen atom;

R28 represents a methyl group or a hydrogen atom; and

A represents an (C1-C6 acyloxy) methyl group.

a tetrazolinone compound wherein

R27 represents an C1-C3 alkyl group;

R28 represents a methyl group or a hydrogen atom; and

A represents an (C1-C6 acyloxy) methyl group.

a tetrazolinone compound wherein

R27 represents a C3-C4 cycloalkyl group

R28 represents a methyl group or a hydrogen atom; and

A represents an (C1-C6 acyloxy) methyl group.

a tetrazolinone compound wherein

R27 represents an C1-C3 alkoxy group;

R28 represents a methyl group or a hydrogen atom; and

A represents an (C1-C6 acyloxy) methyl group.
a tetrazolinone compound wherein

R^{27} represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

R^{28} represents a methyl group or a hydrogen atom; and

A represents an (C1-C6 acyloxy) methyl group,
a tetrazolinone compound wherein

R^{27} represents an ethyl group or a cyclopropyl group;

R^{28} represents a methyl group or a hydrogen atom; and

A represents an (C1-C6 acyloxy) methyl group.

[0298]
a tetrazolinone compound wherein

R^{27} represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R^{28} represents a methyl group; and

A represents an (C1-C6 acyloxy) methyl group,
a tetrazolinone compound wherein

R^{27} represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R^{28} represents a methyl group; and

A represents an (C1-C6 acyloxy) methyl group,
a tetrazolinone compound wherein

R^{27} represents an C2-C3 alkyl group, a C1-C3 haloalkyl
group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R²⁸ represents a methyl group; and
A represents an (C1-C₆ acyloxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents a halogen atom;
R²⁸ represents a methyl group; and
A represents an (C1-C₆ acyloxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents an C1-G₃ alkyl group;
R²⁸ represents a methyl group; and
A represents an (C1-C₆ acyloxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents a C3-C₄ cycloalkyl group,
R²⁸ represents a methyl group; and
A represents an (C1-C₆ acyloxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents an C1-C₃ alkoxy group,
R²⁸ represents a methyl group; and
A represents an (C1-C₆ acyloxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents a chlorine atom, a bromine atom, a
methyl group or a methoxy group;
\[R^{28} \] represents a methyl group, and
\[A \] represents an (C1-C6 acyloxy) methyl group.

A tetrazolinone compound wherein
\[R^{27} \] represents an ethyl group or a cyclopropyl group,
\[R^{28} \] represents a methyl group, and
\[A \] represents an (C1-C6 acyloxy) methyl group.

A tetrazolinone compound wherein
\[R^{27} \] represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group,
\[R^{28} \] represents a hydrogen atom, and
\[A \] represents an (C1-C6 acyloxy) methyl group.

A tetrazolinone compound wherein
\[R^{27} \] represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
\[R^{28} \] represents a hydrogen atom, and
\[A \] represents an (C1-C6 acyloxy) methyl group.

A tetrazolinone compound wherein
\[R^{27} \] represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an
C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

\(R^28 \) represents a hydrogen atom; and

A represents an (C1-C6 acyloxy) methyl group.

a tetrazolinone compound wherein

\(R^27 \) represents a halogen atom;

\(R^28 \) represents a hydrogen atom; and

A represents an (C1-C6 acyloxy) methyl group.

a tetrazolinone compound wherein

\(R^27 \) represents a C1-C3 alkyl group;

\(R^28 \) represents a hydrogen atom; and

A represents an (C1-C6 acyloxy) methyl group.

a tetrazolinone compound wherein

\(R^27 \) represents a C3-C4 cycloalkyl group;

\(R^28 \) represents a hydrogen atom; and

A represents an (C1-C6 acyloxy) methyl group.

a tetrazolinone compound wherein

\(R^27 \) represents an C1-C3 alkoxy group,—

\(R^28 \) represents a hydrogen atom; and

A represents an (C1-C6 acyloxy) methyl group.

a tetrazolinone compound wherein

\(R^27 \) represents a chlorine atom, a bromine atom, a methyl group or methoxy group,—

\(R^28 \) represents a hydrogen atom; and
A represents an (C1-C6 acyloxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents an ethyl group or a cyclopropyl group;
R²⁸ represents a hydrogen atom; and
A represents an (C1-C6 acyloxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents an (C1-C6 alkylsulf onyloxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents an (C1-C6 alkylsulf onyloxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group;
R²⁷ represents a methyl group or a hydrogen atom; and
A represents an (C₁-C₆ alkylsulfonxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents a halogen atom;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents an (C₁-C₆ alkylsulfonxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents an C₁-C₃ alkyl group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents an (C₁-C₆ alkylsulfonxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents a C₃-C₄ cycloalkyl group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents an (C₁-C₆ alkylsulfonxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents an C₁-C₃ alkoxy group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents an (C₁-C₆ alkylsulfonxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents an (C₁-C₆ alkylsulfonxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents an ethyl group or a cyclopropyl group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents an (C₁-C₆ alkylsulf onyloxy) methyl group.

[0300]
a tetrazolinone compound wherein

R²⁷ represents a halogen atom, an C₁-C₃ alkyl group, a C₁-C₃ haloalkyl group, an C₂-C₃ alkenyl group, an C₂-C₃ alkynyl group, a C₃-C₄ cycloalkyl group, an C₁-C₃ alkoxy group, a C₁-C₃ haloalkoxy group, an C₁-C₂ alkylthio group, a C₁-C₂ haloalkythio group or an C₁-C₄ alkylamino group;

R²⁸ represents a methyl group; and
A represents an (C₁-C₆ alkylsulf onyloxy) methyl group.

a tetrazolinone compound wherein

R²⁷ represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R²⁸ represents a methyl group; and
A represents an (C₁-C₆ alkylsulf onyloxy) methyl group.

a tetrazolinone compound wherein

R²⁷ represents an C₂-C₃ alkyl group, a C₁-C₃ haloalkyl group excluding trifluoromethyl group, an C₂-C₃ alkenyl group, an C₂-C₃ alkynyl group, a C₃-C₄ cycloalkyl group, an C₂-C₃ alkoxy group, a C₁-C₃ haloalkoxy group, an C₁-C₂ alkylthio group, a C₁-C₂ haloalkythio group or an C₁-C₄ alkylamino group;

R²⁸ represents a methyl group; and
A represents an (C₁-C₆ alkylsulf onyloxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents a halogen atom;
R²⁸ represents a methyl group; and
A represents an (C₁-C₆ alkylsulfonyloxy) methyl group.

a tetrazolinone compound wherein
R²⁷ represents an C₁-C₃ alkyl group;
R²⁸ represents a methyl group; and
A represents an (C₁-C₆ alkylsulfonyloxy) methyl group.

a tetrazolinone compound wherein
R²⁷ represents a C₃-C₄ cycloalkyl group;
R²⁸ represents a methyl group; and
A represents an (C₁-C₆ alkylsulfonyloxy) methyl group.

a tetrazolinone compound wherein
R²⁷ represents an C₁-C₃ alkoxy group;
R²⁸ represents a methyl group; and
A represents an (C₁-C₆ alkylsulfonyloxy) methyl group.

a tetrazolinone compound wherein
R²⁷ represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R²⁸ represents a methyl group; and
A represents an (C₁-C₆ alkylsulfonyloxy) methyl group.

a tetrazolinone compound wherein
R²⁷ represents an ethyl group or a cyclopropyl group;
R²⁸ represents a methyl group; and
A represents an (C₁-C₆ alkylsulfonyloxy) methyl group.
a tetrazolinone compound wherein

R27 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R28 represents a hydrogen atom; and

A represents an (C1-C6 alkylsulfonyloxy) methyl group.

a tetrazolinone compound wherein

R27 represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R28 represents a hydrogen atom; and

A represents an (C1-C6 alkylsulfonyloxy) methyl group.

[0301]

a tetrazolinone compound wherein

R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R28 represents a hydrogen atom; and

A represents an (C1-C6 alkylsulfonyloxy) methyl group.

a tetrazolinone compound wherein

R27 represents a halogen atom;
R^{28} represents a hydrogen atom; and
A represents an (C1-C6 alkylsulfonyloxy) methyl group.

A tetrazolinone compound wherein

R^{27} represents an C1-C3 alkyl group;
R^{28} represents a hydrogen atom; and
A represents an (C1-C6 alkylsulfonyloxy) methyl group.

A tetrazolinone compound wherein

R^{27} represents a C3-C4 cycloalkyl group;
R^{28} represents a hydrogen atom; and
A represents an (C1-C6 alkylsulfonyloxy) methyl group.

A tetrazolinone compound wherein

R^{27} represents an C1-C3 alkoxy group;
R^{28} represents a hydrogen atom; and
A represents an (C1-C6 alkylsulfonyloxy) methyl group.

A tetrazolinone compound wherein

R^{27} represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R^{28} represents a hydrogen atom; and
A represents an (C1-C6 alkylsulfonyloxy) methyl group.

A tetrazolinone compound wherein

R^{27} represents an ethyl group or a cyclopropyl group;
R^{28} represents a hydrogen atom; and
A represents an (C1-C6 alkylsulfonyloxy) methyl group.

A tetrazolinone compound wherein

R^{27} represents a halogen atom, an C1-C3 alkyl group, a
C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

\[R^{28} \] represents a hydrogen atom; and

A represents an (C1-C6 alkylsulfonyloxy) methyl group, a tetrazolinone compound wherein

\[R^{27} \] represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

\[R^{28} \] represents a methyl group or a hydrogen atom; and

A represents a (C1-C6 haloalkylsulfonyloxy) methyl group.

a tetrazolinone compound wherein

\[R^{27} \] represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

\[R^{28} \] represents a methyl group or a hydrogen atom; and

A represents a (C1-C6 haloalkylsulfonyloxy) methyl group.

a tetrazolinone compound wherein

\[R^{27} \] represents a halogen atom;

\[R^{28} \] represents a methyl group or a hydrogen atom,- and
A represents a (C1-C6 haloalkylsulf onyloxy) methyl group.

a tetrazolinone compound wherein

R²⁷ represents an C1-C3 alkyl group;

R²⁸ represents a methyl group or a hydrogen atom; and

A represents a (C1-C6 haloalkylsulf onyloxy) methyl group.

a tetrazolinone compound wherein

R²⁷ represents a C3-C4 cycloalkyl group;

R²⁸ represents a methyl group or a hydrogen atom; and

A represents a (C1-C6 haloalkylsulf onyloxy) methyl group.

a tetrazolinone compound wherein

R²⁷ represents an C1-C3 alkoxy group;

R²⁸ represents a methyl group or a hydrogen atom; and

A represents a (C1-C6 haloalkylsulf onyloxy) methyl group.

a tetrazolinone compound wherein

R²⁷ represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

R²⁸ represents a methyl group or a hydrogen atom; and

A represents a (C1-C6 haloalkylsulf onyloxy) methyl group.

a tetrazolinone compound wherein

R²⁷ represents an ethyl group or a cyclopropyl group;
R₂⁸ represents a methyl group or a hydrogen atom; and
A represents a (C₁-C₆ haloalkylsulf onyloxy) methyl
group.

a tetrazolinone compound wherein

R²⁷ represents a halogen atom, an C₁-C₃ alkyl group, a
C₁-C₃ haloalkyl group, an C₂-C₃ alkenyl group, an C₂-C₃
alkynyl group, a C₃-C₄ cycloalkyl group, an C₁-C₃ alkoxy
group, a C₁-C₃ haloalkoxy group, an C₁-C₂ alkylthio group,
a C₁-C₂ haloalkythio group or an C₁-C₄ alkylamino group;

R₂⁸ represents a methyl group; and
A represents a (C₁-C₆ haloalkylsulf onyloxy) methyl
group.

a tetrazolinone compound wherein

R²⁷ represents a halogen atom, a methyl group, a
trifluoromethyl group or a methoxy group;

R₂⁸ represents a methyl group; and
A represents a (C₁-C₆ haloalkylsulf onyloxy) methyl
group.

[0302]

a tetrazolinone compound wherein

R²⁷ represents an C₂-C₃ alkyl group, a C₁-C₃ haloalkyl
group excluding trifluoromethyl group, an C₂-C₃ alkenyl
group, an C₂-C₃ alkynyl group, a C₃-C₄ cycloalkyl group, an
C₂-C₃ alkoxy group, a C₁-C₃ haloalkoxy group, an C₁-C₂
alkylthio group, a C₁-C₂ haloalkythio group or an C₁-C₄
alkylamino group;

R²⁸ represents a methyl group; and
A represents a (C₁-C₆ haloalkylsulf onyloxy) methyl
group.

5 a tetrazolinone compound wherein
R²⁷ represents a halogen atom;
R²⁸ represents a methyl group; and
A represents a (C₁-C₆ haloalkylsulf onyloxy) methyl
group.

10 a tetrazolinone compound wherein
R²⁷ represents an C₁-C₃ alkyl group;
R²⁸ represents a methyl group; and
A represents a (C₁-C₆ haloalkylsulf onyloxy) methyl
group.

15 a tetrazolinone compound wherein
R²⁷ represents a C₃-C₄ cycloalkyl group;
R²⁸ represents a methyl group; and
A represents a (C₁-C₆ haloalkylsulf onyloxy) methyl
group.

20 a tetrazolinone compound wherein
R²⁷ represents an C₁-C₃ alkoxy group;
R²⁸ represents a methyl group; and
A represents a (C₁-C₆ haloalkylsulf onyloxy) methyl
group.

25 a tetrazolinone compound wherein
R^2 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R^2^8 represents a methyl group, and
A represents a (C1-C6 haloalkylsulf onyloxy) methyl group.

a tetrazolinone compound wherein
R^2^7 represents an ethyl group or a cyclopropyl group;
R^2^8 represents a methyl group; and
A represents a (C1-C6 haloalkylsulf onyloxy) methyl group.

a tetrazolinone compound wherein
R^2^7 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R^2^8 represents a hydrogen atom, and
A represents a (C1-C6 haloalkylsulf onyloxy) methyl group.

a tetrazolinone compound wherein
R^2^7 represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
R^2^8 represents a hydrogen atom; and
A represents a (C1-C6 haloalkylsulf onyloxy) methyl group.
a tetrazolinone compound wherein

R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R28 represents a hydrogen atom; and

A represents a (C1-C6 haloalkylsulf onyloxy) methyl group.

a tetrazolinone compound wherein

R27 represents a halogen atom;

R28 represents a hydrogen atom; and

A represents a (C1-C6 haloalkylsulf onyloxy) methyl group.

a tetrazolinone compound wherein

R27 represents an C1-C3 alkyl group;

R28 represents a hydrogen atom; and

A represents a (C1-C6 haloalkylsulf onyloxy) methyl group.

a tetrazolinone compound wherein

R27 represents a C3-C4 cycloalkyl group;

R28 represents a hydrogen atom; and

A represents a (C1-C6 haloalkylsulf onyloxy) methyl group.
a tetrazolinone compound wherein

R^{27} represents an $C1-C3$ alkoxy group;

R^{28} represents a hydrogen atom; and

A represents a $(C1-C6$ haloalkylsulfonyloxy) methyl group.

a tetrazolinone compound wherein

R^{27} represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

R^{28} represents a hydrogen atom; and

A represents a $(C1-C6$ haloalkylsulfonyloxy) methyl group.

a tetrazolinone compound wherein

R^{27} represents an ethyl group or a cyclopropyl group;

R^{28} represents a hydrogen atom; and

A represents a $(C1-C6$ haloalkylsulfonyloxy) methyl group.

[0303]

a tetrazolinone compound wherein

R^{27} represents a halogen atom, an $C1-C3$ alkyl group, a $C1-C3$ haloalkyl group, an $C2-C3$ alkenyl group, an $C3-C4$ cycloalkyl group, an $C1-C3$ alkoxy group, a $C1-C3$ haloalkoxy group, an $C1-C2$ alkylthio group, a $C1-C2$ haloalkylthio group or an $C1-C4$ alkylamino group;

R^{28} represents a methyl group or a hydrogen atom; and

A represents an $(C6-C16$ arylsulfonyloxy) methyl group.
a tetrazolinone compound wherein

R^{27} represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R^{28} represents a methyl group or a hydrogen atom, and

A represents an (C6-C16 arylsulfonyloxy) methyl group.

[0304]
a tetrazolinone compound wherein

R^{27} represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group,

R^{28} represents a methyl group or a hydrogen atom; and

A represents an (C6-C16 arylsulfonyloxy) methyl group,

a tetrazolinone compound wherein

R^{27} represents a halogen atom;

R^{28} represents a methyl group or a hydrogen atom, and

A represents an (C6-C16 arylsulfonyloxy) methyl group.

a tetrazolinone compound wherein

R^{27} represents an C1-C3 alkyl group;

R^{28} represents a methyl group or a hydrogen atom; and

A represents an (C6-C16 arylsulfonyloxy) methyl group,

a tetrazolinone compound wherein

R^{27} represents a C3-C4 cycloalkyl group;
R^2 represents a methyl group or a hydrogen atom; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.
a tetrazolinone compound wherein
R^7 represents an C1-C3 alkoxy group;
R^8 represents a methyl group or a hydrogen atom; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.
a tetrazolinone compound wherein
R^7 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R^8 represents a methyl group or a hydrogen atom; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.
a tetrazolinone compound wherein
R^7 represents an ethyl group or a cyclopropyl group;
R^8 represents a methyl group or a hydrogen atom; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.

[0305]
a tetrazolinone compound wherein
R^7 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R^8 represents a methyl group; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.
a tetrazolinone compound wherein
R^{27} represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
R^{28} represents a methyl group; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.

a tetrazolinone compound wherein
R^{27} represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R^{28} represents a methyl group,- and
A represents an (C6-C16 arylsulfonyloxy) methyl group.

a tetrazolinone compound wherein
R^{27} represents a halogen atom;
R^{28} represents a methyl group; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.

a tetrazolinone compound wherein
R^{27} represents an C1-C3 alkyl group;
R^{28} represents a methyl group; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.

a tetrazolinone compound wherein
R^{27} represents a C3-C4 cycloalkyl group;
R^{28} represents a methyl group,- and
A represents an (C6-C16 arylsulfonyloxy) methyl group.
a tetrazolinone compound wherein

R\(^{27}\) represents an C1-C3 alkoxy group,
R\(^{28}\) represents a methyl group; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.

a tetrazolinone compound wherein

R\(^{27}\) represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R\(^{28}\) represents a methyl group; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.

a tetrazolinone compound wherein

R\(^{27}\) represents an ethyl group or a cyclopropyl group,
R\(^{28}\) represents a methyl group; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.

[0306]

a tetrazolinone compound wherein

R\(^{27}\) represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group,
R\(^{28}\) represents a hydrogen atom; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.

a tetrazolinone compound wherein

R\(^{27}\) represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;
R27 represents a hydrogen atom; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.
a tetrazolinone compound wherein
R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl
group excluding trifluoromethyl group, an C2-C3 alkenyl
group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an
C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2
alkylthio group, a C1-C2 haloalkylthio group or an C1-C4
alkylamino group;

R28 represents a hydrogen atom; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.
a tetrazolinone compound wherein
R27 represents a halogen atom;
R28 represents a hydrogen atom; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.

R27 represents an C1-C3 alkyl group;
R28 represents a hydrogen atom; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.
a tetrazolinone compound wherein
R27 represents a C3-C4 cycloalkyl group;
R28 represents a hydrogen atom; and
A represents an (C6-C16 arylsulfonyloxy) methyl group.
a tetrazolinone compound wherein
R27 represents an C1-C3 alkoxy group;
R^{28} represents a hydrogen atom; and

A represents an (C6-C16 arylsulf onyloxy) methyl group,
a tetrazolinone compound wherein

R^{27} represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

R^{28} represents a hydrogen atom; and

A represents an (C6-C16 arylsulf onyloxy) methyl group,
a tetrazolinone compound wherein

R^{27} represents an ethyl group or a cyclopropyl group;

R^{28} represents a hydrogen atom; and

A represents an (C6-C16 arylsulf onyloxy) methyl group.

[0307]
a tetrazolinone compound wherein

R^{27} represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R^{28} represents a methyl group or a hydrogen atom; and

A represents a (C6-C16 haloarylsulf onyloxy) methyl group.

a tetrazolinone compound wherein

R^{27} represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R^{28} represents a methyl group or a hydrogen atom; and
A represents a (C6-C16 haloarylsulf onyloxy) methyl group.

A tetrazolinone compound wherein

R^{27} represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R^{28} represents a methyl group or a hydrogen atom; and

A represents a (C6-C16 haloarylsulf onyloxy) methyl group.

A tetrazolinone compound wherein

R^{27} represents a halogen atom;

R^{28} represents a methyl group or a hydrogen atom; and

A represents a (C6-C16 haloarylsulf onyloxy) methyl group.

A tetrazolinone compound wherein

R^{27} represents an C1-C3 alkyl group;

R^{28} represents a methyl group or a hydrogen atom; and

A represents a (C6-C16 haloarylsulf onyloxy) methyl group.

A tetrazolinone compound wherein

R^{27} represents a C3-C4 cycloalkyl group;

R^{28} represents a methyl group or a hydrogen atom; and
A represents a (C6-C16 haloarylsulf onyloxy) methyl group.
a tetrazolinone compound wherein

R27 represents an C1-C3 alkoxy group;

R28 represents a methyl group or a hydrogen atom; and

A represents a (C6-C16 haloarylsulf onyloxy) methyl group.
a tetrazolinone compound wherein

R27 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

R28 represents a methyl group or a hydrogen atom; and

A represents a (C6-C16 haloarylsulf onyloxy) methyl group.
a tetrazolinone compound wherein

R27 represents an ethyl group or a cyclopropyl group,-

R28 represents a methyl group or a hydrogen atom; and

A represents a (C6-C16 haloarylsulf onyloxy) methyl group.
a tetrazolinone compound wherein

R27 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R28 represents a methyl group; and
A represents a (C6-C16 haloarylsulf onyloxy) methyl group.
a tetrazolinone compound wherein

R^{27} represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R^{28} represents a methyl group; and

A represents a (C6-C16 haloarylsulf onyloxy) methyl group.

[0308]
a tetrazolinone compound wherein

R^{27} represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R^{28} represents a methyl group; and

A represents a (C6-C16 haloarylsulf onyloxy) methyl group.

a tetrazolinone compound wherein

R^{27} represents a halogen atom;

R^{28} represents a methyl group; and

A represents a (C6-C16 haloarylsulf onyloxy) methyl group.

a tetrazolinone compound wherein
R27 represents an C1-C3 alkyl group;
R28 represents a methyl group, and
A represents a (C6-C16 haloarylsulf onyloxy) methyl group.

a tetrazolinone compound wherein
R27 represents a C3-C4 cycloalkyl group;
R28 represents a methyl group; and
A represents a (C6-C16 haloarylsulf onyloxy) methyl group.

a tetrazolinone compound wherein
R27 represents an C1-C3 alkoxy group;
R28 represents a methyl group; and
A represents a (C6-C16 haloarylsulf onyloxy) methyl group.

a tetrazolinone compound wherein
R27 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R28 represents a methyl group; and
A represents a (C6-C16 haloarylsulf onyloxy) methyl group.

a tetrazolinone compound wherein
R27 represents an ethyl group or a cyclopropyl group;
R28 represents a methyl group; and
A represents a (C6-C16 haloarylsulf onyloxy) methyl group.
a tetrazolinone compound wherein

R27 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group,

R28 represents a hydrogen atom; and

A represents a (C6-C16 haloarylsulf onyloxy) methyl group.

a tetrazolinone compound wherein

R27 represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R28 represents a hydrogen atom; and

A represents a (C6-C16 haloarylsulf onyloxy) methyl group.

a tetrazolinone compound wherein

R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R28 represents a hydrogen atom; and

A represents a (C6-C16 haloarylsulf onyloxy) methyl group.
a tetrazolinone compound wherein
R²⁷ represents a halogen atom;
R²⁸ represents a hydrogen atom; and
A represents a (C⁶-C¹⁶ haloarylsulf onyloxy) methyl group.

a tetrazolinone compound wherein
R²⁷ represents an C¹-C³ alkyl group;
R²⁸ represents a hydrogen atom; and
A represents a (C⁶-C¹⁶ haloarylsulf onyloxy) methyl group.

a tetrazolinone compound wherein
R²⁷ represents a C³-C⁴ cycloalkyl group;
R²⁸ represents a hydrogen atom; and
A represents a (C⁶-C¹⁶ haloarylsulf onyloxy) methyl group.

a tetrazolinone compound wherein
R²⁷ represents an C¹-C³ alkoxy group;
R²⁸ represents a hydrogen atom; and
A represents a (C⁶-C¹⁶ haloarylsulf onyloxy) methyl group.

a tetrazolinone compound wherein
R²⁷ represents a chlorine atom, a bromine atom, a methyl group or a methoxy group,
R²⁸ represents a hydrogen atom; and
A represents a (C6-C16 haloarylsulfonyl)oxy methyl group.

a tetrazolinone compound wherein

R^27 represents an ethyl group or a cyclopropyl group;

R^28 represents a hydrogen atom; and

A represents a (C6-C16 haloarylsulfonyl)oxy methyl group.

[0310]

a tetrazolinone compound wherein

R^27 represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R^28 represents a methyl group or a hydrogen atom; and

A represents an (C1-C6 alkylamino) methyl group.

a tetrazolinone compound wherein

R^27 represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R^28 represents a methyl group or a hydrogen atom; and

A represents an (C1-C6 alkylamino) methyl group.

a tetrazolinone compound wherein

R^27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an
C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

\(R^2_8 \) represents a methyl group or a hydrogen atom; and

A represents an (C1-C6 alkylamino) methyl group.

A tetrazolinone compound wherein

\(R^2_7 \) represents a halogen atom;

\(R^2_8 \) represents a methyl group or a hydrogen atom; and

A represents an (C1-C6 alkylamino) methyl group.

A tetrazolinone compound wherein

\(R^2_7 \) represents a C3-C4 cycloalkyl group;

\(R^2_8 \) represents a methyl group or a hydrogen atom; and

A represents an (C1-C6 alkylamino) methyl group.

A tetrazolinone compound wherein

\(R^2_7 \) represents an C1-C3 alkyl group;

\(R^2_8 \) represents a methyl group or a hydrogen atom; and

A represents an (C1-C6 alkylamino) methyl group.

A tetrazolinone compound wherein

\(R^2_7 \) represents an C1-C3 alkoxy group;

\(R^2_8 \) represents a methyl group or a hydrogen atom; and

A represents an (C1-C6 alkylamino) methyl group.

A tetrazolinone compound wherein

\(R^2_7 \) represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

\(R^2_8 \) represents a methyl group or a hydrogen atom,- and
A represents an (C1-C6 alkylamino) methyl group.
a tetrazolinone compound wherein
R^27 represents an ethyl group or a cyclopropyl group;
R^28 represents a methyl group or a hydrogen atom; and
A represents an (C1-C6 alkylamino) methyl group.
a tetrazolinone compound wherein
R^27 represents a halogen atom, an C1-C3 alkyl group, a
C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3
alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy
group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group,
a C1-C2 haloalkyl thio group or an C1-C4 alkylamino group;
R^28 represents a methyl group; and
A represents an (C1-C6 alkylamino) methyl group.
a tetrazolinone compound wherein
R^27 represents a halogen atom, a methyl group, a
trifluoromethyl group or a methoxy group,-
R^28 represents a methyl group; and
A represents an (C1-C6 alkylamino) methyl group.
[0311]
a tetrazolinone compound wherein
R^27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl
group excluding trifluoromethyl group, an C2-C3 alkenyl
group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an
C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2
alkylthio group, a C1-C2 haloalkylthio group or an C1-C4
alkylamino group;

R$_{28}$ represents a methyl group; and

A represents an (C1-C6 alkylamino) methyl group.

a tetrazolinone compound wherein

R$_{27}$ represents a halogen atom;

R$_{28}$ represents a methyl group; and

A represents an (C1-C6 alkylamino) methyl group.

a tetrazolinone compound wherein

R$_{27}$ represents a C1-C3 alkyl group;

R$_{28}$ represents a methyl group; and

A represents an (C1-C6 alkylamino) methyl group.

a tetrazolinone compound wherein

R$_{27}$ represents a C3-C4 cycloalkyl group;

R$_{28}$ represents a methyl group; and

A represents an (C1-C6 alkylamino) methyl group.

a tetrazolinone compound wherein

R$_{27}$ represents an C1-C3 alkoxy group;

R$_{28}$ represents a methyl group; and

A represents an (C1-C6 alkylamino) methyl group.

a tetrazolinone compound wherein

R$_{27}$ represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

R$_{28}$ represents a methyl group; and

A represents an (C1-C6 alkylamino) methyl group.

a tetrazolinone compound wherein
R27 represents an ethyl group or a cyclopropyl group;
R28 represents a methyl group; and
A represents an (C1-C6 alkylamino) methyl group.

a tetrazolinone compound wherein

R27 represents a halogen atom, an C1-C3 alkyl group, a
C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group,
a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R28 represents a hydrogen atom; and
A represents an (C1-C6 alkylamino) methyl group.

a tetrazolinone compound wherein

R27 represents a halogen atom, a methyl group, a
trifluoromethyl group or a methoxy group;
R28 represents a hydrogen atom; and
A represents an (C1-C6 alkylamino) methyl group.

a tetrazolinone compound wherein

R27 represents an C2-C3 alkyl group, a C1-C3 haloalkyl
group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R28 represents a hydrogen atom; and
A represents an (C1-C6 alkylamino) methyl group.
a tetrazolinone compound wherein
 \(R^{27} \) represents a halogen atom;
 \(R^{28} \) represents a hydrogen atom; and
A represents an (C1-C6 alkylamino) methyl group.
a tetrazolinone compound wherein
 \(R^{27} \) represents a C1-C3 alkyl group;
 \(R^{28} \) represents a hydrogen atom; and
A represents an (C1-C6 alkylamino) methyl group.
a tetrazolinone compound wherein
 \(R^{27} \) represents a C3-C4 cycloalkyl group;
 \(R^{28} \) represents a hydrogen atom; and
A represents an (C1-C6 alkylamino) methyl group.
a tetrazolinone compound wherein
 \(R^{27} \) represents an alkox group;
 \(R^{28} \) represents a hydrogen atom; and
A represents an (C1-C6 alkylamino) methyl group.
a tetrazolinone compound wherein
 \(R^{27} \) represents a chlorine atom, a bromine atom, a methyl group or methoxy group;
 \(R^{28} \) represents a hydrogen atom; and
A represents an (C1-C6 alkylamino) methyl group.
a tetrazolinone compound wherein
 \(R^{27} \) represents an ethyl group or a cyclopropyl group;
 \(R^{28} \) represents a hydrogen atom; and
A represents an (C1-C6 alkylamino) methyl group.

[0313]

tetrazolinone compound wherein

R²⁷ represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R²⁸ represents a methyl group or a hydrogen atom; and

A represents an oxygen atom, a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).

tetrazolinone compound wherein

R²⁷ represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R²⁸ represents a methyl group or a hydrogen atom; and

A represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may
further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).

A tetrazolinone compound wherein

R^{27} represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkythio group, a C1-C2 haloalkyl thio group or an C1-C4 alkylamino group;

R^{28} represents a methyl group or a hydrogen atom; and

A represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).

A tetrazolinone compound wherein

R^{27} represents a halogen atom;

R^{28} represents a methyl group or a hydrogen atom; and

A represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-
membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).

a tetrazolinone compound wherein

\(R^{27} \) represents an C1-C3 alkyl group;

\(R^{28} \) represents a methyl group or a hydrogen atom; and

\(A \) represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).

a tetrazolinone compound wherein

\(R^{27} \) represents a C3-C4 cycloalkyl group;

\(R^{28} \) represents a methyl group or a hydrogen atom; and

\(A \) represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms,
and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).

A tetrazolinone compound wherein

\[R^{27} \] represents an C1-C3 alkoxy group;
\[R^{28} \] represents a methyl group or a hydrogen atom; and
\[A \] represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).

A tetrazolinone compound wherein

\[R^{27} \] represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
\[R^{28} \] represents a methyl group or a hydrogen atom; and
\[A \] represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).
other).

a tetrazolinone compound wherein

R27 represents an ethyl group or a cyclopropyl group;

R28 represents a methyl group or a hydrogen atom; and

A represents a methyl group having heterocyclyl group
(with the proviso that the heterocyclyl group is a five-
membered, six-membered or seven-membered ring containing
one or more nitrogen atoms as ring-constituent atom and may
further include one or more oxygen atoms or sulfur atoms,
and the nitrogen atom being the ring-constituent atom for
the heterocyclyl group and a methyl group connects to each
other).

[0314]
a tetrazolinone compound wherein

R27 represents a halogen atom, an C1-C3 alkyl group, a
C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3
alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy
group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group,
a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R28 represents a methyl group; and

A represents a methyl group having heterocyclyl group
(with the proviso that the heterocyclyl group is a five-
membered, six-membered or seven-membered ring containing
one or more nitrogen atoms as ring-constituent atom and may
further include one or more oxygen atoms or sulfur atoms,
and the nitrogen atom being the ring-constituent atom for
the heterocyclyl group and a methyl group connects to each
other).

A tetrazolinone compound wherein

R²⁷ represents a halogen atom, a methyl group, a
trifluoromethyl group or a methoxy group,
R²⁸ represents a methyl group; and
A represents a methyl group having heterocyclyl group
(with the proviso that the heterocyclyl group is a five-
membered, six-membered or seven-membered ring containing
one or more nitrogen atoms as ring-constituent atom and may
further include one or more oxygen atoms or sulfur atoms,
and the nitrogen atom being the ring-constituent atom for
the heterocyclyl group and a methyl group connects to each
other).

A tetrazolinone compound wherein

R²⁷ represents an C₂⁻C₃ alkyl group, a C₁⁻C₃ haloalkyl
group excluding trifluoromethyl group, an C₂⁻C₃ alkenyl
group, an C₂⁻C₃ alkynyl group, a C₃⁻C₄ cycloalkyl group, an
C₂⁻C₃ alkoxy group, a C₁⁻C₃ haloalkoxy group, an C₁⁻C₂
alkylthio group, a C₁⁻C₂ haloalkylthio group or an C₁⁻C₄
alkylamino group;
R²⁸ represents a methyl group; and
A represents a methyl group having heterocyclyl group
(with the proviso that the heterocyclyl group is a five-
membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other)

a tetrazolinone compound wherein

\[R^{27} \] represents a halogen atom;
\[R^{28} \] represents a methyl group; and

\[A \] represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other)

a tetrazolinone compound wherein

\[R^{27} \] represents a C1-C3 alkyl group;
\[R^{28} \] represents a methyl group; and

\[A \] represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms,
and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).

A tetrazolinone compound wherein

5 \(R^{27} \) represents a C3-C4 cycloalkyl group;

\(R^{28} \) represents a methyl group; and

A represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).

15 A tetrazolinone compound wherein

\(R^{27} \) represents an C1-C3 alkoxy group;

\(R^{28} \) represents a methyl group; and

A represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).
a tetrazolinone compound wherein

R^{27} represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

R^{28} represents a methyl group; and

A represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).

a tetrazolinone compound wherein

R^{27} represents an ethyl group or a cyclopropyl group;

R^{28} represents a methyl group, and

A represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).
R²⁷ represents a halogen atom, an C₁-C₃ alkyl group, a C₁-C₃ haloalkyl group, an C₂-C₃ alkenyl group, an C₂-C₃ alkynyl group, a C₃-C₄ cycloalkyl group, an C₁-C₃ alkoxy group, a C₁-C₃ haloalkoxy group, an C₁-C₂ alkylthio group, a C₁-C₂ haloalkylthio group or an C₁-C₄ alkylamino group;

R²⁸ represents a hydrogen atom; and

A represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).

A tetrazolinone compound wherein

R²⁷ represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R²⁸ represents a hydrogen atom; and

A represents a methyl group having heterocyclyl group (with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each
a tetrazolinone compound wherein

\(R^{27} \) represents an \(C_2-C_3 \) alkyl group, a \(C_1-C_3 \) haloalkyl
group excluding trifluoromethyl group, an \(C_2-C_3 \) alkenyl
group, an \(C_2-C_3 \) alkynyl group, a \(C_3-C_4 \) cycloalkyl group, an
\(C_2-C_3 \) alkoxy group, a \(C_1-C_3 \) haloalkoxy group, an \(C_1-C_2 \)
alkylthio group, a \(C_1-C_2 \) haloalkylthio group or an \(C_1-C_4 \)
alkylamino group;

\(R^{28} \) represents a hydrogen atom; and

\(A \) represents a methyl group having heterocyclyl group
(with the proviso that the heterocyclyl group is a five-
membered, six-membered or seven-membered ring containing
one or more nitrogen atoms as ring-constituent atom and may
further include one or more oxygen atoms or sulfur atoms,
and the nitrogen atom being the ring-constituent atom for
the heterocyclyl group and a methyl group connects to each
other).

a tetrazolinone compound wherein

\(R^{27} \) represents a halogen atom;

\(R^{28} \) represents a hydrogen atom; and

\(A \) represents a methyl group having heterocyclyl group
(with the proviso that the heterocyclyl group is a five-
membered, six-membered or seven-membered ring containing
one or more nitrogen atoms as ring-constituent atom and may
further include one or more oxygen atoms or sulfur atoms,
and the nitrogen atom being the ring-constituent atom for
the heterocyclyl group and a methyl group connects to each
other).

A tetrazolinone compound wherein

R^27 represents an C1-C3 alkyl group;
R^28 represents a hydrogen atom; and

A represents a methyl group having heterocyclyl group
(with the proviso that the heterocyclyl group is a five-
membered, six-membered or seven-membered ring containing
one or more nitrogen atoms as ring-constituent atom and may
further include one or more oxygen atoms or sulfur atoms,
and the nitrogen atom being the ring-constituent atom for
the heterocyclyl group and a methyl group connects to each
other).

A tetrazolinone compound wherein

R^27 represents a C3-C4 cycloalkyl group;
R^28 represents a hydrogen atom; and

A represents a methyl group having heterocyclyl group
(with the proviso that the heterocyclyl group is a five-
membered, six-membered or seven-membered ring containing
one or more nitrogen atoms as ring-constituent atom and may
further include one or more oxygen atoms or sulfur atoms,
and the nitrogen atom being the ring-constituent atom for
the heterocyclyl group and a methyl group connects to each
other).
a tetrazolinone compound wherein

\(R^{27} \) represents an \(\text{C}1-\text{C}3 \) alkoxy group;

\(R^{28} \) represents a hydrogen atom; and

\(A \) represents a methyl group having heterocyclyl group

(with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).

a tetrazolinone compound wherein

\(R^{27} \) represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

\(R^{28} \) represents a hydrogen atom; and

\(A \) represents a methyl group having heterocyclyl group

(with the proviso that the heterocyclyl group is a five-membered, six-membered or seven-membered ring containing one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other).

a tetrazolinone compound wherein

\(R^{27} \) represents an ethyl group or a cyclopropyl group;
R_2^8 represents a hydrogen atom; and
A represents a methyl group having heterocyclyl group
(with the proviso that the heterocyclyl group is a five-
membered, six-membered or seven-membered ring containing
one or more nitrogen atoms as ring-constituent atom and may
further include one or more oxygen atoms or sulfur atoms,
and the nitrogen atom being the ring-constituent atom for
the heterocyclyl group and a methyl group connects to each
other).

[0316]

A tetrazolinone compound wherein
R_2^7 represents a halogen atom, an C1-C3 alkyl group, a
C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3
alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy
group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group,
a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R_2^8 represents a methyl group or a hydrogen atom; and
A represents a formyl group.

A tetrazolinone compound wherein
R_2^7 represents a halogen atom, a methyl group, a
trifluoromethyl group or a methoxy group;
R_2^8 represents a methyl group or a hydrogen atom; and
A represents a formyl group.

A tetrazolinone compound wherein
R_2^7 represents an C2-C3 alkyl group, a C1-C3 haloalkyl
group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R28 represents a methyl group or a hydrogen atom; and

A represents a formyl group.

a tetrazolinone compound wherein

R27 represents a halogen atom;

R28 represents a methyl group or a hydrogen atom; and

A represents a formyl group.

a tetrazolinone compound wherein

R27 represents an C1-C3 alkyl group;

R28 represents a methyl group or a hydrogen atom; and

A represents a formyl group.

a tetrazolinone compound wherein

R27 represents a C3-C4 cycloalkyl group;

R28 represents a methyl group or a hydrogen atom; and

A represents a formyl group.

a tetrazolinone compound wherein

R27 represents an C1-C3 alkoxy group;

R28 represents a methyl group or a hydrogen atom; and

A represents a formyl group.

a tetrazolinone compound wherein

R27 represents a chlorine atom, a bromine atom, a
methyl group or a methoxy group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents a formyl group.

a tetrazolinone compound wherein
R²⁷ represents an ethyl group or a cyclopropyl group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents a formyl group.

[0317]
a tetrazolinone compound wherein
R²⁷ represents a halogen atom, an C₁-C₃ alkyl group, a
C₁-C₃ haloalkyl group, an C₂-C₃ alkenyl group, an C₂-C₃
alkynyl group, a C₃-C₄ cycloalkyl group, an C₁-C₃ alkoxy
group, a C₁-C₃ haloalkoxy group, an C₁-C₂ alkylthio group,
a C₁-C₂ haloalkylthio group or an C₁-C₄ alkylamino group;
R²⁸ represents a methyl group; and
A represents a formyl group.

a tetrazolinone compound wherein
R²⁷ represents a halogen atom, a methyl group, a
trifluoromethyl group or a methoxy group;
R²⁸ represents a methyl group; and
A represents a formyl group.

a tetrazolinone compound wherein
R²⁷ represents an C₂-C₃ alkyl group, a C₁-C₃ haloalkyl
group excluding trifluoromethyl group, an C₂-C₃ alkenyl
group, an C₂-C₃ alkynyl group, a C₃-C₄ cycloalkyl group, an
C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkythio group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group;

R^27 represents a methyl group; and
A represents a formyl group.

a tetrazolinone compound wherein

R^27 represents a halogen atom;
R^28 represents a methyl group; and
A represents a formyl group.

a tetrazolinone compound wherein

R^27 represents a C1-C3 alkyl group;
R^28 represents a methyl group; and
A represents a formyl group.

a tetrazolinone compound wherein

R^27 represents a C3-C4 cycloalkyl group;
R^28 represents a methyl group; and
A represents a formyl group.

a tetrazolinone compound wherein

R^27 represents an C1-C3 alkoxy group,-
R^28 represents a methyl group; and
A represents a formyl group.

a tetrazolinone compound wherein

R^27 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R^28 represents a methyl group,- and
A represents a formyl group.
a tetrazolinone compound wherein

R_{27} represents an ethyl group or a cyclopropyl group;
R_{28} represents a methyl group; and

A represents a formyl group.

[0318]
a tetrazolinone compound wherein

R_{27} represents a halogen atom, an C1-C3 alkyl group, a
C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;
R_{28} represents a hydrogen atom; and

A represents a formyl group.

a tetrazolinone compound wherein

R_{27} represents a halogen atom, a methyl group, a
trifluoromethyl group or a methoxy group;
R_{28} represents a hydrogen atom; and

A represents a formyl group.

a tetrazolinone compound wherein

R_{27} represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4
alkylamino group;

R28 represents a hydrogen atom; and

A represents a formyl group,
a tetrazolinone compound wherein

R27 represents a halogen atom;

R28 represents a hydrogen atom; and

A represents a formyl group.
a tetrazolinone compound wherein

R27 represents an C1-C3 alkyl group;

R28 represents a hydrogen atom; and

A represents a formyl group,
a tetrazolinone compound wherein

R27 represents a C3-C4 cycloalkyl group;

R28 represents a hydrogen atom; and

A represents a formyl group,
a tetrazolinone compound wherein

R27 represents an C1-C3 alkoxy group;

R28 represents a hydrogen atom; and

A represents a formyl group,
a tetrazolinone compound wherein

R27 represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

R28 represents a hydrogen atom; and

A represents a formyl group,
a tetrazolinone compound wherein
\[R^{27} \text{ represents an ethyl group or a cyclopropyl group,} \]
\[R^{28} \text{ represents a hydrogen atom; and} \]
\[A \text{ represents a formyl group.} \]

[0319]

5 a tetrazolinone compound wherein

\[R^{27} \text{ represents a halogen atom, an C1-C3 alkyl group, a} \]
\[\text{C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3} \]
\[\text{alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy} \]
\[\text{group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group,} \]
\[\text{a C1-C2 haloalkythio group or an C1-C4 alkylamino group;} \]
\[R^{28} \text{ represents a methyl group or a hydrogen atom; and} \]
\[A \text{ represents an C2-C6 alkoxy carbonyl group.} \]

a tetrazolinone compound wherein

\[R^{27} \text{ represents a halogen atom, a methyl group, a} \]
\[\text{trifluoromethyl group or a methoxy group;} \]
\[R^{28} \text{ represents a methyl group or a hydrogen atom; and} \]
\[A \text{ represents an C2-C6 alkoxy carbonyl group.} \]

a tetrazolinone compound wherein

\[R^{27} \text{ represents an C2-C3 alkyl group, a C1-C3 haloalkyl} \]
\[\text{group excluding trifluoromethyl group, an C2-C3 alkenyl} \]
\[\text{group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an} \]
\[\text{C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2} \]
\[\text{alkylthio group, a C1-C2 haloalkylthio group or an C1-C4} \]
\[\text{alkylamino group;} \]
\[R^{28} \text{ represents a methyl group or a hydrogen atom; and} \]
A represents an C2-C6 alkoxy carbonyl group, a tetrazolinone compound wherein

R²⁷ represents a halogen atom;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents an C2-C6 alkoxy carbonyl group,
a tetrazolinone compound wherein

R²⁷ represents an C1-C3 alkyl group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents an C2-C6 alkoxy carbonyl group.
a tetrazolinone compound wherein

R²⁷ represents a C3-C4 cycloalkyl group,-
R²⁸ represents a methyl group or a hydrogen atom; and
A represents an C2-C6 alkoxy carbonyl group.
a tetrazolinone compound wherein

R²⁷ represents an C1-C3 alkoxy group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents an C2-C6 alkoxy carbonyl group,
a tetrazolinone compound wherein

R²⁷ represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;
R²⁸ represents a methyl group or a hydrogen atom; and
A represents an C2-C6 alkoxy carbonyl group,
a tetrazolinone compound wherein

R²⁷ represents an ethyl group or a cyclopropyl group;
R²⁸ represents a methyl group or a hydrogen atom,- and
A represents an C2-C6 alkoxy carbonyl group.

[0320] a tetrazolinone compound wherein

R^{27} represents a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R^{28} represents a methyl group; and

A represents an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R^{27} represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

R^{28} represents a methyl group; and

A represents an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R^{27} represents an C2-C3 alkyl group, a C1-C3 haloalkyl group excluding trifluoromethyl group, an C2-C3 alkenyl group, an C2-C3 alkynyl group, a C3-C4 cycloalkyl group, an C2-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C2 alkylthio group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R^{28} represents a methyl group; and

A represents an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein
R^{27} represents a halogen atom; R^{28} represents a methyl group; and A represents an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R^{27} represents an C1-C3 alkyl group; R^{28} represents a methyl group; and A represents an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R^{27} represents a C3-C4 cycloalkyl group; R^{28} represents a methyl group; and A represents an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R^{27} represents an C1-C3 alkoxy group; R^{28} represents a methyl group; and A represents an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R^{27} represents a chlorine atom, a bromine atom, a methyl group or a methoxy group; R^{28} represents a methyl group; and A represents an C2-C6 alkoxy carbonyl group.

a tetrazolinone compound wherein

R^{27} represents an ethyl group or a cyclopropyl group; R^{28} represents a methyl group; and A represents an C2-C6 alkoxy carbonyl group.
a tetrazolinone compound wherein

\(R^{27} \) represents a halogen atom, an \(\text{C}1-\text{C}3 \) alkyl group, a \(\text{C}1-\text{C}3 \) haloalkyl group, an \(\text{C}2-\text{C}3 \) alkenyl group, an \(\text{C}2-\text{C}3 \) alkynyl group, a \(\text{C}3-\text{C}4 \) cycloalkyl group, an \(\text{C}1-\text{C}3 \) alkoxy group, a \(\text{C}1-\text{C}3 \) haloalkoxy group, an \(\text{C}1-\text{C}2 \) alkylthio group, a \(\text{C}1-\text{C}2 \) haloalkylthio group or an \(\text{C}1-\text{C}4 \) alkylamino group;

\(R^{28} \) represents a hydrogen atom; and

\(A \) represents an \(\text{C}2-\text{C}6 \) alkoxy carbonyl group,

a tetrazolinone compound wherein

\(R^{27} \) represents a halogen atom, a methyl group, a trifluoromethyl group or a methoxy group;

\(R^{28} \) represents a hydrogen atom; and

\(A \) represents an \(\text{C}2-\text{C}6 \) alkoxy carbonyl group,

a tetrazolinone compound wherein

\(R^{27} \) represents an \(\text{C}2-\text{C}3 \) alkyl group, a \(\text{C}1-\text{C}3 \) haloalkyl group excluding trifluoromethyl group, an \(\text{C}2-\text{C}3 \) alkenyl group, an \(\text{C}2-\text{C}3 \) alkynyl group, a \(\text{C}3-\text{C}4 \) cycloalkyl group, an \(\text{C}2-\text{C}3 \) alkoxy group, a \(\text{C}1-\text{C}3 \) haloalkoxy group, an \(\text{C}1-\text{C}2 \) alkylthio group, a \(\text{C}1-\text{C}2 \) haloalkylthio group or an \(\text{C}1-\text{C}4 \) alkylamino group;

\(R^{28} \) represents a hydrogen atom; and

\(A \) represents an \(\text{C}2-\text{C}6 \) alkoxy carbonyl group,

a tetrazolinone compound wherein

\(R^{27} \) represents a halogen atom;

\(R^{28} \) represents a hydrogen atom,- and
A represents an C2-C6 alkoxy carbonyl group, a tetrazolinone compound wherein

R\(^{27}\) represents an C1-C3 alkyl group;

R\(^{28}\) represents a hydrogen atom; and

A represents an C2-C6 alkoxy carbonyl group, a tetrazolinone compound wherein

R\(^{27}\) represents a C3-C4 cycloalkyl group;

R\(^{28}\) represents a hydrogen atom; and

A represents an C2-C6 alkoxy carbonyl group, a tetrazolinone compound wherein

R\(^{27}\) represents an C1-C3 alkoxy group;

R\(^{28}\) represents a hydrogen atom; and

A represents an C2-C6 alkoxy carbonyl group, a tetrazolinone compound wherein

R\(^{27}\) represents a chlorine atom, a bromine atom, a methyl group or a methoxy group;

R\(^{28}\) represents a hydrogen atom; and

A represents an C2-C6 alkoxy carbonyl group, a tetrazolinone compound wherein

R\(^{27}\) represents an ethyl group or a cyclopropyl group;

R\(^{28}\) represents a hydrogen atom; and

A represents an C2-C6 alkoxy carbonyl group, a tetrazolinone compound wherein

A represents a methyl group, a halomethyl group, a hydroxymethyl group or an (C1-C3 alkoxy) methyl group;
R27 represents an C\textsubscript{1}-C\textsubscript{3} alkyl group, a halogen atom, an C\textsubscript{1}-C\textsubscript{3} alkoxy group, a C\textsubscript{3}-C\textsubscript{4} cycloalkyl group, an C\textsubscript{2}-C\textsubscript{3} alkenyl group, a C\textsubscript{1}-C\textsubscript{3} haloalkyl group, a C\textsubscript{1}-C\textsubscript{3} haloalkoxy group or an C\textsubscript{1}-C\textsubscript{2} alkylthio group;

R28 represents a methyl group or a hydrogen atom.

a tetrazolinone compound wherein

A represents a methyl group, a bromomethyl group, a hydroxymethyl group or a methoxymethyl group;

R27 represents a methyl group, an ethyl group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyclopropyl group, a vinyl group, a difluoromethyl group, a trifluoromethyl group, a methoxy group, an ethoxy group, a difluoromethoxy group or a methylthio group;

R28 represents a methyl group or a hydrogen atom.

[0322]

Also, examples of an embodiment of the present tetrazolinone compound include the compounds of the formula (5) wherein the substituents represent the following ones.

[0323]

a tetrazolinone compound wherein

R22 represents a halogen atom, a hydrogen atom, an C\textsubscript{1}-C\textsubscript{6} alkyl group, a C\textsubscript{1}-C\textsubscript{6} haloalkyl group, an C\textsubscript{1}-C\textsubscript{6} alkoxy group, a C\textsubscript{1}-C\textsubscript{6} haloalkoxy group, an C\textsubscript{1}-C\textsubscript{6} alkylthio group, a C\textsubscript{1}-C\textsubscript{6} haloalkylthio group, an C\textsubscript{2}-C\textsubscript{6} acyl group, a C\textsubscript{2}-C\textsubscript{6} haloacyl group, a nitro group or a cyano group;
R²₂, R²³, R²⁴ and R²⁵ represent independently of each other a hydrogen atom or a halogen atom; and

R²⁶ represents an C1-C3 alkyl group.

[0324]
a tetrazolinone compound wherein

R²¹ represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, an C2-C6 haloacyl group, a nitro group or a cyano group;

R²², R²³, R²⁴ and R²⁵ represent independently of each other a hydrogen atom or a halogen atom; and

R²⁶ represents a C3-C4 cycloalkyl group.

[0325]
a tetrazolinone compound wherein

R²¹ represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, an C2-C6 haloacyl group, a nitro group or a cyano group;

R²², R²³, R²⁴ and R²⁵ represent independently of each other a hydrogen atom or a halogen atom; and

R²⁶ represents a halogen atom.

[0326]
a tetrazolinone compound wherein
R2 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, an C2-C6 haloacyl group, a nitro group or a cyano group;

R21, R22, R23, R24 and R25 represent independently of each other a hydrogen atom or a halogen atom; and

R26 represents a C1-C3 haloalkyl group.

[0327]

a tetrazolinone compound wherein

R2 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, an C2-C6 haloacyl group, a nitro group or a cyano group;

R21, R22, R23, R24 and R25 represent independently of each other a hydrogen atom or a halogen atom; and

R26 represents an C2-C3 alkenyl group.

[0328]

a tetrazolinone compound wherein

R2 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, an C2-C6 haloacyl group, a nitro group or a cyano group;
R22, R23, R24 and R25 represent independently of each other a hydrogen atom or a halogen atom; and

R26 represents an C1-C3 alkoxy group.

[0329]

a tetrazolinone compound wherein

R21 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, an C2-C6 haloacyl group, a nitro group or a cyano group;

R22, R23, R24 and R25 represent independently of each other a hydrogen atom or a halogen atom; and

R26 represents an C1-C2 alkylthio group.

[0330]

a tetrazolinone compound wherein

R21 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, an C2-C6 haloacyl group, a nitro group or a cyano group;

R22, R23, R24 and R25 represent independently of each other a hydrogen atom or a halogen atom; and

R26 represents an C2-C3 alkynyl group.

[0331]

a tetrazolinone compound wherein
R^2 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, an C2-C6 haloacyl group, a nitro group or a cyano group.

R^{22}, R^{23}, R^{24} and R^{25} represent independently of each other a hydrogen atom or a halogen atom; and R^{26} represents a C1-C3 haloalkoxy group.

[0332]

A tetrazolinone compound wherein

R^2 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, an C2-C6 haloacyl group, a nitro group or a cyano group;

R^{22}, R^{23}, R^{24} and R^{25} represent independently of each other a hydrogen atom or a halogen atom; and R^{26} represents a C1-C2 haloalkylthio group.

[0333]

A tetrazolinone compound wherein

R^2 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, an C2-C6 haloacyl group, a nitro group or a cyano group;
R², R²³, R²⁴ and R²⁵ represent independently of each other a hydrogen atom or a halogen atom; and

R²⁶ represents an C1-C4 alkylamino group.

[0334]
a tetrazolinone compound wherein

R¹ represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R²⁶ represents a methyl group; and

R²², R²³, R²⁴ and R²⁵ represent independently of each other a hydrogen atom or a fluorine atom.

[0335]
a tetrazolinone compound wherein

R¹ represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R²⁶ represents a cyclopropyl group; and

R²², R²³, R²⁴ and R²⁵ represent independently of each other a hydrogen atom or a fluorine atom.

[0336]
a tetrazolinone compound wherein

R¹ represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R²⁸ represents a chlorine atom; and

R²², R²³, R²⁴ and R²⁵ represent independently of each other a hydrogen atom or a fluorine atom.

[0337]
a tetrazolinone compound wherein

R$_2^1$ represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R$_2^2$ represents a bromine atom; and

R$_2^2$, R$_2^3$, R$_2^4$ and R$_2^5$ represent independently of each other a hydrogen atom or a fluorine atom.

[0338]

a tetrazolinone compound wherein

R$_2^1$ represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R$_2^2$ represents an ethyl group; and

R$_2^2$, R$_2^3$, R$_2^4$ and R$_2^5$ represent independently of each other a hydrogen atom or a fluorine atom.

[0339]

a tetrazolinone compound wherein

R$_2^1$ represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R$_2^6$ represents a methoxy group; and

R$_2^2$, R$_2^3$, R$_2^4$ and R$_2^5$ represent independently of each other a hydrogen atom or a fluorine atom.

[0340]

a tetrazolinone compound wherein

R$_2^1$ represents a halogen atom;

R$_2^2$, R$_2^3$, R$_2^4$ and R$_2^5$ represent a hydrogen atom;

R$_2^6$ represents an C1-C3 alkyl group.
[0341]
a tetrazolinone compound wherein

\[R^2 \text{ represents a chlorine atom;} \]
\[R^{22}, R^{23}, R^{24} \text{ and } R^{25} \text{ represent a hydrogen atom;} \]
\[R^{26} \text{ represents a methyl group.} \]

[0342]
Also, examples of an embodiment of the present tetrazolinone compound include the compounds of the formula (6) wherein the substituents represent the following ones.

[0343]
a tetrazolinone compound wherein

\[R^{42} \text{ represents an } C1-C6 \text{ alkoxy group, a halogen atom,} \]
\[a \text{ hydrogen atom, an } C1-C6 \text{ alkyl group, a } C1-C6 \text{ haloalkyl group, a } C1-C6 \text{ haloalkoxy group, an } C1-C6 \text{ alkylthio group,} \]
\[a \text{ } C1-C6 \text{ haloalkylthio group, an } C2-C6 \text{ acyl group, a } C2-C6 \text{ haloacyl group, a nitro group or a cyano group;} \]
\[R^{41}, R^{43}, R^{44} \text{ and } R^{45} \text{ represent independently of each other a hydrogen atom or a halogen atom; and} \]
\[R^{46} \text{ represents an } C1-C3 \text{ alkyl group.} \]

[0344]
a tetrazolinone compound wherein

\[R^{42} \text{ represents an } C1-C6 \text{ alkoxy group, a halogen atom,} \]
\[a \text{ hydrogen atom, an } C1-C6 \text{ alkyl group, a } C1-C6 \text{ haloalkyl group, a } C1-C6 \text{ haloalkoxy group, an } C1-C6 \text{ alkylthio group,} \]
\[a \text{ } C1-C6 \text{ haloalkylthio group, an } C2-C6 \text{ acyl group, a } C2-C6 \text{ haloacyl group, a nitro group or a cyano group;} \]
haloacyl group, a nitro group or a cyano group;

\[R^{41}, R^{43}, R^{44} \text{ and } R^{45} \text{ represent independently of each other a hydrogen atom or a halogen atom; and } \]

\[R^{46} \text{ represents a C3-C4 cycloalkyl group. } \]

[0345]
a tetrazolinone compound wherein

\[R^{42} \text{ represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkythio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, a nitro group or a cyano group; } \]

\[R^{41}, R^{43}, R^{44} \text{ and } R^{45} \text{ represent independently of each other a hydrogen atom or a halogen atom; and } \]

\[R^{46} \text{ represents a halogen atom. } \]

[0346]
a tetrazolinone compound wherein

\[R^{42} \text{ represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkythio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, a nitro group or a cyano group, } \]

\[R^{41}, R^{43}, R^{44} \text{ and } R^{45} \text{ represent independently of each other a hydrogen atom or a halogen atom; and } \]

\[R^{46} \text{ represents a C1-C3 haloalkyl group. } \]

[0347]
a tetrazolinone compound wherein

R₄² represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R₄¹, R₄³, R₄⁴ and R₄⁵ represent independently of each other a hydrogen atom or a halogen atom; and

R₄⁶ represents an C2-C3 alkenyl group.

[0348]
a tetrazolinone compound wherein

R₄² represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R₄¹, R₄³, R₄⁴ and R₄⁵ represent independently of each other a hydrogen atom or a halogen atom; and

R₄⁶ represents an C1-C3 alkoxy group.

[0349]
a tetrazolinone compound wherein

R₄² represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R₄¹, R₄³, R₄⁴ and R₄⁵ represent independently of each other a hydrogen atom or a halogen atom; and

R₄⁶ represents an C2-C6 acyl group, a C2-C6
haloacyl group, a nitro group or a cyano group;

R_{41}^2, R_{42}^1, R_{43}^3 and R_{44}^4 represent independently of each other a hydrogen atom or a halogen atom; and

R_{45}^5 represents an C1-C2 alkylthio group.

[0350]
a tetrazolinone compound wherein

R_{42}^1 represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkythio group, a nitro group or a cyano group;

R_{43}^2, R_{44}^3, R_{45}^4 and R_{46}^5 represent independently of each other a hydrogen atom or a halogen atom; and

R_{46}^6 represents an C2-C3 alkynyl group.

[0351]
a tetrazolinone compound wherein

R_{42}^1 represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkythio group, a nitro group or a cyano group;

R_{43}^2, R_{44}^3, R_{45}^4 and R_{46}^5 represent independently of each other a hydrogen atom or a halogen atom; and

R_{46}^6 represents a C1-C3 haloalkoxy group.

[0352]
a tetrazolinone compound wherein

R^{42} represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, a nitro group or a cyano group;

R^{41}, R^{43}, R^{44} and R^{45} represent independently of each other a hydrogen atom or a halogen atom; and

R^{46} represents a C1-C2 haloalkylthio group.

[a tetrazolinone compound wherein

R^{42} represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, a nitro group or a cyano group;

R^{41}, R^{43}, R^{44} and R^{45} represent independently of each other a hydrogen atom or a halogen atom; and

R^{46} represents a C1-C2 haloalkylthio group.

[0353]
a tetrazolinone compound wherein

R^{42} represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, a nitro group or a cyano group;

R^{41}, R^{43}, R^{44} and R^{45} represent independently of each other a hydrogen atom or a halogen atom; and

R^{46} represents a C1-C2 haloalkylthio group.

[0354]
a tetrazolinone compound wherein

R^{42} represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R^{48} represents a methyl group; and

R^{41}, R^{43}, R^{44} and R^{45} represent independently of each
other a hydrogen atom or a fluorine atom.

[0355]
a tetrazolinone compound wherein

\[R^{42} \text{ represents a methoxy group, a halogen atom, a methyl group or an ethyl group; } \]
\[R^{46} \text{ represents a cyclopropyl group; and } \]
\[R^{41}, R^{43}, R^{44} \text{ and } R^{45} \text{ represent independently of each other a hydrogen atom or a fluorine atom.} \]

[0356]
a tetrazolinone compound wherein

\[R^{42} \text{ represents a methoxy group, a halogen atom, a methyl group or an ethyl group; } \]
\[R^{46} \text{ represents a chlorine atom; and } \]
\[R^{41}, R^{43}, R^{44} \text{ and } R^{45} \text{ represent independently of each other a hydrogen atom or a fluorine atom.} \]

[0357]
a tetrazolinone compound wherein

\[R^{42} \text{ represents a methoxy group, a halogen atom, a methyl group or an ethyl group; } \]
\[R^{46} \text{ represents a bromine atom; and } \]
\[R^{41}, R^{43}, R^{44} \text{ and } R^{45} \text{ represent independently of each other a hydrogen atom or a fluorine atom.} \]

[0358]
a tetrazolinone compound wherein

\[R^{42} \text{ represents a methoxy group, a halogen atom, a methyl group or an ethyl group; } \]
methyl group or an ethyl group,

\[R^4 \] represents an ethyl group; and

\[R^{41}, R^{43}, R^{44} \text{ and } R^{45} \] represent independently of each other a hydrogen atom or a fluorine atom.

[0359]
a tetrazolinone compound wherein

\[R^{42} \] represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

\[R^{46} \] represents a methoxy group; and

\[R^{41}, R^{43}, R^{44} \text{ and } R^{45} \] represent independently of each other a hydrogen atom or a fluorine atom.

[0360]
Also, examples of an embodiment of the present tetrazolinone compound include the compounds of the formula (7) wherein the substituents represent the following ones.

[0361]
a tetrazolinone compound wherein

\[R^{53} \] represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkyl thio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

\[R^{51}, R^{53}, R^{54} \text{ and } R^{55} \] represent independently of each other a hydrogen atom or a halogen atom, and

\[R^{56} \] represents an C1-C3 alkyl group.
a tetrazolinone compound wherein

R⁵³ represents an C₁-C₆ alkoxy group, a halogen atom, a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group, a C₂-C₆ haloacyl group, a nitro group or a cyano group; R⁵¹, R⁵³, R⁵⁴ and R⁵⁵ represent independently of each other a hydrogen atom or a halogen atom; and

R⁵⁶ represents a C₃-C₄ cycloalkyl group.

a tetrazolinone compound wherein

R⁵³ represents an C₁-C₆ alkoxy group, a halogen atom, a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group, a C₂-C₆ haloacyl group, a nitro group or a cyano group; R⁵¹, R⁵³, R⁵⁴ and R⁵⁵ represent independently of each other a hydrogen atom or a halogen atom; and

R⁵⁶ represents a halogen atom.

a tetrazolinone compound wherein

R⁵³ represents an C₁-C₆ alkoxy group, a halogen atom, a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group,
a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

\[R^{51}, R^{53}, R^{54} \text{ and } R^{55} \text{ represent independently of each other a hydrogen atom or a halogen atom; and } \]

\[R^{56} \text{ represents a C1-C3 haloalkyl group.} \]

[0365]
a tetrazolinone compound wherein

\[R^{53} \text{ represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group; } \]

\[R^{51}, R^{53}, R^{54} \text{ and } R^{55} \text{ represent independently of each other a hydrogen atom or a halogen atom; and } \]

\[R^{56} \text{ represents an C2-C3 alkenyl group.} \]

[0366]
a tetrazolinone compound wherein

\[R^{53} \text{ represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group; } \]

\[R^{51}, R^{53}, R^{54} \text{ and } R^{55} \text{ represent independently of each other a hydrogen atom or a halogen atom; and } \]

\[R^{56} \text{ represents an C1-C3 alkoxy group.} \]
[0367]
a tetrazolinone compound wherein

R₅³ represents an C₁-C₆ alkoxy group, a halogen atom, a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group, a C₁-C₆ haloalkyl thio group, an C₂-C₆ acyl group, a C₂-C₆ haloacyl group, a nitro group or a cyano group;

R₅¹, R₅³, R₅⁴ and R₅⁵ represent independently of each other a hydrogen atom or a halogen atom; and

R₅⁶ represents an C₁-C₂ alkylthio group.

[0368]
a tetrazolinone compound wherein

R₅³ represents an C₁-C₆ alkoxy group, a halogen atom, a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group, a C₁-C₆ haloalkyl thio group, an C₂-C₆ acyl group, a C₂-C₆ haloacyl group, a nitro group or a cyano group;

R₅¹, R₅³, R₅⁴ and R₅⁵ represent independently of each other a hydrogen atom or a halogen atom, and

R₅⁶ represents an C₂-C₃ alkynyl group.

[0369]
a tetrazolinone compound wherein

R₅³ represents an C₁-C₆ alkoxy group, a halogen atom, a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group, a C₁-C₆ haloalkyl thio group, an C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group,
a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;
R^5_1, R^5_3, R^5_4 and R^5_5 represent independently of each other a hydrogen atom or a halogen atom; and
R^5_6 represents a C1-C3 haloalkoxy group.

[0370]
a tetrazolinone compound wherein
R^5_3 represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alklythio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;
R^5_1, R^5_3, R^5_4 and R^5_5 represent independently of each other a hydrogen atom or a halogen atom; and
R^5_6 represents a C1-C2 haloalkylthio group.

[0371]
a tetrazolinone compound wherein
R^5_3 represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alklythio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;
R^5_1, R^5_3, R^5_4 and R^5_5 represent independently of each other a hydrogen atom or a halogen atom; and
R^5_6 represents an C1-C4 alkylamino group.
a tetrazolinone compound wherein

R₅³ represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R₅⁶ represents a methyl group; and

R₅¹, R₅³, R₅⁴ and R₅⁵ represent independently of each other a hydrogen atom or a fluorine atom.

[0373]

a tetrazolinone compound wherein

R₅³ represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R₅⁶ represents a cyclopropyl group; and

R₅¹, R₅³, R₅⁴ and R₅⁵ represent independently of each other a hydrogen atom or a fluorine atom.

[0374]

a tetrazolinone compound wherein

R₅³ represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R₅⁶ represents a chlorine atom; and

R₅¹, R₅³, R₅⁴ and R₅⁵ represent independently of each other a hydrogen atom or a fluorine atom.

[0375]

a tetrazolinone compound wherein

R₅³ represents a methoxy group, a halogen atom, a methyl group or an ethyl group;
R56 represents a bromine atom; and
R51, R53, R54 and R55 represent independently of each other a hydrogen atom or a fluorine atom.

[0376]
a tetrazolinoone compound wherein
R53 represents a methoxy group, a halogen atom, a methyl group or an ethyl group;
R56 represents an ethyl group; and
R51, R53, R54 and R55 represent independently of each other a hydrogen atom or a fluorine atom.

[0377]
a tetrazolinoone compound wherein
R53 represents a methoxy group, a halogen atom, a methyl group or an ethyl group;
R56 represents a methoxy group; and
R51, R53, R54 and R55 represent independently of each other a hydrogen atom or a fluorine atom.

[0378]
Also, examples of an embodiment of the present pyrazole compound include the compounds of the formula (9) wherein the substituents represent the following ones.

[0379]
a pyrazole compound wherein
R211 represents a halogen atom, a hydrogen atom, an Cl-C6 alkyl group, a Cl-C6 haloalkyl group, an Cl-C6 alkoxy
group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R^{221}, R^{231}, R^{241} and R^{251} represent independently of each

other a hydrogen atom or a halogen atom;

R^{261} represents an C1-C3 alkyl group; and

L^1 represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON_3, $CONH_2$, $CONHCl$, $CONHBr$ or $CONHOH$.

[0380]

a pyrazole compound wherein

R^{231} represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R^{221}, R^{231}, R^{241} and R^{251} represent independently of each

other a hydrogen atom or a halogen atom;

R^{261} represents a C3-C4 cycloalkyl group; and

L^1 represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON_3, $CONH_2$, $CONHCl$, $CONHBr$ or $CONHOH$.

[0381]
a pyrazole compound wherein

R²¹ represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R²²¹, R²³¹, R²⁴¹ and R²⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R²⁶¹ represents a halogen atom; and

L¹ represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON₃, CONH₂, CONHCl, CONHBr or CONHOH.

[0382]

a pyrazole compound wherein

R²¹ represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R²²¹, R²³¹, R²⁴¹ and R²⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R²⁶¹ represents a C1-C3 haloalkyl group; and

L¹ represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl
group, a halogen atom, a halogenated acyl group, NSO, CON$_3$, CONH$_2$, CONHC$_1$, CONHBr or CONHOH.

(a pyrazole compound wherein

R211 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkyl thio group, an C2-C6 acyl group, a C2-C6 "haloacetyl group, a nitro group or a cyano group;

R221, R231, R241 and R251 represent independently of each other a hydrogen atom or a halogen atom;

R261 represents an C2-C3 alkenyl group; and

L1 represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON$_3$, CONH$_2$, CONHC$_1$, CONHBr or CONHOH.

(a pyrazole compound wherein

R211 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkyl thio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, a nitro group or a cyano group;

R221, R231, R241 and R251 represent independently of each other a hydrogen atom or a halogen atom;
R261 represents an C1-C3 alkoxy group; and
L1 represents a nitro group, an amino group, an
isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl
group, a halogen atom, a halogenated acyl group, NSO, CON\textsubscript{3},
CONH\textsubscript{2}, CONHCl, CONHBr or CONH\textsubscript{2}.

[0385]
a pyrazole compound wherein

R221, R231, R241 and R251 represent independently of each
other a hydrogen atom or a halogen atom;

R241 represents an C1-C2 alkylthio group; and
L1 represents a nitro group, an amino group, an
isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl
group, a halogen atom, a halogenated acyl group, NSO, CON\textsubscript{3},
CONH\textsubscript{2}, CONHCl, CONHBr or CONH\textsubscript{2}.

[0386]
a pyrazole compound wherein

R221 represents a halogen atom, a hydrogen atom, an C1-
C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy
group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group,
a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6
haloacetyl group, a nitro group or a cyano group.

R221, R231, R241 and R251 represent independently of each
other a hydrogen atom or a halogen atom;
haloacyl group, a nitro group or a cyano group;

R221, R231, R241 and R251 represent independently of each other a hydrogen atom or a halogen atom;

R251 represents an C2-C3 alkynyl group; and

L1 represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON\textsubscript{3}, CONH\textsubscript{2}, CONHCl, CONHBr or CONHOH.

[0387]
a pyrazole compound wherein

R211 represents a halogen atom, a hydrogen atom, an Cl-C6 alkyl group, a Cl-C6 haloalkyl group, an Cl-C6 alkoxy group, a Cl-C6 haloalkoxy group, an Cl-C6 alkylthio group, a Cl-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R221, R231, R241 and R251 represent independently of each other a hydrogen atom or a halogen atom;

R251 represents a Cl-C3 haloalkoxy group; and

L1 represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON\textsubscript{3}, CONH\textsubscript{2}, CONHCl, CONHBr or CONHOH.

[0388]
a pyrazole compound wherein

R211 represents a halogen atom, a hydrogen atom, an Cl-
C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

$R^{221}, R^{231}, R^{241}$ and R^{251} represent independently of each other a hydrogen atom or a halogen atom;

R^{261} represents a C1-C2 haloalkylthio group; and

L^{1} represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON_{3}, $CONH_{2}$, $CONHC1$, $CONHBr$ or $CONOH$.

[0389]
a pyrazole compound wherein

R^{211} represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

$R^{221}, R^{231}, R^{241}$ and R^{251} represent independently of each other a hydrogen atom or a halogen atom;

R^{261} represents an C1-C4 alkylamino group; and

L^{1} represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON_{3}, $CONH_{2}$, $CONHC1$, $CONHBr$ or $CONOH$.
a pyrazole compound wherein

R211 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R221, R231, R241 and R251 represent independently of each other a hydrogen atom or a halogen atom;

R261 represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L1 represents a nitro group.

a pyrazole compound wherein

R211 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R221, R231, R241 and R251 represent independently of each other a hydrogen atom or a halogen atom;
R261 represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L1 represents an amino group.

[0392]
a pyrazole compound wherein

R211 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, a nitro group or a cyano group;

R221, R231, R241 and R251 represent independently of each other a hydrogen atom or a halogen atom;

R261 represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L1 represents an isocyanato group.

[0393]
a pyrazole compound wherein
R211 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group.\n
R221, R231, R241 and R251 represent independently of each other a hydrogen atom or a halogen atom; R261 represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L1 represents a carboxyl group.

[0394]
a pyrazole compound wherein

R211 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group; R221, R231, R241 and R251 represent independently of each other a hydrogen atom or a halogen atom; R261 represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group,
an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L¹ represents an C2-C6 alkoxy carbonyl group.

[0395]
a pyrazole compound wherein

R²¹¹ represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R²²¹, R²³¹, R²⁴¹ and R²⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R²⁶¹ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L¹ represents a halogen atom.

[0396]
a pyrazole compound wherein

R²¹¹ represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy
group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 halooalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R^{221}, R^{231}, R^{241} and R^{251} represent independently of each other a hydrogen atom or a halogen atom;

R^{261} represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L^1 represents a halogenated acyl group.

[0397]
a pyrazole compound wherein

R^{211} represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R^{221}, R^{231}, R^{241} and R^{251} represent independently of each other a hydrogen atom or a halogen atom;

R^{261} represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, an C2-C3 alkylthio group, a C1-C3 haloalkoxy group.
group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L represents NSO.

[0398]

a pyrazole compound wherein

R²¹¹ represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R²³¹, R²⁴¹ and R²⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R²⁶¹ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L¹ represents a CON₃ group.

[0399]

a pyrazole compound wherein

R²¹¹ represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6
haloacyl group, a nitro group or a cyano group;

R^{221}, R^{231}, R^{241} and R^{251} represent independently of each other a hydrogen atom or a halogen atom;

R^{261} represents an $\text{C}1-\text{C}3$ alkyl group, a $\text{C}3-\text{C}4$ cycloalkyl group, a halogen atom, a $\text{C}1-\text{C}3$ haloalkyl group, an $\text{C}2-\text{C}3$ alkenyl group, an $\text{C}1-\text{C}3$ alkoxy group, an $\text{C}1-\text{C}2$ alkylthio group, an $\text{C}2-\text{C}3$ alkynyl group, a $\text{C}1-\text{C}3$ haloalkoxy group, a $\text{C}1-\text{C}2$ haloalkylthio group or an $\text{C}1-\text{C}4$ alkylamino group; and

L^1 represents a CONH_2 group.

a pyrazole compound wherein

R^{211} represents a halogen atom, a hydrogen atom, an $\text{C}1-\text{C}6$ alkyl group, a $\text{C}1-\text{C}6$ haloalkyl group, an $\text{C}1-\text{C}6$ alkoxy group, a $\text{C}1-\text{C}6$ haloalkoxy group, an $\text{C}1-\text{C}6$ alkylthio group, a $\text{C}1-\text{C}6$ haloalkylthio group, an $\text{C}2-\text{C}6$ acyl group, a $\text{C}2-\text{C}6$ haloacyl group, a nitro group or a cyano group;

R^{221}, R^{231}, R^{241} and R^{251} represent independently of each other a hydrogen atom or a halogen atom;

R^{261} represents an $\text{C}1-\text{C}3$ alkyl group, a $\text{C}3-\text{C}4$ cycloalkyl group, a halogen atom, a $\text{C}1-\text{C}3$ haloalkyl group, an $\text{C}2-\text{C}3$ alkenyl group, an $\text{C}1-\text{C}3$ alkoxy group, an $\text{C}1-\text{C}2$ alkylthio group, an $\text{C}2-\text{C}3$ alkynyl group, a $\text{C}1-\text{C}3$ haloalkoxy group, a $\text{C}1-\text{C}2$ haloalkylthio group or an $\text{C}1-\text{C}4$ alkylamino group; and
L represents a CONHC1 group.

A pyrazole compound wherein

R represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R, R and R represent independently of each other a hydrogen atom or a halogen atom;

R represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L represents a CONHBr group.

A pyrazole compound wherein

R represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R, R and R represent independently of each
other a hydrogen atom or a halogen atom;

R_{261} represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkylnyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L^1 represents a CONHOH group.

a pyrazole compound wherein

R^{211} represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R^{261} represents a methyl group;

R^{221}, R^{231}, R^{241} and R^{251} represent independently of each other a hydrogen atom or a fluorine atom; and

L^1 represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON_3, CONH_2, CONHCl, CONHBr or CONHOH.

a pyrazole compound wherein

R^{211} represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R^{261} represents a cyclopropyl group;

R^{221}, R^{231}, R^{241} and R^{251} represent independently of each
other a hydrogen atom or a fluorine atom; and

\[L^1 \] represents a nitro group, an amino group, an
isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl
group, a halogen atom, a halogenated acyil group, NSO, CON$_3$,\nCONH$_2$, CONHC$_1$, CONHBr or CONHOH.

[0401]
a pyrazole compound wherein

\[R^{211} \] represents a halogen atom, a methyl group, an
ethyl group or a methoxy group;

\[R^{261} \] represents a chlorine atom;

\[R^{221}, R^{231}, R^{241} \text{ and } R^{251} \] represent independently of each
other a hydrogen atom or a fluorine atom; and

\[L^1 \] represents a nitro group, an amino group, an
isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl
group, a halogen atom, a halogenated acyil group, NSO, CON$_3$,\nCONH$_2$, CONHC$_1$, CONHBr or CONHOH.

[0402]
a pyrazole compound wherein

\[R^{211} \] represents a halogen atom, a methyl group, an
ethyl group or a methoxy group;

\[R^{251} \] represents a bromine atom;

\[R^{221}, R^{231}, R^{241} \text{ and } R^{251} \] represent independently of each
other a hydrogen atom or a fluorine atom; and

\[L^1 \] represents a nitro group, an amino group, an
isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl
group, a halogen atom, a halogenated acyl group, NSO, CON₃, CONH₂, CONHCl, CONHBr or CONHOH.

[0403]
a pyrazole compound wherein

R²¹¹ represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R²⁶¹ represents an ethyl group;

R²₂¹, R²³¹, R²⁴¹ and R²⁵¹ represent independently of each other a hydrogen atom or a fluorine atom; and

L¹ represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C₂-C₆ alkoxy Carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON₃, CONH₂, CONHCl, CONHBr or CONHOH.

[0404]
a pyrazole compound wherein

R²¹¹ represents a halogen atom, a methyl group, an ethyl group or a methoxy group,

R²⁶¹ represents a methoxy group;

R²₂¹, R²³¹, R²⁴¹ and R²⁵¹ represent independently of each other a hydrogen atom or a fluorine atom; and

L¹ represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C₂-C₆ alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON₃, CONH₂, CONHCl, CONHBr or CONHOH.

[0405]
a pyrazole compound wherein

R211 represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R261 represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

R221, R231, R241 and R251 represent independently of each other a hydrogen atom or a fluorine atom; and

L1 represents a nitro group.

[0406]
a pyrazole compound wherein

R211 represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R261 represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

R221, R231, R241 and R251 represent independently of each other a hydrogen atom or a fluorine atom; and

L1 represents an amino group.

[0407]
a pyrazole compound wherein

R211 represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R261 represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy
group;
\[R^{221}, R^{231}, R^{241} \text{ and } R^{251} \text{ represent independently of each other a hydrogen atom or a fluorine atom; and } \]

\[L^1 \text{ represents an isocyanato group.} \]

[0408]
a pyrazole compound wherein

\[R^{211} \text{ represents a halogen atom, a methyl group, an ethyl group or a methoxy group; } \]

\[R^{261} \text{ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group; } \]

\[R^{221}, R^{231}, R^{241} \text{ and } R^{251} \text{ represent independently of each other a hydrogen atom or a fluorine atom; and } \]

\[L^1 \text{ represents a carboxyl group.} \]

[0409]
a pyrazole compound wherein

\[R^{211} \text{ represents a halogen atom, a methyl group, an ethyl group or a methoxy group; } \]

\[R^{261} \text{ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group; } \]

\[R^{221}, R^{231}, R^{241} \text{ and } R^{251} \text{ represent independently of each other a hydrogen atom or a fluorine atom; and } \]

\[L^1 \text{ represents an C2-C6 alkoxy carbonyl group.} \]

[0410]
a pyrazole compound wherein

R\textsubscript{211} represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R\textsubscript{261} represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

R\textsubscript{221}, R\textsubscript{231}, R\textsubscript{241} and R\textsubscript{251} represent independently of each other a hydrogen atom or a fluorine atom; and

L1 represents a halogen atom.

[0411]
a pyrazole compound wherein

R\textsubscript{211} represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R\textsubscript{261} represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

R\textsubscript{221}, R\textsubscript{231}, R\textsubscript{241} and R\textsubscript{251} represent independently of each other a hydrogen atom or a fluorine atom; and

L1 represents a halogenated acyl group.

[0412]
a pyrazole compound wherein

R\textsubscript{211} represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R\textsubscript{261} represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

R\textsubscript{221}, R\textsubscript{231}, R\textsubscript{241} and R\textsubscript{251} represent independently of each other a hydrogen atom or a fluorine atom; and

L1 represents a halogenated acyl group.
group;

$R^{221}, R^{231}, R^{241}$ and R^{251} represent independently of each other a hydrogen atom or a fluorine atom; and

L^1 represents NSO.

[0413] a pyrazole compound wherein

R^{211} represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R^{261} represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

$R^{221}, R^{231}, R^{241}$ and R^{251} represent independently of each other a hydrogen atom or a fluorine atom; and

L^1 represents CON_3.

[0414] a pyrazole compound wherein

R^{211} represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R^{261} represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

$R^{221}, R^{231}, R^{241}$ and R^{251} represent independently of each other a hydrogen atom or a fluorine atom; and

L^1 represents CONH_2.

[0415]
a pyrazole compound wherein

\(R^{211} \) represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

\(R^{261} \) represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

\(R^{221}, R^{231}, R^{241} \) and \(R^{251} \) represent independently of each other a hydrogen atom or a fluorine atom; and

\(L^1 \) represents CONHCl.

a pyrazole compound wherein

\(R^{211} \) represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

\(R^{261} \) represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

\(R^{221}, R^{231}, R^{241} \) and \(R^{251} \) represent independently of each other a hydrogen atom or a fluorine atom; and

\(L^1 \) represents CONHBr.

a pyrazole compound wherein

\(R^{211} \) represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

\(R^{261} \) represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;
group;

$R^{221}, R^{231}, R^{241}$ and R^{251} represent independently of each other a hydrogen atom or a fluorine atom; and

L^1 represents CONHOH.

[0418]
a pyrazole compound wherein

R^{211} represents a halogen atom;

$R^{221}, R^{231}, R^{241}$ and R^{251} represent a hydrogen atom;

R^{261} represents an C1-C3 alkyl group; and

L^1 represents a nitro group, an amino group or an isocyanato group.

[0419]
a pyrazole compound wherein

R^{211} represents a chlorine atom;

$R^{221}, R^{231}, R^{241}$ and R^{251} represent a hydrogen atom;

R^{261} represents a methyl group; and

L^1 represents a nitro group, an amino group or an isocyanato group.

[0420]
Also, examples of an embodiment of the present pyrazole compound include the compounds of the formula (10) wherein the substituents represent the following ones.

[0421]
a pyrazole compound wherein

R^{421} represents an C1-C6 alkoxy group, a halogen atom,
a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R⁴¹, R⁴³¹, R⁴⁴¹ and R⁴⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R⁴⁶¹ represents an C1-C3 alkyl group; and

L² represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON₃, CONH₂, CONHCl, CONHBr or CONHOH.

[0422]
a pyrazole compound wherein

R⁴₂¹ represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R⁴¹¹, R⁴³¹, R⁴⁴¹ and R⁴⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R⁴⁶¹ represents an C3-C4 cycloalkyl group; and

L² represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON₃, CONH₂, CONHCl, CONHBr or CONHOH.
a pyrazole compound wherein

\(R^{421} \) represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

\(R^{441}, R^{431}, R^{441} \) and \(R^{451} \) represent independently of each other a hydrogen atom or a halogen atom;

\(R^{461} \) represents a halogen atom; and

\(L^2 \) represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON\(_3\), CONH\(_2\), CONHCl, CONHBr or CONHOH.

a pyrazole compound wherein

\(R^{421} \) represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

\(R^{441}, R^{431}, R^{441} \) and \(R^{451} \) represent independently of each other a hydrogen atom or a halogen atom;

\(R^{461} \) represents a C1-C3 haloalkyl group; and

\(L^2 \) represents a nitro group, an amino group, an
isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON₃, CONH₂, CONHCl, CONHBr or CONHOH.

[0425]
a pyrazole compound wherein

R⁴²¹ represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R⁴¹₁, R⁴³₁, R⁴⁴¹ and R⁴⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R⁴⁶¹ represents an C2-C3 alkenyl group; and

L² represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON₃, CONH₂, CONHCl, CONHBr or CONHOH.

[0426]
a pyrazole compound wherein

R⁴²¹ represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R⁴¹₁, R⁴³₁, R⁴⁴¹ and R⁴⁵¹ represent independently of each
other a hydrogen atom or a halogen atom;

R⁴⁶¹ represents an C₁-C₃ alkoxy group; and

L² represents a nitro group, an amino group, an

isocyanato group, a carboxyl group, an C₂-C₆ alkoxy carbonyl
group, a halogen atom, a halogenated acyl group, NSO, CON₃,
CONH₂, CONHCl, CONHBr or CONOH.

[0427]
a pyrazole compound wherein

R⁴₂¹ represents an C₁-C₆ alkoxy group, a halogen atom,
a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl
group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group,
a C₁-C₆ haloalkylthio group, an C₂-C₆ acyl group, a C₂-C₆ haloacyl
group, a nitro group or a cyano group;

R⁴₁¹, R⁴₃¹, R⁴₄¹ and R⁴₅¹ represent independently of each

other a hydrogen atom or a halogen atom;

R⁴₆¹ represents an C₁-C₂ alkylthio group; and

L² represents a nitro group, an amino group, an

isocyanato group, a carboxyl group, an C₂-C₆ alkoxy carbonyl
group, a halogen atom, a halogenated acyl group, NSO, CON₃,
CONH₂, CONHCl, CONHBr or CONOH.

[0428]
a pyrazole compound wherein

R⁴₂¹ represents an C₁-C₆ alkoxy group, a halogen atom,
a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl
group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group,
a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

\(R^{411}, R^{431}, R^{441} \) and \(R^{451} \) represent independently of each other a hydrogen atom or a halogen atom;

\(R^{461} \) represents an C2-C3 alkynyl group; and

\(L^2 \) represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, \(\text{CON}_3 \), \(\text{CONH}_2 \), \(\text{CONHC}_1 \), \(\text{CONHBr} \) or \(\text{CONHOH} \).

[0429]
a pyrazole compound wherein

\(R^{421} \) represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, a nitro group or a cyano group;

\(R^{411}, R^{431}, R^{441} \) and \(R^{451} \) represent independently of each other a hydrogen atom or a halogen atom;

\(R^{451} \) represents a C1-C3 haloalkoxy group; and

\(L^2 \) represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, \(\text{CON}_3 \), \(\text{CONH}_2 \), \(\text{CONHC}_1 \), \(\text{CONHBr} \) or \(\text{CONHOH} \).

[0430]
a pyrazole compound wherein
R⁴²¹ represents an C₁-C₆ alkoxy group, a halogen atom, a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group, a C₁-C₆ haloalkylthio group, an C₂-C₆ acyl group, a C₂-C₆ haloacyl group, a nitro group or a cyano group;

R⁴¹¹, R⁴³¹, R⁴⁴¹ and R⁴⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R⁴⁶¹ represents a C₁-C₂ haloalkylthio group; and

L² represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C₂-C₆ alkoxycarbonyl group, a halogen atom, a halogenated acyl group, NSO, CON₃, CONH₂, CONHCl, CONHBr or CONOH.

[0431]
a pyrazole compound wherein

R⁴²¹ represents an C₁-C₆ alkoxy group, a halogen atom, a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group, a C₁-C₆ haloalkylthio group, an C₂-C₆ acyl group, a C₂-C₆ haloacyl group, a nitro group or a cyano group;

R⁴¹¹, R⁴³¹, R⁴⁴¹ and R⁴⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R⁴⁶¹ represents an C₁-C₄ alkylamino group; and

L² represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C₂-C₆ alkoxycarbonyl group, a halogen atom, a halogenated acyl group, NSO, CON₃,
CONH₂, CONHCl, CONHBr or CONHOH.

[0432]
a pyrazole compound wherein

R⁴₂¹ represents an C₁-C₆ alkoxy group, a halogen atom, a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group, a C₁-C₆ haloalkylthio group, an C₂-C₆ acyl group, a C₂-C₆ haloacyl group, a nitro group or a cyano group;

R⁴₁¹, R⁴₃¹, R⁴₄¹ and R⁴₅¹ represent independently of each other a hydrogen atom or a halogen atom;

R⁴₆¹ represents an C₁-C₃ alkyl group, a C₃-C₄ cycloalkyl group, a halogen atom, a C₁-C₃ haloalkyl group, an C₂-C₃ alkenyl group, an C₁-C₃ alkoxy group, an C₁-C₂ alkylthio group, an C₂-C₃ alkynyl group, a C₁-C₃ haloalkoxy group, a C₁-C₂ haloalkylthio group or an C₁-C₄ alkylamino group; and

L² represents a nitro group.

[0433]
a pyrazole compound wherein

R⁴₂¹ represents an C₁-C₆ alkoxy group, a halogen atom, a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group, a C₁-C₆ haloalkylthio group, an C₂-C₆ acyl group, a C₂-C₆ haloacyl group, a nitro group or a cyano group;

R⁴₁¹, R⁴₃¹, R⁴₄¹ and R⁴₅¹ represent independently of each
other a hydrogen atom or a halogen atom;

\(R^{451} \) represents an \(\text{C}1-\text{C}3 \) alkyl group, a \(\text{C}3-\text{C}4 \) cycloalkyl group, a halogen atom, a \(\text{C}1-\text{C}3 \) haloalkyl group, an \(\text{C}2-\text{C}3 \) alkenyl group, an \(\text{C}1-\text{C}3 \) alkoxy group, an \(\text{C}1-\text{C}2 \) alkylthio group, an \(\text{C}2-\text{C}3 \) alkynyl group, a \(\text{C}1-\text{C}3 \) haloalkoxy group, a \(\text{C}1-\text{C}2 \) haloalkylthio group or an \(\text{C}1-\text{C}4 \) alkylamino group; and

\(L^2 \) represents an amino group.

[0434]

10 a pyrazole compound wherein

\(R^{421} \) represents an \(\text{C}1-\text{C}6 \) alkoxy group, a halogen atom, a hydrogen atom, an \(\text{C}1-\text{C}6 \) alkyl group, a \(\text{C}1-\text{C}6 \) haloalkyl group, a \(\text{C}1-\text{C}6 \) haloalkoxy group, an \(\text{C}1-\text{C}6 \) alkylthio group, a \(\text{C}1-\text{C}6 \) haloalkylthio group, an \(\text{C}2-\text{C}6 \) acyl group, a \(\text{C}2-\text{C}6 \) haloacyl group, a nitro group or a cyano group;

\(R^{411}, R^{431}, R^{441} \) and \(R^{451} \) represent independently of each other a hydrogen atom or a halogen atom;

\(R^{461} \) represents an \(\text{C}1-\text{C}3 \) alkyl group, a \(\text{C}3-\text{C}4 \) cycloalkyl group, a halogen atom, a \(\text{C}1-\text{C}3 \) haloalkyl group, an \(\text{C}2-\text{C}3 \) alkenyl group, an \(\text{C}1-\text{C}3 \) alkoxy group, an \(\text{C}1-\text{C}2 \) alkylthio group, an \(\text{C}2-\text{C}3 \) alkynyl group, a \(\text{C}1-\text{C}3 \) haloalkoxy group, a \(\text{C}1-\text{C}2 \) haloalkylthio group or an \(\text{C}1-\text{C}4 \) alkylamino group; and

\(L^2 \) represents an isocyanato group.

[0435]
a pyrazole compound wherein

R\textsubscript{421} represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R\textsubscript{441}, R\textsubscript{431}, R\textsubscript{451} and R\textsubscript{451} represent independently of each other a hydrogen atom or a halogen atom;

R\textsubscript{461} represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L2 represents a carboxyl group.

[0436]

a pyrazole compound wherein

R\textsubscript{421} represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R\textsubscript{441}, R\textsubscript{431}, R\textsubscript{451} and R\textsubscript{451} represent independently of each other a hydrogen atom or a halogen atom;

R\textsubscript{461} represents an C1-C3 alkyl group, a C3-C4
cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group,
an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2
alke thio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy
group, a C1-C2 haloalkythio group or an C1-C4 alkylamino
group; and

L² represents an C2-C6 alkoxy carbonyl group.

[0437]
a pyrazole compound wherein

R₄²¹ represents an C1-C6 alkoxy group, a halogen atom,
a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl
group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group,
a C1-C6 haloalkythio group, an C2-C6 acyl group, a C2-C6
haloacyl group, a nitro group or a cyano group;

R₄¹, R₄³¹, R₄⁴¹ and R₄⁵¹ represent independently of each
other a hydrogen atom or a halogen atom;

R₄₅¹ represents an C1-C3 alkyl group, a C3-C4
cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group,
an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2
alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy
group, a C1-C2 haloalkythio group or an C1-C4 alkylamino
group; and

L² represents a halogen atom.

[0438]
a pyrazole compound wherein

R₄²¹ represents an C1-C6 alkoxy group, a halogen atom,
a hydrogen atom, an Cl-C6 alkyl group, a Cl-C6 haloalkyl group, a Cl-C6 haloalkoxy group, an Cl-C6 alkylthio group, a Cl-C6 haloalkythio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R^{411}, R^{431}, R^{441} and R^{451} represent independently of each other a hydrogen atom or a halogen atom;

R^{461} represents an Cl-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a Cl-C3 haloalkyl group, an C2-C3 alkenyl group, an Cl-C3 alkoxy group, an Cl-C2 alkylthio group, an C2-C3 alkynyl group, a Cl-C3 haloalkoxy group, a Cl-C2 haloalkythio group or an Cl-C4 alkylamino group; and

L^2 represents a halogenated acyl group.

[0439]

a pyrazole compound wherein

R^{421} represents an Cl-C6 alkoxy group, a halogen atom, a hydrogen atom, an Cl-C6 alkyl group, a Cl-C6 haloalkyl group, a Cl-C6 haloalkoxy group, an Cl-C6 alkylthio group, a Cl-C6 haloalkythio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R^{411}, R^{431}, R^{441} and R^{451} represent independently of each other a hydrogen atom or a halogen atom;

R^{461} represents an Cl-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a Cl-C3 haloalkyl group, an C2-C3 alkenyl group, an Cl-C3 alkoxy group, an Cl-C2 alkylthio group, an C2-C3 alkynyl group, a Cl-C3 haloalkoxy group, a Cl-C2 haloalkythio group or an Cl-C4 alkylamino group; and
alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group; and

L² represents NSO.

[0440]
a pyrazole compound wherein

R⁴²¹ represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkythio group, an C2-C6 acyl group, a C2-C6 halocarbonyl group, a nitro group or a cyano group;

R⁴²¹, R⁴³¹, R⁴⁴¹ and R⁴⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R⁴⁶¹ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group; and

L² represents CON₃.

[0441]
a pyrazole compound wherein

R⁴²¹ represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group,
a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

\(R^{411}, R^{431}, R^{441} \) and \(R^{451} \) represent independently of each other a hydrogen atom or a halogen atom;

\(R^{461} \) represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

\(L^2 \) represents \(CONH_2 \).

[0442]
a pyrazole compound wherein

\(R^{421} \) represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group,

\(R^{411}, R^{431}, R^{441} \) and \(R^{451} \) represent independently of each other a hydrogen atom or a halogen atom;

\(R^{461} \) represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino
group; and

L² represents CONHCl.

[0443]
a pyrazole compound wherein

R⁴²¹ represents an C¹-C⁶ alkoxy group, a halogen atom, a hydrogen atom, an C¹-C⁶ alkyl group, a C¹-C⁶ haloalkyl group, a C¹-C⁶ haloalkoxy group, an C¹-C⁶ alkylthio group, a C¹-C⁶ haloalkythio group, an C²-C⁶ acyl group, a C²-C⁶ haloacyl group, a nitro group or a cyano group;

R⁴¹¹, R⁴³¹, R⁴⁴¹ and R⁴⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R⁴⁶¹ represents an C¹-C³ alkyl group, a C³-C⁴ cycloalkyl group, a halogen atom, a C¹-C³ haloalkyl group, an C²-C³ alkenyl group, an C¹-C³ alkoxy group, an C¹-C² alkylthio group, an C²-C³ alkynyl group, a C¹-C³ haloalkoxy group, a C¹-C² haloalkylthio group or an C¹-C⁴ alkylamino group; and

L² represents CONHBr.

[0444]
a pyrazole compound wherein

R⁴²¹ represents an C¹-C⁶ alkoxy group, a halogen atom, a hydrogen atom, an C¹-C⁶ alkyl group, a C¹-C⁶ haloalkyl group, a C¹-C⁶ haloalkoxy group, an C¹-C⁶ alkylthio group, a C¹-C⁶ haloalkythio group, an C²-C⁶ acyl group, a C²-C⁶ haloacyl group, a nitro group or a cyano group;
R^{411}, R^{431}, R^{441} and R^{451} represent independently of each other a hydrogen atom or a halogen atom;

R^{461} represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L^{2} represents CONHOH.

[0445]
a pyrazole compound wherein

R^{421} represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R^{461} represents a methyl group;

R^{411}, R^{431}, R^{441} and R^{451} represent independently of each other a hydrogen atom or a fluorine atom; and

L^{2} represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON_{3}, CONH_{2}, CONHCl, CONHBr or CONHOH.

[0446]
a pyrazole compound wherein

R^{421} represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R^{461} represents a cyclopropyl group;
R⁴¹, R⁴³, R⁴⁴ and R⁴⁵ represent independently of each other a hydrogen atom or a fluorine atom; and
L² represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C₂-C₆ alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON₃, CONH₂, CONHCl, CONHBr or CONHOH.

[0447]
a pyrazole compound wherein
R⁴²¹ represents a methoxy group, a halogen atom, a methyl group or an ethyl group;
R⁴⁶¹ represents a chlorine atom;
R⁴¹, R⁴³¹, R⁴⁴¹ and R⁴⁵¹ represent independently of each other a hydrogen atom or a fluorine atom; and
L² represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C₂-C₆ alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON₃, CONH₂, CONHCl, CONHBr or CONHOH.

[0448]
a pyrazole compound wherein
R⁴²¹ represents a methoxy group, a halogen atom, a methyl group or an ethyl group;
R⁴⁶¹ represents a bromine atom;
R⁴¹, R⁴³¹, R⁴⁴¹ and R⁴⁵¹ represent independently of each other a hydrogen atom or a fluorine atom; and
L² represents a nitro group, an amino group, an
isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl
group, a halogen atom, a halogenated acyl group, NSO, CON₃,
CONH₂, CONHCl, CONHBr or CONHOH.

[0449]
a pyrazole compound wherein

R⁴₂¹ represents a methoxy group, a halogen atom, a
methyl group or an ethyl group;

R⁴₆¹ represents an ethyl group;

R⁴₁¹, R⁴₃¹, R⁴₄¹ and R⁴₅¹ represent independently of each
other a hydrogen atom or a fluorine atom; and

L² represents a nitro group, an amino group, an
isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl
group, a halogen atom, a halogenated acyl group, NSO, CON₃,
CONH₂, CONHCl, CONHBr or CONHOH.

[0450]
a pyrazole compound wherein

R⁴₂¹ represents a methoxy group, a halogen atom, a
methyl group or an ethyl group;

R⁴₆¹ represents a methoxy group;

R⁴₁¹, R⁴₃¹, R⁴₄¹ and R⁴₅¹ represent independently of each
other a hydrogen atom or a fluorine atom; and

L² represents a nitro group, an amino group, an
isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl
group, a halogen atom, a halogenated acyl group, NSO, CON₃,
CONH₂, CONHCl, CONHBr or CONHOH.
a pyrazole compound wherein

R_{421} represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R_{461} represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

R_{411}, R_{431}, R_{441} and R_{451} represent independently of each other a hydrogen atom or a fluorine atom; and

L^2 represents a nitro group.

[0452]
a pyrazole compound wherein

R_{421} represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R_{461} represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group.

R_{411}, R_{431}, R_{441} and R_{451} represent independently of each other a hydrogen atom or a fluorine atom; and

L^2 represents an amino group.

[0453]
a pyrazole compound wherein

R_{421} represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R_{461} represents a methyl group, a cyclopropyl group, a
chlorine atom, a bromine atom, an ethyl group or a methoxy group;

\[R^{41}_{1}, R^{43}_{1}, R^{44}_{1} \text{ and } R^{45}_{1} \text{ represent independently of each other a hydrogen atom or a fluorine atom; and} \]

\[L^2 \text{ represents an isocyanato group.} \]

[0454]
a pyrazole compound wherein
\[R^{42}_{1} \text{ represents a methoxy group, a halogen atom, a methyl group or an ethyl group,} \]
\[R^{46}_{1} \text{ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;} \]
\[R^{41}_{1}, R^{43}_{1}, R^{44}_{1} \text{ and } R^{45}_{1} \text{ represent independently of each other a hydrogen atom or a fluorine atom; and} \]

\[L^2 \text{ represents a carboxyl group.} \]

[0455]
a pyrazole compound wherein
\[R^{42}_{1} \text{ represents a methoxy group, a halogen atom, a methyl group or an ethyl group,} \]
\[R^{46}_{1} \text{ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group} \]
\[R^{41}_{1}, R^{43}_{1}, R^{44}_{1} \text{ and } R^{45}_{1} \text{ represent independently of each other a hydrogen atom or a fluorine atom; and} \]

\[L^2 \text{ represents an C2-C6 alkoxycarbonyl group.} \]
a pyrazole compound wherein

R_{421} represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R_{461} represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

$R_{4_{11}}$, $R_{4_{31}}$, $R_{4_{41}}$ and $R_{4_{51}}$ represent independently of each other a hydrogen atom or a fluorine atom; and

L^2 represents a halogen atom.

[0457]

a pyrazole compound wherein

R_{421} represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R_{461} represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

$R_{4_{11}}$, $R_{4_{31}}$, $R_{4_{41}}$ and $R_{4_{51}}$ represent independently of each other a hydrogen atom or a fluorine atom; and

L^2 represents a halogenated acyl group.

[0458]

a pyrazole compound wherein

R_{421} represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R_{461} represents a methyl group, a cyclopropyl group, a
chlorine atom, a bromine atom, an ethyl group or a methoxy group;

\(R^{411}, R^{431}, R^{441} \) and \(R^{451} \) represent independently of each other a hydrogen atom or a fluorine atom; and

\(L^2 \) represents NSO.

[0459]
a pyrazole compound wherein

\(R^{421} \) represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

\(R^{461} \) represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

\(R^{411}, R^{431}, R^{441} \) and \(R^{451} \) represent independently of each other a hydrogen atom or a fluorine atom; and

\(L^2 \) represents \(\text{CON}_3 \).

[0460]
a pyrazole compound wherein

\(R^{421} \) represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

\(R^{461} \) represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

\(R^{411}, R^{431}, R^{441} \) and \(R^{451} \) represent independently of each other a hydrogen atom or a fluorine atom; and

\(L^2 \) represents \(\text{CONH}_2 \).
a pyrazole compound wherein

R_{421} represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R_{461} represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

$R_{411}, R_{431}, R_{441}$ and R_{451} represent independently of each other a hydrogen atom or a fluorine atom; and

L^2 represents CONHCl.

a pyrazole compound wherein

R_{421} represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R_{461} represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

$R_{411}, R_{431}, R_{441}$ and R_{451} represent independently of each other a hydrogen atom or a fluorine atom; and

L^2 represents CONHBBr.

a pyrazole compound wherein

R_{421} represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R_{461} represents a methyl group, a cyclopropyl group, a
chlorine atom, a bromine atom, an ethyl group or a methoxy group;
\(R_{411}, R_{431}, R_{441} \) and \(R_{451} \) represent independently of each other a hydrogen atom or a fluorine atom; and
\[L^2 \] represents CONHOH.

Also, examples of an embodiment of the present pyrazole compound include the compounds of the formula (11) wherein the substituents represent the following ones.

a pyrazole compound wherein
\(R_{531} \) represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, a nitro group or a cyano group;
\(R_{511}, R_{531}, R_{541} \) and \(R_{551} \) represent independently of each other a hydrogen atom or a halogen atom;
\(R_{561} \) represents an C1-C3 alkyl group; and
\[L^3 \] represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON\(_3\), CONH\(_2\), CONHCl, CONHBr or CONHOH.

a pyrazole compound wherein
R531 represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R511, R531, R541 and R551 represent independently of each other a hydrogen atom or a halogen atom;

R561 represents a C3-C4 cycloalkyl group; and

L3 represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON\textsubscript{3}, CONH\textsubscript{2}, CONHCl, CONHBr or CONOH.

[0467]

a pyrazole compound wherein

R531 represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R511, R531, R541 and R551 represent independently of each other a hydrogen atom or a halogen atom;

R561 represents a halogen atom; and

L3 represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON\textsubscript{3},
CONH₂, CONHCl, CONHBr or CONHOH.

[0468]
a pyrazole compound wherein

R⁵³¹ represents an C₁-C₆ alkoxy group, a halogen atom, a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group, a C₁-C₆ haloalkylthio group, an C₂-C₆ acyl group, a C₂-C₆ haloacyl group, a nitro group or a cyano group;

R⁵¹¹, R⁵³¹, R⁵⁴¹ and R⁵⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R⁵⁶¹ represents a C₁-C₃ haloalkyl group; and

L³ represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C₂-C₆ alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON₃, CONH₂, CONHCl, CONHBr or CONHOH.

[0469]
a pyrazole compound wherein

R⁵³¹ represents an C₁-C₆ alkoxy group, a halogen atom, a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group, a C₁-C₆ haloalkylthio group, an C₂-C₆ acyl group, a C₂-C₆ haloacyl group, a nitro group or a cyano group;

R⁵¹¹, R⁵³¹, R⁵⁴¹ and R⁵⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R⁵⁶¹ represents an C²-C₃ alkenyl group, and
L3 represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON\textsubscript{3}, CONH\textsubscript{2}, CONHCl, CONHBr or CONHOH.

[0470]
a pyrazole compound wherein

R551 represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, a nitro group or a cyano group;

R551, R531, R541 and R551 represent independently of each other a hydrogen atom or a halogen atom;

R561 represents an C1-C3 alkoxy group; and

L3 represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON\textsubscript{3}, CONH\textsubscript{2}, CONHCl, CONHBr or CONHOH.

[0471]
a pyrazole compound wherein

R551 represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, a nitro group or a cyano group;
\[R^{511}, R^{531}, R^{541} \text{ and } R^{551} \text{ represent independently of each other a hydrogen atom or a halogen atom; } \]

\[R^{561} \text{ represents an } C1-C2 \text{ alkylthio group; and } \]

\[L^3 \text{ represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an } C2-C6 \text{ alkoxy carbonyl group, a halogen atom, a halogenated acyl group, } NSO, \ C0N_3, \ \]

\[CONH_2, CONHCl, CONHBr \text{ or } CONOH. \]

[0472]

a pyrazole compound wherein \(R^{531} \) represents an \(C1-C6 \) alkoxy group, a halogen atom, a hydrogen atom, an \(C1-C6 \) alkyl group, a \(C1-C6 \) haloalkyl group, a \(C1-C6 \) haloalkoxy group, an \(C1-C6 \) alkylthio group, a \(C1-C6 \) haloalkylthio group, an \(C2-C6 \) acyl group, a \(C2-C6 \) haloacyl group, a nitro group or a cyano group;

\[R^{511}, R^{531}, R^{541} \text{ and } R^{551} \text{ represent independently of each other a hydrogen atom or a halogen atom; } \]

\[R^{561} \text{ represents an } C2-C3 \text{ alkynyl group; and } \]

\[L^3 \text{ represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an } C2-C6 \text{ alkoxy carbonyl group, a halogen atom, a halogenated acyl group, } NSO, \ C0N_3, \ \]

\[CONH_2, CONHCl, CONHBr \text{ or } CONOH. \]

[0473]

a pyrazole compound wherein \(R^{531} \) represents an \(C1-C6 \) alkoxy group, a halogen atom, a hydrogen atom, an \(C1-C6 \) alkyl group, a \(C1-C6 \) haloalkyl group
group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R531, R331, R541 and R551 represent independently of each other a hydrogen atom or a halogen atom,

R551 represents a C1-C3 haloalkoxy group; and

L3 represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON$_3$, CONH$_2$, CONHCl, CONHBr or CONHOH.

[0474]
a pyrazole compound wherein

R531 represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R511, R531, R541 and R551 represent independently of each other a hydrogen atom or a halogen atom;

R561 represents a C1-C2 haloalkylthio group; and

L3 represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON$_3$, CONH$_2$, CONHCl, CONHBr or CONHOH.

[0475]
a pyrazole compound wherein

\(R^{531} \) represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkyl thio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

\(R^{511}, R^{531}, R^{541} \) and \(R^{551} \) represent independently of each other a hydrogen atom or a halogen atom;

\(R^{561} \) represents an C1-C4 alkylamino group, and

\(L^3 \) represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON\(_3\), CONH\(_2\), CONHCl, CONHBr or CONHOH.

[0476]

a pyrazole compound wherein

\(R^{531} \) represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkyl thio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

\(R^{511}, R^{531}, R^{541} \) and \(R^{551} \) represent independently of each other a hydrogen atom or a halogen atom;

\(R^{561} \) represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2
alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L^3 represents a nitro group.

[0477]

a pyrazole compound wherein

R^{531} represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R^{511}, R^{531}, R^{541} and R^{551} represent independently of each other a hydrogen atom or a halogen atom;

R^{561} represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L^3 represents an amino group.

[0478]

a pyrazole compound wherein

R^{531} represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 haloalkylthio group, an C1-C6 alkylamino group,
a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group,-

R⁵¹, R⁵³¹, R⁵⁴¹ and R⁵⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R⁵⁶¹ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L³ represents an isocyanato group.

[0479]
a pyrazole compound wherein

R⁵³¹ represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R⁵¹, R⁵³¹, R⁵⁴¹ and R⁵⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R⁵⁶¹ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group.
group; and

L₃ represents a carboxyl group.

[0480]
a pyrazole compound wherein

R₅¹ represents an C₁-C₆ alkoxy group, a halogen atom, a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group, a C₁-C₆ haloalkythio group, an C₂-C₆ acyl group, a C₂-C₆ haloacyl group, a nitro group or a cyano group;

R₅¹, R₅³¹, R₅⁴¹ and R₅⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R₅⁶¹ represents an C₁-C₃ alkyl group, a C₃-C₄ cycloalkyl group, a halogen atom, a C₁-C₃ haloalkyl group, an C₂-C₃ alkenyl group, an C₁-C₃ alkoxy group, an C₁-C₂ alkylthio group, an C₂-C₃ alkynyl group, a C₁-C₃ haloalkoxy group, a C₁-C₂ haloalkythio group or an C₁-C₄ alkylamino group; and

L₃ represents an C₂-C₆ alkoxy carbonyl group.

[0481]
a pyrazole compound wherein

R₅³¹ represents an C₁-C₆ alkoxy group, a halogen atom, a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group, a C₁-C₆ haloalkythio group, an C₂-C₆ acyl group, a C₂-C₆ haloacyl group, a nitro group or a cyano group;
R^5, R^531, R^54 and R^551 represent independently of each other a hydrogen atom or a halogen atom;

R^561 represents an C1-C3 alkyl group, a C3-C4 eyeloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group; and

L^3 represents a halogen atom.

[0482]

a pyrazole compound wherein

R^531 represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, an C1-C6 haloalkythio group, an C2-C6 acyl group, a C2-C6 haloacetyl group, a nitro group or a cyano group;

R^511, R^531, R^541 and R^551 represent independently of each other a hydrogen atom or a halogen atom;

R^561 represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a haloalkyl group, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group; and

L^3 represents a halogenated acyl group.
a pyrazole compound wherein

\[R_{531} \] represents an \(\text{C}1-\text{C}6 \) alkoxy group, a halogen atom, a hydrogen atom, an \(\text{C}1-\text{C}6 \) alkyl group, a \(\text{C}1-\text{C}6 \) haloalkyl group, a \(\text{C}1-\text{C}6 \) haloalkoxy group, an \(\text{C}1-\text{C}6 \) alkylthio group, a \(\text{C}1-\text{C}6 \) haloalkylthio group, an \(\text{C}2-\text{C}6 \) acyl group, a \(\text{C}2-\text{C}6 \) haloacyl group, a nitro group or a cyano group;

\[R_{531}, R_{541}, R_{541} \text{ and } R_{551} \] represent independently of each other a hydrogen atom or a halogen atom;

\[R_{561} \] represents an \(\text{C}1-\text{C}3 \) alkyl group, a \(\text{C}3-\text{C}4 \) cycloalkyl group, a halogen atom, a \(\text{C}1-\text{C}3 \) haloalkyl group, an \(\text{C}2-\text{C}3 \) alkenyl group, an \(\text{C}1-\text{C}3 \) alkoxy group, an \(\text{C}1-\text{C}2 \) alkylthio group, an \(\text{C}2-\text{C}3 \) alkynyl group, a \(\text{C}1-\text{C}3 \) haloalkoxy group, a \(\text{C}1-\text{C}2 \) haloalkylthio group or an \(\text{C}1-\text{C}4 \) alkylamino group; and

\[L^3 \] represents NSO.

a pyrazole compound wherein

\[R_{531} \] represents an \(\text{C}1-\text{C}6 \) alkoxy group, a halogen atom, a hydrogen atom, an \(\text{C}1-\text{C}6 \) alkyl group, a \(\text{C}1-\text{C}6 \) haloalkyl group, a \(\text{C}1-\text{C}6 \) haloalkoxy group, an \(\text{C}1-\text{C}6 \) alkylthio group, a \(\text{C}1-\text{C}6 \) haloalkylthio group, an \(\text{C}2-\text{C}6 \) acyl group, a \(\text{C}2-\text{C}6 \) haloacyl group, a nitro group or a cyano group;

\[R_{531}, R_{531}, R_{541} \text{ and } R_{551} \] represent independently of each other a hydrogen atom or a halogen atom;
R541 represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L3 represents CON3.

[0485]
a pyrazole compound wherein

R531 represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R531, R541 and R551 represent independently of each other a hydrogen atom or a halogen atom;

R561 represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L3 represents CONH2.

[0486]
a pyrazole compound wherein
R531 represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R511, R331, R541 and R551 represent independently of each other a hydrogen atom or a halogen atom;

R561 represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

L3 represents CONHCl.

[0487]
a pyrazole compound wherein

R531 represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R511, R331, R541 and R551 represent independently of each other a hydrogen atom or a halogen atom;

R561 represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group,
an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group; and

L3 represents CONHBr.

[a pyrazole compound wherein

R\textsubscript{531} represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkythio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R\textsubscript{541}, R\textsubscript{531}, R\textsubscript{541} and R\textsubscript{551} represent independently of each other a hydrogen atom or a halogen atom;

R\textsubscript{561} represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-G3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group; and

L3 represents CONHOH.

[a pyrazole compound wherein

R\textsubscript{531} represents a methoxy group, a halogen atom, a methyl group or an ethyl group;
R541 represents a methyl group;

R511, R521, R541 and R551 represent independently of each other a hydrogen atom or a fluorine atom; and

L3 represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON\textsubscript{3}, CONH\textsubscript{2}, CONHCl, CONHBr or CONHOH.

[0490]

a pyrazole compound wherein

R531 represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R561 represents a cyclopropyl group;

R511, R521, R541 and R551 represent independently of each other a hydrogen atom or a fluorine atom; and

L3 represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON\textsubscript{3}, CONH\textsubscript{2}, CONHCl, CONHBr or CONHOH.

[0491]

a pyrazole compound wherein

R531 represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R561 represents a chlorine atom;

R511, R521, R541 and R551 represent independently of each other a hydrogen atom or a fluorine atom; and
L³ represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxycarbonyl group, a halogen atom, a halogenated acyl group, NSO, CON₃, CONH₂, CONHCl, CONHBr or CONHOH.

[0492]
a pyrazole compound wherein

R⁵³¹ represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R⁵⁶¹ represents a bromine atom;

R⁵¹¹, R⁵²¹, R⁵⁴¹ and R⁵⁵¹ represent independently of each other a hydrogen atom or a fluorine atom; and

L³ represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxycarbonyl group, a halogen atom, a halogenated acyl group, NSO, CON₃, CONH₂, CONHCl, CONHBr or CONHOH.

[0493]
a pyrazole compound wherein

R⁵³¹ represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R⁵⁶¹ represents an ethyl group;

R⁵¹¹, R⁵²¹, R⁵⁴¹ and R⁵⁵¹ represent independently of each other a hydrogen atom or a fluorine atom; and

L³ represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxycarbonyl group, a halogen atom, a halogenated acyl group, NSO, CON₃,
a pyrazole compound wherein

\[R^{531} \] represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

\[R^{561} \] represents a methoxy group;

\[R^{511}, R^{521}, R^{541} \] and \[R^{551} \] represent independently of each other a hydrogen atom or a fluorine atom; and

\[L^3 \] represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON\(_3\), CONH\(_2\), CONHCl, CONHBr or CONHOH.

[0495]
a pyrazole compound wherein

\[R^{531} \] represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

\[R^{561} \] represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

\[R^{511}, R^{521}, R^{541} \] and \[R^{551} \] represent independently of each other a hydrogen atom or a fluorine atom; and

\[L^3 \] represents a nitro group.

[0496]
a pyrazole compound wherein

\[R^{531} \] represents a methoxy group, a halogen atom, a
methyl group or an ethyl group;

R_{561} represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

$R_{511}, R_{521}, R_{541}$ and R_{551} represent independently of each other a hydrogen atom or a fluorine atom; and

L^3 represents an amino group.

[0497]

a pyrazole compound wherein

R_{531} represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R_{561} represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

$R_{511}, R_{521}, R_{541}$ and R_{551} represent independently of each other a hydrogen atom or a fluorine atom; and

L^3 represents an isocyanato group.

[0498]

a pyrazole compound wherein

R_{531} represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R_{561} represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

$R_{511}, R_{521}, R_{541}$ and R_{551} represent independently of each
other a hydrogen atom or a fluorine atom; and

L₃ represents a carboxyl group.

[0499]
a pyrazole compound wherein

R⁵₃¹ represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R⁵₆¹ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

R⁵¹, R⁵₂¹, R⁵₄¹ and R⁵₅¹ represent independently of each other a hydrogen atom or a fluorine atom; and

L₃ represents an C2-C6 alkoxy carbonyl group.

[0500]
a pyrazole compound wherein

R⁵₃¹ represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R⁵₆¹ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

R⁵¹, R⁵₂¹, R⁵₄¹ and R⁵₅¹ represent independently of each other a hydrogen atom or a fluorine atom; and

L₃ represents a halogen atom.

[0501]
a pyrazole compound wherein

R⁵₃¹ represents a methoxy group, a halogen atom, a
methyl group or an ethyl group;

\(R^{561} \) represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

\(R^{511}, R^{521}, R^{541} \) and \(R^{551} \) represent independently of each other a hydrogen atom or a fluorine atom; and

\(L^3 \) represents a halogenated acyl group.

[0502]

a pyrazole compound wherein

\(R^{531} \) represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

\(R^{561} \) represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

\(R^{511}, R^{521}, R^{541} \) and \(R^{551} \) represent independently of each other a hydrogen atom or a fluorine atom; and

\(L^3 \) represents NSO.

[0503]

a pyrazole compound wherein

\(R^{531} \) represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

\(R^{561} \) represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

\(R^{511}, R^{521}, R^{541} \) and \(R^{551} \) represent independently of each
other a hydrogen atom or a fluorine atom; and

\[L^3 \text{ represents } \text{CON}_3. \]

[0504]
a pyrazole compound wherein

\[R^{531} \text{ represents a methoxy group, a halogen atom, a methyl group or an ethyl group;} \]

\[R^{561} \text{ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;} \]

\[R^{511}, R^{521}, R^{541} \text{ and } R^{551} \text{ represent independently of each other a hydrogen atom or a fluorine atom;} \text{ and} \]

\[L^3 \text{ represents } \text{CONH}_2. \]

[0505]
a pyrazole compound wherein

\[R^{531} \text{ represents a methoxy group, a halogen atom, a methyl group or an ethyl group;} \]

\[R^{561} \text{ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;} \]

\[R^{511}, R^{521}, R^{541} \text{ and } R^{551} \text{ represent independently of each other a hydrogen atom or a fluorine atom;} \text{ and} \]

\[L^3 \text{ represents } \text{CONHCl}. \]

[0506]
a pyrazole compound wherein

\[R^{531} \text{ represents a methoxy group, a halogen atom, a} \]
methyl group or an ethyl group;

\[R^{561} \] represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

\(R^{511}, R^{521}, R^{541} \) and \(R^{551} \) represent independently of each other a hydrogen atom or a fluorine atom; and

\(L^3 \) represents CONHBr.

[0507]
a pyrazole compound wherein

\(R^{511} \) represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

\[R^{561} \] represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

\(R^{511}, R^{521}, R^{541} \) and \(R^{551} \) represent independently of each other a hydrogen atom or a fluorine atom; and

\(L^3 \) represents CONHOH.

[0508]
Herein, although a structural formula of a compound represents a definite isomeric form for convenience, the compound of the present invention is not limited to the expeditious description of the structure formula, and encompasses all isomeric forms including active geometric isomers, optical isomers, stereoisomers, and tautomers which each may be arisen due to the structure of the
compound and isomeric mixtures thereof, and may be either one of the isomeric forms or mixtures thereof. For example, although the compound of the present invention has an asymmetric carbon atom and may thus include optically active substances and racemates, the compound of the present invention is not specifically limited thereto, and may encompass any ones.

[0509]

Next, a process for preparing the present compound is explained.

[0510]

The present compound can be prepared, for example, according to the below-mentioned process.

[0511]

(Process A)

The present compound of the formula (I) can be prepared by reacting a compound of a formula (A1) (hereinafter, described as Compound (A1)) with a compound of a formula (A2) (hereinafter, described as Compound (A2)) in the presence of a base.
[wherein
\[R_1, R_2, R_4, R_5, R_6, R_7, R_8, R_9, R_{10} \text{ and } X \text{ are the same as defined above, } Z_{11} \text{ represents a leaving group such as a chlorine atom, a bromine atom, an iodine atom, a methanesulfonxyloxy group, a trifluoromethanesulfonxyloxy group, or a p-toluenesulfonxyloxy group} \]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; esters such as ethyl acetate, methyl acetate; sulfoxides such as dimethyl...
sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; water; and mixed solvents thereof.

Examples of the base to be used in the reaction include organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene, diazabicyclononene; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bicarbonate; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; alkali metal halides such as sodium fluoride, potassium fluoride, cesium fluoride; alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride, and alkali metal alkoxides such as sodium tert-butoxide, potassium tert-butoxide.

In the reaction, Compound (A2) is used usually within a range of 1 to 10 molar ratio (s), and the base is used usually within a range of 0.5 to 5 molar ratio (s), as opposed to 1 mole of Compound (A1).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is
usually within a range of 0.1 to 24 hours. If necessary, sodium iodide, tetrabutylammonium iodide and the others may be added to the reaction and these compounds are used usually within a range of 0.001 to 1.2 molar ratios as opposed to 1 mole of Compound (A1).

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present compound of the formula (1). The isolated present compound may be further purified, for example, by chromatography and recrystallization.

(0512)

(Process B)

The present compound of the formula (1) wherein \(R^1 \) is a hydrogen atom, i.e., the compound of a formula (1-10) (hereinafter, described as Compound (1-10)), can be prepared by treating a compound of a formula (B1) (hereinafter, described as Compound (B1)) with a deprotection agent.
[wherein

\[R^2, R^3, R^4, R^5, R^6, R^7, R^8, R^9, R^{10} \text{ and } X \text{ are the same as defined above, } R^{65} \text{ represents a protection agent such as an acyl group, a haloacyl group, an alkoxy carbonyl group, an aryloxycarbonyl group, an arylalkyloxycarbonyl group.} \]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; nitriles such as acetonitrile, propionitrile; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; alcohols such as methanol, ethanol,
propanol, butanol; water; and mixed solvents thereof.

Examples of the protection agent to be used in the reaction include a base or an acid. Examples of the base include organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene, diazabicyclononene, piperidine; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; alkali metal alkoxides such as sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium tert-butoxide. Examples of the base include trifluoroacetic acid, hydrochloric acid, sulfuric acid.

In the reaction, the protection agent is used usually within a range of 1 to 100 molar ratio (s) as opposed to 1 mole of Compound (B1).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (1-10). The isolated Compound (1-10) may be further purified, for example, by distillation, chromatography and recrystallization.
The present compound of the formula (1) wherein X represents a sulfur atom, i.e., the compound of a formula (1-S) (hereinafter, described as Compound (1-S)) can be prepared by reacting a compound of the formula (1) wherein X represents an oxygen atom (hereinafter, described as Compound (1-O)) by well-known sulfurization.

This reaction is usually carried out in a solvent. Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon
tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene, nitriles such as acetonitrile, propionitrile; and mixed solvents thereof.

Examples of the sulfurating agent to be used in the reaction include phosphorus pentasulfide, Lawesson's reagent (2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide). In the reaction, the sulfurating agent is used within a range of 0.5 to 1.5 molar ratios as opposed to 1 mole of Compound (1-0).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours. If necessary, organic bases such as pyridine and triethylamine and inorganic bases such as alkali metal hydroxides and alkali metal carbonates and the others may be added to the reaction and these compounds are used usually within a range of 0.5 to 1.5 molar ratios as opposed to 1 mole of Compound (1-0).

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present compound of the formula (1-S). The isolated present compound may be further purified, for example, by chromatography and
The present compound of the formula (1) can be prepared by reacting a compound of a formula (D1) (hereinafter, described as Compound (D1)) with a compound of a formula (D2) (hereinafter, described as Compound (D2)) in the presence of a base.

[wherein
R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, Z¹¹ and X are the same as defined above.]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid
amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; esters such as ethyl acetate, methyl acetate; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; water; and mixed solvents thereof.

Compound (D2) to be used in the reaction can be usually used as a commercially available product. Specific examples include alkyl halides such as chlorodifluoromethane, methyl bromide, ethyl bromide, n-propyl bromide, methyl iodide, ethyl iodide, n-propyl bromide, aryl bromide, cyclopropyl bromide, benzyl bromide, 1,1-difluoro-2-iodoethane; dialkyl sulfates such as dimethyl sulfate; alkyl or aryl sulfates such as methyl p-toluenesulfonate, ethyl p-toluenesulfonate, n-propyl p-toluenesulfonate, methyl methanesulfonate, ethyl methanesulfonate and n-propyl methanesulfonate.

Examples of the base to be used in the reaction include organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene, diazabicyclononene; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; alkali metal bicarbonates such as lithium bicarbonate, sodium
bicarbonate, potassium bicarbonate, cesium bicarbonate; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; alkali metal halides such as sodium fluoride, potassium fluoride, cesium fluoride; alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride; and alkali metal alkoxides such as sodium tert-butoxide, potassium tert-butoxide. In the reaction, Compound (D2) is used usually within a range of 1 to 10 molar ratio(s), and the base is used usually within a range of 0.5 to 10 molar ratios, as opposed to 1 mole of Compound (D1).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present compound of the formula (1). The isolated present compound may be further purified, for example, by chromatography and recrystallization.

[0515]

(Process E)

The present compound of the formula (1) wherein R1 represents R61, i.e., the compound of a formula (1-15)
(hereinafter, described as Compound (1-15)), can be prepared by reacting Compound (1-10) with a compound of a formula (E1) (hereinafter, described as Compound (E1)) in the presence of a catalyst and a base.

[wherein

\[R^1, R^2, R^3, R^4, R^5, R^6, R^7, R^8, R^9, R^{10} \text{ and } X \text{ are the same as defined above, } R^{61} \text{ represents an } C_6-C_{16} \text{ aryl group optionally having one or more substituents selected from the above-mentioned Group P which may be same or different from each other when the number of the selected substituent is two or more, } Z^{41} \text{ represents a leaving group such as a chlorine atom, a bromine atom, an iodine atom, a methanesulfonoyloxy group, a trifluoromethanesulfonoyloxy group or } \text{p-toluenesulfonoyloxy group, a } B(OH)_{2}, \text{ an alkoxyboryl group or a trifluoroborate } (BF_3-K^+) \text{.}]

The reaction is performed according to the methods described in J. Am. Chem. Soc. 1989, 111, 314 or Chem. Rev. 1995, 95, 2457.

This reaction is usually carried out in a solvent.
Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether, halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; esters such as ethyl acetate, methyl acetate; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; and mixed solvents thereof.

Compound (E1) to be used in the reaction can be usually used as a commercially available product. Specific examples include chlorobenzene, bromobenzene, iodobenzene, paradichlorobenzene, 4-chlorobromobenzene, 4-chloroiodobenzene, paradibromobenzene, 4-chloroiodobenzene, 4-bromoiodobenzene, phenylboronic acid, 4-fluorophenylboronic acid, 4-chlorophenylboronic acid, 4-methylphenylboronic acid, 4-methoxyphenylboronic acid.

Examples of the catalyst to be used in the reaction include copper (I) iodide, copper (II) acetate, dichlorobis (triphenylyphosphine) palladium,
tetraakis(triphenylphosphine)palladium (0), palladium (II) acetate/triscyclohexylphosphine, bis[diphenylphosphine ferroceny] palladium (II) dichloride, 1,3-bis(2,6-diisopropylphenyl) imidazole-2-ylidene (1,4-naphthoquinone) palladium dimer, aryl (chloro) (1,3-dimethyl-1,3-dihydro-2H-imidazole-2-ylidene)palladium or palladium(II) acetate/dicyclohexyl (2',4',6'-triisopropylbiphenyl-2-yl) phosphine, and tris(dibenzylideneacetone) dipalladium.

Examples of the base to be used in the reaction include organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methyIpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene, diazabicyclononene; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bicarbonate; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; alkali metal halides such as sodium fluoride, potassium fluoride, cesium fluoride, cesium chloride; alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride; alkali metal phosphates such as tripotassium phosphate; and alkali metal alkoxides such as sodium methoxide, sodium
ethoxide, sodium tert-butoxide, potassium tert-butoxide.

In the reaction, Compound (E1) is used usually within a range of 1 to 10 molar ratio(s), and the catalyst is used usually within a range of 0.001 to 5 molar ratio(s), and the base is used usually within a range of 0.5 to 10 molar ratio(s), as opposed to 1 mole of Compound (1-10).

If necessary, a ligand such as phenanthroline and tetramethylenediamine and the others may be added to the reaction and these compounds are used usually within a range of 0.001 to 5 molar ratio(s) as opposed to 1 mole of Compound (1-10).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present compound of the formula (1-15). The isolated present compound may be further purified, for example, by chromatography and recrystallization.

[0516]

(Process F)

The present compound of the formula (1) wherein R^6 represents R^7, i.e., the compound of a formula (1-1)
(hereinafter, described as Compound (1-1)), can be prepared by coupling a compound of a formula (F11) (hereinafter, described as Compound (F11)) with a compound of a formula (F21) (hereinafter, described as Compound (F21)) in the presence of a base and a catalyst.

[wherein

\[R^1, R^2, R^3, R^4, R^5, R^7, R^8, R^9, R^{10} \text{ and } X \] are the same as defined above, \(Z^5 \) represents a chlorine atom, a bromine atom, an iodine atom or a trifluoromethanesulfonyloxy group, \(R^{71} \) represents an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, a C3-C6 cycloalkyl group or a C3-C6 halocycloalkyl group and \(Z^{52} \) represents a B(OH)$_2$, an alkoxyboryl group or a trifluoroborate (BF$_3$K$^+$).]

The reaction is performed according to the methods described in J. Am. Chem. Soc. 1989, 111, 314 or Chem. Rev. 1995, 95, 2457.

This reaction is usually carried out in a solvent.
Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; esters such as ethyl acetate, methyl acetate; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; alcohols such as methanol, ethanol, propanol, butanol; water; and mixed solvents thereof.

Examples of organoboron compound (F21) to be used in the reaction include boronic acid derivatives, boronate ester derivatives and trifluoroborate salts, and these compounds are used as a commercially available product, or may be prepared according to a method described in a review article of N. Miyaura and A. Suzuki, Chem. Rev. 1995, 95, 2457 and the others. The organoboron compound (F21) to be used in the reaction can be prepared, for example, by reacting an iodo compound (R'I) or a bromo compound (R'Br) with an alkyl lithium (such as butyl lithium), followed
by reacting the resulting mixtures with boronate esters to obtain boronate ester derivatives. Also, the boronate ester derivatives obtained in the above-mentioned reaction can be hydrolyzed to the corresponding boronic acid derivatives as needed. Further, according to a method described in a review article of Molander et al. Acc. Chem. Res. 2007, 40, 275 and the others, the above-mentioned boronate ester derivatives can be fluorinated with potassium bifluoride and the like to obtain the trifluoro borate salts (BF$_3$·K$^+$.)

Examples of the catalyst to be used in the reaction include palladium (II) acetate, dichlorobis(triphenylphosphine) palladium, tetrakistriphenylphosphinepalladium (0), palladium (II) acetate/triscyclohexylphosphine, bis (diphenylphoshine ferrocenyl) palladium (II) dichloride, 1,3-bis(2,6-diisopropylphenyl) imidazole-2-ylidene (1,4-naphthoquinone) palladium dimer, aryl (chloro) (1,3-dimethyl-1,3-dihydro-2H-imidazole-2-ylidene) palladium or palladium (II) acetate/dicyclocexyl (2',4',6'-triisopropylbiphenyl-2-yl)phosphine, and tris (dibenzyldieneacetone) dipalladium and the others.

Examples of the base to be used in the reaction include organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-
dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene, diazabicyclononene; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bicarbonate; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; alkali metal halides such as sodium fluoride, potassium fluoride, cesium fluoride, cesium chloride; alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride; alkali metal phosphates such as tripotassium phosphate; and alkali metal alkoxides such as sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium tert-butoxide.

In the reaction, Compound (F21) is used usually within a range of 1 to 10 molar ratio(s), and the base is used usually within a range of 1 to 10 molar ratio(s), and the catalyst is used usually within a range of 0.0001 to 1 molar ratio(s), as opposed to 1 mole of Compound (F11).

The reaction temperature is usually within a range of 0 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and
concentration) to isolate the present compound of the formula (1-1). The isolated present compound may be further purified, for example, by chromatography and recrystallization.

According to the process for preparing the above-mentioned Compound (1-1), the present compound of the formula (1) wherein \(R^7 \) represents \(R^7_2 \), i.e., compound of a below-mentioned formula (1-2) (hereinafter, described as Compound (1-2)), can be prepared by coupling compound of a formula (F12) (hereinafter, describes as Compound (F12)) with compound of a formula (F22) (hereinafter, describes as Compound (F22)) in the presence of a base and the catalyst.

[wherein

\[R^1, R^2, R^3, R^4, R^5, R^6, R^8, R^9, R^{10}, Z^{51}, Z^{52} \text{ and } X \text{ are the same as defined above, } R^7_2 \text{ represents an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group or a C3-C5 halocycloalkyl group}\]

According to the process for preparing the above-
mentioned Compound (1-1), the present compound of the formula (1) wherein R^8 represents R^{72}, i.e., a compound of a below-mentioned formula (1-3) (hereinafter, described as Compound (1-3)), can be prepared by coupling a compound of a below-mentioned formula (F13) (hereinafter, described as Compound (F13)) with Compound (F22) in the presence of a base and a catalyst.

![Chemical structure diagram]

[wherein

R^1, R^2, R^3, R^4, R^5, R^6, R^7, R^9, R^{10}, R^{72}, Z^{51}, Z^{52} and X are the same as defined above.]

According to the process for preparing the above-mentioned Compound (1-1), the present compound of the formula (1) wherein R^8 represents R^{72}, i.e., a compound of a below-mentioned formula (1-4) (hereinafter, described as Compound (1-4)), can be prepared by coupling compound of a below-mentioned formula (F14) (hereinafter, described as Compound (F14)) with Compound (F22) in the presence of a base and a catalyst.
According to the process for preparing the above-mentioned Compound (1-1), the present compound of the formula (1) wherein R^2 represents R^{73}, i.e., a compound of a below-mentioned formula (1-5) (hereinafter, described as Compound (1-5)), can be prepared by coupling compound of a below-mentioned formula (F15) (hereinafter, described as Compound (F15)) with compound of a below-mentioned formula (F23) (hereinafter, described as Compound (F23)) in the presence of a base and a catalyst.

[wherein R^1, R^2, R^3, R^4, R^5, R^6, R^7, R^8, R^{10}, R^{72}, Z^{51}, Z^{52} and X are the same as defined above.]

[wherein]
R¹, R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, Z¹, Z², Z³, Z⁴, Z⁵, Z⁶, Z⁷, Z⁸, Z⁹, Z¹₀ and X are the same as defined above, R⁷³ represents an C₁-C₃ alkyl group or a C₁-C₃ haloalkyl group.

According to the process for preparing the above-mentioned Compound (1-1), the present compound of the formula (1) wherein R³ represents R⁷⁴, i.e., a compound of a below-mentioned formula (1-6) (hereinafter, described as Compound (1-6)), can be prepared by coupling a compound of a below-mentioned formula (F16) (hereinafter, described as Compound (F16)) with Compound (F23) in the presence of a base and a catalyst.

[wherein 'R¹, R², R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹₀, R⁷³, Z¹, Z², Z³ and X are the same as defined above.]

[0518]

According to the above-mentioned Process F, the compound of the formula (1) wherein two or more substituents selected from R², R³, R⁶, R⁷, R⁸ or R⁹ represents either R⁷¹, R⁷² or R⁷³ can be prepared.
The present compound of the formula (1) can be also prepared by using the other known coupling methods instead of the coupling reaction described in the above-mentioned Process F.

(Process G)

The present compound of the formula (1) wherein \(R^1 \) represents \(R^{75} \), i.e., the compound of a formula (1-20) (hereinafter, described as Compound (1-20)), can be prepared by coupling Compound (1-10) with compound of a formula (Gl) (hereinafter, described as Compound (Gl)) in the presence of a base.

![Diagram](image)

[wherein

\(R^2, R^3, R^4, R^5, R^6, R^7, R^8, R^9, R^{10}, Z^{11} \) and \(X \) are the same as defined above, and \(R^{75} \) represents an C1-C12 alkyl group optionally having one or more substituents selected from the below-mentioned Group P which may be same or different from each other when the number of the selected]
substituents is two or more, a C3-C12 cycloalkyl group
optionally having one or more substituents selected from
the below-mentioned Group P which may be same or different
from each other when the number of the selected
substituents is two or more, or an C2-C12 acyl group
optionally having one or more substituents selected from
the below-mentioned Group P which may be same or different
from each other when the number of the selected
substituents is two or more)

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; esters such as ethyl acetate, methyl acetate; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; water; and mixed solvents thereof.

Compound (G1) to be used in the reaction can be
usually used as a commercially available product. Specific examples include halogenated alkyls such as chlorodifluoromethane, methyl bromide, ethyl bromide, n-propyl bromide, methyl iodide, ethyl iodide, n-propyl bromide, aryl bromide, cyclopropyl bromide, benzyl bromide, 1,1-difluoro-2-iodomethane; dialkyl sulfates such as dimethyl sulfates, diethyl sulfates, di-n-propyl sulfates; alkyl or aryl sulfonates such as methyl p-toluenesulfonate, ethyl methanesulfonate, n-propyl methanesulfonate; and carboxylic halides such as acetyl chloride, benzoyl chloride.

Examples of the base to be used in the reaction include organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene, diazabicyclononene; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bicarbonate; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; alkali metal halides such as sodium fluoride, potassium fluoride, cesium fluoride; alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride; and alkali
metal alkoxides such as sodium tert-butoxide, potassium tert-butoxide.

In the reaction, Compound (G1) is used usually within a range of 1 to 10 molar ratios, and the base is used usually within a range of 0.5 to 10 molar ratios, as opposed to 1 mole of Compound (1-10).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present compound of the formula (1-20). The isolated present compound may be further purified, for example, by chromatography and recrystallization.

[0521]

Hereinafter, processes for preparing the present tetrazolinone compound X, the present tetrazolinone compound X2, the present tetrazolinone compound X3, the present tetrazolinone compound Y, the present pyrazole compound Z, the present pyrazole compound Z2 and the present pyrazole compound Z3 are described in detail.

[0522]

The present tetrazolinone compound X, the present
tetrazolinone compound X2, the present tetrazolinone compound X3, the present tetrazolinone compound Y, the present pyrazole compound Z, the present pyrazole compound Z2 and the present pyrazole compound Z3 can be prepared, for example, by the below-mentioned process.

(Synthesis A)

A compound of a below-mentioned formula (TXA5) (hereinafter, described as Compound (TXA5)), can be prepared by reacting a compound of a below-mentioned formula (TXA4) (hereinafter, described as Compound (TXA4)) with an azidation agent.

[wherein

\(A^3 \) represents any group as below-mentioned:

\[
\begin{align*}
&\text{R}^{21}, \text{R}^{22}, \text{R}^{23}, \text{R}^{24}, \text{R}^{25}, \text{R}^{26}, \text{R}^{41}, \text{R}^{42}, \text{R}^{43}, \text{R}^{44}, \text{R}^{45}, \text{R}^{51}, \text{R}^{52}, \text{R}^{53}, \text{R}^{54} \text{ and } \text{R}^{55} \text{ are the same as described above.}
\end{align*}
\]
This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; esters such as ethyl acetate, methyl acetate; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; and mixed solvents thereof.

Examples of the azidation agent to be used in the reaction include inorganic azides such as sodium azide, barium azide and lithium azide; and organic azides such as trimethylsilyl azide and diphenylphosphoryl azide.

In the reaction, the azidation agent is used usually within a range of 1 to 10 molar ratio(s) as opposed to 1 mole of Compound (TXA4).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.
If necessary, a Lewis acid such as aluminium chloride and zinc chloride may be added to the reaction, and these compounds are used usually within a range of 0.05 to 5 molar ratio (s) as opposed to 1 mole of Compound (TXA4).

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present tetrazolinopine compound X, the present tetrazolinone compound X2 or the present tetrazolinone compound X3, which each is represented by a formula (TXA5). The isolated present tetrazolinone compound X, the isolated present tetrazolinone compound X2 or the isolated present tetrazolinone compound X3 may be further purified, for example, by chromatography and recrystallization.

[0524]

(Synthesis B)

A compound of a below-mentioned formula (TXA3) (hereinafter, described as Compound (TXA3)), can be prepared by reacting a compound of a below-mentioned formula (TXA1) (hereinafter, described as Compound (TXA1)) or a compound of a below-mentioned formula (TXA2) (hereinafter, described as Compound (TXA2)) with an azidation agent.
R27 is the same as described above, R1011 represents an (C1-C3 alkoxy) methyl group, a methyl group, or an C2-C6 alkoxy carbonyl group, and Z101 represents a chlorine atom or a bromine atom.

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; esters such as ethyl acetate, methyl acetate; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile,
propionitrile; and mixed solvents thereof.

Examples of the azidation agent to be used in the reaction include inorganic azides such as sodium azide, barium azide and lithium azide; and organic azides such as trimethylsilyl azide and diphenylphosphoryl azide.

In the reaction, the azidation agent is used usually within a range of 1 to 10 molar ratio(s) as opposed to 1 mole of Compound (TXA1) or Compound (TXA2).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

If necessary, a Lewis acid such as aluminium chloride and zinc chloride may be added to the reaction, and these compounds are used usually within a range of 0.05 to 5 molar ratio(s) as opposed to 1 mole of Compound (TXA1) or Compound (TXA2).

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present tetrazolinone compound Y represented by a formula (TAX3). The isolated present tetrazolinone compound Y may be further purified, for example, by chromatography and recrystallization.

[0525],

(Synthesis c)
A compound of a below-mentioned formula (TXG2) (hereinafter, described as Compound (TXG2)), can be prepared by reacting Compound (TXA3) with a compound of a below-mentioned formula (TD2) (hereinafter, described as Compound (TD2)) in the presence of a base.

![Chemical structure diagram]

[wherein

\(R^{27} \) and \(R^{1011} \) are the same as described above, and \(Z^{311} \) represents a leaving group such as a bromine atom, an iodine atom, a methanesulfonyloxy group, a trifluoromethanesulfonyloxy group or p-toluenesulfonyloxy group]

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid
amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; esters such as ethyl acetate, methyl acetate, sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; water; and mixed solvents thereof.

Compound (TD2) to be used in the reaction can be usually used as a commercially available product. Specific examples include alkyl halides such as methyl bromide, methyl iodide; dialkyl sulfates such as dimethyl sulfate; alkyl or aryl sulfates such as methyl p-toluenesulfonate, methyl methanesulfonate.

Examples of the base to be used in the reaction include organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene, diazabicyclononene; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bicarbonate; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; alkali metal halides such as sodium fluoride, potassium fluoride, cesium fluoride; alkali metal hydrides such as lithium
hydride, sodium hydride, potassium hydride; and alkali metal alkoxides such as sodium tert-butoxide, potassium tert-butoxide.

In the reaction, Compound (TD2) is used usually within a range of 1 to 10 molar ratio(s), and the base is used usually within a range of 0.5 to 10 molar ratios, as opposed to 1 mole of Compound (TXA3).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present tetrazolinone compound Y represented by the formula (TXG2). The isolated present compound Y may be further purified, for example, by chromatography and recrystallization.

[0526]

(Synthesis D)

A compound of a below-mentioned formula (TXH2) (hereinafter, described as Compound (TXH2)), can be prepared by reacting a compound of a below-mentioned formula (TXH1) (hereinafter, described as Compound (TXH1)) with a halogenating agent.
[wherein

R_{27} is the same as described above, and Z^{111} represents a chlorine atom, a bromine atom, or an iodine atom.]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, fluorobenzene, difluorobenzene, trifluorobenzene, chlorobenzene, dichlorobenzene, trichlorobenzene, α,α,α-trifluorotoluene, α,α,α-trichlorotoluene; esters such as ethyl acetate, methyl acetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; and mixed solvents thereof.

Examples of the halogenating agent to be used in the
reaction include a chlorinating agent, a brominating agent or iodinating agent such as chlorine, bromine, iodine, sulfuryl chloride, N-chlorosuccinimide, N-bromosuccinimide, 1,3-dibromo-5,5-dimethylhydantoin, iodosuccinimide, tert-butyl hypochlorite, N-chloroglutaramide, N-bromoglutaramide, N-chloro-N-cyclohexyl-benzenesulfonamide and N-bromophthalimide.

A radical initiator can be used in the reaction.

Examples of the radical initiator to be used in the reaction include benzoyl peroxide, azobisisobutyronitrile (AIBN), azobiscyclohexanecarbonitrile, diacyl peroxide, dialkyl peroxydricarbonate, tert-alkyl peroxyster, monoperoxy carbonate, di (tert-alkylperoxy) ketal and ketone peroxide.

In the reaction, the halogenating agent is used usually within a range of 1 to 10 molar ratio (s), and the radical initiator is used usually within a range of 0.01 to 1 molar ratio (s), as opposed to 1 mole of Compound (TXH1).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present tetrazolinone.
compound Y represented by the formula \((TXH_2)\). The isolated present compound Y may be further purified, for example, by chromatography and recrystallization.

[0527]

(Synthesis E)

A compound of a below-mentioned formula \((TXJ_2)\) (hereinafter, described as Compound \((TXJ_2)\)), can be prepared by reacting Compound \((TXH_2)\) with a compound of a below-mentioned formula \((TXJ_1)\) (hereinafter, described as Compound \((TXJ_1)\)).

\[
\begin{align*}
\text{\((TXH_2)\)} & \quad \xrightarrow{R^{12211-OM}} \quad \text{\((TXJ_1)\)} & \quad \xrightarrow{R^{12211-OM}} \quad \text{\((TXJ_2)\)}
\end{align*}
\]

[wherein

- \(R^{27}\) and \(Z^{111}\) are the same as described above,
- \(R^{12211}\) represents an \(C_1-C_3\) alkyl group, and
- \(M\) represents a sodium, potassium, or a lithium.]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include ethers such as diethyl ether, tetrahydrofuran, \(1,4\)-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; hydrocarbons such as \(n\)-heptane, \(n\)-hexane, cyclohexane, \(n\)-pentane, toluene,
xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; nitriles such as acetonitrile, propionitrile; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; alcohols such as methanol, ethanol, propanol, butanol; and mixed solvents thereof.

Examples of Compound (TXJ1) include sodium methoxide, sodium ethoxide, sodium n-propoxide, sodium isopropoxide, sodium sec-butoxide, potassium methoxide, potassium ethoxide, potassium n-propoxide, and potassium isopropoxide.

In the reaction, Compound (TXJ1) is used usually within a range of 1 to 10 molar ratio(s) as opposed to 1 mole of Compound (TXH2).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present tetrazolinone compound Y represented by the formula (TXJ2). The isolated present compound Y may be further purified, for example, by
chromatography and recrystallization.

[0528]

(Synthesis F)

A compound of a below-mentioned formula (TXK1) (hereinafter, described as Compound (TXK1)), can be prepared by reacting Compound (TXH2) with water in the presence of a base.

\[
\begin{align*}
\text{(TXH2)} & \xrightarrow{\text{H}_2\text{O}} \text{(TXK1)} \\
\end{align*}
\]

[wherein

R27 and Z111 are the same as described above.]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; nitriles such as acetonitrile, propionitrile; acid amides such as
N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; alcohols such as methanol, ethanol, propanol, butanol; and mixed solvents thereof.

Examples of the base to be used in the reaction include organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene, diazabicyclononene; metallic organic acid salts such as lithium formate, lithium acetate, sodium formate, sodium acetate, potassium formate, potassium acetate; metallic nitrates such as silver nitrate, sodium nitrate; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, calcium carbonate, cesium carbonate; alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bicarbonate; alkali-metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; alkali metal alkoxides such as sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium tert-butoxide.

In the reaction, the base is used usually within a range of 1 to 100 molar ratio (s) as opposed to 1 mole of Compound (TXH2).
In the reaction, water is used usually within a range of 1 to a large excess molar ratio(s) as opposed to 1 mole of Compound (TXH2).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present tetrazolinone compound Y represented by the formula (TXK1). The isolated present compound Y may be further purified, for example, by chromatography and recrystallization.

[0529]

(Synthesis G)

Compound (TXH2) can be prepared by reacting Compound (TXJ2) with a halogenating agent.

[wherein

R^{27}, R_{12}^{11} and Z_{11}^{11} are the same as described above.]
This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; organic acids such as formic acid, acetic acid, trifluoroacetic acid; water; and mixed solvents thereof.

Examples of the halogenating agent include hydrochloric acid, hydrobromic acid and hydroiodic acid.

In the reaction, the halogenating agent is used usually within a range of 1 or more molar ratio(s) as opposed to 1 mole of Compound (TXJ2).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present tetrazolinone compound Y represented by the formula (TXH2). The isolated present compound Y may be further purified, for example, by
chromatography and recrystallization.

[0530] (Synthesis H)

Compound (TXH2) can be prepared by reacting Compound (TXK1) with a halogenating agent.

[wherein

R27 and Z111 are the same as described above.]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; esters such as ethyl acetate, methyl acetate, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; organic acids
such as formic acid, acetic acid, trifluoroacetic acid; water; and mixed solvents thereof.

Examples of the halogenating agent to be used in the reaction include bromine, chlorine, sulfuryl chloride, hydrochloric acid, hydrobromic acid, hydroiodic acid, boron tribromide, phosphorus tribromide, trimethylsilyl chloride, trimethylsilyl bromide, trimethylsilyl iodide, thionyl chloride, thionyl bromide, phosphorous oxychloride, phosphorous trichloride, phosphorous pentachloride, thionyl chloride, phosphorous oxybromide, phosphorous pentabromide, phosphorus triiodide, oxalyl dichloride, oxalyl dibromide, acetyl chloride, carbon tetrabromide, N-bromosuccinimide, lithium chloride, sodium iodide and acetyl bromide.

In the reaction, the halogenating agent is used usually within a range of 1 to 10 molar ratio (s) as opposed to 1 mole of Compound (TXK1).

To promote the reaction, an additive agent may be added depending on the halogenating agent used, and specifically includes zinc chloride for acetyl chloride; triphenylphosphine for carbon tetrabromide; dimethyl sulfide for N-bromosuccinimide; boron trifluoride diethyl etherate complex for sodium iodide; boron trifluoride diethyl etherate complex for acetyl bromide; triethylamine and methane sulfonyl chloride for lithium chloride; aluminium chloride for sodium iodide; and trimethylsilyl
chloride for sodium iodide. The amount of each additive agent is used usually within a range of 0.01 to 5 molar ratio (s) as opposed to 1 mole of Compound (TXK1).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present tetrazolinone compound Y represented by the formula (TXH2). The isolated present compound Y may be further purified, for example, by chromatography and recrystallization.

[0531]

(Synthesis I)

A compound of a below-mentioned formula (TXM3) (hereinafter, described as Compound (TXM3)), can be prepared by reacting Compound (TXK1) with a compound of a below-mentioned formula (XM2) (hereinafter, described as Compound (XM2)) in the presence of a base.
(TXK1) \[R^{27} \] is the same as described above; \(R^{901} \) represents an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C6-C16 aryl group, or a C6-C16 haloaryl group; and \(Z^{901} \) represents a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; nitriles such as acetonitrile, propionitrile; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl...
isobutyl ketone; water; and mixed solvents thereof.

Examples of the base to be used in the reaction include organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene, diazabicyclononene; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bicarbonate; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride; and alkali metal alkoxides such as sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium tert-butoxide.

In the reaction, Compound (XM2) is used usually within a range of 1 to 10 molar ratio(s), and the base is used usually within a range of 0.5 to 5 molar ratio(s), as opposed to 1 mole of Compound (TXK1).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

If necessary, sodium iodide, tetrabutylammonium iodide and the others may be added to the reaction and these
compounds are used usually within a range of 0.001 to 1.2 molar ratio(s) as opposed to 1 mole of Compound (TXK1).

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present tetrazolinone compound Y represented by the formula (TXM3). The isolated present compound Y may be further purified, for example, by chromatography and recrystallization.

A compound of a below-mentioned formula (TXN12) (hereinafter, described as Compound (TXN12)), can be prepared by coupling a compound of a below-mentioned formula (TXN11) (hereinafter, described as Compound (TXN11)) with a compound of a below-mentioned formula (TF21) (hereinafter, described as Compound (TF21)) in the presence of a base and a catalyst.

[wherein]
R₀, z⁵ and Z⁵² are the same as defined above, R⁷¹¹ represents an C₁-C₃ alkyl group, a C₁-C₃ haloalkyl group, an C₂-C₃ alkenyl group, an C₂-C₃ alkynyl group or a C₃-C₄ cycloalkyl group.

The reaction is performed according to the methods described in J. Am. Chem. Soc. 1989, 111, 314 or Chem. Rev. 1995, 95, 2457.

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; esters such as ethyl acetate, methyl acetate; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; alcohols such as methanol, ethanol, propanol, butanol; water; and mixed solvents thereof.

Examples of organoboron compound (TF21) to be used in the reaction include boronic acid derivatives, boronate.
ester derivatives and trifluoroborate salts, and these compounds are used as a commercially available product, or may be prepared according to a method described in a review article of N. Miyaura and A. Suzuki, Chem. Rev. 1995, 95, 2457 and the others. The organoboron compound (TF21) to be used in the reaction can be prepared, for example, by reacting an iodo compound \(R^7_{11} \text{I} \) or a bromo compound \(R^7_{11} \text{Br} \) with an alkyl lithium (such as butyl lithium), followed by reacting the resulting mixtures with boronate esters such as trimethyl borate to obtain boronate ester derivatives. Also, the boronate ester derivatives obtained in the above-mentioned reaction can be hydrolyzed to the organoboron compound (TF21) to be used in the reaction as needed. Further, according to a method described in a review article of Molander et al. Acc. Chem. Res. 2007, 40, 275 and the others, the above-mentioned boronate ester derivatives can be fluorinated with potassium bifluoride and the like to obtain the trifluoroborate salts \(\text{BF}_3\text{K}^+ \).

Examples of the catalyst to be used in the reaction include palladium (II) acetate, dichlorobis (triphenylphosphine) palladium, tetrakistriphenylphosphinepalladium(O), palladium (II) acetate/triscyclohexylphosphine, bis (diphenylphoshine ferrocenyl) palladium (II) dichloride, 1,3-bis(2,6-diisopropylphenyl) imidazole-2-ylidene (1,4-
naphthoquinone) palladium dimer, aryl (chloro) (1,3-dimethyl-1,3-dihydro-2H-imidazole-2-ylidene)palladium or palladium (II) acetate/dicyclohexyl (2',4',6'-triisopropylbiphenyl-2-yl) phosphine, and tris (dibenzylideneacetone) dipalladium and the others.

Examples of the base to be used in the reaction include organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene, diazabicyclononene; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bicarbonate; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; alkali metal halides such as sodium fluoride, potassium fluoride, cesium fluoride, cesium chloride; alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride; alkali metal phosphates such as tripotassium phosphate; and alkali metal alkoxides such as sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium tert-butoxide.

In the reaction, Compound (TF21) is used usually within a range of 1 to 10 molar ratio(s), and the base is used usually within a range of 1 to 10 molar ratio(s), and
the catalyst is used usually within a range of 0.0001 to 1 molar ratio (s), as opposed to 1 mole of Compound (TXN11).

The reaction temperature is usually within a range of 0 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present tetrazolinone compound Y represented by the formula (TXN12). The isolated present compound Y may be further purified, for example, by chromatography and recrystallization.

Further, the present compound of the formula (TXN12) can be prepared by using the other known coupling methods instead of the coupling reaction described in the above-mentioned Synthesis J.

[0533]

(Synthesis K)

Compound (TXK1) can be prepared by reacting a below-mentioned formula (TXX1) (hereinafter, described as Compound (TXX1)) with a reducing agent.
[wherein
R^{27} are the same as described above, and R^{311}
represents an C1-C5 alkyl group]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction
include hydrocarbons such as n-heptane, n-hexane,
cyclohexane, n-pentane, toluene, xylene; ethers such as
diethyl ether, tetrahydrofuran, 1,4-dioxane, ethylene glycol
dimethyl ether, anisole, methyl tert-butyl ether,
diisopropyl ether; halogenated hydrocarbons such as carbon
tetrachloride, chloroform, dichloromethane, 1,2-
dichloroethane, tetrachloroethane, chlorobenzene; alcohols
such as methanol, ethanol, propanol, butanol; water; and
mixed solvents thereof.

Examples of the reducing agent to be used in the
reaction include lithium triethylborohydride, diisobutylaluminium hydride, lithium aminoborohydride,
lithium borohydride, sodium borohydride, borane, borane-
dimethyl sulfide complex and borane-tetrahydrofuran complex.
In the reaction, the reducing agent is used usually within a range of 1 to 10 molar ratio(s) as opposed to 1 mole of Compound (TXX1).

The reaction temperature is usually within a range of -78 to 100°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present tetrazolinone compound Y represented by the formula (TXK1). The isolated present compound Y may be further purified, for example, by chromatography and recrystallization.

[0534] (Synthesis L)

A compound of a below-mentioned formula (TXL2) (hereinafter, described as Compound (TXL2)), can be prepared by reacting Compound (TXH2) with a compound of a below-mentioned formula (TXL1) (hereinafter, described as Compound (TXL1)) in the presence of a base.
This reaction is usually carried out in a solvent. Examples of the solvent to be used in the reaction include ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; nitriles such as acetonitrile, propionitrile; acid amides such as N,N-dimethyl formamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; and mixed solvents thereof.

Examples of Compound (TXL1) include methanoic acid, ethanoic acid, propanoic acid, butanoic acid, pentanoic
Examples of the base to be used in the reaction include organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene, diazabicyclononene; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bicarbonate; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; alkali metal halides such as sodium fluoride, potassium fluoride, cesium fluoride; alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride; and alkali metal alkoxides such as sodium tert-butoxide, potassium tert-butoxide.

In the reaction, Compound (TXL1) is used usually within a range of 1 to 10 molar ratio (s), as opposed to 1 mole of Compound (TXH2).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting
organic layers are worked up (for example, drying and concentration) to isolate the present tetrazolinone compound Y represented by the formula (TXL2). The isolated present compound Y may be further purified, for example, by chromatography and recrystallization.

[0535]

(Synthesis M)

A compound of a below-mentioned formula (TXM2) (hereinafter, described as Compound (TXM2)), can be prepared by reacting Compound (TXH2) with a compound of a below-mentioned formula (TXM1) (hereinafter, described as Compound (TXM1)).

\[
\text{R}^{27} \quad \text{R}^{1211} \quad \text{Z}^{111} \quad \text{M}
\]

[wherein

\[R^{27}, R^{1211}, Z^{111} \text{ and } M \text{ are the same as described above}\]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene,
xylene; halogenated hydrocarbons such as carbon
tetrachloride, chloroform, dichloromethane, 1,2-
dichloroethane, tetrachloroethane, chlorobenzene; nitriles
such as acetonitrile, propionitrile; acid amides such as
N,N-dimethyl formamide, 1,3-dimethyl-2-imidazolidinone, N-
methylpyrrolidone; sulfoxides such as dimethyl sulfoxide
ketones such as acetone, methyl ethyl ketone, methyl
isobutyl ketone; and mixed solvents thereof.

Examples of Compound (TXM1) include sodium
thiomethoxide, sodium thioethoxide, sodium thio-n-propoxide,
sodium thioisopropoxide, potassium thiomethoxide, potassium
thioethoxide, potassium thio-n-propoxide, potassium
thioisopropoxide, lithium thiomethoxide, and lithium
thioethoxide.

In the reaction, Compound (TXM1) is used usually
within a range of 1 to 10 molar ratio (s), as opposed to 1
mole of Compound (TXH2).

The reaction temperature is usually within a range of
-20 to 150°C. The reaction period of the reaction is
usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures
are extracted with organic solvent (s), and the resulting
organic layers are worked up (for example, drying and
concentration) to isolate the present tetrazolinone
compound Y represented by the formula (TXM2). The isolated
present compound Y may be further purified, for example, by chromatography and recrystallization.

(Synthesis N)

A compound of a below-mentioned formula (TXN2) (hereinafter, described as Compound (TXN2)), can be prepared by reacting Compound (TXH2) with a compound of a below-mentioned formula (TXN1) (hereinafter, described as Compound (TXN1)).

\[
\begin{align*}
&\text{(TXH2)} & \text{(TXN2)} \\
& \begin{array}{c}
R^{27} \\
Z^{111}
\end{array} & \begin{array}{c}
R^{81} \\
N
\end{array} & \begin{array}{c}
H \\
N
\end{array} & \begin{array}{c}
N \\
-CH_3
\end{array} & \begin{array}{c}
H \\
N
\end{array} & \begin{array}{c}
N \\
-CH_3
\end{array} & \begin{array}{c}
R^{82}
\end{array} \\
\end{align*}
\]

[wherein

R27 and Z111 are the same as described above; R81 and R82 represent an C1–C6 alkyl group, or combine each other together with a nitrogen atom to which they are attached to form a five-membered, six-membered or seven-membered heterocycle and the heterocycle may further contain one or more oxygen atom, nitrogen atom or sulfur atom]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl
tert-buty1 ether, diisopropyl ether; hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; nitriles such as acetonitrile, propionitrile; acid amides such as N,N-dimethyl formamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide and mixed solvents thereof.

Examples of Compound (TXN1) include dimethylamine, diethylamine, dipropylamine, methylethylamine, methylpropylamine, ethylpropylamine, pyrrolidine, piperidine, piperazine, morpholine and thiomorpholine.

In the reaction, Compound (TXN1) is used usually within a range of 1 to 10 molar ratio(s), as opposed to 1 mole of Compound (TXH2).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present tetrazolinone compound Y represented by the formula (TXN2). The isolated present compound Y may be further purified, for example, by
chromatography and recrystallization.

(Synthesis 0)

A compound of a below-mentioned formula (TXO1) (hereinafter, described as Compound (TXO1)), can be prepared by reacting Compound (TXX1) with a reducing agent.

\[
\begin{align*}
\text{(TXX1)} & \quad \text{reducing agent} \\
\text{(TXO1)} &
\end{align*}
\]

[wherein

\[R^{27} \text{ and } R^{311} \text{ are the same as described above} \]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; and mixed solvents thereof.

Examples of the reducing agent to be used in the
reaction include diisobutylaluminium hydride and sodium aluminium hydride.

In the reaction, the reducing agent is used usually within a range of 1 to 10 molar ratio(s), as opposed to 1 mole of Compound (TX01).

The reaction temperature is usually within a range of -78 to 100°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present tetrazolinone compound Y represented by the formula (TX01). The isolated present compound Y may be further purified, for example, by chromatography and recrystallization.

(Synthesis P)

The present pyrazole compound Z, the present pyrazole compound Z2 and the present pyrazole compound Z3 which is represented by the above-mentioned formula (9), formula (10) or formula (11) respectively, wherein L1, L2 or L3 is a nitro group, i.e., a compound of a formula (H3) (hereinafter, described as Compound (H3)), can be prepared by reacting a compound of a formula (HI) (hereinafter, described as Compound (HI)) with a compound of a formula
(H2) (hereinafter, described as Compound (H2)) in the presence of a base.

![Chemical structure](image)

(wherein

B^2 represents any group as below-mentioned:

- R^{261}, R^{211}, R^{221}, R^{231}, R^{241}, R^{251}, R^{411}, R^{421}, R^{431}, R^{441}, R^{451}, R^{511}, R^{521}, R^{531}, R^{541}, R^{551} and Z^{11} are the same as described above)

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid
amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; esters such as ethyl acetate, methyl acetate; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; water; and mixed solvents thereof.

Examples of the base to be used in the reaction include organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene, diazabicyclononene; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bicarbonate; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; alkali metal halides such as sodium fluoride, potassium fluoride, cesium fluoride; alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride; and alkali metal alkoxides such as sodium tert-butoxide, potassium tert-butoxide.

In the reaction, Compound (HI) is used usually within a range of 1 to 10 molar ratio(s), and the base is used usually within a range of 0.5 to 5 molar ratio(s), as
opposed to 1 mole of Compound (H2).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

If necessary, sodium iodide, tetrabutylammonium iodide and the others may be added to the reaction and these compounds are used usually within a range of 0.001 to 1.2 molar ratio (s) as opposed to 1 mole of Compound (H2).

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound Z, the present pyrazole compound Z2 or the present pyrazole compound Z3, which each is represented by formula (H3).

The isolated present pyrazole compound Z, the isolated present pyrazole compound Z2 or the isolated present pyrazole compound Z3 may be further purified, for example, by chromatography and recrystallization.

[0539]

(Synthesis Q)

The present pyrazole compound Z, the present pyrazole compound Z2 and the present pyrazole compound Z3 which is represented by the above-mentioned formula (9), formula (10) or formula (11) respectively, wherein L1, L2 or L3 is an amino group, i.e., a compound of a formula (H4)
(hereinafter, described as Compound (H4)), can be prepared by reacting Compound (H3) with hydrogen gas in the presence of a catalyst.

\[
\begin{align*}
\text{(H3)} & \quad \text{hydrogen gas} \quad \text{catalyst} \\
& \quad \text{(H4)}
\end{align*}
\]

[wherein \(B^2 \) and \(R_{261} \) are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include alcohols such as methanol, ethanol, propanol, butanol; esters such as ethyl acetate, butyl acetate; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; acidic acid; water; and mixed solvents thereof.

Examples of the catalyst to be used in the reaction include palladium on carbon (Pd/C), platinum on carbon (Pt/C), osmium on carbon (Os/C), ruthenium on carbon (Ru/C),
rhodium on carbon (Rh/C) and Raney nickel.

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the catalyst is filtered off, and the resulting organic layers are worked up (for example, concentration) to isolate the present pyrazole compound Z, the present pyrazole compound Z2 or the present pyrazole compound Z3, which each is represented by formula (H4). The isolated present pyrazole compound Z, the isolated present pyrazole compound Z2 or the isolated present pyrazole compound Z3 may be further purified, for example, by distillation, chromatography and recrystallization.

[0540]

(Synthesis R)

Compound (H4) can be also prepared by reacting the above-mentioned Compound (H3) with a reducing agent.

\[(\text{H3}) \xrightarrow{\text{reducing agent}} \xrightarrow{\text{acid}} (\text{H4})\]

[wherein]
B² and R²⁺ are the same as described above.

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include aliphatic carboxylic acids such as acetic acid; alcohols such as methanol, ethanol; water and mixed solvents thereof.

Examples of the reducing agent to be used in the reaction include iron, tin and zinc.

Examples of the acid to be used in the reaction include hydrochloric acid, sulfuric acid, acetic acid, aqueous ammonium chloride solution.

In the reaction, the reducing agent is used usually within a range of 1 to 30 molar ratio(s), as opposed to 1 mole of Compound (H₃).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound Z, the present pyrazole compound Z₂ or the present pyrazole compound Z₃, which each is represented by formula (H₄)

The isolated present pyrazole compound Z, the isolated present pyrazole compound Z₂ or the isolated present
The present pyrazole compound Z, the present pyrazole compound Z2, and the present pyrazole compound Z3 which is represented by the above-mentioned formula (9), formula (10) or formula (11) respectively, wherein L1, L2 or L3 is an isocyanato group, i.e., a compound of a formula (H5), can be prepared by reacting Compound (H4) with phosgenes.

[wherein
B2 and R261 are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon
tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; esters such as ethyl acetate, methyl acetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; and mixed solvents thereof.

Examples of the phosgenes to be used in the reaction include phosgene, diphosgene and triphosgene.

In the reaction, phosgenes are used usually within a range of 1 to 10 molar ratio(s), as opposed to 1 mole of Compound (H4).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

If necessary, organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene and diazabicyclononene, alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate, alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate and cesium bicarbonates and the others may be added to the reaction, and these compounds are used usually within a range of 0.05 to 5 molar ratio(s) as opposed to 1 mole of Compound (H4).
When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound Z, the present pyrazole compound Z2 or the present pyrazole compound Z3, which each is represented by formula (H5). The isolated present pyrazole compound Z, the isolated present pyrazole compound Z2 or the isolated present pyrazole compound Z3 may be further purified, for example, by distillation, chromatography and recrystallization.

[0542]

(Synthesis T)

The present pyrazole compound Z, the present pyrazole compound Z2 and the present pyrazole compound Z3 which is represented by the above-mentioned formula (9), formula (10) or formula (11) respectively, wherein L1, L2 or L3 is a NSO group, i.e., a compound of a formula (H6) (hereinafter, described as Compound (H6)), can be prepared by reacting Compound (H4) with a thionyl chloride.

\[
\begin{align*}
\text{(H4)} & \quad \text{SOCI}_2 \\
\text{(H6)} & \\
\end{align*}
\]

[wherein

B2 and R261 are the same as described above]
This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; esters such as ethyl acetate, methyl acetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; and mixed solvents thereof.

In the reaction, thionyl chloride is used usually within a range of 1 to 10 molar ratio(s) as opposed to 1 mole of Compound (H4).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound Z, the present pyrazole compound Z2 or the present pyrazole compound Z3, which each is represented by formula (H6).
The isolated present pyrazole compound Z, the isolated present pyrazole compound Z₂ or the isolated present pyrazole compound Z₃ may be further purified, for example, by distillation, chromatography and recrystallization.

(Synthesis U)

Compound (H₅) represented by the below-mentioned formula (H₅) can be prepared by reacting Compound (H₆) with phosgenes.

[\text{wherein B}²\text{ and R}²⁶¹\text{ are the same as described above}]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; esters
such as ethyl acetate, methyl acetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile and mixed solvents thereof.

Examples of the phosgenes to be used in the reaction include phosgene, diphosgene and triphosgene.

In the reaction, phosgenes are used usually within a range of 1 to 10 molar ratio(s), as opposed to 1 mole of Compound (H6).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

If necessary, organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethyamine, lutidine, collidine, diazabicycloundecene and diazabicyclononene, alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate, alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate and cesium bicarbonates and the others may be added to the reaction, and these compounds are used usually within a range of 0.05 to 5 molar ratio(s) as opposed to 1 mole of Compound (H6).

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting
organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound \(Z \), the present pyrazole compound \(Z_2 \) or the present pyrazole compound \(Z_3 \), which each is represented by formula (H5). The isolated present pyrazole compound \(Z \), the isolated present pyrazole compound \(Z_2 \) or the isolated present pyrazole compound \(Z_3 \) may be further purified, for example, by distillation, chromatography and recrystallization.

(Synthesis V)

The present pyrazole compound \(Z \), the present pyrazole compound \(Z_2 \) and the present pyrazole compound \(Z_3 \) which is represented by the above-mentioned formula (9), formula (10) or formula (11) respectively, wherein \(L^1 \), \(L^2 \) or \(L^3 \) is an C2-C6 alkoxy carbonyl group, i.e., a compound of a formula (H8) (hereinafter, described as Compound (H8)), can be prepared by reacting Compound (H1) with a compound of a formula (H7) (hereinafter, described as Compound (H7)) in the presence of a base.

\[
\begin{align*}
\text{(H1)} & \quad \text{(H7)} & \quad \text{(H8)} \\
\end{align*}
\]

[wherein]
B², R261, Z** and R9 are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; esters such as ethyl acetate, methyl acetate; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; water; and mixed solvents thereof.

Examples of the base to be used in the reaction include organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, N,N-dimethylanilinopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene, diazabicyclononene; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bicarbonate;
alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; alkali metal halides such as sodium fluoride, potassium fluoride, cesium fluoride; alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride; and alkali metal alkoxides such as sodium tert-butoxide, potassium tert-butoxide.

In the reaction, Compound \((\text{HI})\) is used usually within a range of 1 to 10 molar ratio(s), and the base is used usually within a range of 0.5 to 5 molar ratio(s), as opposed to 1 mole of Compound \((\text{H7})\).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

If necessary, sodium iodide, tetrabutylammonium iodide and the others may be added to the reaction, and these compounds are used usually within a range of 0.001 to 1.2 molar ratio(s) as opposed to 1 mole of Compound \((\text{H7})\).

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound \(Z\), the present pyrazole compound \(Z2\) or the present pyrazole compound \(Z3\), which each is represented by formula \((\text{H8})\).

The isolated present pyrazole compound \(Z\), the isolated
The present pyrazole compound Z, the present pyrazole compound Z2 and the present pyrazole compound Z3 which is represented by the above-mentioned formula (9), formula (10) or formula (11) respectively, wherein L, L2 or L3 is a carbonyl group, i.e., a compound of a formula (H9) (hereinafter, described as Compound (H9)), can be prepared by reacting Compound (H8) with a hydrolytic agent.

[wherein B2, R261 and R311 are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include water, alcohols such as methanol, ethanol, propanol, butanol; hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol
dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; and mixed solvents thereof.

Examples of the hydrolytic agent to be used in the reaction include bases such as aqueous potassium hydroxide solution and aqueous sodium hydroxide solution; and acids such as hydrochloric acid and sulfuric acid.

In the reaction, the hydrolytic agent is used usually within a range of 0.5 to 20 molar ratio (s) as opposed to 1 mole of Compound (H8).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound Z, the present pyrazole compound Z2 or the present pyrazole compound Z3, which each is represented by formula (H9).

The isolated present pyrazole compound Z, the isolated present pyrazole compound Z2 or the isolated present pyrazole compound Z3 may be further purified, for example,
by distillation, chromatography and recrystallization.

(Synthesis X)

The present pyrazole compound Z, the present pyrazole compound Z₁ and the present pyrazole compound Z₃ which is represented by the above-mentioned formula (9), formula (10) or formula (11) respectively, wherein L¹, L² or L³ is a halogenated acyl group, i.e., a compound of a formula (H₁₀) (hereinafter, described as Compound (H₁₀)), can be prepared by reacting Compound (H₉) with a halogenating agent.

[wherein

B², R²₆¹ and Z¹₀¹ are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene, ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-
dichloroethane, tetrachloroethane, chlorobenzene; esters such as ethyl acetate, methyl acetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; and mixed solvents thereof.

Examples of the halogenating agent to be used in the reaction include phosphorous oxychloride, phosphorous trichloride, phosphorous pentachloride, thionyl chloride, phosphorous oxybromide, phosphorus tribromide, phosphorous pentabromide, phosphorus triiodide, oxalyl dichloride, oxalyl dibromide, triphosgene, diphosgene, phosgene and sulfuryl chloride.

In the reaction, the halogenating agent is used usually within a range of 1 to 10 molar ratio(s) as opposed to 1 mole of Compound (H9) .

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

A catalyst may be added to the reaction, and includes, for example, dimethylformamide. The catalyst is used usually within a range of 0.001 to 1 molar ratio(s) as opposed to 1 mole of Compound (H9) .

If necessary, organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine,
collidine, diazabicycloundecene and diazabicyclononene, alkali metal carbonate such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate, alkali metal bicarbonate such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate and cesium bicarbonate and the other may be added to the reaction, and these compounds are used usually within a range of 0.05 to 5 molar ratios as opposed to 1 mole of Compound (H9).

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound Z, the present pyrazole compound Z2 or the present pyrazole compound Z3, which each is represented by formula (H10).

The isolated present pyrazole compound Z, the isolated present pyrazole compound Z2 or the isolated present pyrazole compound Z3 may be further purified, for example, by distillation, chromatography and recrystallization.

[0547]

(Synthesis Y)

The present pyrazole compound Z, the present pyrazole compound Z2 and the present pyrazole compound Z3 which is represented by the above-mentioned formula (9), formula (10) or formula (11) respectively, wherein L, L2 or L3 is a CON3 group, i.e., a compound of a formula (H11)
(hereinafter, described as Compound (H11)), can be prepared by reacting Compound (H10) with sodium azide.

\[\text{B}^2, \text{R}^{261} \text{ and } Z^{101} \text{ are the same as described above} \]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; nitriles such as acetonitrile, propionitrile; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; alcohols such as methanol, ethanol, propanol, butanol and mixed solvents thereof.

In the reaction, sodium azide is used usually within a
range of 1 to 10 molar ratio (s) as opposed to 1 mole of Compound (H10).

The reaction temperature is usually within a range of -20 to 50°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound Z, the present pyrazole compound Z2 or the present pyrazole compound Z3, which each is represented by formula (H11). The isolated present pyrazole compound Z, the isolated present pyrazole compound Z2 or the isolated present pyrazole compound Z3 may be further purified, for example, by distillation, chromatography and recrystallization.

(Synthesis Z)

Compound (H5) can be prepared also by heating Compound (H11).

[wherein]
B² and R²⁶¹ are the same as described above.

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; nitriles such as acetonitrile, propionitrile; acid amides such as N,N-dimethyl formamide, 1,3-dimethyl-2-imidazolidinone; N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; alcohols such as methanol, ethanol, propanol, butanol; and mixed solvents thereof.

The reaction temperature is usually within a range of 0 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound Z, the present pyrazole compound Z₂ or the present pyrazole compound Z₃, which each is represented by formula (H₅).
The isolated present pyrazole compound Z, the isolated present pyrazole compound Z₂ or the isolated present pyrazole compound Z₃ may be further purified, for example, by distillation, chromatography and recrystallization.

[0549]

(Synthesis AA)

The present pyrazole compound Z, the present pyrazole compound Z₂ and the present pyrazole compound Z₃ which is represented by the above-mentioned formula (9), formula (10) or formula (11) respectively, wherein L¹, L² or L³ is a CONH₂ group, i.e., a compound of a formula (H13) (hereinafter, described as Compound (H13)), can be prepared by reacting Compound (H10) with an ammonia.

\[\text{(H10)} \xrightarrow{\text{ammonia}} \text{(H13)} \]

[wherein

B², R²⁶₁ and Z¹⁰₁ are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; hydrocarbons such as
n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; nitriles such as acetonitrile, propionitrile; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; alcohols such as methanol, ethanol, propanol, butanol; and mixed solvents thereof.

Examples of the ammonia to be used in the reaction include aqueous ammonia, ammonia gas, ammonia methanol solution and ammonia ethanol solution.

In the reaction, ammonia is used usually within a range of 1 to a large excess molar ratio (s) as opposed to 1 mole of Compound (H10).

The reaction temperature is usually within a range of -20 to 50°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound Z, the present pyrazole compound Z2 or the present pyrazole compound Z3, which each is represented by formula (H13).
The isolated present pyrazole compound Z, the isolated present pyrazole compound Z2 or the isolated present pyrazole compound Z3 may be further purified, for example, by chromatography and recrystallization.

[Synthesis AB]

Compound (H5) can be also prepared by reacting Compound (H13) with hypohalous acid salts.

[wherein B2 and R^261 are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; nitriles such as acetonitrile, propionitrile; acid amides such as
Examples of the hypohalous acid salts to be used in the reaction include sodium hypobromite, sodium hypochlorite, potassium hypobromite, potassium hypochlorite, barium hypobromite, barium hypochlorite, calcium hypobromite and calcium hypochlorite.

Also chlorine or bromine is mixed with sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide and the others to form a hypochlorite or a hypobromite, which also can be used.

The reaction temperature is usually within a range of 0 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

In the reaction, the hypochlorite is used usually within a range of 1 to 10 molar ratio(s) as opposed to 1 mole of Compound (H13).

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound Z, the present pyrazole compound Z2 or the present pyrazole
compound Z3, which each is represented by formula (H5). The isolated present pyrazole compound Z, the isolated present pyrazole compound Z2 or the isolated present pyrazole compound Z3 may be further purified, for example, by distillation, chromatography and recrystallization.

[0551]
(Synthesis AC)

The present pyrazole compound Z, the present pyrazole compound Z2 and the present pyrazole compound Z3 which is represented by the above-mentioned formula (9), formula (10) or formula (11) respectively, wherein L¹, L² or L³ is a CONHOH group, i.e., a compound of a formula (H14) (hereinafter, described as Compound (H14)), can be prepared by reacting Compound (H10) with hydroxyl amine.

\[
\text{[wherein} \\
B², R_{261}^{261} \text{ and } Z^{101} \text{ are the same as described above]} \\
\text{This reaction is usually carried out in a solvent.} \\
\text{Examples of the solvent to be used in the reaction include ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl}
\]
tert-butyl ether, diisopropyl ether; hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; nitriles such as acetonitrile, propionitrile; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; alcohols such as methanol, ethanol, propanol, butanol; and mixed solvents thereof.

In the reaction, hydroxylamine is used usually within a range of 1 to 10 molar ratio (s) as opposed to 1 mole of Compound (H10).

The reaction temperature is usually within a range of \(-20\) to \(50^\circ\text{C}\). The reaction period of the reaction is usually within a range of \(0.1\) to \(24\) hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound \(Z\), the present pyrazole compound \(Z2\) or the present pyrazole compound \(Z3\), which each is represented by formula (H14). The isolated present pyrazole compound \(Z\), the isolated present pyrazole compound \(Z2\) or the isolated present
pyrazole compound Z3 may be further purified, for example, by chromatography and recrystallization.

(Synthesis AD)

Compound (H5) can be prepared also by reacting Compound (H14) with an acylating agent.

[wherein

B² and R²⁶¹ are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; nitriles such as acetonitrile, propionitrile; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide;
ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; alcohols such as methanol, ethanol, propanol, butanol; water; and mixed solvents thereof.

Example of the acylating agent to be used in the reaction include acid anhydride such as acetic anhydride, propionic anhydride; acyl halides such as acetyl chloride, acetyl bromide, benzoyl chloride; sulfonyl chlorides such as p-toluenesulf onyl chloride, methanesulf onyl chloride; sulfur trioxide- pyridine complex and thionyl chloride.

If necessary, a base such as pyridine, triethylamine, tributylamine, diazabicycloundecene, sodium hydroxide, potassium hydroxide may be added to the reaction, and these compounds are used usually within a range of 1 to 10 molar ratio(s) as opposed to 1 mole of Compound (H14).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

In the reaction, the acylating agent is used usually within a range of 1 to 10 molar ratio(s) as opposed to 1 mole of Compound (H14).

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound Z, the present pyrazole compound Z2 or the present pyrazole
compound Z3, which each is represented by formula (H5). The isolated present pyrazole compound Z, the isolated present pyrazole compound Z2 or the isolated present pyrazole compound Z3 may be further purified, for example, by distillation, chromatography and recrystallization.

[0553]
(Synthesis AE)

The present pyrazole compound Z, the present pyrazole compound Z2 and the present pyrazole compound Z3 which is represented by the above-mentioned formula (9), formula (10) or formula (11) respectively, wherein L1, L2 or L3 is a CONHC1 group or a CONHBr group, i.e., a compound of a formula (H15) (hereinafter, described as Compound (H15)), can be prepared by reacting Compound (H13) with a halogenating agent.

[wherein
B2, R261 and Z101 are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as
diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol
dimethyl ether, anisole, methyl tert-butyl ether,
diisopropyl ether; halogenated hydrocarbons such as carbon
tetrachloride, chloroform, dichloromethane, 1,2-
dichloroethane, tetrachloroethane, chlorobenzene; esters
such as ethyl acetate, methyl acetate, ketones such as
acetone, methyl ethyl ketone, methyl isobutyl ketone;
nitriles such as acetonitrile, propionitrile; and mixed
solvents thereof.

Examples of the halogenating agent to be used in the
reaction include sodium hypochlorite, tert-butyl
hypochlorite, isocyanuric acid, chlorine and sulfuryl
chloride.

In the reaction, a halogenating agent is used usually
within a range of 1 to 10 molar ratio(s) as opposed to 1
mole of Compound (H13).

The reaction temperature is usually within a range of
-20 to 150°C. The reaction period of the reaction is
usually within a range of 0.1 to 24 hours.

A catalyst may be added to the reaction, and includes,
for example, dimethyl formamide. The catalyst is used
usually within a range of 0.001 to 1 molar ratio(s) as
opposed to 1 mole of Compound (H13).

When the reaction is completed, the reaction mixtures
are extracted with organic solvent(s), and the resulting
organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound Z, the present pyrazole compound Z2 or the present pyrazole compound Z3, which each is represented by formula (H15). The isolated present pyrazole compound Z, the isolated present pyrazole compound Z2 or the isolated present pyrazole compound Z3 may be further purified, for example, by distillation, chromatography and recrystallization.

[0554] (Synthesis AF)

Compound (H5) can be prepared also by reacting Compound (H15) with a base.

![Chemical structure diagram](image)

[wherein

B², Z¹⁰¹ and R²⁶¹ are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene,
xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; nitriles such as acetonitrile, propionitrile; acid amides such as N,N-dimethyl formamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; alcohols such as methanol, ethanol, propanol, butanol; water; and mixed solvents thereof.

Examples of the base to be used in the reaction include pyridine, triethylamine, tributylamine, diazabicycloundecene, sodium hydroxide, potassium hydroxide.

In the reaction, the base is used usually within a range of 1 to 10 molar ratio(s) as opposed to 1 mole of Compound (H5).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s) and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound Z, the present pyrazole compound Z2 or the present pyrazole compound Z3, which each is represented by formula (H5).

The isolated present pyrazole compound Z, the isolated
present pyrazole compound \(Z_2\) or the isolated present pyrazole compound \(Z_3\) may be further purified, for example, by distillation, chromatography and recrystallization.

[0555]

(Synthesis AG)

The present pyrazole compound \(Z\), the present pyrazole compound \(Z_2\) and the present pyrazole compound \(Z_3\) which is represented by the above-mentioned formula (9), formula (10) or formula (11) respectively, wherein \(L^1, L^2\) or \(L^3\) is a halogen atom, i.e., a compound of a formula (H17) (hereinafter, described as Compound (H17)), can be prepared by reacting Compound (H1) with a compound of the below-mentioned formula (H16) (hereinafter, described as Compound (H16)) in the presence of a base.

\[
\begin{align*}
\text{(H1)} & \quad \text{(H16)} \\
\text{base} & \quad \text{(H17)}
\end{align*}
\]

[wherein
\(B^2, R^{261}, Z^{11}\) and \(Z^{2801}\) are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent to be used in the reaction include hydrocarbons such as \(n\)-heptane, \(n\)-hexane, cyclohexane, \(n\)-pentane, toluene, xylene; ethers such as
diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; esters such as ethyl acetate, methyl acetate; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; water; and mixed solvents thereof.

Examples of the base to be used in the reaction include organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene, diazabicyclononene; alkali-metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; alkali-metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bicarbonate; alkali-metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; alkali-metal halides such as sodium fluoride, potassium fluoride, cesium fluoride; alkali-metal hydrides such as lithium hydride, sodium hydride, potassium hydride; alkali metal
alkoxides such as sodium tert-butoxide, potassium tert-butoxide; and the others.

In the reaction, Compound (HI) is used usually within a range of 1 to 10 molar ratio(s), and the base is used usually within a range of 0.5 to 5 molar ratio(s), as opposed to 1 mole of Compound (HI6).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

If necessary, sodium iodide, tetrabutylammonium iodide or the others may be added to the reaction, and these compounds is used usually within a range of 0.001 to 1.2 molar ratio(s) as opposed to 1 mole of Compound (HI6).

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound Z, the present pyrazole compound Z2 or the present pyrazole compound Z3, which each is represented by formula (HI7).

The isolated present pyrazole compound Z, the isolated present pyrazole compound Z2 or the isolated present pyrazole compound Z3 may be further purified, for example, by chromatography and recrystallization.

[0556]

(Synthesis AH)
Compound (H9) can be also prepared by reacting Compound (H17) with a carbonylating agent.

[wherein B^2, R^{261} and Z^{01} are the same as described above]

This reaction is usually carried out in a solvent. Examples of the solvent to be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; and mixed solvents thereof.

Examples of the carbonylating agent to be used in the reaction include a combination of metal or metallic compound and carbon homologation agent, such as that of magnesium and carbon dioxide, that of isopropylmagnesium bromide and carbon dioxide, and that of n-butyllithium and carbon dioxide.

In the reaction, the metal or metallic compound is used usually within a range of 1 to 20 molar ratio(s), and
the carbon homologation agent is used usually within a range of 1 to a large excess molar ratio(s), as opposed to 1 mole of Compound (H17).

When carbon dioxide is used as carbon homologation agent, examples of the carbon dioxide include carbonic acid gas and dry ice.

The reaction temperature is usually within a range of -80 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 72 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate the present pyrazole compound Z, the present pyrazole compound Z2 or the present pyrazole compound Z3, which each is represented by formula (H9). The isolated present pyrazole compound Z, the isolated present pyrazole compound Z2 or the isolated present pyrazole compound Z3 may be further purified, for example, by distillation, chromatography and recrystallization.

Hereinafter, a process for preparing an intermediate compound is described in detail.

(Reference Process A)

A compound of a formula (XA3) (hereinafter, described
as Compound (XA3)) can be prepared by reacting a compound of a formula (XA1) (hereinafter, described as Compound (XA1)) or a compound of a formula (XA2) (hereinafter, described as Compound (XA2)) with an azidation agent.

\[
\begin{align*}
\text{(XA1)} & \quad \text{(XA2)} \\
\text{azidation agent} & \rightarrow \\
\text{(XA3)} & \\
\end{align*}
\]

[wherein

\begin{align*}
R^1, R^2, R^3, R^4, R^5, R^6, R^7, R^8, R^9, Z^{101} \text{ and } X \text{ are the same as described above; } R^{101} \text{ represents } P^{11}, P^{12} \text{ or } P^{13}; R^{31} \text{ represents an C1-C12 alkyl group; and a wavy line represents a binding site.]
\end{align*}

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-
dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethyl formamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; esters such as ethyl acetate, methyl acetate; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; and mixed solvents thereof.

Examples of the azidation agent to be used in the reaction include inorganic azides such as sodium azide, barium azide and lithium azide; and organic azides such as trimethylsilyl azide and diphenylphosphoryl azide.

In the reaction, the azidation agent is used usually within a range of 1 to 10 molar ratio (s) as opposed to 1 mole of Compound (XA1) or Compound (XA2).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

If necessary, a Lewis acid such as aluminium chloride and zinc chloride may be added to the reaction, and these compounds are used usually within a range of 0.001 to 5 molar ratio (s) as opposed to 1 mole of Compound (XA1) or Compound (XA2).

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and
concentration) to isolate Compound (XA3). The isolated Compound (XA3) may be further purified, for example, by chromatography and recrystallization.

[0559]

(Reference Process B)

Compound (XA1) can be prepared by reacting a compound of a formula (XB1) (hereinafter, described as Compound (XB1)) with phosgenes.

\[\text{phosgenes} \rightarrow \]

\[
\begin{array}{c}
\text{(XB1)} \\
\text{(XA1)}
\end{array}
\]

[wherein

\[R^6, R^7, R^8, R^9, R^{101}\text{ and }X\text{ are the same as described above}]

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; esters such as ethyl acetate, methyl acetate; ketones such as
acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; and mixed solvents thereof.

Examples of the phosgenes to be used in the reaction include phosgene, diphosgene, triphosgene, and thiophosgene.

In the reaction, the phosgenes are used usually within a range of 1 to 10 molar ratios as opposed to 1 mole of Compound (XB1).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

If necessary, organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene and diazabicyclononene, alkali-metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate, alkali-metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate and cesium bicarbonate may be added to the reaction, and these compounds are used usually within a range of 0.05 to 5 molar ratios as opposed to 1 mole of Compound (XB1).

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and
concentration) to isolate Compound (XA1). The isolated Compound (XA1) may be further purified, for example, by distillation, chromatography and recrystallization.

(Reference Process C)

Compound (XA2) can be prepared by reacting a compound of a formula (XC1) (hereinafter, described as Compound (XC1)) with a halogenating agent.

![Chemical structure]

\[
\begin{align*}
R^6 & \quad \text{halogenating} \\
\text{agent} & \\
(R^7, R^8, R^9, R^{101} \text{ and } Z^{101} \text{ are the same as described above})
\end{align*}
\]

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethylene, chlorobenzene; esters
such as ethyl acetate, methyl acetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; and mixed solvents thereof.

Examples of the halogenating agent to be used in the reaction include phosphorous oxychloride, phosphorous trichloride, phosphorous pentachloride, thionyl chloride, phosphorous oxybromide, phosphorus tribromide, phosphorous pentabromide, phosphorus triiodide, oxalyldichloride, oxalyl dibromide, triphosgene, diphosgene, phosgene and sulfuryl chloride.

In the reaction, the halogenating agent is used usually within a range of 1 to 10 molar ratio(s) as opposed to 1 mole of Compound (XC1).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

A catalyst may be added to the reaction, and includes, for example, dimethylformamide. The catalyst is used usually within a range of 0.001 to 1 molar ratio(s) as opposed to 1 mole of Compound (XC1).

If necessary, organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene and diazabicyclononene,
alkali-metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate, alkali-metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate and cesium bicarbonate may be added to the reaction, and these compounds are used usually within a range of 0.05 to 5 molar ratio (s) as opposed to 1 mole of Compound (XC1).

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XA2). The isolated Compound (XA2) may be further purified, for example, by distillation, chromatography and recrystallization.

(Reference Process D)

Compound (XA1) can be prepared by reacting Compound (XB1) with a carbamating agent to form a compound of the below-mentioned formula (XD1) (hereinafter, described as Compound (XD1)), followed by reacting the resulting Compound (XD1) with Compound (XD2).

[wherein]
R^6, R^7, R^8, R^9, R^{10} and X are the same as described above; R^{11} represents an C1-C12 alkyl group or a phenyl group

Hereinafter, the process for preparing Compound (XD1) from Compound (XB1) is explained.

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; esters such as ethyl acetate, methyl acetate; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; water; and mixed solvents thereof.

Examples of the carbamating agent to be used in the reaction include phenyl chloroformate, methyl chlorocarbonate, ethyl chlorocarbonate, n-propyl...
chlorocarbonate, isopropyl chlorocarbonate, n-butyl chlorocarbonate, tert-butyl chlorocarbonate, di-tert-butyl dicarbonate, dimethyl dicarbonate, diethyl dicarbonate, O-phenyl chlorothioformate, O-methyl chlorothioformate and O-ethyl chlorothioformate.

In the reaction, the carbamating agent is used usually within a range of 1 to 10 molar ratio(s) as opposed to 1 mole of Compound (XB1).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

If necessary, organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene and diazabicyclononene, alkali-metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate, alkali-metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate and cesium bicarbonate may be added to the reaction, and these compounds are used usually within a range of 0.05 to 5 molar ratios as opposed to 1 mole of Compound (XB1).

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and
concentration) to isolate Compound (XD1). The isolated Compound (XD1) may be further purified, for example, by distillation, chromatography and recrystallization.

[0564]

Hereinafter, the process for preparing Compound (XA1) from Compound (XD1) is explained.

[0565]

This reaction is usually carried out in a solvent. Examples of the solvent that can be used in the reaction include ethers such as tetrahydrofuran, dioxane, ethyleneglycol dimethyl ether, methyl tert-butyl ether; hydrocarbons such as toluene, xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, 1,2-dichloroethane, chlorobenzene; nitriles such as acetonitrile; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; and mixed solvents thereof.

Examples of Compound (XD2) include phosphorous pentachloride, phosphorous oxychloride, diphosphorus pentoxide, trichlorosilane, dichlorosilane, monochlorosilane, boron trichloride, 2-chloro-1, 3,2-benzodioxaborole, diiodosilane, methyl trichlorosilane, montmorillonite K-10, dimethyl dichlorosilane,
chlorotrimethylsilane.

In the reaction, Compound (XD2) is used usually within a range of 1 to 10 molar ratio(s) as opposed to 1 mole of Compound (XD1).

The reaction temperature is usually within a range of -20 to 250°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

If necessary, organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene and diazabicyclononene, alkali-metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate, alkali-metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate and cesium bicarbonate may be added to the reaction, and these compounds are used usually within a range of 0.05 to 5 molar ratios as opposed to 1 mole of Compound (XD1).

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XA1). The isolated Compound (XA1) may be further purified, for example, by distillation, chromatography and recrystallization.
A compound of a formula (XE2) (hereinafter, described as Compound (XE2)) can be prepared by reacting a compound of a formula (XE1) (hereinafter, described as Compound (XE1)) with a hydrogen gas in the presence of a catalyst.

\[
\text{[wherein } R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8 \text{ and } R_9 \text{ are the same as described above; } R_8^1 \text{ represents a hydrogen atom or } P^{21}; \text{ and a wavy bond represents a binding site]}
\]

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include alcohols such as methanol, ethanol, propanol, butanol; esters such as ethyl acetate, butyl acetate; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl
ether, diisopropyl ether; hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; water; and mixed solvents thereof.

Examples of the catalyst to be used in the reaction includes palladium on carbon (Pd/C), platinum on carbon (Pt/C), osmium on carbon (Os/C), ruthenium on carbon (Ru/C), rhodium on carbon (Rh/C) and Raney nickel.

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the catalyst is filtered off, and the resulting organic layers are worked up (for example, concentration) to isolate Compound (XE2). The isolated Compound (XE2) may be further purified, for example, by distillation, chromatography and recrystallization.

[0567]

(Reference Process F)

Compound (XE2) can be prepared by reducing the above-mentioned Compound (XE1) with a reducing agent in the presence of an acid.
[wherein
R⁴, R⁵, R⁶, R⁷, R⁸, R⁹ and R¹⁸ are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include aliphatic carboxylic acid such as acetic acid; alcohols such as methanol, ethanol; water; and mixed solvents thereof.

Examples of the reducing agent to be used in the reaction include iron, tin and zinc.

Examples of the acid to be used in the reaction include hydrochloric acid, sulfuric acid, acetic acid, aqueous ammonium chloride solution.

In the reaction, the reducing agent is used usually within a range of 1 to 30 molar ratio (s) as opposed to 1 mole of Compound (XE1).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XE2). Compound (XE2) may be further purified, for example, by distillation, chromatography and recrystallization.
(Reference Process G)

A compound of a formula (XG2) (hereinafter, described as Compound (XG2)) can be prepared by reacting a compound of a formula (XG1) (hereinafter, described as Compound (XG1)) and Compound (D2) in the presence of a base.

\[
\begin{align*}
\text{(XG1)} & \quad \xrightarrow{R^{10} \cdot Z^{11}} \quad \text{(XG2)} \\
\end{align*}
\]

[wherein
\[
\begin{align*}
R^6, R^7, R^8, R^9, R^{10}, X \text{ and } Z^{11} & \text{ are the same as described above; and } R^{191} \text{ represents } P^{12} \text{ or } P^{13}] \\
\end{align*}
\]

The reaction can be carried out according to the above-mentioned process D.

(Reference Process H)

A compound of a formula (XH2) (hereinafter, described as Compound (XH2)) can be prepared by reacting a compound of a formula (XH1) (hereinafter, described as Compound (XH1)) with a halogenating agent.
This reaction is usually carried out in a solvent. Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, fluorobenzene, difluorobenzene, trifluorobenzene, chlorobenzene, dichlorobenzene, trichlorobenzene, α,α,α-trifluorotoluene, α,α,a-trichlorotoluene; esters such as ethyl acetate, methyl acetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; and mixed solvents thereof.
Examples of the halogenating agent to be used in the reaction include a chlorinating agent, a brominating agent or iodinating agent such as chlorine, bromine, iodine, sulfonyl chloride, N-chlorosuccinimide, N-bromosuccinimide, 1,3-dibromo-5,5-dimethylhydantoin, iodosuccinimide, tert-butyl hypochlorite, N-chloroglutarimide, N-pbromoglutarimide, N-chloro-N-eyehexyl-benzene sulfonamide and N-bromophthalimide.

In the reaction, a radical initiator can be used.

Examples of the radical initiator to be used in the reaction include benzoyl peroxide, azobisisobutyronitrile (AIBN), diacetyl peroxide, dialkyl peroxydicarbonate, tert-alkyl peroxyester, monoperoxy carbonate, di(tert-alkylperoxy) ketal and ketone peroxide.

In the reaction, the halogenating agent is used usually within a range of 1 to 10 molar ratio(s), and the radical initiator is used usually within a range of 0.01 to 1 molar ratio(s), as opposed to 1 mole of Compound (XH1).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XH2). Compound (XH2)
may be further purified, for example, by distillation, chromatography and recrystallization.

(Reference Process 1)

A compound of a formula (XJ2) (hereinafter, described as Compound (XJ2)) can be prepared by reacting Compound (XH2) with a compound of a formula (XJ1) (hereinafter, described as Compound (XJ1)).

\[
\begin{align*}
(XH2) & \quad \xrightarrow{R^{111}-OM} (XJ1) \\
& \quad \quad \text{(XJ2)}
\end{align*}
\]

[wherein

\[R^4, R^5, R^6, R^7, R^8, R^9, R^{201}, R^{111} \text{ and } Z^{111} \text{ are the same as described above; and } M \text{ represents sodium, potassium or lithium.}]

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; nitriles
such as acetonitrile, propionitrile; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; alcohols such as methanol, ethanol, propanol, butanol; and mixed solvents thereof.

Examples of Compound (XJ1) include sodium methoxide, sodium ethoxide, sodium n-propoxide, sodium n-butoxide, sodium isopropoxide, sodium sec-butoxide, sodium tert-butoxide, potassium methoxide, potassium ethoxide, potassium n-propoxide, potassium n-butoxide, potassium isopropoxide, potassium sec-butoxide, potassium tert-butoxide and sodium phenoxide.

In the reaction, Compound (XJ1) is used usually within a range of 1 to 10 molar ratio(s) as opposed to 1 mole of Compound (XH2).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XJ2). Compound (XJ2) may be further purified, for example, by distillation, chromatography and recrystallization.
A compound of a formula (XK1) (hereinafter, described as Compound (XK1)) can be prepared by reacting Compound (XH2) and water in the presence of a base.

\[
\begin{align*}
\text{(XH2)} & \quad \text{H}_2\text{O} \quad \text{base} \quad \text{(XK1)} \\
R^4, R^5, R^6, R^7, R^8, R^9, R^{201} \text{ and } Z^{111} & \text{ are the same as described above}
\end{align*}
\]

This reaction is usually carried out in water or a solvent containing water.

Examples of the solvent that can be used in the reaction include ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; nitriles such as acetonitrile, propionitrile; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide;
ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; alcohols such as methanol, ethanol, propanol, butanol and mixed solvents thereof.

Examples of the base to be used in the reaction include organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene, diazabicyclononene; metallic organic acid salts such as lithium formate, lithium acetate, sodium formate, sodium acetate, potassium formate, potassium acetate; metallic nitrates such as silver nitrate, sodium nitrate; alkali-metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bibicarbonate; alkali-metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; alkali metal alkoxides such as sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium tert-butoxide.

In the reaction, the base is used usually within a range of 1 to 100 molar ratio (s) as opposed to 1 mole of Compound (XH2).

In the reaction, water is used usually within a range of 1 to a large excess molar ratio (s) as opposed to 1 mole of Compound (XH2).

The reaction temperature is usually within a range of
-20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XK1). Compound (XK1) may be further purified, for example, by distillation, chromatography and recrystallization.

[0572]

(Reference Process \(\kappa\))

Compound (XH2) can be prepared by reacting Compound (XJ2) and a halogenating agent.

\[
\begin{array}{c}
\text{halogenating agent} \\
\text{(XJ2)} \\
\rightarrow \\
\text{(XH2)}
\end{array}
\]

[wherein

\[R^4, R^5, R^6, R^7, R^8, R^9, R^{111}, R^{201}\] and \(Z^{111}\) are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane,
chlorobenzene; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; organic acids such as formic acid, acetic acid, trifluoroacetic acid; water; and mixed solvents thereof.

Examples of the halogenating agent include hydrochloric acid, hydrobromic acid and hydroiodic acid.

In the reaction, the halogenating agent is used usually in 1 or more molar ratio(s) as opposed to 1 mole of Compound (XJ2).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XH2). Compound (XH2) may be further purified, for example, by distillation, chromatography and recrystallization.

[0573]

(Reference Process 1)

Compound (XH2) can be prepared by reacting a compound of a formula (XK1) (hereinafter, described as Compound (XK1)) and a halogenating agent.
This reaction is usually carried out in a solvent. Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; esters such as ethyl acetate, methyl acetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; organic acids such as formic acid, acetic acid, trifluoroacetic acid; water; and mixed solvents thereof.

Examples of the halogenating agent to be used in the reaction include bromine, chlorine, sulfuryl chloride, hydrochloric acid, hydrobromic acid, hydroiodic acid, boron tribromide, phosphorus tribromide, trimethylsilyl chloride,
trimethylsilyl bromide, trimethylsilyl iodide, thionyl chloride, thionyl bromide, phosphorous oxychloride, phosphorous trichloride, phosphorous pentachloride, thionyl chloride, phosphorous oxybromide, phosphorous pentabromide, phosphorus triiodide, oxalyl dichloride, oxalyl dibromide, acetyl chloride, carbon tetrabromide, N-bromosuccinimide, lithium chloride, sodium iodide and acetyl bromide.

In the reaction, the halogenating agent is used usually within a range of 1 to 10 molar ratio (s) as opposed to 1 mole of Compound (XK1).

To promote the reaction, an additive agent may be added depending on the halogenating agent used, and specifically includes zinc chloride for acetyl chloride; triphenylphosphine for carbon tetrabromide; dimethyl sulfide for N-bromosuccinimide; boron trifluoride diethyl etherate complex for sodium iodide; boron trifluoride diethyl etherate complex for acetyl bromide; triethylamine and methanesulf onyl chloride for lithium chloride; aluminium chloride for sodium iodide; and trimethylsilyl chloride for sodium iodide. The amount of the additive agent is used usually within a range of 0.01 to 5 molar ratio (s) as opposed to 1 mole of Compound (XK1).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.
When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XH2). Compound (XH2) may be further purified, for example, by distillation, chromatography and recrystallization.

(Reference process M)

A compound of a formula (XM3) (hereinafter, described as Compound (XM3)) can be prepared by reacting Compound (XK1) with a compound of a formula (XM2) (hereinafter, described as Compound (XM2)) in the presence of a base.

![Diagram]

[wherein

R4, R5, R6, R7, R8, R9, R201, R901 and Z801 are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as
diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol
dimethyl ether, anisole, methyl tert-butyl ether,
diisopropyl ether; halogenated hydrocarbons such as carbon
tetrachloride, chloroform, dichloromethane, 1,2-
dichloroethane, tetrachloroethane, chlorobenzene; nitriles
such as acetonitrile, propionitrile; acid amides such as
N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-
methylpyrrolidone; sulfoxides such as dimethyl sulfoxide;
ketones such as acetone, methyl ethyl ketone, methyl
isobutyl ketone; water; and mixed solvents thereof.

Examples of the based to be used in the reaction
include organic bases such as triethylamine, pyridine, N-
methylmorpholine, N-methylpiperidine, 4-
dimethylaminopyridine, diisopropylethylamine, lutidine,
collidine, diazabicycloundecene, diazabicyclononene; alkali
metal carbonates such as lithium carbonate, sodium
carbonate, potassium carbonate, cesium carbonate; alkali
metal bicarbonates such as lithium bicarbonate, sodium
bicarbonate, potassium bicarbonate, cesium bicarbonate;
alkali metal hydroxides such as lithium hydroxide, sodium
hydroxide, potassium hydroxide, cesium hydroxide; alkali
metal hydrides such as lithium hydride, sodium hydride,
potassium hydride; alkali metal alkoxides such as sodium
methoxide, sodium ethoxide, sodium tert-butoxide, potassium
tert-butoxide.
In the reaction, Compound (XM2) is used usually within a range of 1 to 10 molar ratio(s), and the base is used usually within a range of 1 to 5 molar ratio(s), as opposed to 1 mole of Compound (XK1).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

If necessary, sodium iodide and tetrabutylammonium iodide and the like may be added to the reaction, and these compounds are used usually within a range of 0.001 to 1.2 molar ratio(s) as opposed to 1 mole of Compound (XK1).

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XM3). Compound (XM3) may be further purified, for example, by distillation, chromatography and recrystallization.

[0575]
(Reference Process N)

A compound of a formula (XN12) (hereinafter, described as Compound (XN12)) can be prepared by coupling a compound of a formula (XN11) (hereinafter, described as Compound (XN11)) with Compound (F21) in the presence of a base and a catalyst.
The reaction can be carried out according to the above-mentioned Process F.

A compound of a formula (XN22) (hereinafter, described as Compound (XN22)) can be prepared by coupling a compound of a formula (XN21) (hereinafter, described as Compound (XN21)) with Compound (F22) in the presence of a base and a catalyst.

[wherein

\(R^{501} \) represents a hydrogen atom or an OR\(^{111} \) group; \(R^{111}, R^4, R^5, R^7, R^8, R^9, R^{10}, R^{71}, X, Z^{51} \) and \(Z^{52} \) are the same as described above]

\[735\]
The reaction can be carried out according to the above-mentioned Process F.

A compound of a formula (XN32) (hereinafter, described as Compound (XN32)) can be prepared by coupling a compound of a formula (XN31) (hereinafter, described as Compound (XN31)) with Compound (F22) in the presence of a base and a catalyst.

\[\text{[wherein} \quad R^{501}, R^4, R^5, R^6, R^7, R^9, R^{10}, R^{72}, X, Z^51 \text{ and } Z^{52} \text{ are the same as described above]} \]

The reaction can be carried out according to the above-mentioned Process F.

A compound of a formula (XN42) (hereinafter, described as Compound (XN42)) can be prepared by coupling a compound of a formula (XN41) (hereinafter, described as Compound (XN41)) with Compound (F22) in the presence of a base and a catalyst.
[wherein
\[R_{501}^{5}, R^{4}, R^{5}, R^{6}, R^{7}, R^{8}, R^{10}, R^{72}, X, Z^{51} \text{ and } Z^{52}\] are the same as described above]}

The reaction can be carried out according to the above-mentioned Process F.

Also, among a compound of a formula (XN50):

[wherein
\[R^{4}, R^{5}, R^{6}, R^{7}, R^{8}, R^{9}, R^{10}, R_{501}^{5} \text{ and } X \] are the same as described above],

a compound wherein two or more substituents selected from \(R^{6}, R^{7}, R^{8}\) or \(R^{9}\) represent \(R^{71}\) or \(R^{72}\) can be prepared according to the above-mentioned Process F.

Further, Compound (XN50) can be prepared according to a known coupling method instead of the above-mentioned
coupling reaction described in Process F.

(Reference process 0)

A compound of a formula \((XW2)\) (hereinafter, described as Compound \((XW2)\)) can be prepared by reacting a compound of a formula \((XW1)\) (hereinafter, described as Compound \((XW1)\)) with an alcohol in the presence of a reaction accelerator.

![Chemical structure](attachment:chemical_structure.png)

[wherein

\(R^6, R^7, R^8, R^9\) and \(R^9\) are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as \(n\)-heptane, \(n\)-hexane, cyclohexane, \(n\)-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as \(N,N\)-dimethylformamide, 1,3-dimethyl-2-
imidazolidinone, N-methylpyrrolidone; esters such as ethyl acetate, methyl acetate; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; and mixed solvents thereof, and the alcohol to be reacted with Compound (XW1) may be used as solvent.

Examples of the alcohols include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, t-butanol, and n-pentanol.

Examples of the reaction accelerator include mineral acids such as hydrochloric acid, sulfuric acid; carbodiimides such as dicyclohexylcarbodiimide, diisopropylcarbodiimide, N'-(3-dimethylaminopropyl) -N-ethylcarbodiimide; organic acids such as methanesulfonic acid, toluenesulfonic acid; Mitsunobu reagents such as triphenylphosphine/diethyl azodicarboxylate; thionyl chloride; boron trifluoride-ethyl ether complex.

In the reaction, the reaction accelerator is used usually within a range of 0.01 to 10 molar ratios, as opposed to 1 mole of Compound (XW1).

If necessary, organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene and diazabicyclononene, alkali metal carbonates such as lithium carbonate, sodium
carbonate, potassium carbonate and cesium carbonate, alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate and cesium bicarbonate may be added to the reaction, and these compounds are used usually within a range of 0.001 to 5 molar ratio (s) as opposed to 1 mole of Compound (XW1).

In the reaction, the alcohol is used usually in a large excess amounts as opposed to 1 mole of Compound (XW1).

The reaction temperature is usually within a range of -78 to 100°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XW2). Compound (XW2) may be further purified, for example, by distillation, chromatography and recrystallization.

[0578]

(Reference Process P)

Compound (XW2) can be prepared by reacting Compound (XW1) with a halogenating agent to form a compound of a formula (XVI) (hereinafter, described as Compound (XVI)), followed by reacting the resulting Compound (XVI) with an alcohol.
The process for preparing Compound (XVI) by reacting Compound (XW1) and a halogenating agent can be carried out according to Reference Process C.

Hereinafter, a process for preparing Compound (XW2) from Compound (XVI) is explained.

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene,-ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; esters such as ethyl
acetate, methyl acetate; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; and mixed solvents thereof, and the alcohol to be reacted with Compound (XVI) may be used as solvent.

Examples of the alcohols include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, t-butanol, and n-pentanol.

In the reaction, the alcohol is used usually within a range of 1 to 50 molar ratio(s) as opposed to 1 mole of Compound (XVI).

The reaction temperature is usually within a range of -78 to 100°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XW2). Compound (XW2) may be further purified, for example, by distillation, chromatography and recrystallization.

[0581]

(Reference Process Q)

Compound (XW2) can be prepared by reacting Compound (XW1) with an alkylating agent.
[wherein

\(R^6, R^7, R^8, R^9 \) and \(R^{91} \) are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as \(N,N \)-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, \(N \)-methylpyrrolidone; esters such as ethyl acetate, methyl acetate; sulfoxides such as dimethyl sulfoxide; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile; water; and mixed solvents thereof.

Examples of the alkylating agent to be used in the reaction include diazoalkyls such as diazomethane, trimethylsilyldiazomethane; halogenated alkyls such as chlorodifluoromethane, methyl bromide, ethyl bromide, n-
propyl bromide, methyl iodide, ethyl iodide, n-propyl bromide, aryl bromide, cyclopropyl bromide, benzyl bromide, 1,1-difluoro-2-iodomethane, - dialkyl sulfates such as dimethyl sulfates, diethyl sulfates, di-n-propyl sulfates; alkyl or aryl sulfonates such as methyl p-toluenesulfonate, ethyl p-toluenesulfonate, n-propyl p-toluenesulfonate, methyl methanesulfonate, ethyl methanesulfonate, n-propyl methanesulfonate.

In the reaction, the alkylating agent is used usually within a range of 1 to 10 molar ratios as opposed to 1 mole of Compound (XW1).

If necessary, organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene and diazabicyclononene, alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate, alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate and cesium bicarbonate, or quaternary ammonium salts such as tetra (n-butyl) ammonium hydroxide may be added to the reaction, and these compounds are used usually within a range of 0.001 to 5 molar ratios as opposed to 1 mole of Compound (XW1).

The reaction temperature is usually within a range of -78 to 100°C. The reaction period of the reaction is
usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XW2). Compound (XW2) may be further purified, for example, by distillation, chromatography and recrystallization.

(0582)

(Reference process R)

A compound of a formula (XX2) (hereinafter, described as Compound (XX2)) can be prepared by reacting a compound of a formula (XXI) (hereinafter, described as Compound (XXI)) with a reducing agent.

\[
\begin{align*}
\text{R}^6, \text{R}^7, \text{R}^8, \text{R}^9, \text{R}^{10}, \text{R}^{91} \text{ and X are the same as described above}\end{align*}
\]

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as
diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; alcohols such as methanol, ethanol, propanol, butanol; water; and mixed solvents thereof.

Examples of the reducing agent to be used in the reaction include lithium triethylborohydride, diisobutylaluminium hydride, lithium aminoborohydride, lithium borohydride, sodium borohydride, borane, borane-dimethyl sulfide complex and borane-tetrahydrofuran complex.

In the reaction, the reducing agent is used usually within a range of 1 to 10 molar ratio(s) as opposed to 1 mole of Compound (XXI).

The reaction temperature is usually within a range of -78 to 100°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XXI). Compound (XXI) may be further purified, for example, by distillation, chromatography and recrystallization.

[0583]
A compound of a formula \((XZ2)\) (hereinafter, described as Compound \((XZ2)\)) can be prepared by reacting a compound of a formula \((XZ1)\) (hereinafter, described as Compound \((XZ1)\)) with a reducing agent.

[wherein \(R^6, R^7, R^8\) and \(R^9\) are the same as described above]

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; nitriles such as acetonitrile, propionitrile; alcohols such as methanol, ethanol, propanol, butanol; water; and mixed solvents thereof.
Examples of the reducing agent to be used in the reaction include, borane, borane-tetrahydrofuran complex, borane-dimethyl sulfide complex. Also, borohydrides such as sodium borohydride and potassium borohydride are mixed with acids such as sulfuric acid, hydrochloric acid, methanesulfonic acid and boron trifluoride diethyl etherate complex to develop a borane, which also can be used.

In the reaction, the reducing agent is used usually within a range of 1 to 10 molar ratio (s) as opposed as 1 mole of Compound (XZ1).

The reaction temperature is usually within a range of -20 to 100°C. The reaction period of the reaction is usually within a range of 0.1 to 72 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent (s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XZ2). Compound (XZ2) may be further purified, for example, by distillation, chromatography and recrystallization.

[0584]

(Reference Process 1)

Compound (B1) can be prepared by reacting Compound (A1) with a compound of a formula (PI) (hereinafter, described as Compound (PI)) in the presence of a base.
The reaction can be carried out according to the above-mentioned Process A.

(Reference Process U)

Compound (A2) can be prepared by reacting a compound of a formula (XQ1) (hereinafter, described as Compound (XQ1)) with a compound of a formula (XQ2) (hereinafter, described as Compound (XQ2)) to form a compound of a formula (XQ3) (hereinafter, described as Compound (XQ3)), followed by reacting Compound (XQ3) with an acid.
[wherein

R₁, R₂, R₃ and R₄ are the same as defined above; Z₅ represents a leaving group such as a chlorine atom, a bromine atom, an iodine atom, a N-succinimidyl group, an 1H-imidazole-1-yl group, and a 1-benzotriazolyl group; and a wavy line represents a cis form, a trans form or a mixture of the cis and the trans forms]

Hereinafter, a process for preparing Compound (XQ3) from Compound (XQ1) is explained.

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; nitriles such as acetonitrile, propionitrile and mixed solvents thereof.

Compound (XQ1) to be used in the reaction can be
usually used as a commercially available product, or may be prepared according to a well-known method. Compound (XQ1) may be salt forms thereof with hydrochloric acid, sulfuric acid, formic acid, toluenesulfonic acid such as p-toluenesulfonic acid, methanesulfonic acid and the others. Further, Compound (XQ1) can be used in either cis form or a trans form as a geometric isomer on a double bond, or in a mixture of the trans and the cis forms.

Examples of Compound (XQ2) includes an alkoxyacrylyl halide such as 3-methoxyacrylyl chloride and 3-ethoxyacrylyl chloride; an alkoxyacrylyl N-succinimidyl such as 3-methoxyacrylyl N-succinimidyl and 3-ethoxyacrylyl N-succinimidyl. The alkoxyacrylyl halide is usually used as a commercially available product, or may be prepared according to a well-known method. The alkoxyacrylyl N-succinimidyl is prepared according to the below-mentioned Reference Process R or Reference Process S.

In the reaction, Compound (XQ2) is used usually within a range of 1 to 10 molar ratio (s) as opposed to 1 mole of Compound (XQ1).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

If necessary, organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-
dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene and diazabicyclononene, alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate, alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate and cesium bicarbonate may be added to the reaction, and these compound are used usually within a range of 1 to 5 molar ratio(s) as opposed to 1 mole of Compound (XQ1).

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XQ3). Compound (XQ3) may be further purified, for example, by distillation, chromatography and recrystallization.

Hereinafter, a process for preparing Compound (A2) from Compound (XQ3) is explained.

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether,
diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethyl formamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; nitriles such as acetonitrile, propionitrile; alcohols such as methanol, ethanol, propanol, butanol; organic acids such as formic acid, acetic acid, trifluoroacetic acid; water; and mixed solvents thereof.

Compound (XQ3) to be used in the reaction can be used in either cis form or a trans form as a geometric isomer on a double bond, or in a mixture of the trans and the cis forms.

Examples of the acid to be used in the reaction include concentrated hydrochloric acid, concentrated sulfuric acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, toluenesulfonic acid and nitric acid.

In the reaction, the acid is used usually within a range of 0.1 to 100 molar ratio as opposed to 1 mole of Compound (XQ3).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures
are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (A2). Compound (A2) may be further purified, for example, by distillation, chromatography and recrystallization.

(Reference Process V)

The above-mentioned Compound (XQ2) wherein Z represents a N-succinimidyloxy group, i.e., a compound of a formula (XR2) (hereinafter, described as Compound (XR2)) can be prepared by reacting the above-mentioned Compound (XQ2) wherein Z represents Z, i.e., a compound of a formula (XR1) (hereinafter, described as Compound (XR1)) with N-hydroxysuccinimide in the presence of a base.

\[
\begin{align*}
\text{HO-N} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{Z}^{111} & \quad \text{R}^{111} \\
\text{R}^{2} & \quad \text{R}^{3} \\
\text{base} \quad & \quad \text{XR1} \\
\text{O} & \quad \text{O} \\
\text{N} & \quad \text{O} \\
\text{R}^{2} & \quad \text{R}^{3} \\
\text{R}^{111} & \quad \text{XR2}
\end{align*}
\]

[wherein
\[
R^{2}, R^{3}, Z^{111} \text{ and } R^{111} \text{ are the same as defined above; and a wavy line represents a cis form, a trans form or a mixture of the cis and the trans forms.}
\]

This reaction is usually carried out in a solvent.
Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethyl formamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; nitriles such as acetonitrile, propionitrile; and mixed solvents thereof.

Examples of Compound (XR1) to be used in the reaction include an alkoxyacrylyl halide such as 3-methoxyacrylyl chloride and 3-ethoxyacrylyl chloride, and Compound (XR1) can be usually used as a commercially available product, or may be prepared according to a well-known method. Also, Compound (XR1) can be used in either cis form or a trans form as a geometric isomer on a double bond, or in a mixture of the trans and the cis forms.

Examples of the base to be used in the reaction include organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene, diazabicyclononene; alkali
metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; and alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bicarbonate.

In the reaction, Compound (XR1) is used usually within a range of 1 to 10 molar ratio(s), and the base is used usually within a range of 1 to 10 molar ratio(s), as opposed to 1 mole of N-hydroxysuccinimide.

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XR2). Compound (XR2) may be further purified, for example, by distillation, chromatography and recrystallization.

[0591]

(Reference Process W)

The above-mentioned Compound (XR2) can be prepared by reacting a compound of a formula (XS1) (hereinafter, described as Compound (XS1)) with N-hydroxysuccinimide in the presence of a condensation agent.
[wherein

\[R^2, R^3 \text{ and } R^{111} \] are the same as defined above; and a wavy line represents a cis form, a trans form or a mixture of the cis and the trans forms]

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; nitriles such as acetonitrile, propionitrile; and mixed solvents thereof.

Examples of Compound (XS1) to be used in the reaction include an alkoxyacrylic acid such as 3-methoxyacrylic acid
and 3-ethoxyacrylic acid, and Compound (XS1) can be usually used as a commercially available product, or may be prepared according to a well-known method. Also, Compound (XQ1) may be salt forms thereof with an alkali metal such as sodium, potassium and lithium or an organic base such as triethylamine and pyridine. Further, Compound (XS1) can be used in either cis form or a trans form as a geometric isomer on a double bond, or in a mixture of the trans and the cis forms.

Examples of the condensation agent to be used in the reaction include N,N'-dicyclohexylcarbodiimide (DCC), N,N'-diisopropylcarbodiimide (DIC), 1-ethyl-3-(3-dimethylpropyl) carbodiimide (EDC), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride salt (EDC-HCl), 1H-benzotriazole-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP), 1H-benzotriazole-1-yloxytripyrrolizinophosphonium hexafluorophosphate (PyBOP), O-(benzotriazole-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU), O-(benzotriazole-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate (TBTU), O-(7-azabenzotriazole-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU), O-(7-azabenzotriazole-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (TATU), and 1,1'-carbonylbis-1H-imidazole (CDI).
In the reaction, Compound (XS1) is used usually within a range of 0.1 to 10 molar ratio(s), and the condensation agent is used usually within a range of 1 to 10 molar ratio(s), as opposed to 1 mole of N-hydroxysuccinimide.

If necessary, organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene and diazabicyclononene, alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate, alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate and cesium bicarbonate may be added to the reaction, and these compounds are used usually within a range of 1 to 5 molar ratio(s) as opposed to 1 mole of N-hydroxysuccinimide.

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XR2). Compound (XR2) may be further purified, for example, by distillation, chromatography and recrystallization.
The above-mentioned Compound (A2) wherein R^3 represents a hydrogen atom, i.e., a compound of a formula (XT2) (hereinafter, described as Compound (XT2)) can be prepared by reacting the above-mentioned Compound (XQ1) with a compound of a formula (XT1) (hereinafter, described as Compound (XT1)).

![Chemical Structure]

(XT1)

(XQ1)

(XT2)

[wherein

R^1 and R^2 are the same as defined above; and Z^601 represents a leaving group such as a chlorine atom, a bromine atom, an iodine atom, a N-succinimidylxyloxy group, an 1H-imidazole-1-yl group, and a 1-benzotriazoleoxy group or an Cl-C12 alkoxy group or an optionally substituted phenyl oxy group]

This reaction is usually carried out in a solvent.

Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol
dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; nitriles such as acetonitrile, propionitrile; alcohols such as methanol, ethanol, propanol, butanol; organic acids such as formic acid, acetic acid, trifluoroacetic acid; water; and mixed solvents thereof.

Examples of Compound (XT1) include methyl propiolate and ethyl propiolate.

In the reaction, Compound (XT1) is used usually within a range of 1 to 10 molar ratio (s) as opposed to 1 mole of Compound (XQ1).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

If necessary, organic bases such as triethylamine, pyridine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine, diisopropylethylamine, lutidine, collidine, diazabicycloundecene and diazabicyclononene, alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate, alkali metal bicarbonates such as lithium bicarbonate, sodium
bicarbonate, potassium bicarbonate and cesium bicarbonate may be added to the reaction, and these compound are used usually within a range of 1 to 5 molar ratio(s) as opposed to 1 mole of Compound (XQ1).

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XT2). Compound (XT2) may be further purified, for example, by distillation, chromatography and recrystallization.

[0594]

(Reference Process Y)

The above-mentioned Compound (A2) can be prepared by reacting the above-mentioned Compound (XQ1) with the below-mentioned compound of a formula (XU1) (hereinafter, described as Compound (XU1)) to form a compound of the below-mentioned formula (XU2) (hereinafter, described as Compound (XU2)), followed by treating the resulting Compound (XU2) with an oxidizing agent.

\[
\begin{align*}
 \text{(XQ1)} & \quad \xrightarrow{\text{oxidizing agent}} \quad \text{(A2)} \\
 \text{(XU1)} & \quad \text{(XU2)}
\end{align*}
\]

[wherein
R¹, R², R³ and Z⁶₀¹ are the same as defined above; and a wavy line represents a cis form, a trans form or a mixture of the cis and the trans forms]

[0595]

Hereinafter, a process for preparing Compound (XU2) from Compound (XQ1) is explained.

[0596]

This reaction is usually carried out in a solvent. Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; nitriles such as acetonitrile, propionitrile; alcohols such as methanol, ethanol, propanol, butanol; water; and mixed solvents thereof.

Examples of Compound (XU1) to be used in the reaction include methyl acrylate, ethyl methyl, propyl acrylate, isopropyl acrylate, methyl 2-methylacrylate, ethyl 2-methylacrylate, isopropyl 2-methylacrylate, methyl 3-
methylacrylate, ethyl 3-methylacrylate, propyl 3-
methylacrylate, isopropyl 3-methylacrylate, methyl 2,3-
dimethylacrylate. Also, Compound (XU1) can be used in
either cis form or a trans form as a geometric isomer on a
double bond, or in a mixture of the trans and the cis forms.

In the reaction, Compound (XU1) is used usually within
a range of 1 to 10 molar ratio(s), as opposed to 1 mole of
Compound (XQ1).

The reaction temperature is usually within a range of
-20 to 150°C. The reaction period of the reaction is
usually within a range of 0.1 to 24 hours.

If necessary, organic bases such as triethylamine,
pyridine, N-methylmorpholine, N-methylpiperidine, 4-
dimethylaminopyridine, diisopropylethylamine, lutidine,
collidine, diazabicycloundecene and diazabicyclononene,
alkali metal carbonates such as lithium carbonate, sodium
carbonate, potassium carbonate and cesium carbonate, alkali
metal bicarbonates such as lithium bicarbonate, sodium
bicarbonate, potassium bicarbonate and cesium bicarbonate,
alkali metal hydroxides such as sodium hydroxide, potassium
hydroxide, cesium hydroxide; alkali metal hydrides such as
lithium hydride, sodium hydride, potassium hydride, and
alkali metal alkoxides such as sodium methoxide, potassium
methoxide, sodium tert-butoxide, potassium tert-butoxide
may be added to the reaction, and these compound are used
usually within a range of 1 to 5 molar ratio(s) as opposed to 1 mole of Compound (XQ1).

When the reaction is completed, the reaction mixtures are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (XU2). Compound (XU2) may be further purified, for example, by distillation, chromatography and recrystallization.

Hereinafter, a process for preparing Compound (A2) from Compound (XU2) is explained.

This reaction is usually carried out in a solvent. Examples of the solvent that can be used in the reaction include hydrocarbons such as n-heptane, n-hexane, cyclohexane, n-pentane, toluene, xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethyleneglycol dimethyl ether, anisole, methyl tert-butyl ether, diisopropyl ether; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloroethane, chlorobenzene; acid amides such as N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; nitriles such as acetonitrile, propionitrile; alcohols such as methanol, ethanol, propanol,
butanol; water; and mixed solvents thereof.

Examples of the oxidizing agent include oxygen gas, ferrous chloride, copper (I) chloride, potassium hexacyanoferrate (II), m-chloroperoxybenzoic acid, iodine and mixtures thereof.

In the reaction, the oxidizing agent is used usually within a range of 0.01 to 10 molar ratio(s), as opposed to 1 mole of Compound (XU2).

To promote the reaction, an acid or a base may be added as needed. Examples of the base include alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate, alkali metal bicarbonates such as lithium bicarbonate, sodium bicarbonate, potassium bicarbonate and cesium bicarbonate, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, cesium hydroxide, alkali metal-alkoxides such as sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium tert-butoxide. Examples of the acid include hydrochloric acid and sulfuric acid. These compound are used usually within a range of 1 to 5 molar ratio(s) as opposed to 1 mole of Compound (XU2).

The reaction temperature is usually within a range of -20 to 150°C. The reaction period of the reaction is usually within a range of 0.1 to 24 hours.

When the reaction is completed, the reaction mixtures
are extracted with organic solvent(s), and the resulting organic layers are worked up (for example, drying and concentration) to isolate Compound (A2). Compound (A2) may be further purified, for example, by distillation, chromatography and recrystallization.

Although a form used for the present compound may be the present compound as itself, the present compound is usually prepared by mixing the present compound with solid carriers, liquid carriers, gas carriers, surfactants and the others, and if necessary, adding stickers, dispersers and stabilizers, to formulate into wettable powders, water dispersible granules, flowables, granules, dry flowables, emulsifiable concentrates, aqueous solutions, oil solutions, smoking agents, aerosols, microcapsules and the others. In these formulations, the present compound is contained in a range of usually 0.1 to 99%, preferably 0.2 to 90% by weight.

Examples of the solid carrier include clays (for example, kaolin, diatomaceous earth, synthetic hydrated silicon dioxide, Fubasami clay, bentonite and acid clay), talcs or the other inorganic minerals (for example, sericite, quartz powder, sulfur powder, activated charcoal, calcium carbonate and hydrated silica) in the form of fine
powders or particulates, and examples of the liquid carries include water, alcohols (for example, methanol and ethanol), ketones (for example, acetone and methyl ethyl ketone), aromatic hydrocarbons (for example, benzene, toluene, xylene, ethylbenzene and methyl naphthalene), aliphatic hydrocarbons (for example, n-hexane, cyclohexane and kerosene), esters (for example, ethyl acetate and butyl acetate), nitriles (for example, acetonitrile and isobutyronitrile), ethers (for example, dioxane and diisopropylether), acid amides (for example, N,N-dimethyl formamide (DMF) and dimethylacetamide), halogenated hydrocarbons (for example, dichloroethane, trichloroethylene and carbon tetrachloride) and the others.

Examples of the surfactants include alkyl sulfates, alkyl sulfonates, alkyl aryl sulfonates, alkyl aryl ethers and polyoxyethylated compounds thereof, polyethylene glycol ethers, polyol esters and sugar alcohol derivatives.

Examples of other auxiliary agents for formulation include stickers, dispersers and stabilizers, specifically casein, gelatin, polysaccharides (for example, starch, gum arabic, cellulose derivatives and alginic acid), lignin derivatives, bentonite, sugars, water-soluble synthetic polymers (for example, polyvinyl alcohol, polyvinyl
pyrrolidone and polyacrylic acids), PAP (acidic isopropyl phosphate), BHT (2,6-di-tert-butyl-4-methylphenol) , BHA (a mixture of 2-tert-butyl-4-methoxyphenol and 3-tert-butyl-4-methoxyphenol), vegetable oils, mineral oils, fatty acids or fatty acid esters thereof and the others.

[0603]
The method for applying the present compound is not particularly limited, as far as the applying form is a form by which the present compound may be applied substantially, and includes, for example, an application to plants such as a foliage application; an application to area for cultivating plants such as a submerged treatment; and an application to soil such as seed disinfection.

[0604]
The application dose varies depending on weather conditions, dosage forms, timing of application, methods of application, areas to be applied, target diseases and target crops etc., but is in the range of usually from 1 to 500 g, and preferably from 2 to 200 g per 1,000 m² of the area to be applied. The emulsifiable concentrate, the wettable powder or the suspension concentrate, etc., is usually applied by diluting it with water. In this case, the concentration of the present compound after dilution is in the range of usually 0.0005 to 2% by weight, and preferably 0.005 to 1% by weight. The dust formulation or
the granular formulation etc., is usually applied as itself without diluting it. In the application to seeds, the amount of the present compound is in the range of usually from 0.001 to 100 g, and preferably from 0.01 to 50 g per 1 kg of the seeds.

[0605]

Herein, examples of the place where the pests live include paddy fields, fields, tea gardens, orchards, non-agricultural lands, houses, nursery trays, nursery boxes, nursery soils and nursery bed.

[0606]

Also, in another embodiment, for example, the present compound can be administered to the inside (inside of the body) or the outside (body surface) of the below-mentioned vertebrate to exterminate systemically or unsystemically the living things or parasites which are parasitic on the vertebrate. Examples of a method of the internal medication include an oral administration, an anal administration, a transplanation, an administration via injection subcutaneously, intramuscularly or intravenously. Examples of a method of outside medication include a transdermal administration. Also, the present compound can be ingested to a livestock animal so as to exterminate sanitary insects which occur in the excrement of the animal.
When the present compound is applied to the animals such as the livestock animal and pets on which pests are parasitic, the dose varies depending on the administration method etc., but it is desirable in general to administer the present compound so that a dose of the active ingredient (the present compound or salts thereof) is in the range of generally from 0.1 mg to 2,000 mg and preferably 0.5 mg to 1,000 mg per 1 kg of body weight of the animal.

The present compound can be used as agent for controlling plant disease in agricultural lands such as fields, paddy fields, lawns, orchards. The compound of the present invention can control diseases occurred in the agricultural lands or the others for cultivating the following 'plant'.

Crops:
corn, rice, wheat, barley, rye, oat, sorghum, cotton, soybean, peanut, buckwheat, beet, rapeseed, sunflower, sugar cane, tobacco, and the others;

Vegetables:
solanaceous vegetables (for example, eggplant, tomato, pimento, pepper and potato),
cucurbitaceous vegetables (for example, cucumber, pumpkin,
zucchini, watermelon and melon),
cruciferous vegetables (for example, Japanese radish, white
turnip, horseradish, kohlrabi, Chinese cabbage, cabbage, leaf mustard, broccoli, cauliflower),
astuceous vegetables (for example, burdock, crown daisy, artichoke and lettuce),
asteraceous vegetables (for example, burdock, crown daisy, artichoke and lettuce),
liliaceous vegetables (for example, green onion, onion, garlic and asparagus),
ammiaceous vegetables (for example, carrot, parsley, celery and parsnip),
chenopodiaceous vegetables (for example, spinach and Swiss chard),
lamiaceous vegetables (for example, Perilla frutescens, mint and basil),
strawberry, sweet potato, Dioscorea japonica, colocasia and the others;
Flowers:
Ornamental foliage plants:
Fruits:
pomaceous fruits (for example, apple, pear, Japanese pear, Chinese quince and quince),
stone fruits (for example, peach, plum, nectarine, Prunus mume, cherry fruit, apricot and prune),
citrus fruits (for example, Citrus unshiu, orange, lemon, lime and grapefruit),
nuts (for example, chestnut, walnuts, hazelnuts, almond, pistachio, cashew nuts and macadamia nuts),
berry fruits (for example, blueberry, cranberry, blackberry and raspberry),
grape, kaki persimmon, olive, Japanese plum, banana, coffee, date palm, coconuts, and the others;
Trees other than fruit trees:
tea, mulberry, flowering plant,
roadside trees (for example, ash, birch, dogwood, Eucalyptus, Ginkgo biloba, lilac, maple, Quercus, poplar, Judas tree, Liquidambar formosana, plane tree, zelkova, Japanese arborvitae, fir wood, hemlock, juniper, Pinus, Picea, and Taxus cuspidate);
and the others.

The above-mentioned 'plant' includes genetically modified crops.

The pests on which the present compound has a control efficacy include plant pathogens such as filamentous fungus, as well as harmful arthropods such as harmful insects and harmful mites, and nemathelminth such as nematodes, and specifically include the following examples, but are not limited thereto.
Rice diseases: blast (Magnaporthe grisea), brown spot (Cochliobolus miyabeanus), sheath blight (Rhizoctonia solani), bakanae disease (Gibberella fujikuroi), and downy mildew (Sclerophthora macrospora);

Wheat diseases: powdery mildew (Erysiphe graminis), fusarium blight (Fusarium gaminearum, F. avenaceum, F. culmorum, Microdochium nivale), rust (Puccinia striiformis, P. graminis, P. recondita), snow mould (Micronectriella nivale), typhulasnow blight (Typhula sp.), loose smut (Ustilago tritici), stinking smut (Tilletia caries, T. controversa), eyespot (Pseudocercosporella herpotrichoides), leaf blotch (Septoria tritici), glume blotch (Stagonospora nodorum), tan spot (Pyrenophora tritici-repentis), rhizoctonia seeding blight (Rhizoctonia solani), and take all disease (Gaeumannomyces graminis);

Barly diseases: powdery mildew (Erysiphe graminis), fusarium blight (Fusarium gaminearum, F. avenaceum, F. culmorum, Microdochium nivale), rust (Puccinia striiformis, P. graminis, P. hordei), loose smut (Ustilago nuda), scald (Rhynchosporium secalis), net blotch (Pyrenophora teres), spot blotch (Cochliobolus sativus), leaf stripe (Pyrenophora graminea), Ramularia disease (Ramularia collo-cygni), and rhizoctonia seeding blight (Rhizoctonia solani);

Corn diseases: rust (Puccinia sorghi), southern rust
(Puccinia polysora), northern leaf blight (Setosphaeria turcica), southern leaf blight (Cochliobolus heterostrophus), anthracnose (Colletotrichum gffaminicola), gray leaf spot (Cercospora zeae-maydis), eyespot (Kabatiella zeae), and phaeosphaeria leaf spot (Phaeosphaeria maydis);

Cotton diseases: anthracnose (Colletotrichum gossypii), grey mildew (Ramuraria areola), alternaria leaf spot (Alternaria macrospora, A. gossypii);

Coffee diseases: rust (Hemileia vastatrix);

Rape seed diseases: sclerotinia rot (Sclerotinia sclerotiorum), black spot (Alternaria brassicae), and black leg (Phoma lingam);

Citrus diseases: melanose (Diaporthe citri), scab (Elsinoe fawcetti), and fruit rot (Penicillium digitatum, P. italicum);

Apple diseases: blossom blight (Monilinia mali), canker (Valsa ceratosperma), powdery mildew (Podosphaera leucotricha), alternaria leaf spot (Alternaria alternata apple pathotype), scab (Venturia inaequalis), and bitter rot (Colletotrichum acutatum);

Pear diseases: scab (Venturia nashicola, V. pirina), black spot (Alternaria alternata Japanese pear pathotype) and rust (Gymnosporangium haraeanum);

Peach diseases: brown rot (Monilinia fructicola), scab
Grapes diseases: anthracnose (Elsinoe ampelina), ripe rot (Glomerella cingulata), powdery mildew (Uncinula necator), rust (Phakopsora ampelopsidis), black rot (Guignardia bidwellii), and downy mildew (Plasmopara viticola);

Diseases of Japanese persimmon: anthracnose (Gloeosporium kaki) and leaf spot (Cercospora kaki, Mycosphaerella nawae);

Diseases of gourd family: anthracnose (Colletotrichum lagenarium), powdery mildew (Sphaerotheca fuliginea), gummy stem blight (Didymella bryoniae), target spot (Corynespora cassiicola), fusarium wilt (Fusarium oxysporum), downy mildew (Pseudoperonospora cubensis), phytophthora rot (Phytophthora sp.) and damping-off (Pythium sp.);

Tomato diseases: early blight (Alternaria solani), leaf mold (Cladosporium fulvum), leaf mold (Pseudocercospora fuligena), and late blight (Phytophthora infestans);

Eggplant disease: brown spot (Phomopsis vexans) and powdery mildew (Erysiphe cichoracearum);

Diseases of Cruciferous Vegetables: alternaria leaf spot (Alternaria japonica), white spot (Cercosporella brassicae), clubroot (Plasmodiophora parasitica), downy
mildew (Peronospora parasitica);
Welsh onion diseases: rust (Puccinia allii)
Soybean diseases: purple stain (Cercospora kikuchii), sphaceloma scad (Elsinoe glycines), pod and stem blight (Diaporthe phaseolorum var. sojae), rust (Phakopsora pachyrhizi), target spot (Corynespora cassiicola), anthracnose (Colletotrichum glycines, C. truncatum), Rhizoctonia aerial blight (Rhizoctonia solani), septoria brown spot (Septoria glycines), and frog eye leaf spot (Cercospora sojina);
Kindney bean diseases: anthracnose (Colletotrichum lindemthianum);
Peanut diseases: early leaf spot (Cercospora personata), late leaf spot (Cercospora arachidicola) and southern blight (Sclerotium rolfsii);
Garden pea diseases: powdery mildew (Erysiphe pisi);
Potato diseases: early blight (Alternaria solani), late blight (Phytophthora infestans), and verticillium wilt (Verticillium albo-atrum, V. dahliae, V. nigrescens);
Strawberry diseases: powdery mildew (Sphaerotheca humuli);
Tea diseases: net blister blight (Exobasidium reticulatum), white scab (Elsinoe leucospila), gray blight (Pestalotiopsis sp.) and anthracnose (Colletotrichum theae-sinensis);
Tabacco diseases: brown spot (Alternaria longipes), powdery mildew (Erysiphe cichoracearum), anthracnose (Colletotrichum tabacum), downy mildew (Peronospora tabacina), and black shank (Phytophthora nicotianae);

Sugar beet diseases: cercospora leaf spot (Cercospora beticola), leaf blight (Thanatephorus cucumeris), root rot (Thanatephorus cucumeris) and aphanomyces root rot (Aphanomyces sochlioides);

Rose diseases: black spot (Diplocarpon rosae) and powdery mildew (Sphaerotheca pannosa);

Diseases of Chrysanthemum: leaf blight (Septoria chrysanthemi-indici) and white rust (Puccinia horiana).

Onion diseases: botrytis leaf blight (Botrytis cinerea, B. byssoida, B. squamosa), gray-mold neck rot (Botrytis slll), and small sclerotial rot (Botrytis squamosa);

Various crops diseases: gray mold (Botrytis cinerea), and sclerotinia rot (Sclerotinia sclerotiorum).

Diseases of Japanese radish: alternaria leaf spot (Alternaria brassicicola);

Turfgrass diseases: dollar spot (Sclerotinia homeocarpa), brown patch and large patch (Rhizoctonia solani); and

Banana diseases: Sigatoka disease (Mycosphaerella fijiensis, Mycosphaerella musicola).
Hemiptera:

Delphacidae (for example, Laodelphax striatellus, Nilaparvata lugens, or Sogatella furcifera);

Deltocephalidae (for example, Nephrotettix cincticeps, or Nephrotettix virescens);

Aphididae (for example, Aphis gossypii, Myzus persicae, Brevicoryne brassicae, Macrosiphum euphorbiae, Aulacorthum solani, Rhopalosiphum padi, Toxoptera citricidus);

Pentatomidae (for example, Nezara antennata, Riptortus clavatus, Leptocorisa chinensis, Eysarcoris parvus, Halyomorpha mista, or Lygus lineolaris);

Aleyrodidae (for example, Trialeurodes vaporariorum, or Bemisia argentifolii);

Coccoidea (for example, Aonidiella aurantii, Comstockaspis perniciosa, Unaspis citri, Ceroplastes rubens, or Icerya purchasi);

Tingidae,-

Psyllidae;

Bed bugs (Cimex lectularius) and the others;

Lepidoptera:

Pyralidae (for example, Chilo suppressalis, Tryporyza incertulas, Cnaphalocrocis medinalis, Notarcha derogata, Plodia interpunctella, Ostrinia furnacalis, Hellula undalis, Pediasia teterrellus)
Noctuidae (for example, Spodoptera litura, Spodoptera exigua, Pseudaletia separata, Mamestra brassicae, Agrotis ipsilon, Plusia nigrisigna, Trichoplusia spp., Heliothis spp., or Helicoverpa spp.;

Pieridae (for example, Pieris rapae)

Tortricidae (for example, Adoxophyes spp., Grapholita molesta, Cydia pomonella, Leguminivora glycinivorella, Matsumuraeses azukivora, Adophyes orana fasciata, Adoxophyes sp., Homona magnanima, Archips fuscocupreanus, Cydia pomonella);

Gracillariidae (for example, Caloptilia theivora, Phyllonorycter ringoneella);

Carposinidae (for example, Carposina niponensis);

Lyonetiidae (for example, Lyonetia spp.);

Lymantriidae (for example, Lymantria spp., or Euproctis spp.);

Yponomeutidae (for example, Plutella xylostella);

Gelechiidae (for example, Pectinophora gossypiella or Phthorimaea operculella);

Arctiidae (for example, Hyphantria cunea);

Tineidae (for example, Tinea translucens, or Tineola bisselliella); and the others;

Thysanoptera:

Thysanoptera (for example, Frankliniella occidentalis,
Thrips palmi, Scirtothrips dorsalis, Thrips tabaci, Frankliniella intonsa, Frankliniella fusca;

Diptera:
Musca domestica, Culex popiens pallens, Tabanus trigonus, Hylemya antiqua, Hylemya platura, Anopheles sinensis, Agromyza oryzae, Hydrellia griseola, Chlorops oryzae, Dacus cucurbitae, Ceratitis capita, Liriomyza trifolii, and the others;

Coleoptera:
Epilachna vigintioctopunctata, Aulacophora femoralis, Phyllotreta striolata, Oulema oryzae, Echinocnemus squameus, Lissorhoptrus oryzophilus, Anthonomus grandis, Callosobruchus chinensis, Sphenophorus venatus, Popillia japonica, Anomala cuprea, Diabrotica spp., Leptinotarsa decemlineata, Agriotes spp., Lasioderma serricorne, Anthrenus verbasci, Tribolium castaneum, Lyctus brunneus, Anoplophora malasiaca, Tomicus piniperda), and the others;

Orthoptera:
Locusta migratoria, Gryllotalpa africana, Oxya yezoensis, Oxya japonica, and the others;

Hymenoptera:
Athalia rosae, Acromyrmex spp., Solenopsis spp., and the others;

[0620]

Nematodes:

Aphelenchoides besseyi, Nothotylenchus acris, Heterodera glycines, Meloidogyne incognita, Pratylenchus, Nacobbus aberrans, and the others;

[0621]

Blattariae:

Blattella germanica, Periplaneta fuliginosa, Periplaneta americana, Periplaneta brunnea, Blatta orientalis, and the others;

[0622]

Acarina:

Tetranychidae (for example, Tetranychus urticae, Panonychus citri, or Oligonychus spp.);

Eriophyidae (for example, Aculops pelekassi);

Tarsonemidae (for example, Polyphagotarsonemus latus);

Tenuipalpidae;

Tuckerellidae;

Acaridae (for example, Tyrophagus putrescentiae);

Pyroglyphidae (for example, Dermatophagoides farinae, or Dermatophagoides ptrenyssnus);

Cheyletidae (for example, Cheyletus eruditus, Cheyletus malaccensis, or Cheyletus moorei);
Dermanyssidae;
and the others.

[0623]

Also the formulation comprising the present compound or salts thereof can be used in the field relating to a treatment of livestock diseases or livestock industry, and for example, can exterminate the living things or parasites which are parasitic on the inside and/or the outside of a vertebrate such as human being, cow, sheep, pig, poultry, dog, cat and fish, so as to maintain public health.

Examples of the pests include Isodes spp. (for example, Isodes scapularis), Boophilus spp. (for example, Boophilus microplus), Amblyomma spp., Hyalomma spp., Rhipicephalus spp. (for example, Rhipicephalus sanguineus), Haemaphysalis spp. (for example, Haemaphysalis longicornis), dermacentor spp., Ornithodoros spp. (for example, Ornithodoros moubata), Dermahyssus gallinae, Ornithonyssus sylviarum, Sarcoptes spp. (for example, Sarcoptes scabiei), Psoroptes spp., Choriopites spp., Demodex spp., Eutrombicula spp., Ades spp. (for example, Aedes albopictus), Anopheles spp., Culex spp., Culicodes spp., Musca spp., Hypoderma spp., Gasterophilus spp., Haematobia spp., Tabanus spp., Simulium spp., Triatoma spp., Phthiraptera (for example, Damalinia spp.), Linognathus spp., Haematopinussy spp., Ctenocephalides spp. (for example, Ctenocephalides felis) Xenosylla spp.,
monomorium pharaonis and nematodes (for example, hairworm (for example, Nippostrongylus brasiliensis),
Trichostrongylus axei, Trichostrongylus colubriformis),
Trichinella spp. (for example, Trichinella spiralis),
Haemonchus contortus, Nematodirus spp. (for example,
Nematodirus battus), Ostertagia circumcincta, Cooperia spp.,
Hymenolepis nana, and the others.

EXAMPLES

The following Examples including Preparation examples,
Formulation examples and Test examples, serve to illustrate
the present invention in more detail, which should not
intend to limit the present invention.

The Preparation examples are shown below. 1H NMR
means a proton nuclear magnetic resonance, spectrum and
Tetramethyl silane is used as an internal standard and
germline shift (δ) is expressed in ppm.

Preparation example 1

A mixture of 1-(2-bromomethyl-3-fluorophenyl)-4-
methyl-1, 4-dihydotetrazole-5-one (described in Synthesis
example 3) 1.15 g, 1-(4-chlorophenyl)-1H-pyrazole-3-ol
(described in Reference Preparation example 24) 0.78 g,
potassium carbonate 0.66 g and acetonitrile 30 mL was
stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{[1-(4-chlorophenyl)-1H-pyrazole-3-yl]oxymethyl}-3-fluorophenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 1') 0.54 g.

Present compound 1

\[
\begin{align*}
\text{Cl} & \quad \text{F} \\
\text{N} & \quad \text{O} \\
\text{N} & \quad \text{N} \\
\text{N} & \quad \text{O} \\
\text{Me} &
\end{align*}
\]

\[\text{H-NMR (CDCl}_3\text{)} 5(\text{ppm}): 7.63 (1H, d, J = 2.7 Hz), 7.52-7.46 (3H, m), 7.38-7.35 (2H, m), 7.31-7.28 (2H, m), 5.79 (1H, d, J = 2.7 Hz), 5.48 (2H, s), 3.62 (3H, s).\]

Preparation example 2

A mixture of 1-(2-bromomethyl-3-chlorophenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 6) 0.30 g, 1-(4-fluorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 29) 0.19 g,
potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{1-(4-fluorophenyl)-1H-pyrazole-3-yl} oxymethyl) -3-chlorophenyl) -4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as "Present compound 2") 0.18 g.

Present compound 2

\[
\begin{align*}
\text{F} & \quad \text{N} \quad \text{N} \\
\text{Cl} & \quad \text{O} \\
\text{N} & \quad \text{N} \quad \text{O} \\
\text{Me} &
\end{align*}
\]

\[^1H-NMR (CDCl}_3) 5(\text{ppm}): 7.62-7.59 (2H, m), 7.55-7.50 (2H, m), 7.45 (1H, t, J = 8.1 Hz), 7.37 (1H, dd, J = 8.1, 1.2 Hz), 7.13-7.07 (2H, m), 5.78 (1H, d, J = 2.7 Hz), 5.53 (2H, s), 3.60 (3H, s).

[0627] Preparation example 3

A mixture of 1-(2-bromomethyl -3-chlorophenyl) -4-methyl-1',4-dihydrotetrazole-5-one (described in Synthesis
example 6) 1.21 g, 1-(4-chlorophenyl)-1H-pyrazole-3-ol
(described in Reference Preparation example 24) 0.78 g, potassium carbonate 0.66 g and acetonitrile 30 mL was stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[[1-(4-chlorophenyl)-1H-pyrazole-3-yl]oxymethyl]-3-chlorophenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 3') 0.61 g.

Present compound 3

![Chemical Structure](image)

^1H-NMR (CDCl₃) 5 (ppm): 7.64 (1H, d, J = 2.7 Hz), 7.62-7.60 (1H, m), 7.53-7.49 (2H, m), 7.45 (1H, t, J = 8.0 Hz), 7.39-7.35 (3H, m), 5.80 (1H, d, J = 2.7 Hz), 5.54 (2H, s), 3.61 (3H, s).

Preparation example 4
A mixture of 1-(2-bromomethyl-3-chlorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 6) 0.30 g, 1-(4-methylphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 27) 0.18 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[[1-(4-methylphenyl)-1H-pyrazole-3-yl]oxymethyl]-3-chlorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 4') 0.06 g.

Present compound 4

\[
\text{\[\text{Me} \quad \text{N}\text{N} \quad \text{O} \quad \text{Cl} \quad \text{Me} \]}
\]

\(^{1}H\)-NMR (CDCl\textsubscript{3}) 6 (ppm): 7.63 (1H, d, J = 2.7 Hz), 7.60 (1H, dd, J = 8.0, 1.2 Hz), 7.46-7.42 (3H, m), 7.36 (1H, dd, J = 8.0, 1.2 Hz), 7.20 (2H, d, J = 8.5 Hz), 5.76 (1H, d, J = 2.7 Hz), 5.54 (2H, s), 3.57 (3H, s), 2.36 (3H, s).
Preparation example 5

A mixture of 1-(2-bromomethyl-3-chlorophenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 6) 0.30 g, 1-(4-methoxyphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 26) 0.20 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[[1-(4-methoxyphenyl)-1H-pyrazole-3-yl] oxymethyl]-3-chlorophenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 5') 0.18 g.

Present compound 5

\[
\begin{align*}
\text{MeO} & - \text{N} & - \text{O} \\
\text{Cl} & - \text{N} & - \text{N} \\
\text{Me} & - \text{N} & - \text{N}
\end{align*}
\]

\[^1H-NMR\ (CDCl_3) 5(ppm):\ 7.60\ (1H, d, J = 8.0\ Hz), 7.56\ (1H, d, J = 2.4\ Hz), 7.49-7.42\ (3H, m), 7.36\ (1H, d, J = 8.0\ Hz),\]

6.94 (2H, d, J = 8.9 Hz), 5.75 (1H, d, J = 2.4 Hz), 5.54 (2H, s), 3.83 (3H, s), 3.57 (3H, s).

Preparation example 6

A mixture of 1-(2-bromomethyl-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 11) 0.30 g, 1-(4-fluorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 29) 0.16 g, potassium carbonate 0.14 g and acetonitrile 10 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{1-(4-fluorophenyl)-1H-pyrazole-3-yl} oxymethyl)-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 6') 0.28 g.

Present compound 6
\[^1\text{H-}
\text{NMR \ (CDCl}_3\)] \ δ (\ δ ρρτη) : 7.80 (1H, dd, J = 7.6, 1.6 Hz), 7.61 (1H, d, J = 2.4 Hz), 7.56-7.51 (2H, m), 7.42-7.35 (2H, m), 7.14-7.07 (2H, m), 5.79 (1H, d, J = 2.4 Hz), 5.53 (2H, s), 3.59 (3H, s).

Preparation example 7

A mixture of 1-(2-bromomethyl-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 11) 18.5 g, 1-(4-chlorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 24) 10.4 g, potassium carbonate 8.8 g and acetonitrile 400 mL was stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{1-(4-chlorophenyl)-1H-pyrazole-3-yl}oxymethyl)-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 7') 24.6 g.

Present compound 7
^-NMR (CDCl₃) 5(ppm): 7.81-7.79 (1H, m), 7.65 (1H, d, J = 2.4 Hz), 7.54-7.50 (2H, m), 7.42-7.35 (4H, m), 5.81 (1H, d, J = 2.4 Hz), 5.53 (2H, s), 3.60 (3H, s).

Preparation example 8

A mixture of 1-(2-bromomethyl-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 11) 0.30 g, 1-(4-methoxyphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 26) 0.17 g, potassium carbonate 0.14 g and acetonitrile 10 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(1-(4-methoxyphenyl)-1H-pyrazole-3-yl)oxymethyl]-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 8') 0.22 g.
Present compound 8

\[
\text{H-NMR (CDCl}_3\text{) } \delta (\text{ppm}) : 7.80-7.78 \text{ (1H, m), } 7.57 \text{ (1H, d, } J = 2.4 \text{ Hz), } 7.50-7.46 \text{ (2H, m), } 7.41-7.34 \text{ (2H, m), } 6.96-6.92 \text{ (2H, m), } 5.76 \text{ (1H, d, } J = 2.4 \text{ Hz), } 5.53 \text{ (2H, s), } 3.83 \text{ (3H, s), } 3.57 \text{ (3H, s).}
\]

[0633]

Preparation example 9

A mixture of 1-(2-bromomethyl-3-iodophenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 14) 3.11 g, 1-(4-chlorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 24) 1.53 g, potassium carbonate 1.30 g and acetonitrile 60 mL was stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{[1-(4-chlorophenyl)-1H-pyrazole-3-yl]oxymethyl}-3-iodophenyl)-4-methyl-1,4-
dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 9'') 2.13 g.

\[
\begin{align*}
\text{I} & \quad \text{Cl} \\
\text{N} & \quad \text{N} \\
\text{O} & \quad \text{O} \\
\text{Me} & \quad \text{H}
\end{align*}
\]

\text{H-} \text{N} \text{R} (\text{DMSO-d}_6) \delta (\text{ppm}) : 8.35 (1H, d, J = 2.7 Hz), 8.18 (1H, d, J = 8.0 Hz), 7.76-7.72 (2H, m), 7.58 (1H, d, J = 8.0 Hz), 7.53-7.51 (2H, m), 7.39-7.35 (1H, m), 5.97 (1H, d, J = 2.7 Hz), 5.32 (2H, s), 3.54 (3H, s).

[0634]

Preparation example 10

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 33) 0.40 g, l-phenyl-1H-pyrazole-3-ol (described in Reference Preparation example 25) 0.24 g, potassium carbonate 0.25 g and acetonitrile 10 mL was stirred with heating under reflux for two and a half hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel
column chromatography to give 1-(2-{[1-phenyl-1H-pyrazole-
3-yl] oxymethyl }-3-methylphenyl)-4-methyl-1,4-
dihydrotetrazole-5-one (hereinafter, referred to as
'Present compound 10') 0.31 g.

Present compound 10

\[
\begin{array}{c}
\text{Me} \\
\text{N} \equiv \text{N} \\
\text{O} \\
\text{N} \equiv \text{N} \\
\text{Me}
\end{array}
\]

\[^{1}H\text{-NMR (CDCl}_{3}\text{)} 5(\text{ppm}): 7.68 \text{ (1H, d, J = 2.7 Hz), 7.58-7.56} \\
\text{ (2H, m), 7.44-7.38 (4H, m), 7.29-7.23 (1H, m), 7.18-7.23} \\
\text{ (1H, m), 5.81 (1H, d, J = 2.7 Hz), 5.35 (2H, s), 3.61 (3H,} \\
\text{s), 2.57 (3H, s).}
\]

Preparation example 11

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis
example 33) 0.30 g, 1-(4-fluorophenyl)-1H-pyrazole-3-ol
(described in Reference Preparation example 29) 0.20 g, potassium carbonate 0.19 g and acetonitrile 10 mL was
stirred with heating under reflux for three hours. To the reaction mixtures after standing to cool was added water
and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and
saturated saline, and were dried over anhydrous magnesium
sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-((4-fluorophenyl)-1H-pyrazole-3-yl)oxymethyl)-3-methylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 11') 0.34 g.

Present compound 11

\[
\text{1H-NMR} \text{(CDCl}_3\text{)} \text{ 5(ppm): 7.61 (1H, d, J = 2.7 Hz), 7.55-7.49 (2H, m), 7.40-7.38 (2H, m), 7.27-7.24 (1H, m), 7.14-7.07 (2H, m), 5.80 (1H, d, J = 2.7 Hz), 5.32 (2H, s), 3.62 (3H, s), 2.56 (3H, s).}
\]

Preparation example 12

A mixture of Present compound 7 0.92 g, methylboronic acid 0.18 g, tripotassium phosphate 1.27 g, water 0.11 mL, [1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloride dichloromethane adduct 0.16 g and dioxane 7 mL was stirred with heating under reflux for one and a half hours. To the reaction solutions after cooling was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and...
saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{[1-(4-chlorophenyl)-1H-pyrazole-3-yl]oxymethyl}-3-methylphenyl)-4-methyl-1, 4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 12') 0.27 g.

Present compound 12

![Chemical Structure](attachment:image.png)

^{1}H-NMR (CDCl$_3$) δ (ppm): 7.64 (1H, d, $J = 2.7$ Hz), 7.52-7.49 (2H, m), 7.42-7.35 (4H, m), 7.27-7.24 (1H, m), 5.82 (1H, d, $J = 2.7$ Hz), 5.33 (2H, s), 3.63 (3H, s), 2.56 (3H, s).

[0637]

Preparation example 13

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1, 4-dihydrotetrazole-5-one (described in Synthesis example 33) 0.30 g, 1-(4-methylphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 27) 0.19 g, potassium carbonate 0.19 g and acetonitrile 10 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl
acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{1-(4-methylphenyl)-1H-pyrazole-3-yl} oxymethyl)-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as Present compound 13') 0.33 g.

Present compound 13

![Chemical Structure](image)

1H-NMR (CDCl$_3$) 5(ppm): 7.63 (1H, d, $J = 2.6$ Hz), 7.44 (2H, d, $J = 8.3$ Hz), 7.39-7.38 (2H, m), 7.27-7.23 (1H, m), 7.20 (2H, d, $J = 8.3$ Hz), 5.78 (1H, d, $J = 2.6$ Hz), 5.33 (2H, s), 3.61 (3H, s), 2.56 (3H, s), 2.36 (3H, s).

Preparation example 14

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 33) 0.30 g, 1-(4-methoxyphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 26) 0.21 g, potassium carbonate 0.19 g and acetonitrile 10 mL was stirred with heating under reflux for two hours. To the

[0638]
reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{(1-(4-methoxyphenyl)-1H-pyrazole-3-yl)oxymethyl}-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as "Present compound 14") 0.28 g.

Present compound 14

\[
\text{MeO} - \text{N} - \text{N} - \text{N} - \text{CO} \\text{Me} \\
\text{Me}
\]

\(^1\text{H}-\text{NMR} (\text{CDCl}_3) 5(\text{ppm}):\ 7.57 \ (1\text{H}, \text{d}, J = 2.7 \text{ Hz}), 7.49-7.44 \ (2\text{H}, \text{m}), 7.39-7.36 \ (2\text{H}, \text{m}), 7.27-7.23 \ (1\text{H}, \text{m}), 6.96-6.91 \ (2\text{H}, \text{m}), 5.77 \ (1\text{H}, \text{d}, J = 2.7 \text{ Hz}), 5.32 \ (2\text{H}, \text{s}), 3.83 \ (3\text{H}, \text{s}), 3.61 \ (3\text{H}, \text{s}), 2.56 \ (3\text{H}, \text{s}).\]

[0639]

Preparation example 15

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 33) 0.40 g, 1-(1,1-dimethylethyl)-1H-pyrazole-3-ol (described in Reference Preparation example 32) 0.25 g,
potassium carbonate 0.30 g and acetonitrile 10 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1- (2- {1- (1,1-dimethylethyl) -1H-pyrazole-3 -yl} oxymethyl) -3-methylphenyl) -4-methyl-1, 4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 15') 0.50 g.

Present compound 15

![Molecule Structure]

15 \(^{1}H\)-NMR (CDCl\(_3\)) \(\delta\) (ppm) : 7.38-7.33 (2H, m), 7.24-7.21 (2H, m), 5.49 (1H, d, J = 2.4 Hz), 5.22 (2H, s), 3.67 (3H, s), 2.54 (3H, s), 1.47 (9H, s).

[0640]

Preparation example 16

A mixture of 1-(2-bromomethyl-3-methylphenyl) -4-methyl-1, 4-dihydropyrazole-5-one (described in Synthesis example 33) 0.30 g, 1-(4-cyanophenyl)-1H-pyrazole-3-ol
(described in Reference Preparation example 28) 0.21 g, potassium carbonate 0.19 g and acetonitrile 10 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-([1-(4-cyanophenyl)-1H-pyrazole-3-yl]oxymethyl)-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as "Present compound 16", 0.25 g.

Present compound 16

\[
\begin{align*}
\text{NC} & \quad \text{Me} \\
\text{N} & \quad \text{O} \\
\text{N} & \quad \text{N} \quad \text{N} \\
\text{N} & \quad \text{Me}
\end{align*}
\]

\(^{1}\text{H-NMR (CDCl}_3\text{)}\) 5 (ppm): 7.75 (1H, d, \(J = 2.7\) Hz), 7.71-7.65 (4H, m), 7.43-7.38 (2H, m), 7.27-7.25 (1H, m), 5.90 (1H, d, \(J = 2.7\) Hz), 5.34 (2H, s), 3.64 (3H, s), 2.55 (3H, s).

[0641]

Preparation example 17

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis
example 33) 1.0 g, 1-acetyl-lH-pyrazole-3-ol (described in Reference Preparation example 34) 0.47 g, potassium carbonate 0.63 g and acetonitrile 20 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-[(2-{[1-acetyl-1H-pyrazole-3-
yl] oxymethyl} -3-methylphenyl) -4-methyl-1,4-
dihydotetrazole-5-one (hereinafter, referred to as 'Present compound 17') 0.58 g.

Present compound 17

\[
\text{\begin{tabular}{c}
\text{Me} \\
\text{N} \cdots \text{N} \\
\text{O} \\
\text{Me} \\
\text{N} \cdots \text{N} \\
\text{O} \\
\end{tabular}}
\]

\[^1H\text{-NMR (CDCl}_3\text{)}\ 5(\text{ppm}) : 8.01 (1H, d, J = 2.9 Hz), 7.43-7.38 (2H, m), 7.26 (1H, dd, J = 6.9, 2.1 Hz), 5.88 (1H, d, J = 2.9 Hz), 5.31 (2H, s), 3.69 (3H, s), 2.55 (3H, s), 2.54 (3H, s).

[0642]

Preparation example 18
A mixture of Present compound 17 3.4 g, sodium methoxide 0.59 g and methanol 30 mL was stirred at room temperature for two hours. To aqueous saturated sodium bicarbonate solution was added the reaction mixtures and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[[1H-pyrazole-3-yl] oxymethyl] -3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 18') 2.5 g. Present compound 18

\[
\begin{align*}
\text{(Me)} & & \text{N} & & \text{N} & & \text{Me} \\
\text{HN} & & \text{O} & & \text{N} & & \text{N} & & \text{CO} \\
\end{align*}
\]

\[^{1}H\text{-NMR (CDCl}_3\text{)} \delta (\text{ppm}) : 9.61 (1H, s), 7.40-7.35 (2H, m), 7.27 (1H, d, J = 2.4 Hz), 7.24 (1H, dd, J = 6.5, 2.8 Hz), 5.63 (1H, d, J = 2.4 Hz), 5.23 (2H, d, J = 11.2 Hz), 3.66 (3H, s), 2.52 (3H, s).\]

[0643]

Preparation example 19

A mixture of Present compound 18 0.30 g, 4-methylthiophenylboronic acid 0.19 g, copper (II) acetate
0.27 g, pyridine 0.18 mL, molecular sieve 4A 1.00 g and acetonitrile 8 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[[1-(4-methyl thiophenyl) -1H-pyrazole-3-yl] oxymethyl] -3-methylphenyl)-4-methyl-1,4-dihydrotetrazole- 5-one (hereinafter, referred to as 'Present compound 19') 0.08 g -

Present compound 19

\[
\text{MeS} \begin{array}{c}
\text{Me} \\
\text{N} \text{N} \\
\text{O} \\
\text{Me}
\end{array}
\]

\[\begin{array}{c}
\text{H-NMR} \quad (\text{CDCl}_3) \quad \delta \text{ (ppm)}: 7.64 \ (1H, \ d, \ J = 2.7 \ Hz), \ 7.51-7.47 \ (2H, \ m), \ 7.40-7.38 \ (2H, \ m), \ 7.33-7.29 \ (2H, \ m), \ 7.27-7.23 \ (1H, \ m), \ 5.80 \ (1H, \ d, \ J = 2.7 \ Hz), \ 5.33 \ (2H, \ s), \ 3.62 \ (3H, \ s), \ 2.56 \ (3H, \ s), \ 2.50 \ (3H, \ s).
\end{array}\]

Preparation example 20
A mixture of Present compound 18 0.30 g, 4-methoxy-3-
fluorophenylboronic acid 0.20 g, copper (II) acetate 0.27 g, pyridine 0.18 mL, molecular sieve 4A 1.00 g and acetonitrile 8 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(1-(4-methoxy-3-fluorophenyl)-1H-pyrazole-3-yl)oxymethyl]-3-methylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 20') 0.12 g.

Present compound 20

![Chemical Structure]

^1H-NMR (CDCl_3) 5(ppm): 7.57 (1H, d, J = 2.7 Hz), 7.40-7.34 (3H, m), 7.27-7.22 (2H, m), 6.98 (1H, t, J = 8.8 Hz), 5.79 (1H, d, J = 2.7 Hz), 5.32 (2H, s), 3.91 (3H, s), 3.64 (3H, s), 2.56 (3H, s).

[0645] Preparation example 21
A mixture of Present compound 1 0.30 g, 4-ethoxyphenylboronic acid 0.19 g, copper (II) acetate 0.27 g, pyridine 0.18 mL, molecular sieve 4A 1.00 g and acetonitrile 8 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[[1-(4-ethoxyphenyl)-1H-pyrazole-3-yl] oxymethyl]-3-methylphenyl) -4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 21') 0.07 g.

Present compound 21

\[
\text{EtO} \quad \text{Me} \\
\text{N} \quad \text{N} \\
\text{O} \\
\text{N} \quad \text{N} \\
\text{Me}
\]

\[^1H\text{-NMR} \quad (\text{CDCl}_3) \delta \text{ (ppm)} : 7.57 \ (1H, \ d, \ J = 2.7 \ Hz), \ 7.48-7.44 \ (2H, \ m), \ 7.41-7.37 \ (2H, \ m), \ 7.27-7.23 \ (1H, \ m), \ 6.95-6.91 \ (2H, \ m), \ 5.76 \ (1H, \ d, \ J = 2.7 \ Hz), \ 5.32 \ (2H, \ s), \ 4.05 \ (2H, \ q, \ J = 7.0 \ Hz), \ 3.61 \ (3H, \ s), \ 2.56 \ (3H, \ s), \ 1.43 \ (3H, \ t, \ J = 7.0 \ Hz) .
\]
Preparation example 22

A mixture of Present compound 18 0.30 g, 4-methyl-3-fluorophenylboronic acid 0.18 g, copper (II) acetate 0.27 g, pyridine 0.18 mL, molecular sieve 4A 1.00 g and acetonitrile 8 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-((1-(4-methyl-3-fluorophenyl)-1H-pyrazole-3-yl)oxy)methyl)-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 22') 0.21 g.

Present compound 22

1H-NMR (CDCl$_3$) δ ppm: 7.62 (1H, d, $J = 2.7$ Hz), 7.42-7.37 (2H, m), 7.28-7.16 (4H, m), 5.80 (1H, d, $J = 2.7$ Hz), 5.33 (2H, s), 3.64 (3H, s), 2.56 (3H, s), 2.27 (3H, d, $J = 1.9$ Hz).
Preparation example 23

A mixture of Present compound 1 0.30 g, 4-methyl-2-fluorophenylboronic acid 0.18 g, copper (II) acetate 0.17 g, pyridine 0.18 mL, molecular sieve 4A 1.00 g and acetonitrile 8 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-((1-(4-methyl-2-fluorophenyl)-1H-pyrazole-3-yl)oxymethyl)-3-methylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as "Present compound 23") 0.03 g -

Present compound 23

\[\text{[0647]} \]

\[\text{\#1-NMR (CDCl}_3\text{)} \delta (\text{ppm}) : 7.74-7.73 (1H, m), 7.66 (1H, t, J = 8.3 \text{ Hz}), 7.42-7.37 (2H, m), 7.27-7.24 (1H, m), 7.03-6.96 (2H, m), 5.80 (1H, d, J = 2.7 \text{ Hz}), 5.32 (2H, s), 3.63 (3H,} \]
Preparation example 24

A mixture of Present compound 12 0.61 g, Lawesson's reagent (2,4-Bis (4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide) 0.3·8 g and toluene 5 mL was stirred with heating under reflux for six hours and the resulting mixtures were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-([1-(4-chlorophenyl)-1H-pyrazole-3-yl] oxymethyl)-3-methylphenyl)-4-methyl-1,4-dihydotetrazole-5-thione (hereinafter, referred to as 'Present compound 24') 0.36 g.

Present compound 24

\[
\begin{align*}
\text{Cl} & \quad \text{N} \\
\text{N} & \quad \text{O} \\
\text{Me} & \quad \text{N} \\
\text{N} & \quad \text{S} \\
\text{Me} &
\end{align*}
\]

\[1H-NMR (CDCl_3) \delta (\text{ppm}): 7.64 (1H, d, J = 2.7 Hz), 7.51-7.42 (4H, m), 7.39-7.35 (2H, m), 7.27-7.25 (1H, m), 5.80 (1H, d, J = 2.7 Hz), 5.26 (2H, s), 3.88 (3H, s), 2.58 (3H, s).
\]

Preparation example 25

A mixture of 1- (2-bromomethyl-3-methoxyphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis...
example 17) 0.30 g, 1-(4-fluorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 29) 0.18 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(1-(4-fluorophenyl)-1H-pyrazole-3-yl)oxyethyl]-3-methoxyphenyl)-4-methyl-1,4-dihydotetrazole-5-one (hereinafter, referred to as 'Present compound 25') 0.22 g.

Present compound 25

\[
\begin{align*}
\text{F} & \quad \text{MeO} \\
& \quad N \quad N
\end{align*}
\]

\[
\begin{align*}
\text{N} & \quad \text{O} \\
& \quad N \quad N
\end{align*}
\]

\[
\begin{align*}
\text{Me} & \quad \\
\end{align*}
\]

\[\text{H-NMR (CDCl}_3) \delta \text{ (ppm): } 7.59 \ (1\text{H, d, } J = 2.4 \text{ Hz}), \ 7.55-7.50 \ (2\text{H, m}), \ 7.46 \ (1\text{H, t, } J = 8.2 \text{ Hz}), \ 7.12-7.03 \ (4\text{H, m}), \ 5.78 \ (1\text{H, d, } J = 2.4 \text{ Hz}), \ 5.43 \ (2\text{H, s}), \ 3.92 \ (3\text{H, s}), \ 3.56 \ (3\text{H, s}).
\]

[0650]

Preparation example 26
A mixture of 1-(2-bromomethyl-3-methoxyphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 17) 1.20 g, 1-(4-chlorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 24) 0.78 g, potassium carbonate 0.66 g and acetonitrile 30 mL was stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-((2-([(1-(4-chlorophenyl)-1H-pyrazole-3-yl) oxy)methyl]-3-methoxyphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 26') 0.97 g.

Present compound 26

\[
\text{H-NMR (CDCl}_3\text{)} \delta (\text{ppm}) : 7.63 (1H, d, J = 2.7 \text{ Hz}), 7.53-7.49 (2H, m), 7.46 (1H, dd, J = 8.5, 8.0 \text{ Hz}), 7.38-7.34 (2H, m), 7.08 (1H, d, J = 8.5 \text{ Hz}), 7.04 (1H, d, J = 8.0 \text{ Hz}), 5.80 (1H, d, J = 2.7 \text{ Hz}), 5.43 (2H, s), 3.92 (3H, s), 3.57 (3H,
Preparation example 27

A mixture of 1-(2-bromomethyl-3-methoxyphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 17) 0.30 g, 1-(4-methylphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 27) 0.18 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure.

The resulting residues were subjected to a silica gel column chromatography to give 1-((2-{[1-(4-methylphenyl)-1H-pyrazole-3-yl]oxymethyl}-3-methoxyphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 27') 0.20 g.

\[\text{Present compound 27} \]

\[
\begin{align*}
\text{Me} &- \text{C} &\text{N} &\text{N} &\text{O} \\
\text{MeO} & & & & \\
\text{N} &\text{N} &\text{O} & & \\
\text{Me} & & & & \\
\end{align*}
\]

\[^{1}H\text{-NMR (CDCl}_3\text{) } \delta \text{(ppm)}: 7.61 (1H, d, } J = 2.7 \text{ Hz), 7.47-7.43} \]
Preparation example 28

A mixture of 1-(2-bromomethyl-3-methoxyphenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 17) 0.30 g, 1-(4-methylphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 26) 0.20 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[[1-(4-methoxyphenyl)-1H-pyrazole-3-yl]-oxymethyl]-3-methoxyphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 28') 0.22 g.

Present compound 28
\[\text{H-NMR (CDCl}_3) \quad 5(\text{ppm}): \quad 7.55 \ (1\text{H}, \text{d}, J = 2.4 \text{ Hz}), \quad 7.50-7.43 \ (3\text{H}, \text{m}), \quad 7.08 \ (1\text{H}, \text{d}, J = 8.2 \text{ Hz}), \quad 7.04 \ (1\text{H}, \text{d}, J = 8.0 \text{ Hz}), \]
\[\quad 6.95-6.91 \ (2\text{H}, \text{m}), \quad 5.75 \ (1\text{H}, \text{d}, J = 2.4 \text{ Hz}), \quad 5.43 \ (2\text{H}, \text{s}), \]
\[\quad 3.92 \ (3\text{H}, \text{s}), \quad 3.83 \ (3\text{H}, \text{s}), \quad 3.54 \ (3\text{H}, \text{s}). \]

[0653]

Preparation example 29

A mixture of Present compound 7 0.92 g, zinc dicyanide 0.47 g, tetrakis (triphenylphosphine) palladium 0.46 g and N,N-dimethyl formamide 10 mL was stirred at 80°C for nine hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[[1-(4-chlorophenyl)-1H-pyrazole-3-yl]oxymethyl]-3-cyanophenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 29') 0.04 g.

Present compound 29
H-NMR (CDCl₃) δ (ppm): 7.85 (1H, dd, J = 7.8, 1.2 Hz), 7.70 (1H, dd, J = 7.8, 1.2 Hz), 7.63 (1H, d, J = 2.4 Hz), 7.61 (1H, t, J = 7.8 Hz), 7.53-7.48 (2H, m), 7.38-7.35 (2H, m), 5.80 (1H, d, J = 2.4 Hz), 5.64 (2H, s), 3.66 (3H, s).

[0654]
Preparation example 30

A mixture of 1-(2-bromomethyl-3-nitrophenyl)-4-methyl-1,4-dihyidotetrazole-5-one (described in Synthesis example 21) 0.30 g, 1-(4-chlorophenyl)-1H-pyrazole-3-y1 (described in Reference Preparation example 24) 0.18 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(1-(4-chlorophenyl)-1H-pyrazole-3-yl) oxymethyl]-3-nitrophenyl)-4-methyl-1,4-dihyidotetrazole-5-one (hereinafter, referred to as
Present compound 30

$$\text{H} - \text{R} (\text{CDCl}_3) \delta (\text{ppm}): 7.97 \ (1\text{H, dd, } J = 8.0, \ 1.5 \text{ Hz}), \ 7.70 \ (1\text{H, dd, } J = 8.0, \ 1.5 \text{ Hz}), \ 7.62 \ (1\text{H, t, } J = 8.0 \text{ Hz}), \ 7.58 \ (1\text{H, d, } J = 2.7 \text{ Hz}), \ 7.40 \ (2\text{H, dt, } J = 9.1, \ 2.4 \text{ Hz}), \ 7.35 \ (2\text{H, dt, } J = 9.0, \ 2.4 \text{ Hz}), \ 5.74 \ (1\text{H, d, } J = 2.4 \text{ Hz}), \ 5.64 \ (2\text{H, s}), \ 3.72 \ (3\text{H, s}).$$

[0655]

Preparation example 31

A mixture of 1-(2-bromomethyl-3-difluoromethylphenyl)-4-methyl-1,4-dihydrortetrazole-5-one (described in Synthesis example 23) 1.21 g, 1-(4-chlorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 24) 0.49 g, potassium carbonate 0.42 g and acetonitrile 20 mL was stirred with heating under reflux for three hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel
column chromatography to give 1-\((2-\{1-(4-\text{chlorophenyl})-1\text{H}-\text{pyrazole-3-yl}\}\text{oxymethyl}\}-3-\text{difluoromethylphenyl})-4-\text{methyl}-1,4\text{-dihydropyrrolotetrazole-5-one}\) (hereinafter, referred to as 'Present compound 31") 0.57 g.

5

Present compound 31

\[
\begin{array}{c}
\text{Cl} \quad \text{N} \\
\text{N} \quad \text{O} \\
\text{Me}
\end{array}
\]

\(^1\text{H}-\text{NMR}\) (CDCl\(_3\)) 5(ppm): 7.85 (1H, d, J = 8.0 Hz), 7.62 (1H, d, J = 2.7 Hz), 7.61 (1H, dd, J = 8.0, 7.9 Hz), 7.55 (1H, d, J = 7.9 Hz), 7.46-7.42 (2H, m), 7.39-7.35 (2H, m), 7.26 (1H, t, J = 55.2 Hz), 5.81 (1H, d, J = 2.7 Hz), 5.46 (2H, s), 3.67 (3H, s).

[0656]

Preparation example 32

A mixture of 1-(2-bromomethyl-3-trifluoromethylphenyl) -4-methyl-1, 4-dihydropyrrolotetrazole-5-one (described in Synthesis example 19) 1.21 g, 1-(4-chlorophenyl) -1H-pyrrolotetrazole-3-ol (described in Reference Preparation example 24) 0.42 g, potassium carbonate 0.36 g and N,N-dimethylformamide 10 mL was stirred at 80\(^\circ\)C for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water.
and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(1-(4-chlorophenyl)-1H-pyrazole-3-yl)oxymethyl]-3-trifluoromethylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as "Present compound 32") 0.58 g–

Present compound 32

\[
\begin{align*}
\text{Cl} & \quad \text{F}_3\text{C} \\
\text{N} & \quad \text{N} \\
\text{O} & \quad \text{N} \\
\text{Me} & \quad \text{N} \\
\end{align*}
\]

\(\delta\) (ppm): 7.93-7.88 (1H, m), 7.65-7.64 (3H, m), 7.51 (2H, dt, J = 9.3, 2.4 Hz), 7.37 (2H, dt, J = 9.2, 2.3 Hz), 5.77 (1H, d, J = 2.7 Hz), 5.56 (2H, s), 3.55 (3H, s).

Preparation example 33

A mixture of Present compound 7 0.92 g, ethylboronic acid 0.22 g, tripotassium phosphate 1.27 g, water 0.11 mL, \([1,1'\text{-bis(diphenylphosphino) ferrocene}]\) palladium (II) dichloride dichloromethane adduct 0.16 g and dioxane 15 mL was stirred with heating under reflux for two hours. To the reaction solutions after cooling was added water and
the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1- (2- {1- (4-chlorophenyl) -1H-pyrazole-3-yl} oxymethyl) -3-ethylphenyl) -4-methyl-1, 4-dihydtrotetrazole-5-one (hereinafter, referred to as 'Present compound 33') 0.24 g.

Present compound 33

\[
\begin{align*}
\text{Cl} & \quad \text{N} \quad \text{N} \\
\text{N} & \quad \text{O} \\
\text{N} & \quad \text{N} \quad \text{Me}
\end{align*}
\]

\(^1\text{H-NMR}\ (\text{CDCl}_3)\ 5 (\text{ppm}):\ 7.65\ (1\text{H},\ d,\ J = 2.7\ Hz),\ 7.53-7.49\ (2\text{H},\ m),\ 7.47-7.42\ (2\text{H},\ m),\ 7.39-7.35\ (2\text{H},\ m),\ 7.27-7.24\ (1\text{H},\ m),\ 5.81\ (1\text{H},\ d,\ J = 2.7\ Hz),\ 5.34\ (2\text{H},\ s),\ 3.61\ (3\text{H},\ s),\ 2.90\ (2\text{H},\ q,\ J = 7.6\ Hz),\ 1.30\ (3\text{H},\ t,\ J = 7.6\ Hz).
\]

[0658]

Preparation example 34

A mixture of Present compound 7 0.92 g, cyclopropylboronic acid 0.26 g, tripotassium phosphate 1.27 g, water 0.11 mL, [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct 0.16 g and dioxane 7 mL was stirred
with heating under reflux for one and a half hours. To the reaction solutions after cooling was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[[1-(4-chlorophenyl)-1H-pyrazole-3-yl]oxymethyl]-3-cyclopropylphenyl)-4-methyl-1,4-dihydropyrimidine-5-one (hereinafter, referred to as 'Present compound 34') 0.35 g.

Present compound 34

\[
\begin{align*}
\text{\text{Cl}} & \quad \text{N} \\
\text{N} & \quad \text{O} \\
\text{N} & \quad \text{O} \\
\text{N} & \quad \text{Me}
\end{align*}
\]

\text{H-NMR (CDCl}_3\text{) 5(ppm): 7.63 (1H, d, J = 2.7 Hz), 7.51-7.46 (2H, m), 7.41-7.37 (1H, m), 7.36-7.32 (2H, m), 7.24-7.21 (2H, m), 5.80 (1H, d, J = 2.7 Hz), 5.53 (2H, s), 3.58 (3H, s), 2.26-2.19 (1H, m), 1.03-0.99 (2H, m), 0.78-0.74 (2H, m).

[0659]

Preparation example 35

A mixture of Present compound 7 0.92 g, 1-propenylboronic acid 0.26 g, tripotassium phosphate 1.27 g, water 0.11 mL, [1,1'-
bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct 0.16 g and dioxane 7 mL was stirred with heating under reflux for two hours. To the reaction solutions after cooling was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[[1-(4-chlorophenyl) -1H-pyrazole- 3-yl] oxymethyl }-3-(1-propenyl) phenyl) -4-methyl -1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 35') 0.70 g.

Present compound 35

\[\text{Cl} \quad \text{N} \quad \text{N} \quad \text{O} \quad \text{N} \quad \text{N} \quad \text{Me}\]

\[^{1}H\text{-NMR (CDCl}_{3}\text{) s (ppm): 7.65 (1H, d, } J = 2.7 \text{ Hz), 7.62 (1H, d, } J = 7.8 \text{ Hz), 7.53-7.50 (2H, m), 7.44 (1H, t, } J = 7.8 \text{ Hz), 7.39-7.35 (2H, m), 7.27 (1H, d, } J = 7.8 \text{ Hz), 6.85 (1H, dd, } J = 15.5, 1.6 \text{ Hz), 6.22 (1H, dq, } J = 15.5, 6.7 \text{ Hz), 5.82 (1H, d, } J = 2.7 \text{ Hz), 5.35 (2H, s), 3.61 (3H, s), 1.92 (3H, dd, } J = 6.7, 1.6 \text{ Hz).}\]
Preparation example 36

A mixture of Present compound 36 0.60 g, palladium fibroin complex 0.06 g and methanol 12 mL was stirred at room temperature under hydrogen atmosphere for eight hours. The reaction mixtures were filtered and the filtrates were concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-([1-(4-chlorophenyl) -1H-pyrazole-3-yl]oxymethyl)-3-propylphenyl) -4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 36·') 0.60 g.

Present compound 36

\[
\begin{align*}
\text{Cl} & \quad \text{N} & \quad \text{N} \\
\text{N} & \quad \text{O} & \quad \text{Me}
\end{align*}
\]

1H-NMR (CDCl$_3$) δ (ppm): 7.64 (1H, d, $J = 2.7$ Hz), 7.53-7.49 (2H, m), 7.45-7.35 (4H, m), 7.26-7.24 (1H, m), 5.80 (1H, d, $J = 2.7$ Hz), 5.35 (2H, s), 3.59 (3H, s), 2.86-2.82 (2H, m), 1.75-1.65 (2H, m), 1.00 (3H, t, $J = 7.4$ Hz).

Preparation example 37

A mixture of Present compound 7 0.92 g, a solution of diisopropyl zinc in toluene (1.0 M) 5 mL, [1,1'-bis(diphenylphosphino)ferrocene]palladium (II) dichloride
dichloromethane adduct 0.16 g and dioxane 5 mL was stirred with heating under reflux for three hours. To the reaction solutions after cooling was added 10% hydrochloric acid and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[[1-(4-chlorophenyl)-1H-pyrazole-3-yl]oxymethyl]-3-(1-methylethyl)phenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 37') 0.44 g.

Present compound 37

\[
\begin{align*}
\text{Cl} & \quad \text{N} \quad \text{Me} \\
\text{N} & \quad \text{Me} \\
\text{N} & \quad \text{N} \quad \text{N} \\
\text{O} & \quad \text{Me}
\end{align*}
\]

\[\text{H-NMR (CDCl}_3\)] 5 (ppm): 7.65 (1H, d, J = 2.7 Hz), 7.55-7.47 (4H, m), 7.43-7.36 (2H, m), 7.24 (1H, dd, J = 7.7, 1.3 Hz), 5.82 (1H, d, J = 2.7 Hz), 5.34 (2H, s), 3.61 (3H, s), 3.49-3.38 (1H, m), 1.31 (6H, d, J = 6.8 Hz).

[0662]

Preparation example 38

A mixture of Present compound 7 0.92 g, butylboronic acid 0.31 g, tripotassium phosphate 1.27 g, water 0.11 mL,
[1,1'-bis(diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct 0.16 g and dioxane 7 mL was stirred with heating under reflux for three hours. To the reaction solutions after cooling was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[1-(4-chlorophenyl)-1H-pyrazole-3-yl]oxymethyl)-3-butylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as "Present compound 38") 0.34 g.

Present compound 38

\[
\text{1H-NMR (CDCl\textsubscript{3}) \delta (ppm): 7.64 (1H, d, J = 2.7 Hz), 7.52-7.49 (2H, m), 7.44-7.35 (4H, m), 7.26-7.23 (1H, m), 5.80 (1H, d, J = 2.7 Hz), 5.35 (2H, s), 3.59 (3H, s), 2.85 (2H, t, J = 8.0 Hz), 1.68-1.61 (2H, m), 1.36-1.46 (2H, m), 0.93 (3H, t, J = 7.4 Hz).}
\]

[0663]

Preparation example 39
A mixture of Present compound 7 0.92 g, tributyl vinyl tin 0.70 g, tetrakistriphenylphosphine palladium 0.23 g and toluene 10 mL was stirred with heating under reflux for three hours. After cooling the reaction solutions, thereto was added saturated aqueous ammonium chloride solution and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-[(2-[(1-(4-chlorophenyl)-1H-pyrazole-3-yl) oxymethyl]-3-ethenylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as "Present compound 39") 0.39 g.

Present compound 39

![Chemical Structure]

^1H-NMR (CDCl₃) 5 (ppm): 7.69 (1H, d, J = 7.7 Hz), 7.63 (1H, d, J = 2.7 Hz), 7.51-7.45 (3H, m), 7.37-7.32 (3H, m), 7.19 (1H, dd, J = 17.3, 11.0 Hz), 5.81 (1H, d, J = 2.7 Hz), 5.75 (1H, dd, J = 17.3, 1.2 Hz), 5.46 (1H, dd, J = 11.0, 1.2 Hz), 5.36 (2H, s), 3.61 (3H, s).

[0664]
Preparation example 40

A mixture of Present compound 7 0.92 g, allylboronic acid pinacol ester 0.50 g, tripotassium phosphate 1.27 g, water 0.11 mL, [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloromethane adduct 0.16 g and dioxane 10 mL was stirred with heating under reflux for one and a half hours. To the reaction solutions after cooling was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-([1-(4-chlorophenyl)-1H-pyrazole-3-yl]oxymethyl)-3-(2-propenyl)phenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 40') 0.50 g.

Present compound 40

\[
\begin{align*}
\text{Cl} & \quad \equiv \quad \text{N} \\
\text{N} & \quad \equiv \quad \text{O} \\
\text{N} & \quad \equiv \quad \text{O} \\
\text{N} & \quad \equiv \quad \text{N} \\
\text{Me} &
\end{align*}
\]

1H-NMR (CDCl\textsubscript{3}) 5 (ppm): 7.64 (1H, d, J = 2.7 Hz), 7.52-7.48 (2H, m), 7.47-7.40 (2H, m), 7.39-7.35 (2H, m), 7.30-7.28 (1H, m), 6.06-5.96 (1H, m), 5.81 (1H, d, J = 2.7 Hz), 5.34
Preparation example 41

A mixture of Present compound 7 0.92 g, isopropenylboronic acid pinacol ester 0.50 g, tripotassium phosphate 1.27 g, water 0.11 mL, [1,1'-bis(diphenylphosphino)ferrocene]palladium (II) dichloride dichloromethane adduct 0.16 g and dioxane 7 mL was stirred with heating under reflux for one and a half hours. To the reaction solutions after cooling was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{[1-(4-chlorophenyl)-1H-pyrazole-3-yl]oxymethyl}-3-(1-methylethenyl)phenyl)-4-methyl-1,4-dihydrortetrazole-5-one (hereinafter, referred to as "Present compound 41") 0.34 g.

Present compound 41

\[
\begin{align*}
\text{Cl} & \quad \text{N} \quad \text{N} \\
\text{O} & \quad \text{N} \quad \text{N} \\
\text{N} & \quad \text{N} \\
\text{Me} & \quad \text{Me}
\end{align*}
\]

\[^1H-NMR \ (CDCl_3) \ 6(\text{ppm}): \ 7.63 \ (1H, \ d, \ J = 2.6 \ Hz), \ 7.52-7.49\]
(2H, m), 7.47 (1H, t, J = 7.8 Hz), 7.40-7.33 (4H, m), 5.77 (1H, d, J = 2.6 Hz), 5.37 (2H, s), 5.30-5.29 (1H, m), 5.01-5.01 (1H, m), 3.55 (3H, s), 2.12 (3H, s).

[0666]

Preparation example 42

A mixture of Present compound 7 1.39 g, trimethylsilylacetylene 0.88 g, bis(triphenylphosphine) palladium (II) dichloride 0.17 g, copper iodide 0.06 g, triethylamine 20 mL and N,N-dimethylformamide 10 mL was stirred at 50°C for six hours. To the reaction solutions after cooling was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(1- (4-chlorophenyl) -1H-pyrazole-3 -yl) oxymethyl]-3-trimethylsilylethynylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as Present compound 42') 0.40 g.

Present compound 42
1H-NMR (CDCl$_3$) 5(ppm): 7.66-7.63 (2H, m), 7.54-7.50 (2H, m), 7.45-7.33 (4H, m), 5.80 (1H, d, J = 2.6 Hz), 5.59 (2H, s), 3.60 (3H, s), 0.18 (9H, s).

Preparation example 43

A mixture of Present compound 42 0.35 g, potassium carbonate 0.03 g, methanol 1.5 mL and chloroform 1.5 mL was stirred at room temperature for one hour. To the reaction mixtures was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{[1-(4-chlorophenyl)-1H-pyrazole-3-yl] oxymethyl} -3-ethynylphenyl)-4-methyl-1,4-dihydrotetrazole- 5-one (hereinafter, referred to as 'Present compound 43') 0.10 g. Present compound 43
H-NMR (CDCl₃) δ (ppm): 7.71-7.69 (1H, m), 7.63 (1H, d, J = 2.7 Hz), 7.53-7.42 (4H, m), 7.37-7.34 (2H, m), 5.78 (1H, d, J = 2.7 Hz), 5.63 (2H, s), 3.59 (3H, s), 3.40 (1H, s).

Preparation example 44

To a mixture of 1-(2-[(1-(4-chlorophenyl)-1H-pyrazole-3-yl)oxymethyl]-3-methylphenyl)-1,4-dihydro-4-tetrazole-5-one (described in Synthesis example 43) 0.50 g, potassium carbonate 0.36 g and N,N-dimethylformamide 7 mL was added ethyl iodide 0.21 mL under ice-cooling. The mixtures were raised to room temperature and were stirred for sixteen hours. To the reaction mixtures was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(1-(4-chlorophenyl)-1H-pyrazole-3-yl)oxymethyl]-3-methylphenyl)-4-ethyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 44') 0.45 g.
Present compound 44

\[
\begin{align*}
1^H-\text{NMR} \ (\text{CDCl}_3) \ 5\text{ (ppm)}: & \ 7.63 \ (1H, \ d, \ J = 2.7 \ Hz), \ 7.51-7.46 \\
& \ (2H, \ m), \ 7.39-7.33 \ (4H, \ m), \ 7.28-7.26 \ (1H, \ m), \ 5.80 \ (1H, \ d, \\
& \ J = 2.7 \ Hz), \ 5.33 \ (2H, \ s), \ 4.01 \ (2H, \ q, \ J = 7.3 \ Hz), \ 2.55 \\
& \ (3H, \ s), \ 1.43 \ (3H, \ t, \ J = 7.3 \ Hz).
\end{align*}
\]

Preparation example 45

To a mixture of 1-(2-{[1-(4-chlorophenyl) -1H-pyrazole-3-yl] oxymethyl} -3-methylphenyl) -1,4-dihydro-4-tetrazole-5-one (described in Synthesis example 43) 0.50 g, potassium carbonate 0.36 g, potassium iodide 0.02 g and N,N-dimethylformamide 7 mL was added chloromethyl methyl ether 0.2 mL under ice-cooling. The mixtures were raised to room temperature and were stirred for sixteen hours. To the reaction mixtures was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with water and and saturated saline, and dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{[1-(4-chlorophenyl) -1H-pyrazole-3-yl] oxymethyl} -3-
methylphenyl) -4-methoxymethyl-1,4-dihydrotetrazole -5-one
(hereinafter, referred to as "Present compound 45") 0.28 g

Present compound 45

\[\text{H-NMR (CDCl}_3\text{)} 5(\text{ppm}): 7.63 (1H, d, J = 2.7Hz), 7.50-7.46 (2H, m), 7.41-7.34 (4H, m), 7.30-7.27 (1H, m), 5.81 (1H, d, J = 2.7 Hz), 5.34 (2H, s), 5.28 (2H, s), 3.42 (3H, s), 2.57 (3H, s). \]

[0670]

Preparation example 46

A mixture of 1-(2-bromomethyl-3-methylphenyl) -4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 33) 0.30 g, 1-(4-bromophenyl) -1H-pyrazole-3-ol (described in Reference Preparation example 37) 0.27 g, potassium carbonate 0.19 g and acetonitrile 10 mL was stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure.
The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{(1-(4-bromophenyl)-1H-pyrazole-3-yl)oxymethyl}-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 46') 0.37 g.

Present compound 46

1H-NMR (CDCl₃) 5(ppm): 7.64 (1H, d, J = 2.4 Hz), 7.53-7.49 (2H, m), 7.45-7.37 (4H, m), 7.27-7.24 (1H, m), 5.82 (1H, d, J = 2.4 Hz), 5.33 (2H, s), 3.62 (3H, s), 2.55 (3H, s).

Preparation example 47

A mixture of 1-(2-bromomethyl-3-chlorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 6) 0.30 g, 1-(4-bromophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 37) 0.25 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium
sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-((1-(4-bromophenyl)-1H-pyrazole-3-yl)oxymethyl)-3-chlorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 47') 0.37 g.

Present compound 47

\[
\begin{align*}
\text{H-NMR (CDCl}_3\text{) 5(ppm):} & \quad 7.64 \text{ (1H, d, } J = 2.7 \text{ Hz), } 7.60 \text{ (1H, dd, } J = 8.0, 1.2 \text{ Hz), } 7.53-7.50 \text{ (2H, m), } 7.47-7.42 \text{ (3H, m), } \\
& \quad 7.36 \text{ (1H, dd, } J = 7.8, 1.1 \text{ Hz), } 5.80 \text{ (1H, d, } J = 2.7 \text{ Hz), } \\
& \quad 5.53 \text{ (2H, s), } 3.60 \text{ (3H, s).}
\end{align*}
\]

Preparation example 48

A mixture of 1-(2-bromomethyl-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 11) 0.30 g, 1-(4-bromophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 37) 0.22 g, potassium carbonate 0.16 g and acetonitrile 10 mL was stirred with heating under reflux for three hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The
organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(1-(4-bromophenyl)-1H-pyrazole-3-yl)oxymethyl]-3-bromophenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 48') 0.36 g.

Present compound 48

\[
\begin{align*}
\text{Br} & \quad \text{N} \quad \text{Br} \\
\text{N} & \quad \text{O} \\
\text{N} & \quad \text{N} \\
\text{N} & \quad \text{Me}
\end{align*}
\]

\[\text{'H-NMR (CDC1\textsubscript{3}) 5(ppm): 7.79 (1H, dd, J = 7.7, 1.7 Hz), 7.64 (1H, d, J = 2.7 Hz), 7.53-7.50 (2H, m), 7.47-7.44 (2H, m), 7.41-7.34 (2H, m), 5.81 (1H, d, J = 2.7 Hz), 5.53 (2H, s), 3.60 (3H, s).}\]

[0673]

Preparation example 49

A mixture of 1-(2-bromomethyl-3-methoxyphenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 17) 0.30 g, 1-(4-bromophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 37) 0.25 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for three hours. To the
reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(4-bromophenyl)-1H-pyrazole-3-yl]oxymethyl)-3-methoxyphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as "Present compound 49") 0.33 g.

Present compound 49

\[
\begin{array}{c}
\text{Br} \quad \text{MeO} \\
\text{N-N} \quad \text{O} \\
\text{N-N} \quad \text{Me}
\end{array}
\]

\[\text{H-NMR (CDCl}_3\text{) } \delta \text{ (ppm): 7.64 (1H, d, } J = 2.4 \text{ Hz), 7.53-7.44 (5H, m), 7.09 (1H, d, } J = 8.5 \text{ Hz), 7.04 (1H, dd, } J = 8.0, 1.0 \text{ Hz), 5.81 (1H, d, } J = 2.4 \text{ Hz), 5.43 (2H, s), 3.93 (3H, s), 3.57 (3H, s).}\]

[0674]

Preparation example 50

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 33) 0.40 g, \(1\text{-cyclohexyl-1H-pyrazole-3-ol}\) (described in Reference Preparation example 41) 0.25 g,
cesium carbonate 0.25 g and N,N-dimethylformamide 10 mL was stirred at 80°C for three hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-{2-[(1-cyclohexyl-1H-pyrazole-3-yl)oxymethyl]-3-methylphenyl}-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 50") 0.31 g.

Present compound 50

\[
\begin{align*}
\text{Me} & \quad \text{N} \quad \text{O} \\
\text{N} & \quad \text{N} \quad \text{O}
\end{align*}
\]

\(^1\text{H}-\text{NMR} \quad (\text{CDCl}_3) \ 5(\text{ppm}) : 7.39-7.34 \ (2\text{H}, \text{ m}), \ 7.25-7.21 \ (1\text{H}, \text{ m}), \ 7.13 \ (1\text{H}, \text{ d}, \text{ J} = 2.2 \text{ Hz}), \ 5.51 \ (1\text{H}, \text{ d}, \text{ J} = 2.2 \text{ Hz}), \ 5.19 \ (2\text{H}, \text{ s}), \ 3.85 \ (1\text{H}, \text{ tt}, \text{ J} = 11.6, 3.8 \text{ Hz}), \ 3.67 \ (3\text{H}, \text{ s}), \ 2.53 \ (3\text{H}, \text{ s}), \ 2.11-2.07 \ (2\text{H}, \text{ m}), \ 1.86 \ (2\text{H}, \text{ dt}, \text{ J} = 13.5, 3.2 \text{ Hz}), \ 1.73-1.68 \ (1\text{H}, \text{ m}), \ 1.58 \ (2\text{H}, \text{ ddd}, \text{ J} = 24.5, 12.5, 3.5 \text{ Hz}), \ 1.38 \ (2\text{H}, \text{ tdd}, \text{ J} = 17.0, 8.6, 4.2 \text{ Hz}), \ 1.28-1.20 \ (1\text{H}, \text{ m}).
\]
Preparation example 51

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydror tetrazole-5-one (described in Synthesis example 33) 0.30 g, 1-(4-trifluoromethoxyphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 39) 0.27 g, potassium carbonate 0.19 g and acetonitrile 10 mL was stirred with heating under reflux for three hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{{1-(4-trifluoromethoxyphenyl)-1H-pyrazole-3-yl} oxymethyl}-3-methylphenyl)-4-methyl-1,4-dihydror tetrazole-5-one (hereinafter, referred to as 'Present compound 51') 0.34 g.

Present compound 51

\[\text{F}_3\text{CO} \]
\[\text{Me} \]
\[\text{N} \]
\[\text{N} \]
\[\text{O} \]
\[\text{Me} \]

\[^{1}H\text{-NMR (CDCl}_3\text{)} \delta (\text{ppm}) : 7.65 (1H, d, J = 2.7 Hz), 7.60-7.56 (2H, m), 7.42-7.38 (2H, m), 7.28-7.24 (3H, m), 5.83 (1H, d,} \]
Preparation example 52

A mixture of 1-(2-bromomethyl-3-cyclopropylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 35) 0.29 g, 1-(4-fluorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 29) 0.19 g, potassium carbonate 0.17 g and acetonitrile 10 mL was stirred with heating under reflux for three hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure.

The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{[1-(4-fluorophenyl)-1H-pyrazole-3-yl]oxymethyl}-3-cyclopropylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as "Present compound 52") 0.29 g.

Present compound 52

\[
\begin{array}{c}
\text{F} \\
\text{N} \\
\text{N} \\
\text{O} \\
\text{N} \\
\text{N} \\
\text{Me}
\end{array}
\]

\[^1\text{H-NMR (CDCl}_3\text{)}\ 5\text{ppm} : 7.61 \ (1H, d, J = 2.7 \text{ Hz}), \ 7.56-7.50\]
Preparation example 53

A mixture of Present compound 18 0.49 g, 4-chloro-3-fluorophenylboronic acid 0.33 g, copper (II) acetate 0.51 g, pyridine 0.28 g, molecular sieve 4A 1.00 g and acetonitrile 10 mL was stirred with heating under reflux for 48 hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{[1-(4-chloro-3-fluorophenyl)-1H-pyrazole-3-yl] oxymethyl} -3-methylphenyl) -4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 53') 0.12 g.

Present compound 53
\[^{1}\text{H-NMR (CDCl}_3\text{)}\] 5(ppm): 7.64 (1H, d, J = 2.7 Hz), 7.44-7.38 (4H, m), 7.28-7.23 (2H, m), 5.84 (1H, d, J = 2.7 Hz), 5.33 (2H, s), 3.65 (3H, s), 2.56 (3H, s).

Preparation example 54

A mixture of 1-(2-bromomethyl-3-ethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 38) 0.30 g, 1-(4-fluorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 29) 0.21 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for three hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-\{1-(4-fluorophenyl)-1H-pyrazole-3-yl\} oxymethyl)-3-ethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as "Present compound 54") 0.32 g.

Present compound 54
\[\text{H-NMR (CDCl}_3\text{)} \delta (\text{ppm}) : 7.61 (1H, d, J = 2.4 \text{ Hz}), 7.54-7.51 \text{ (2H, m)}, 7.47-7.42 \text{ (2H, m)}, 7.28-7.24 \text{ (1H, m)}, 7.13-7.09 \text{ (2H, m)}, 5.80 \text{ (1H, d, J = 2.4 Hz)}, 5.34 \text{ (2H, s)}, 3.60 \text{ (3H, s)}, 2.91 \text{ (2H, q, J = 7.6 Hz)}, 1.30 \text{ (3H, t, J = 7.6 Hz)}. \]

Preparation example 55

A mixture of 1-(2-bromomethyl-3-ethylphenyl)-4-methyl-1,4-dihydrötetrazole-5-one (described in Synthesis example 38) 0.30 g, 1-(4-bromophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 37) 0.27 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for three hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-([1-(4-bromophenyl)-1H-pyrazole-3-yl] oxymethyl)-3-ethylphenyl)-4-methyl-1,4-dihydrötetrazole-5-one (hereinafter, referred to as
Present compound 55

\[
\text{H-NMR (CDCl}_3\text{) } \delta (\text{ppm}): 7.65 (1H, d, J = 2.7 \text{ Hz}), 7.54-7.50 (2H, m), 7.47-7.42 (4H, m), 7.28-7.24 (1H, m), 5.81 (1H, d, J = 2.7 \text{ Hz}), 5.34 (2H, s), 3.60 (3H, s), 2.90 (2H, q, J = 7.6 \text{ Hz}), 1.30 (3H, t, J = 7.6 \text{ Hz}).
\]

Preparation example 56

A mixture of 1-(2-bromomethyl-3-cyclopropylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 35) 0.30 g, 1-(4-bromophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 37) 0.26 g, potassium carbonate 0.17 g and acetonitrile 10 mL was stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-\{1-(4-bromophenyl)-1H-
pyrazole-3-yl] oxymethyl]-3-cyclopropylphenyl]-4-methyl-1,4-
dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 56'') 0.45 g.

Present compound 56

\[
\begin{align*}
\text{Br} & \quad \text{N} \quad \text{N} \\
& \quad \text{O} \quad \text{N} \quad \text{Me}
\end{align*}
\]

\(^1\text{H}-\text{NMR} \ (\text{CDCl}_3) \ 5(\text{ppm}) : \ 7.65 \ (1\text{H}, \ d, \ J = 2.4 \text{ Hz}), \ 7.53-7.44 \\
(4\text{H}, \ m), \ 7.41 \ (1\text{H}, \ t, \ J = 7.8 \text{ Hz}), \ 7.24 \ (2\text{H}, \ d, \ J = 7.8 \text{ Hz}), \\
5.83 \ (1\text{H}, \ d, \ J = 2.4 \text{ Hz}), \ 5.53 \ (2\text{H}, \ s), \ 3.61 \ (3\text{H}, \ s), \ 2.27- \\
2.20 \ (1\text{H}, \ m), \ 1.05-1.00 \ (2\text{H}, \ m), \ 0.80-0.76 \ (2\text{H}, \ m).
\]

Preparation example 57

A mixture of Present compound 18 0.31 g, 3-
methylthiophenylboronic acid 0.20 g, copper (II) acetate
0.33 g, pyridine 0.18 g, molecular sieve 4A 0.40 g and
acetonitrile 5 mL was stirred with heating under reflux for
four hours. To the reaction mixtures after standing to
cool was added water and the resulting mixtures were
extracted with ethyl acetate. The organic layers were
washed with water and saturated saline, and were dried over
anhydrous magnesium sulfate and were then concentrated
under reduced pressure. The resulting residues were
subjected to a silica gel column chromatography to give 1-
(2- { [1- (3-methyl thiophenyl) -lH-pyrazole-3 -yl] oxymethyl} -3-methylphenyl) -4-methyl -1,4-dihydrotetrazole -5-one

(hereinafter, referred to as 'Present compound 57') 0.18 g -

Present compound 57

\[
\text{MeS} \quad \text{N} \quad \text{N} \quad \text{O} \quad \text{Me}
\]

\[^1\text{H}-\text{NMR} \ (\text{CDC}_3) \ \delta \ (\text{ppm}): \ 7.66 \ (1\text{H}, \ d, J = 2.7 \ Hz), \ 7.49-7.48 \ (1\text{H}, \ m), \ 7.40-7.38 \ (2\text{H}, \ m), \ 7.33-7.24 \ (3\text{H}, \ m), \ 7.09-7.06 \ (1\text{H}, \ m), \ 5.81 \ (1\text{H}, \ d, J = 2.7 \ Hz), \ 5.34 \ (2\text{H}, \ s), \ 3.62 \ (3\text{H}, \ s), \ 2.57 \ (3\text{H}, \ s), \ 2.54 \ (3\text{H}, \ s).
\]

Preparation example 58

A mixture of 1- (2-bromomethyl-3-ethylphenyl) -4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 38) 0.30 g, 1- (4-methoxyphenyl) -1H-pyrazole-3 -ol (described in Reference Preparation example 26) 0.22 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were
then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{(1-{4-methoxyphenyl}-1H-pyrazole-3-yl}oxymethyl)-3-ethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as Present compound 58') 0.27 g.

Present compound 58

\[
\begin{align*}
\text{MeO} & \quad \text{Et} \\
\text{N} & \quad \text{O} \\
\text{N} & \quad \text{N} \\
\text{N} & \quad \text{N} \\
\end{align*}
\]

\[\text{Me}\]

\[\text{H-NMR (CDCl}_3\text{)} 5\text{ppm}: 7.57 \text{ (1H, d, } J = 2.4 \text{ Hz)}, 7.50-7.41 \text{ (4H, m)}, 7.27-7.24 \text{ (1H, m)}, 6.96-6.92 \text{ (2H, m)}, 5.76 \text{ (1H, d, } J = 2.4 \text{ Hz)}, 5.34 \text{ (2H, s)}, 3.83 \text{ (3H, s)}, 3.59 \text{ (3H, s)}, 2.91 \text{ (2H, q, } J = 7.6 \text{ Hz)}, 1.30 \text{ (3H, t, } J = 7.6 \text{ Hz}).
\]

Preparation example 59

A mixture of 1-(2-bromomethyl-3-cyclopropylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 35) 0.30 g, 1-{4-methoxyphenyl}-1H-pyrazole-3-ol (described in Reference Preparation example 26) 0.21 g, potassium carbonate 0.17 g and acetonitrile 10 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl
acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(1-(4-methoxyphenyl)-1H-pyrazole-3-yl)oxymethyl]-3-cyclopropylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 59') 0.25 g.

Present compound 59

![Chemical Structure](image)

1H-NMR (CDCl$_3$) δ(ppm): 7.57 (1H, d, J = 2.7 Hz), 7.50-7.46 (2H, m), 7.40 (1H, t, J = 8.0 Hz), 7.24 (2H, d, J = 8.0 Hz), 6.96-6.92 (2H, m), 5.77 (1H, d, J = 2.7 Hz), 5.53 (2H, s), 3.83 (3H, s), 3.59 (3H, s), 2.29-2.21 (1H, m), 1.05-1.00 (2H, m), 0.79-0.75 (2H, m).

Preparation example 60

A mixture of 1-(2-bromomethyl-3-cyclopropylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 35) 0.30 g, 1-(4-methylphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 27) 0.19 g, potassium carbonate 0.17 g and acetonitrile 10 mL was
stirred with heating under reflux for three hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(1-(4-methylphenyl)-1H-pyrazole-3-yl)oxymethyl]-3-cyclopropylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 60') 0.23 g.

Present compound 60

\[
\text{Me} \begin{array}{c}
\text{N} \\
\text{O} \\
\text{N} \\
\text{N} \\
\text{Me}
\end{array}
\]

\[^1H\text{-NMR} \text{(CDCl}_3\text{)} 5(\text{ppm}): 7.64 \ (1H, \ d, \ J = 2.4 \text{ Hz}), \ 7.45 \ (2H, d, \ J = 8.3 \text{ Hz}), \ 7.40 \ (1H, \ t, \ J = 7.8 \text{ Hz}), \ 7.25-7.19 \ (4H, \ m), \ 5.79 \ (1H, \ d, \ J = 2.4 \text{ Hz}), \ 5.54 \ (2H, \ s), \ 3.59 \ (3H, \ s), \ 2.36 \ (3H, \ s), \ 2.29-2.21 \ (1H, \ m), \ 1.05-1.00 \ (2H, \ m), \ 0.79-0.75 \ (2H, \ m).\]

Preparation example 61

A mixture of 1-(2-bromomethyl-3-ethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example
38) 0.30 g, 1-(4-methylphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 27) 0.26 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for two hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-([(1-(4-methylphenyl)-1H-pyrazole-3-yl)oxymethyl]-3-ethylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 61') 0.30 g.

Present compound 61

![Structure](image)

1H-NMR (CDCl$_3$) δ (ppm): 7.64 (1H, d, $J = 2.4$ Hz), 7.46-7.42 (4H, m), 7.27-7.20 (3H, m), 5.78 (1H, d, $J = 2.4$ Hz), 5.35 (2H, s), 3.59 (3H, s), 2.91 (2H, q, $J = 7.6$ Hz), 2.36 (3H, s), 1.30 (3H, t, $J = 7.6$ Hz).

[0686]

Preparation example 62
A mixture of 1-(2-bromomethyl-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 11) 0.30 g, 1-(4-methylphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 27) 0.17 g, potassium carbonate 0.16 g and acetonitrile 10 mL was stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(1-(4-methylphenyl)-1H-pyrazole-3-yl) oxymethyl]-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 62') 0.28 g.

Present compound 62

\[\text{H-NMR (CDCl}_3\text{)} 5(\text{ppm}): 7.79 (1\text{H, dd, } J = 7.6, 1.7 \text{ Hz}), 7.63 (1\text{H, d, } J = 2.7 \text{ Hz}), 7.46-7.44 (2\text{H, m}), 7.41-7.34 (2\text{H, m}), 7.23-7.19 (2\text{H, m}), 5.77 (1\text{H, d, } J = 2.7 \text{ Hz}), 5.54 (2\text{H, s}), 3.57 (3\text{H, s}), 2.36 (3\text{H, s}). \]
Preparation example 63

A mixture of Present compound 18 0.23 g, 2-methylthiophenylboronic acid 0.15 g, copper (II) acetate 0.24 g, pyridine 0.13 g, molecular sieve 4A 0.30 g and acetonitrile 5 mL was stirred with heating under reflux for 48 hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-([(1-(2-methylthiophenyl) -1H-pyrazole-3-yl] oxymethyl]-3-methylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 63') 0.10 g.

Present compound 63

\[
\begin{align*}
\text{H-NMR (CDCl}_3\text{)} & \delta (\text{ppm}) : 7.54 \ (1\text{H, d, } J = 2.4 \text{ Hz}),
7.40-7.28 \ (5\text{H, m}),
7.26-7.20 \ (2\text{H, m}),
5.80 \ (1\text{H, d, } J = 2.4 \text{ Hz}),
5.31 \ (2\text{H, s}),
3.58 \ (3\text{H, s}),
2.54 \ (3\text{H, s}),
2.36 \ (3\text{H, s}).
\end{align*}
\]
Preparation example 64

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 33) 0.28 g, 1-(2,3,4,5,6-pentafluorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 51) 0.18 g, potassium carbonate 0.20 g and acetonitrile 10 mL was stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-((1-(2,3,4,5,6-pentafluorophenyl)-1H-pyrazole-3-yl)oxymethyl)-3-methylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as "Present compound 64") 0.22 g.

Present compound 64

\[\text{H-NMR (CDCl}_3) \delta (\text{ppm}): 7.39-7.35 (3H, m), 7.24-7.21 (1H, m), \]
5.88 (1H, d, J = 2.7 Hz), 5.28 (2H, s), 3.65 (3H, s), 2.54 (3H, s).

Preparation example 65

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 33) 0.46 g, 1-(2-chlorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 46) 0.28 g, potassium carbonate 0.39 g and acetonitrile 10 mL was stirred with heating under reflux for six hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(1-(2-chlorophenyl)-1H-pyrazole-3-yl)oxymethyl]-3-methylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 65') 0.46 g.

Present compound 65

![Chemical structure](image)
1H-NMR (CDCl₃) δ ppm: 7.70 (1H, d, J = 2.7 Hz), 7.56 (1H, dd, J = 8.0, 1.5 Hz), 7.48 (1H, d, J = 8.0 Hz), 7.42-7.33 (3H, m), 7.28-7.23 (2H, m), 5.82 (1H, d, J = 2.7 Hz), 5.31 (2H, s), 3.61 (3H, s), 2.55 (3H, s).

Preparation example 66

A mixture of 1-(2-bromomethyl-3-ethoxyphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 26) 0.30 g, 1-(4-chlorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 24) 0.23 g, potassium carbonate 0.17 g and acetonitrile 10 mL was stirred with heating under reflux for three hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{1-(4-chlorophenyl)-1H-pyrazole-3-yl}oxymethyl)-3-ethoxyphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 66') 0.27 g.

Present compound 66
\(^{1}\)H-NMR (CDCl\(_3\)) δ (ρρτη): 7.63 (1H, d, J = 2.7 Hz), 7.54-7.50 (2H, m), 7.43 (1H, dd, J = 8.5, 8.0 Hz), 7.38-7.34 (2H, m), 7.06 (1H, d, J = 8.5 Hz), 7.02 (1H, d, J = 8.0 Hz), 5.80 (1H, d, J = 2.7 Hz), 5.45 (2H, s), 4.14 (2H, q, J = 7.0 Hz), 3.57 (3H, s), 1.43 (3H, t, J = 7.0 Hz).

Preparation example 67

A mixture of 1-(2-bromomethyl-3-ethoxyphenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 26) 0.30 g, 1-(4-fluorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 29) 0.21 g, potassium carbonate 0.17 g and acetonitrile 10 mL was stirred with heating under reflux for eight hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{1-(4-fluorophenyl)-1H-pyrazole-3-yl} oxymethyl)-3-ethoxyphenyl)-4-methyl-1,4-
dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 67') 0.22 g.

Present compound 67

\[
\begin{array}{c}
\text{F} \\
\text{N} \\
\text{N} \\
\text{O} \\
\text{Me}
\end{array}
\]

\[\text{EtO}\]

\[\text{O}\]

\[\text{N}\]

\[\text{N}\]</no-sec

\[1^H-NMR \ (CDCl_3) 5(\text{ppm}) : 7.59 \ (1H, \ d, \ J = 2.4 \text{ Hz}), \ 7.56-7.51 \ (2H, \ m), \ 7.43 \ (1H, \ t, \ J = 8.2 \text{ Hz}), \ 7.13-7.01 \ (4H, \ m), \ 5.78 \ (1H, \ d, \ J = 2.4 \text{ Hz}), \ 5.45 \ (2H, \ s), \ 4.14 \ (2H, \ q, \ J = 6.9 \text{ Hz}), \ 3.57 \ (3H, \ s), \ 1.43 \ (3H, \ t, \ J = 7.0 \text{ Hz}).\]

Preparation example 68

A mixture of 1-(2-bromomethyl-3-ethoxyphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 26) 0.30 g, 1-(4-methoxyphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 26) 0.23 g, potassium carbonate 0.17 g and acetonitrile 10 mL was stirred with heating under reflux for three hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel
column chromatography to give 1-(2-{1-(4-methoxyphenyl)-1H-pyrazole-3-yl}oxymethyl)-3-ethoxyphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 68') 0.18 g.

Present compound 68

\[
\begin{align*}
\text{MeO-} & \quad \text{N} \quad \text{N} \\
& \quad \text{O} \\
& \quad \text{N} \quad \text{N} \quad \text{O} \\
& \quad \text{Me}
\end{align*}
\]

\(^1H\text{-NMR} \ (\text{CDCl}_3)\ 5\text{ppm}:\ 7.56\ (1H, d, J = 2.4\ Hz),\ 7.50-7.46\ (2H, m),\ 7.43\ (1H, dd, J = 8.5, 8.0\ Hz),\ 7.06\ (1H, d, J = 8.5\ Hz),\ 7.02\ (1H, d, J = 8.0\ Hz),\ 6.95-6.91\ (2H, m),\ 5.75\ (1H, d, J = 2.4\ Hz),\ 5.45\ (2H, s),\ 4.14\ (2H, q, J = 7.0\ Hz),\ 3.83\ (3H, s),\ 3.55\ (3H, s),\ 1.43\ (3H, t, J = 7.0\ Hz).
\]

Preparation example 69

A mixture of 1-(2-bromomethyl-3-ethoxyphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 26) 0.30 g, 1-(4-bromophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 37) 0.28 g, potassium carbonate 0.17 g and acetonitrile 10 mL was stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and
saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(1-(4-bromophenyl)-1H-pyrazole-3-yl)oxy]ethyl)-3-ethoxyphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 69') 0.20 g. Present compound 69

\[
\begin{align*}
&\text{Br} \\
&\text{N} \\
&\text{O} \\
&\text{N-N} \\
&\text{O} \\
&\text{Me}
\end{align*}
\]

\[^{-}\text{NMR} \quad (\text{CDCl}_3) \ \delta \ (\text{ppm}) : 7.64 \ (1H, \ d, \ J = 2.7 \ Hz), \ 7.53-7.41 \ (5H, \ m), \ 7.06 \ (1H, \ d, \ J = 8.2 \ Hz), \ 7.02 \ (1H, \ d, \ J = 8.0 \ Hz), \ 5.81 \ (1H, \ d, \ J = 2.7 \ Hz), \ 5.45 \ (2H, \ s), \ 4.14 \ (2H, \ q, \ J = 7.0 \ Hz), \ 3.57 \ (3H, \ s), \ 1.43 \ (3H, \ t, \ J = 7.0 \ Hz).
\]

Preparation example 70

A mixture of 1-(2-bromopropyl)-3-ethoxyphenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 26) 0.30 g, 1-phenyl-1H-pyrazole-3-ol (described in Reference Preparation example 25) 0.19 g, potassium carbonate 0.17 g and acetonitrile 10 mL was stirred with heating under reflux for three hours. To the reaction mixtures after standing to cool was added water and the
resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(1-phenyl-1H-pyrazole-3-yl)oxymethyl]-3-ethoxyphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as "Present compound 70") 0.22 g.

Present compound 70

![Structural formula]

^1H-NMR (CDCl$_3$) δ (ppm): 7.67 (1H, d, $J = 2.2$ Hz), 7.58 (2H, d, $J = 7.5$ Hz), 7.45-7.39 (3H, m), 7.20 (1H, t, $J = 7.5$ Hz), 7.07 (1H, d, $J = 8.5$ Hz), 7.02 (1H, d, $J = 8.0$ Hz), 5.79 (1H, d, $J = 2.2$ Hz), 5.47 (2H, s), 4.15 (2H, q, $J = 7.0$ Hz), 3.55 (3H, s), 1.44 (3H, t, $J = 7.0$ Hz).

Preparation example 71

A mixture of 1-(2-bromomethyl-3-methylthiophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 30) 0.20 g, 1-(4-chlorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 24) 0.14 g,
potassium carbonate 0.20 g and acetonitrile 10 mL was stirred with heating under reflux for three hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{[1-[(4-chlorophenyl)-1H-pyrazole-3-yl] oxymethyl }-3-methyl thienophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as "Present compound 71") 0.24 g.

Present compound 71

H-NMR (CDCl₃) 5 (ppm): 7.64 (1H, d, J = 2.7 Hz), 7.54-7.46 (4H, m), 7.38-7.34 (2H, m), 7.23 (1H, dd, J = 6.2, 2.8 Hz), 5.84 (1H, d, J = 2.7 Hz), 5.46 (2H, s), 3.60 (3H, s), 2.54 (3H, s).

Preparation example 72

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis
example 33) 0.30 g, 1-(3-chlorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 47) 0.21 g, potassium carbonate 0.29 g and acetonitrile 10 mL was stirred with heating under reflux for six hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-(1-(3-chlorophenyl)-1H-pyrazole-3-yl)oxymethyl)-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 72') 0.29 g.

Present compound 72

\[
\begin{align*}
\text{Cl} & \quad \text{N} \quad \text{N} \\
\text{O} & \quad \text{N} \quad \text{N} - \text{Me}
\end{align*}
\]

\(^1H\)-NMR (CDCl\(_3\)) 6(ppm): 7.65 (1H, d, J = 2.7 Hz), 7.60 (1H, t, J = 2.1 Hz), 7.43-7.36 (3H, m), 7.30 (1H, t, J = 8.1 Hz), 7.27-7.23 (1H, m), 7.16-7.14 (1H, m), 5.81 (1H, d, J = 2.7 Hz), 5.34 (2H, s), 3.63 (3H, s), 2.55 (3H, s).

[0697]

Preparation example 73
A mixture of 1-(2-bromomethyl-3,6-dimethylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Reference preparation example 79) 0.62 g, 1-(4-chlorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 24) 0.41 g, potassium carbonate 0.35 g and acetonitrile 10 mL was stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{1-(4-chlorophenyl)-1H-pyrazole-3-yl} oxymethyl)-3,6-dimethylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 73') 0.85 g.

Present compound 73

\[
\text{Me} \quad \text{N=N} \quad \text{O} \quad \text{Me}
\]

\[
\text{Cl} \quad \text{N} \quad \text{N} \quad \text{O} \quad \text{N} \quad \text{N} \quad \text{O} \quad \text{N} \quad \text{N}
\]

\(^1\text{H}-\text{NMR} \ (\text{CDCl}_3) \ 5 \text{(ppm)}: \ 7.64 \ (1\text{H}, \ d, \ J = 2.7 \text{ Hz}), \ 7.52-7.48 \ (2\text{H}, \ m), \ 7.37-7.33 \ (2\text{H}, \ m), \ 7.29 \ (1\text{H}, \ d, \ J = 8.0 \text{ Hz}), \ 7.24 \ (1\text{H}, \ d, \ J = 8.0 \text{ Hz}), \ 5.81 \ (1\text{H}, \ d, \ J = 2.7 \text{ Hz}), \ 5.26 \ (1\text{H}, \ d, \ J = 11.9 \text{ Hz}), \ 5.15 \ (1\text{H}, \ d, \ J = 11.9 \text{ Hz}), \ 3.59 \ (3\text{H}, \ s), \ 2.49
Preparation example 74

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 33) 0.30 g, 1-(4-trifluoroacetylphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 58) 0.29 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for five hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-([1-(4-trifluoroacetylphenyl)-1H-pyrazole-3-yl]oxymethyl)-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as "Present compound 74") 0.17 g.

Present compound 74

![Chemical Structure](image-url)
\[1^H\text{-NMR (CDCl}_3\] 5(ppm) : 8.14 (2H, d, J = 8.7 Hz), 7.81 (1H, d, J = 2.4 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.43-7.39 (2H, m), 7.29-7.24 (1H, m), 5.93 (1H, d, J = 2.4 Hz), 5.37 (2H, s), 3.65 (3H, s), 2.57 (3H, s).

[0699]

Preparation example 75

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 33) 0.30 g, 1-(4-nitrophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 56) 0.22 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for five hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[[1-(4-nitrophenyl)-1H-pyrazole-3-yl]oxymethyl]-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as "Present compound 75") 0.09 g.

Present compound 75
Preparation example 76

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydrorotetrazole-5-one (described in Synthesis example 33) 0.30 g, 1-(2-fluorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 48) 0.20 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for five hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{1-(2-fluorophenyl)-1H-pyrazole-3-yl}oxymethyl)-3-methylphenyl)-4-methyl-1,4-dihydrorotetrazole-5-one (hereinafter, referred to as
'Present compound 76' 0.19 g.

Present compound 76

\[
\text{Me} \quad \text{F} \\
\begin{array}{c}
\text{N} \\
\text{N} \\
\text{N} \\
\text{N}
\end{array}
\]

\[
\text{O} \\
\text{Me}
\]

\[^1H-NMR \text{ (CDCl}_3) \delta \text{ (ppm): } 7.85-7.79 \text{ (2H, m), } 7.42-7.38 \text{ (2H, m), } 7.28-7.15 \text{ (4H, m), } 5.83 \text{ (1H, d, } J = 2.5 \text{ Hz), } 5.33 \text{ (2H, s), } 3.62 \text{ (3H, s), } 2.56 \text{ (3H, s).} \]

[0701]

Preparation example 77

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 33) 0.30 g, 1-(2-methylphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 49) 0.19 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{\{1-(2-methylphenyl)-1H-pyrazole-3-yl}oxymethyl}-3-methylphenyl)-4-methyl-1,4-
dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 77') 0.27 g.

Present compound 77

\[
\begin{align*}
\text{Me} & \quad \text{Me} \\
\text{N} & \quad \text{N} \\
\text{O} &
\end{align*}
\]

\[1^H\text{-NMR} (\text{CDCl}_3) \text{ ppm}: 7.41-7.36 (2H, m), 7.33 (1H, d, J = 2.5 Hz), 7.30-7.23 (5H, m), 5.76 (1H, d, J = 2.5 Hz), 5.30 (2H, s), 3.55 (3H, s), 2.55 (3H, s), 2.27 (3H, s).
\]

Preparation example 78

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 33) 0.30 g, 1-(2-methoxyphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 50) 0.20 g, potassium carbonate 0.19 g and acetonitrile 10 mL was stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{1-(2-methoxyphenyl)-
1H-pyrazole-3-yl oxymethyl)-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 78') 0.23 g.

Present compound 78

\[
\begin{align*}
&\text{H} &\text{N} &\text{N} \\
&\text{Me} &\text{O} &\text{Me} \\
&\text{O} &\text{N} &\text{N} &\text{O} \\
&\text{Me} & & &
\end{align*}
\]

\[\text{H-NMR (CDCl}_3\text{)} 5(\text{ppm}): 7.89 (1H, d, J = 2.5 \text{ Hz}), 7.70 (1H, dd, J = 8.0, 1.6 \text{ Hz}), 7.41-7.37 (2H, m), 7.26-7.18 (2H, m), 7.06-6.99 (2H, m), 5.76 (1H, d, J = 2.5 \text{ Hz}), 5.32 (2H, s), 3.88 (3H, s), 3.61 (3H, s), 2.55 (3H, s).
\]

Preparation example 79

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 33) 0.30 g, 1-(2-bromophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 64) 0.25 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for three hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure.
The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{[1-(2-bromophenyl)-1H-pyrazole-3-yl]oxymethyl}-3-methylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as Present compound 79') 0.34 g.

Present compound 79

![Chemical structure](image)

1H-NMR (CDCl$_3$) 5(ppm): 7.67 (1H, dd, J = 8.1, 1.0 Hz), 7.63 (1H, d, J = 2.7 Hz), 7.50-7.48 (1H, m), 7.42-7.38 (3H, m), 7.28-7.19 (2H, m), 5.82 (1H, d, J = 2.7 Hz), 5.31 (2H, s), 3.61 (3H, s), 2.55 (3H, s).

[0704]

Preparation example 80

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 33) 0.30 g, 1-(3-fluorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 72) 0.19 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for five hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and
saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{[1-(3-fluorophenyl)-1H-pyrazole-3-yl]oxymethyl}-3-methylphenyl)-4-methyl-1,4-dihydrortetrazole-5-one (hereinafter, referred to as 'Present compound 80') 0.34 g.

Present compound 80

![Chemical structure of the compound]

1H-NMR (CDCl$_3$) 5(ppm): 7.67 (1H, d, $J = 2.7$ Hz), 7.42-7.24 (6H, m), 6.92-6.87 (1H, m), 5.83 (1H, d, $J = 2.7$ Hz), 5.34 (2H, s), 3.64 (3H, s), 2.56 (3H, s).

Preparation example 81

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydrortetrazole-5-one (described in Synthesis example 33) 0.30 g, 1-(3-methylphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 70) 0.19 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for five hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl
acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{[1-(3-methylphenyl)-1H-pyrazole-3-yl]oxymethyl}-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 81') 0.28 g.

Present compound 81

\[
\begin{align*}
\text{Me} & \quad \text{N} \quad \text{N} \\
\text{Me} & \quad \text{Me} \\
\text{N} & \quad \text{N} \\
& \quad \text{O}
\end{align*}
\]

\[\text{H-NMR (CDCl}_3)\] 5(ppm): 7.67 (1H, d, J = 2.7 Hz), 7.42-7.24 (6H, m), 7.02 (1H, d, J = 7.3 Hz), 5.80 (1H, d, J = 2.7 Hz), 5.34 (2H, s), 3.61 (3H, s), 2.56 (3H, s), 2.41 (3H, s).

Preparation example 82

A mixture of 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 33) 0.30 g, 1-(3-bromophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 66) 0.25 g, potassium carbonate 0.18 g and acetonitrile 10 mL was stirred with heating under reflux for five hours. To the reaction mixtures after standing to cool was added water
and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1- (2- (1H-pyrazole-3-yl) oxymethyl) -3-methylphenyl) -4-methyl-1, 4-dihydr
tetrazole-5-one (hereinafter, referred to as 'Present compound 82') 0.37 g.

Present compound 82

\[
\text{H}-\text{NMR (CDCl}_3\text{) } \delta (\text{ppm}) : 7.76 \ (1H, \ t, \ J = 1.9 \text{ Hz}), \ 7.66 \ (1H, \ d, \ J = 2.7 \text{ Hz}), \ 7.49-7.46 \ (1H, \ m), \ 7.43-7.38 \ (2H, \ m), \ 7.33-7.24 \ (3H, \ m), \ 5.83 \ (1H, \ d, \ J = 2.7 \text{ Hz}), \ 5.33 \ (2H, \ s), \ 3.64 \ (3H, \ s), \ 2.56 \ (3H, \ s).
\]

Preparation example 83

A mixture of 1- (2-bromomethyl-3-methylphenyl) -4-methyl-1, 4-dihydr
tetrazole-5-one (described in Synthesis example 33) 0.30 g, 1- (3-methoxyphenyl) -1H-pyrazole-3-ol (described in Reference Preparation example 68) 0.20 g, potassium carbonate 0.18 g and acetonitrile 10 mL was
stirred with heating under reflux for five hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{1-(3-methoxyphenyl)-1H-pyrazole-3-yl}oxymethyl)-3-methylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 83') 0.19 g.

![Chemical Structure](image)

1H-NMR (CDCl₃) δ (ppm): 7.67 (1H, d, J = 2.5 Hz), 7.42-7.37 (2H, m), 7.30 (1H, t, J = 8.2 Hz), 7.27-7.22 (1H, m), 7.17 (1H, t, J = 2.2 Hz), 7.11 (1H, dd, J = 8.0, 1.8 Hz), 6.75 (1H, dd, J = 8.2, 2.3 Hz), 5.80 (1H, d, J = 2.5 Hz), 5.34 (2H, s), 3.87 (3H, s), 3.62 (3H, s), 2.57 (3H, s).

Preparation example 84

A mixture of 1-(2-bromomethyl-3-methyl-4-fluorophenyl)-4-methyl-1,4-dihydropyrazole-5-one
(described in Reference Preparation example 92) 0.72 g, 1-(4-chlorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 24) 0.47 g, potassium carbonate 0.40 g and acetonitrile 12 mL was stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[[1-(4-chlorophenyl)-1H-pyrazole-3-yl] oxymethyl]-3-methyl-4-fluorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 84') 0.89 g.

Present compound 84

\[
\text{F} \\
\text{Cl} \\
\text{Me} \\
\text{N} \quad \text{O} \\
\text{N} \quad \text{N} \\
\text{O} \\
\text{Me} \\
\text{N} \quad \text{N}
\]

\(^1\text{H}-\text{NMR} \quad (\text{CDCl}_3 \quad \delta \quad \text{ppm}): 7.65 \ (1\text{H}, \text{ d}, \text{ J} = 2.7 \text{ Hz}), 7.51-7.48 \ (2\text{H}, \text{ m}), 7.39-7.35 \ (2\text{H}, \text{ m}), 7.26-7.23 \ (1\text{H}, \text{ m}), 7.18 \ (1\text{H}, \text{ t}, \text{ J} = 8.7 \text{ Hz}), 5.82 \ (1\text{H}, \text{ d}, \text{ J} = 2.7 \text{ Hz}), 5.31 \ (2\text{H}, \text{ s}), 3.63 \ (3\text{H}, \text{ s}), 2.45 \ (3\text{H}, \text{ d}, \text{ J} = 2.4 \text{ Hz}).
\]
Preparation example 85

A mixture of 1-(2-bromomethyl-3-methyl-6-fluorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Reference Preparation example 86) 0.66 g, 1-(4-chlorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 24) 0.43 g, potassium carbonate 0.37 g and acetonitrile 10 mL was stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(1-(4-chlorophenyl)-1H-pyrazole-3-yl)oxymethyl]-3-methyl-6-fluorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 85') 0.82 g.

Present compound 85

\[
\begin{align*}
\text{Cl} & \quad \text{Me} \\
\text{N} & \quad \text{O} \\
\text{F} & \quad \text{N-N} \\
\text{Me} & \quad \text{N} \\
\end{align*}
\]

\(^1\text{H-NMR} \ (\text{CDCl}_3) \delta (\rho \rho \eta) : 7.65 \ (1\text{H, d, } J = 2.7 \text{ Hz}), 7.52-7.48 \ (2\text{H, m}), 7.39-7.36 \ (3\text{H, m}), 7.18 \ (1\text{H, t, } J = 8.7 \text{ Hz}), 5.82
\]
Preparation example 86

A mixture of 1-(2-bromomethyl-3-chlorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 6) 0.30 g, 1-(2-methoxyphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 50) 0.20 g, potassium carbonate 0.21 g and acetonitrile 10 mL was stirred with heating under reflux for seven hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(1-(2-methoxyphenyl)-1H-pyrazole-3-yl)oxymethyl)-3-chlorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 86') 0.25 g.

Present compound 86
1H-NMR (CDCl$_3$) δ (ppm): 7.89 (1H, d, $J = 2.7$ Hz), 7.71 (1H, dd, $J = 8.0, 1.6$ Hz), 7.60 (1H, dd, $J = 8.0, 1.6$ Hz), 7.45 (1H, t, $J = 8.0$ Hz), 7.37 (1H, dd, $J = 8.0, 1.6$ Hz), 7.21 (1H, ddd, $J = 8.6, 7.0, 1.2$ Hz), 7.05 (1H, td, $J = 7.7, 1.3$ Hz), 7.01 (1H, dd, $J = 8.2, 1.1$ Hz), 5.75 (1H, d, $J = 2.7$ Hz), 5.53 (2H, s), 3.88 (3H, s), 3.58 (3H, s).

[0711]

Preparation example 87

A mixture of 1-(2-bromomethyl-3-methoxyphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 17) 0.30 g, 1-(2-methoxyphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 50) 0.20 g, potassium carbonate 0.21 g and acetonitrile 10 mL was stirred with heating under reflux for seven hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure.

The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{[1-(2-methoxyphenyl)-1H-pyrazole-3-yl]oxymethyl}-3-methoxyphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 87') 0.21 g.

Present compound 87
1H-NMR (CDCl$_3$) δ (ppm): 7.88 (1H, d, J = 2.5 Hz), 7.72 (1H, dd, J = 8.1, 1.7 Hz), 7.46 (1H, t, J = 8.1 Hz), 7.20 (1H, ddd, J = 8.6, 7.0, 1.3 Hz), 7.09-6.99 (4H, m), 5.75 (1H, d, J = 2.5 Hz), 5.43 (2H, s), 3.92 (3H, s), 3.88 (3H, s), 3.56 (3H, s).

[0712]

Preparation example 88

A mixture of 1-(2-bromomethyl-3-ethylphenyl) -4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 38) 0.30 g, 1-(2-methoxyphenyl) -1H-pyrazole-3 -ol (described in Reference Preparation example 50) 0.20 g, potassium carbonate 0.21 g and acetonitrile 10 mL was stirred with heating under reflux for seven hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{[1-(2-methoxyphenyl) -1H-pyrazole-3 -yl] oxymethyl} -3-ethylphenyl) -4-methyl-1, 4-
dihydrotetrazole-5-one (hereinafter, referred to as "Present compound 88") 0.27 g.

Present compound 88

\[\text{H-NMR (CDCl}_3\text{) } \delta (\text{ppm}): 7.89 (1H, d, } J = 2.5 \text{ Hz), 7.71 (1H, dd, } J = 8.0, 1.6 \text{ Hz), 7.47-7.42 (2H, m), 7.28-7.19 (2H, m), 7.07-7.00 (2H, m), 5.76 (1H, d, } J = 2.5 \text{ Hz), 5.33 (2H, s), 3.89 (3H, s), 3.60 (3H, s), 2.90 (2H, q, } J = 7.6 \text{ Hz), 1.30 (3H, t, } J = 7.6 \text{ Hz).} \]

[0713]

Preparation example 89

A mixture of 1- (2-bromomethyl-3-cyclopropylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 35) 0.30 g, 1-(2-methoxyphenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 50) 0.19 g, potassium carbonate 0.20 g and acetonitrile 10 mL was stirred with heating under reflux for seven hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure.
The resulting residues were subjected to a silica gel column chromatography to give 1-(2-\{1-(2-methoxyphenyl)-1H-pyrazole-3-yl\}oxymethyl)-3-cyclopropylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 89') 0.23 g.

Present compound 89

![Chemical Structure](image)

1H-NMR (CDCl$_3$) δ (ppm): 7.90 (1H, d, J = 2.5 Hz), 7.72 (1H, dd, J = 5.9, 1.7 Hz), 7.41 (1H, t, J = 7.9 Hz), 7.25-7.19 (3H, m), 7.07-7.00 (2H, m), 5.77 (1H, d, J = 2.5 Hz), 5.52 (2H, s), 3.89 (3H, s), 3.60 (3H, s), 2.25 (1H, tt, J = 8.5, 3.9 Hz), 1.02 (2H, ddd, J = 9.7, 5.1, 3.4 Hz), 0.79-0.75 (2H, m).

[0714]

Preparation example 90

A mixture of Present compound 18 0.90 g, 4-ethylphenylboronic acid 0.56 g, copper (II) acetate 0.85 g, pyridine 0.53 mL, molecular sieve 4A 1.00 g and acetonitrile 15 mL was stirred with heating under reflux for 10 hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were
washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-

\[\text{1-} \{ \text{2-} \{ \text{1-} \{ \text{4-ethylphenyl-1H-pyrazole-3-yl oxymethyl} \text{-3-methylphenyl} \text{-4-methyl-1,4-dihydrortetrazole-5-one} \text{ (hereinafter, referred to as 'Present compound 90') \}} \text{, 0.39 g} \]

Present compound 90

\[
\text{Et}-\text{N} \quad \text{Me}
\]

\[\text{N} \quad \text{N} \quad \text{O} \quad \text{N} \quad \text{N} \quad \text{Me} \]

\[^{1}H-\text{NMR (CDCl}_3 \text{) } \delta \text{ (ppm): 7.64 (1H, d, } J = 2.5 \text{ Hz), 7.47 (2H, d, } J = 7.6 \text{ Hz), 7.41-7.37 (2H, m), 7.26-7.22 (3H, m), 5.78 (1H, d, } J = 2.5 \text{ Hz), 5.33 (2H, s), 3.61 (3H, s), 2.66 (2H, q, } J = 7.6 \text{ Hz), 2.56 (3H, s), 1.25 (3H, t, } J = 7.6 \text{ Hz).} \]

Preparation example 91

A mixture of Present compound 18 0.90 g, 4-trifluoromethylphenylboronic acid 0.71 g, copper (II) acetate 0.85 g, pyridine 0.53 mL, molecular sieve 4A 1.00 g and acetonitrile 15 mL was stirred with heating under reflux for 10 hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures
were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-{(1- (4-trifluoromethylphenyl)-1H-pyrazole-3-yl)oxymethyl}-3-methylphenyl)-4-methyl-1, 4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 91') 0.33 g.

Present compound 91

\[
\begin{array}{c}
\text{F}_3\text{C} \quad \text{N} \quad \text{O} \\
\text{Me} \quad \text{N} \quad \text{N} \\
\text{N} \quad \text{N} \\
\text{Me}
\end{array}
\]

\[\text{H-NMR (CDCl}_3\text{)} 5(\text{ppm}): 7.75 (1\text{H, d, } J = 2.3 \text{ Hz}), 7.67 (4\text{H, s}), 7.43-7.38 (2\text{H, m}), 7.28-7.25 (1\text{H, m}), 5.88 (1\text{H, d, } J = 2.3 \text{ Hz}), 5.35 (2\text{H, s}), 3.64 (3\text{H, s}), 2.57 (3\text{H, s}).\]

Preparation example 92

A mixture of Present compound 18 0.60 g, 1-naphthylboronic acid 0.45 g, copper (II) acetate 0.57 g, pyridine 0.36 mL, molecular sieve 4A 1.00 g and acetonitrile 15 mL was stirred with heating under reflux for 9 hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were
extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[(1-(1-naphthyl)-1H-pyrazole-3-yl)oxymethyl]-3-methylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 92') 0.28 g.

Present compound 92

\[\text{[0717]} \]

\[^1\text{H-NMR (CDCl}_3 \] \(\delta\): 7.98 (1H, d, J = 1.6 Hz), 7.90-7.88 (2H, m), 7.84-7.82 (2H, m), 7.76 (1H, dd, J = 8.8, 1.9 Hz), 7.51 (1H, dd, J = 7.9, 7.0 Hz), 7.45 (1H, dd, J = 8.0, 6.9 Hz), 7.41-7.40 (2H, m), 7.27-7.26 (1H, m), 5.87 (1H, d, J = 2.5 Hz), 5.39 (2H, s), 3.60 (3H, s), 2.59 (3H, s).

Preparation example 93

A mixture of Present compound 18 1.00 g, 5-chloro-2-methoxyphenylboronic acid 0.78 g, copper (II) acetate 0.98 g, pyridine 0.59 mL, molecular sieve 4A 1.50 g and acetonitrile 10 mL was stirred with heating under reflux
for 20 hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-[[1-(5-chloro-2-methoxyphenyl)-1H-pyrazole-3-yl]oxymethyl]-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (hereinafter, referred to as 'Present compound 93') 0.17 g.

Present compound 93

\[
\begin{align*}
\text{H-NMR (CDCl}_3\text{)} & : 7.94 (1H, d, J = 2.7 \text{ Hz}), 7.74 (1H, d, J = 2.5 \text{ Hz}), 7.41-7.39 (2H, m), 7.27-7.25 (1H, m), 7.14 (1H, dd, J = 8.8, 2.6 \text{ Hz}), 6.92 (1H, d, J = 8.7 \text{ Hz}), 5.77 (1H, d, J = 2.5 \text{ Hz}), 5.32 (2H, s), 3.88 (3H, s), 3.65 (3H, s), 2.56 (3H, s).
\end{align*}
\]

Preparation example 94

A mixture of Present compound 18 1.00 g, 2-ethoxyphenylboronic acid 0.70 g, copper (II) acetate 0.98 g,
pyridine 0.59 mL, molecular sieve 4A 1.50 g and acetonitrile 15 mL was stirred with heating under reflux for 10 hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1- (2-{(1- (2-ethoxyphenyl) -1H-pyrazole-3 -yl) oxymethyl }-3- methylphenyl) -4-methyl -1,4-dihydrotetrazole -5-one (hereinafter, referred to as "Present compound 94") 0.39 g.

Present compound 94

\[
\begin{align*}
\text{N} & \text{N} \\
\text{N} & \text{O} \\
\text{Me} & \text{Me} \\
\text{OEt} & \\
\end{align*}
\]

\[^{1}H\text{-NMR (CDCl}_3\text{)} \delta : 7.98 (1H, d, J = 2.7 Hz), 7.73 (1H, dd, J = 8.0, 1.7 Hz), 7.41-7.39 (2H, m), 7.27-7.25 (1H, m), 7.17 (1H, ddd, J = 8.7, 7.0, 1.2 Hz), 7.03 (1H, td, J = 7.7, 1.2 Hz), 6.99 (1H, dd, J = 8.2, 1.2 Hz), 5.76 (1H, d, J = 2.7 Hz), 5.32 (2H, s), 4.10 (2H, q, J = 7.0 Hz), 3.62 (3H, s), 2.56 (3H, s), 1.43 (3H, t, J = 7.0 Hz).
\]
Preparation example 95

A mixture of Present compound 18 0.80 g, 2-isopropoxyphenylboronic acid 0.60 g, copper (II) acetate 0.76 g, pyridine 0.50 mL, molecular sieve 4A 1.00 g and acetonitrile 15 mL was stirred with heating under reflux for 10 hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give. 1-(2-[(1-(2-isopropoxyphenyl)-1H-pyrazole-3-yl) oxymethyl]-3-methylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 95') 0.31 g.

Present compound 95

\[
\text{\begin{array}{c}
\text{\includegraphics[width=2cm]{compound_95.png}}
\end{array}}
\]

\(^1\text{H-NMR (CDCl}_3\text{)}\) \(\delta\): 7.98 (1H, d, \(J = 2.4\ \text{Hz}\)), 7.72 (1H, dd, \(J = 8.0, 1.7\ \text{Hz}\)), 7.41-7.39 (2H, m), 7.27-7.24 (1H, m), 7.16 (1H, td, \(J = 7.6, 1.5\ \text{Hz}\)), 7.04-6.99 (2H, m), 5.75 (1H, d, \(J = 2.7\ \text{Hz}\)), 5.32 (2H, s), 4.55 (1H, sept), 3.61 (3H, s),
2.56 (3H, s), 1.33 (6H, d, J = 6.3 Hz).

Preparation example 96

A mixture of Present compound 18 1.00 g, 4-chloro-2-methoxyphenylboronic acid 0.78 g, copper (II) acetate 0.98 g, pyridine 0.59 mL, molecular sieve 4A 1.50 g and acetonitrile 15 mL was stirred with heating under reflux for 15 hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-

(2-[(1-(4-chloro-2-methoxyphenyl)-1H-pyrazole-3-yl)oxymethyl]-3-methylphenyl)-4-methyl-1,4-
dihydotetrazole-5-one (hereinafter, referred to as 'Present compound 96') 0.15 g.

Present compound 96

\[^1 \text{H-NMR (CDCl}_3 \text{)} \delta : 7.87 (1H, d, J = 2.5 \text{ Hz}), 7.65 (1H, d, J = 8.5 \text{ Hz}), 7.42-7.37 (2H, m), 7.26-7.24 (1H, m), 7.03 (1H, \]
Preparation example 97

A mixture of Present compound 18 1.00 g, 3-chloro-2-methoxyphenylboronic acid 0.78 g, copper (II) acetate 0.98 g, pyridine 0.59 mL, molecular sieve 4A 1.50 g and acetonitrile 15 mL was stirred with heating under reflux for 48 hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-
(2- { (1-(3-chloro-2-methoxyphenyl)-1H-pyrazole-3-yl) oxymethyl} -3-methylphenyl)-4-methyl-1, 4-dihydropyrazole-5-one (hereinafter, referred to as 'Present compound 97') 0.10 g.
\(^1H - NMR \ (CDCl_3) \ \delta : \ 7.95 \ (1H, \ d, \ J = 2.5 \ Hz), \ 7.61 \ (1H, \ dd, \ J = 8.1, \ 1.7 \ Hz), \ 7.43 - 7.38 \ (2H, \ m), \ 7.28 - 7.23 \ (2H, \ m), \ 7.13 \ (1H, \ t, \ J = 8.1 \ Hz), \ 5.83 \ (1H, \ d, \ J = 2.5 \ Hz), \ 5.33 \ (2H, \ s), \ 3.68 \ (3H, \ s), \ 3.61 \ (3H, \ s), \ 2.56 \ (3H, \ s). \)

Next, the Synthesis examples for preparing Present tetrazolinone compound X and Present tetrazolinone compound Y are shown below.

Synthesis example 1

Anhydrous aluminium chloride 21.9 g was added to N,N-dimethylformamide 250 mL under ice-cooling, and the mixtures were stirred for fifteen minutes. Thereto was added sodium azide 10.7 g and the mixtures were stirred for fifteen minutes. Thereto was then added 1-fluoro-3-isocyanato-2-methylbenzene 22.5 g and the resulting mixtures were heated at 80°C for three and a half hours. After cooling, the reaction solutions were added to a mixture of sodium nitrite 34 g, water 2 L and ice 500 g with stirring. The mixtures were acidified with 10% hydrochloric acid and were extracted with ethyl acetate. The organic layers were washed with water and saturated saline and then were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure to give 1-(2-methyl-3-fluorophenyl)-1,4-dihydrotetrazole-5-one 27.5
1-(2-methyl-3-fluorophenyl)-1,4-dihydrotetrazole-5-one

\[
\begin{align*}
\text{F} & \\
\text{Me} & \\
\text{N} & \\
\text{N} & \\
\text{N} & \\
\text{N} & \\
\text{H} & \\
\end{align*}
\]

\(^1\text{H-NMR } (\text{CDCl}_3) \delta (\text{ppm}) : 2.21 (3\text{H, s}), 7.07-7.36 (3\text{H, m}), 12.93 (1\text{H, s}).

Synthesis example 2

To a mixture of 1-(2-methyl-3-fluorophenyl)-1,4-dihydrotetrazole-5-one (described in Synthesis example 1) 10.00 g and N,N-dimethylformamide 100 mL was added 60% sodium hydride 2.47 g under ice-cooling. The reaction mixtures were raised to room temperature and were stirred for one hour. To the reaction mixtures was added methyl iodide 3.5 mL under ice-cooling. The mixtures were raised to room temperature and were stirred for fourteen hours. To the reaction mixtures was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with 10% hydrochloric acid, water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-methyl-3-fluorophenyl)-4-
methyl-1, 4-dihydrotetrazole-5-one 2.19 g.

1-(2-methyl-3-fluorophenyl)-4-methyl-1, 4-
dihydrotetrazole-5-one

\[
\begin{array}{c}
\text{F} \\
\text{Me} \\
\text{N} \quad \text{N} \\
\text{N} \quad \text{N} \\
\text{Me}
\end{array}
\]

\[^1\text{H}-\text{NMR (CDCl}_3\text{)} \quad 5(\text{ppm}): \quad 2.19 \text{ (3H, s)}, \quad 3.70 \text{ (3H, s)}, \quad 7.16-7.20 \text{ (2H, m)}, \quad 7.29 \text{ (1H, dt, J = 5.9, 8.3 Hz)}.\]

[0725]

Synthesis example 3

To a mixture of 1-(2-methyl-3-fluorophenyl)-4-methyl-1, 4-dihydrotetrazole-5-one (described in Synthesis example 2) 2.19 g, 1,1'-azobis (cyclohexane-1-carbonitrile) 0.52 g, N-bromosuccinimide 2.16 g and chlorobenzene 40 mL was stirred with heating under reflux for five hours. After cooling the mixtures, to the reaction solutions was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-bromomethyl-3-fluorophenyl)-4-methyl-1, 4-dihydrotetrazole-5-one 2.36 g.

1-(2-bromomethyl-3-fluorophenyl)-4-methyl-1, 4-
dihydrotetrazole -5-one

\[
\begin{align*}
F & \\
\text{Br} & \\
N & N \\
\text{Me} & \\
N & N \text{-} \text{N} \\
\end{align*}
\]

\[^1\text{H-NMR}\ (\text{CDCl}_3)\ 5(\text{ppm}) : 3.75\ (3\text{H, s}),\ 4.64\ (2\text{H, s}),\ 7.23-7.30\ (2\text{H, m}),\ 7.47\ (1\text{H, dt,} \ J = 5.9, 8.0\ \text{Hz}).\]

Synthesis example 4

Anhydrous aluminium chloride 21.9 g was added to N,N-dimethylformamide 250 mL under ice-cooling, and the mixtures were stirred for fifteen minutes. Thereto was added sodium azide 10.7 g and the mixtures were stirred for fifteen minutes. Thereto was then added 1-chloro-3-isocyanato-2-methylbenzene 25.0 g and the resulting mixtures were heated at 80°C for five hours. After cooling, the reaction solutions were added to a mixture of sodium nitrite 35 g, water 2 L and ice 500 g with stirring. The mixtures were acidified with 10% hydrochloric acid and were extracted with ethyl acetate. The organic layers were washed with water and saturated saline and then were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure to give 1-(2-methyl-3-chlorophenyl)-1,4-dihydrotetrazole-5-one 17.0 g.

1-(2-methyl-3-chlorophenyl) -1, 4-dihydrotetrazole-5-one
Synthesis example 5

To a mixture of 1-(2-methyl-3-chlorophenyl)-1,4-dihydrotetrazole-5-one (described in Synthesis example 4) 10.00 g and N,N-dimethyl formamide 100 mL was added 60% sodium hydride 2.30 g under ice-cooling. The reaction mixtures were raised to room temperature and were stirred for one hour. To the reaction mixtures was added methyl iodide 3.2 mL under ice-cooling. The mixtures were raised to room temperature and were stirred for fourteen hours. To the reaction mixtures was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with 10% hydrochloric acid, water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-methyl-3-chlorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one 1.56 g.

1-(2-methyl-3-chlorophenyl)-4-methyl-1,4-
dihydrotetrazole -5-one

\[
{^1}H - NMR \ (CDCl_3) \ \delta \ (ppm) : 2.30 \ (3H, s), 3.73 \ (3H, s), 7.27 \ (1H, d, J = 2.7 \ Hz), \ 7.28 \ (1H, d, J = 7.1 \ Hz), \ 7.52 \ (1H, dd, J = 2.7, 6.8 \ Hz).
\]

Synthesis example 6

To a mixture of 1-(2-methyl-3-chlorophenyl) -4-methyl-1,4-dihydrotetrazole -5-one (described in Synthesis example 5) 1.56 g, 1,1'-azobis (cyclohexane-1-carbonitrile) 0.34 g, N-bromosuccinimide 1.42 g and chlorobenzene 30 mL was stirred with heating under reflux for five hours. After cooling the mixtures, to the reaction solutions was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesuim sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-bromomethyl-3-chlorophenyl) -4-methyl-1,4-dihydrotetrazole-5-one 1.94 g.

1-(2-bromomethyl-3-chlorophenyl) -4-methyl-1,4-dihydrotetrazole-5-one
Synthesis example 7

A mixture of 3-chloro-2-methylbenzoic acid 21.5 g, oxalyl dichloride 17.6 g, N,N-dimethylformamide about 50 mg and tetrahydrofuran 300 mL was stirred at 25°C for one hour. The reaction mixtures were concentrated under reduced pressure to give 3-chloro-2-methylbenzoic acid chloride.

A mixture of aluminium chloride 33.6 g, sodium azide 49.2 g and tetrahydrofuran 100 mL was stirred with heating under reflux for two hours. After the reaction mixtures were ice-cooled, and thereto was added a mixture of 3-chloro-2-methylbenzoic acid chloride and tetrahydrofuran 100 mL and the resulting mixtures were stirred with heating under reflux for ten hours. After cooling the mixtures, to a mixture of sodium nitrite 75.6 g and water 500 mL was added the reaction mixtures with stirring. The mixtures were acidified with concentrated hydrochloric acid and were then extracted with ethyl acetate. The organic layers were
dried over anhydrous sodium sulfate and were then concentrated under reduced pressure to give 1- (2-methyl-3-chlorophenyl) -1, 4-dihydrotetrazole-5-one.

A mixture of 1- (2-methyl-3-chlorophenyl)-1, 4-dihydrotetrazole-5-one, potassium carbonate 57.5 g, dimethyl sulfate 19.1 g and N,N-dimethylformamide 150 mL was stirred at 25°C for one hour. To the reaction mixtures was added aqueous saturated sodium bicarbonate solution and the mixtures were extracted with ethyl acetate. The organic layers were washed with aqueous saturated sodium bicarbonate solution and were dried over anhydrous sodium sulfate. The resulting mixtures were concentrated under reduced pressure to give 1- (2-methyl-3-chlorophenyl)-4-methyl-1, 4-dihydrotetrazole-5-one 21.6 g.

[0730]
Synthesis example 8

Under cooling, to a mixture of methyl chloroformate 30 mL and tetrahydrofuran 50 mL was added dropwise 3-amino-1-chloro-2-methylbenzene 5.00 g and the mixtures were stirred at 25°C for a half hour. To the reaction mixtures was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with aqueous saturated sodium bicarbonate solution and were dried over anhydrous sodium sulfate. The mixtures were concentrated under reduced pressure to give 1-chloro-2-methyl-3-
methoxycarbonylaminobenzene 5.80 g.

A mixture of l-chloro-2-methyl-3-methoxycarbonylaminobenzene 5.80 g, phosphorus pentachloride 7.53 g and chlorobenzene 50 mL was stirred with heating under reflux for one hour. The reaction mixtures were concentrated under reduced pressure to give l-chloro-3-isocyanato-2-methylbenzene.

A mixture of aluminium chloride 4.71 g, sodium azide 6.89 g and tetrahydrofuran 100 mL was stirred with heating under reflux for one hour. After the reaction mixtures were ice-cooled, thereto were added a mixture of the above-mentioned l-chloro-3-isocyanato-2-methylbenzene and tetrahydrofuran 10 mL and the resulting mixtures were stirred with heating under reflux for five hours. After cooling the mixtures, to a mixture of sodium nitrite 10.59 g and water 300 mL was added the reaction mixtures with stirring. The mixtures were acidified with concentrated hydrochloric acid and were extracted with ethyl acetate. The organic layers were dried over anhydrous sodium sulfate and were then concentrated under reduced pressure to give 1-(2-methyl-3-chlorophenyl)-1,4-dihydrrotetrazole-5-one.

A mixture of the above-mentioned 1-(2-methyl-3-chlorophenyl)-1,4-dihydrrotetrazole-5-one, potassium carbonate 16.11 g, dimethyl sulfate 5.34 g and N,N-dimethylformamide 150 mL was stirred at 25°C for one hour.
To the reaction mixtures was added aqueous saturated sodium bicarbonate solution and the mixtures were extracted with ethyl acetate. The organic layers were washed with aqueous saturated sodium bicarbonate solution and were dried over anhydrous sodium sulfate. The mixtures were concentrated under reduced pressure to give 1-(2-methyl-3-chlorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one 4.80 g.

Synthesis example 9

Anhydrous aluminium chloride 19.7 g was added to N,N-dimethylformamide 220 mL under ice-cooling, and the mixtures were stirred for fifteen minutes. Thereto was added sodium azide 9.6 g and the mixtures were stirred for fifteen minutes. Thereto was then added 1-bromo-3-isocyanato-2-methylbenzene (described in Reference preparation example 1) 30.3 g and the resulting mixtures were heated at 80°C for five hours. After cooling, the reaction solutions were added to a mixture of sodium nitrite 33 g, water 2 L and ice 500 g with stirring. The mixtures were acidified with 10% hydrochloric acid and were extracted with ethyl acetate. The organic layers were washed with water and saturated saline and then were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure to give 1-(2-methyl-3-bromophenyl)-1,4-dihydrotetrazole-5-one 31.4 g.
1-(2-methyl-3-bromophenyl)-1,4-dihydrotetrazole-5-one

\[
\text{H-NMR (DMSO-dg) } \delta (\text{ppm}) : 2.22 (3H, s), 7.34 (1H, t, J = 7.2 \text{ Hz}), 7.49 (1H, dd, J = 8.2, 1.1 \text{ Hz}), 7.82 (1H, dd, J = 8.0, 1.0 \text{ Hz}), 14.72 (1H, s).
\]

Synthesis example 10

To a mixture of 1-(2-methyl-3-bromophenyl)-1,4-dihydrotetrazole-5-one (described in Synthesis example 9) 31.40 g and N,N-dimethyl formamide 250 mL was added 60% sodium hydride 5.90 g under ice-cooling. The reaction mixtures were raised to room temperature and were stirred for one hour. To the reaction mixtures was added methyl iodide 8.4 mL under ice-cooling. The mixtures were raised to room temperature and were stirred for fourteen hours. To the reaction mixtures was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with 10% hydrochloric acid, water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-methyl-3-bromophenyl)-4-methyl-
1,4-dihydrotetrazole-5-one 8.47 g.

1-(2-methyl-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one

\[
\text{Br} \quad \text{Me} \\
\text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{Me}
\]

\(^1{\text{H-NMR (CDCl}_3\text{) 5(ppm): 2.33 (3H, s), 3.73 (3H, s), 7.21 (1H, dt, J = 0.5, 7.8 Hz), 7.30 (1H, dd, J = 1.0, 8.0 Hz), 7.71 (1H, dd, J = 1.2, 8.3 Hz).}}\)

[0733]

Synthesis example 11

To a mixture of 1-(2-methyl-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 10) 8.47 g, 1,1'-azobis (cyclohexane-1-carbonitrile) 1.54 g, N-bromosuccinimide 6.44 g and chlorobenzene 125 mL was stirred with heating under reflux for five hours. After cooling the mixtures, to the reaction solutions was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-bromomethyl-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one 7.52 g.
1-((2-bromomethyl-3-bromophenyl)-methyl)-1,4-dihydrotetrazole -5-one

\[\text{H-MR (CDCl}_3\text{) 5(ppm): } 3.76 \text{ (3H, s), } 4.71 \text{ (2H, s), } 7.34 \text{ (1H, t, } J = 7.8 \text{ Hz), } 7.38 \text{ (1H, dd, } J = 8.0, 1.7 \text{ Hz), } 7.77 \text{ (1H, dd, } J = 7.8, 1.7 \text{ Hz).} \]

[0734]

Synthesis example 12

A mixture of 3-bromo-2-methylbenzoic acid 146.0 g, oxalyl dichloride 94.8 g, N,N-dimethylformamide about 15 mg and tetrahydrofuran 500 mL was stirred at 25°C for one hour. The reaction mixtures were concentrated under reduced pressure to give 3-bromo-2-methylbenzoic acid chloride.

A mixture of aluminium chloride 181.0 g, sodium azide 265.0 g and tetrahydrofuran 300 mL was stirred with heating under reflux for two hours. After the reaction mixtures were ice-cooled, and thereto was added a mixture of 3-bromo-2-methylbenzoic acid chloride and tetrahydrofuran 200 mL and the resulting mixtures were stirred with heating under reflux for ten hours. After cooling the mixtures, to a mixture of sodium nitrite 407 g and water 1,500 mL was added the reaction mixtures with stirring. The mixtures
were acidified with concentrated hydrochloric acid and were then extracted with ethyl acetate. The organic layers were dried over anhydrous sodium sulfate and were then concentrated under reduced pressure to give 1-(2-methyl-3-bromophenyl)-1,4-dihydropyrazole-5-one.

A mixture of 1-(2-methyl-3-bromophenyl)-1,4-dihydropyrazole-5-one, potassium carbonate 310.0 g, dimethyl sulfate 103.0 g and N,N-dimethylformamide 500 mL was stirred at 25°C for one hour. To the reaction mixtures was added aqueous saturated sodium bicarbonate solution and the mixtures were extracted with ethyl acetate. The organic layers were washed with aqueous saturated sodium bicarbonate solution and were dried over anhydrous sodium sulfate. The resulting mixtures were concentrated under reduced pressure to give 1-(2-methyl-3-bromophenyl)-4-methyl-1,4-dihydropyrazole-5-one 142.0 g.

Synthesis example 13

A mixture of 3-iodo-2-methylenzoic acid 10.00 g, oxalyl dichloride 5.33 g, N,N-dimethylformamide 5 drops and tetrahydrofuran 200 mL was stirred at 25°C for one hour. The reaction mixtures were concentrated under reduced pressure to give 3-iodo-2-methylbenzoic acid chloride.

A mixture of aluminium chloride 10.20 g, sodium azide 14.90 g and tetrahydrofuran 100 mL was stirred with heating
under reflux for two hours. After the reaction mixtures were ice-cooled, and thereto was added a mixture of 3-iodo-2-methylbenzoic acid chloride and tetrahydrofuran 100 mL and the resulting mixtures were stirred with heating under reflux for ten hours. After cooling the mixtures, to a mixture of sodium nitrite 22.90 g and water 200 mL was added the reaction mixtures with stirring. The mixtures were acidified with concentrated hydrochloric acid and were then extracted with ethyl acetate. The organic layers were dried over anhydrous sodium sulfate and were then concentrated under reduced pressure to give 1-(2-methyl-3-iodophenyl)-1,4-dihydrortetrazole-5-one.

A mixture of 1-(2-methyl-3-iodophenyl)-1,4-dihydrortetrazole-5-one, potassium carbonate 17.40 g, dimethyl sulfate 5.78 g and N,N-dimethylformamide 150 mL was stirred at 25°C for one hour. To the reaction mixtures was added aqueous saturated sodium bicarbonate solution and the mixtures were extracted with ethyl acetate. The organic layers were washed with aqueous saturated sodium bicarbonate solution and were dried over anhydrous sodium sulfate. The resulting mixtures were concentrated under reduced pressure to give 1-(2-methyl-3-iodophenyl)-4-methyl-1,4-dihydrortetrazole-5-one 8.10 g.

1-(2-methyl-3-iodophenyl)-4-methyl-1,4-

1-

dihydrortetrazole-5-one
\[^1{H} \text{-NMR (CDCl}_3 \text{)} \delta (\text{ppm}) : 2.37 \text{ (3H, s), 3.72 \text{ (3H, s), 7.04 \text{ (1H, t, } J = 8.0 \text{ Hz), 7.32 \text{ (1H, d, } J = 7.7 \text{ Hz), 7.99 \text{ (1H, d, 8.0 Hz).}}) } \]

[0736]

Synthesis example 14

To a mixture of 1-(2-methyl-3-iodophenyl) -4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 13) 8.10 g, 1,1'-azobis (cyclohexane-1-carbonitrile) 1.25 g, N-bromosuccinimide 5.24 g and chlorobenzene 100 mL was stirred with heating under reflux for five hours. After cooling the mixtures, to the reaction solutions was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-bromomethyl-3-iodophenyl) -4-methyl-1, 4-dihydrotetrazole-5-one 3.11 g.

1-(2-bromomethyl-3-iodophenyl) -4-methyl-1, 4-dihydrotetrazole-5-one
Synthesis example 15

Anhydrous aluminium chloride 16.0 g was added to N,N-dimethylformamide 180 mL under ice-cooling, and the mixtures were stirred for fifteen minutes. Thereto was added sodium azide 7.8 g and the mixtures were stirred for fifteen minutes. Thereto was then added 1-methoxy-3-isocyanato-2-methylbenzene (described in Reference preparation example 2) 17.0 g and the resulting mixtures were heated at 80°C for four and a half hours. After cooling, the reaction solutions were added to a mixture of sodium nitrite 25 g, water 2 L and ice 500 g with stirring. The mixtures were acidified with 10% hydrochloric acid and were extracted with ethyl acetate. The organic layers were washed with water and saturated saline and then were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure to give 1-(2-methyl-3-methoxyphenyl)-1,4-dihydrotetrazole-5-one 16.2 g.
1-(2-methyl-3-methoxyphenyl)-1,4-dihydrotetrazole-5-one

\[
\text{MeO} \quad \text{Me} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{O} \\
\text{H}
\]

\[
^1\text{H-NMR} \text{ (DMSO-d}_6\text{)} \delta (\text{ppm}) : 1.99 (3\text{H}, \text{s}), 3.87 (3\text{H}, \text{s}), 7.01 (1\text{H}, \text{d}, J = 8.1 \text{ Hz}), 7.17 (1\text{H}, \text{d}, J = 8.1 \text{ Hz}), 7.36 (1\text{H}, \text{t}, J = 8.3 \text{ Hz}), 14.63 (1\text{H}, \text{s}) .
\]

[0738]

Synthesis example 16

To a mixture of 1-(2-methyl-3-methoxyphenyl)-1,4-dihydrotetrazole-5-one (described in Synthesis example 15) 10.00 g and N,N-dimethyl formamide 100 mL was added 60% sodium hydride 2.47 g under ice-cooling. The reaction mixtures were raised to room temperature and were stirred for one hour. To the reaction mixtures was added methyl iodide 3.5 mL under ice-cooling. The mixtures were raised to room temperature and were stirred for fourteen hours. To the reaction mixtures was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with 10% hydrochloric acid, water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated-under reduced pressure. The resulting residues were subjected to a silica gel column
chromatography to give 1-(2-methyl-3-methoxyphenyl) -4-methyl-1, 4-dihydrotetrazole-5-one 2.19 g.

1-(2-methyl-3-methoxyphenyl) -4-methyl-1, 4-
dihydrotetrazole-5-one

\[
\begin{align*}
\text{Me} & \quad \text{N} \quad \text{N} \\
\text{O} & \quad \text{Me} \\
\text{Me} &
\end{align*}
\]

\(^1\text{H}-\text{NMR (CDCl}_3\text{) 5(ppm): 2.11 (3H, s), 3.72 (3H, s), 3.88 (3H, s), 6.95 (1H, d, J = 8.2 Hz), 6.98 (1H, d, J = 8.5 Hz), 7.29 (1H, t, J = 8.2 Hz)}\]

[0739]

Synthesis example 17

To a mixture of 1-(2-methyl-3-methoxyphenyl) -4-methyl-
1,4-dihydrotetrazole-5-one (described in Synthesis example 16) 2.19 g, 1,1'-azobis (cyclohexane-1-carbonitrile) 0.52 g,
N-bromosuccinimide 2.16 g and chlorobenzene 40 mL was

stirred with heating under reflux for five hours. After
cooling the mixtures, to the reaction solutions was added
water and the resulting mixtures were extracted with ethyl
acetate. The organic layers were washed with water and
saturated saline, and were dried over anhydrous magnesium
sulfate and were then concentrated under reduced pressure.
The resulting residues were subjected to a silica gel
column chromatography to give 1-(2-bromomethyl-3-
methoxyphenyl) -4-methyl-1,4-dihydrotetrazole-5-one 2.36 g.

1-(2-bromomethyl-3-methoxyphenyl) -4-methyl-1,4-
dihydrotetrazole-5-one

\[
\text{MeO} \\
\text{Br} \\
\text{N} \text{N} \text{N} \text{N} \text{N} \text{N} \text{N} \\
\text{Me}
\]

\[\text{H-NMR} \ (\text{CDCl}_3) \ 6(\text{ppm}): \ 3.74 \ (3H, s), \ 3.96 \ (3H, s), \ 4.93 \ (2H, s), \ 7.02 \ (1H, dd, J = 1.0, 8.5 \text{ Hz}), \ 7.04 \ (1H, d, J = 9.0 \text{ Hz}), \ 7.43 \ (1H, t, J = 8.1 \text{ Hz}).\]

Synthesis example 18

A mixture of 3-trifluoromethyl-2-methylbenzoic acid 5.00 g, oxalyldichloride 3.42 g, N,N-dimethyl formamide about 50 mg and tetrahydrofuran 200 mL was stirred at 25°C for one hour. The reaction mixtures were concentrated under reduced pressure to give 3-trifluoromethyl-2-methylbenzoic acid chloride.

A mixture of aluminium chloride 6.53 g, sodium azide 9.55 g and tetrahydrofuran 100 mL was stirred with heating under reflux for two hours. After the reaction mixtures were ice-cooled, and thereto was added a mixture of 3-trifluoromethyl-2-methylbenzoic acid chloride and tetrahydrofuran 100 mL and the resulting mixtures were stirred with heating under reflux for ten hours.
cooling the mixtures, to a mixture of sodium nitrite 14.7 g and water 200 mL was added the reaction mixtures with stirring. The mixtures were acidified with concentrated hydrochloric acid and were then extracted with ethyl acetate. The organic layers were dried over anhydrous sodium sulfate and were then concentrated under reduced pressure to give 1-(2-methyl-3-trifluoromethylphenyl)-1,4-dihydrotetrazole-5-one.

A mixture of 1-(2-methyl-3-trifluoromethylphenyl)-1,4-dihydrotetrazole-5-one, potassium carbonate 11.20 g, dimethyl sulfate 3.71 g and N,N-dimethylformamide 150 mL was stirred at 25°C for one hour. To the reaction mixtures was added aqueous saturated sodium bicarbonate solution and the mixtures were extracted with ethyl acetate. The organic layers were washed with aqueous saturated sodium bicarbonate solution and were dried over anhydrous sodium sulfate. The resulting mixtures were concentrated under reduced pressure to give 1-(2-methyl-3-trifluoromethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one 5.13 g.

1-(2-methyl-3-trifluoromethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one
Synthesis example 19

To a mixture of 1-(2-methyl-3-trifluoromethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 18) 1.00 g, 1,1'-azobis(cyclohexane-1-carbonitrile) 0.38 g, N-bromosuccinimide 0.79 g and chlorobenzene 30 mL was stirred with heating under reflux for five hours. After cooling the mixtures, to the reaction solutions was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-bromomethyl-3-trifluoromethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one 1.21 g.

1-(2-bromomethyl-3-trifluoromethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one
Synthesis example 20

A mixture of 3-nitro-2-methylbenzoic acid 5.00 g, oxalyl dichloride 3.85 g, N,N-dimethylformamide about 50 mg and tetrahydrofuran 200 mL was stirred at 25°C for one hour. The reaction mixtures were concentrated under reduced pressure to give 3-nitro-2-methylbenzoic acid chloride.

A mixture of aluminium chloride 7.36 g, sodium azide 10.77 g and tetrahydrofuran 100 mL was stirred with heating under reflux for two hours. After the reaction mixtures were ice-cooled, and thereto was added a mixture of 3-nitro-2-methylbenzoic acid chloride and tetrahydrofuran 100 mL and the resulting mixtures were stirred with heating under reflux for ten hours. After cooling the mixtures, to a mixture of sodium nitrite 16.56 g and water 200 mL was added the reaction mixtures with stirring. The mixtures were acidified with concentrated hydrochloric acid and were then extracted with ethyl acetate. The organic layers were
dried over anhydrous sodium sulfate and were then concentrated under reduced pressure to give 1-(2-methyl-3-nitrophenyl)-1,4-dihydrotetrazole-5-one.

A mixture of 1-(2-methyl-3-nitrophenyl)-1,4-dihydrotetrazole-5-one, potassium carbonate 12.59 g, dimethyl sulfate 13.79 g and N,N-dimethyl formamide 150 mL was stirred at 25°C for one hour. To the reaction mixtures was added aqueous saturated sodium bicarbonate solution and the mixtures were extracted with ethyl acetate. The organic layers were washed with aqueous saturated sodium bicarbonate solution and were dried over anhydrous sodium sulfate. The resulting mixtures were concentrated under reduced pressure to give 1-(2-methyl-3-nitrophenyl)-4-methyl-1,4-dihydrotetrazole-5-one 5.26 g.

1-(2-methyl-3-nitrophenyl)-4-methyl-1,4-dihydrotetrazole-5-one

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{Me} \\
\text{Me} & \quad \text{N-N=O} \\
\text{N-N=O} & \quad \text{Me}
\end{align*}
\]

\[^1\text{H-NMR (CDCl}_3\text{)} \Delta (\text{ppm}) : 2.42 (3\text{H}, \text{s}), 3.75 (3\text{H}, \text{s}), 7.52 (1\text{H}, \text{t}, J = 8.2 \text{ Hz}), 7.62 (1\text{H}, \text{dd}, J = 1.2, 7.7 \text{ Hz}), 8.02 (1\text{H}, \text{d}, J = 1.2, 8.2 \text{ Hz}) .
\]

[0743] Synthesis example 21
To a mixture of 1-(2-methyl-3-nitrophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 20) 1.00 g, 1,1'-azobis (cyclohexane-1-carbonitrile) 0.42 g, N-bromosuccinimide 0.87 g and chlorobenzene 30 mL was stirred with heating under reflux for five hours. After cooling the mixtures, to the reaction solutions was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure.

The resulting residues were subjected to a silica gel column chromatography to give 1-(2-bromomethyl-3-nitrophenyl)-4-methyl-1,4-dihydrotetrazole-5-one 1.00 g.

1-(2-bromomethyl-3-nitrophenyl)-4-methyl-1,4-
dihydrotetrazole-5-one

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{Br} \\
\text{N} & \quad \text{N} \\
\text{N} & \quad \text{N} \\
\text{N} & \quad \text{Me}
\end{align*}
\]

\[\text{H-NMR (CDCl}_3\text{)} \ 5(\text{ppm}) : 3.72 (3H, s), 5.63 (2H, s), 7.61 (1H, t, J = 8.0 Hz), 7.70 (1H, d, J = 8.1 Hz), 7.97 (1H, d, J = 8.1 Hz).\]

Synthesis example 22

Anhydrous aluminium chloride 3.62 g was added to N,N-
dimethylformamide 40 mL under ice-cooling, and the mixtures were stirred for twenty minutes. Thereto was added sodium azide 1.76 g and the mixtures were stirred for fifteen minutes. Thereto was then added 3-difluoromethyl-2-methyl-1-isocyanatobenzene (described in Reference preparation example 7) 4.50 g and the resulting mixtures were heated at 80°C for four hours. After cooling, the reaction solutions were added to a mixture of sodium nitrite 6 g, water 0.5 L and ice 100 g with stirring. The mixtures were acidified with 10% hydrochloric acid and were extracted with ethyl acetate. The organic layers were washed with water and saturated saline and then were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure to give 1-(2-methyl-3-difluoromethylphenyl)-1,4-dihydrotetrazole-5-one 3.22 g.

A mixture of 1-(2-methyl-3-difluoromethylphenyl)-1,4-dihydrotetrazole-5-one 3.22 g, potassium carbonate 3.93 g, methyl iodide 4.04 g and N,N-dimethylformamide 70 mL was stirred at 25°C for five hours. To the reaction mixtures was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with 10% hydrochloric acid, water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column
chromatography to give 1-(2-methyl-3-difluoromethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one 1.14 g.

1-(2-methyl-3-difluoromethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one

\[
\begin{array}{c}
H \\
F \\
Me \\
N=N \\
N=N \\
Me \\
\end{array}
\]

1H-NMR (CDCl\textsubscript{3}) 5 (ppm): 2.31 (3H, s), 3.73 (3H, s), 6.83 (1H, \textit{t}, J = 55.1 Hz), 7.44-7.46 (2H, \textit{m}), 7.68-7.71 (1H, \textit{m}).

[0745]

Synthesis example 23

To a mixture of 1-(2-methyl-3-difluoromethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 22) 1.14 g, 1,1'-azobis(cyclohexane-1-carbonitrile) 0.23 g, N-bromosuccinimide 0.97 g and chlorobenzene 20 mL was stirred with heating under reflux for five hours.

After cooling the mixtures, to the reaction solutions was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-bromomethyl-3-difluoromethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one.
1.21 g.

1-(2-bromomethyl-3-difluoromethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one

\[\begin{array}{c}
\text{Br} \\
\text{H} \\
\text{F} \\
\text{N} \\
\text{N} \\
\text{O} \\
\text{Me}
\end{array} \]

1H-NMR (CDCl$_3$) δ (ppm): 3.76 (3H, s), 4.66 (2H, s), 6.99 (1H, t, J = 54.8 Hz), 7.55 (1H, d, J = 8.0 Hz), 7.60 (1H, t, J = 7.7 Hz), 7.56 (1H, d, J = 7.5 Hz).

Synthesis example 24

Under ice-cooling, to a mixture of N,N-dimethylformamide 350 mL and anhydrous aluminum chloride 33.6 g was added sodium azide 15 g and the resulting mixtures were stirred for one hour. Thereto was then added 1-ethoxy-3-isocyanato-2-methylbenzene (described in Reference preparation example 10) 37.2 g and the reaction mixtures were heated at 75°C and were then stirred for five hours. After cooling the mixtures, to the reaction mixtures was added ice water 100 mL under ice-cooling, followed by addition of a mixture of sodium nitrite 23 g and water 150 mL, and then followed by addition of concentrated hydrochloric acid so as to make a pH of the mixtures about 4. The resulting mixtures were extracted
with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-methyl-3-ethoxyphenyl)-1,4-dihydrotetrazole-5-one 39.0 g.

1-(2-methyl-3-ethoxyphenyl)-1,4-dihydrotetrazole-5-one

\[
\text{H-NMR (CDCl}_3\text{) } 5(\text{ppm}): 7.30 \text{ (1H, t, } J = 8.1 \text{ Hz)}, 6.99 \text{ (1H, d, } J = 8.5 \text{ Hz)}, 6.96 \text{ (1H, d, } J = 8.0 \text{ Hz)}, 4.10 \text{ (2H, q, } J = 6.9 \text{ Hz)}, 2.13 \text{ (3H, s), 1.46 (3H, t, } J = 7.0 \text{ Hz)}.
\]

Synthesis example 25

Under ice-cooling, to a mixture of 1-(2-methyl-3-ethoxyphenyl)-1,4-dihydrotetrazole-5-one (described in Synthesis example 24) 39.0 g, potassium carbonate 36.7 g and N,N-dimethyl formamide 400 mL was added dimethyl sulfate 44.7 g, and the mixtures were raised to room temperature and were stirred for seven hours. Thereto was water 100 mL and the mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were
then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-methyl-3-ethoxyphenyl)-4-methyl-1,4-dihydropyrazole-5-one 38.2 g.

1-(2-methyl-3-ethoxyphenyl)-4-methyl-1,4-dihydropyrazole-5-one

\[
\begin{align*}
\text{O} & \\
\text{N-N} & \\
\text{Me} & \\
\end{align*}
\]

\(1^1\text{H-NMR (CDCl}_3\text{)} \ 5(\text{ppm}): 7.29-7.23 \ (1\text{H, m}), 6.96 \ (1\text{H, d, } J = 8.2 \ \text{Hz}), 6.93 \ (1\text{H, d, } J = 8.2 \ \text{Hz}), 4.08 \ (2\text{H, q, } J = 6.9 \ \text{Hz}), 3.72 \ (3\text{H, s}), 2.11 \ (3\text{H, s}), 1.45 \ (3\text{H, t, } J = 7.1 \ \text{Hz}).
\]

Synthesis example 26

To a mixture of 1-(2-methyl-3-ethoxyphenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 25) 38.2 g, 1,1'-azobis(cyclohexane-1-carbonitrile) 7.95 g, N-bromosuccinimide 33.4 g and chlorobenzene 380 mL was stirred with heating under reflux for five hours. After cooling the mixtures, to the reaction solutions was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure.
The resulting residues were subjected to a silica gel column chromatography to give 1- (2-bromomethyl-3-ethoxyphenyl) -4-methyl-1, 4-dihydrone.

1- (2-bromomethyl-3-ethoxyphenyl) -4-methyl-1, 4-
dihydrone

\[
\text{1H-NMR (CDCl\textsubscript{3}) 5 (ppm): 7.40 (1H, t, J = 8.2 Hz), 7.01 (2H, t, J = 8.3 Hz), 4.64 (2H, s), 4.17 (2H, q, J = 7.0 Hz), 3.74 (3H, s), 1.49 (3H, t, J = 6.9 Hz).}
\]

Synthesis example 27

Under ice-cooling, to a mixture of N,N-dimethylformamide 200 mL and anhydrous aluminium chloride 5.91 g was added sodium azide 2.64 g and the mixtures were stirred for one hour. Thereafter was then added 1-difluoromethoxy-3-isocyanato-2-methylbenzene (described in Reference Preparation example 13) 7.36 g and the reaction mixtures were raised to 75°C and were stirred for nine hours. After cooling the mixtures, to the reaction mixtures added ice water 50 mL under ice-cooling, followed by addition of a mixture of sodium nitrite 4.1 g and water 100 mL, and then followed by addition of concentrated
hydrochloric acid so as to make a pH of the mixtures about 4. The resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure.

To the resulting residues containing 1-(2-methyl-3-difluoromethoxyphenyl)-1,4-dihydrorotetrazole-5-one were added N,N-dimethylformamide 100 mL, potassium carbonate 7.66 g and dimethyl sulfate 9.32 g, and the mixtures were stirred at room temperature for four hours. Thereto was added water 100 mL and the mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give to give 1-(2-methyl-3-difluoromethoxyphenyl)-4-methyl-1,4-dihydrorotetrazole-5-one 1.0 g.

1-(2-methyl-3-difluoromethoxyphenyl)-4-methyl-1,4-dihydrorotetrazole-5-one

\[
\begin{align*}
\text{F} & \quad \text{F} \\
\text{O} & \quad \text{Me} \\
\text{N} & \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \\
\text{O} & \quad \text{O}
\end{align*}
\]

\(^1H\text{-NMR (CDC1}_3\text{)} 5(\text{ppm}): 7.34 (1H, t, J = 8.1 Hz), 7.30-7.23 \)
Synthesis example 28

To a mixture of 1-(2-methyl-3-difluoromethoxyphenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 27) 1.10 g, 1,1′-azobis(cyclohexane-1-carbonitrile) 0.19 g, N-bromosuccinimide 0.80 g and chlorobenzene 50 mL was stirred with heating under reflux for eight hours. After cooling the mixtures, to the reaction solutions was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-bromomethyl-3-difluoromethoxyphenyl)-4-methyl-1,4-dihydropyrazole-5-one 1.1 g.

1-(2-bromomethyl-3-difluoromethoxyphenyl)-4-methyl-1,4-dihydropyrazole-5-one

\[\text{F} \quad \text{F} \]
\[\text{Br} \quad \text{N} \quad \text{N} \quad \text{O} \]
\[\text{N} \quad \text{N} \quad \text{O} \quad \text{Me} \]

\[^1\text{H}-\text{NMR} (\text{CDCl}_3) \delta (\text{ppm}) : 7.50 (1\text{H}, \text{t}, J = 8.2 \text{ Hz}), 7.34 (2\text{H},

(2\text{H}, \text{m}), 6.55 (1\text{H}, \text{t}, J = 72.8 \text{ Hz}), 3.73 (3\text{H}, \text{d}, J = 0.5 \text{ Hz}), 2.21 (3\text{H}, \text{s}). \]
d, J = 8.2 Hz), 6.62 (1H, t, J = 72.8 Hz), 4.65 (2H, s),
3.76 (3H, d, J = 0.5 Hz).

Synthesis example 29

A mixture of 1-(2-methyl-3-triisopropylsilanyltiophenyl) -4-methyl-1,4-
dihydrotetrazole-5-one (described in Reference Preparation example 14) 3.63 g, cesium fluoride 2.91 g and N,N-
dimethylformamide 10 mL was stirred at room temperature for thirty minutes. To the mixtures was added methyl iodide 2.72 g and the mixtures were stirred at room temperature for three hours. To the reaction mixtures was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-methyl-3-methylthiophenyl) -4-methyl-1, 4-dihydrotetrazole-5-one 1.65 g.

1-(2-methyl-3-methylthiophenyl) -4-methyl-1, 4-
dihydrotetrazole-5-one
Synthesis example 30

To a mixture of 1-(2-methyl-3-methylthiophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 29) 1.50 g, 1,1'-azobis(cyclohexane-1-carbonitrile) 0.62 g, N-bromosuccinimide 1.30 g and chlorobenzene 15 mL was stirred with heating under reflux for four hours. After cooling the mixtures, to the reaction solutions was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-bromomethyl-3-methylthiophenyl)-4-methyl-1,4-dihydrotetrazole-5-one 0.400 g.

1-(2-bromomethyl-3-methylthiophenyl)-4-methyl-1,4-
dihydrotetrazole-5-one

\[\text{H-NMR (CDCl}_3\text{) } 5\text{(ppm): } 2.22 \text{ (3H, s), } 2.51 \text{ (3H, s) } , 3.72 \text{ (3H, s) } , 7.10-7.16 \text{ (1H, m), } 7.36-7.29 \text{ (2H, m).} \]
Synthesis example 3

A mixture of 1-(2-bromomethyl-3-bromophenyl) -4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 1) 45.0 g, sodium methoxide 37.4 g and tetrahydrofuran 600 mL was stirred at room temperature for three hours. To the reaction mixtures was added aqueous saturated sodium bicarbonate solution and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with aqueous saturated sodium bicarbonate solution, and were dried over anhydrous sodium sulfate. The mixtures were concentrated under reduced pressure to give 1-(2-methoxymethyl-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one 36.2 g.

1-(2-methoxymethyl-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one

\[
\begin{align*}
\text{Br} & \quad \text{MeO} \\
\text{Me} & \quad \text{N} & \quad \text{N} & \quad \text{O}
\end{align*}
\]

\[^{1}H\text{-NMR (CDCl}_3\text{)} 5\text{(ppm): } 3.23 \text{ (3H, s), } 3.72 \text{ (3H, s), } 4.67 \text{ (2H, s), } 7.33 \text{ (1H, t, } J = 7.8 \text{ Hz), } 7.38 \text{ (1H, dd, } J = 1.2, 8.1 \text{ Hz), } 7.76 \text{ (1H, dd, } J = 1.5, 7.8 \text{ Hz).}
\]
Synthesis example 32

A mixture of 1-(2-methoxymethyl-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 31) 36.2 g, methylboronic acid 23.2 g, cesium fluoride 66.7 g, [1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloride dichloromethane adduct 10.6 g and dioxane 500 mL was stirred at 90°C for five and a half hours. After cooling the reaction mixtures, the mixtures were filtered and the filtrates were concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-methoxymethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one 25.6 g.

1-(2-methoxymethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one

\[
\begin{align*}
\text{Me} & \\
\text{MeO} & \\
\text{N} & \\
\text{Me} & \\
\end{align*}
\]

\[1^H-NMR\ (CDCl_3)\ 5\ (ppm): 2.48\ (3H, s), 3.23\ (3H, s), 3.72\ (3H, s), 4.42\ (2H, s), 7.21\ (1H, t, J = 5.1\ Hz), 7.35\ (2H, d, J = 4.8\ Hz) .\]

Synthesis example 33

A mixture of 1-(2-methoxymethyl-3-methylphenyl)-4-
methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 32) 25.6 g, acetic acid 50 mL and 25% hydrogen bromide-acetic acid solution 50 mL was stirred at 65°C for one hour. To the reaction mixtures was added saturated saline, and the mixtures were extracted with ethyl acetate. The organic layers were washed with aqueous saturated sodium bicarbonate solution and were dried over anhydrous sodium sulfate. The mixtures were concentrated under reduced pressure to give 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one 27.9 g.

1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one

![Chemical Structure]

1H-NMR (CDCl3) δ (ppm): 2.51 (3H, s), 3.75 (3H, s), 4.51 (2H, s), 7.22-7.24 (1H, m), 7.36-7.39 (2H, m).

[0756]

Synthesis example 34

A mixture of 1-(2-methoxymethyl-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 31) 30.1 g, cyclopropylboronic acid 12.9 g, cesium fluoride 46.2 g, [1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloride
dichloromethane adduct 8.2 g and dioxane 680 mL was stirred at 90°C for four hours. After cooling the reaction mixtures, the mixtures were filtered and the filtrates were concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-methoxymethyl-3-cyclopropylphenyl)-4-methyl-1,4-dihydropyrazole-5-one 26.0 g.

1-(2-methoxymethyl-3-cyclopropylphenyl)-4-methyl-1,4-dihydropyrazole-5-one

\[\text{1H-NMR (CDCl}_3\text{) 5(\text{ppm}):} \ 7.36 \ (1\text{H, t, } J = 8.0 \text{ Hz}), \ 7.20 \ (2\text{H, d, } J = 8.0 \text{ Hz}), \ 4.64 \ (2\text{H, s}), \ 3.72 \ (3\text{H, s}), \ 3.24 \ (3\text{H, s}), \ 2.20-2.13 \ (1\text{H, m}), \ 1.04-1.00 \ (2\text{H, m}), \ 0.76-0.72 \ (2\text{H, m}).\]

Synthesis example 35

A mixture of 1-(2-methoxymethyl-3-cyclopropylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Synthesis example 34) 26.0 g, acetic acid 40 mL and 25% hydrogen bromide-acetic acid solution 40 mL was stirred at 65°C for two hours. To the reaction mixtures was added saturated saline, and the mixtures were extracted with ethyl acetate.
The organic layers were washed with aqueous saturated sodium bicarbonate solution and were dried over anhydrous sodium sulfate. The mixtures were concentrated under reduced pressure to give 1-(2-bromomethyl -3-cyclopropylphenyl) -4-methyl-1,4-dihydrortetrazole-5-one 30.8 g.

1-(2-bromomethyl -3-cyclopropylphenyl) -4-methyl-1,4-dihydrortetrazole -5-one

\[
\begin{align*}
&\text{Br} \\
&\text{N-N} \\
&\text{N-N} \\
&\text{Me}
\end{align*}
\]

\[\text{H-NMR (CDCl}_3\text{) 5(ppm): 7.38 (1H, t, J = 7.8 Hz), 7.26-7.22 (2H, m), 4.77 (2H, s), 3.75 (3H, s), 2.16-2.09 (1H, m), 1.10-1.06 (2H, m), 0.82-0.78 (2H, m).}\]

[0758]

Synthesis example 36

A mixture of 1-(2-methoxymethyl-3-bromophenyl) -4-methyl-1,4-dihydrortetrazole-5-one (described in Synthesis example 31) 29.8 g, tributylvinyltin 35.2 g, tetrakis (triphenylphosphine) palladium 11.6 g and toluene 500 mL was stirred with heating under reflux for fourteen hours. After cooling the reaction mixtures, to the reaction solutions were added aqueous saturated ammonium chloride solution and the mixtures were extracted with
ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1- (2-methoxymethyl- 3-ethenylphenyl) -4-methyl- 1, 4-dihydrorazazole-5-one 19.7 g.

1- (2-methoxymethyl-3-ethenylphenyl) -4-methyl-1, 4-
dihydrorazazole-5-one

\[\text{H-NMR (CDCl}_3 \text{)} \delta \text{ ppm}: 7.67 (1H, dd, } J = 7.8, 1.3 \text{ Hz), 7.44 (1H, t, } J = 7.8 \text{ Hz), 7.29 (1H, dd, } J = 7.8, 1.3 \text{ Hz), 7.11 (1H, dd, } J = 17.4, 11.1 \text{ Hz), 5.72 (1H, dd, } J = 17.4, 1.3 \text{ Hz), 5.44 (1H, dd, } J = 11.1, 1.3 \text{ Hz), 4.45 (2H, s), 3.72 (3H, s), 3.23 (3H, s).} \]

[0759]

Synthesis example 37

A mixture of 1- (2-methoxymethyl -3-ethenylphenyl) -4-
methyl-1, 4-dihydrorazazole-5-one (described in Synthesis example 36) 19.7 g, palladium fibroin complex 3.02 g and methanol 1 L was stirred at room temperature under hydrogen atmosphere for eleven hours. The reaction mixtures were
filtered and the filtrates were concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-((2-methoxymethyl-3-ethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one 19.3g.

1-((2-methoxymethyl-3-ethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one

\[
\begin{align*}
\text{MeO} & \quad \text{N} \quad \text{N} \quad \text{C} \\
\text{N} & \quad \text{N} \quad \text{O} \\
\text{Me} & \quad \text{Me}
\end{align*}
\]

\[\text{H-NMR (CDCl}_3\text{)} \delta \text{(ppm)} : 7.42-7.38 \text{ (2H, m), 7.23-7.20 (1H, m), 4.44 (2H, s), 3.72 (3H, s), 3.22 (3H, s), 2.82 (2H, q}, J = 7.6 \text{ Hz), 1.27 (3H, t}, J = 7.6 \text{ Hz).}
\]

Synthesis example 38

A mixture of 1-((2-methoxymethyl-3-ethylphenyl)-4-methyl-1, 4-dihydrotetrazole-5-one (described in Synthesis example 37) 19.3 g, acetic acid 40 mL and 25% hydrogen bromide-acetic acid solution 40 mL was stirred at 65°C for one and a half hours. To the reaction mixtures was added saturated saline, and the mixtures were extracted with ethyl acetate. The organic layers were washed with aqueous saturated sodium bicarbonate solution and were dried over anhydrous sodium sulfate. The mixtures were concentrated
under reduced pressure to give 1-(2-bromomethyl-3-ethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one 23.3 g.

1-(2-bromomethyl-3-ethylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one

\[
\begin{align*}
\text{Br} & \quad \text{N} & \quad \text{N} & \quad \text{O} \\
\text{N} & \quad \text{N} & \quad \text{Me}
\end{align*}
\]

\[\text{H-NMR (CDCl}_3\text{)} \delta (\text{ppm}) : 7.44-7.37 (2H, m), 7.23 (1H, dd, J = 7.1, 2.0 Hz), 4.56 (2H, s), 3.75 (3H, s), 2.85 (2H, q, J = 7.6 Hz), 1.33 (3H, t, J = 7.6 Hz).\]

Synthesis example 39

Under ice-cooling, to N,N-dimethylformamide 200 mL was added anhydrous aluminum chloride 16.0 g and the resulting mixtures were stirred for a half hour. Thereeto was added sodium azide 7.2 g and the resulting mixtures were stirred for a half hour and thereeto was then added 2-isocyanato-6-methylbenzoic acid methyl ester (described in Reference preparation example 16) 19.0 g and the resulting mixtures were heated at 80°C for eight hours. After cooling the mixtures, to a mixture of sodium nitrite 11.5 g and ice water 300 mL was added the reaction solutions with stirring. The mixtures were acidified with 10% hydrochloric acid and were extracted with ethyl acetate. The organic layers were
washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure to give 2-methyl-6- (5-oxo-4,5-dihydrrotetrazole-1-yl) benzoic acid methyl ester.

To a mixture of 2-methyl-6- (5-oxo-4,5-dihydrrotetrazole-1-yl) benzoic acid methyl ester and N,N-dimethylformamide 300 mL were added potassium carbonate 42.0 g and dimethyl sulfate 18.9 g at room temperature, and the mixtures were stirred for 24 hours. To the reaction solutions was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with water and aqueous saturated sodium bicarbonate solution and were dried over anhydrous magnesium sulfate, and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 2-methyl-6- (4-methyl-5-oxo-4,5-dihydrrotetrazole-1-yl) -benzoic acid methyl ester 13.9 g.

2-methyl-6- (4-methyl-5-oxo-4,5-dihydrrotetrazole-1-yl) -benzoic acid methyl ester

\[\text{H-NMR (CDCl}_3\text{)} 5(\text{ppm}) : 7.50-7.46 (2\text{H, } \text{m}), 7.35-7.33 (1\text{H, } \text{m}), 3.83 (3\text{H, } \text{s}), 3.69 (3\text{H, } \text{s}), 2.48 (3\text{H, } \text{s}).\]
Synthesis example 40

Under ice-cooling, to a mixture of 2-methyl-6-(4-methyl-5-oxo-4,5-dihydrotetrazole-1-yl)-benzoic acid methyl ester (described in Synthesis example 39) 25.0 g and tetrahydrofuran 300 mL was added a 1.0 M solution of lithium triethylborohydride in toluene 201 mL and the mixtures were stirred at room temperature for a half hour. To the reactions solutions was added water, and the mixtures were acidified with 10% hydrochloric acid and were extracted with ethyl acetate. The organic layers were washed with water and then were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure to give 1-(2-hydroxymethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one 21.2 g.

\[
\text{1-}(2\text{-hydroxymethyl -3-methylphenyl})\text{-}4\text{-methyl-1, 4-dihydrotetrazole-5-one}
\]

\[
\begin{align*}
\text{HO} & \quad \text{Me} \\
N\text{-}N\text{-}N\text{-}N & \quad \text{Me} \\
\text{Me} & \quad \text{HO}
\end{align*}
\]

\[^{1}H\text{-NMR (CDCl}_3\text{)}\ 5\text{(ppm): } 7.39\text{-}7.34 \ (2H, m), 7.21 \ (1H, dd, J = 6.5, 2.8 \text{ Hz}), 4.48 \ (2H, s), 3.75 \ (3H, s), 2.57 \ (3H, s), 1.59 \ (1H, br s).\]
To a mixture of 1-(2-hydroxymethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one 21.2 g (described in Synthesis example 40) and chloroform 300 mL was added phosphorus tribromide 52.1 g and the mixtures were stirred at room temperature for one hour. To the reaction solutions was added ice water 200 mL and the mixtures were extracted with ethyl acetate. The organic layers were washed with water and saline and then were dried over anhydrous magnesium sulfate, and were then concentrated under reduced pressure to give 1-(2-bromomethyl-3-methylphenyl)-4-methyl-1,4-dihydrotetrazole-5-one 26.0 g.

Synthesis example 42

Anhydrous aluminium chloride 6.16 g was added to N,N-dimethylformamide 100 mL under ice-cooling, and the mixtures were stirred for thirty minutes. Thereto was added sodium azide 3.00 g and the mixtures were stirred for thirty minutes. Thereto was then added 3-methyl-2-methoxymethyl-1-isocyanatobenzene (described in Reference Preparation example 18) 6.30 g and the resulting mixtures were heated at 80°C for ten hours. After cooling, the reaction solutions were added to a mixture of sodium nitrite 4.62 g, water 100 mL and ice 100 g with stirring. The mixtures were acidified with 10% hydrochloric acid and
were extracted with ethyl acetate. The organic layers were washed with water and 10% sodium hydrogen sulfide solution and then were dried over anhydrous sodium sulfate, and were then concentrated under reduced pressure to give 1-(2-methoxymethyl-3-methylphenyl)-1,4-dihydropyrazole-5-one 7.00 g.

1-(2-methoxymethyl-3-methylphenyl)-1,4-
dihydropyrazole-5-one

\[
\begin{align*}
\text{Me} & \quad \text{MeO} \\
\text{N} & \quad \text{N} \\
\text{O} & \quad \text{H}
\end{align*}
\]

\(^1\text{H-NMR (CDCl}_3\text{)}\ 5\text{ppm} : 2.49 (3H, s), 3.25 (3H, s), 4.45 (2H, s), 7.24 (1H, t, J = 4.9 Hz), 7.39 (2H, d, J = 4.9 Hz), 13.00 (1H, s).

Synthesis example 43

Anhydrous aluminium chloride 15.8 g was added to N,N-
dimethylformamide 180 mL under ice-cooling, and the mixtures were stirred for fifteen minutes. Thereto was added sodium azide 7.7 g and the mixtures were stirred for fifteen minutes. Thereto was then added 3-[(2-isocyanato-
6-methylphenyl)methyloxy]-1-(4-chlorophenyl)pyrazole (described in Reference Preparation example 23) 30.8 g and the resulting mixtures were heated at 80°C for four hours.
After cooling, the reaction solutions were added to a mixture of sodium nitrite 25.0 g, water 3 L and ice 500 g with stirring. The mixtures were acidified with 10% hydrochloric acid and the precipitated solids were filtered off. The resulting residues were washed with water and tert-butyl methyl ether to give 1-(2-[[1-(4-chlorophenyl)-1H-pyrazole-3-yl]oxymethyl]-3-methylphenyl)-4H-1,4-dihydrotetrazole-5-one 35.8 g.

\[
1-(2-[[1-(4-chlorophenyl)-1H-pyrazole-3-yl]oxymethyl]-3-methylphenyl)-4H-1,4-dihydrotetrazole-5-one
\]

\[\text{H-NMR (DMSO-dg)} \delta (ppm): 8.33 (1H, d, J = 2.7 Hz), 7.73-7.69 (2H, m), 7.52-7.47 (4H, m), 7.36-7.32 (1H, m), 5.94 (1H, d, J = 2.7 Hz), 5.24 (2H, s), 2.51 (3H, s).\]

Next, regarding an intermediate for preparing the above-mentioned Present compounds, Reference Preparation examples are shown below.

Reference Preparation example 1

A mixture of 1-bromo-2-methyl-3-aminobenzene 25.0 g, triphosgene 60.0 g and toluene 400 mL was stirred with
heating under reflux for three hours. The reaction mixtures after standing to cool were concentrated under reduced pressure to give 1-bromo-3-isocyanato-2-methylbenzene 30.3 g.

![Structural formula of 1-bromo-3-isocyanato-2-methylbenzene]

1H-NMR (CDCl$_3$) δ (ppm): 2.42 (3H, s), 7.00 (1H, dt, J = 0.5, 8.0 Hz), 7.05 (1H, dd, J = 1.7, 8.0 Hz), 7.39 (1H, dd, 1.5, 7.7 Hz).

Reference Preparation example 2

A mixture of 3-amino-1-methoxy-2-methylbenzene 15.0 g, triphosgene 48.7 g and toluene 350 mL was stirred with heating under reflux for three hours. The reaction mixtures after standing to cool were concentrated under reduced pressure to give 1-methoxy-3-isocyanato-2-methylbenzene 17.0 g.

![Structural formula of 1-methoxy-3-isocyanato-2-methylbenzene]

1H-NMR (CDCl$_3$) δ (ppm): 2.19 (3H, s), 3.82 (3H, s), 6.69 (1H, d, J = 8.2 Hz), 6.72 (1H, dd, J = 0.5, 8.0 Hz), 7.09 (1H, t,
Reference Preparation example 3

A mixture of sodium borohydride 9.4 g and tetrahydrofuran 150 mL was stirred at room temperature for thirty minutes. Thereto was added 2-methyl-3-nitrobenzoic acid 30.8 g and the mixtures were stirred at room temperature for thirty minutes. The mixed solutions were ice-cooled and thereto was added slowly methanesulfonic acid 11.0 mL over 45 minutes. The reaction mixtures were stirred at room temperature for three days. To the reaction mixtures was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with 10% hydrochloric acid and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure to give 3-hydroxymethyl-2-methyl-1-nitrobenzene 27.0 g.

3-hydroxymethyl-2-methyl-1-nitrobenzene

1H-NMR (CDCl$_3$) 5(ppm): 1.81 (1H, s), 2.44 (3H, s), 4.79 (2H, s), 7.34 (1H, t, J = 7.8 Hz), 7.65 (1H, d, 7.6 Hz), 7.72 (1H, d, J = 8.1 Hz).
Reference Preparation example 4

A mixture of 3-hydroxymethyl-2-methyl-1-nitrobenzene (described in Reference Preparation example 3) 17.0 g, manganese dioxide 65.0 g and chloroform 170 mL was stirred with heating under reflux for five hours. The reaction mixtures after standing to cool was filtered through Celite and the filtrates were concentrated under reduced pressure to give 3-formyl-2-methyl-1-nitrobenzene 14.0 g.

3-formyl-2-methyl-1-nitrobenzene

\[
\begin{align*}
\text{O} & \\
\text{Me} & \\
\text{NO}_2 &
\end{align*}
\]

\(^1\text{H}-\text{NMR (CDCl}_3\text{)} \ 5(\text{ppm}): 2.78 \ (3\text{H}, \text{s}), 7.53 \ (1\text{H}, \text{t}, \text{J} = 8.1 \text{Hz}), 7.97 \ (1\text{H}, \text{dd}, \text{J} = 1.5, 8.1 \text{Hz}), 8.06 \ (1\text{H}, \text{dd}, \text{J} = 1.5, 7.8 \text{Hz}), 10.39 \ (1\text{H}, \text{s}).
\]

Reference Preparation example 5

To a mixture of 3-formyl-2-methyl-1-nitrobenzene (described in Reference Preparation example 4) 13.0 g and chloroform 200 mL under cooling at -78°C was added dropwise N,N-diethylaminosulfur trifluoride 31.7 g, and the mixtures were stirred at room temperature for sixteen hours. To the reaction mixtures was added water and the mixtures were extracted with chloroform. The organic layers were washed with saturated saline, and were dried over anhydrous
magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 3-difluoromethyl-2-methyl-1-nitrobenzene 6.80 g.

3-difluoromethyl-2-methyl-1-nitrobenzene

\[
\begin{align*}
3^{1}H-NMR \ (CDCl_{3}) \ 5(\text{ppm}): & \ 2.54 \ (3H, \ s), \ 6.84 \ (1H, \ t, \ J = 54.6 \ Hz), \ 7.45 \ (1H, \ t, \ J = 7.7 \ Hz), \ 7.78 \ (1H, \ d, \ J = 7.7 \ Hz), \\
& \ 7.89 \ (1H, \ d, \ J = 8.0 \ Hz).
\end{align*}
\]

Reference Preparation example 6

A mixture of 3-difluoromethyl-2-methyl-1-nitrobenzene (described in Reference Preparation example 5) 6.80 g, 5% platinum-activated carbon 0.30 g and methanol 50 mL was stirred at 35°C under hydrogen atmosphere for eight hours. The reaction mixtures were filtered through Celite and the filtrates were concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 3-difluoromethyl-2-methyl-1-aminobenzene 3.87 g.

3-difluoromethyl-2-methyl-1-aminobenzene
A mixture of 3-difluoromethyl-2-methyl-1-aminobenzene (described in Reference Preparation example 6) 3.87 g, triphosgene 10.96 g and toluene 80 mL was stirred with heating under reflux for three and a half hours. The reaction mixtures after standing to cool were concentrated under reduced pressure to give 3-difluoromethyl-2-methyl-1-isocyanatobenzene 4.50 g.

3-difluoromethyl-2-methyl-1-isocyanatobenzene

A mixture of 2-methyl-3-nitrophenol 33.5 g, iodoethane 41 g and potassium carbonate 90 g in acetone 400 mL was stirred with heating under reflux for three and a half hours. The reaction mixtures after standing to cool were concentrated under reduced pressure to give 2-methyl-3-nitrophenol 38.0 g and potassium carbonate 80 g.

2-Methyl-3-nitrophenol
stirred with heating under reflux for ten hours. The mixtures were cooled to room temperature and were filtered. The filtrates were then concentrated. The mixtures were extracted with ethyl acetate and the organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-ethoxy-2-methyl-3-nitrobenzene 39.9 g.

1-ethoxy-2-methyl-3-nitrobenzene

\[
\text{O}
\]
\[
\text{NO}_2
\]

\[\text{H-NMR (CDCl}_3\text{) 5(ppm): 7.39 (1H, dd, J = 8.2, 1.0 Hz), 7.24 (1H, t, J = 8.3 Hz), 7.02 (1H, d, J = 8.2 Hz), 4.08 (2H, q, J = 7.0 Hz), 2.37 (3H, s), 1.50-1.42 (3H, m).}\]

Reference Preparation example 9

A mixture of 1-ethoxy-2-methyl-3-nitrobenzene (described in Reference Preparation example 8) 39.9 g, palladium-carbon (palladium 5%) 4 g and ethanol 200 mL was stirred at room temperature under hydrogen atmosphere for eighteen hours. The mixtures were filtered and the filtrates were concentrated to give 3-ethoxy-2-methylaniline 33.0 g.
3-ethoxy-2-methylaniline

\[
\begin{align*}
 & \text{O} \quad \text{NH}_2 \\
 & \text{H} \quad \text{H} \quad \text{H}
\end{align*}
\]

\[^1 \text{H-NMR } (\text{CDCl}_3) \text{ 5(ppm): } 6.95 \text{ (1H, t, J = 8.1 Hz)}, \]
\[6.35 \text{ (1H, d, J = 2.9 Hz)}, \]
\[6.33 \text{ (1H, d, J = 3.1 Hz)}, \]
\[4.02-3.97 \text{ (2H, q)}, \]
\[3.61 \text{ (2H, br s)}, \]
\[2.05 \text{ (3H, s)}, \]
\[1.40 \text{ (3H, t, J = 7.1 Hz)}.\]

Reference Preparation example 10

At room temperature, to a mixture of 3-ethoxy-2-methylaniline (described in Reference Preparation example 9) 33.0 g and toluene 400 mL was added triphosgene 25 g, and the resulting mixtures were stirred with heating reflux for four hours. The mixtures were concentrated under reduced pressure to give 1-ethoxy-3-isocyanato-2-methylbenzene 37.2 g.

1-ethoxy-3-isocyanato-2-methylbenzene

\[
\begin{align*}
 & \text{O} \quad \text{NCO} \\
 & \text{H} \quad \text{H} \quad \text{H}
\end{align*}
\]

\[^1 \text{H-NMR } (\text{CDCl}_3) \text{ 5(ppm): } 7.07 \text{ (1H, t, J = 8.2 Hz)}, \]
\[6.70 \text{ (1H, d, J = 7.7 Hz)}, \]
\[6.68 \text{ (1H, d, J = 8.2 Hz)}, \]
\[4.02 \text{ (2H, q, J = 7.0 Hz)}, \]
\[2.20 \text{ (3H, s)}, \]
\[1.42 \text{ (3H, t, J = 7.0 Hz)}.\]

Reference Preparation example 11
A mixture of 2-methyl-3-nitrophenol 7.17 g, potassium carbonate 27 g, bromodifluoromethyl-diethylphosphonate 25 g, water 100 mL and acetonitrile 100 mL was stirred at room temperature for 24 hours. The mixtures were extracted with ethyl acetate and the organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-difluoromethoxy-2-methyl-3-nitrobenzene 7.50 g.

1-difluoromethoxy-2-methyl-3-nitrobenzene

\[
\begin{array}{c}
\text{F} \\
\text{O} \\
\text{F} \\
\text{NO}_2
\end{array}
\]

1H-NMR (CDCl$_3$) 5(ppm) : 7.74 (1H, dd, $J = 7.6, 1.8$ Hz), 7.40-7.32 (2H, m), 6.56 (1H, t, $J = 72.4$ Hz), 2.46 (3H, s).

Reference Preparation example 12

A mixture of 1-difluoromethoxy-2-methyl-3-nitrobenzene (described in Reference Preparation example 11) 7.50 g, palladium-carbon (palladium 5%) 0.8 g and ethanol 80 mL was stirred at room temperature under hydrogen atmosphere for eight hours. The mixtures were filtered and the filtrates were concentrated to give 3-difluoromethoxy-2-methylaniline 6.4 g.
3-difluoromethoxy-2-methylaniline

\[\begin{array}{c}
\text{F} \\
\text{O} \\
\text{NH}_2 \\
\end{array} \]

1H-NMR (CDCl$_3$) 5(ppm): 6.99 (1H, t, $J = 8.1$ Hz), 6.55 (1H, d, $J = 8.0$ Hz), 6.51 (1H, d, $J = 8.2$ Hz), 6.46 (1H, td, $J = 74.4, 0.4$ Hz), 3.72 (2H, br s), 2.09 (3H, s).

[0779]

Reference Preparation example 13

To a mixture of 3-difluoromethoxy-2-methylaniline (described in Reference Preparation example 12) 6.4 g and toluene 100 mL was added triphosgene 5.48 g, and the mixtures were stirred with heating under reflux for one hour. The mixtures were concentrated under reduced pressure to give 1-difluoromethoxy-3-isocyanato-2-methylbenzene 7.36 g.

1-difluoromethoxy-3-isocyanato-2-methylbenzene

\[\begin{array}{c}
\text{F} \\
\text{O} \\
\text{NCO} \\
\end{array} \]

1H-NMR (CDCl$_3$) 5(ppm): 7.14 (1H, t, $J = 8.1$ Hz), 6.97 (2H, t, $J = 8.5$ Hz), 6.50 (1H, td, $J = 73.6, 0.4$ Hz), 2.27 (3H, s).

[0780]

Reference Preparation example 14
Under ice-cooling, to a mixture of triisopropylsilanethiol 4.99 g and toluene 30 mL was added 60% sodium hydride 0.63 g and the mixtures were stirred for thirty minutes. To the reaction mixtures were added 1-(2-methyl-3-bromophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Synthesis example 10) 2.82 g and [1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloride dichloromethane adduct 0.856 g, and the reaction mixtures were raised to 90°C and were stirred for four hours. After cooling the mixture, to the reaction mixtures was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-methyl-3-triisopropylsilanylthiophenyl)-4-methyl-1,4-dihydrotetrazole-5-one 3.64 g.

1-(2-methyl-3-triisopropylsilanylthiophenyl)-4-methyl-1,4-dihydrotetrazole-5-one
1H-NMR (CDCl$_3$) δ(ppm): 1.09 (18H, d, $J = 6.6$ Hz), 1.31 (3H, q, $J = 6.6$ Hz), 2.45 (3H, s), 3.71 (3H, s), 7.16-7.21 (2H, m), 7.64 (1H, dd, $J = 6.6$, 2.7 Hz).

[0781]

Reference Preparation example 15

To a mixture of 1-amino-6-methylbenzoic acid 15.1 g, ethyl acetate 150 mL, ethanol 150 mL was added a 2.0 M solution of trimethylsilyl diazomethane in diethyl ether under ice-cooling. The mixtures were stirred at room temperature for four hours and were concentrated under reduced pressure to give 2-amino-6-methylbenzoic acid methyl ester 16.5 g.

2-amino-6-methylbenzoic acid methyl ester

1H-NMR (CDCl$_3$) δ(ppm): 6.94 (1H, t, $J = 8.0$ Hz), 6.40-6.38 (2H, m), 4.96 (2H, s), 3.75 (3H, s), 2.29 (3H, s).

[0782]

Reference Preparation example 16

To a mixture of 2-amino-6-methylbenzoic acid methyl ester (described in Reference Preparation example 15) 16.5 g and toluene 300 mL was added triphosgene 44.5 g at room temperature and the mixtures were stirred with heating under reflux for two and a half hours. The mixtures were concentrated under reduced pressure to give 2-isocyanato-6-
methylbenzoic acid methyl ester 19.0 g.

2-isocyanato-6-methylbenzoic acid methyl ester

\[
\text{H-NMR (CDCl}_3\text{) } 5(\text{ppm}): 7.28-7.24 \ (1H, \text{ m}), \ 7.07-7.04 \ (1H, \text{ m}), \\
6.98-6.95 \ (1H, \text{ m}), \ 3.97 \ (3H, \text{ s}), \ 2.36 \ (3H, \text{ s}).
\]

Reference Preparation example 17

A mixture of 3-methyl-2-hydroxymethyl-1-aminobenzene (prepared according to the method described in WO 2010/58314) 8.10 g, concentrated sulfuric acid 6.94 g and methanol 450 mL was stirred at 50°C for two hours. The reaction mixtures were cooled to 0°C and thereto was added sodium hydroxide 5.66 g, and the mixtures were concentrated under reduced pressure. To the resulting residues was added aqueous saturated sodium bicarbonate solution and the mixtures were extracted with toluene. The organic layers were washed with water and aqueous saturated sodium bicarbonate solution and were dried over anhydrous sodium sulfate, and were then concentrated under reduced pressure to give 3-methyl-2-methoxymethyl-1-aminobenzene 8.62 g.

3-methyl-2-methoxymethyl-1-aminobenzene
1H-NMR ($CDCl_3$) 5 (ppm): 2.33 (3H, s), 3.36 (3H, s), 4.12 (2H, s), 4.54 (2H, s), 6.55 (1H, d, J = 8.0 Hz), 6.58 (1H, d, J = 7.3 Hz), 7.00 (1H, t, J = 7.7 Hz).

[0784]

Reference Preparation example 18

A mixture of 3-methyl-2-methoxymethyl-1-aminobenzene (described in Reference Preparation example 17) 6.35 g, triphosgene 4.36 g, aqueous saturated sodium bicarbonate solution 150 mL and ethyl acetate 150 ml was stirred under ice-cooling for one hour. The organic layers of the reaction mixtures were washed with saturated saline and were concentrated under reduced pressure to give 3-methyl-2-methoxymethyl-1-isocyanatobenzene 6.30 g.

3-methyl-2-methoxymethyl-1-isocyanatobenzene

1H-NMR ($CDCl_3$) 5 (ppm): 2.40 (3H, s), 3.42 (3H, s), 4.51 (2H, s), 6.97 (1H, d, J = 8.0 Hz), 7.03 (1H, d, J = 7.6 Hz), 7.16 (1H, t, J = 7.8 Hz).

[0785]

Reference Preparation example 19

A mixture of sodium borohydride 22.8 g and tetrahydrofuran 240 mL was stirred at room temperature for ten minutes. Thereto was added slowly an solution of 2-
methyl-6-nitrobenzoic acid 75.0 g in toluene 120 mL, and after a completion of the dropping, the mixtures were stirred at room temperature for additional thirty minutes. The mixed solutions were ice-cooled and thereto was added slowly methanesulfonic acid 26.9 mL over two hours. The reaction mixtures were stirred at room temperature for two days. To the reaction mixtures was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with 10% hydrochloric acid and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure to give 2-(hydroxymethyl)-3-methyl-1-nitrobenzene 58.9 g.

\[
\begin{array}{c}
\text{Me} \\
\text{HO} \\
\text{NO}_2 \\
\end{array}
\]

\[
^1H-NMR (CDCl_3) \delta (\text{ppm}) : 7.70 (1H, d, J = 8.3 \text{ Hz}), 7.48 (1H, d, J = 7.6 \text{ Hz}), 7.35 (1H, t, J = 7.6, \text{ Hz}), 4.70 (2H, s), 2.65 (1H, t, J = 7.3 \text{ Hz}) 2.55 (3H, s).
\]

Reference Preparation example 20

A mixture of 2-(hydroxymethyl)-3-methyl-1-nitrobenzene (described in Reference Preparation example 19) 58.9 g and chloroform 620 mL was ice-cooled and thereto was added dropwise phosphorus tribromide 191.0 g. The mixtures were
stirred at room temperature for fifteen hours. To the reaction mixtures was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline and were dried over anhydrous magnesium sulfate, and were then concentrated under reduced pressure to give 2-(bromomethyl)-3-methyl-1-nitrobenzene 76.7 g.

2-(bromomethyl)-3-methyl-1-nitrobenzene

\[
\begin{align*}
\text{Me} & \\
\text{Br} & \\
\text{NO}_2
\end{align*}
\]

\(^1\text{H-NMR}\) (CDCl\(_3\)) 5 (ppm): 7.75 (1H, d, J = 8.2 Hz), 7.46 (1H, d, J = 7.5 Hz), 7.36 (1H, dd, J = 8.2, 7.5 Hz), 4.72 (2H, s), 2.54 (3H, s).

Reference Preparation example 21

A mixture of 2-(bromomethyl)-3-methyl-1-nitrobenzene (described in Reference Preparation example 20) 13.8 g, 1-(4-chlorophenyl)-1H-pyrazole-3-ol (described in Reference Preparation example 24) 11.7 g, potassium carbonate 10.0 g and acetonitrile 300 mL was stirred with heating under reflux for four hours. To the reaction mixtures after standing to cool was added water and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over
anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 3 - [(2-nitro-6-methylphenyl) methyloxy] -1- (4-
chlorophenyl) pyrazole 19.2 g.

3 - [(2-nitro-6-methylphenyl) methyloxy] -1- (4-
chlorophenyl) pyrazole

![Chemical structure]

\[\text{H-NMR (CDCl}_3\text{)} 5(\text{ppm): 7.67 (1H, d, J = 2.7 Hz), 7.64 (1H, d, J = 8.2 Hz), 7.53-7.49 (2H, m), 7.45 (1H, d, J = 7.2 Hz), 7.39-7.34 (3H, m), 5.88 (1H, d, J = 2.7 Hz), 5.55 (2H, s), 2.57 (3H, s).} \]

Reference Preparation example 22

A mixture of 3 - [(2-nitro-6-methylphenyl) methyloxy] -1- (4-
chlorophenyl) pyrazole (described in Reference Preparation example 21) 19.0 g, 5% platinum-activated carbon 1.1 g and ethyl acetate 280 mL was stirred at room temperature under hydrogen atmosphere for six hours. The reaction mixtures were filtered and the filtrates were concentrated under reduced pressure to give 3 - [(2-amino-6-
methylphenyl)methyloxy] -1- (4-
chlorophenyl) pyrazole 16.9 g.

3 - [(2-amino-6-methylphenyl)methyloxy] -1- (4-
chlorophenyl) pyrazole

\[
\text{H-NMR (CDCl}_3\text{) } 5\text{ (ppm): 7.68 (1H, d, } J = 2.7 \text{ Hz), 7.55-7.52 (2H, m), 7.40-7.36 (2H, m), 7.04 (1H, dd, } J = 7.5, 8.0 \text{ Hz), 6.64 (1H, d, } J = 7.5 \text{ Hz), 6.58 (1H, d, } J = 8.0 \text{ Hz), 5.91 (1H, s), 5.39 (2H, s), 4.24 (2H, brs), 2.45 (3H, s).}
\]

Reference Preparation example 23

A mixture of 3-[(2-amino-6-methylphenyl) methyloxy]-1-(4-chlorophenyl) pyrazole (described in Reference Preparation example 22) 33.7 g, triphosgene 47.9 g and toluene 360 mL was stirred with heating under reflux for three hours. The reaction mixtures after standing to cool were concentrated under reduced pressure to give 3-[(2-isocyanato-6-methylphenyl) methyloxy]-1-(4-chlorophenyl) pyrazole 30.8 g.

3-[(2-isocyanato-6-methylphenyl) methyloxy]-1-(4-chlorophenyl) pyrazole

\[
\text{H-NMR (CDCl}_3\text{) } 5\text{ (ppm): 7.71 (1H, d, } J = 2.7 \text{ Hz), 7.58 (2H, m), 7.40-7.36 (2H, m), 7.04 (1H, dd, } J = 7.5, 8.0 \text{ Hz), 6.64 (1H, d, } J = 7.5 \text{ Hz), 6.58 (1H, d, } J = 8.0 \text{ Hz), 5.91 (1H, s), 5.39 (2H, s), 4.24 (2H, brs), 2.45 (3H, s).}
\]
Reference Preparation example 24

To a mixture of 4-chlorophenylhydrazine 28.5 g, 28% sodium methoxide -methanol solution 81.3 g and methanol 200 mL was added methyl propiolate 29.4 g under ice-cooling, and the mixtures were stirred at 100°C for two hours. To the reaction mixtures after standing to cool was added ice water 100 mL, and the mixtures were acidified with 30% sulfuric acid and were stirred at 100°C for two hours. To the reaction mixtures after standing to cool was added saturated saline and the mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline and then were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure to give 1-(4-chlorophenyl) -1H-pyrazole-3-ol 15.6 g.

\[
\text{Cl} \quad \text{N} \quad \text{OH}
\]

\[\text{H-NMR (DMSO-d6) } \delta (\text{ppm}): 5.84 (1H, d, J = 2.4 \text{ Hz}), 7.48 (2H, d, J = 8.9 \text{ Hz}), 7.70 (2H, d, J = 8.9 \text{ Hz}), 8.25 (1H, d, J = 2.7 \text{ Hz}), 10.32 (1H, s).\]
Reference Preparation example 25.

A similar reaction to Reference Preparation example 24 using phenylhydrazine instead of 4-chlorophenylhydrazine gave 1-phenyl-1H-pyrazole-3-ol.

1-phenyl -1H-pyrazole-3-ol

\[
\begin{array}{c}
\text{N} \\
\text{N} \\
\text{OH}
\end{array}
\]

\[\text{H-NMR (CDCl}_3\text{): 5(ppm): 5.91 (1H, d, J = 2.6 Hz), 7.25 (2H, tt, J = 7.2, 1.2 Hz), 7.43-7.53 (4H, m), 7.67 (1H, d, J = 2.7 Hz).}\]

Reference Preparation example 26.

A similar reaction to Reference Preparation example 24 using 4-methoxyphenylhydrazine instead of 4-chlorophenylhydrazine gave 1-(4-methoxyphenyl)-1H-pyrazole-3-ol.

1-(4-methoxyphenyl) -1H-pyrazole-3 -ol

\[
\begin{array}{c}
\text{MeO} \\
\text{N} \\
\text{N} \\
\text{OH}
\end{array}
\]

\[\text{H-NMR (DMSO-dg): } \delta (\text{ppm}): 3.77 (3H, s), 5.74 (1H, d, J = 2.7 \text{ Hz}), 6.99 (2H, d, J = 8.9 \text{ Hz}), 7.58 (2H, d, J = 8.9 \text{ Hz}), 8.09 (1H, d, J = 2.4 \text{ Hz}), 10.10 (1H, s).\]
A similar reaction to Reference Preparation example 24 using 4-methylphenylhydrazine instead of 4-chlorophenylhydrazine gave 1-(4-methylphenyl)-1H-pyrazole-3-ol.

1-(4-methylphenyl)-1H-pyrazole-3-ol

\[
\text{Me} \quad \begin{array}{c}
\text{N} \\
\mid \\
\text{N} \quad \text{OH}
\end{array}
\]

\(^1\text{H-NMR} \) (CDCl\(_3\)) \(\delta \) (ppm): 2.36 (3\(H \), s), 5.87 (1\(H \), dd, \(J = 2.7, 0.5 \) Hz), 7.25 (2\(H \), d, \(J = 8.5 \) Hz), 7.39 (2\(H \), d, \(J = 8.5 \) Hz), 7.60 (1\(H \), dd, \(J = 2.7, 0.5 \) Hz), 12.09 (1\(H \), s).

Reference Preparation example 28

A similar reaction to Reference Preparation example 24 using 4-cyanophenylhydrazine instead of 4-chlorophenylhydrazine gave 1-(4-cyanophenyl)-1H-pyrazole-3-ol.

1-(4-cyanophenyl)-1H-pyrazole-3-ol

\[
\text{NC} \quad \begin{array}{c}
\text{N} \\
\mid \\
\text{N} \quad \text{OH}
\end{array}
\]

\(^1\text{H-NMR} \) (DMSO-\(d_6\)) \(\delta \) (ppm): 5.94 (1\(H \), dd, \(J = 2.7, 0.7 \) Hz), 7.86 (2\(H \), d, \(J = 8.7 \) Hz), 7.90 (2\(H \), d, \(J = 8.7 \) Hz), 8.41 (1\(H \), d, \(J = 2.2 \) Hz), 10.59 (1\(H \), s).

Reference Preparation example 29

A similar reaction to Reference Preparation example 24
using 4-fluorophenylhydrazine instead of 4-chlorophenylhydrazine gave 1-(4-fluorophenyl)-1H-pyrazole-3-ol.

1-(4-fluorophenyl)-1H-pyrazole-3-ol

\[\text{F} \]

\[\text{N} \]

\[\text{N} \]

\[\text{OH} \]

1H-NMR (CDCl$_3$) δ (ppm): 5.89 (1H, d, $J = 2.7$ Hz), 7.15 (2H, tt, $J = 8.5$, 2.2 Hz), 7.47 (2H, ddt, $J = 9.2$, 4.6, 2.2 Hz), 7.60 (1H, d, $J = 2.7$ Hz).

Reference Preparation example 30

A mixture of methyl 3-methoxyacrylate 100.0 g, sodium hydroxide 37.9 g and water 470 mL was stirred with heating under reflux for one hour. The reaction mixtures after standing to cool was concentrated under reduced pressure to give sodium 3-methoxyacrylate 92.8 g.

sodium 3-methoxyacrylate

\[\text{MeO} \text{\rule{0.5cm}{0.1mm}} \text{\rule{0.5cm}{0.1mm}} \text{Na} \]

1H-NMR (D$_2$O) δ (ppm): 3.52 (3H, s), 5.10 (1H, dd, $J = 12.7$, 0.7 Hz), 7.23 (1H, d, $J = 12.7$ Hz).

Reference Preparation example 31

To a mixture of sodium 3-methoxyacrylate 5.00 g (described in Reference Preparation example 30) and
tetrahydrofuran 50 mL was added thionyl chloride 5.0 mL under ice-cooling. The mixtures were stirred with heating under reflux for one hour and were then concentrated under reduced pressure to give crude 3-methoxyacrylic acid chloride.

To a mixture of tert-butylhydrazine hydrochloride salt 5.41 g and triethylamine 10.1 mL was added 3-methoxyacrylic acid chloride (the total amounts) under ice-cooling and the mixtures were stirred at room temperature for one hour. To the reaction mixtures was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with water, aqueous saturated sodium bicarbonate solution and saturated saline and were dried over anhydrous sodium sulfate, and were then concentrated under reduced pressure to give 3-methoxyacrylic acid N'-tert-butylhydrazide.

3-methoxyacrylic acid N'-tert-butylhydrazide

\[
\begin{align*}
\text{N} & \quad \text{O} \\
\text{H} & \quad \text{Me}
\end{align*}
\]

\[\text{H-NMR (DMSO-d}_6\text{) } \delta \text{(ppm)}: 0.98 \text{ (9H, s), 3.62 (3H, s), 4.68 (1H, s), 5.36 (1H, d, J = 12.3 Hz), 7.36 (1H, d, J = 12.3 Hz), 9.02 (1H, s).}\]

Reference Preparation example 32

A mixture of 3-methoxyacrylic acid N'-tert-butyl
hydrazide (described in Reference Preparation example 31) and concentrated hydrochloric acid 10 mL was stirred at 25°C for fifteen minutes. To the reaction mixtures was added aqueous sodium hydroxide and the precipitated solids were filtered to give 1-(1,1-dimethylethyl)-1H-pyrazole-3-ol 1.50 g.

\[
\text{1-(1,1-dimethylethyl)-1H-pyrazole-3-ol}
\]

\[
\begin{align*}
& \text{1H-NMR (DMSO-d}_6\text{) } \delta \text{ (ppm): 1.42 (9H, s), 5.39 (1H, d, J = 2.4 Hz), 7.42 (1H, d, J = 2.4 Hz), 9.51 (1H, s).}
\end{align*}
\]

Reference Preparation example 33

A mixture of methyl 3-methoxyacrylate 21.1 g, hydrazine hydrate 10.0 g and methanol 20 mL was stirred with heating under reflux for two hours. The reaction mixtures were concentrated under reduced pressure to give 1H-pyrazole-3-ol 11.0 g.

\[
\text{1H-pyrazole-3-ol}
\]

\[
\begin{align*}
& \text{1H-NMR (DMSO-d}_6\text{) } \delta \text{ (ppm): 5.43 (1H, d, J = 2.2 Hz), 7.35 (1H, d, J = 2.2 Hz), 10.22 (1H, s).}
\end{align*}
\]

Reference Preparation example 34
A mixture of 1H-pyrazole-3-ol (described in Reference Preparation example 33) 3.00 g, acetic anhydride 3.1 mL and acetic acid 90 mL was stirred at 25°C for two hours. To the reaction mixtures was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with water, aqueous saturated sodium bicarbonate solution and saturated saline and were dried over anhydrous sodium sulfate, and were then concentrated under reduced pressure to give 1-acetyl-1H-pyrazole-3-ol 1.50 g.

1-acetyl-1H-pyrazole-3-ol

Me
\[\begin{array}{c}
\text{O} \\
\text{N} \\
\text{N}
\end{array} \]
\[\text{OH} \]

1H-NMR (DMSO-d$_6$) δ (ppm): 2.49 (3H, s), 6.02 (1H, dd, J = 2.9, 1.0 Hz), 8.14 (1H, dd, J = 2.9, 1.0 Hz), 11.04 (1H, s).

Reference Preparation example 35

A mixture of N-hydroxysuccinimide 200 g, sodium 3-methoxyacrylate (described in Reference Preparation example 30) 287 g, 1-ethyl-3- (3-dimethylaminopropyl) carbodimide hydrochloride salt 528 g, pyridine 269 g and N,N-dimethyl formamide 2L was stirred at room temperature for 44 hours. To aqueous saturated sodium bicarbonate solution was added the reaction mixtures and the resulting mixtures were extracted with ethyl acetate. The organic layers were washed with aqueous saturated sodium bicarbonate solution,
aqueous sodium hydrogen sulfide solution and saturated saline and were dried over anhydrous magnesium sulfate, and were then concentrated under reduced pressure. The resulting residues washed with a mixed solvent of tert-butyl methyl ether and hexane and were dried under reduced pressure to give 3-methoxyacrylic acid N-hydroxysuccinimide 174 g.

3-methoxyacrylic acid N-hydroxysuccinimide

\[
\begin{align*}
\text{MeO} & \quad \text{O} \\
\text{O} & \quad \text{N}\end{align*}
\]

\[\text{1H-NMR (CDCl}_3\text{)} \ \delta \text{(ppm)} : 7.84 \ (1\text{H}, d, J = 12.7 \text{ Hz}), \ 5.38 \ (1\text{H}, d, J = 12.4 \text{ Hz}), \ 3.80 \ (3\text{H}, s), \ 2.84 \ (4\text{H}, s)\]

[0802]

Reference Preparation example 36

A mixture of 3-methoxyacrylic acid N-hydroxysuccinimide (described in Reference Preparation example 35) 13.6 g, 4-bromophenylhydrazine hydrochloride salt 16.8 g, sodium hydroxide 3.0 g, dioxane 250 mL and water 250 mL was heated at 60°C for sixteen hours. To water added the reaction solutions and the mixtures were extracted with ethyl acetate. The organic layers were washed with aqueous saturated sodium bicarbonate solution and saturated saline and were dried over anhydrous magnesium sulfate, and were then concentrated under reduced
pressure. The resulting residues washed with a mixed solvent of tert-butyl methyl ether and hexane and were dried under reduced pressure to give 3-methoxyacrylic acid N'- (4-bromophenyl) hydrazide 16.4 g.

3-methoxyacrylic acid N'- (4-bromophenyl) hydrazide

![Chemical Structure](image)

1H-NMR (DMSO-D$_6$) δ (ppm) : 9.48 (1H, d, $J = 1.7$ Hz), 7.89 (1H, d, $J = 2.2$ Hz), 7.43 (1H, d, $J = 12.3$ Hz), 7.26 (2H, d, $J = 8.7$ Hz), 6.62 (2H, d, $J = 8.2$ Hz), 5.39 (1H, d, $J = 12.6$ Hz), 3.64 (3H, s).

Reference Preparation example 37

A mixture of 3-methoxyacrylic acid N'- (4-bromophenyl) hydrazide (described in Reference Preparation example 36) 16.4 g and concentrated hydrochloric acid 200 mL was stirred at room temperature for one hour and to the reaction mixtures was then added water. The precipitated solids were filtered off. The solids obtained were washed with aqueous saturated sodium bicarbonate solution, water and hexane, and were dried under reduced pressure to give 1- (4-bromophenyl) -1H-pyrazole-3 -ol 123 g.

1- (4-bromophenyl) -1H-pyrazole-3-ol
\[
\text{H-NMR (CDCl}_3\text{) } \delta \text{ (ppm): } 7.64 \text{ (1H, d, } J = 2.7 \text{ Hz)}, 7.57 \text{ (2H, dt, } J = 9.5, 2.6 \text{ Hz)}, 7.39 \text{ (2H, dt, } J = 9.3, 2.5 \text{ Hz)}, 5.92 \text{ (1H, d, } J = 2.4 \text{ Hz)}.
\]

Reference Preparation example 38

A similar reaction to Reference Preparation example 36 using 4-trifluoromethoxyphenylhydrazine instead of 4-bromophenylhydrazine hydrochloride salt gave 3-methoxyacrylic acid N'- (4-trifluoromethoxyphenyl) hydrazide.

\[
\text{3-methoxyacrylic acid N'- (4-trifluoromethoxyphenyl) hydrazide}
\]

\[
\text{H-NMR (DMSO-D}_6\text{) } \delta \text{ (ppm): } 9.52 \text{ (1H, d, } J = 2.7 \text{ Hz)}, 7.97 \text{ (1H, d, } J = 2.4 \text{ Hz)}, 7.45 \text{ (1H, d, } J = 12.3 \text{ Hz)}, 7.12 \text{ (2H, d, } J = 8.9 \text{ Hz)}, 6.72 \text{ (2H, d, } J = 8.9 \text{ Hz)}, 5.41 \text{ (1H, d, } J = 12.3 \text{ Hz)}, 3.66 \text{ (3H, s)}.
\]

Reference Preparation example 39

A similar reaction to Reference Preparation example 37 using 3-methoxyacrylic acid N'- (4-trifluoromethoxyphenyl) hydrazide (described in Reference
preparation example 38) instead of 3-methoxyacrylic acid N'-
(4-bromophenyl) hydrazide gave 1-(4-trifluoromethoxyphenyl) -
1H-pyrazole-3 -ol.

\[
\text{1H-NMR (CDCl}_3\text{)} \delta \text{ (ppm): 11.65 (1H, s), 7.66 (1H, d, J = 2.7 Hz), 7.53 (2H, dt, J = 9.8, 2.7 Hz), 7.32 (2H, d, J = 8.8 Hz), 5.94 (1H, d, J = 2.7 Hz).}
\]

Reference Preparation example 40

A similar reaction to Reference Preparation example 36 using cyclohexylhydrazine hydrochloride salt instead of 4-
bromophenylhydrazine hydrochloride salt gave 3-
methoxyacrylic acid N'-cyclohexylhydrazide.

\[
\text{1H-NMR (DMSO-\text{D}_6) \delta (ppm): 9.11 (1H, s), 7.36 (1H, d, J = 12.3 Hz), 5.27 (1H, d, J = 12.6 Hz), 4.34 (1H, s), 3.60 (3H, s), 2.60-2.55 (1H, m), 1.74-0.99 (10H, m).}
\]

Reference Preparation example 41

A similar reaction to Reference Preparation example 37 using 3-methoxyacrylic acid N'-cyclohexylhydrazide
(described in Reference Preparation example 40) instead of 3-methoxyacrylic acid N'-(4-bromophenyl)hydrazide gave 1-cyclohexyl-1H-pyrazole-3-ol.

1-cyclohexyl-1H-pyrazole-3-ol

\[
\begin{align*}
\text{H-NMR (CDCl}_3\text{)} & \quad \delta (\text{ppm}): \ 7.16 (1H, d, J = 2.4 \text{ Hz}), \ 5.58 (1H, d, J = 2.4 \text{ Hz}), \ 3.84 (1H, tt, J = 11.7, 3.8 \text{ Hz}), \ 2.12-2.09 (2H, m), \ 1.90-1.85 (2H, m), \ 1.73-1.55 (3H, m), \ 1.41-1.37 (2H, m), \ 1.30-1.22 (1H, m).
\end{align*}
\]

Reference Preparation example 42

A similar reaction to Reference Preparation example 36 using 4-methoxyphenylhydrazine hydrochloride salt instead of 4-bromophenylhydrazine hydrochloride salt gave 3-methoxyacrylic acid N'-(4-methoxyphenyl)hydrazide.

3-methoxyacrylic acid N'-(4-methoxyphenyl) hydrazide

\[
\begin{align*}
\text{H-NMR (CDCl}_3\text{)} & \quad \delta (\text{ppm}): \ 7.53 (1H, d, J = 2.7 \text{ Hz}), \ 7.38 (2H, dt, J = 9.7, 2.8 \text{ Hz}), \ 6.94 (2H, dt, J = 9.4, 2.5 \text{ Hz}), \ 5.84 (1H, d, J = 2.4 \text{ Hz}), \ 3.83 (3H, s), \ 3.71 (3H, s).
\end{align*}
\]

Reference Preparation example 43
A similar reaction to Reference Preparation example 37 using 3-methoxyacrylic acid N'-(4-methoxyphenyl) hydrazide (described in Reference Preparation example 42) instead of 3-methoxyacrylic acid N'-(4-bromophenyl) hydrazide gave 1-(4-methoxyphenyl)-1H-pyrazole-3-ol.

Reference Preparation example 44

A similar reaction to Reference Preparation example 36 using 4-methylphenylhydrazine hydrochloride salt instead of 4-bromophenylhydrazine hydrochloride salt gave 3-methoxyacrylic acid N'-(4-methylphenyl) hydrazide.

3-methoxyacrylic acid N'-(4-methylphenyl) hydrazide

\[
\begin{align*}
\text{MeO} & \text{O} \\
\text{N} & \text{H} \\
\text{N} & \text{Me}
\end{align*}
\]

\[^1\text{H-NMR (CDCl}_3\text{)} 5(\text{ppm}): 7.60 (1H, d, J = 2.7 \text{ Hz}), 7.36 (2H, dt, J = 8.9, 2.2 \text{ Hz}), 7.21 (2H, d, J = 8.0 \text{ Hz}), 5.86 (1H, d, J = 2.7 \text{ Hz}), 3.70 (3H, s), 2.36 (3H, s)\].

Reference Preparation example 45

A similar reaction to Reference Preparation example 37 using 3-methoxyacrylic acid N'-(4-methylphenyl) hydrazide (described in Reference preparation example 44) instead of 3-methoxyacrylic acid N'-(4-bromophenyl) hydrazide gave 1-(4-methoxyphenyl)-1H-pyrazole-3-ol.
Reference Preparation example 46

A mixture of 3-methoxyacrylic acid N-hydroxysuccinimide (described in Reference preparation example 35) 16.8 g, 2-chlorophenylhydrazine hydrochloride salt 15.5 g, sodium hydroxide 3.56 g, dioxane 250 mL and water 250 mL was heated at 60°C for four days. To water was added the reaction solutions and the mixtures were extracted with ethyl acetate. The organic layers were washed with aqueous saturated saline and were dried over anhydrous magnesium sulfate, and were then concentrated under reduced pressure to give oil mixtures. The resulting mixtures and concentrated hydrochloric acid 60 mL was stirred at room temperature for two hours. To the reaction solutions was added 28% aqueous sodium hydroxide solution in ice-cooling. The precipitated solids were filtered off and the solids were washed with isopropyl alcohol to give 1-(2-chlorophenyl)-1H-pyrazole-3-ol 5.9 g.

1-(2-chlorophenyl)-1H-pyrazole-3-ol

\[
\begin{align*}
\text{Cl} & \quad \text{N} \quad \text{N} \quad \text{OH} \\
\end{align*}
\]

\(^1H\text{-NMR (CDCl}_3\text{)}\) 5(ppm): 7.63 (1H, d, \(J = 2.7\) Hz), 7.52 (2H, ddd, \(J = 10.6,\ 8.0,\ 1.6\) Hz), 7.40 (1H, td, \(J = 7.7,\ 1.5\) Hz), 7.30 (1H, td, \(J = 7.7,\ 1.5\) Hz), 5.86 (1H, d, \(J = 2.7\) Hz).

[0813]
A similar reaction to Reference Preparation example 46 using 3-chlorophenylhydrazine hydrochloride salt instead of 2-chlorophenylhydrazine hydrochloride salt gave 1-(3-chlorophenyl) -1H-pyrazole-3-ol.

\[
\text{\begin{center}
\includegraphics[width=0.2\textwidth]{image1}
\end{center}}
\]

\[\text{1H-NMR (CDCl\textsubscript{3}) 5(ppm): 7.68 (1H, d, J = 2.7 Hz), 7.52 (1H, s), 7.43 (1H, d, J = 8.9 Hz), 7.38 (1H, t, J = 7.8 Hz), 7.22 (1H, d, J = 7.2 Hz), 5.94 (1H, d, J = 2.7 Hz).}\]

Reference Preparation example 48

A similar reaction to Reference Preparation example 46 using 2-fluorophenylhydrazine hydrochloride salt instead of 2-chlorophenylhydrazine hydrochloride salt gave 1-(2-fluorophenyl) -1H-pyrazole-3-ol.

\[
\text{\begin{center}
\includegraphics[width=0.2\textwidth]{image2}
\end{center}}
\]

\[\text{1H-NMR (CDCl\textsubscript{3}) 5(ppm): 7.73 (1H, t, J = 2.7 Hz), 7.69-7.65 (1H, m), 7.30-7.19 (3H, m), 5.91 (1H, d, J = 2.7 Hz).}\]

Reference Preparation example 49

A similar reaction to Reference Preparation example 46
using 2-methylphenylhydrazine hydrochloride salt instead of 2-chlorophenylhydrazine hydrochloride salt gave 1-(2-methylphenyl)-1H-pyrazole-3-ol.

1-(2-methylphenyl)-1H-pyrazole-3-ol

\[\text{\begin{tabular}{c}
\text{\text{NC}} \\
\text{\text{Me}} \\
\text{\text{N}} \\
\text{\text{OH}} \\
\end{tabular}} \]

\[^1H\text{-NMR (CDCl}_3\text{)} \ 5\text{ppm}: 7.32-7.28 \ (5\text{H, m}), 5.77 \ (1\text{H, d, } J = 2.5 \text{ Hz}), 2.29 \ (3\text{H, s}). \]

[0816]
Reference Preparation example 50

A similar reaction to Reference Preparation example 46 using 2-methoxyphenylhydrazine hydrochloride salt instead of 2-chlorophenylhydrazine hydrochloride salt gave 1-(2-methoxyphenyl)-1H-pyrazole-3-ol.

1-(2-methoxyphenyl)-1H-pyrazole-3-ol

\[\text{\begin{tabular}{c}
\text{\text{NC}} \\
\text{\text{OMe}} \\
\text{\text{N}} \\
\text{\text{OH}} \\
\end{tabular}} \]

\[^1H\text{-NMR (CDCl}_3\text{)} \ 5\text{ppm}: 7.73 \ (1\text{H, d, } J = 2.7 \text{ Hz}), 7.50 \ (1\text{H, dd, } J = 8.0, 1.6 \text{ Hz}), 7.26 \ (1\text{H, ddd, } J = 8.7, 7.0, 1.3 \text{ Hz}), 7.07 \ (1\text{H, td, } J = 7.7, 1.3 \text{ Hz}), 7.02 \ (1\text{H, dd, } J = 8.4, 1.3 \text{ Hz}), 5.82 \ (1\text{H, d, } J = 2.5 \text{ Hz}), 3.88 \ (3\text{H, s}). \]

[0817]
Reference Preparation example 51

A similar reaction to Reference Preparation example 46 using 2,3,4,5,6-pentafluorophenylhydrazine hydrochloride
salt instead of 2-chlorophenylhydrazine hydrochloride salt
gave 1-(2,3,4,5,6-pentafluorophenyl)-1H-pyrazole-3-ol.

1-(2,3,4,5,6-pentafluorophenyl)-1H-pyrazole-3-ol

\[
\begin{align*}
\text{F} & \quad \text{F} \\
\text{F} & \quad \text{F} \\
\text{N} & \quad \text{OH} \\
\end{align*}
\]

\[\text{H}-\text{NMR (CDCl}_3\text{) } \delta (\text{ppm}): 5.97 (1\text{H}, \text{d}, J = 2.7 \text{ Hz}), 7.41 (1\text{H}, \text{t}, J = 1.3 \text{ Hz}) .\]

Reference Preparation example 52

To oxalyl chloride 407 g was added dropwise ethyl vinyl ether 170 g in ice-cooling. After a completion of the dropping, the mixtures were raised to room temperature and were stirred for fifteen hours. The reaction mixtures were concentrated under reduced pressure. The resulting residues were raised to 120°C and were stirred for thirty minutes. After cooling, the mixtures were distilled under reduced pressure to give 3-ethoxyacrylic acid chloride 137 g.

3-ethoxyacrylic acid chloride

\[
\begin{align*}
\text{EtO} & \quad \text{Cl} \\
\end{align*}
\]

\[\text{H}-\text{NMR (CDCl}_3\text{) } \delta (\text{ppm}): 7.79 (1\text{H}, \text{d}, J = 12.0 \text{ Hz}), 5.51 (1\text{H}, \text{d}, J = 12.0 \text{ Hz}), 4.06 (2\text{H}, \text{q}, J = 7.1 \text{ Hz}), 1.40 (3\text{H}, \text{t}, J = 7.1 \text{ Hz}) .\]
Reference Preparation example 53

To a mixture of 4-methylthiophenylhydrazine 4.47 g, pyridine 2.4 mL and N,N-dimethylformamide 30 mL was added dropwise 3-ethoxyacrylic acid chloride 3.9 g in ice-cooling. The reaction mixtures were raised to room temperature and were stirred for two hours. To the reaction solutions was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with saturated saline and were concentrated under reduced pressure. The resulting residues were washed with toluene and hexane and were dried in reduced pressure to give 3-ethoxyacrylic acid N'-{(4-methylthiophenyl) hydrazide 1.4 g.

3-ethoxyacrylic acid N'-{(4-methylthiophenyl) hydrazide

\[\text{EtO} = \text{O} = \text{N} \quad \text{N} \quad \text{H} \quad \text{SMe} \]

1H-NMR (DMSO-D$_2$) δ (ppm) : 9.84 (1H, s), 9.11 (1H, s), 7.73 (1H, d, J = 12.6 Hz), 7.40 (2H, dt, J = 9.2, 2.3 Hz), 7.17 (2H, dt, J = 9.3, 2.3 Hz), 5.38 (1H, d, J = 12.6 Hz), 4.02 (2H, q, J = 7.0 Hz), 2.40 (3H, s), 1.25 (3H, t, J = 7.1 Hz).

Reference Preparation example 54

A similar reaction to Reference Preparation example 37 using 3-ethoxyacrylic acid N'-{(4-methylthiophenyl) hydrazide
(described in Reference preparation example 53) instead of 3-methoxyacrylic acid N'-(4-bromophenyl) hydrazide gave 1-(4-methylthiophenyl)-1H-pyrazole-3-ol.

1-(4-methylthiophenyl)-1H-pyrazole-3-ol

\[\text{MeS} \begin{array}{c} \text{N} \\ \text{N} \end{array} \text{OH} \]

1H-NMR (DMSO-D_6) δ (ppm): 10.21 (1H, s), 9.02 (1H, d, $J = 3.9$ Hz), 7.54 (2H, dt, $J = 9.4$, 2.4 Hz), 7.23 (2H, dt, $J = 9.2$, 2.4 Hz), 5.70 (1H, d, $J = 3.9$ Hz), 2.43 (3H, s).

Reference Preparation example 55

A similar reaction to Reference Preparation example 53 using 4-nitrophenylhydrazine instead of 4-methylthiophenylhydrazine gave 3-ethoxyacrylic acid N'-(4-nitrophenyl) hydrazide.

3-ethoxyacrylic acid N'-(4-nitrophenyl) hydrazide

\[\text{EtO} \begin{array}{c} \text{N} \\ \text{N} \end{array} \text{OH} \]

1H-NMR (DMSO-D_6) δ (ppm): 9.76 (1H, s), 9.05 (1H, s), 8.06 (2H, d, $J = 9.2$ Hz), 7.48 (1H, d, $J = 12.6$ Hz), 6.72 (2H, d, $J = 9.2$ Hz), 5.41 (1H, d, $J = 12.4$ Hz), 3.95 (2H, q, $J = 7.0$ Hz), 1.26 (3H, t, $J = 7.1$ Hz).
A similar reaction to Reference Preparation example 37 using 3-ethoxyacrylic acid N'-(4-nitrophenyl) hydrazide (described in Reference preparation example 55) instead of 3-methoxyacrylic acid N'-(4-bromophenyl) hydrazide gave 1-(4-nitrophenyl)-1H-pyrazole-3-ol.

1-(4-nitrophenyl)-1H-pyrazole-3-ol

\[
\text{O}_2\text{N-}
\begin{array}{c}
\text{N} \\
\text{N} \\
\text{OH}
\end{array}
\]

\[\text{H-NMR } (\text{DMSO-}\text{D}_6) \delta (\text{ppm}): 8.46 (1\text{H}, \text{d}, J = 2.7 \text{ Hz}), 8.31 (2\text{H}, \text{dt}, J = 10.0, 2.6 \text{ Hz}), 7.92 (2\text{H}, \text{dt}, J = 9.9, 2.6 \text{ Hz}), 6.00 (1\text{H}, \text{d}, J = 2.7 \text{ Hz}).\]

Reference Preparation example 57

A similar reaction to Reference Preparation example 53 using 4-trifluoroacetylphenylhydrazine instead of 4-methylthiophenylhydrazine gave 3-ethoxyacrylic acid N'-(4-trifluoroacetylphenyl) hydrazide.

3-ethoxyacrylic acid N'-(4-trifluoroacetylphenyl) hydrazide

\[
\text{EtO-}
\begin{array}{c}
\text{N} \\
\text{N} \\
\text{CF}_3
\end{array}
\]

\[\text{H-NMR } (\text{DMSO-}\text{D}_6) \delta (\text{ppm}): 9.78 (1\text{H}, \text{s}), 9.16 (1\text{H}, \text{s}), 7.87 (2\text{H}, \text{d}, J = 8.5 \text{ Hz}), 7.48 (1\text{H}, \text{d}, J = 12.4 \text{ Hz}), 6.78 (2\text{H}, \text{d}, J = 8.9 \text{ Hz}), 5.41 (1\text{H}, \text{d}, J = 12.4 \text{ Hz}), 3.95 (2\text{H}, \text{q}, J =
6.3 Hz), 1.27 (3H, t, J = 7.0 Hz).

Reference Preparation example 58

A similar reaction to Reference Preparation example 37 using 3-ethoxyacrylic acid N'-(4-trifluoroacetylphenyl) hydrazide (described in Reference preparation example 57) instead of 3-methoxyacrylic acid N'-(4-bromophenyl) hydrazide gave 1-(4-trifluoroacetylphenyl)-1H-pyrazole-3-ol.

\[
\begin{align*}
\text{F}_3\text{C} & \text{O} \\
& \text{N} \text{N} \text{OH}
\end{align*}
\]

\(^1\text{H-NMR} \ (\text{DMSO-}D_6) \ \delta \ (\text{ppm}) : 10.76 \ (1\text{H, s}), 8.47 \ (1\text{H, d, J = 2.7 Hz}), 8.12 \ (2\text{H, d, J = 8.2 Hz}), 7.95 \ (2\text{H, dt, J = 9.3, 2.2 Hz}), 6.01 \ (1\text{H, d, J = 2.7 Hz}).
\]

Reference Preparation example 59

A similar reaction to Reference Preparation example 53 using 4-trifluoromethylthiophenylhydrazine instead of 4-methylthiophenylhydrazine gave 3-ethoxyacrylic acid N'-(4-trifluoromethylthiophenyl) hydrazide.

3-ethoxyacrylic acid N'-(4-trifluoromethylthiophenyl) hydrazide
1H-NMR (DMSO-d_6) δ (ppm): 10.10 (1H, s), 9.49 (1H, s), 7.77 (1H, d, $J = 12.4$ Hz), 7.66-7.60 (4H, m), 5.43 (1H, d, $J = 12.6$ Hz), 4.06 (2H, q, $J = 7.1$ Hz), 1.28 (3H, t, $J = 7.1$ Hz).

Reference Preparation example 60

A similar reaction to Reference Preparation example 37 using 3-ethoxyacrylic acid N'-(4-trifluoromethylthiophenyl) hydrazide (described in Reference preparation example 59) instead of 3-methoxyacrylic acid N'-(4-bromophenyl) hydrazide gave 1-(4-trifluoromethylthiophenyl) -1H-pyrazole-3-ol.

1-(4-trifluoromethylthiophenyl) -1H-pyrazole-3-ol

1H-NMR (CDCl$_3$) δ (ppm): 8.53 (1H, d, $J = 4.0$ Hz), 7.79 (1H, s), 7.68 (2H, d, $J = 8.3$ Hz), 7.61 (2H, d, $J = 8.6$ Hz), 5.57 (1H, d, $J = 3.8$ Hz).

Reference Preparation example 61

A similar reaction to Reference Preparation example 53 using 4-ethylphenylhydrazine instead of 4-
methylthiophenylhydrazine gave 3-ethoxyacrylic acid N'- (4-ethylphenyl) hydrazide.

3-ethoxyacrylic acid N'-(4-ethylphenyl) hydrazide

\[
\begin{align*}
\text{Et} & - \text{C} = \text{O} \\
\text{N} & \quad \text{H} \\
\text{N} & \quad \text{C} \quad \text{H} \\
\text{Et} & - \text{OH}
\end{align*}
\]

\[\text{H-NMR (DMSO-D}_6) \ \delta (\text{ppm}) : \ 9.79 (1\text{H, s}), \ 9.00 (1\text{H, s}), \ 7.76 (1\text{H, d, } J = 12.6 \text{ Hz}), \ 7.36 (2\text{H, d, } J = 8.6 \text{ Hz}), \ 7.11 (2\text{H, d, } J = 8.6 \text{ Hz}), \ 5.42 (1\text{H, d, } J = 12.6 \text{ Hz}), \ 4.05 (2\text{H, q, } J = 7.1 \text{ Hz}), \ 2.54 (2\text{H, q, } J = 7.5 \text{ Hz}), \ 1.28 (3\text{H, t, } J = 7.1 \text{ Hz}), \ 1.15 (3\text{H, t, } J = 7.6 \text{ Hz}).\]

Reference Preparation example 62

A similar reaction to Reference Preparation example 37 using 3-ethoxyacrylic acid N'-(4-ethylphenyl) hydrazide (described in Reference preparation example 61) instead of 3-methoxyacrylic acid N'-(4-bromophenyl) hydrazide gave 1-(4-ethylphenyl)-1H-pyrazole-3-ol.

1-(4-ethylphenyl)-1H-pyrazole-3-ol

\[\text{H-NMR (CDCl}_3) \ 5(\text{ppm}) : \ 8.52 (1\text{H, d, } J = 4.0 \text{ Hz}), \ 7.64 (1\text{H, s}), \ 7.40 (2\text{H, d, } J = 8.3 \text{ Hz}), \ 7.21 (2\text{H, d, } J = 8.6 \text{ Hz}), \ 5.51 (1\text{H, d, } J = 3.8 \text{ Hz}), \ 2.64 (2\text{H, q, } J = 7.6 \text{ Hz}), \ 1.23 (3\text{H, t, } J = 7.6 \text{ Hz}).\]
Reference Preparation example 63

A similar reaction to Reference Preparation example 53 using 2-bromophenylhydrazine instead of 4-methylthiophenylhydrazine gave 3-ethoxyacrylic acid N'-(2-bromophenyl)hydrazide.

3-ethoxyacrylic acid N'-(2-bromophenyl)hydrazide

\[
\text{EtO} \xrightarrow{\text{N}} \text{H} \xrightarrow{\text{Br}} \text{N} \xrightarrow{\text{H}} \text{Br}
\]

\[^1H-NMR \text{(DMSO-D}_6\text{)} \delta \text{(ppm)}: \ 9.65 \ (1H, d, J = 2.5 \text{ Hz}), \ 7.45-7.43 \ (2H, m), \ 7.22-7.17 \ (2H, m), \ 6.73-6.67 \ (2H, m), \ 5.43 \ (1H, d, J = 12.4 \text{ Hz}), \ 3.93 \ (2H, q, J = 7.0 \text{ Hz}), \ 1.26 \ (3H, t, J = 6.9 \text{ Hz}).\]

Reference Preparation example 64

A similar reaction to Reference Preparation example 37 using 3-ethoxyacrylic acid N'-(2-bromophenyl)hydrazide (described in Reference preparation example 63) instead of 3-methoxyacrylic acid N'-(4-bromophenyl)hydrazide gave 1-(2-bromophenyl)-1H-pyrazole-3-ol.

1-(2-bromophenyl)-1H-pyrazole-3-ol

\[
\text{Br} \quad \text{N} \quad \text{N} \quad \text{OH}
\]

\[^1H-NMR \text{(CDCl}_3\text{)} \delta \text{(ppm)}: \ 7.69 \ (1H, d, J = 8.1 \text{ Hz}), \ 7.59 \ (1H,\]
A similar reaction to Reference Preparation example 53 using 3-bromophenylhydrazine instead of 4-methylthiophenylhydrazine gave 3-ethoxyacrylic acid N'(3-bromophenyl) hydrazide.

\[\text{3-ethoxyacrylic acid N'(3-bromophenyl) hydrazide} \]

\[
\begin{align*}
\text{EtO} & \equiv \text{O} \\
\text{N} & \equiv \text{H} \\
\text{Br} & \equiv \text{Ph}
\end{align*}
\]

\[^{1}H\text{-NMR} \ (\text{DMSO-}D_{6}) \ \delta \ (\text{ppm}): \ 9.48 \ (1H, \ s), \ 7.43 \ (1H, \ d, \ J = 12.4 \text{ Hz}), \ 7.08 \ (1H, \ t, \ J = 8.0 \text{ Hz}), \ 6.83 \ (1H, \ d, \ J = 7.8 \text{ Hz}), \ 6.80 \ (1H, \ s), \ 6.67 \ (1H, \ d, \ J = 8.1 \text{ Hz}), \ 5.40 \ (1H, \ d, \ J = 12.4 \text{ Hz}), \ 3.93 \ (2H, \ q, \ J = 7.0 \text{ Hz}), \ 1.26 \ (3H, \ t, \ J = 6.9 \text{ Hz}).
\]

A similar reaction to Reference Preparation example 66 using 3-ethoxyacrylic acid N'(3-bromophenyl) hydrazide (described in Reference preparation example 65) instead of 3-methoxyacrylic acid N'(4-bromophenyl) hydrazide gave 1-(3-bromophenyl)-1H-pyrazole-3-ol.

\[1-(3\text{-bromophenyl})\ -1H\text{-pyrazole-3-ol} \]
H-NMR (CDCl$_3$) δ (ppm): 7.67-7.65 (2H, m), 7.48 (1H, ddd, $J = 8.0$, 1.1, 0.6 Hz), 7.38 (1H, ddd, $J = 7.9$, 1.0, 0.5 Hz), 7.32 (1H, t, $J = 8.0$ Hz), 5.94 (1H, d, $J = 2.8$ Hz).

Reference Preparation example 67

A similar reaction to Reference Preparation example 53 using 3-methoxyphenylhydrazine instead of 4-methylthiophenylhydrazine gave 3-ethoxyacrylic acid N'-(3-methoxyphenyl)hydrazide.

3-ethoxyacrylic acid N'-(3-methoxyphenyl)hydrazide

$\text{H-NMR (DMSO-D}_6) \delta$ (ppm): 9.38 (1H, d, $J = 2.8$ Hz), 7.67 (1H, d, $J = 2.5$ Hz), 7.40 (1H, d, $J = 12.4$ Hz), 7.02 (1H, t, $J = 8.1$ Hz), 6.27-6.24 (3H, m), 5.39 (1H, d, $J = 12.4$ Hz), 3.91 (2H, q, $J = 7.0$ Hz), 3.67 (3H, s), 1.25 (3H, t, $J = 6.9$ Hz).

Reference Preparation example 68

A similar reaction to Reference Preparation example 37 using 3-ethoxyacrylic acid N'-(3-methoxyphenyl)hydrazide (described in Reference preparation example 67) instead of 3-methoxyacrylic acid N'-(4-bromophenyl)hydrazide gave 1-(3-methoxyphenyl)-1H-pyrazole-3-ol.
1-(3-methoxyphenyl)-1H-pyrazole-3-ol

\[
\text{MeO} \quad \text{N} \quad \text{N} \quad \text{O} \\
\]

\text{H-NMR (CDCl}_3\text{) } \delta (\text{ppm}) : 11.55 (1H, s), 7.66 (1H, d, J = 2.5 Hz), 7.33 (1H, t, J = 8.1 Hz), 7.11 (1H, t, J = 2.3 Hz), 7.06 (1H, dd, J = 7.8, 1.8 Hz), 6.80 (1H, dd, J = 8.3, 2.3 Hz), 5.88 (1H, d, J = 2.5 Hz), 3.88 (3H, s).

Reference Preparation example 69

A similar reaction to Reference Preparation example 53 using 3-methylphenylhydrazine instead of 4-methylthiophenylhydrazine gave 3-ethoxyacrylic acid N'-(3-methylphenyl)hydrazide.

3-ethoxyacrylic acid N'-(3-methylphenyl) hydrazide

\[
\text{EtO} \quad \text{N} \quad \text{N} \quad \text{Me} \\
\]

\text{H-NMR (DMSO-D}_2\text{) } \delta (\text{ppm}) : 9.39 (1H, s), 7.40 (1H, d, J = 12.4 Hz), 7.00 (1H, t, J = 7.8 Hz), 6.51-6.49 (3H, m), 5.41 (1H, d, J = 12.4 Hz), 3.92 (2H, q, J = 7.0 Hz), 2.20 (3H, s), 1.26 (3H, t, J = 6.9 Hz).

Reference Preparation example 70

A similar reaction to Reference Preparation example 37 using 3-ethoxyacrylic acid N'-(3-methylphenyl) hydrazide (described in Reference preparation example 69) instead of
3-methoxyacrylic acid N'-(4-bromophenyl) hydrazide gave 1-(3-methylphenyl) -1H-pyrazole-3-ol.

1-(3-methylphenyl) -1H-pyrazole-3-ol

\[
\begin{align*}
\text{Me} & \\
\text{N} & \\
\text{OH} & \\
\end{align*}
\]

\[\text{H-NMR (CDCl}_3\text{) } \delta \text{ (ppm)}: 7.65 \ (1H, d, J = 2.3 \text{ Hz}), 7.35-7.33 \ (3H, m), 7.08-7.07 \ (1H, m), 5.90 \ (1H, d, J = 2.3 \text{ Hz}), 2.39 \ (3H, d, J = 20.0 \text{ Hz}).
\]

Reference Preparation example 71

A similar reaction to Reference Preparation example 53 using 3-fluorophenylhydrazine instead of 4-methylthiophenylhydrazine gave 3-ethoxyacrylic acid N'-(3-fluorophenyl)hydrazide.

3-ethoxyacrylic acid N'-(3-fluorophenyl) hydrazide

\[
\begin{align*}
\text{EtO} & \\
\text{C} & \\
\text{N} & \\
\text{H} & \\
\text{F} & \\
\text{Me} & \\
\end{align*}
\]

\[\text{H-NMR (DMSO-D}_6\text{) } \delta \text{ (ppm)}: 9.47 \ (1H, d, J = 2.5 \text{ Hz}), 7.99 \ (1H, d, J = 2.0 \text{ Hz}), 7.43 \ (1H, d, J = 12.6 \text{ Hz}), 7.14 \ (1H, dd, J = 14.9, 8.1 \text{ Hz}), 6.51 \ (1H, ddd, J = 8.1, 0.9, 0.5 \text{ Hz}), 6.46 \ (1H, td, J = 8.5, 2.1 \text{ Hz}), 6.39 \ (1H, dt, J = 11.6, 2.3 \text{ Hz}), 5.40 \ (1H, d, J = 12.4 \text{ Hz}), 3.93 \ (2H, q, J = 7.0 \text{ Hz}), 1.26 \ (3H, t, J = 6.9 \text{ Hz}).
\]

Reference Preparation example 72
A similar reaction to Reference Preparation example 37 using 3-ethoxyacrylic acid N'- (3-fluorophenyl) hydrazide (described in Reference preparation example 71) instead of 3-methoxyacrylic acid N'- (4-bromophenyl) hydrazide gave 1-(3-fluorophenyl)-1H-pyrazole-3-ol.

![Chemical structure]

1H-NMR (CDCl₃) 5(ppm): 7.67 (1H, d, J = 2.8 Hz), 7.44-7.39 (1H, m), 7.31-7.22 (2H, m), 6.96-6.94 (1H, m), 5.94 (1H, d, J = 2.5 Hz).

Reference Preparation example 73

To a mixture of sodium sulfate 136.2 g, water 480 mL and Chloral hydrate 8.6 g was added a mixture of 2,5-dimethylaniline 6.1 mL, concentrated hydrochloric acid 4.2 mL and water 24 mL under stirring, followed by further addition of a mixture of hydroxylamine hydrochloride salt 10.6 g and water 30 mL. After the mixtures were stirred with heating under reflux for one and a half hours, the precipitated solids were filtered off to give N-(2,5-dimethylphenyl)-2-hydroxyiminoacetamide.

To a mixture of concentrated sulfuric acid 19.5 mL and water 4 mL was added N-(2,5-dimethylphenyl)-2-hydroxyiminoacetamide, and the mixtures were stirred at
80°C for one hour. After cooling, the reaction solutions were added to ice water 140 mL. The precipitated solids were filtered off to give 4,7-dimethylisatin.

To a mixture of 4,7-dimethyl isatin, sodium hydroxide 9.0 g and water 40 mL was added 30% hydrogen peroxide solution 3 mL. To the reaction mixtures was added dropwise concentrated hydrochloric acid while the reaction temperature was being kept around 70°C, so that the pH of the reaction solutions was adjusted around 4. The precipitated solids were filtered off to give 2-amino-3,6-dimethyl benzoic acid 4.2 g.

2-amino-3,6-dimethyl benzoic acid

\[
\begin{align*}
\text{Me} & \quad \text{Me} \\
\text{HO} & \quad \text{NH}_2 \\
\text{O} &
\end{align*}
\]

\[\text{^1H-NMR (DMSO-D}_6\text{)} \delta (ppm) : 6.90 \ (1H, d, J = 7.5 \text{ Hz}), \ 6.33 \ (1H, d, J = 7.5 \text{ Hz}), \ 2.29 \ (3H, s), \ 2.04 \ (3H, s).\]

[0840]

Reference Preparation example 74

To a mixture of 2-amino-3,6-dimethyl benzoic acid (described in Reference preparation example 73) 4.2 g, ethyl acetate 125 mL and ethanol 125 mL was added a 2.0 M solution of trimethylsilyl diazomethane in diethyl ether 25.4 mL under ice-cooling. The mixtures were stirred at room temperature for one and a half hours and were then
concentrated under reduced pressure to give 2-amino-3,6-dimethyl benzoic acid methyl ester 4.6 g.

2-amino-3,6-dimethyl benzoic acid methyl ester

\[
\text{Me}_2\text{C} \rightleftharpoons \text{NH}_2 \text{CO} \quad \text{Me}_2\text{C} \rightleftharpoons \text{Me}
\]

\(^1 \text{H}-\text{NMR} \ (\text{CDCl}_3) \ \delta \ (\text{ppm}) : 7.00 \ (1\text{H}, \ d, \ J = 7.6 \text{ Hz}), \ 6.48 \ (1\text{H}, \ d, \ J = 7.6 \text{ Hz}), \ 5.13 \ (2\text{H}, \ \text{brs}) , \ 3.89 \ (3\text{H}, \ s), \ 2.40 \ (3\text{H}, \ s), \ 2.13 \ (3\text{H}, \ s) .
\]

[0841]

Reference Preparation example 75

To a mixture of 2-amino-3,6-dimethyl benzoic acid methyl ester (described in Reference preparation example 74) 4.6 g and toluene 85 mL was added triphosgene 11.5 g at room temperature, and the mixtures were stirred with heating in reflux for two and a half hours. The mixtures were concentrated under reduced pressure to give 2-isocyanato-3,6-dimethyl benzoic acid methyl ester 5.3 g.

2-isocyanato-3,6-dimethyl benzoic acid methyl ester

\[
\text{Me}_2\text{C} \rightleftharpoons \text{NCO} \quad \text{Me}_2\text{C} \rightleftharpoons \text{Me}
\]

\(^1 \text{H}-\text{NMR} \ (\text{CDCl}_3) \ 5(\text{ppm}) : 7.14 \ (1\text{H}, \ d, \ J = 7.7 \text{ Hz}), \ 6.96 \ (1\text{H}, \ d, \ J = 7.7 \text{ Hz}), \ 3.96 \ (3\text{H}, \ s), \ 2.30 \ (6\text{H}, \ s) .
\]

[0842]
Anhydrous aluminium chloride 3.8 g was added to N,N-dimethyl formamide 40 mL under ice-cooling, and the mixtures were stirred for twenty minutes. Thereafter was added sodium azide 1.9 g and the mixtures were stirred for fifteen minutes. Thereafter was then added 2-isocyanato-3,6-dimethyl benzoic acid methyl ester (described in Reference preparation example 75) 5.3 g and the resulting mixtures were heated at 80°C with stirring for four hours. After cooling, the reaction solutions were added to a mixture of sodium nitrite 6 g and ice water 500 mL with stirring. The mixtures were acidified with 10% hydrochloric acid and were extracted with ethyl acetate. The organic layers were washed with water and saturated saline and then were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure to give 3,6-dimethyl -2-(5-oxo-4,5-dihydropyrazole-1-yl) -benzoic acid methyl ester 8.3 g.

3,6-dimethyl -2-(5-oxo-4,5-dihydropyrazole-1-yl) -benzoic acid methyl ester

\[
\begin{align*}
\text{Me} & \quad \text{MeO} \\
\text{N-N} & \quad \text{N} \\
\text{O} & \quad \text{Me}
\end{align*}
\]

\(^1\text{H-NMR (DMSO-Dg)} \delta (ppm) : 7.51 (1H, d, J = 8.0 Hz), 7.45 (1H, d, J = 8.0 Hz), 4.51 (1H, br s), 3.65 (3H, s), 2.34 (3H, s), \]
2.16 (3H, s).

Reference Preparation example 77

To a mixture of 3,6-dimethyl-2-(5-oxo-4,5-dihydropyrazole-1-yl)benzoic acid methyl ester (described in Reference preparation example 76) 5.9 g and N,N-dimethylformamide 130 mL was added potassium carbonate 7.2 g and methyl iodide 7.4 g at room temperature, and the mixtures were stirred for seven hours. To the reaction solutions was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 3,6-dimethyl-2-(4-methyl-5-oxo-4,5-dihydropyrazole-1-yl)benzoic acid methyl ester 5.9 g.

3,6-dimethyl-2-(4-methyl-5-oxo-4,5-dihydropyrazole-1-yl)-benzoic acid methyl ester

![Chemical Structure]

1H-NMR (CDCl$_3$) 6 (ppm): 7.34 (1H, d, $J = 8.0$ Hz), 7.29 (1H, d, $J = 8.0$ Hz), 3.76 (3H, s), 3.71 (3H, s), 2.42 (3H, s),
Reference Preparation example 78

Under ice-cooling, to a mixture of 3,6-dimethyl-2-(4-methyl-5-oxo-4,5-dihydropyrazole-1-yl)-benzoic acid methyl ester (described in Reference preparation example 77) 5.9 g and tetrahydrofuran 125 mL was added a 1.0 M solution of lithium triethylborohydride in tetrahydrofuran 49 mL and the mixtures were stirred at room temperature for three hours. To the reactions solutions was added water, and the mixtures were acidified with 10% hydrochloric acid and were extracted with ethyl acetate. The organic layers were washed with water and saturated saline and were dried over anhydrous magnesium sulfate, and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-hydroxymethyl-3,6-dimethylphenyl)-4-methyl-1,4-dihydropyrazole-5-one 5.3 g.

1-(2-hydroxymethyl-3,6-dimethylphenyl)-4-methyl-1,4-
dihydropyrazole -5-one

1H-NMR (CDCl$_3$) 5(ppm): 7.30 (1H, d, $J = 8.0$ Hz), 7.23 (1H,
Reference Preparation example 79

To a mixture of 1-(2-hydroxymethyl-3,6-dimethylphenyl)-4-methyl-1,4-dihydropyrazole-5-one (described in Reference preparation example 78) 5.3 g and chloroform 75 mL was added phosphorus tribromide 12.2 g and the mixtures were stirred at room temperature for eighteen hours. To the reaction solutions was added ice water and the mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline and were dried over anhydrous magnesium sulfate, and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-bromomethyl-3,6-dimethylphenyl)-4-methyl-1,4-dihydropyrazole-5-one 4.9 g.

1-(2-bromomethyl-3,6-dimethylphenyl)-4-methyl-1,4-

dihydropyrazole-5-one

1H-NMR (CDCl$_3$) 5 (ppm): 7.27 (1H, d, J = 8.0 Hz), 7.22 (1H,
d, J = 8.0 Hz), 4.38 (1H, d, J = 10.8 Hz), 4.27 (1H, d, J = 10.8 Hz), 3.77 (3H, s), 2.45 (3H, s), 2.11 (3H, s).

Reference Preparation example 80

To a mixture of sodium sulfate 136.2 g, water 480 mL and Chloral hydrate 8.6 g was added a mixture of 2-fluoro-5-methylaniline 6.1 g, concentrated hydrochloric acid 4.2 mL and water 24 mL under stirring, followed by further addition of a mixture of hydroxylamine hydrochloride salt 10.6 g and water 30 mL. After the mixtures were stirred with heating under reflux for one and a half hours, the precipitated solids were filtered off to give N-(2-fluoro-5-methylphenyl)-2-hydroxyiminoacetamide.

To a mixture of concentrated sulfuric acid 19.5 mL and water 4 mL was added N-(2-fluoro-5-methylphenyl)-2-hydroxyiminoacetamide, and the mixtures were stirred at 80°C for one hour. After cooling, the reaction solutions were added to ice water. The precipitated solids were filtered off to give 4-methyl-7-fluoroisatin.

To a mixture of 4-methyl-7-fluoroisatin, sodium hydroxide 9.0 g and water 40 mL was added 30% hydrogen peroxide solution 3 mL. To the reaction mixtures was added dropwise concentrated hydrochloric acid while the reaction temperature was being kept around 70°C, so that the pH of the reaction solutions was adjusted around 4. The
precipitated solids were filtered off to give 2-amino-3-fluoro-6-methyl benzoic acid 2.3 g.

2-amino-3-fluoro-6-methyl benzoic acid

\[
\text{Me} \\
\text{HO} \\
\text{NH}_2 \\
\text{O} \\
\text{F}
\]

\[\text{1H-NMR (DMSO-D}_6\text{) } \delta (\text{ppm}) : 7.03 (1\text{H, dd, } J = 11.3, 8.2 \text{ Hz}), 6.39 (1\text{H, dd, } J = 8.2, 5.1 \text{ Hz}), 2.32 (3\text{H, s}).\]

[0847]

Reference Preparation example 81

To a mixture of 2-amino-3-fluoro-6-methyl benzoic acid (described in Reference preparation example 80) 2.3 g, ethyl acetate 70 mL and ethanol 70 mL was added a 2.0 M solution of trimethylsilyl diazomethane in diethyl ether 13.7 mL under ice-cooling. The mixtures were stirred at room temperature for one and a half hours and were then concentrated under reduced pressure. To the resulting residues was added water and the mixtures were extracted with methyl tert-butyl ether. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 2-amino-3-fluoro-6-methyl-benzoic acid methyl ester 0.81 g.

2-amino-3-fluoro-6-methyl-benzoic acid methyl ester
To a mixture of 2-amino-3-fluoro-6-methyl-benzoic acid methyl ester (described in Reference preparation example 81) 0.81 g and toluene 15 mL was added triphosgene 2.0 g at room temperature, and the mixtures were stirred with heating in reflux for three hours. The mixtures were concentrated under reduced pressure to give 2-isocyanato-3-fluoro-6-methyl benzoic acid methyl ester 0.92 g.

2-isocyanato-3-fluoro-6-methyl benzoic acid methyl ester

Anhydrous aluminium chloride 0.65 g was added to N,N-
dimethyl formamide 10 mL under ice-cooling, and the mixtures were stirred for twenty minutes. Thereto was added sodium azide 0.32 g and the mixtures were stirred for fifteen minutes. Thereto was then added 2-isocyanato-3-fluoro-6-methyl benzoic acid methyl ester (described in Reference preparation example 82) 0.92 g and the resulting mixtures were heated at 80°C with stirring for four hours. After cooling, the reaction solutions were added to a mixture of sodium nitrite 1.0 g and ice water 200 mL with stirring. The mixtures were acidified with 10% hydrochloric acid and were extracted with ethyl acetate. The organic layers were washed with water and saturated saline and then were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure to give 3-fluoro-6-methyl-2-(5-oxo-4,5-dihydropyrazole-1-yl)-benzoic acid methyl ester 1.4 g.

3-fluoro-6-methyl-2-(5-oxo-4,5-dihydropyrazole-1-yl)-benzoic acid methyl ester

\[\text{Me} \]
\[\text{MeO} \]
\[\text{F} \]
\[\text{N} = \text{N} \]
\[\text{O} \]
\[\text{H} \]

\[^1\text{H-NMR (DMSO-}\text{D}_\text{6}) 6\text{(ppm)}: 7.65-7.62 (1\text{H, m), 7.59-7.56 (1\text{H, m), 3.71 (3\text{H, s), 2.38 (3\text{H, s).}}] \]

[0850]

Reference Preparation example 84
To a mixture of 3-fluoro-6-methyl-2-(5-oxo-4,5-dihydrrotetrazole-1-yl)-benzoic acid methyl ester (described in Reference preparation example 83) 1.4 g and N,N-dimethyl formamide 20 mL was added potassium carbonate 1.2 g and methyl iodide 1.3 g at room temperature, and the mixtures were stirred for four hours. To the reaction solutions was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 3-fluoro-6-methyl-2-(4-methyl-5-oxo-4,5-dihydrrotetrazole-1-yl)-benzoic acid methyl ester 0.65 g.

3-fluoro-6-methyl-2-(4-methyl-5-oxo-4,5-dihydrrotetrazole-1-yl) -benzoic acid methyl ester

\[
\text{Me} \quad \text{MeO} \\
\begin{array}{cccc}
\text{F} & \text{N} & \text{N} & \text{Me} \\
\text{Me} & \text{N} & \text{N} & \text{O} \\
\end{array}
\]

\(^1\text{H}-\text{NMR} \ (\text{CDCl}_3) \ 5\text{ppm}: \ 7.38 \ (1\text{H, dd, } J = 8.6, \ 5.0 \text{ Hz}), \ 7.28 \ (1\text{H, t, } J = 8.6 \text{ Hz}), \ 3.80 \ (3\text{H, s}), \ 3.71 \ (3\text{H, s}), \ 2.45 \ (3\text{H, s}). \)

[0851]

Reference Preparation example 85
Under ice-cooling, to a mixture of 3-fluoro-6-methyl-2-(4-methyl-5-oxo-4,5-dihydrotetrazole-1-yl)-benzoic acid methyl ester (described in Reference preparation example 84) 0.65 g and tetrahydrofuran 11 mL was added a 1.0 M solution of lithium triethylborohydride in tetrahydrofuran 5.4 mL and the mixtures were stirred at room temperature for one hour. To the reactions solutions was added water, and the mixtures were acidified with 10% hydrochloric acid and were extracted with ethyl acetate. The organic layers were washed with water and saturated saline and were dried over anhydrous magnesium sulfate, and were then concentrated under reduced pressure to give 1-(2-hydroxymethyl-3-methyl-6-fluorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one 0.58 g.

1-(2-hydroxymethyl-3-methyl-6-fluorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one

\[
\text{\textbf{H-NMR (CDCl}_3) \ \delta (ppm): 7.37 (1H, dd, } J = 8.6, 5.4 \text{ Hz), 7.15 (1H, t, } J = 8.6 \text{ Hz), 4.54-4.36 (2H, m), 3.76 (3H, s), 3.28-3.24 (1H, m), 2.50 (3H, s).}
\]

Reference Preparation example 86
To a mixture of 1-(2-hydroxymethyl-3-methyl-6-fluorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Reference preparation example 85) 0.58 g and chloroform 8 mL was added phosphorus tribromide 1.32 g and the mixtures were stirred at room temperature for twenty hours. To the reaction solutions was added ice water and the mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline and were dried over anhydrous magnesium sulfate, and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-bromomethyl-3-methyl-6-fluorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one 0.66 g.

1-(2-bromomethyl-3-methyl-6-fluorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one

\[
\text{H-NMR (CDCl}_3\text{) } 5(\text{ppm}): 7.36 \text{ (1H, dd, } J = 8.7, 5.6 \text{ Hz)}, 7.16 \text{ (1H, t, } J = 8.7 \text{ Hz)}, 4.43 \text{ (1H, d, } J = 10.6 \text{ Hz)}, 4.32 \text{ (1H, d, } J = 10.6 \text{ Hz)}, 3.76 \text{ (3H, s)}, 2.46 \text{ (3H, s).}
\]

[0053]

Reference Preparation example 87

To a mixture of sodium sulfate 272.4 g, water 960 mL
and Chloral hydrate 17.2 g was added a mixture of 4-fluoro-3-methylaniline 12.2 g, concentrated hydrochloric acid 8.4 mL and water 48 mL under stirring, followed by further addition of a mixture of hydroxylamine hydrochloride salt 21.1 g and water 60 mL. After the mixtures were stirred with heating under reflux for forty minutes, the precipitated solids were filtered off to give N-(4-fluoro-3-methylphenyl)-2-hydroxyiminoacetamide 25.4 g.

To a mixture of concentrated sulfuric acid 78 mL and water 16 mL was added N-(4-fluoro-3-methylphenyl)-2-hydroxyiminoacetamide 25.4 g. The mixtures were stirred at 80°C for one hour and the reaction solutions were added to ice water 500 mL. The precipitated solids were filtered off to give a mixture of 4-methyl-5-fluoroisatin and 6-methyl-5-fluoroisatin.

To a mixture containing a mixture of 4-methyl-5-fluoroisatin and 6-methyl-5-fluoroisatin, sodium hydroxide 18.0 g and water 80 mL was added 30% hydrogen peroxide solution 6 mL. To the reaction mixtures was added dropwise acetic acid while the reaction temperature was being kept around 70°C, so that the pH of the reaction solutions was adjusted around 4. The precipitated solids were filtered off to give a mixture of 6-amino-3-fluoro-2-methyl benzoic acid and 2-amino-5-fluoro-4-methyl benzoic acid 11.5 g.

To a mixture containing a mixture of 6-amino-3-fluoro-
2-methyl benzoic acid and 2-amino-5-fluoro-4-methyl benzoic acid 11.5 g, ethyl acetate 340 mL and ethanol 340 mL was added a 2.0 M solution of trimethylsilyl diazomethane in diethyl ether 68 mL under ice-cooling. The mixtures were stirred at room temperature for one and a half hours and were concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 6-amino-3-fluoro-2-methyl-benzoic acid methyl ester 3.0 g.

6-amino-3-fluoro-2-methyl-benzoic acid methyl ester

\[
\begin{align*}
\text{Me} & \quad \text{F} \\
\text{MeO} & \quad \text{NH}_2 \\
\text{O} & \\
\end{align*}
\]

\[\text{H-NMR } (\text{CDCl}_3) \delta (\text{ppm}) : 6.93 \ (1\text{H}, \text{ t}, J = 9.0 \text{ Hz}), \ 6.48 \ (1\text{H}, \text{ dd}, J = 9.0, 4.5 \text{ Hz}), \ 4.82 \ (2\text{H}, \text{ br s}), \ 3.91 \ (3\text{H}, \text{ s}), \ 2.31 \ (3\text{H}, \text{ d}, J = 2.7 \text{ Hz}).\]

[0854]

Reference Preparation example 88

To a mixture of 6-amino-3-fluoro-2-methyl-benzoic acid methyl ester (described in Reference preparation example 87) 3.0 g and toluene 60 mL was added triphosgene 7.6 g at room temperature, and the mixtures were stirred with heating in reflux for three hours. The mixtures were concentrated under reduced pressure to give 6-isocyanato-3-fluoro-2-methyl benzoic acid methyl ester 3.6 g.
6-isocyanato-3-fluoro-2-methyl benzoic acid methyl ester

\[
\begin{array}{c}
\text{Me} \\
\text{F} \\
\text{MeO} \\
\text{O} \\
\text{NCO}
\end{array}
\]

\[\text{H}-\text{NMR (CDCl}_3\text{)} \delta (\text{ppm}): 7.04 (1\text{H, } \text{t, } J = 8.8 \text{ Hz}), 6.94 (1\text{H, dd, } J = 8.8, 4.6 \text{ Hz}), 3.98 (3\text{H, s}), 2.26 (3\text{H, d, } J = 2.5 \text{ Hz}).\]

[0855]

Reference Preparation example 89

Anhydrous aluminium chloride 2.5 g was added to N,N-dimethyl formamide 30 mL under ice-cooling, and the mixtures were stirred for twenty minutes. Thereto was added sodium azide 1.2 g and the mixtures were stirred for fifteen minutes. Thereto was then added 6-isocyanato-3-fluoro-2-methyl benzoic acid methyl ester (described in Reference preparation example 88) 3.6 g and the resulting mixtures were heated at 80°C with stirring for four hours. After cooling, the reaction solutions were added to a mixture of sodium nitrite 4.0 g and ice water 500 mL with stirring. The mixtures were acidified with 10% hydrochloric acid and were extracted with ethyl acetate. The organic layers were washed with water and saturated saline and then were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure to give 2-methyl-3-fluoro-6-(5-oxo-
4,5-dihydrorytrazole-1-yl) -benzoic acid methyl ester 6.0 g.

2-methyl-3-f luoro-6- (5-oxo-4,5-dihydrorytrazole-1-yl) -benzoic acid methyl ester

![Chemical structure](image)

1H-NMR (DMSO-D6) δ (ppm): 7.62-7.56 (2H, m), 5.29 (1H, br s), 3.73 (3H, s), 2.29 (3H, d, J = 2.3 Hz).

Reference Preparation example 90

To a mixture of 2-methyl-3-f luoro-6- (5-oxo-4,5-dihydrorytrazole-1-yl)-benzoic acid methyl ester (described in Reference preparation example 89) 6.0 g and N,N-dimethylformamide 85 mL was added potassium carbonate 4.7 g and methyl iodide 4.9 g at room temperature, and the mixtures were stirred for six hours. To the reaction solutions was added water and the mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline, and were dried over anhydrous magnesium sulfate and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 2-methyl-3-f luoro-6- (4-methyl-5-oxo-4,5-dihydrorytrazole-1-yl) -benzoic acid methyl ester 2.8 g.
2-methyl-3-fluoro-6-(4-methyl-5-oxo-4,5-dihydrotetrazole-1-yl)-benzoic acid methyl ester

\[
\begin{align*}
&\text{Me} \\
&\text{F} \\
&\text{MeO} \\
&\text{N} \quad \text{N} \\
&\text{O} \\
&\text{Me}
\end{align*}
\]

\[\text{H-NMR (CDCl}_3\text{): 7.47 (1H, dd, J = 8.9, 4.6 Hz), 7.25 (1H, t, J = 8.9 Hz), 3.84 (3H, s), 3.69 (3H, s), 2.36 (3H, d, J = 2.4 Hz).}\]

[0857] Reference Preparation example 91

Under ice-cooling, to a mixture of 2-methyl-3-fluoro-6-(4-methyl-5-oxo-4,5-dihydrotetrazole-1-yl)-benzoic acid methyl ester (described in Reference preparation example 90) 2.8 g and tetrahydrofuran 46 mL was added a 1.0 M solution of lithium triethylborohydride in tetrahydrofuran 22.9 mL and the mixtures were stirred at room temperature for one hour. To the reactions solutions was added water, and the mixtures were acidified with 10% hydrochloric acid and were extracted with ethyl acetate. The organic layers were washed with water and saturated saline and were dried over anhydrous magnesium sulfate, and were then concentrated under reduced pressure to give 1-(2-hydroxymethyl-3-methyl-4-fluorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one 2.4 g.
1-(2-hydroxymethyl-3-methyl-4-fluorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one

\[
\text{H-NMR (CDCl}_3\text{) } \delta \text{ (ppm): 7.21 (1H, ddd, } J = 8.7, 5.1 \text{ Hz), 7.15 (1H, t, } J = 8.7 \text{ Hz), 4.47 (2H, ddd, } J = 7.2, 1.0 \text{ Hz), 3.75 (3H, s), 2.45 (3H, d, } J = 2.4 \text{ Hz).}
\]

Reference Preparation example 92

To a mixture of 1-(2-hydroxymethyl-3-methyl-4-fluorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one (described in Reference preparation example 91) 2.4 g and chloroform 34 mL was added phosphorus tribromide 5.5 g and the mixtures were stirred at room temperature for twenty hours. To the reaction solutions was added ice water and the mixtures were extracted with ethyl acetate. The organic layers were washed with water and saturated saline and were dried over anhydrous magnesium sulfate, and were then concentrated under reduced pressure. The resulting residues were subjected to a silica gel column chromatography to give 1-(2-bromomethyl-3-methyl-4-fluorophenyl)-4-methyl-1,4-dihydrotetrazole-5-one 2.5 g.
1,4-dihydrotetrazole-5-one

\[
\begin{align*}
&\text{H-NMR } (\text{CDCl}_3) \text{ } \delta(\text{ppm}) : 7.22 \text{ (1H, dd, } J = 8.7, 5.1 \text{ Hz)}, \ 7.16 \\
&\text{ (1H, t, } J = 8.7 \text{ Hz)}, \ 4.46 \text{ (2H, s)}, \ 3.75 \text{ (3H, s)}, \ 2.39 \text{ (3H, d, } J = 2.4 \text{ Hz)}.
\end{align*}
\]

[0859] According to the above-mentioned processes, the following compounds can be prepared:

Compounds represented by a formula:
[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds B-001-B-716 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](image)

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds C-001-C-716 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](image)

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds D-001-D-716 represent tetrazolinone

Compounds represented by a formula:
Compounds E-001-E-716 represent tetrazolinone compounds represented by a formula:

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds F-001-F-716 represent tetrazolinone compounds represented by a formula:

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];
Compounds G-001-G-716 represent tetrazolinone

Compounds represented by a formula:

![Chemical Structure](image)

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds H-001-H-716 represent tetrazolinone

Compounds represented by a formula:

![Chemical Structure](image)

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds I-001-I-716 represent tetrazolinone

Compounds represented by a formula:

![Chemical Structure](image)
[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds J-001-J-716 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](image)

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds K-001-K-716 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](image)

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds L-001-L-716 represent tetrazolinone

Compounds represented by a formula:
Compounds M-001-M-716 represent tetrazolinone.

Compounds represented by a formula:

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds N-001-N-716 represent tetrazolinone.

Compounds represented by a formula:

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];
of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds O-001-O-716 represent tetrazolinone

Compounds represented by a formula:

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds P-001-P-716 represent tetrazolinone

Compounds represented by a formula:

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds Q-001-Q-716 represent tetrazolinone

Compounds represented by a formula:
Compounds R-001-R-716 represent tetrazolinone

Compounds represented by a formula:

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds S-001-S-716 represent tetrazolinone

Compounds represented by a formula:

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];
Compounds T-001-T-716 represent tetrazolinone compounds represented by a formula:

\[
\text{Y-} \text{N} = \text{N} \text{O} \\
\text{N} - \text{N} \text{O} \\
\text{CH}_3
\]

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds U-001-U-716 represent tetrazolinone compounds represented by a formula:

\[
\text{F} \\
\text{N} - \text{N} \text{O} \\
\text{N} - \text{N} \text{O} \\
\text{CH}_3
\]

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds V-001-V-716 represent tetrazolinone compounds represented by a formula:
Compounds W-001-W-716 represent tetrazolinone compounds represented by a formula:

[wherein \(Y \) represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds X-001-X-716 represent tetrazolinone compounds represented by a formula:

[wherein \(Y \) represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];
Compounds Y-001-Y-716 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{array}{c}
\text{F} \\
\text{N} \\
\text{Y} \\
\text{N} \\
\text{O} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{O} \\
\text{CH}_3
\end{array}
\]

[wherein \(Y \) represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds Z-001-Z-716 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{array}{c}
\text{F} \\
\text{N} \\
\text{Y} \\
\text{N} \\
\text{O} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{CH}_3
\end{array}
\]

[wherein \(Y \) represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned];

Compounds AA-001-AA-716 represent tetrazolinone

Compounds represented by a formula:
Compounds AB-001-AB-716 represent tetrazolinone Compounds represented by a formula:

[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned] ; and

Compounds AC-001-AC-716 represent tetrazolinone Compounds represented by a formula:
[wherein Y represents a substituent corresponding to each of substituents Nos. 1 to 716 indicated in Table 1 to Table 25 as below-mentioned].

[0860]

<table>
<thead>
<tr>
<th>Substituents Nos.</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>phenyl group</td>
</tr>
<tr>
<td>2</td>
<td>2-fluorophenyl group</td>
</tr>
<tr>
<td>3</td>
<td>3-fluorophenyl group</td>
</tr>
<tr>
<td>4</td>
<td>4-fluorophenyl group</td>
</tr>
<tr>
<td>5</td>
<td>2,4-difluorophenyl group</td>
</tr>
<tr>
<td>6</td>
<td>2,4,6-trifluorophenyl group</td>
</tr>
<tr>
<td>7</td>
<td>2,3,4,5, 6-pentfluorophenyl group</td>
</tr>
<tr>
<td>8</td>
<td>2-3-difluorophenyl group</td>
</tr>
<tr>
<td>9</td>
<td>2-chlorophenyl group</td>
</tr>
<tr>
<td>10</td>
<td>3-chlorophenyl group</td>
</tr>
<tr>
<td>11</td>
<td>4-chlorophenyl group</td>
</tr>
<tr>
<td>12</td>
<td>2-3-dichlorophenyl group</td>
</tr>
<tr>
<td>13</td>
<td>2,4-dichlorophenyl group</td>
</tr>
<tr>
<td>14</td>
<td>2,5-dichlorophenyl group</td>
</tr>
<tr>
<td>15</td>
<td>2,6-dichlorophenyl group</td>
</tr>
<tr>
<td>16</td>
<td>3,4-dichlorophenyl group</td>
</tr>
<tr>
<td>17</td>
<td>3,5-dichlorophenyl group</td>
</tr>
<tr>
<td>18</td>
<td>2,3,4-trichlorophenyl group</td>
</tr>
<tr>
<td>19</td>
<td>2,3,5-trichlorophenyl group</td>
</tr>
<tr>
<td>20</td>
<td>2,3,6-trichlorophenyl group</td>
</tr>
<tr>
<td>21</td>
<td>2,4,5-trichlorophenyl group</td>
</tr>
<tr>
<td>22</td>
<td>2,4,6-trichlorophenyl group</td>
</tr>
<tr>
<td>23</td>
<td>3,4,5-trichlorophenyl group</td>
</tr>
<tr>
<td>Nos.</td>
<td>substituents</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>24</td>
<td>2,3,4,6-tetrachlorophenyl group</td>
</tr>
<tr>
<td>25</td>
<td>2,3,5,6-tetrachlorophenyl group</td>
</tr>
<tr>
<td>26</td>
<td>2,3,4,5,6-pentachlorophenyl group</td>
</tr>
<tr>
<td>27</td>
<td>2-bromophenyl group</td>
</tr>
<tr>
<td>28</td>
<td>3-bromophenyl group</td>
</tr>
<tr>
<td>29</td>
<td>4-bromophenyl group</td>
</tr>
<tr>
<td>30</td>
<td>2,4-dibromophenyl group</td>
</tr>
<tr>
<td>31</td>
<td>2,5-dibromophenyl group</td>
</tr>
<tr>
<td>32</td>
<td>2,6-dibromophenyl group</td>
</tr>
<tr>
<td>33</td>
<td>2,4,6-tribromophenyl group</td>
</tr>
<tr>
<td>34</td>
<td>2,3,4,5,6-pentabromophenyl group</td>
</tr>
<tr>
<td>35</td>
<td>2-iodophenyl group</td>
</tr>
<tr>
<td>36</td>
<td>3-iodophenyl group</td>
</tr>
<tr>
<td>37</td>
<td>4-iodophenyl group</td>
</tr>
<tr>
<td>38</td>
<td>2,4-diiodophenyl group</td>
</tr>
<tr>
<td>39</td>
<td>2-chloro-3-fluorophenyl group</td>
</tr>
<tr>
<td>40</td>
<td>2-chloro-4-fluorophenyl group</td>
</tr>
<tr>
<td>41</td>
<td>2-chloro-5-fluorophenyl group</td>
</tr>
<tr>
<td>42</td>
<td>2-chloro-6-fluorophenyl group</td>
</tr>
<tr>
<td>43</td>
<td>2-chloro-3-bromophenyl group</td>
</tr>
<tr>
<td>44</td>
<td>2-chloro-4-bromophenyl group</td>
</tr>
<tr>
<td>45</td>
<td>2-chloro-5-bromophenyl group</td>
</tr>
<tr>
<td>46</td>
<td>2-chloro-6-bromophenyl group</td>
</tr>
<tr>
<td>47</td>
<td>2-bromo-3-chlorophenyl group</td>
</tr>
<tr>
<td>48</td>
<td>2-bromo-4-chlorophenyl group</td>
</tr>
<tr>
<td>49</td>
<td>2-bromo-5-chlorophenyl group</td>
</tr>
<tr>
<td>50</td>
<td>2-bromo-3-fluorophenyl group</td>
</tr>
<tr>
<td>Nos.</td>
<td>Substituents</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>51</td>
<td>2-bromo-4-fluorophenyl group</td>
</tr>
<tr>
<td>52</td>
<td>2-bromo-5-fluorophenyl group</td>
</tr>
<tr>
<td>53</td>
<td>2-bromo-6-fluorophenyl group</td>
</tr>
<tr>
<td>54</td>
<td>2-fluoro-3-chlorophenyl group</td>
</tr>
<tr>
<td>55</td>
<td>2-fluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>56</td>
<td>2-fluoro-5-chlorophenyl group</td>
</tr>
<tr>
<td>57</td>
<td>2-fluoro-4-bromophenyl group</td>
</tr>
<tr>
<td>58</td>
<td>3-chloro-4-fluorophenyl group</td>
</tr>
<tr>
<td>59</td>
<td>3-chloro-5-fluorophenyl group</td>
</tr>
<tr>
<td>60</td>
<td>3-chloro-4-bromophenyl group</td>
</tr>
<tr>
<td>61</td>
<td>3-chloro-5-bromophenyl group</td>
</tr>
<tr>
<td>62</td>
<td>3-fluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>63</td>
<td>3-fluoro-4-bromophenyl group</td>
</tr>
<tr>
<td>64</td>
<td>3-bromo-4-chlorophenyl group</td>
</tr>
<tr>
<td>65</td>
<td>3-bromo-4-fluorophenyl group</td>
</tr>
<tr>
<td>66</td>
<td>2,6-dichloro-4-bromophenyl group</td>
</tr>
<tr>
<td>67</td>
<td>2-3-difluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>68</td>
<td>2,6-difluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>69</td>
<td>2,5-difluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>70</td>
<td>3,5-difluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>71</td>
<td>2,3,5-trifluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>72</td>
<td>2,3,6-trifluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>73</td>
<td>2,3,5,6-tetrafluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>74</td>
<td>2-fluoro-4-bromophenyl group</td>
</tr>
<tr>
<td>75</td>
<td>2-3-difluoro-4-bromophenyl group</td>
</tr>
<tr>
<td>76</td>
<td>2,6-difluoro-4-bromophenyl group</td>
</tr>
<tr>
<td>77</td>
<td>2,5-difluoro-4-bromophenyl group</td>
</tr>
<tr>
<td>Nos.</td>
<td>Substituents Y</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>78</td>
<td>3,5-difluoro-4-bromophenyl group</td>
</tr>
<tr>
<td>79</td>
<td>2,3, 5-trifluoro-4-bromophenyl group</td>
</tr>
<tr>
<td>80</td>
<td>2,3, 6-trifluoro-4-bromophenyl group</td>
</tr>
<tr>
<td>81</td>
<td>2,3,5, 6-tetrafluoro-4-bromophenyl group</td>
</tr>
<tr>
<td>82</td>
<td>2-fluoro-4-iodophenyl group</td>
</tr>
<tr>
<td>83</td>
<td>3-fluoro-4-iodophenyl group</td>
</tr>
<tr>
<td>84</td>
<td>2-3-difluoro-4-iodophenyl group</td>
</tr>
<tr>
<td>85</td>
<td>2,6-difluoro-4-iodophenyl group</td>
</tr>
<tr>
<td>86</td>
<td>2,5-difluoro-4-iodophenyl group</td>
</tr>
<tr>
<td>87</td>
<td>3,5-difluoro-4-iodophenyl group</td>
</tr>
</tbody>
</table>

[0863]

[Table 4]
<table>
<thead>
<tr>
<th>Substituents Nos.</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>3, 4, 5-trimethylphenyl group</td>
</tr>
<tr>
<td>106</td>
<td>2, 3, 4, 6-tetramethylphenyl group</td>
</tr>
<tr>
<td>107</td>
<td>2, 3, 5, 6-tetramethylphenyl group</td>
</tr>
<tr>
<td>108</td>
<td>2, 3, 4, 5, 6-pentamethylphenyl group</td>
</tr>
<tr>
<td>109</td>
<td>2-ethylphenyl group</td>
</tr>
<tr>
<td>110</td>
<td>3-ethylphenyl group</td>
</tr>
<tr>
<td>111</td>
<td>4-ethylphenyl group</td>
</tr>
<tr>
<td>112</td>
<td>2, 4-diethylphenyl group</td>
</tr>
<tr>
<td>113</td>
<td>2, 6-diethylphenyl group</td>
</tr>
<tr>
<td>114</td>
<td>3, 5-diethylphenyl group</td>
</tr>
<tr>
<td>115</td>
<td>2, 4, 6-triethylphenyl group</td>
</tr>
<tr>
<td>116</td>
<td>2-n-propylphenyl group</td>
</tr>
</tbody>
</table>

[Table 5]

<table>
<thead>
<tr>
<th>Substituents Nos.</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
<td>3-n-propylphenyl group</td>
</tr>
<tr>
<td>118</td>
<td>4-n-propylphenyl group</td>
</tr>
<tr>
<td>119</td>
<td>2-isopropylphenyl group</td>
</tr>
<tr>
<td>120</td>
<td>3-isopropylphenyl group</td>
</tr>
<tr>
<td>121</td>
<td>4-isopropylphenyl group</td>
</tr>
<tr>
<td>122</td>
<td>2, 4-diisopropylphenyl group</td>
</tr>
<tr>
<td>123</td>
<td>2, 6-diisopropylphenyl group</td>
</tr>
<tr>
<td>124</td>
<td>3, 5-diisopropylphenyl group</td>
</tr>
<tr>
<td>125</td>
<td>2-s-butylphenyl group</td>
</tr>
<tr>
<td>126</td>
<td>3-s-butylphenyl group</td>
</tr>
<tr>
<td>127</td>
<td>4-s-butylphenyl group</td>
</tr>
<tr>
<td>128</td>
<td>2-1-butylphenyl group</td>
</tr>
<tr>
<td>129</td>
<td>3-t-butylphenyl group</td>
</tr>
<tr>
<td>130</td>
<td>4-t-butylphenyl group</td>
</tr>
<tr>
<td>131</td>
<td>4-n-butylphenyl group</td>
</tr>
<tr>
<td></td>
<td>Substituent</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>132</td>
<td>4-n-nonylphenyl group</td>
</tr>
<tr>
<td>133</td>
<td>2-methyl-4-t-butylphenyl group</td>
</tr>
<tr>
<td>134</td>
<td>2-methyl-6-t-butylphenyl group</td>
</tr>
<tr>
<td>135</td>
<td>2-methyl-4-isopropylphenyl group</td>
</tr>
<tr>
<td>136</td>
<td>2-methyl-5-isopropylphenyl group</td>
</tr>
<tr>
<td>137</td>
<td>3-methyl-4-isopropylphenyl group</td>
</tr>
<tr>
<td>138</td>
<td>2-ethylhexylphenyl group</td>
</tr>
<tr>
<td>139</td>
<td>3-cyclohexylphenyl group</td>
</tr>
<tr>
<td>140</td>
<td>4-ethylhexylphenyl group</td>
</tr>
<tr>
<td>141</td>
<td>4-cyclopropylphenyl group</td>
</tr>
<tr>
<td>142</td>
<td>4-ethylbutylphenyl group</td>
</tr>
<tr>
<td>143</td>
<td>4-cyclopentylphenyl group</td>
</tr>
<tr>
<td>144</td>
<td>2-chloro-4-phenylphenyl group</td>
</tr>
<tr>
<td>145</td>
<td>2-bromo-4-phenylphenyl group</td>
</tr>
</tbody>
</table>

[Table 6]

<table>
<thead>
<tr>
<th>Substitute(s)</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>146</td>
<td>4-hydroxyphenyl group</td>
</tr>
<tr>
<td>147</td>
<td>2-methoxyphenyl group</td>
</tr>
<tr>
<td>148</td>
<td>3-methoxyphenyl group</td>
</tr>
<tr>
<td>149</td>
<td>4-methoxyphenyl group</td>
</tr>
<tr>
<td>150</td>
<td>2-ethoxyphenyl group</td>
</tr>
<tr>
<td>151</td>
<td>3-ethoxyphenyl group</td>
</tr>
<tr>
<td>152</td>
<td>4-ethoxyphenyl group</td>
</tr>
<tr>
<td>153</td>
<td>2-n-propoxyphenyl group</td>
</tr>
<tr>
<td>154</td>
<td>3-n-propoxyphenyl group</td>
</tr>
<tr>
<td>155</td>
<td>4-n-propoxyphenyl group</td>
</tr>
<tr>
<td>156</td>
<td>2-isopropoxyphenyl group</td>
</tr>
<tr>
<td>157</td>
<td>3-isopropoxyphenyl group</td>
</tr>
<tr>
<td>158</td>
<td>4-isopropoxyphenyl group</td>
</tr>
<tr>
<td>Nos</td>
<td>Substituent</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>159</td>
<td>2-n-hexyloxyphenyl group</td>
</tr>
<tr>
<td>160</td>
<td>3-n-hexyloxyphenyl group</td>
</tr>
<tr>
<td>161</td>
<td>4-n-hexyloxyphenyl group</td>
</tr>
<tr>
<td>162</td>
<td>2-benzyloxyphenyl group</td>
</tr>
<tr>
<td>163</td>
<td>3-benzyloxyphenyl group</td>
</tr>
<tr>
<td>164</td>
<td>4-benzyloxyphenyl group</td>
</tr>
<tr>
<td>165</td>
<td>2-3-dimethoxyphenyl group</td>
</tr>
<tr>
<td>166</td>
<td>2,4-dimethoxyphenyl group</td>
</tr>
<tr>
<td>167</td>
<td>2,5-dimethoxyphenyl group</td>
</tr>
<tr>
<td>168</td>
<td>2,6-dimethoxyphenyl group</td>
</tr>
<tr>
<td>169</td>
<td>3,4-dimethoxyphenyl group</td>
</tr>
<tr>
<td>170</td>
<td>3,5-dimethoxyphenyl group</td>
</tr>
<tr>
<td>171</td>
<td>2-t-butoxyphenyl group</td>
</tr>
<tr>
<td>172</td>
<td>3-t-butoxyphenyl group</td>
</tr>
<tr>
<td>173</td>
<td>4-t-butoxyphenyl group</td>
</tr>
<tr>
<td>174</td>
<td>3-(3'-chlorophenyl)phenyl group</td>
</tr>
</tbody>
</table>

(Table 7)

<table>
<thead>
<tr>
<th>Nos</th>
<th>Substituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>Y 4-(4'-chlorophenyl) phenyl group</td>
</tr>
<tr>
<td>176</td>
<td>2-phenoxyphenyl group</td>
</tr>
<tr>
<td>177</td>
<td>3-phenoxyphenyl group</td>
</tr>
<tr>
<td>178</td>
<td>4-phenoxyphenyl group</td>
</tr>
<tr>
<td>179</td>
<td>2-(2'-fluorophenoxy) phenyl group</td>
</tr>
<tr>
<td>180</td>
<td>3-(3'-chlorophenoxy) phenyl group</td>
</tr>
<tr>
<td>181</td>
<td>4-(4'-chlorophenoxy) phenyl group</td>
</tr>
<tr>
<td>182</td>
<td>2,3,6-trimethyl-4-fluorophenyl group</td>
</tr>
<tr>
<td>183</td>
<td>2,3,6-trimethyl-4-chlorophenyl group</td>
</tr>
<tr>
<td>184</td>
<td>2,3,6-trimethyl-4-bromophenyl group</td>
</tr>
<tr>
<td>185</td>
<td>2,4-dimethyl-6-fluorophenyl group</td>
</tr>
<tr>
<td>Nos.</td>
<td>Substituents</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>186</td>
<td>2,4-dimethyl-6-chlorophenyl group</td>
</tr>
<tr>
<td>187</td>
<td>2,4-dimethyl-6-bromophenyl group</td>
</tr>
<tr>
<td>188</td>
<td>2-isopropyl-4-chloro-5-methylphenyl group</td>
</tr>
<tr>
<td>189</td>
<td>2-chloro-4-nitrophenyl group</td>
</tr>
<tr>
<td>190</td>
<td>2-nitro-4-chlorophenyl group</td>
</tr>
<tr>
<td>191</td>
<td>2-methoxy-5-nitrophenyl group</td>
</tr>
<tr>
<td>192</td>
<td>2,4-dichloro-5-nitrophenyl group</td>
</tr>
<tr>
<td>193</td>
<td>2,4-dichloro-6-nitrophenyl group</td>
</tr>
<tr>
<td>194</td>
<td>2,6-dichloro-4-nitrophenyl group</td>
</tr>
<tr>
<td>195</td>
<td>2,6-dibromo-4-nitrophenyl group</td>
</tr>
<tr>
<td>196</td>
<td>2,6-diiodo-4-nitrophenyl group</td>
</tr>
<tr>
<td>197</td>
<td>2-methyl-5-isopropyl-1-4-chlorophenyl group</td>
</tr>
<tr>
<td>198</td>
<td>2-methoxycarbonylphenyl group</td>
</tr>
<tr>
<td>199</td>
<td>3-methoxycarbonylphenyl group</td>
</tr>
<tr>
<td>200</td>
<td>4-methoxycarbonylphenyl group</td>
</tr>
<tr>
<td>201</td>
<td>4-acetoxyphenyl group</td>
</tr>
<tr>
<td>202</td>
<td>2-methoxymethylphenyl group</td>
</tr>
<tr>
<td>203</td>
<td>3-methoxymethylphenyl group</td>
</tr>
<tr>
<td>204</td>
<td>4-methoxymethylphenyl group</td>
</tr>
<tr>
<td>205</td>
<td>2-phenylphenyl group</td>
</tr>
<tr>
<td>206</td>
<td>3-phenylphenyl group</td>
</tr>
<tr>
<td>207</td>
<td>4-phenylphenyl group</td>
</tr>
<tr>
<td>208</td>
<td>2-(2'-fluorophenyl)phenyl group</td>
</tr>
<tr>
<td>209</td>
<td>2-methyl-5-bromophenyl group</td>
</tr>
<tr>
<td>210</td>
<td>2-methyl-6-bromophenyl group</td>
</tr>
<tr>
<td>211</td>
<td>2-chloro-3-methylphenyl group</td>
</tr>
<tr>
<td>212</td>
<td>2-chloro-4-methylphenyl group</td>
</tr>
<tr>
<td>Nos</td>
<td>Substituents</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>213</td>
<td>2-chloro-5-methylphenyl group</td>
</tr>
<tr>
<td>214</td>
<td>2-fluoro-3-methylphenyl group</td>
</tr>
<tr>
<td>215</td>
<td>2-fluoro-4-methylphenyl group</td>
</tr>
<tr>
<td>216</td>
<td>2-fluoro-5-methylphenyl group</td>
</tr>
<tr>
<td>217</td>
<td>2-bromo-3-methylphenyl group</td>
</tr>
<tr>
<td>218</td>
<td>2-bromo-4-methylphenyl group</td>
</tr>
<tr>
<td>219</td>
<td>2-bromo-5-methylphenyl group</td>
</tr>
<tr>
<td>220</td>
<td>3-methyl-4-chlorophenyl group</td>
</tr>
<tr>
<td>221</td>
<td>3-methyl-5-chlorophenyl group</td>
</tr>
<tr>
<td>222</td>
<td>3-methyl-4-fluorophenyl group</td>
</tr>
<tr>
<td>223</td>
<td>3-methyl-5-fluorophenyl group</td>
</tr>
<tr>
<td>224</td>
<td>3-methyl-4-bromophenyl group</td>
</tr>
<tr>
<td>225</td>
<td>3-methyl-5-bromophenyl group</td>
</tr>
<tr>
<td>226</td>
<td>3-fluoro-4-methylphenyl group</td>
</tr>
<tr>
<td>227</td>
<td>3-chloro-4-methylphenyl group</td>
</tr>
<tr>
<td>228</td>
<td>3-bromo-4-methylphenyl group</td>
</tr>
<tr>
<td>229</td>
<td>2-chloro-4,5-dimethylphenyl group</td>
</tr>
<tr>
<td>230</td>
<td>2-bromo-4,5-dimethylphenyl group</td>
</tr>
<tr>
<td>231</td>
<td>2-chloro-3,5-dimethylphenyl group</td>
</tr>
<tr>
<td>232</td>
<td>2-bromo-3,5-dimethylphenyl group</td>
</tr>
<tr>
<td>233</td>
<td>2,6-dibromo-4-methylphenyl group</td>
</tr>
<tr>
<td>234</td>
<td>2,4-dichloro-6-methylphenyl group</td>
</tr>
<tr>
<td>235</td>
<td>2,4-difluoro-6-methylphenyl group</td>
</tr>
<tr>
<td>236</td>
<td>2,4-dibromo-6-methylphenyl group</td>
</tr>
<tr>
<td>237</td>
<td>2,6-dimethyl-4-fluorophenyl group</td>
</tr>
<tr>
<td>238</td>
<td>2,6-dimethyl-4-chlorophenyl group</td>
</tr>
<tr>
<td>239</td>
<td>2,6-dimethyl-4-bromophenyl group</td>
</tr>
<tr>
<td>Nos.</td>
<td>Substituents</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>240</td>
<td>3,5-dimethyl-4-fluorophenyl group</td>
</tr>
<tr>
<td>241</td>
<td>3,5-dimethyl-4-chlorophenyl group</td>
</tr>
<tr>
<td>242</td>
<td>3,5-dimethyl-4-bromophenyl group</td>
</tr>
<tr>
<td>243</td>
<td>2,3-difluoro-4-methylphenyl group</td>
</tr>
<tr>
<td>244</td>
<td>2,5-difluoro-4-methylphenyl group</td>
</tr>
<tr>
<td>245</td>
<td>3,5-difluoro-4-methylphenyl group</td>
</tr>
<tr>
<td>246</td>
<td>2,3,5-trifluoro-4-methylphenyl group</td>
</tr>
<tr>
<td>247</td>
<td>2,3,6-trifluoro-4-methylphenyl group</td>
</tr>
<tr>
<td>248</td>
<td>2,3,5,6-tetrafluoro-4-methylphenyl group</td>
</tr>
<tr>
<td>249</td>
<td>2-fluoro-4-ethylphenyl group</td>
</tr>
<tr>
<td>250</td>
<td>3-fluoro-4-ethylphenyl group</td>
</tr>
<tr>
<td>251</td>
<td>2,3-difluoro-4-ethylphenyl group</td>
</tr>
<tr>
<td>252</td>
<td>2,6-difluoro-4-ethylphenyl group</td>
</tr>
<tr>
<td>253</td>
<td>2,5-difluoro-4-ethylphenyl group</td>
</tr>
<tr>
<td>254</td>
<td>3,5-difluoro-4-ethylphenyl group</td>
</tr>
<tr>
<td>255</td>
<td>2,3,5-trifluoro-4-ethylphenyl group</td>
</tr>
<tr>
<td>256</td>
<td>2,3,6-trifluoro-4-ethylphenyl group</td>
</tr>
<tr>
<td>257</td>
<td>2,3,5,6-tetrafluoro-4-ethylphenyl group</td>
</tr>
<tr>
<td>258</td>
<td>2-trifluoromethylphenyl group</td>
</tr>
<tr>
<td>259</td>
<td>3-trifluoromethylphenyl group</td>
</tr>
<tr>
<td>260</td>
<td>4-trifluoromethylphenyl group</td>
</tr>
<tr>
<td>261</td>
<td>4-(2,2,2-trifluoromethylethyl) phenyl group</td>
</tr>
</tbody>
</table>

([Table 10])

<table>
<thead>
<tr>
<th>Substituents</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>262</td>
<td>2-trifluoromethoxyphenyl group</td>
</tr>
<tr>
<td>263</td>
<td>3-trifluoromethoxyphenyl group</td>
</tr>
<tr>
<td>264</td>
<td>4-trifluoromethoxyphenyl group</td>
</tr>
<tr>
<td>265</td>
<td>4-(2,2-difluoroethoxy) phenyl group</td>
</tr>
<tr>
<td>266</td>
<td>4-(2,2,2-trifluoroethoxy) phenyl group</td>
</tr>
<tr>
<td>No.</td>
<td>Substituents</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>267</td>
<td>2-nitrophenyl group</td>
</tr>
<tr>
<td>268</td>
<td>3-nitrophenyl group</td>
</tr>
<tr>
<td>269</td>
<td>4-nitrophenyl group</td>
</tr>
<tr>
<td>270</td>
<td>2-cyanophenyl 1 group</td>
</tr>
<tr>
<td>271</td>
<td>3-cyanophenyl group</td>
</tr>
<tr>
<td>272</td>
<td>4-cyanophenyl 1 group</td>
</tr>
<tr>
<td>273</td>
<td>2-methyl-3-chlorophenyl group</td>
</tr>
<tr>
<td>274</td>
<td>2-methyl-4-chlorophenyl group</td>
</tr>
<tr>
<td>275</td>
<td>2-methyl-5-chlorophenyl group</td>
</tr>
<tr>
<td>276</td>
<td>2-methyl-6-chlorophenyl group</td>
</tr>
<tr>
<td>277</td>
<td>2-methyl-3-fluorophenyl group</td>
</tr>
<tr>
<td>278</td>
<td>2-methyl-4-fluorophenyl group</td>
</tr>
<tr>
<td>279</td>
<td>2-methyl-5-fluorophenyl group</td>
</tr>
<tr>
<td>280</td>
<td>2-methyl-6-fluorophenyl group</td>
</tr>
<tr>
<td>281</td>
<td>2-methyl-3-bromophenyl group</td>
</tr>
<tr>
<td>282</td>
<td>2-methyl-4-bromophenyl group</td>
</tr>
<tr>
<td>283</td>
<td>4-methylthiophenyl group</td>
</tr>
<tr>
<td>284</td>
<td>4-methylsulfonanylphenyl group</td>
</tr>
<tr>
<td>285</td>
<td>4-methylsulfinylphenyl group</td>
</tr>
<tr>
<td>286</td>
<td>4-trifluoromethylthiophenyl group</td>
</tr>
<tr>
<td>287</td>
<td>4-ethynylphenyl group</td>
</tr>
<tr>
<td>288</td>
<td>4-(1-propynyl) phenyl group</td>
</tr>
<tr>
<td>289</td>
<td>4-vinylphenyl group</td>
</tr>
<tr>
<td>290</td>
<td>4-(2,2-dichlorovinyl) phenyl group</td>
</tr>
<tr>
<td>291</td>
<td>4-(2,2-difluorovinyl) phenyl group</td>
</tr>
<tr>
<td>292</td>
<td>cyclohexyl group</td>
</tr>
<tr>
<td>293</td>
<td>2-chlorocyclohexyl group</td>
</tr>
<tr>
<td>No.</td>
<td>Substituent</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>294</td>
<td>3-chlorocyclohexyl group</td>
</tr>
<tr>
<td>295</td>
<td>4-chlorocyclohexyl group</td>
</tr>
<tr>
<td>296</td>
<td>4,4-dichlorocyclohexyl group</td>
</tr>
<tr>
<td>297</td>
<td>2-bromocyclohexyl group</td>
</tr>
<tr>
<td>298</td>
<td>3-bromocyclohexyl group</td>
</tr>
<tr>
<td>299</td>
<td>4-bromocyclohexyl group</td>
</tr>
<tr>
<td>300</td>
<td>4,4-dibromocyclohexyl group</td>
</tr>
<tr>
<td>301</td>
<td>2-iodocyclohexyl group</td>
</tr>
<tr>
<td>302</td>
<td>3-iodocyclohexyl group</td>
</tr>
<tr>
<td>303</td>
<td>4-iodocyclohexyl group</td>
</tr>
<tr>
<td>304</td>
<td>2-fluorocyclohexyl group</td>
</tr>
<tr>
<td>305</td>
<td>3-fluorocyclohexyl group</td>
</tr>
<tr>
<td>306</td>
<td>4-fluorocyclohexyl group</td>
</tr>
<tr>
<td>307</td>
<td>4,4-difluorocyclohexyl group</td>
</tr>
<tr>
<td>308</td>
<td>4-methylcyclohexyl group</td>
</tr>
<tr>
<td>309</td>
<td>4-ethylcylohexyl group</td>
</tr>
<tr>
<td>310</td>
<td>1-cyclohexenyl group</td>
</tr>
<tr>
<td>311</td>
<td>2-cyclohexenyl group</td>
</tr>
<tr>
<td>312</td>
<td>3-cyclohexenyl group</td>
</tr>
<tr>
<td>313</td>
<td>2-chloro-1-cyclohexenyl group</td>
</tr>
<tr>
<td>314</td>
<td>3-chloro-1-cyclohexenyl group</td>
</tr>
<tr>
<td>315</td>
<td>4-chloro-1-cyclohexenyl group</td>
</tr>
<tr>
<td>316</td>
<td>5-chloro-1-cyclohexenyl group</td>
</tr>
<tr>
<td>317</td>
<td>6-chloro-1-cyclohexenyl group</td>
</tr>
<tr>
<td>318</td>
<td>1-chloro-2-cyclohexenyl group</td>
</tr>
<tr>
<td>319</td>
<td>2-chloro-2-cyclohexenyl group</td>
</tr>
</tbody>
</table>

([0871])

[Table 12]

<table>
<thead>
<tr>
<th>Substituents</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nos.</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>3-chloro-2-cyclohexenyl group</td>
</tr>
<tr>
<td>No.</td>
<td>Chemical Group</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>321</td>
<td>4-chloro-2-cyclohexenyl group</td>
</tr>
<tr>
<td>322</td>
<td>5-chloro-2-cyclohexenyl group</td>
</tr>
<tr>
<td>323</td>
<td>6-chloro-2-cyclohexenyl group</td>
</tr>
<tr>
<td>324</td>
<td>1-chloro-3-cyclohexenyl group</td>
</tr>
<tr>
<td>325</td>
<td>2-chloro-3-cyclohexenyl group</td>
</tr>
<tr>
<td>326</td>
<td>3-chloro-3-cyclohexenyl group</td>
</tr>
<tr>
<td>327</td>
<td>4-chloro-3-cyclohexenyl group</td>
</tr>
<tr>
<td>328</td>
<td>5-chloro-3-cyclohexenyl group</td>
</tr>
<tr>
<td>329</td>
<td>6-chloro-3-cyclohexenyl group</td>
</tr>
<tr>
<td>330</td>
<td>4-bromo-1-cyclohexenyl group</td>
</tr>
<tr>
<td>331</td>
<td>4-bromo-2-cyclohexenyl group</td>
</tr>
<tr>
<td>332</td>
<td>4-bromo-3-cyclohexenyl group</td>
</tr>
<tr>
<td>333</td>
<td>4-methyl-1-cyclohexenyl group</td>
</tr>
<tr>
<td>334</td>
<td>4-methyl-2-cyclohexenyl group</td>
</tr>
<tr>
<td>335</td>
<td>4-methyl-3-cyclohexenyl group</td>
</tr>
<tr>
<td>336</td>
<td>4-ethyl-1-cyclohexenyl group</td>
</tr>
<tr>
<td>337</td>
<td>4-ethyl-2-cyclohexenyl group</td>
</tr>
<tr>
<td>338</td>
<td>4-ethyl-3-cyclohexenyl group</td>
</tr>
<tr>
<td>339</td>
<td>trifluoromethyl group</td>
</tr>
<tr>
<td>340</td>
<td>tert-butyl group</td>
</tr>
<tr>
<td>341</td>
<td>3-fluoro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>342</td>
<td>4-fluoro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>343</td>
<td>5-fluoro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>344</td>
<td>6-fluoro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>345</td>
<td>3-chloro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>346</td>
<td>4-chloro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>347</td>
<td>5-chloro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>348</td>
<td>6-chloro-2-methoxyphenyl group</td>
</tr>
</tbody>
</table>

[0872]

[Table 13]
<table>
<thead>
<tr>
<th>Substituents Y Nos.</th>
<th>3-bromo-2-methoxyphenyl group</th>
</tr>
</thead>
<tbody>
<tr>
<td>349</td>
<td>3-bromo-2-methoxyphenyl group</td>
</tr>
<tr>
<td>350</td>
<td>4-bromo-2-methoxyphenyl group</td>
</tr>
<tr>
<td>351</td>
<td>5-bromo-2-methoxyphenyl group</td>
</tr>
<tr>
<td>352</td>
<td>6-bromo-2-methoxyphenyl group</td>
</tr>
<tr>
<td>353</td>
<td>3-iodo-2-methoxyphenyl group</td>
</tr>
<tr>
<td>354</td>
<td>4-iodo-2-methoxyphenyl group</td>
</tr>
<tr>
<td>355</td>
<td>5-iodo-2-methoxyphenyl group</td>
</tr>
<tr>
<td>356</td>
<td>6-iodo-2-methoxyphenyl group</td>
</tr>
<tr>
<td>357</td>
<td>2,3-dimethoxyphenyl group</td>
</tr>
<tr>
<td>358</td>
<td>2,4-dimethoxyphenyl group</td>
</tr>
<tr>
<td>359</td>
<td>2,5-dimethoxyphenyl group</td>
</tr>
<tr>
<td>360</td>
<td>2,6-dimethoxyphenyl group</td>
</tr>
<tr>
<td>361</td>
<td>3-methyl-2-methoxyphenyl group</td>
</tr>
<tr>
<td>362</td>
<td>4-methyl-2-methoxyphenyl group</td>
</tr>
<tr>
<td>363</td>
<td>5-methyl-2-methoxyphenyl group</td>
</tr>
<tr>
<td>364</td>
<td>6-methyl-2-methoxyphenyl group</td>
</tr>
<tr>
<td>365</td>
<td>3-ethyl-2-methoxyphenyl group</td>
</tr>
<tr>
<td>366</td>
<td>4-ethyl-2-methoxyphenyl group</td>
</tr>
<tr>
<td>367</td>
<td>5-ethyl-2-methoxyphenyl group</td>
</tr>
<tr>
<td>368</td>
<td>6-ethyl-2-methoxyphenyl group</td>
</tr>
<tr>
<td>369</td>
<td>3-trifluoromethoxy-2-methoxyphenyl group</td>
</tr>
<tr>
<td>370</td>
<td>4-trifluoromethoxy-2-methoxyphenyl group</td>
</tr>
<tr>
<td>371</td>
<td>5-trifluoromethoxy-2-methoxyphenyl group</td>
</tr>
<tr>
<td>372</td>
<td>6-trifluoromethoxy-2-methoxyphenyl group</td>
</tr>
<tr>
<td>373</td>
<td>3-trifluoromethyl-2-methoxyphenyl group</td>
</tr>
<tr>
<td>374</td>
<td>4-trifluoromethyl-2-methoxyphenyl group</td>
</tr>
<tr>
<td>375</td>
<td>5-trifluoromethyl-2-methoxyphenyl group</td>
</tr>
<tr>
<td>376</td>
<td>6-trifluoromethyl-2-methoxyphenyl group</td>
</tr>
<tr>
<td>377</td>
<td>3-methylthio-2-methoxyphenyl group</td>
</tr>
<tr>
<td>Substituents Y Nos.</td>
<td>378</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>382</td>
</tr>
<tr>
<td></td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>386</td>
</tr>
<tr>
<td></td>
<td>387</td>
</tr>
<tr>
<td></td>
<td>388</td>
</tr>
<tr>
<td></td>
<td>389</td>
</tr>
<tr>
<td></td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>392</td>
</tr>
<tr>
<td></td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>395</td>
</tr>
<tr>
<td></td>
<td>396</td>
</tr>
<tr>
<td></td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>398</td>
</tr>
<tr>
<td></td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>401</td>
</tr>
<tr>
<td></td>
<td>402</td>
</tr>
<tr>
<td></td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>404</td>
</tr>
<tr>
<td></td>
<td>405</td>
</tr>
<tr>
<td>Substituents Nos.</td>
<td>Y</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>407</td>
<td>5-bromo-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>408</td>
<td>6-bromo-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>409</td>
<td>2-ethoxy-3-iodophenyl group</td>
</tr>
<tr>
<td>410</td>
<td>2-ethoxy-4-iodophenyl group</td>
</tr>
<tr>
<td>411</td>
<td>2-ethoxy-5-iodophenyl group</td>
</tr>
<tr>
<td>412</td>
<td>2-ethoxy-6-iodophenyl group</td>
</tr>
<tr>
<td>413</td>
<td>2,3-diethoxyphenyl group</td>
</tr>
<tr>
<td>414</td>
<td>2,4-diethoxyphenyl group</td>
</tr>
<tr>
<td>415</td>
<td>2,5-diethoxyphenyl group</td>
</tr>
<tr>
<td>416</td>
<td>2,6-diethoxyphenyl group</td>
</tr>
<tr>
<td>417</td>
<td>2-ethoxy-3-methylphenyl group</td>
</tr>
<tr>
<td>418</td>
<td>2-ethoxy-4-methylphenyl group</td>
</tr>
<tr>
<td>419</td>
<td>2-ethoxy-5-methylphenyl group</td>
</tr>
<tr>
<td>420</td>
<td>2-ethoxy-6-methylphenyl group</td>
</tr>
<tr>
<td>421</td>
<td>3-ethyl-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>422</td>
<td>4-ethyl-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>423</td>
<td>5-ethyl-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>424</td>
<td>6-ethyl-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>425</td>
<td>2-ethoxy-3-trifluoromethoxyphenyl group</td>
</tr>
<tr>
<td>426</td>
<td>2-ethoxy-4-trifluoromethoxyphenyl group</td>
</tr>
<tr>
<td>427</td>
<td>2-ethoxy-5-trifluoromethoxyphenyl group</td>
</tr>
<tr>
<td>428</td>
<td>2-ethoxy-6-trifluoromethoxyphenyl group</td>
</tr>
<tr>
<td>429</td>
<td>2-ethoxy-3-trifluoromethylphenyl group</td>
</tr>
<tr>
<td>430</td>
<td>2-ethoxy-4-trifluoromethylphenyl group</td>
</tr>
<tr>
<td>431</td>
<td>2-ethoxy-5-trifluoromethylphenyl group</td>
</tr>
<tr>
<td>432</td>
<td>2-ethoxy-6-trifluoromethylphenyl group</td>
</tr>
<tr>
<td>Substituents Nos</td>
<td>Y Substituents</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>433</td>
<td>2-ethoxy- 3-methyl thiophenyl group</td>
</tr>
<tr>
<td>434</td>
<td>2-ethoxy-4-methyl thiophenyl group</td>
</tr>
<tr>
<td>435</td>
<td>2-ethoxy-5-methyl thiophenyl group</td>
</tr>
<tr>
<td>436</td>
<td>2-ethoxy-6-methyl thiophenyl group</td>
</tr>
<tr>
<td>437</td>
<td>2-ethoxy-3-trifluoromethyl thiophenyl group</td>
</tr>
<tr>
<td>438</td>
<td>2-ethoxy-4-trifluoromethyl thiophenyl group</td>
</tr>
<tr>
<td>439</td>
<td>2-ethoxy-5-trifluoromethyl thiophenyl group</td>
</tr>
<tr>
<td>440</td>
<td>2-ethoxy-6-1 trifluoromethyl thiophenyl group</td>
</tr>
<tr>
<td>441</td>
<td>3-ethynyl-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>442</td>
<td>4-ethynyl-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>443</td>
<td>5-ethynyl-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>444</td>
<td>6-ethynyl-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>445</td>
<td>3-cyclopropyl-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>446</td>
<td>4-cyclopropyl-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>447</td>
<td>5-cyclopropyl-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>448</td>
<td>6-cyclopropyl-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>449</td>
<td>3-cyclopropyl oxy-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>450</td>
<td>4-cyclopropyl oxy-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>451</td>
<td>5-cyclopropyl oxy-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>452</td>
<td>6-cyclopropyl oxy-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>453</td>
<td>3-methoxy-2-methylphenyl group</td>
</tr>
<tr>
<td>454</td>
<td>4-methoxy-2-methylphenyl group</td>
</tr>
<tr>
<td>455</td>
<td>5-methoxy-2-methylphenyl group</td>
</tr>
<tr>
<td>456</td>
<td>6-methoxy-2-methylphenyl group</td>
</tr>
<tr>
<td>457</td>
<td>3-ethoxy-2-methylphenyl group</td>
</tr>
<tr>
<td>458</td>
<td>4-ethoxy-2-methylphenyl group</td>
</tr>
<tr>
<td>459</td>
<td>5-ethoxy-2-methylphenyl group</td>
</tr>
<tr>
<td>Substituents Nos.</td>
<td>Y</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>460</td>
<td>6-ethoxy-2-methylphenyl group</td>
</tr>
<tr>
<td>461</td>
<td>3-ethyl-2-methylphenyl group</td>
</tr>
<tr>
<td>462</td>
<td>4-ethyl-2-methylphenyl group</td>
</tr>
<tr>
<td>463</td>
<td>5-ethyl-2-methylphenyl group</td>
</tr>
<tr>
<td>464</td>
<td>6-ethyl-2-methylphenyl group</td>
</tr>
<tr>
<td>465</td>
<td>3-trifluoromethoxy-2-methylphenyl group</td>
</tr>
<tr>
<td>466</td>
<td>4-trifluoromethoxy-2-methylphenyl group</td>
</tr>
<tr>
<td>467</td>
<td>5-trifluoromethoxy-2-methylphenyl group</td>
</tr>
<tr>
<td>468</td>
<td>6-trifluoromethoxy-2-methylphenyl group</td>
</tr>
<tr>
<td>469</td>
<td>3-trifluoromethyl-2-methylphenyl group</td>
</tr>
<tr>
<td>470</td>
<td>4-trifluoromethyl-2-methylphenyl group</td>
</tr>
<tr>
<td>471</td>
<td>5-trifluoromethyl-2-methylphenyl group</td>
</tr>
<tr>
<td>472</td>
<td>6-trifluoromethyl-2-methylphenyl group</td>
</tr>
<tr>
<td>473</td>
<td>3-methylthio-2-methylphenyl group</td>
</tr>
<tr>
<td>474</td>
<td>4-methylthio-2-methylphenyl group</td>
</tr>
<tr>
<td>475</td>
<td>5-methylthio-2-methylphenyl group</td>
</tr>
<tr>
<td>476</td>
<td>6-methylthio-2-methylphenyl group</td>
</tr>
<tr>
<td>477</td>
<td>4-fluoro-2-isopropyl oxyphenyl 1 group</td>
</tr>
<tr>
<td>478</td>
<td>4-chloro-2-isopropyl oxyphenyl group</td>
</tr>
<tr>
<td>479</td>
<td>4-bromo-2-isopropyl oxyphenyl group</td>
</tr>
<tr>
<td>480</td>
<td>4-iodo-2-isopropyl oxyphenyl group</td>
</tr>
<tr>
<td>481</td>
<td>4-methyl-2-isopropyl oxyphenyl group</td>
</tr>
<tr>
<td>482</td>
<td>4-ethyl-2-isopropyl oxyphenyl 1 group</td>
</tr>
<tr>
<td>483</td>
<td>4-methoxy-2-isopropyl oxyphenyl 1 group</td>
</tr>
<tr>
<td>484</td>
<td>4-ethoxy-2-isopropyl oxyphenyl 1 group</td>
</tr>
<tr>
<td>485</td>
<td>4-trifluoromethyl-2-isopropyl oxyphenyl group</td>
</tr>
<tr>
<td>486</td>
<td>4-trifluoromethoxy-2-isopropyl oxyphenyl 1 group</td>
</tr>
</tbody>
</table>
487 4-methylthio-2-isopropyloxyphenyl group
488 4-cyclopropyl-2-isopropyloxyphenyl group
489 4-fluoro-2-ethylpropyloxyphenyl group
490 4-chloro-2-cyclopropoxyphenyl group
491 4-bromo-2-cyclopropoxyphenyl group
492 4-iodo-2-cyclopropoxyphenyl group
493 4-methyl-2-ethylpropyloxyphenyl group

[0877]

[Table 18]

<table>
<thead>
<tr>
<th>Substituents Nos.</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>494</td>
<td>4-ethyl-2-cyclopropoxyphenyl</td>
</tr>
<tr>
<td>495</td>
<td>4-methoxy-2-cyclopropoxyphenyl group</td>
</tr>
<tr>
<td>496</td>
<td>4-ethoxy-2-cyclopropoxyphenyl group</td>
</tr>
<tr>
<td>497</td>
<td>4-trifluoromethyl-2-ethylpropyloxyphenyl group</td>
</tr>
<tr>
<td>498</td>
<td>4-trifluoromethoxy-2-cyclopropoxyphenyl group</td>
</tr>
<tr>
<td>499</td>
<td>4-methylthio-2-cyclopropoxyphenyl group</td>
</tr>
<tr>
<td>500</td>
<td>4-cyclopropyl-2-cyclopropoxyphenyl group</td>
</tr>
<tr>
<td>501</td>
<td>3,4-difluoro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>502</td>
<td>4,5-difluoro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>503</td>
<td>4,6-difluoro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>504</td>
<td>3,4,5-trifluoro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>505</td>
<td>3,4,5,6-tetrafluoro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>506</td>
<td>4-chloro-3-fluoro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>507</td>
<td>4-chloro-5-fluoro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>508</td>
<td>4-chloro-6-fluoro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>509</td>
<td>4-bromo-3-fluoro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>510</td>
<td>4-bromo-5-fluoro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>511</td>
<td>4-bromo-6-fluoro-2-methoxyphenyl group</td>
</tr>
<tr>
<td>512</td>
<td>3,4-difluoro-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>513</td>
<td>4,5-difluoro-2-ethoxyphenyl group</td>
</tr>
<tr>
<td>Substituents Nos</td>
<td>Y</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>523</td>
<td>3,4-difluoro-2-isopropoxyphenyl group</td>
</tr>
<tr>
<td>524</td>
<td>4,5-difluoro-2-isopropoxyphenyl group</td>
</tr>
<tr>
<td>525</td>
<td>4,6-difluoro-2-isopropoxyphenyl group</td>
</tr>
<tr>
<td>526</td>
<td>3,4,5-trifluoro-2-isopropoxyphenyl group</td>
</tr>
<tr>
<td>527</td>
<td>3,4,5,6-tetrafluoro-2-isopropoxyphenyl group</td>
</tr>
<tr>
<td>528</td>
<td>4-chloro-3-fluoro-2-isopropoxyphenyl group</td>
</tr>
<tr>
<td>529</td>
<td>4-chloro-5-fluoro-2-isopropoxyphenyl group</td>
</tr>
<tr>
<td>530</td>
<td>4-chloro-6-fluoro-2-isopropoxyphenyl group</td>
</tr>
<tr>
<td>531</td>
<td>4-bromo-3-fluoro-2-isopropoxyphenyl group</td>
</tr>
<tr>
<td>532</td>
<td>4-bromo-5-fluoro-2-isopropoxyphenyl group</td>
</tr>
<tr>
<td>533</td>
<td>4-bromo-6-fluoro-2-isopropoxyphenyl group</td>
</tr>
<tr>
<td>534</td>
<td>3,4-difluoro-2-cyclopropoxyphenyl group</td>
</tr>
<tr>
<td>535</td>
<td>4,5-difluoro-2-cyclopropoxyphenyl group</td>
</tr>
<tr>
<td>536</td>
<td>4,6-difluoro-2-cyclopropoxyphenyl group</td>
</tr>
<tr>
<td>537</td>
<td>3,4,5-trifluoro-2-cyclopropoxyphenyl group</td>
</tr>
<tr>
<td>538</td>
<td>3,4,5,6-tetrafluoro-2-cyclopropoxyphenyl group</td>
</tr>
<tr>
<td>539</td>
<td>4-chloro-3-fluoro-2-cyclopropoxyphenyl group</td>
</tr>
<tr>
<td>540</td>
<td>4-chloro-5-fluoro-2-cyclopropoxyphenyl group</td>
</tr>
<tr>
<td>Substituents Nos.</td>
<td>Substituents</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>541</td>
<td>4-chloro-6-fluoro-2-cyclopropyloxyphenyl group</td>
</tr>
<tr>
<td>542</td>
<td>4-bromo-3-fluoro-2-cyclopropyloxyphenyl group</td>
</tr>
<tr>
<td>543</td>
<td>4-bromo-5-fluoro-2-ethylpropyloxyphenyl group</td>
</tr>
<tr>
<td>544</td>
<td>4-bromo-6-fluoro-2-ethylpropyloxyphenyl group</td>
</tr>
<tr>
<td>545</td>
<td>3-ethynyl-2-methylphenyl group</td>
</tr>
<tr>
<td>546</td>
<td>4-ethynyl-2-methylphenyl group</td>
</tr>
<tr>
<td>547</td>
<td>5-ethynyl-2-methylphenyl group</td>
</tr>
<tr>
<td>548</td>
<td>6-ethynyl-2-methylphenyl group</td>
</tr>
<tr>
<td>549</td>
<td>3-ethyl-2-methylphenyl group</td>
</tr>
<tr>
<td>550</td>
<td>4-ethyl-2-methylphenyl group</td>
</tr>
<tr>
<td>551</td>
<td>5-ethyl-2-methylphenyl group</td>
</tr>
</tbody>
</table>

[0879] [Table 20] | Y |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>552</td>
<td>6-cyclopropyl-2-methylphenyl group</td>
</tr>
<tr>
<td>553</td>
<td>3-cyclopropyloxy-2-methylphenyl group</td>
</tr>
<tr>
<td>554</td>
<td>4-cyclopropyloxy-2-methylphenyl group</td>
</tr>
<tr>
<td>555</td>
<td>5-ethylpropyloxy-2-methylphenyl group</td>
</tr>
<tr>
<td>556</td>
<td>6-cyclopropyloxy-2-methylphenyl group</td>
</tr>
<tr>
<td>557</td>
<td>3-methoxy-2-fluorophenyl group</td>
</tr>
<tr>
<td>558</td>
<td>4-methoxy-2-fluorophenyl group</td>
</tr>
<tr>
<td>559</td>
<td>5-methoxy-2-fluorophenyl group</td>
</tr>
<tr>
<td>560</td>
<td>6-methoxy-2-fluorophenyl group</td>
</tr>
<tr>
<td>561</td>
<td>3-ethoxy-2-fluorophenyl group</td>
</tr>
<tr>
<td>562</td>
<td>4-ethoxy-2-fluorophenyl group</td>
</tr>
<tr>
<td>563</td>
<td>5-ethoxy-2-fluorophenyl group</td>
</tr>
<tr>
<td>564</td>
<td>6-ethoxy-2-fluorophenyl group</td>
</tr>
<tr>
<td>565</td>
<td>3-ethyl-2-fluorophenyl group</td>
</tr>
<tr>
<td>566</td>
<td>5-ethyl-2-fluorophenyl group</td>
</tr>
<tr>
<td>567</td>
<td>6-ethyl-2-fluorophenyl group</td>
</tr>
</tbody>
</table>
2-fluoro-3-trifluoromethoxyphenyl group
2-fluoro-4-trifluoromethoxyphenyl group
2-fluoro-5-trifluoromethoxyphenyl group
2-fluoro-6-trifluoromethoxyphenyl group
2-fluoro-3-trifluoromethylphenyl group
2-fluoro-4-trifluoromethylphenyl group
2-fluoro-5-trifluoromethylphenyl group
2-fluoro-6-trifluoromethylphenyl group
2-fluoro-3-fluorothiophenyl group
2-fluoro-4-fluorothiophenyl group
2-fluoro-5-fluorothiophenyl group
2-fluoro-6-fluorothiophenyl group
2-fluoro-3-fluoro-2-fluorophenyl group
2-fluoro-4-fluoro-2-fluorophenyl group
2-fluoro-5-fluoro-2-fluorophenyl group
2-fluoro-6-fluoro-2-fluorophenyl group
3-ethynyl-2-fluorophenyl group
4-ethynyl-2-fluorophenyl group
5-ethynyl-2-fluorophenyl group
6-ethynyl-2-fluorophenyl group
3-cyclopropyl-2-fluorophenyl group
4-ethylopropyl-2-fluorophenyl group
5-cyclopropyl-2-fluorophenyl group
6-ethylopropyl-2-fluorophenyl group
3-cyclopropyloxy-2-fluorophenyl group
4-cyclopropyloxy-2-fluorophenyl group
5-ethylopropylxy-2-fluorophenyl group
6-ethylopropylxy-2-fluorophenyl group
2-ethyl-3-fluorophenyl group
2-ethyl-4-fluorophenyl group
2-ethyl-5-fluorophenyl group

[Table 21]

<table>
<thead>
<tr>
<th>Substituents Nos.</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>581</td>
<td>4-ethynyl-2-fluorophenyl group</td>
</tr>
<tr>
<td>582</td>
<td>5-ethynyl-2-fluorophenyl group</td>
</tr>
<tr>
<td>583</td>
<td>6-ethynyl-2-fluorophenyl group</td>
</tr>
<tr>
<td>584</td>
<td>3-cyclopropyl-2-fluorophenyl group</td>
</tr>
<tr>
<td>585</td>
<td>4-ethylopropyl-2-fluorophenyl group</td>
</tr>
<tr>
<td>586</td>
<td>5-cyclopropyl-2-fluorophenyl group</td>
</tr>
<tr>
<td>587</td>
<td>6-ethylopropyl-2-fluorophenyl group</td>
</tr>
<tr>
<td>588</td>
<td>3-cyclopropyloxy-2-fluorophenyl group</td>
</tr>
<tr>
<td>589</td>
<td>4-cyclopropyloxy-2-fluorophenyl group</td>
</tr>
<tr>
<td>590</td>
<td>5-ethylopropyloxy-2-fluorophenyl group</td>
</tr>
<tr>
<td>591</td>
<td>6-ethylopropyloxy-2-fluorophenyl group</td>
</tr>
<tr>
<td>592</td>
<td>2-ethyl-3-fluorophenyl group</td>
</tr>
<tr>
<td>593</td>
<td>2-ethyl-4-fluorophenyl group</td>
</tr>
<tr>
<td>594</td>
<td>2-ethyl-5-fluorophenyl group</td>
</tr>
<tr>
<td>Substituents</td>
<td>Y</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>2-ethyl-6-fluorophenyl group</td>
<td></td>
</tr>
<tr>
<td>3-chloro-2-ethylphenyl group</td>
<td></td>
</tr>
<tr>
<td>4-chloro-2-ethylphenyl group</td>
<td></td>
</tr>
<tr>
<td>5-chloro-2-ethylphenyl group</td>
<td></td>
</tr>
<tr>
<td>6-chloro-2-ethylphenyl group</td>
<td></td>
</tr>
<tr>
<td>3-bromo-2-ethylphenyl group</td>
<td></td>
</tr>
<tr>
<td>4-bromo-2-ethylphenyl group</td>
<td></td>
</tr>
<tr>
<td>5-bromo-2-ethylphenyl group</td>
<td></td>
</tr>
<tr>
<td>6-bromo-2-ethylphenyl group</td>
<td></td>
</tr>
<tr>
<td>2-ethyl-3-iodophenyl group</td>
<td></td>
</tr>
<tr>
<td>2-ethyl-4-iodophenyl group</td>
<td></td>
</tr>
<tr>
<td>2-ethyl-5-iodophenyl group</td>
<td></td>
</tr>
<tr>
<td>2-ethyl-6-iodophenyl group</td>
<td></td>
</tr>
<tr>
<td>2-ethyl-3-ethoxyphenyl group</td>
<td></td>
</tr>
<tr>
<td>2-ethyl-4-ethoxyphenyl group</td>
<td></td>
</tr>
<tr>
<td>2-ethyl-5-ethoxyphenyl group</td>
<td></td>
</tr>
<tr>
<td>2-ethyl-6-ethoxyphenyl group</td>
<td></td>
</tr>
<tr>
<td>2,3-diethylphenyl group</td>
<td></td>
</tr>
<tr>
<td>2,4-diethylphenyl group</td>
<td></td>
</tr>
<tr>
<td>2,5-diethylphenyl group</td>
<td></td>
</tr>
<tr>
<td>2,6-diethylphenyl group</td>
<td></td>
</tr>
<tr>
<td>2-ethyl-3-trifluoromethoxyphenyl group</td>
<td></td>
</tr>
<tr>
<td>2-ethyl-4-trifluoromethoxyphenyl group</td>
<td></td>
</tr>
</tbody>
</table>

[Table 22]
<table>
<thead>
<tr>
<th>Substituents Nos.</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>639</td>
<td>6-ethynyl-2-ethylphenyl group</td>
</tr>
<tr>
<td>640</td>
<td>3-cyclopropyl-2-ethylphenyl group</td>
</tr>
<tr>
<td>641</td>
<td>4-cyclopropyl-2-ethylphenyl group</td>
</tr>
<tr>
<td>642</td>
<td>5-cyclopropyl-2-ethylphenyl group</td>
</tr>
<tr>
<td>643</td>
<td>6-cyclopropyl-2-ethylphenyl group</td>
</tr>
<tr>
<td>644</td>
<td>3-cyclopropoxy-2-ethylphenyl group</td>
</tr>
<tr>
<td>645</td>
<td>4-cyclopropoxy-2-ethylphenyl group</td>
</tr>
<tr>
<td>646</td>
<td>5-cyclopropoxy-2-ethylphenyl group</td>
</tr>
<tr>
<td>647</td>
<td>6-cyclopropoxy-2-ethylphenyl group</td>
</tr>
<tr>
<td>648</td>
<td>3-fluoro-2-trifluoromethylphenyl group</td>
</tr>
</tbody>
</table>
Substituents Nos.

<table>
<thead>
<tr>
<th>Substituents Nos.</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>668</td>
<td>3-methyl-2-trifluoromethylphenyl group</td>
</tr>
<tr>
<td>669</td>
<td>4-methyl-2-trifluoromethylphenyl group</td>
</tr>
<tr>
<td>670</td>
<td>5-methyl-2-trifluoromethylphenyl group</td>
</tr>
<tr>
<td>671</td>
<td>6-methyl-2-trifluoromethylphenyl group</td>
</tr>
<tr>
<td>672</td>
<td>2,3-ditrifluoromethylphenyl group</td>
</tr>
<tr>
<td>673</td>
<td>2,4-ditrifluoromethylphenyl group</td>
</tr>
<tr>
<td>674</td>
<td>2,5-ditrifluoromethylphenyl group</td>
</tr>
<tr>
<td>675</td>
<td>2,6-ditrifluoromethylphenyl group</td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2-trifluoromethyl-3-trifluoromethoxyphenyl</td>
<td></td>
</tr>
<tr>
<td>2-trifluoromethyl-4-trifluoromethoxyphenyl</td>
<td></td>
</tr>
<tr>
<td>2-trifluoromethyl-5-trifluoromethoxyphenyl</td>
<td></td>
</tr>
<tr>
<td>2-trifluoromethyl-6-trifluoromethoxyphenyl</td>
<td></td>
</tr>
<tr>
<td>2-ethyl-3-trifluoromethylphenyl</td>
<td></td>
</tr>
<tr>
<td>2-ethyl-4-trifluoromethylphenyl</td>
<td></td>
</tr>
<tr>
<td>2-ethyl-5-trifluoromethylphenyl</td>
<td></td>
</tr>
<tr>
<td>2-ethyl-6-trifluoromethylphenyl</td>
<td></td>
</tr>
<tr>
<td>3-methylthio-2-trifluoromethylphenyl</td>
<td></td>
</tr>
<tr>
<td>4-methylthio-2-trifluoromethylphenyl</td>
<td></td>
</tr>
<tr>
<td>5-methylthio-2-trifluoromethylphenyl</td>
<td></td>
</tr>
<tr>
<td>6-methylthio-2-trifluoromethylphenyl</td>
<td></td>
</tr>
<tr>
<td>2-trifluoromethyl-3-trifluoromethylthiophenyl</td>
<td></td>
</tr>
<tr>
<td>2-trifluoromethyl-4-trifluoromethylthiophenyl</td>
<td></td>
</tr>
<tr>
<td>2-trifluoromethyl-5-trifluoromethylthiophenyl</td>
<td></td>
</tr>
<tr>
<td>2-trifluoromethyl-6-trifluoromethylthiophenyl</td>
<td></td>
</tr>
<tr>
<td>3-ethynyl-2-trifluoromethylphenyl</td>
<td></td>
</tr>
<tr>
<td>4-ethynyl-2-trifluoromethylphenyl</td>
<td></td>
</tr>
<tr>
<td>5-ethynyl-2-trifluoromethylphenyl</td>
<td></td>
</tr>
<tr>
<td>6-ethynyl-2-trifluoromethylphenyl</td>
<td></td>
</tr>
<tr>
<td>3-eylopropyloxy-2-trifluoromethylphenyl</td>
<td></td>
</tr>
</tbody>
</table>

[Table 25]

<table>
<thead>
<tr>
<th>Substituents Nos.</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>697</td>
<td>4-cyclopropyl-2-trifluoromethylphenyl</td>
</tr>
<tr>
<td>698</td>
<td>5-cyclopropyl-2-trifluoromethylphenyl</td>
</tr>
<tr>
<td>699</td>
<td>6-cyclopropyl-2-trifluoromethylphenyl</td>
</tr>
<tr>
<td>700</td>
<td>3-cyclopropoxy-2-trifluoromethylphenyl</td>
</tr>
<tr>
<td>701</td>
<td>4-cyclopropoxy-2-trifluoromethylphenyl</td>
</tr>
<tr>
<td>702</td>
<td>5-cyclopropoxy-2-trifluoromethylphenyl</td>
</tr>
<tr>
<td></td>
<td>Group</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>703</td>
<td>6-cyclopropyloxy-2-trifluoromethylphenyl group</td>
</tr>
<tr>
<td>704</td>
<td>3-methoxynaphthalene-2-yl group</td>
</tr>
<tr>
<td>705</td>
<td>6-chloro-3-methoxynaphthalene-2-yl group</td>
</tr>
<tr>
<td>706</td>
<td>6-fluoro-3-methoxynaphthalene-2-yl group</td>
</tr>
<tr>
<td>707</td>
<td>7-chloro-3-methoxynaphthalene-2-yl group</td>
</tr>
<tr>
<td>708</td>
<td>7-fluoro-3-methoxynaphthalene-2-yl group</td>
</tr>
<tr>
<td>709</td>
<td>8-chloro-3-methoxynaphthalene-2-yl group</td>
</tr>
<tr>
<td>710</td>
<td>8-fluoro-3-methoxynaphthalene-2-yl group</td>
</tr>
<tr>
<td>711</td>
<td>1-chloro-3-methoxynaphthalene-2-yl group</td>
</tr>
<tr>
<td>712</td>
<td>1-fluoro-3-methoxynaphthalene-2-yl group</td>
</tr>
<tr>
<td>713</td>
<td>4-chloro-3-methoxynaphthalene-2-yl group</td>
</tr>
<tr>
<td>714</td>
<td>4-fluoro-3-methoxynaphthalene-2-yl group</td>
</tr>
<tr>
<td>715</td>
<td>5-chloro-3-methoxynaphthalene-2-yl group</td>
</tr>
<tr>
<td>716</td>
<td>5-fluoro-3-methoxynaphthalene-2-yl group</td>
</tr>
</tbody>
</table>

According to the above-mentioned processes, the following compounds can be prepared:

Compounds HA-001-HA-144 represent tetrazolinone.
Compounds HB-001-HB-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds HC-001-HC-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds HD-001-HD-144 represent tetrazolinone.

Compounds represented by a formula:

\[
\text{G-NN}_2\text{O-N} = \text{N-N}_2\text{H}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds HE-001-HE-144 represent tetrazolinone.

Compounds represented by a formula:

\[
\text{G-NN}_2\text{O-N} = \text{N-N}_2\text{H}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds HF-001-HF-144 represent tetrazolinone.

Compounds represented by a formula:

\[
\text{G-NN}_2\text{O-N} = \text{N-N}_2\text{H}
\]

[wherein G represents a substituent--corresponding to each]
of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Comounds HG-001-HG-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{G-N[O-[N-N-C-N \text{H}}}}}}}}}}}}}}
\]

[wherein \(G\) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Comounds HH-001-HH-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{G-N[O-[N-N-C-N \text{H}}}}}}}}}}}}}
\]

[wherein \(G\) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Comounds HI-001-HI-144 represent tetrazolinone

Compounds represented by a formula:
Compounds HJ-001-HJ-144 represent tetrazolinone

Compounds represented by a formula:

```
\[
\begin{array}{c}
\text{G-N} \\
\text{\ N-O} \\
\text{N-N} \\
\text{\ N-H}
\end{array}
\]
```

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds HK-001-HK-144 represent tetrazolinone

Compounds represented by a formula:

```
\[
\begin{array}{c}
\text{G-N} \\
\text{\ N-O} \\
\text{N-N} \\
\text{\ N-H}
\end{array}
\]
```

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds HL-001-HL-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{H}_3\text{C} \quad \begin{array}{c}
\text{G} \\
\text{N} \\
\text{N}
\end{array}
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{N} \\
\text{N} \\
\text{N}
\end{array}
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{N} \\
\text{N}
\end{array}
\]

5 (wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned)

Compounds HM-001-HM-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G} \quad \begin{array}{c}
\text{N} \\
\text{N}
\end{array}
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{N} \\
\text{N}
\end{array}
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{N}
\end{array}
\begin{array}{c}
\text{N}
\end{array}
\]

10 (wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned)

Compounds HN-001-HN-144 represent tetrazolinone

Compounds represented by a formula:
Compounds HO-001-HO-144 represent tetrazolinone.

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds HP-001-HP-144 represent tetrazolinone.

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds HQ-001-HQ-144 represent tetrazolinone by a formula:

\[
\begin{align*}
&\text{G} - \text{N} - \text{O} - \text{N} - \text{N} - \text{N} - \text{H} \\
&\text{H}_3\text{C} - \text{S} - \text{N} - \text{N} - \text{O} - \text{N} - \text{N} - \text{H}
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds HR-001-HR-144 represent tetrazolinone by a formula:

\[
\begin{align*}
&\text{G} - \text{N} - \text{O} - \text{N} - \text{N} - \text{N} - \text{H} \\
&\text{S} - \text{N} - \text{N} - \text{O} - \text{N} - \text{N} - \text{H}
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds HS-001-HS-144 represent tetrazolinone by a formula:

\[
\begin{align*}
&\text{G} - \text{N} - \text{O} - \text{N} - \text{N} - \text{N} - \text{H} \\
&\text{F} - \text{N} - \text{N} - \text{O} - \text{N} - \text{N} - \text{H}
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds HT-001-HT-144 represent tetrazolinone.

Compounds represented by a formula:

\[
\begin{array}{c}
\text{G-N} \\
\text{F} \\
\text{F} \\
\text{G-N} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{H}
\end{array}
\]

Compounds represented by a formula:

\[
\begin{array}{c}
\text{G-N} \\
\text{F} \\
\text{N} \\
\text{C} \\
\text{O} \\
\text{G-N} \\
\text{N} \\
\text{H}
\end{array}
\]

Compounds represented by a formula:

\[
\begin{array}{c}
\text{G-N} \\
\text{F} \\
\text{N} \\
\text{C} \\
\text{O} \\
\text{G-N} \\
\text{N} \\
\text{H}
\end{array}
\]

Compounds represented by a formula:

\[
\begin{array}{c}
\text{G-N} \\
\text{F} \\
\text{N} \\
\text{C} \\
\text{O} \\
\text{G-N} \\
\text{N} \\
\text{H}
\end{array}
\]

Compounds represented by a formula:

\[
\begin{array}{c}
\text{G-N} \\
\text{F} \\
\text{N} \\
\text{C} \\
\text{O} \\
\text{G-N} \\
\text{N} \\
\text{H}
\end{array}
\]

Compounds represented by a formula:

\[
\begin{array}{c}
\text{G-N} \\
\text{F} \\
\text{N} \\
\text{C} \\
\text{O} \\
\text{G-N} \\
\text{N} \\
\text{H}
\end{array}
\]
Compounds HW-001-HW-144 represent tetrazolinone Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds HW-001-HW-144 represent tetrazolinone Compounds represented by a formula:
wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds HY-001-HY-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds HZ-001-HZ-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]; and

Compounds HAA-001-HAA-144 represent tetrazolinone

Compounds represented by a formula:
[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned].

<table>
<thead>
<tr>
<th>substituents Nos.</th>
<th>(G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>phenyl group</td>
</tr>
<tr>
<td>2</td>
<td>2-fluorophenyl group</td>
</tr>
<tr>
<td>3</td>
<td>3-fluorophenyl group</td>
</tr>
<tr>
<td>4</td>
<td>4-fluorophenyl group</td>
</tr>
<tr>
<td>5</td>
<td>2,4-difluorophenyl group</td>
</tr>
<tr>
<td>6</td>
<td>2,4,6-trifluorophenyl group</td>
</tr>
<tr>
<td>7</td>
<td>2,3,4,5,6-pentfluorophenyl group</td>
</tr>
<tr>
<td>8</td>
<td>2-3-difluorophenyl group</td>
</tr>
<tr>
<td>9</td>
<td>2-chlorophenyl group</td>
</tr>
<tr>
<td>10</td>
<td>3-chlorophenyl group</td>
</tr>
<tr>
<td>11</td>
<td>4-chlorophenyl group</td>
</tr>
<tr>
<td>12</td>
<td>2-3-dichlorophenyl group</td>
</tr>
<tr>
<td>13</td>
<td>2,4-dichlorophenyl group</td>
</tr>
<tr>
<td>14</td>
<td>2,5-dichlorophenyl group</td>
</tr>
<tr>
<td>15</td>
<td>2,6-dichlorophenyl group</td>
</tr>
<tr>
<td>16</td>
<td>3,4-dichlorophenyl group</td>
</tr>
<tr>
<td>Nos.</td>
<td>Substituents</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>17</td>
<td>3,5-dichlorophenyl group</td>
</tr>
<tr>
<td>18</td>
<td>2,3,4-trichlorophenyl group</td>
</tr>
<tr>
<td>19</td>
<td>2,3,5-trichlorophenyl group</td>
</tr>
<tr>
<td>20</td>
<td>2,3,6-trichlorophenyl group</td>
</tr>
<tr>
<td>21</td>
<td>2,4,5-trichlorophenyl group</td>
</tr>
<tr>
<td>22</td>
<td>2,4,6-trichlorophenyl group</td>
</tr>
<tr>
<td>23</td>
<td>3,4,5-trichlorophenyl group</td>
</tr>
<tr>
<td>24</td>
<td>2,3,4,6-tetrachlorophenyl group</td>
</tr>
<tr>
<td>25</td>
<td>2,3,5,6-tetrachlorophenyl group</td>
</tr>
<tr>
<td>26</td>
<td>2,3,4,5,6-pentachlorophenyl group</td>
</tr>
<tr>
<td>27</td>
<td>2-bromophenyl group</td>
</tr>
<tr>
<td>28</td>
<td>3-bromophenyl group</td>
</tr>
<tr>
<td>29</td>
<td>4-bromophenyl group</td>
</tr>
</tbody>
</table>

[Table 27]

<table>
<thead>
<tr>
<th>Nos.</th>
<th>Substituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>2,4-dibromophenyl group</td>
</tr>
<tr>
<td>31</td>
<td>2,5-dibromophenyl group</td>
</tr>
<tr>
<td>32</td>
<td>2,6-dibromophenyl group</td>
</tr>
<tr>
<td>33</td>
<td>2,4,6-tribromophenyl group</td>
</tr>
<tr>
<td>34</td>
<td>2,3,4,5,6-pentabromophenyl group</td>
</tr>
<tr>
<td>35</td>
<td>2-iodophenyl group</td>
</tr>
<tr>
<td>36</td>
<td>3-iodophenyl group</td>
</tr>
<tr>
<td>37</td>
<td>4-iodophenyl group</td>
</tr>
<tr>
<td>38</td>
<td>2,4-diiodophenyl group</td>
</tr>
<tr>
<td>39</td>
<td>2-chloro-3-fluorophenyl group</td>
</tr>
<tr>
<td>40</td>
<td>2-chloro-4-fluorophenyl group</td>
</tr>
<tr>
<td>41</td>
<td>2-chloro-5-fluorophenyl group</td>
</tr>
<tr>
<td>42</td>
<td>2-chloro-6-fluorophenyl group</td>
</tr>
<tr>
<td>43</td>
<td>2-chloro-3-bromophenyl group</td>
</tr>
<tr>
<td>Nos</td>
<td>Substituents</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>44</td>
<td>2-chloro-4-bromophenyl group</td>
</tr>
<tr>
<td>45</td>
<td>2-chloro-5-bromophenyl group</td>
</tr>
<tr>
<td>46</td>
<td>2-chloro-6-bromophenyl group</td>
</tr>
<tr>
<td>47</td>
<td>2-bromo-3-chlorophenyl group</td>
</tr>
<tr>
<td>48</td>
<td>2-bromo-4-chlorophenyl group</td>
</tr>
<tr>
<td>49</td>
<td>2-bromo-5-chlorophenyl group</td>
</tr>
<tr>
<td>50</td>
<td>2-bromo-3-fluorophenyl group</td>
</tr>
<tr>
<td>51</td>
<td>2-bromo-4-fluorophenyl group</td>
</tr>
<tr>
<td>52</td>
<td>2-bromo-5-fluorophenyl group</td>
</tr>
<tr>
<td>53</td>
<td>2-bromo-6-fluorophenyl group</td>
</tr>
<tr>
<td>54</td>
<td>2-fluoro-3-chlorophenyl group</td>
</tr>
<tr>
<td>55</td>
<td>2-fluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>56</td>
<td>2-fluoro-5-chlorophenyl group</td>
</tr>
<tr>
<td>57</td>
<td>2-fluoro-4-bromophenyl group</td>
</tr>
<tr>
<td>58</td>
<td>3-chloro-4-fluorophenyl group</td>
</tr>
<tr>
<td>59</td>
<td>3-chloro-5-fluorophenyl group</td>
</tr>
<tr>
<td>60</td>
<td>3-chloro-4-bromophenyl group</td>
</tr>
<tr>
<td>61</td>
<td>3-chloro-5-bromophenyl group</td>
</tr>
<tr>
<td>62</td>
<td>3-fluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>63</td>
<td>3-fluoro-4-bromophenyl group</td>
</tr>
<tr>
<td>64</td>
<td>3-bromo-4-chlorophenyl group</td>
</tr>
<tr>
<td>65</td>
<td>3-bromo-4-fluorophenyl group</td>
</tr>
<tr>
<td>66</td>
<td>2,6-dichloro-4-bromophenyl group</td>
</tr>
<tr>
<td>67</td>
<td>2-3-difluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>68</td>
<td>2,6-difluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>69</td>
<td>2,5-difluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>70</td>
<td>3,5-difluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>Substituents Nos.</td>
<td>G</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>88</td>
<td>2,3, 5-trifluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>89</td>
<td>2,3, 6-trifluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>90</td>
<td>2,3, 5, 6-tetrafluoro-4-chlorophenyl group</td>
</tr>
<tr>
<td>91</td>
<td>4-methylphenyl group</td>
</tr>
<tr>
<td>92</td>
<td>4-ethylphenyl group</td>
</tr>
<tr>
<td>93</td>
<td>4-n-propylphenyl group</td>
</tr>
<tr>
<td>94</td>
<td>4-isopropylphenyl group</td>
</tr>
<tr>
<td>95</td>
<td>4-s-butylphenyl group</td>
</tr>
<tr>
<td>96</td>
<td>4-t-butylphenyl group</td>
</tr>
<tr>
<td>97</td>
<td>4-n-butylphenyl group</td>
</tr>
</tbody>
</table>
Table 30

<table>
<thead>
<tr>
<th>substituents Nos.</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
<td>3,5-difluoro-4 -methylphenyl group</td>
</tr>
<tr>
<td>118</td>
<td>2,3,5-trifluoro-4 -methylphenyl group</td>
</tr>
<tr>
<td>119</td>
<td>2,3,6-trifluoro-4 -methylphenyl group</td>
</tr>
<tr>
<td>120</td>
<td>2,3,5,6-tetrafluoro-4 -methylphenyl group</td>
</tr>
<tr>
<td>121</td>
<td>2-fluoro-4 -ethylphenyl group</td>
</tr>
<tr>
<td>122</td>
<td>3-fluoro-4 -ethylphenyl group</td>
</tr>
<tr>
<td>123</td>
<td>2,3-difluoro-4 -ethylphenyl group</td>
</tr>
<tr>
<td>124</td>
<td>2,6-difluoro-4 -ethylphenyl group</td>
</tr>
</tbody>
</table>
According to the above-mentioned processes, the following compounds can be prepared:

Compounds \(\text{TMA-001-TMA-044} \) represent tetrazolinone

Compounds represented by a formula:

\[
\begin{array}{c}
\text{F} \\
\text{T} \\
\text{N} \quad \text{N} \quad \text{N} \\
\text{O} \\
\text{CH}_3
\end{array}
\]

[wherein \(T \) represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds \(\text{TMB-001-TMB-044} \) represent tetrazolinone

Compounds represented by a formula:
[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds TMC-001-TMC-044 represent tetrazolinone

Compounds represented by a formula:

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds TMD-001-TMD-044 represent tetrazolinone

Compounds represented by a formula:

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];
Compounds TME-001-TME-044 represent tetrazolinone Compounds represented by a formula:

\[
\begin{array}{c}
\text{H}_3\text{C} \\
\text{T} \\
\text{N} \equiv \text{N} \\
\text{O} \\
\text{N} \equiv \text{N} \\
\text{CH}_3
\end{array}
\]

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds TMF-001-TMF-044 represent tetrazolinone Compounds represented by a formula:

\[
\begin{array}{c}
\text{H}_3\text{C} \\
\text{T} \\
\text{N} \equiv \text{N} \\
\text{O} \\
\text{N} \equiv \text{N} \\
\text{CH}_3
\end{array}
\]

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds TMG-001-TMG-044 represent tetrazolinone Compounds represented by a formula:

\[
\begin{array}{c}
\text{T} \\
\text{N} \equiv \text{N} \\
\text{O} \\
\text{N} \equiv \text{N} \\
\text{CH}_3
\end{array}
\]

[wherein T represents a substituent corresponding to each
of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned; Compounds TMH-001-TMH-044 represent tetrazolinone

Compounds represented by a formula:

![Chemical Structure](image)

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned]; Compounds TMI-001-TMI-044 represent tetrazolinone

Compounds represented by a formula:

![Chemical Structure](image)

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned]; Compounds TMJ-001-TMJ-044 represent tetrazolinone

Compounds represented by a formula:
Compounds \text{TMK-001-TMK-044} represent tetrazolinone compounds represented by a formula:

$$
\begin{array}{c}
\text{T} \\
\text{N} - \text{N} \\
\text{N} - \text{N} \\
\text{CH}_3
\end{array}
$$

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds \text{TML-001-TML-044} represent tetrazolinone compounds represented by a formula:

$$
\begin{array}{c}
\text{T} \\
\text{N} - \text{N} \\
\text{N} - \text{N} \\
\text{CH}_3
\end{array}
$$

$$
\text{H}_3\text{C}
\begin{array}{c}
\text{T} \\
\text{N} - \text{N} \\
\text{N} - \text{N} \\
\text{CH}_3
\end{array}
$$

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

$$
\begin{array}{c}
\text{T} \\
\text{N} - \text{N} \\
\text{N} - \text{N} \\
\text{CH}_3
\end{array}
$$

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];
Compounds TMM-001-TMM-044 represent tetrazolinone.

Compounds represented by a formula:

![Chemical structure](image)

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds TMN-001-TMN-044 represent tetrazolinone.

Compounds represented by a formula:

![Chemical structure](image)

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds TMO-001-TMO-044 represent tetrazolinone.

Compounds represented by a formula:

![Chemical structure](image)

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];
of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds TMP-001-TMP-044 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
O \\
\text{T} \\
\text{N} & \\
\text{N} & \\
\text{O} & \\
\text{N} & \\
\text{N} & \\
\text{CH}_3
\end{align*}
\]

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds TMQ-001-TMQ-044 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{H}_3\text{C} \\
\text{T} \\
\text{N} & \\
\text{N} & \\
\text{O} & \\
\text{N} & \\
\text{N} & \\
\text{CH}_3
\end{align*}
\]

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds TMR-001-TMR-044 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{S} \\
\text{T} \\
\text{N} & \\
\text{N} & \\
\text{O} & \\
\text{N} & \\
\text{N} & \\
\text{CH}_3
\end{align*}
\]
[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds TMS-001-TMS-044 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](image)

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds TMT-001-TMT-044 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](image)

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds TMU-001-TMU-044 represent tetrazolinone

Compounds represented by a formula:
Compounds TMV-001-TMV-044 represent tetrazolinone

Compounds represented by a formula:

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds TMW-001-TMW-044 represent tetrazolinone

Compounds represented by a formula:

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds TMW-001-TMW-044 represent tetrazolinone

Compounds represented by a formula:
Compounds TMX-001-TMX-044 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{F} & \quad \text{F} \\
\text{O} & \\
T & \\
\text{N} & \quad \text{N} \quad \text{N} \quad \text{O} \\
\text{N} & \quad \text{N} \quad \text{N} \quad \text{CH}_3
\end{align*}
\]

[wherein \(T \) represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds TMY-001-TMY-044 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{F} & \quad \text{S} \\
\text{T} & \\
\text{N} & \quad \text{N} \quad \text{N} \quad \text{O} \\
\text{N} & \quad \text{N} \quad \text{N} \quad \text{CH}_3
\end{align*}
\]

[wherein \(T \) represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds TMZ-001-TMZ-044 represent tetrazolinone

Compounds represented by a formula:
[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

5 Compounds TMAA-001-TMAA-044 represent tetrazolinone

Compounds represented by a formula:

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

10 Compounds THA-001-THA-044 represent tetrazolinone

Compounds represented by a formula:

[wherein T represents a substituent corresponding to each
of substituents Nos. 1 to 44 indicated in Table 31 to Table
32 as below-mentioned];

Compounds THB-001-THB-044 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{array}{c}
\text{Cl} \\
\text{T} \\
\text{N-N=O} \\
\text{N-N} \\
\text{H}
\end{array}
\]

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds THC-001-THC-044 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{array}{c}
\text{Br} \\
\text{T} \\
\text{N-N=O} \\
\text{N-N} \\
\text{H}
\end{array}
\]

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds THD-001-THD-044 represent tetrazolinone

Compounds represented by a formula:
[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds THE-001-THE-044 represent tetrazolinone

Compounds represented by a formula:

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds THF-001-THF-044 represent tetrazolinone

Compounds represented by a formula:

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];
Compounds THG-001-THG-044 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{Compounds THH-001-THH-044 represent tetrazolinone}
\text{Compounds represented by a formula:}
\end{align*}
\]

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned]

Compounds THI-001-THI-044 represent tetrazolinone

Compounds represented by a formula:

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned]
of substituents Nos. 1 to 44 indicated in Table 31 to Table
32 as below-mentioned];

Compounds THJ-001-THJ-044 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{array}{c}
\text{N} \\
\text{N} \\
\text{N} \\
\text{N} \\
\end{array}
\]

[wherein T represents a substituent corresponding to each
of substituents Nos. 1 to 44 indicated in Table 31 to Table
32 as below-mentioned];

Compounds THK-001-THK-044 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{array}{c}
\text{N} \\
\text{N} \\
\text{N} \\
\text{N} \\
\end{array}
\]

[wherein T represents a substituent corresponding to each
of substituents Nos. 1 to 44 indicated in Table 31 to Table
32 as below-mentioned];

Compounds THL-001-THL-044 represent tetrazolinone

Compounds represented by a formula:
Compounds THM-001-THM-044 represent tetrazolinone

Compounds represented by a formula:

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds THN-001-THN-044 represent tetrazolinone

Compounds represented by a formula:

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];
Compounds THO-001-THO-044 represent tetrazolinone

Compounds represented by a formula:

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds THP-001-THP-044 represent tetrazolinone

Compounds represented by a formula:

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds THQ-001-THQ-044 represent tetrazolinone

Compounds represented by a formula:
Compounds THR-001-THR-044 represent tetrazolinone

Compounds THS-001-THS-044 represent tetrazolinone

Compounds THT-001-THT-044 represent tetrazolinone
Compounds THU-001-THU-044 represent tetrazolinone Compounds represented by a formula:

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds THV-001-THV-044 represent tetrazolinone Compounds represented by a formula:

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];
Compounds THW-001-THW-044 represent tetrazolinone
Compounds represented by a formula:

\[
\begin{array}{c}
\text{F} \\
\text{O} \\
\text{T} \\
\text{N}^- \text{N}^- \text{N}^- \text{N}^- \text{H}
\end{array}
\]

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds THX-001-THX-044 represent tetrazolinone
Compounds represented by a formula:

\[
\begin{array}{c}
\text{F} \\
\text{O} \\
\text{T} \\
\text{N}^- \text{N}^- \text{N}^- \text{N}^- \text{H}
\end{array}
\]

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];

Compounds THY-001-THY-044 represent tetrazolinone
Compounds represented by a formula:
Compounds THZ-001-THZ-044 represent tetrazolinone Compounds represented by a formula:

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned]; and

Compounds THAA-001-THAA-044 represent tetrazolinone Compounds represented by a formula:

[wherein T represents a substituent corresponding to each of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned];
of substituents Nos. 1 to 44 indicated in Table 31 to Table 32 as below-mentioned.

<table>
<thead>
<tr>
<th>Substituents Nos.</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>methyl group</td>
</tr>
<tr>
<td>2</td>
<td>chloromethyl group</td>
</tr>
<tr>
<td>3</td>
<td>bromomethyl group</td>
</tr>
<tr>
<td>4</td>
<td>iodomethyl group</td>
</tr>
<tr>
<td>5</td>
<td>hydroxymethyl group</td>
</tr>
<tr>
<td>6</td>
<td>methoxymethyl group</td>
</tr>
<tr>
<td>7</td>
<td>ethoxymethyl group</td>
</tr>
<tr>
<td>8</td>
<td>n-propyloxymethyl group</td>
</tr>
<tr>
<td>9</td>
<td>isopropyloxymethyl group</td>
</tr>
<tr>
<td>10</td>
<td>methylthiomethyl group</td>
</tr>
<tr>
<td>11</td>
<td>ethylthiomethyl group</td>
</tr>
<tr>
<td>12</td>
<td>n-propylthiomethyl group</td>
</tr>
<tr>
<td>13</td>
<td>isopropylthiomethyl group</td>
</tr>
<tr>
<td>14</td>
<td>acetoxyethyl group</td>
</tr>
<tr>
<td>15</td>
<td>propionyloxymethyl group</td>
</tr>
<tr>
<td>16</td>
<td>butanoyloxymethyl group</td>
</tr>
<tr>
<td>17</td>
<td>pentanoyloxymethyl group</td>
</tr>
<tr>
<td>18</td>
<td>hexanoyloxymethyl group</td>
</tr>
<tr>
<td>19</td>
<td>methylsulfonyloxymethyl group</td>
</tr>
<tr>
<td>20</td>
<td>ethyl sulfonyloxymethyl group</td>
</tr>
<tr>
<td>21</td>
<td>propylsulfonyloxymethyl group</td>
</tr>
<tr>
<td>22</td>
<td>isopropylsulfonyloxymethyl group</td>
</tr>
<tr>
<td>23</td>
<td>trifluoromethylsulfonyloxymethyl group</td>
</tr>
<tr>
<td>24</td>
<td>phenylsulfonyloxymethyl group</td>
</tr>
<tr>
<td>25</td>
<td>4-methylbenzenesulfonyloxymethyl group</td>
</tr>
<tr>
<td>Nos</td>
<td>Substituents</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>26</td>
<td>N,N-dimethylaminomethyl group</td>
</tr>
<tr>
<td>27</td>
<td>N,N-diethylaminomethyl group</td>
</tr>
<tr>
<td>28</td>
<td>N,N-dipropylaminomethyl group</td>
</tr>
<tr>
<td>29</td>
<td>N,N-diisopropylaminomethyl group</td>
</tr>
</tbody>
</table>

[Table 32]

<table>
<thead>
<tr>
<th>Nos</th>
<th>Substituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>pyrroldinylmethyl group</td>
</tr>
<tr>
<td>31</td>
<td>piperidinylmethyl group</td>
</tr>
<tr>
<td>32</td>
<td>piperazinylmethyl group</td>
</tr>
<tr>
<td>33</td>
<td>morpholinylmethyl group</td>
</tr>
<tr>
<td>34</td>
<td>thiomorpholinylmethyl group</td>
</tr>
<tr>
<td>35</td>
<td>azepanylmethyl group</td>
</tr>
<tr>
<td>36</td>
<td>methoxycarbonyl group</td>
</tr>
<tr>
<td>37</td>
<td>ethoxycarbonyl group</td>
</tr>
<tr>
<td>38</td>
<td>propyloxy carbonyl group</td>
</tr>
<tr>
<td>39</td>
<td>isopropyloxy carbonyl group</td>
</tr>
<tr>
<td>40</td>
<td>butyloxy carbonyl group</td>
</tr>
<tr>
<td>41</td>
<td>isobutyloxy carbonyl group</td>
</tr>
<tr>
<td>42</td>
<td>sec-butyloxy carbonyl group</td>
</tr>
<tr>
<td>43</td>
<td>tert-butyl oxycarbonyl group</td>
</tr>
<tr>
<td>44</td>
<td>formyloxymethyl group</td>
</tr>
</tbody>
</table>

According to the above-mentioned processes, the following compounds can be prepared:

Compounds L1A-001-L1A-144, LIB-001-L1B-144, L1C-001-L1C-144, L1D-001-L1D-144, L1E-001-L1E-144, L1F-001-L1F-144, L1G-001-L1G-144, L1H-001-L1H-144, L1I-001-L1I-144, L1J-001-L1J-144, L1K-001-L1K-144, L1L-001-L1L-144, L1M-
001-L1M-144, L1N-001-L1N-144, LIO- 001-L1O- 144, L1P-001-L1P-144, L1Q-001-L1Q-144, L1R-001-L1R-144, L1S-001-L1S-144, L1T-001-L1T-144, L1U-001-L1U-144, L1V-001-L1V-144, L1W-001-L1W-144, L1X-001-L1X-144, L1Y-001-L1Y-144, L1Z-001-L1Z-144, L1AA-001-L1AA-144,
L4A-001-L4A-144, L4B-001-L4B-144, L4C- 001-L4C- 144, L4D-001-L4D-144, L4E-001-L4E-144, L4F- 001-L4F- 144, L4G-
L7A-001-L7A-144, L7B-001-L7B-144, L7C-001-L7C-144,
L7D-001-L7D-144, L7E-001-L7E-144, L7F-001-L7F-144, L7G-001-L7G-144, L7H-001-L7H-144, L7I-001-L7I-144, L7J-001-L7J-144, L7K-001-L7K-144, L7L-001-L7L-144, L7M-001-L7M-144,
L8A-001-L8A-144, L8B-001-L8B-144, L8C-001-L8C-144,
L9A-001-L9A-144, L9B-001-L9B-144, L9C-001-L9C-144,
L9X-001-L9X-144, L9Y-001-L9Y-144, L9Z-001-L9Z-144, L9AA-001-L9AA-144,
L10A-001-L10A-144, L10B-001-L10B-144, L10C-001-L10C-144,
L10D-001-L10D-144, L10E-001-L10E-144, L10F-001-L10F-144,
L10G-001-L10G-144, L10H-001-L10H-144, L10I-001-L10I-144,
L10J-001-L10J-144, L10K-001-L10K-144, L10L-001-L10L-144,
L10M-001-L10M-144, L10N-001-L10N-144, L10O-001-L10O-144,
L10P-001-L10P-144, L10Q-001-L10Q-144, L10R-001-L10R-144,
L10S-001-L10S-144, L10T-001-L10T-144, L10U-001-L10U-144,
L10V-001-L10V-144, L10W-001-L10W-144, L10X-001-L10X-144,
L10Y-001-L10Y-144, L10Z-001-L10Z-144, L10AA-001-L10AA-144,
L11A-001-L11A-144, L11B-001-L11B-144, L11C-001-L11C-144,
L11D-001-L11D-144, L11E-001-L11E-144, L11F-001-L11F-144,
L11J-001-L11J-144, L11K-001-L11K-144, L11L-001-L11L-144,
L11M-001-L11M-144, L11N-001-L11N-144, L11O-001-L11O-144,
L11P-001-L11P-144, L11Q-001-L11Q-144, L11R-001-L11R-144,
L11V-001-L11V-144, L11W-001-L11W-144, L11X-001-L11X-144,
L12A-001-L12A-144, L12B-001-L12B-144, L12C-001-L12C-144,
L12D-001-L12D-144, L12E-001-L12E-144, L12F-001-L12F-144,
L12G-001-L12G-144, L12H-001-L12H-144, L12I-001-L12I-144,
144, L12J-001-L12J-144, L12K-001-L12K-144, L12L-001-L12L-144,
144, L12M-001-L12M-144, L12N-001-L12N-144, L12O-001-L12O-144,
144, L12P-001-L12P-144, L12Q-001-L12Q-144, L12R-001-L12R-144,
144, L12S-001-L12S-144, L12T-001-L12T-144, L12U-001-L12U-144,
144, L12V-001-L12V-144, L12W-001-L12W-144, L12X-001-L12X-144,
144, L12Y-001-L12Y-144, L12Z-001-L12Z-144, L12AA-001-L12AA-144,
144, L13A-001-L13A-144, L13B-001-L13B-144, L13C-001-L13C-144,
144, L13D-001-L13D-144, L13E-001-L13E-144, L13F-001-L13F-144,
144, L13G-001-L13G-144, L13H-001-L13H-144, L13I-001-L13I-144,
144, L13J-001-L13J-144, L13K-001-L13K-144, L13L-001-L13L-144,
144, L13M-001-L13M-144, L13N-001-L13N-144, L13O-001-L13O-144,
144, L13P-001-L13P-144, L13Q-001-L13Q-144, L13R-001-L13R-144,
144, L13S-001-L13S-144, L13T-001-L13T-144, L13U-001-L13U-144,
144, L13V-001-L13V-144, L13W-001-L13W-144, L13X-001-L13X-144,
144, L13Y-001-L13Y-144, L13Z-001-L13Z-144, L13AA-001-L13AA-144,
144, L14A-001-L14A-144, L14B-001-L14B-144, L14C-001-L14C-144,
144, L14D-001-L14D-144, L14E-001-L14E-144, L14F-001-L14F-144,
144, L14G-001-L14G-144, L14H-001-L14H-144, L14I-001-L14I-144,
144, L14J-001-L14J-144, L14K-001-L14K-144, L14L-001-L14L-144,
144, L14M-001-L14M-144, L14N-001-L14N-144, L14O-001-L14O-144,
144, L14P-001-L14P-144, L14Q-001-L14Q-144, L14R-001-L14R-144,
144, L14S-001-L14S-144, L14T-001-L14T-144, L14U-001-L14U-144,
144, L14V-001-L14V-144, L14W-001-L14W-144, L14X-001-L14X-144,
144, L14Y-001-L14Y-144, L14Z-001-L14Z-144, L14AA-001-L14AA-144,

L15A-001-L15A-144, L15B-001-L15B-144, L15C-001-L15C-144,

L15D-001-L15D-144, L15E-001-L15E-144, L15F-001-L15F-144,

L15G-001-L15G-144, L15H-001-L15H-144, L15I-001-L15I-144,

L15J-001-L15J-144, L15K-001-L15K-144, L15L-001-L15L-144,

L15M-001-L15M-144, L15N-001-L15N-144, L15O-001-L15O-144,

L15P-001-L15P-144, L15Q-001-L15Q-144, L15R-001-L15R-144,

L15S-001-L15S-144, L15T-001-L15T-144, L15U-001-L15U-144,

L15V-001-L15V-144, L15W-001-L15W-144, L15X-001-L15X-144,

L15Y-001-L15Y-144, L15Z-001-L15Z-144, L15AA-001-L15AA-144,

L16A-001-L16A-144, L16B-001-L16B-144, L16C-001-L16C-144,

L16D-001-L16D-144, L16E-001-L16E-144, L16F-001-L16F-144,

L16G-001-L16G-144, L16H-001-L16H-144, L16I-001-L16I-144,

L16M-001-L16M-144, L16N-001-L16N-144, L16O-001-L16O-144,

L16P-001-L16P-144, L16Q-001-L16Q-144, L16R-001-L16R-144,

L16S-001-L16S-144, L16T-001-L16T-144, L16U-001-L16U-144,

L16V-001-L16V-144, L16W-001-L16W-144, L16X-001-L16X-144,

L17A-001-L17A-144, L17B-001-L17B-144, L17C-001-L17C-144,

L17D-001-L17D-144, L17E-001-L17E-144, L17F-001-L17F-144,

L17G-001-L17G-144, L17H-001-L17H-144, L17I-001-L17I-144,
144, L17J-001-L17J-144, L17K-001-L17K-144, L17L-001-L17L-144,
144, L17M-001-L17M-144, L17N-001-L17N-144, L170-001-L17O-144,
144, L17P-001-L17P-144, L17Q-001-L17Q-144, L17R-001-L17R-144,
144, L17S-001-L17S-144, L17T-001-L17T-144, L17U-001-L17U-144,
144, L17V-001-L17V-144, L17W-001-L17W-144, L17X-001-L17X-144,
144, L17Y-001-L17Y-144, L17Z-001-L17Z-144, L17AA-001-L17AA-144,
144, L18A-001-L18A-144, L18B-001-L18B-144, L18C-001-L18C-144,
144, L18D-001-L18D-144, L18E-001-L18E-144, L18F-001-L18F-144,
144, L18G-001-L18G-144, L18H-001-L18H-144, L18I-001-L18I-144,
144, L18J-001-L18J-144, L18K-001-L18K-144, L18L-001-L18L-144,
144, L18M-001-L18M-144, L18N-001-L18N-144, L18O-001-L18O-144,
144, L18P-001-L18P-144, L18Q-001-L18Q-144, L18R-001-L18R-144,
144, L18S-001-L18S-144, L18T-001-L18T-144, L18U-001-L18U-144,
144, L18V-001-L18V-144, L18W-001-L18W-144, L18X-001-L18X-144,
144, L18Y-001-L18Y-144, L18Z-001-L18Z-144, L18AA-001-L18AA-144,
144, L19A-001-L19A-144, L19B-001-L19B-144, L19C-001-L19C-144,
144, L19D-001-L19D-144, L19E-001-L19E-144, L19F-001-L19F-144,
144, L19G-001-L19G-144, L19H-001-L19H-144, L19I-001-L19I-144,
144, L19J-001-L19J-144, L19K-001-L19K-144, L19L-001-L19L-144,
144, L19M-001-L19M-144, L19N-001-L19N-144, L19O-001-L19O-144,
144, L19P-001-L19P-144, L19Q-001-L19Q-144, L19R-001-L19R-144,
144, L19S-001-L19S-144, L19T-001-L19T-144, L19U-001-L19U-144,
144, L19V-001-L19V-144, L19W-001-L19W-144, L19X-001-L19X-
Compounds L1A-001-L1A-144 represent tetrazolinone.

Compounds represented by a formula:

\[
\begin{align*}
G & - N - O - \text{F} \\
& - \text{NO}_2
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned;]

Compounds L1B-001-L1B-144 represent tetrazolinone.

Compounds represented by a formula:

\[
\begin{align*}
G & - N - O - \text{Cl} \\
& - \text{NO}_2
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned;]

Compounds L1C-001-L1C-144 represent tetrazolinone.

Compounds represented by a formula:

\[
\begin{align*}
G & - N - O - \text{Br} \\
& - \text{NO}_2
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to
Table 30 as below-mentioned;

Compounds L1D-001-L1D-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{Compounds represented by a formula:}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L1E-001-L1E-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{Compounds represented by a formula:}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L1F-001-L1F-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{Compounds represented by a formula:}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L1G-001-L1G-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} \quad \text{N} \quad \text{O} \quad \text{NO}_2
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L1H-001-L1H-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} \quad \text{N} \quad \text{O} \quad \text{NO}_2
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L1I-001-L1I-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} \quad \text{N} \quad \text{O} \quad \text{NO}_2
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L1J-001-L1J-144 represent tetrazolinone
Compounds represented by a formula:

\[\text{L1K-001-L1K-144} \]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L1K-001-L1K-144 represent tetrazolinone

Compounds represented by a formula:

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L1L-001-L1L-144 represent tetrazolinone

Compounds represented by a formula:

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L1M-001-L1M-144 represent tetrazolinone
Compounds represented by a formula:

\[
G\text{-}N\text{-}O\text{-}\text{substituent correspondin to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned} ;
\]

Compounds L1N-001-L1N-144 represent tetrazolinone

Compounds represented by a formula:

\[
G\text{-}N\text{-}O\text{-}\text{substituent correspondin to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned} ;
\]

Compounds L1O-001-L1O-144 represent tetrazolinone

Compounds represented by a formula:

\[
G\text{-}N\text{-}O\text{-}\text{substituent correspondin to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned} ;
\]

Compounds L1P-001-L1P-144 represent tetrazolinone

Compounds represented by a formula:
Compounds \(\text{L1Q-001-L1Q-144} \) represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{L1Q-001-L1Q-144} & \\
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds \(\text{L1R-001-L1R-144} \) represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{L1R-001-L1R-144} & \\
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds \(\text{L1S-001-L1S-144} \) represent tetrazolinone

Compounds represented by a formula:
Compounds LIT-001-LIT-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L1U-001-L1U-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L1V-001-L1V-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L1W-001-LlW-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L1X-001-L1X-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L1Y-001-LlY-144 represent tetrazolinone

Compounds represented by a formula:
Compounds represented by a formula:

\[
\text{F} \text{S} \text{O} \text{N} \text{G} \text{N} \text{F}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L1Z-001-L1Z-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{F} \text{F} \text{S} \text{O} \text{N} \text{G} \text{N} \text{F}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L1AA-001-L1AA-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{F} \text{F} \text{S} \text{O} \text{N} \text{G} \text{N} \text{F}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L2A-001-L2A-144 represent tetrazolinone.
Compounds represented by a formula:

\[
\text{G-N} \bigg\{ \begin{array}{c} \text{O} \\ \text{NH}_2 \\ \text{F} \\ \text{Cl} \\ \text{Br} \\ \end{array} \bigg\}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2B-001-L2B-144 represent tetrazolinone.
Compounds represented by a formula:

\[
\text{G-N} \bigg\{ \begin{array}{c} \text{O} \\ \text{NH}_2 \end{array} \bigg\}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2C-001-L2C-144 represent tetrazolinone.
Compounds represented by a formula:

\[
\text{G-N} \bigg\{ \begin{array}{c} \text{O} \\ \text{NH}_2 \end{array} \bigg\}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2D-001-L2D-144 represent tetrazolinone.
Compounds represented by a formula:

![Chemical Structure 1]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2E-001-L2E-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical Structure 2]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2F-001-L2F-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical Structure 3]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2G-001-L2G-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L2H-001-L2H-144 represent tetrazolinone

Compounds represented by a formula:

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2I-001-L2I-144 represent tetrazolinone

Compounds represented by a formula:

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2J-001-L2J-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L2K-001-L2K-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2L-001-L2L-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2M-001-L2M-144 represent tetrazolinone compounds represented by a formula:
Compounds L2N-001-L2N-144 represent tetrazolinone compounds represented by a formula:

\[
\begin{align*}
&\text{G-} \text{N-} \text{O-} \text{NH}_{2} \\
&\text{H}_{3}\text{CO-} \text{G-} \text{N-} \text{O-} \text{NH}_{2}
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2O-001-L2O-144 represent tetrazolinone compounds represented by a formula:

\[
\begin{align*}
&\text{G-} \text{N-} \text{O-} \text{NH}_{2} \\
&\text{G-} \text{N-} \text{O-} \text{NH}_{2}
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2P-001-L2P-144 represent tetrazolinone compounds represented by a formula:
Compounds L2Q-001-L2Q-144 represent tetrazolinone represented by a formula:

Compounds L2R-001-L2R-144 represent tetrazolinone represented by a formula:

Compounds L2S-001-L2S-144 represent tetrazolinone represented by a formula:
wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned; Compounds L2T-001-L2T-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds L2U-001-L2U-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2V-001-L2V-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L2W-001-L2W-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2X-001-L2X-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2Y-001-L2Y-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds represented by a formula:

\[
\begin{aligned}
&F - S - \text{N} - \text{O} - \text{NH}_2 \\
&\text{G} - \text{N} - \text{O} - \text{NH}_2
\end{aligned}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2Z-001-L2Z-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{aligned}
&F - F - S - \text{N} - \text{O} - \text{NH}_2 \\
&\text{G} - \text{N} - \text{O} - \text{NH}_2
\end{aligned}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L2AA-001-L2AA-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{aligned}
&F - F - S - \text{N} - \text{O} - \text{NH}_2 \\
&\text{G} - \text{N} - \text{O} - \text{NH}_2
\end{aligned}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L3A-001-L3A-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-} \text{N} \begin{array}{c}
\text{O} \\
\text{O} \end{array} \text{NCO}
\]

(wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);

Compounds L3B-001-L3B-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-} \text{N} \begin{array}{c}
\text{O} \\
\text{Cl} \end{array} \text{NCO}
\]

(wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);

Compounds L3C-001-L3C-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-} \text{N} \begin{array}{c}
\text{O} \\
\text{Br} \end{array} \text{NCO}
\]

(wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);

Compounds L3D-001-L3D-144 represent tetrazolinone
Compounds represented by a formula:

![Chemical Structure]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L3E-001-L3E-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical Structure]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L3F-001-L3F-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical Structure]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L3G-001-L3G-144 represent tetrazolinone

Compounds represented by a formula:
[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L3H-001-L3H-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{G-N} & \text{O} \\
\text{NCO}
\end{align*}
\]

Compounds represented by a formula:

\[
\begin{align*}
\text{G-N} & \text{O} \\
\text{NCO}
\end{align*}
\]

Compounds represented by a formula:

\[
\begin{align*}
\text{G-N} & \text{O} \\
\text{NCO}
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L3I-001-L3I-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{G-N} & \text{O} \\
\text{NCO}
\end{align*}
\]

Compounds represented by a formula:

\[
\begin{align*}
\text{G-N} & \text{O} \\
\text{NCO}
\end{align*}
\]

Compounds represented by a formula:

\[
\begin{align*}
\text{G-N} & \text{O} \\
\text{NCO}
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L3J-001-L3J-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L3K-001-L3K-144 represent tetrazolinone
Compounds represented by a formula:

Compounds L3L-001-L3L-144 represent tetrazolinone
Compounds represented by a formula:

Compounds L3M-001-L3M-144 represent tetrazolinone
Compounds represented by a formula:
Compounds L3N-001-L3N-144 represent tetrazolinone

Compounds represented by a formula:

\[
G - N \begin{array}{c}
\text{O} \\
\end{array} - \begin{array}{c}
\text{NCO} \\
\end{array}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds L3O-001-L3O-144 represent tetrazolinone

Compounds represented by a formula:

\[
G - N \begin{array}{c}
\text{H}_3\text{CO} \\
\end{array} - \begin{array}{c}
\text{O} \\
\end{array} - \begin{array}{c}
\text{NCO} \\
\end{array}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds L3P-001-L3P-144 represent tetrazolinone

Compounds represented by a formula:

\[
G - N \begin{array}{c}
\text{O} \\
\end{array} - \begin{array}{c}
\text{NCO} \\
\end{array}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]
Compounds L3Q-001-L3Q-144 represent tetrazolinone compounds represented by a formula:

\[
\text{G-N} \big\{\text{O} - \text{NCO}\}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L3R-001-L3R-144 represent tetrazolinone compounds represented by a formula:

\[
\text{G-N} \big\{\text{H}_3\text{C-S} - \text{O} - \text{NCO}\}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L3S-001-L3S-144 represent tetrazolinone compounds represented by a formula:

\[
\text{G-N} \big\{\text{S} - \text{O} - \text{NCO}\}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L3T-001-L3T-144 represent tetrazolinone

Compounds represented by a formula:

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L3U-001-L3U-144 represent tetrazolinone

Compounds represented by a formula:

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L3V-001-L3V-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L3W-001-L3W-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L3X-001-L3X-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L3Y-001-L3Y-144 represent tetrazolinone

Compounds represented by a formula:
Compounds represented by a formula:

\[
\begin{align*}
\text{G} & \text{N} \quad \text{O} \\
\text{F} & \text{S} \\
\text{NCO}
\end{align*}
\]

[wherein \(\text{G}\) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L3Z-001-L3Z-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{G} & \text{N} \quad \text{O} \\
\text{F} & \text{F} \\
\text{NCO}
\end{align*}
\]

[wherein \(\text{G}\) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L3AA-001-L3AA-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{G} & \text{N} \quad \text{O} \\
\text{F} & \text{F} \\
\text{NCO}
\end{align*}
\]

[wherein \(\text{G}\) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;
Compounds L4A-001-L4A-144 represent tetrazolinone
Compounds represented by a formula:

\[
\text{G}-\text{N}z\text{O}_2\text{H}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L4B-001-L4B-144 represent tetrazolinone
Compounds represented by a formula:

\[
\text{G}-\text{N}z\text{O}_2\text{H}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L4C-001-L4C-144 represent tetrazolinone
Compounds represented by a formula:

\[
\text{G}-\text{N}z\text{O}_2\text{H}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L4D-001-L4D-144 represent tetrazolinone
Compounds represented by a formula:

\[
\begin{align*}
\text{G-N} & \text{O} \quad \text{I} \\
\text{CO}_2\text{H}
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L4E-001-L4E-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{G-N} & \text{O} \\
\text{CO}_2\text{H}
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L4F-001-L4F-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{G-N} & \text{O} \\
\text{CO}_2\text{H}
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L4G-001-L4G-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L4H-001-L4H-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds L4I-001-L4I-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds L4J-001-L4J-144 represent tetrazolinone compounds represented by a formula:
wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned;.

Compounds L4K-001-L4K-144 represent tetrazolinone Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds L4L-001-L4L-144 represent tetrazolinone Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L4M-001-L4M-144 represent tetrazolinone Compounds represented by a formula:
Compounds L4N-001-L4N-144 represent tetrazolinone
Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L4O-001-L4O-144 represent tetrazolinone
Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L4P-001-L4P-144 represent tetrazolinone
Compounds represented by a formula:
Compounds represented by a formula:

\[
\text{G} - N^\text{\underline{\text{O}}} - \text{CO}_2\text{H}
\]

[wherein \(G\) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L4Q-001-L4Q-144 represent tetrazolinone.

Compounds represented by a formula:

\[
\text{G} - N^\text{\underline{\text{S}}} - \text{CO}_2\text{H}
\]

[wherein \(G\) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L4R-001-L4R-144 represent tetrazolinone.

Compounds represented by a formula:

\[
\text{G} - N^\text{\underline{\text{S}}} - \text{CO}_2\text{H}
\]

[wherein \(G\) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L4S-001-L4S-144 represent tetrazolinone.
Compounds L4T-001-L4T-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds L4U-001-L4U-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds L4V-001-L4V-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]
Compounds L4W-001-L4W-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L4X-001-L4X-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L4Y-001-L4Y-144 represent tetrazolinone

Compounds represented by a formula:
Compounds represented by a formula:

\[
\begin{align*}
&\begin{array}{c}
\text{F} \\
\text{S} \\
\text{G} \text{-N} \text{-O} \\
\text{CO}_2\text{H}
\end{array} \\
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L4Z-001-L4Z-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
&\begin{array}{c}
\text{F} \\
\text{S} \\
\text{G} \text{-N} \text{-O} \\
\text{CO}_2\text{H}
\end{array} \\
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L4AA-001-L4AA-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
&\begin{array}{c}
\text{F} \\
\text{S} \\
\text{G} \text{-N} \text{-O} \\
\text{CO}_2\text{H}
\end{array} \\
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L5A-001-L5A-144 represent tetrazolinone
Compounds represented by a formula:

\[
\text{G-} \begin{array}{c}
\begin{array}{c}
\text{F}\\
\text{N}\\
\text{O}\\
\text{CO}_2\text{Me}
\end{array}
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L5B-001-L5B-144 represent tetrazolinone
Compounds represented by a formula:

\[
\text{G-} \begin{array}{c}
\begin{array}{c}
\text{Cl}\\
\text{N}\\
\text{O}\\
\text{CO}_2\text{Me}
\end{array}
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L5C-001-L5C-144 represent tetrazolinone
Compounds represented by a formula:

\[
\text{G-} \begin{array}{c}
\begin{array}{c}
\text{Br}\\
\text{N}\\
\text{O}\\
\text{CO}_2\text{Me}
\end{array}
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L5D-001-L5D-144 represent tetrazolinone
Compounds represented by a formula:

\[
G-N=O-CO_2Me
\]

[wherein \(G\) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L5E-001-L5E-144 represent tetrazolinone.

Compounds represented by a formula:

\[
G-N=O-CO_2Me
\]

[wherein \(G\) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L5F-001-L5F-144 represent tetrazolinone.

Compounds represented by a formula:

\[
G-N=O-CO_2Me
\]

[wherein \(G\) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L5G-001-L5G-144 represent tetrazolinone.
Compounds L5H-001-L5H-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L5I-001-L5I-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L5J-001-L5J-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L5K-001-L5K-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L5L-001-L5L-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L5M-001-L5M-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L5N-001-L5N-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L50-001-L50-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L5P-001-L5P-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L5Q-001-L5Q-144 represent tetrazolinone compounds represented by a formula:

\[
\begin{align*}
\text{Compounds represented by a formula:} \\
\text{Compounds represented by a formula:} \\
\text{Compounds represented by a formula:}
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L5R-001-L5R-144 represent tetrazolinone compounds represented by a formula:

Compounds represented by a formula:

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L5S-001-L5S-144 represent tetrazolinone compounds represented by a formula:
Compounds L5T-001-L5T-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L5U-001-L5U-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L5V-001-L5V-144 represent tetrazolinone

Compounds represented by a formula:
[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds \text{L5W-001-L5W-144} represent tetrazolinone

Compounds represented by a formula:

\[\text{Compounds L5X-001-L5X-144 represent tetrazolinone} \]

Compounds represented by a formula:

\[\text{Compounds L5Y-001-L5Y-144 represent tetrazolinone} \]
Compounds represented by a formula:

\[
\text{G-N} \backslash \text{N} \backslash \text{O} - \text{CO}_2\text{Me}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L5Z-001-L5Z-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} \backslash \text{N} \backslash \text{O} - \text{CO}_2\text{Me}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L5AA-001-L5AA-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} \backslash \text{N} \backslash \text{O} - \text{CO}_2\text{Me}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L6A-001-L6A-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-} \text{N-} \text{O} \quad \text{CO}_2\text{CH}_2\text{CH}_3
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L6B-001-L6B-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-} \text{N-} \text{O} \quad \text{CO}_2\text{CH}_2\text{CH}_3
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L6C-001-L6C-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-} \text{N-} \text{O} \quad \text{CO}_2\text{CH}_2\text{CH}_3
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L6D-001-L6D-144 represent tetrazolinone
Compounds represented by a formula:

\[
\text{G-} \begin{array}{c}
\text{N} \\
\text{O} \\
\text{CO}_2\text{CH}_2\text{CH}_3 \\
\end{array} \\
\text{I} \\
\text{G-} \\
\text{N} \\
\text{O} \\
\text{CO}_2\text{CH}_2\text{CH}_3
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L6E-001-L6E-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-} \begin{array}{c}
\text{N} \\
\text{O} \\
\text{CO}_2\text{CH}_2\text{CH}_3 \\
\end{array} \\
\text{H}_3\text{C} \begin{array}{c}
\text{N} \\
\text{O} \\
\text{CO}_2\text{CH}_2\text{CH}_3 \\
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L6F-001-L6F-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-} \begin{array}{c}
\text{N} \\
\text{O} \\
\text{CO}_2\text{CH}_2\text{CH}_3 \\
\end{array} \\
\text{H}_3\text{C} \begin{array}{c}
\text{N} \\
\text{O} \\
\text{CO}_2\text{CH}_2\text{CH}_3 \\
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L6G-001-L6G-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L6H-001-L6H-144 represent tetrazolinone

Compounds represented by a formula:

G-N\[\begin{array}{c}
\text{O} \\
\text{CO}_2\text{CH}_2\text{CH}_3
\end{array}\]

Compounds L6I-001-L6I-144 represent tetrazolinone

Compounds represented by a formula:

G-N\[\begin{array}{c}
\text{O} \\
\text{CO}_2\text{CH}_2\text{CH}_3
\end{array}\]

Compounds L6J-001-L6J-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L6K-001-L6K-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L6L-001-L6L-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L6M-001-L6M-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L6N-001-L6N-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L6O-001-L6O-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L6P-001-L6P-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L6Q-001~L6Q-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L6Q-001~L6Q-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L6R-001-L6R-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L6S-001-L6S-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L6T-001-L6T-144 represent tetrazolinone

Compounds represented by a formula:

G-N\[\begin{array}{c}
F\\O\\CO_2CH_2CH_3
\end{array}\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L6U-001-L6U-144 represent tetrazolinone

Compounds represented by a formula:

G-N\[\begin{array}{c}
F\\O\\CO_2CH_2CH_3
\end{array}\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L6V-001-L6V-144 represent tetrazolinone

Compounds represented by a formula:

G-N\[\begin{array}{c}
F_3C\\O\\CO_2CH_2CH_3
\end{array}\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L6W-001-L6W-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L6X-001-L6X-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L6Y-001-L6Y-144 represent tetrazolinone
Compounds represented by a formula:

\[
\begin{array}{c}
\text{F} \\
\text{N} \\
\text{S} \\
\text{G} \\
\text{N} \\
\text{O} \\
\text{C}_6\text{H}_{12}
\end{array}
\]

\[
\text{CO}_2\text{CH}_2\text{CH}_3
\]

(wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);

Compounds L6Z-001-L6Z-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{array}{c}
\text{F} \\
\text{F} \\
\text{S} \\
\text{G} \\
\text{N} \\
\text{O} \\
\text{C}_6\text{H}_{12}
\end{array}
\]

\[
\text{CO}_2\text{CH}_2\text{CH}_3
\]

(wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);

Compounds L6AA-001-L6AA-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{array}{c}
\text{F} \\
\text{F} \\
\text{F} \\
\text{S} \\
\text{G} \\
\text{N} \\
\text{O} \\
\text{C}_6\text{H}_{12}
\end{array}
\]

\[
\text{CO}_2\text{CH}_2\text{CH}_3
\]

(wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);
Compounds L7A-001-L7A-144 represent tetrazolinone

Compounds represented by a formula:

\[
G-N\begin{array}{c}
\text{N} \\
\text{O}
\end{array}
\text{CO}_2(\text{CH}_2)_2\text{CH}_3
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L7B-001-L7B-144 represent tetrazolinone

Compounds represented by a formula:

\[
G-N\begin{array}{c}
\text{N} \\
\text{O}
\end{array}
\text{CO}_2(\text{CH}_2)_2\text{CH}_3
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L7C-001-L7C-144 represent tetrazolinone

Compounds represented by a formula:

\[
G-N\begin{array}{c}
\text{N} \\
\text{O}
\end{array}
\text{CO}_2(\text{CH}_2)_2\text{CH}_3
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L7D-001-L7D-144 represent tetrazolinone
Compounds represented by a formula:

\[
\text{G} \text{N} \text{O} \text{C}_2(\text{CH}_2)_2\text{CH}_3
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L7E-001-L7E-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G} \text{N} \text{O} \text{C}_2(\text{CH}_2)_2\text{CH}_3
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L7F-001-L7F-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G} \text{N} \text{O} \text{C}_2(\text{CH}_2)_2\text{CH}_3
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L7G-001-L7G-144 represent tetrazolinone

Compounds represented by a formula:
[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L7H-001-L7H-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L7I-001-L7I-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L7J-001-L7J-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L7K-001-L7K-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} \begin{array}{c}
\text{O} \\
\text{CO}_2(\text{CH}_2)_2\text{CH}_3
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds L7L-001-L7L-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} \begin{array}{c}
\text{H}_3\text{C} \\
\text{O} \\
\text{CO}_2(\text{CH}_2)_2\text{CH}_3
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds L7M-001-L7M-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L7N-001-L7N-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} = \text{N} \quad \text{O} \quad \text{CO}_2(\text{CH}_2)_2\text{CH}_3
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L7O-001-L7O-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} = \text{N} \quad \text{O} \quad \text{CO}_2(\text{CH}_2)_2\text{CH}_3
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L7P-001-L7P-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} = \text{N} \quad \text{O} \quad \text{CO}_2(\text{CH}_2)_2\text{CH}_3
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned].
Compounds L7Q-001-L7Q-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} \quad \begin{array}{c}
\text{O} \\
\text{CO}_2(\text{CH}_2)_2\text{CH}_3
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L7R-001-L7R-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} \quad \begin{array}{c}
\text{S} \\
\text{H}_3\text{C} \\
\text{CO}_2(\text{CH}_2)_2\text{CH}_3
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L7S-001-L7S-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} \quad \begin{array}{c}
\text{S} \\
\text{CO}_2(\text{CH}_2)_2\text{CH}_3
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L7T-001-L7T-144 represent tetrazolinone compounds represented by a formula:

Compounds L7U-001-L7U-144 represent tetrazolinone compounds represented by a formula:

Compounds L7V-001-L7V-144 represent tetrazolinone compounds represented by a formula:
Compounds L7W-001-L7W-144 represent tetrazolinone
Composed of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned;

Compounds L7X-001-L7X-144 represent tetrazolinone
Composed of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned;

Compounds L7Y-001-L7Y-144 represent tetrazolinone
Composed of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned;
Compounds represented by a formula:

\[
\begin{align*}
&G-N=\text{O} \quad \text{CO}_2(\text{CH}_2)_2\text{CH}_3 \\
&\text{F} \quad \text{S} \quad \text{F}
\end{align*}
\]

[wherein \(G\) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L7Z-001-L7Z-144 represent tetrazolinone.

Compounds represented by a formula:

\[
\begin{align*}
&G-N=\text{O} \quad \text{CO}_2(\text{CH}_2)_2\text{CH}_3 \\
&\text{F} \quad \text{S} \quad \text{F}
\end{align*}
\]

[wherein \(G\) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L7AA-001-L7AA-144 represent tetrazolinone.

Compounds represented by a formula:

\[
\begin{align*}
&G-N=\text{O} \quad \text{CO}_2(\text{CH}_2)_2\text{CH}_3 \\
&\text{F} \quad \text{S} \quad \text{F}
\end{align*}
\]

[wherein \(G\) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L8A-001~L8A-144 represent tetrazolinone.
Compounds represented by a formula:

\[
G = \begin{array}{c}
\text{N} \\
\text{O} \\
\text{CO}_{2}\text{CH(CH}_3)_2
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8B-001-L8B-144 represent tetrazolinone.
Compounds represented by a formula:

\[
G = \begin{array}{c}
\text{N} \\
\text{O} \\
\text{Cl} \\
\text{CO}_{2}\text{CH(CH}_3)_2
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8C-001-L8C-144 represent tetrazolinone.
Compounds represented by a formula:

\[
G = \begin{array}{c}
\text{N} \\
\text{O} \\
\text{Br} \\
\text{CO}_{2}\text{CH(CH}_3)_2
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8D-001-L8D-144 represent tetrazolinone.
Compounds represented by a formula:

\[
\text{G-NN=NCO}_2\text{CH(CH}_3\text{)}_2
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8E-001-L8E-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-NN=NCO}_2\text{CH(CH}_3\text{)}_2
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8F-001-L8F-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-NN=NCO}_2\text{CH(CH}_3\text{)}_2
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8G-001-L8G-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L8H-001-L8H-144 represent tetrazolinone

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds L8I-001-L8I-144 represent tetrazolinone

Compounds represented by a formula:

Compounds L8J-001-L8J-144 represent tetrazolinone

Compounds represented by a formula:
Compounds \(\text{L8K}-001-\text{L8K}-144 \) represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{G-} & \text{N} \hspace{1cm} \text{O} \\
& \text{CO}_2\text{CH(CH}_3\text{)}_2
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds \(\text{L8L}-001-\text{L8L}-144 \) represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{H}_3\text{C} & \text{=} \\
\text{G-} & \text{N} \hspace{1cm} \text{O} \\
& \text{CO}_2\text{CH(CH}_3\text{)}_2
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds \(\text{L8M}-001-\text{L8M}-144 \) represent tetrazolinone

Compounds represented by a formula :
[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8N-001-L8N-144 represent tetrazolinone Compounds represented by a formula:

\[
\text{G-}\text{N} \bigtriangleup \text{O} \bigtriangledown \text{CO}_2\text{CH(CH}_3)_2
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8O-001-L8O-144 represent tetrazolinone Compounds represented by a formula:

\[
\text{H}_3\text{CO-}\text{G-}\text{N} \bigtriangleup \text{O} \bigtriangledown \text{CO}_2\text{CH(CH}_3)_2
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8P-001-L8P-144 represent tetrazolinone Compounds represented by a formula:

\[
\text{G-}\text{N} \bigtriangleup \text{O} \bigtriangledown \text{CO}_2\text{CH(CH}_3)_2
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8P-001-L8P-144 represent tetrazolinone Compounds represented by a formula:
Compounds L8Q-001-L8Q-144 represent tetrazolinone Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8R-001-L8R-144 represent tetrazolinone Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8S-001-L8S-144 represent tetrazolinone Compounds represented by a formula:
Compounds L8T-001-L8T-144 represent tetrazolinone
Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8U-001-L8U-144 represent tetrazolinone
Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8V-001-L8V-144 represent tetrazolinone
Compounds represented by a formula:
Compounds L8W-001-L8W-144 represent tetrazolinone

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8X-001-L8X-144 represent tetrazolinone

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8Y-001-L8Y-144 represent tetrazolinone

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds represented by a formula:

F=S=N-G

CO₂CH(CH₃)₂

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8Z-001-L8Z-144 represent tetrazolinone

Compounds represented by a formula:

F=F=S=N-G

CO₂CH(CH₃)₂

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L8AA-001-L8AA-144 represent tetrazolinone

Compounds represented by a formula:

F=F=S=N-G

CO₂CH(CH₃)₂

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L9A-001-L9A-144 represent tetrazolinone. Compounds represented by a formula:

\[
\begin{align*}
G &\text{N} \text{[structure]} \text{O} \text{[structure]} \text{Cl} \\
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L9B-001-L9B-144 represent tetrazolinone. Compounds represented by a formula:

\[
\begin{align*}
G &\text{N} \text{[structure]} \text{O} \text{[structure]} \text{Cl} \\
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L9C-001-L9C-144 represent tetrazolinone. Compounds represented by a formula:

\[
\begin{align*}
G &\text{N} \text{[structure]} \text{O} \text{[structure]} \text{Cl} \\
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L9D-001-L9D-144 represent tetrazolinone.
Compounds represented by a formula:

\[
\text{G-N=O} – \begin{array}{c}
\text{I} \\
\text{Cl}
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L9E-001-L9E-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{H}_3\text{C} – \begin{array}{c}
\text{G-N=O} \\
\text{Cl}
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L9F-001-L9F-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{H}_3\text{C} – \begin{array}{c}
\text{G-N=O} \\
\text{Cl}
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L9G-001-L9G-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L9H-001-L9H-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L9I-001-L9I-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L9J-001-L9J-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L9K-001-L9K-144 represent tetrazolinone

Compounds represented by a formula:

Compounds L9L-001-L9L-144 represent tetrazolinone

Compounds represented by a formula:

Compounds L9M-001-L9M-144 represent tetrazolirone

Compounds represented by a formula:
[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L9N-001-L9N-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L9O-001-L9O-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L9P-001-L9P-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L9Q-001-L9Q-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} \text{[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];}
\]

Compounds L9Q-001-L9Q-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} \text{[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];}
\]

Compounds L9R-001-L9R-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} \text{[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];}
\]

Compounds L9S-001-L9S-144 represent tetrazolinone

Compounds represented by a formula:
wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L9T-001-L9T-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L9U-001-L9U-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L9V-001-L9V-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L9W-001-L9W-144 represent tetrazolinone

Compounds represented by a formula:

![Formula Image]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L9X-001-L9X-144 represent tetrazolinone

Compounds represented by a formula:

![Formula Image]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L9Y-001-L9Y-144 represent tetrazolinone

Compounds represented by a formula:

![Formula Image]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds represented by a formula:

![Chemical Structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L9Z-001-L9Z-144 represent tetrazolinone.

Compounds represented by a formula:

![Chemical Structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L9AA-001-L9AA-144 represent tetrazolinone.

Compounds represented by a formula:

![Chemical Structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L10A-001-L10A-144 represent tetrazolinone

Compounds represented by a formula:

\[
G-N=O
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds L10B-001-L10B-144 represent tetrazolinone

Compounds represented by a formula:

\[
G-N=O
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds L10C-001-L10C-144 represent tetrazolinone

Compounds represented by a formula:

\[
G-N=O
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds L10D-001-L10D-144 represent tetrazolinone
Compounds represented by a formula:

\[
\begin{array}{c}
\text{G-} \text{N-} \text{O} \\
\text{I} \quad \text{Br}
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L10E-001-L10E-144 represent tetrazolinone Compounds represented by a formula:

\[
\begin{array}{c}
\text{G-} \text{N-} \text{O} \\
\text{H}_3\text{C} \quad \text{Br}
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L10F-001-L10F-144 represent tetrazolinone Compounds represented by a formula:

\[
\begin{array}{c}
\text{G-} \text{N-} \text{O} \\
\text{H}_3\text{C} \quad \text{Br}
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L10G-001-L10G-144 represent tetrazolinone Compounds represented by a formula:
Compounds L10H-001-L10H-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L10T-001-L10I-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L10J-001-L10J-144 represent tetrazolinone compounds represented by a formula:
Compounds L10K-001-L10K-144 represent tetrazolinone.

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L10L-001-L10L-144 represent tetrazolinone.

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L10M-001-L10M-144 represent tetrazolinone.

Compounds represented by a formula:
Compounds L10N-001-L10N-144 represent tetrazolinone

Compounds represented by a formula:

(wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);

Compounds L10P-001-L10P-144 represent tetrazolinone

Compounds represented by a formula:
[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L10Q-001-L10Q-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L10R-001-L10R-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L10S-001-L10S-144 represent tetrazolinone compounds represented by a formula:
[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L10T-001-L10T-144 represent tetrazolinone

Compounds represented by a formula:

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L10U-001-L10U-144 represent tetrazolinone

Compounds represented by a formula:

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L10V-001-L10V-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L10W-001-L10W-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L10X-001-L10X-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L10Y-001-L10Y-144 represent tetrazolinone

Compounds represented by a formula:
Compounds represented by a formula:

![Chemical Structure](image)

(wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);

Compounds L10Z-001-L10Z-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical Structure](image)

(wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);

Compounds L10AA-001-L10AA-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical Structure](image)

(wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);
Compounds L11A-001-L11A-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-} \text{N} \text{N} \text{O-} \text{H}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L11B-001-L11B-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-} \text{N} \text{N} \text{O-} \text{Cl}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L11C-001-L11C-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-} \text{N} \text{N} \text{O-} \text{Br}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L11D-001-L11D-144 represent tetrazolinone
Compounds represented by a formula:

\[\text{Compounds represented by a formula:} \]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L11E-001-L11E-144 represent tetrazolinone

Compounds represented by a formula:

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L11F-001-L11F-144 represent tetrazolinone

Compounds represented by a formula:

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L11G-001-L11G-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L11H-001-L11H-144 represent tetrazolinone
Compounds represented by a formula:

G-N\(\text{O} \) [wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L11I-001-L11I-144 represent tetrazolinone
Compounds represented by a formula:

G-N\(\text{O} \) [wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L11J-001-L11J-144 represent tetrazolinone
Compounds represented by a formula:
Compounds L11K-001-L11K-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L11L-001-L11L-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L11M-001-L11M-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L11N-001-L11N-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](attachment:image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L11N-001-L11N-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](attachment:image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L11N-001-L11N-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](attachment:image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L11N-001-L11N-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L11Q-001-L11Q-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L11R-001-L11R-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L11S-001-L11S-144 represent tetrazolinone

Compounds represented by a formula:
Compounds \(\text{L11T-001-L11T-144} \) represent tetrazolinone
Compounds represented by a formula:

\[
\text{G-N}_2\text{C} = \text{O} \quad \text{F}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds \(\text{L11U-001-L11U-144} \) represent tetrazolinone
Compounds represented by a formula:

\[
\text{G-N}_2\text{C} = \text{O} \quad \text{F}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds \(\text{L11V-001-L11V-144} \) represent tetrazolinone
Compounds represented by a formula:

\[
\text{G-N}_2\text{C} = \text{O} \quad \text{F}_3\text{C}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Comounds L11W-001-L11W-144 represent tetrazolinone

Comounds represented by a formula:

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Comounds LUX-001-L11X-144 represent tetrazolinone

Comounds represented by a formula:

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Comounds L11Y-001-L11Y-144 represent tetrazolinone
Compounds represented by a formula:

\[
\begin{array}{c}
\text{N} \\
\text{F} \\
\text{S} \\
\text{G} \\
\text{N} \\
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L11Z-001-L11Z-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{array}{c}
\text{N} \\
\text{F} \\
\text{S} \\
\text{G} \\
\text{N} \\
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L11AA-001-L11AA-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{array}{c}
\text{N} \\
\text{F} \\
\text{S} \\
\text{G} \\
\text{N} \\
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L12A-001-L12A-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G} - \text{N} - \text{O} - \text{F} - \text{Cl}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12B-001-L12B-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G} - \text{N} - \text{O} - \text{Cl} - \text{COCl}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12C-001-L12C-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G} - \text{N} - \text{O} - \text{Br} - \text{COCl}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12D-001-L12D-144 represent tetrazolinone
Compounds represented by a formula:

![Chemical Structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L12E-001-L12E-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical Structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L12F-001-L12F-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical Structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L12G-001-L12G-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L12H-001-L12H-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12I-001-L12I-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12J-001-L12J-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L12K-001-L12K-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12L-001-L12L-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12M-001-L12M-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L12N-001-L12N-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12O-001-L12O-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12P-001-L12P-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L12Q-001-L12Q-144 represent tetrazolinone by a formula:

\[
\begin{array}{c}
\text{G-N} \\
\text{O} \\
\text{COCl}
\end{array}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12R-001-L12R-144 represent tetrazolinone by a formula:

\[
\begin{array}{c}
\text{G-N} \\
\text{H}_3\text{C-S} \\
\text{O} \\
\text{COCl}
\end{array}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12S-001-L12S-144 represent tetrazolinone by a formula:

\[
\begin{array}{c}
\text{G-N} \\
\text{S} \\
\text{O} \\
\text{COCl}
\end{array}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L12T-001-L12T-144 represent tetrazolinone Compounds represented by a formula:

\[
\text{G}-\text{N} \quad \text{O} \quad \text{COCl}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12U-001-L12U-144 represent tetrazolinone Compounds represented by a formula:

\[
\text{G}-\text{N} \quad \text{O} \quad \text{COCl}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12V-001-L12V-144 represent tetrazolinone Compounds represented by a formula:

\[
\text{G}-\text{N} \quad \text{O} \quad \text{COCl}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L12W-001-L12W-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12X-001-L12X-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12Y-001-L12Y-144 represent tetrazolinone
Compounds represented by a formula:

\[
\begin{align*}
&\text{F} - \text{S} - \text{N} - \text{O} - \text{C} - \text{Cl} \\
&\text{G} - \text{N} - \text{O} - \text{C} - \text{Cl}
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12Z-001-L12Z-144 represent tetrazolinone Compounds represented by a formula:

\[
\begin{align*}
&\text{F} - \text{F} - \text{S} - \text{N} - \text{O} - \text{C} - \text{Cl} \\
&\text{G} - \text{N} - \text{O} - \text{C} - \text{Cl}
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L12AA-001-L12AA-144 represent tetrazolinone Compounds represented by a formula:

\[
\begin{align*}
&\text{F} - \text{F} - \text{S} - \text{N} - \text{O} - \text{C} - \text{Cl} \\
&\text{G} - \text{N} - \text{O} - \text{C} - \text{Cl}
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L13A-001-L13A-144 represent tetrazolinone

Compounds represented by a formula:

\[
G-N\begin{array}{c}
\text{O} \\
\text{COBr}
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L13B-001-L13B-144 represent tetrazolinone

Compounds represented by a formula:

\[
G-N\begin{array}{c}
\text{Cl} \\
\text{COBr}
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L13C-001-L13C-144 represent tetrazolinone

Compounds represented by a formula:

\[
G-N\begin{array}{c}
\text{Br} \\
\text{COBr}
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L13D-001-L13D-144 represent tetrazolinone
Compounds represented by a formula:

\[
\text{G-N} \quad \text{O} \quad \text{COBr}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L13E-001-L13E-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} \quad \text{O} \quad \text{COBr}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L13F-001-L13F-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} \quad \text{O} \quad \text{COBr}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L13G-001-L13G-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L13H-001-L13H-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L13I-001-L13I-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L13J-001-L13J-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L13K-001-L13K-144 represent tetrazolinone Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L13L-001-L13L-144 represent tetrazolinone Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L13M-001-L13M-144 represent tetrazolinone Compounds represented by a formula:
Compounds L13N-001-L13N-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L13O-001-L13O-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L13P-001-L13P-144 represent tetrazolinone

Compounds represented by a formula:
Compounds \textbf{L13Q-001-L13Q-144} represent tetrazolinone represented by a formula:

\[
\text{[wherein } G \text{ represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned].}
\]

Compounds \textbf{L13R-001-L13R-144} represent tetrazolinone represented by a formula:

\[
\text{[wherein } G \text{ represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned].}
\]

Compounds \textbf{L13S-001-L13S-144} represent tetrazolinone represented by a formula:
Compounds L13T-001-L13T-144 represent tetrazolinone
Compounds represented by a formula:

Compounds L13U-001-L13U-144 represent tetrazolirione
Compounds represented by a formula:

Compounds L13V-001-L13V-144 represent tetrazolinone
Compounds represented by a formula:
Compounds L13W-001-L13W-144 represent tetrazolinone
Compounds represented by a formula:

\[
\text{G-N} \begin{array}{c} \text{O} \\ \text{F} \end{array} \text{O} \text{COBr}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L13X-001-L13X-144 represent tetrazolinone
Compounds represented by a formula:

\[
\text{G-N} \begin{array}{c} \text{O} \\ \text{F} \end{array} \text{O} \text{COBr}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L13Y-001-L13Y-144 represent tetrazolinone
Compounds represented by a formula:

\[
\text{G-N} \begin{array}{c} \text{O} \\ \text{F} \end{array} \text{O} \text{COBr}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds represented by a formula:

\[
\begin{array}{c}
 \text{G} - \text{N} \\
 \text{F} - \text{S} \\
 \text{O} - \text{C} - \text{Br}
\end{array}
\]

[wherein \(\text{G} \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L13Z-001-L13Z-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{array}{c}
 \text{G} - \text{N} \\
 \text{F} - \text{S} \\
 \text{O} - \text{C} - \text{Br}
\end{array}
\]

[wherein \(\text{G} \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L13AA-001-L13AA-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{array}{c}
 \text{G} - \text{N} \\
 \text{F} - \text{S} \\
 \text{O} - \text{C} - \text{Br}
\end{array}
\]

[wherein \(\text{G} \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L14A-001-L14A-144 represent tetrazolinone Compounds represented by a formula:

\[
\text{G} \rightarrow \text{N} \rightarrow \text{O} \rightarrow \text{Br}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L14B-001-L14B-144 represent tetrazolinone Compounds represented by a formula:

\[
\text{G} \rightarrow \text{N} \rightarrow \text{O} \rightarrow \text{Cl}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L14C-001-L14C-144 represent tetrazolinone Compounds represented by a formula:

\[
\text{G} \rightarrow \text{N} \rightarrow \text{O} \rightarrow \text{Br}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L14D-001-L14D-144 represent tetrazolinone
Compounds represented by a formula:

![Chemical structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L14E-001-L14E-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L14F-001-L14F-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L14G-001-L14G-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L14H-001-L14H-144 represent tetrazolinone
Compounds represented by a formula:

Compounds L14I-001-L14I-144 represent tetrazolinone
Compounds represented by a formula:

Compounds L14J-001-L14J-144 represent tetrazolinone
Compounds represented by a formula:
Compounds L14K-001-L14K-144 represent tetrazolinone compounds represented by a formula:

![Formula 1](image1)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L14L-001-L14L-144 represent tetrazolinone compounds represented by a formula:

![Formula 2](image2)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L14M-001-L14M-144 represent tetrazolinone compounds represented by a formula:

![Formula 3](image3)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L14N-001-L14N-144 represent tetrazolinone

Compounds represented by a formula:

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L14O-001~L14O-144 represent tetrazolinone

Compounds represented by a formula:

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L14P-001-L14P-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L14Q-001-L14Q-144 represent tetrazolinone represented by a formula:

\[
\text{G-N} \stackrel{\text{O}}{\longrightarrow} \text{NSO}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L14R-001-L14R-144 represent tetrazolinone represented by a formula:

\[
\text{G-N} \stackrel{\text{H}_2\text{C-S}}{\longrightarrow} \text{NSO}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L14S-001-L14S-144 represent tetrazolinone represented by a formula:
[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L14T-001-L14T-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L14U-001-L14U-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L14V-001-L14V-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L14W-001-L14W-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L14X-001-L14X-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L14Y-001-L14Y-144 represent tetrazolinone
Compounds represented by a formula:

![Chemical Structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L14Z-001-L14Z-144 represent tetrazolinone Compounds represented by a formula:

![Chemical Structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L14AA-001~L14AA-144 represent tetrazolinone Compounds represented by a formula:

![Chemical Structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L15A-001-L15A-144 represent tetrazolinone

Compounds represented by a formula:

![formula](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L15B-001-L15B-144 represent tetrazolinone

Compounds represented by a formula:

![formula](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L15C-001-L15C-144 represent tetrazolinone

Compounds represented by a formula:

![formula](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L15D-001-L15D-144 represent tetrazolinone
Compounds represented by a formula:

\[
\text{G}\text{N}\text{O}\text{CON}_3
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L15E-001-L15E-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{H}_3\text{C}\text{G}\text{N}\text{O}\text{CON}_3
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L15F-001-L15F-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{H}_3\text{C}\text{G}\text{N}\text{O}\text{CON}_3
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L15G-001-L15G-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L15H-001-L15H-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{G} & \quad \text{N} \\
& \quad \text{O} \\
\text{CON}_3
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L15I-001-L15I-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{G} & \quad \text{N} \\
& \quad \text{O} \\
\text{CON}_3
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L15J-001-L15J-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{G} & \quad \text{N} \\
& \quad \text{O} \\
\text{CON}_3
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L15K-001-L15K-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L15L-001-L15L-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L15M-001-L15M-144 represent tetrazolinone compounds represented by a formula:
Compounds L15N-001-L15N-144 represent tetrazolinone
Compounds represented by a formula:

Compounds L15O-001-L15O-144 represent tetrazolinone
Compounds represented by a formula:

Compounds L15P-001-L15P-144 represent tetrazolinone
Compounds represented by a formula:
Compounds \(\text{L15Q-001-L15Q-144} \) represent tetrazolinone compounds represented by a formula:

\[
\begin{align*}
G - \text{N} & \quad \text{O} - \text{CON}_3 \\
& \quad \text{H}_3 \text{C} - \text{S} - \text{N} - \text{O} - \text{CON}_3
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds \(\text{L15R-001-L15R-144} \) represent tetrazolinone compounds represented by a formula:

\[
\begin{align*}
G - \text{N} & \quad \text{O} - \text{CON}_3 \\
& \quad \text{S} - \text{N} - \text{O} - \text{CON}_3
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds \(\text{L15S-001-L15S-144} \) represent tetrazolinone compounds represented by a formula:
Compounds L15T-001-L15T-144 represent tetrazolirone

Compounds represented by a formula:

![Chemical Structure](image1)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L15U-001-L15U-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical Structure](image2)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L15V-001-L15V-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical Structure](image3)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L15W-001-L15W-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L15X-001-L15X-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L15Y-001-L15Y-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds represented by a formula:

\[
\text{G-N} = \begin{array}{c}
\text{O} \\
\text{F} \\
\text{S} \\
\text{CON}_3
\end{array}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L15Z-001-L15Z-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} = \begin{array}{c}
\text{O} \\
\text{F} \\
\text{S} \\
\text{CON}_3
\end{array}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L15AA-001-L15AA-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-N} = \begin{array}{c}
\text{O} \\
\text{F} \\
\text{S} \\
\text{CON}_3
\end{array}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L16A-001-L16A-144 represent tetrazolinone
Compounds represented by a formula:

\[
\begin{align*}
G-N & \quad \text{O} \\
& \quad \text{CONH}_2 \\
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16B-001-L16B-144 represent tetrazolinone
Compounds represented by a formula:

\[
\begin{align*}
G-N & \quad \text{O} \\
& \quad \text{CONH}_2 \\
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16C-001-L16C-144 represent tetrazolinone
Compounds represented by a formula:

\[
\begin{align*}
G-N & \quad \text{O} \\
& \quad \text{CONH}_2 \\
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16D-001-L16D-144 represent tetrazolinone
Compounds represented by a formula:

\[
\begin{align*}
G-N^+\text{O} & \quad \text{CONH}_2 \\
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16E-001-L16E-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{G-N}^+\text{O} & \quad \text{CONH}_2 \\
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16F-001-L16F-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{G-N}^+\text{O} & \quad \text{CONH}_2 \\
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16G-001-L16G-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L16H-001-L16H-144 represent tetrazolinone

Compounds represented by a formula:

\[
G\text{-}N\text{ ninO CONH}_2
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16I-001-L16I-144 represent tetrazolinone

Compounds represented by a formula:

\[
G\text{-}N\text{ ninO CONH}_2
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16J-001-L16J-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L16K-001-L16K-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-} \begin{array}{c}
\text{N=O} \\
\text{CONH}_2
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16L-001-L16L-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-} \begin{array}{c}
\text{N=O} \\
\text{CONH}_2
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16M-001-L16M-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G-} \begin{array}{c}
\text{N=O} \\
\text{CONH}_2
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L16N-001-L16N-144 represent tetrazolinone
Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16O-001-L16O-144 represent tetrazolinone
Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16P-001-L16P-144 represent tetrazolinone
Compounds represented by a formula:
Compounds L16Q-001-L16Q-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G}-\text{N} \text{[structure]} \text{CONH}_2
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16R-001-L16R-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G}-\text{N} \text{[structure]} \text{CONH}_2
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16S-001-L16S-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{G}-\text{N} \text{[structure]} \text{CONH}_2
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L16T-001-L16T-144 represent tetrazolinone
Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16U-001-L16U-144 represent tetrazolinone
Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16V-001-L16V-144 represent tetrazolinone
Compounds represented by a formula:
Compounds L16W-001-L16W-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16X-001-L16X-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L16Y-001-L16Y-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds represented by a formula:

\[
\text{Compounds L16Z-001-L16Z-144 represent tetrazolinone}
\]

Compounds represented by a formula:

\[
\text{Compounds L16AA-001-L16AA-144 represent tetrazolinone}
\]
Compounds L17A-001-L17A-144 represent tetrazolinone compounds represented by a formula:

\[
\begin{align*}
G & \rightarrow \text{N} \rightarrow \text{O} \rightarrow \text{Ph} \rightarrow \text{CONHCl} \\
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L17B-001-L17B-144 represent tetrazolinone compounds represented by a formula:

\[
\begin{align*}
G & \rightarrow \text{N} \rightarrow \text{O} \rightarrow \text{Ph} \rightarrow \text{CONHCl} \\
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L17C-001-L17C-144 represent tetrazolinone compounds represented by a formula:

\[
\begin{align*}
G & \rightarrow \text{N} \rightarrow \text{O} \rightarrow \text{Ph} \rightarrow \text{CONHCl} \\
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L17D-001-L17D-144 represent tetrazolinone
Compounds represented by a formula:

\[
\text{G-N} \quad \text{O} \quad \text{CONHCl}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L17E-001-L17E-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{H}_3\text{C} \quad \text{G-N} \quad \text{O} \quad \text{CONHCl}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L17F-001-L17F-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{H}_3\text{C} \quad \text{G-N} \quad \text{O} \quad \text{CONHCl}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L17G-001-L17G-144 represent tetrazolinone
Compounds L17H-001-L17H-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L17I-001-L17I-144 represent tetrazolinone compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L17J-001-L17J-144 represent tetrazolinone compounds represented by a formula:
Compounds L17K-001-L17K-144 represent tetrazolinone

Compounds L17L-001-L17L-144 represent tetrazolinone

Compounds L17M-001-L17M-144 represent tetrazolinone
[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L17N-001-L17N-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L17O-001-L17O-144 represent tetrazolinone

Compounds represented by a formula.

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L17P-001-L17P-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L17Q-001-L17Q-144 represent tetrazolinone compounds represented by a formula:

\[
\text{G-N} \begin{array}{c}
\text{O} \\
\text{CONHCl}
\end{array}
\]

(wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);

Compounds L17R-001-L17R-144 represent tetrazolinone compounds represented by a formula:

\[
\text{G-N} \begin{array}{c}
\text{H}_3\text{C} \\
\text{CONHCl}
\end{array}
\]

(wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);

Compounds L17S-001-L17S-144 represent tetrazolinone compounds represented by a formula:

\[
\text{G-N} \begin{array}{c}
\text{S} \\
\text{CONHCl}
\end{array}
\]

(wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);
Compounds L17T-001-L17T-144 represent tetrazolinone
Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L17U-001-L17U-144 represent tetrazolinone
Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L17V-001-L17V-144 represent tetrazolinone
Compounds represented by a formula:
Compounds L17W-001-L17W-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{G} & \text{N} \text{N} \text{O} \text{O} \text{N} \text{CONHCl} \\
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L17X-001-L17X-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{G} & \text{N} \text{N} \text{O} \text{O} \text{N} \text{CONHCl} \\
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L17Y-001-L17Y-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{G} & \text{N} \text{N} \text{O} \text{O} \text{N} \text{CONHCl} \\
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds represented by a formula:

\[
\text{F-S-CONHCl}
\]

(wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);

Compounds L17Z-001-L17Z-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{F-F-S-CONHCl}
\]

(wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);

Compounds L17AA-001-L17AA-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{F-F-S-CONHCl}
\]

(wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);
Compounds L18A-001-L18A-144 represent tetrazolinone. Compounds represented by a formula:

\[
\text{G-}N\text{N} \quad \text{O} \quad \text{CONHBr}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L18B-001-L18B-144 represent tetrazolinone.
Compounds represented by a formula:

\[
\text{G-}N\text{N} \quad \text{O} \quad \text{CONHBr}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L18C-001-L18C-144 represent tetrazolinone.
Compounds represented by a formula:

\[
\text{G-}N\text{N} \quad \text{O} \quad \text{CONHBr}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L18D-001-L18D-144 represent tetrazolinone.
Compounds represented by a formula:

\[
\text{CONHBr}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L18E-001-L18E-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{CONHBr}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L18F-001-L18F-144 represent tetrazolinone

Compounds represented by a formula:

\[
\text{CONHBr}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L18G-001-L18G-144 represent tetrazolinone
Compounds L18H-001-L18H-144 represent tetrazolinone

Compounds represented by a formula:

Compounds L18I-001-L18I-144 represent tetrazolinone

Compounds represented by a formula:

Compounds L18J-001-L18J-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L18K-001-L18K-144 represent tetrazolinone compounds represented by a formula:

\[
\text{Compounds represented by a formula:}
\]

\[
[\text{wherein } G \text{ represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned}]
\]

Compounds L18L-001-L18L-144 represent tetrazolinone compounds represented by a formula:

\[
[\text{wherein } G \text{ represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned}]
\]

Compounds L18M-001-L18M-144 represent tetrazolinone compounds represented by a formula:

\[
[\text{wherein } G \text{ represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned}]
\]
[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L18N-001-L18N-144 represent tetrazolinone

Compounds represented by a formula:

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L18O-001-L18O-144 represent tetrazolinone

Compounds represented by a formula:

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L18P-001-L18P-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L18Q-001-L18Q-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L18R-001-L18R-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L18S-001-L18S-144 represent tetrazolinone

Compounds represented by a formula:
wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned; compounds L18T-001-L18T-144 represent tetrazolinone compounds represented by a formula:

![Formula](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]; compounds L18U-001-L18U-144 represent tetrazolinone compounds represented by a formula:

![Formula](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]; compounds L18V-001-L18V-144 represent tetrazolinone compounds represented by a formula:
Compounds L18W-001-L18W-144 represent tetrazolinone Compounds represented by a formula:

\[
\begin{align*}
\text{G-N} & \quad \text{O} \\
\text{CONHBr} & \quad \text{CONHBr}
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L18X-001-L18X-144 represent tetrazolinone Compounds represented by a formula:

\[
\begin{align*}
\text{G-N} & \quad \text{O} \\
\text{CONHBr} & \quad \text{CONHBr}
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L18Y-001-L18Y-144 represent tetrazolinone
Compounds represented by a formula:

\[
\begin{align*}
\text{F} & \quad \text{S} \\
\text{G} & \quad \text{N} \quad \text{O} \\
& \quad \text{CONHBr}
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned;]

Compounds L18Z-001-L18Z-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{F} & \quad \text{F} \\
\text{S} & \quad \text{S} \\
\text{G} & \quad \text{N} \quad \text{O} \\
& \quad \text{CONHBr}
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned;]

Compounds L18AA-001-L18AA-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{F} & \quad \text{F} \\
\text{F} & \quad \text{S} \\
\text{G} & \quad \text{N} \quad \text{O} \\
& \quad \text{CONHBr}
\end{align*}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to
Table 30 as below-mentioned]

Compounds L19A-001-L19A-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds L19B-001-L19B-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]

Compounds L19C-001-L19C-144 represent tetrazolinone

Compounds represented by a formula:

![Chemical structure](image)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned]
Compounds L19D-001-L19D-144 represent tetrazolinone.

Compounds represented by a formula:

\[
\text{G-N} \text{O} \begin{array}{c}
\text{CONHOH}
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L19E-001-L19E-144 represent tetrazolinone.

Compounds represented by a formula:

\[
\text{G-N} \text{O} \begin{array}{c}
\text{CONHOH}
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L19F-001-L19F-144 represent tetrazolinone.

Compounds represented by a formula:

\[
\text{G-N} \text{O} \begin{array}{c}
\text{CONHOH}
\end{array}
\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L19G-001-L19G-144 represent tetrazolinone.
Compounds represented by a formula:

\[
\text{G-N} = \text{CONH} \text{OH}
\]

(wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);

Compounds L19H-001-L19H-144 represent tetrazolinone.

Compounds represented by a formula:

\[
\text{G-N} = \text{CONH} \text{OH}
\]

(wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);

Compounds L19I-001-L19I-144 represent tetrazolinone.

Compounds represented by a formula:

\[
\text{G-N} = \text{CONH} \text{OH}
\]

(wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned);

Compounds L19J-001-L19J-144 represent tetrazolinone.
Compounds L19K-001-L19K-144 represent tetrazolinone compounds represented by a formula:

![Formula 1](image1)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L19L-001-L19L-144 represent tetrazolinone compounds represented by a formula:

![Formula 2](image2)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L19M-001-L19M-144 represent tetrazolinone compounds represented by a formula:

![Formula 3](image3)

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds L19N-001-L19N-144 represent tetrazolinone

Compounds represented by a formula:

Compounds L190-001-L190-144 represent tetrazolinone

Compounds represented by a formula:

Compounds L19P-001-L19P-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L19Q-001-L19Q-144 represent tetrazolirone

Compounds represented by a formula:

G-N\[\text{O}\]\[\text{CONHOH}\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L19R-001-L19R-144 represent tetrazolinone

Compounds represented by a formula:

G-N\[\text{H}_2\text{C-S}\]\[\text{CONHOH}\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L19S-001-L19S-144 represent tetrazolinone

Compounds represented by a formula:

G-N\[\text{S}\]\[\text{CONHOH}\]

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L19T-001-L19T-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{G-N} & \quad \text{CONHOH} \\
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L19U-001-L19U-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{G-N} & \quad \text{CONHOH} \\
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L19V-001-L19V-144 represent tetrazolinone

Compounds represented by a formula:
Compounds L19W-001-L19W-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L19X-001-L19X-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];

Compounds L19Y-001-L19Y-144 represent tetrazolinone

Compounds represented by a formula:

[wherein G represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned];
Compounds represented by a formula:

\[
\begin{align*}
\text{F} & - \text{S} \\
\text{G} - \text{N} & \text{O} - \text{} \\
& \text{CONHOH}
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ;

Compounds L19Z-001-L19Z-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{F} & - \text{F} \\
\text{G} - \text{N} & \text{O} - \text{} \\
& \text{CONHOH}
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] ; and

Compounds L19AA-001-L19AA-144 represent tetrazolinone

Compounds represented by a formula:

\[
\begin{align*}
\text{F} & - \text{F} \\
\text{G} - \text{N} & \text{O} - \text{} \\
& \text{CONHOH}
\end{align*}
\]

[wherein \(G \) represents a substituent corresponding to each of substituents Nos. 1 to 144 indicated in Table 26 to Table 30 as below-mentioned] .
Next, the Formulation examples are shown below. In the Examples, the term "part(s)" means part(s) by weight unless otherwise specified.

Formulation example 1

Fifty (50) parts of any one of the present Compounds 1 to 97, 3 parts of calcium lignosulfonate, 2 parts of magnesium lauryle sulfate and 45 parts of synthetic hydrated silicon dioxide are well mixed while grinding to obtain a formulation.

Formulation example 2

Twenty (20) parts of any one of the present Compounds 1 to 97, 1.5 parts of sorbitan trioleate are mixed with 28.5 parts of an aqueous solution containing 2 parts of polyvinyl alcohol, and the mixture is then finely-ground by a wet grinding method. To this mixture is then added 40 parts of an aqueous solution containing 0.05 parts of xanthane gum and 0.1 parts of magnesium aluminium silicate, and 10 parts of propylene glycol is further added thereeto. The mixture is stirred to obtain a formulation.

Formulation example 3

Two (2) parts of any one of the present Compounds 1 to
97, 88 parts of kaolin clay and 10 parts of talc are mixed-grinding to obtain a formulation.

[0898]
Formulation example 4

Five (5) parts of any one of the present Compounds 1 to 97, 14 parts of polyoxyethylene styryl phenyl ether, 6 parts of calcium dodecylbenzene sulfonate and 75 parts of xylene are mixed-grinding to obtain a formulation.

[0899]
Formulation example 5

Two (2) parts of any one of the present Compounds 1 to 97, one part of synthetic hydrated silicon dioxide, 2 parts of calcium lignosulfonate, 30 parts of bentonite and 65 parts of kaolin clay are mixed-grinding and thereto is added water and the mixture is well kneaded and is then granulated and dried to obtain a formulation.

[0900]
Formulation example 6

Ten (10) parts of any one of the present Compounds 1 to 97, 35 parts of white carbon containing 50 parts of ammonium polyoxyethylene alkyl ether sulfate, and 55 parts of water are mixed, and the mixture is then finely-ground by a wet grinding method to obtain a formulation.

[0901]
Next, Test examples are used to show an efficacy of
the present Compounds on controlling plant diseases.

Here the controlling effects were evaluated by visually observing a lesion area on the tested plants and followed by comparing the lesion area of the plants treated with the present Compounds with a lesion area of the untreated plants.

[0902]

Test example 1

A plastic pot was filled with soils and thereto was seeded rice (cv; Nipponbare) and the plants were grown in a greenhouse for twenty days. Thereafter, each of the present Compounds 5, 11, 14, 15, 28, 50, 54, 58, 76, 78, 88, 89, 92 to 95 and 96 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (500 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned rice. After spraying the dilutions, the plants were air-dried and were placed at 24°C during daytime and 20°C during nighttime under a high humidity for 6 days while the above-mentioned spraying-treated rice were contacted rice seedlings (cv; Nipponbare) infected by rice blast fungi (Magnaporthe grisea), and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compounds 5, 11, 14, 15, 28,
50, 54, 58, 76, 78, 88, 89, 92 to 95 and 96 showed 30% or less compared to the lesion area in an untreated plants.

[0903]
Test example 2

A plastic pot was filled with soils and thereto was seeded rice (cv; Nipponbare) and the plants were grown in a greenhouse for 20 days. Thereafter, each of the present Compounds 1, 7, 12, 14, 20, 23, 24, 26, 30, 33, 34, 36 to 40, 53, 56, 66, 73, 83, 84, 87 and 97 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (200 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned rice. After spraying the dilutions, the plants were air-dried and were placed at 24°C during daytime and 20°C during nighttime under a high humidity for 6 days while the above-mentioned spraying-treated rice were contacted rice seedlings (cv; Nipponbare) infected by rice blast fungi (Magnaporthe grisea) and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compounds 1, 7, 12, 14, 20, 23, 24, 26, 30, 33, 34, 36 to 40, 53, 56, 66, 73, 83, 84, 87 and 97 showed 30% or less compared to the lesion area in an untreated plants.

[0904]
Test example 3

A plastic pot was filled with soils and thereto was seeded rice (cv; Nipponbare) and the plants were grown in a greenhouse for 20 days. Thereafter, the present Compound 35 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (50 ppm). The dilutions were sprayed to stems and leaves so as to adhere adequately on the leaves of the above-mentioned rice. After spraying the dilution, the plants were air-dried and were placed at 24°C during daytime and 20°C during nighttime under a high humidity for 6 days while the above-mentioned spraying-treated rice were contacted rice seedlings (cv; Nipponbare) infected by rice blast fungi (Magnaporthe grisea) and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compound 35 showed 30% or less compared to the lesion area in an untreated plants.

[0905]

Test example 4

A plastic pot was filled with soils and thereto was seeded wheat (cv; Shirogane) and the plants were grown in a greenhouse for 9 days. Thereafter, each of the present Compounds 12, 15, 46, 56, 59, 78, 88, 93 to 95 and 96 was made to a formulation according to the above-mentioned
Formulation examples and was then diluted with water so as to make a predetermined concentration (500 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned wheat. After spraying dilutions, the plants were air-dried and were placed at 20°C under lighting for 5 days. The spores of wheat rust fungi (Puccinia recondita) were sprinkling-inoculated. After inoculation, the plants were placed under a dark and humid condition at 23°C for 1 day and were then cultivated at 20°C under lighting for 8 days and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compounds 12, 15, 46, 56, 59, 78, 88, 93 to 95 and 96 showed 30% or less compared to the lesion area in an untreated plants.

Test example 5

A plastic pot was filled with soils and thereto was seeded wheat (cv; Shirogane) and the plants were grown in a greenhouse for 9 days. Thereafter, each of the present Compounds 1, 34, 51, 53, 58, 60, 72, 82, 84, 86, 89, 91 and 92 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (200 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned wheat.
After spraying the dilutions, the plants were air-dried and were placed at 20°C under lighting for 5 days. The spores of wheat rust fungi (Puccinia recondita) were sprinkling-inoculated. After inoculation, the plants were placed under a dark and humid condition at 23°C for 1 day and were then cultivated at 20°C under lighting for 8 days and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compounds 1, 34, 51, 53, 58, 60, 72, 82, 84, 86, 89, 91 and 92 showed 30% or less compared to the lesion area in an untreated plants.

Test example 6

A plastic pot was filled with soils and thereto was seeded wheat (cv; Shirogane) and the plants were grown in a greenhouse for 9 days. Thereafter, the present Compound 35 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (50 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned wheat. After spraying the dilutions, the plants were air-dried and were placed at 20°C under lighting for 5 days. The spores of wheat rust fungi (Puccinia recondita) were sprinkling-inoculated. After inoculation, the plants were placed under a dark and humid condition at 23°C for 1 day and were
then cultivated at 20°C under lighting for 8 days and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compound 35 showed 30% or less compared to the lesion area in an untreated plants.

Test example 7

A plastic pot was filled with soils and thereto was seeded wheat (cv; Shirogane) and the plants were grown in a greenhouse for 9 days. Thereafter, to the wheat were sprinkling-inoculated the spores of wheat rust fungi [Puccinia recondita]. The wheat was placed under a dark and humid condition at 23°C for 1 day and was air-dried. The present Compound 12 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (200 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned wheat. After spraying the dilutions, the plants were air-dried and were placed under lighting for 8 days and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compound 12 showed 30% or less compared to the lesion area in an untreated plants.
Test example 8

A plastic pot was filled with soils and thereto was seeded barley (cv; Mikamo Golden) and the plants were grown in a greenhouse for 7 days. Thereafter, each of the present Compounds 2, 5, 6, 8, 10 to 17, 25, 27, 28, 31, 38, 39, 44, 46 to 52, 54 to 63, 65 to 67, 71 to 96 and 97 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (500 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned barley. After spraying the dilutions, the plants were air-dried and after 2 days, an aqueous suspension of the spores of barley net blotch fungi (Pyrenophora teres) was spraying-inoculated. After inoculation, the plants were placed at 23°C during daytime and 20°C during nighttime under a high humidity for 3 days and were then cultivated in the greenhouse for 7 days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compounds 2, 5, 6, 8, 10 to 17, 25, 27, 28, 31, 38, 39, 44, 46 to 52, 54 to 63, 65 to 67, 71 to 96 and 97 showed 30% or less compared to the lesion area in an untreated plants.

[0910]

Test example 9
A plastic pot was filled with soils and thereto was seeded barley (cv; Mikamo Golden) and the plants were grown in a greenhouse for 7 days. Thereafter, each of the present Compounds 1, 3, 4, 7, 9, 20 to 24, 26, 29, 32 to 34, 36, 37, 40, 42, 43, 53, 64, 68 and 69 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (200 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned barley. After spraying the dilutions, the plants were air-dried and after 2 days, an aqueous suspension of the spores of barley net blotch fungi (Pyrenophora teres) was spraying-inoculated. After inoculation, the plants were placed at 23°C during daytime and 20°C during nighttime under a high humidity for 3 days and were then cultivated in the greenhouse for 7 days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compounds 1, 3, 4, 7, 9, 20 to 24, 26, 29, 32 to 34, 36, 37, 40, 42, 43, 53, 64, 68 and 69 showed 30% or less compared to the lesion area in an untreated plants.

[0911]

Test example 10

A plastic pot was filled with soils and thereto was seeded barley (cv; Mikamo Golden) and the plants were grown
in a greenhouse for 7 days. The present Compound 35 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (50 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned barley. After spraying the dilutions, the plants were air-dried and after 2 days, an aqueous suspension of the spores of barley net blotch fungi (Pyrenophora teres) was spraying-inoculated. After inoculation, the plants were placed at 23°C during daytime and 20°C during nighttime under a high humidity for 3 days and were then cultivated in the greenhouse for 7 days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compound 35 showed 30% or less compared to the lesion area in an untreated plants.

[0912]

Test example 11

A plastic pot was filled with soils and thereto was seeded Kidney bean (cv; Nagauzurasaitou) and the plants were grown in a greenhouse for 8 days. Either of the present Compounds 5, 8, 10 to 14, 46, 50 to 52, 54, 56, 57, 59, 60, 63 to 67, 70, 72, 79 to 83, 86 to 96 and 97 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as
to make a predetermined concentration (500 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned kidney bean. After spraying the dilutions, the plants were air-dried and a PDA medium containing hyphae of kidney bean sclerotinia rot fungi (Sclerotinia sclerotiorum) was placed on the leaves of the kidney bean. After inoculation, all kidney beans were placed under a high humidity during only night and after four days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with either the present Compounds 5, 8, 10 to 14, 46, 50 to 52, 54, 56, 57, 59, 60, 63 to 67, 70, 72, 79 to 83, 86 to 96 and 97 showed 30% or less compared to the lesion area in an untreated plants.

[0913]

Test example 12

A plastic pot was filled with soils and thereto was seeded Kidney bean (cv: Nagauzurasaitou) and the plants were grown in a greenhouse for 8 days. Either of the present Compounds 22, 76, 77 and 78 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (200 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned kidney bean. After spraying
the dilutions, the plants were air-dried and a PDA medium containing hyphae of kidney bean sclerotinia rot fungi \textit{(Sclerotinia sclerotiorum)} was placed on the leaves of the kidney bean. After inoculation, all kidney beans were placed under a high humidity during only night and after four days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with either the present Compounds 22, 76, 77 and 78 showed 30% or less compared to the lesion area in an untreated plants.

Test example 13

A plastic pot was filled with soils and thereto was seeded wheat \textit{(cv; Apogee)} and the plants were grown in a greenhouse for 10 days. Each of the present Compounds 1 to 3, 5, 6, 8, 10 to 17, 25, 28, 31, 32, 38, 39, 44, 46 to 52, 54 to 61, 63 to 68, 70 to 73, 76 to 78, 81 to 86, 88 to 95 and 96 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration \textit{(500 ppm)}.

The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned wheat. After spraying the dilutions, the plants were air-dried and after 4 days, an aqueous suspension of the spores of wheat leaf blotch fungi \textit{(Septoria tritici)} was spraying-inoculated. After inoculation, the plants were placed at
18°C under a high humidity for 3 days and then under lighting for 14 to 18 days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compounds 1 to 3, 5, 6, 8, 10 to 17, 25, 28, 31, 32, 38, 39, 44, 46 to 52, 54 to 61, 63 to 68, 70 to 73, 76 to 78, 81 to 86, 88 to 95 and 96 showed 30% or less compared to the lesion area in an untreated plants.

[0915]

Test example 14

A plastic pot was filled with soils and thereto was seeded wheat (cv; Apogee) and the plants were grown in a greenhouse for 10 days. Each of the present Compounds 7, 9, 20 to 27, 29, 33, 34, 36, 37, 40 to 43, 53, 69, 74, 79, 80 and 87 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (200 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned wheat. After spraying the dilutions, the plants were air-dried and after 4 days, an aqueous suspension of the spores of wheat leaf blotch fungi (Septoria tritici) was spraying-inoculated. After inoculation, the plants were placed at 18°C under a high humidity for 3 days and then under lighting for 14 to 18 days, and a lesion area was observed.

As a result, every of the lesion areas in plants treated
with the present Compounds 7, 9, 20 to 27, 29, 33, 34, 36, 37, 40 to 43, 53, 69, 74, 79, 80 and 87 showed 30% or less compared to the lesion area in an untreated plants.

Test example 15

A plastic pot was filled with soils and thereto was seeded wheat (cv; Apogee) and the plants were grown in a greenhouse for 10 days. The present compound 19 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (50 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned wheat. After spraying the dilutions, the plants were air-dried and after 4 days, an aqueous suspension of the spores of wheat leaf blotch fungi (Septoria tritici) was spraying-inoculated. After inoculation, the plants were placed at 18°C under a high humidity for 3 days and then under lighting for 14 to 18 days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present compound 19 showed 30% or less compared to the lesion area in untreated plants.

Test example 16

A plastic pot was filled with soils and thereto was
seeded wheat (cv; Apogee) and the plants were grown in a greenhouse for 10 days. Thereafter, to the wheat was spraying-inoculated an aqueous suspension of the spores of wheat leaf blotch fungi (Septoria tritici). The wheat was placed at 18°C under a high humidity for 3 days and was air-dried. Each of the present Compounds 1, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 22 to 24, 26, 29, 31 to 34, 36, 38 to 40, 42, 44, 46 to 48, 51 to 56, 58 to 60, 63, 65, 68, 71 to 73, 76, 78, 82 to 84, 86 to 89, 93 to 95 and 96 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (200 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned wheat. After spraying the dilutions, the plants were air-dried and were further placed under lighting for 14 to 18 days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compounds 1, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 22 to 24, 26, 29, 31 to 34, 36, 38 to 40, 42, 44, 46 to 48, 51 to 56, 58 to 60, 63, 65, 68, 71 to 73, 76, 78, 82 to 84, 86 to 89, 93 to 95 and 96 showed 30% or less compared to the lesion area in an untreated plants.

[0918]

Test example 17

A plastic pot was filled with soils and thereto was
seeded cucumber (cv; Sagamihanj iro) and the plants were
grown in a greenhouse for 12 days. Each of the present
Compounds 2, 5, 6, 10 to 12, 14, 25, 31, 39, 46, 49 to 52,
5
54 to 56, 59 to 61, 63 to 65, 71, 72, 76, 78 to 84, 86 to
96 and 97 was made to a formulation according to the above-
mentioned Formulation examples and was then diluted with
water so as to make a predetermined concentration (500 ppm).
The dilutions were sprayed to foliar parts so as to adhere
adequately on the leaves of the above-mentioned cucumber.
After spraying the dilutions, the plants were air-dried and
the spores of powdery mildew fungi (Sphaerotheca fuliginea)
were sprinkling-inoculated. The plants were placed in a
greenhouse of 24°C during daytime and 20°C during nighttime
for 8 days, and a lesion area was observed. As a result,
every of the lesion areas in plants treated with the
present Compounds 2, 5, 6, 10 to 12, 14, 25, 31, 39, 46, 49
to 52, 54 to 56, 59 to 61, 63 to 65, 71, 72, 76, 78 to 84,
86 to 96 and 97 showed 30% or less compared to the lesion
area in an untreated plants.

[0919]
Test example 18

A plastic pot was filled with soils and thereto was
seeded cucumber (cv; Sagamihanj iro) and the plants were
grown in a greenhouse for 12 days. Each of the present
Compounds 1, 3, 7, 11, 13, 22, 26, 33 and 53 was made to a
formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (200 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned cucumber. After spraying the dilutions, the plants were air-dried and the spores of powdery mildew fungi (Sphaerotheca fuliginea) were sprinkling-inoculated. The plants were placed in a greenhouse of 24°C during daytime and 20°C during nighttime for 8 days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compounds 1, 3, 7, 11, 13, 22, 26, 33 and 53 showed 30% or less compared to the lesion area in an untreated plants.

Test example 19

A plastic pot was filled with soils and thereto was seeded cucumber (cv; Sagamihanjiro) and the plants were grown in a greenhouse for 12 days. The present Compound 34 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (50 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned cucumber. After spraying the dilutions, the plants were air-dried and
the spores of powdery mildew fungi (Sphaerotheca fuliginea) were sprinkling-inoculated. The plants were placed in a greenhouse of 24°C during daytime and 20°C during nighttime for 8 days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compound 34 showed 30% or less compared to the lesion area in an untreated plants.

[0921]
Test example 20
A plastic pot was filled with soils and thereto was seeded soybean (cv: Kurosengoku) and the plants were grown in a greenhouse for 13 days. Each of the present Compounds 8, 12, 15, 23, 46, 50, 51, 78, 86 to 89, 91, 92, 94, 95 and 96 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (200 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned soybean. After spraying the dilutions, the plants were air-dried and after 2 days, an aqueous suspension of the spores of soybean rust fungi (phakopsora pachyrhizi) was spraying-inoculated. After inoculation, the plants were placed in a greenhouse of 23°C during daytime and 20°C during nighttime under a high humidity for 3 days and were then cultivated in the greenhouse for 14 days, and a lesion area was
observed. As a result, every of the lesion areas in plants treated with the present Compounds 8, 12, 15, 23, 46, 50, 51, 78, 86 to 89, 91, 92, 94, 95 and 96 showed 30% or less compared to the lesion area in an untreated plants.

Test example 21

A plastic pot was filled with soils and thereto was seeded soybean (cv; Kurosengoku) and the plants were grown in a greenhouse for 13 days. Thereafter, to the soybean was spraying-inoculated an aqueous suspension of the spores of soybean rust fungi (phakopsora pachyrhizi). The soybean was placed at 23°C under a high humidity for one day and was air-dried. Each of the present Compounds 13 and 15 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (200 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned soybean. After spraying the dilutions, the plants were air-dried and were further placed under lighting for 14 days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present compounds 13 and 15 showed 30% or less compared to the lesion area in an untreated plants.
Test example 22

A plastic pot was filled with soils and thereto was seeded barley (cv; Mikamo Golden) and the plants were grown in a greenhouse for 7 days. Each of the present Compounds 1, 4, 5, 8, 10, 12 to 15, 20, 22, 23, 26, 31, 33, 34, 36, 40, 46, 50 to 55, 57 to 61, 63 to 65, 71 to 73, 76 to 91, 93 to 95 and 96 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (200 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned barley. After spraying the dilutions, the plants were air-dried and after 2 days, an aqueous suspension of the spores of barley leaf blotch fungi (Rhynchosporium secalis) was spraying-inoculated. After inoculation, the plants were placed in a greenhouse of 23°C during daytime and 20°C during nighttime under a high humidity for 3 days and were then cultivated in the greenhouse for 7 days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compounds 1, 4, 5, 8, 10, 12 to 15, 20, 22, 23, 26, 31, 33, 34, 36, 40, 46, 50 to 55, 57 to 61, 63 to 65, 71 to 73, 76 to 91, 93 to 95 and 96 showed 30% or less compared to the lesion area in an untreated plants.
Test example 23

A plastic pot was filled with soils and thereto was seeded barley (cv; Mikamo Golden) and the plants were grown in a greenhouse for 7 days. Each of the present Compounds 11, 19 and 70 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (50 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned barley. After spraying the dilutions, the plants were air-dried and after 2 days, an aqueous suspension of the spores of barley scald fungi (*Rhynchosporium secalis*) was spraying-inoculated. After inoculation, the plants were placed in a greenhouse of 23°C during daytime and 20°C during nighttime under a high humidity for 3 days and were then cultivated in the greenhouse for 7 days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compounds 11, 19 and 70 showed 10% or less compared to the lesion area in an untreated plants.

[0925]

Test example 24

A plastic pot was filled with soils and thereto was seeded grapes (Seeding of Chardonnay) and the plants were grown in a greenhouse for 40 days. Each of the present
Compounds 12 and 34 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (200 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned grapes. After spraying the dilutions, the plants were air-dried to such an extent that the diluted solutions were dried, and a suspension of the zoosporangium of grapes downy mildew fungi was spraying-inoculated. After inoculation, the plants were placed at 23°C under a high humidity for 1 day and were then transferred to a greenhouse of 23°C during a daytime and 20°C during a nighttime and were cultivated therein for 5 days. Thereafter, the plants were placed under a high humidity for 1 day, and a lesion area was observed. As a result, the lesion areas in plants treated with every of the present Compounds 12 and 34 showed 30% or less compared to the lesion area in an untreated plants.

Test example 25

A plastic pot was filled with soils and thereto was seeded tomato (cv; Patio) and the plants were grown in a greenhouse for 20 days. The present compound 26 was made to a flowable according to the above-mentioned Formulation examples and was then diluted with water so as to make a
predetermined concentration (200 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned tomato. After the plants were air-dried to such an extent that the dilutions were dried, an aqueous suspension of the spores of tomato late blight fungi \textit{(Phytophthora infestans)} was spraying-inoculated. After inoculation, the plants were at first placed at 23°C under a high humidity for 1 day and were then cultivated at 20°C in an air-conditioned room for 4 days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present compound 26 showed 30% or less compared to the lesion area in untreated plants.

Test example 26

A plastic pot was filled with soils and thereto was seeded tomato (cv; Patio) and the plants were grown in a greenhouse for 20 days. The present Compound 12 were made to flowables according to the above-mentioned Formulation examples and were then diluted with water so as to make a predetermined concentration (50 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned tomato. After the plants were air-dried to such an extent that the dilutions were dried, an aqueous suspension of the spores of tomato late
blight fungi (Phytophthora infestans) was spraying-inoculated. After inoculation, the plants were at first placed at 23°C under a high humidity for 1 day and were then cultivated at 20°C in an air-conditioned room for 4 days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compound 12 showed 30% or less compared to the lesion area in an untreated plants.

[0928]

Test example 27

A plastic pot was filled with soils and thereto was seeded cucumber (cv; Sagamihanjiro) and the plants were grown in a greenhouse for 19 days. Each of the present Compounds 72, 73, 74, 76, 78, 80 to 84, 87 to 89, 91 to 93, 95, 96 and 97 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (200 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned cucumber. After spraying the dilutions, the plants were air-dried and after 1 day, an aqueous suspension of the spores of cucumber target spot fungi (Corynespora cassiicola) was spraying-inoculated. After an inoculation, the plants were placed at 24°C during daytime and 20°C during nighttime under a high humidity for 7 days, and a
lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compounds 72, 73, 74, 76, 78, 80 to 84, 87 to 89, 91 to 93, 95, 96 and 97 showed 30% or less compared to the lesion area in an untreated plants.

[0929]

Test example 28

A plastic pot was filled with soils and thereto was seeded cucumber (cv; Sagamihanjiro) and the plants were grown in a greenhouse for 19 days. Each of the present Compounds 12, 33 and 46 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (50 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned cucumber. After spraying the dilutions, the plants were air-dried and after 1 day, an aqueous suspension of the spores of cucumber target spot fungi (Corynespora cassiicola) was spaying-inoculated. After an inoculation, the plants were placed at 24°C during daytime and 20°C during nighttime under a high humidity for 7 days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compounds 12, 33 and 46 showed 30% or less compared to the lesion area in an untreated plants.
A plastic pot was filled with soils and thereto was seeded cucumber (cv; Sagamihanj iro) and the plants were grown in a greenhouse for 19 days. Each of the present Compounds 72, 73, 76, 78 to 81, 84, 86 to 96 and 97 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (200 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned cucumber. After spraying the dilutions, the plants were air-dried and after 1 day, an aqueous suspension of the spores of cucumber anthracnose fungi (Colletotrichum lagenarium) was spraying-inoculated. After an inoculation, the plants were placed firstly at 23°C under a high humidity for 1 day and were then cultivated in a greenhouse of 24°C during daytime and 20°C during nighttime for 6 days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compounds 72, 73, 76, 78 to 81, 84, 86 to 96 and 97 showed 30% or less compared to the lesion area in an untreated plants.
seeded cucumber (cv; Sagamihanj iro) and the plants were grown in a greenhouse for 19 days. Each of the present Compounds 12, 34, 46 and 85 was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (50 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned cucumber. After spraying the dilutions, the plants were air-dried and after 1 day, an aqueous suspension of the spores of cucumber anthracnose fungi (Colletotrichum lagenarium) was spraying-inoculated. After an inoculation, the plants were placed firstly at 23°C under a high humidity for 1 day and were then cultivated in a greenhouse of 24°C during daytime and 20°C during nighttime for 6 days, and a lesion area was observed. As a result, every of the lesion areas in plants treated with the present Compounds 12, 34, 46 and 85 showed 30% or less compared to the lesion area in an untreated plants.

Test example 31

The testing drug solutions to be used in this Test example were prepared by diluting the formulations prepared according to the above-mentioned Formulation examples with an ion-exchange water so that the active ingredient concentration was set to 500 ppm.
Cucumber (Sagami-hanjiro-fushinari) was grown in a polyethylene cup until the first true leaf was developed. Thirty (30) heads of cotton aphid (Aphis gossypii) (including the adults and the larvae) was released onto the leaves of the cabbage and next day, the above-mentioned testing drug solutions 20 mL were spread. After 6 days, the number of the surviving insects was counted and the control value was calculated by the following equation.

Control value (%) = \{1 - (Cb \cdot Tai) / (CaixTb) \} \times 100

wherein the symbols in the formula represent the following descriptions.

Cb: Number of the insects before treatment in untreated area;

Ca: Number of the insects at the time of the observation in untreated area;

Tb: Number of the insects before treatment in treated area;

Tai: Number of the insects at the time of the observation in treated area;

As a result, the present Compounds 18, 39 47 and 96 showed 90% or more as the control value.

[0933]

Test example 32

The testing drug solutions to be used in this Test example were prepared by diluting the formulations prepared
according to the above-mentioned Formulation examples with an ion-exchange water so that the active ingredient concentration was set to 500 ppm. The above-mentioned drug solutions 0.7 mL were added to an ion-exchange water 100 mL so that the active ingredient concentration was set to 3.5 ppm. Twenty (20) last instar larvae of common house mosquito (Culex pipiens pallens) were released into the solutions and after 8 day, the number of the dead insects was counted.

The mortality of insects was calculated by the following equation.

\[
\text{Mortality of insects (\%)} = \frac{\text{Number of dead insects}}{\text{Number of tested insects}} \times 100
\]

As a result, the present Compounds 38, 64 and 86 showed 100% as the mortality of insects.

[0934]

Test example 33

The testing drug solutions to be used in this Test example were prepared by diluting the formulations prepared according to the above-mentioned Formulation examples with an ion-exchange water so that the active ingredient concentration was set to 500 ppm. Cabbage (green ball) was planted in a polyethylene cup and was grown until the third true leaf or the fourth true leaf was developed. To the cabbage (Brassicae oleracea) was spread the above-mentioned
testing solutions in a ratio of 20mL/cup. After the drug solutions were dried, to a polyethylene cup (diameter 5.5 cm) covered with a filter paper on the bottom, the cabbage cut out from the root was installed and five heads of cabbage moth (*Plutella xylostella*) at the three instar larval stages were released into the cup and the cup was covered with the lid. The cup was held at 25°C and after 5 days, the number of the surviving insects was counted and the mortality of insects was calculated by the following equation.

\[
\text{Mortality of insects (\%) } = \left(\frac{\text{Number of dead insects}}{\text{Number of tested insects}} \right) \times 100
\]

As a result, the experiments treated with the present compounds 45 to 47, 49, 86 and 89 showed 80% as the mortality of insects.

[0935]

Test example 34

The testing drug solutions to be used in this Test example were prepared by diluting the formulations prepared according to the above-mentioned Formulation examples with an ion-exchange water so that the active ingredient concentration was set to 500 ppm.

A bottom of a polyethylene cup having 5.5 cm of diameter was lain with filter paper with the same size as the bottom and thereto was added dropwise the above-
mentioned testing solutions 0.7 mL onto the filter paper and sucrose 30 mg as feed was placed uniformly thereon. Two (2) heads of male German cockroach (Blattella germanica) were released into the polyethylene cup and the cup was covered with the lid. After 6 days, the life and death of the insects of the German cockroach was observed. As a result, the experiment treated with the present compound 77 showed 100% as the mortality of insects.

Comparative Test example

A plastic pot was filled with soils and thereto was seeded barley (cv; Mikamo Golden) and the plants were grown in a greenhouse for 7 days. A control compound, 1-(2-[(1-(4-fluorophenyl)-1H-pyrazole-3-yl)oxymethyl]phenyl)-4-methyl-1, 4-dihydropyrazole-5-one was made to a formulation according to the above-mentioned Formulation examples and was then diluted with water so as to make a predetermined concentration (50 ppm). The dilutions were sprayed to foliar parts so as to adhere adequately on the leaves of the above-mentioned barley. After spraying the dilutions, the plants were air-dried and after 2 days, an aqueous suspension of the spores of barley net blotch fungi (Pyrenophora teres) was spraying-inoculated. After inoculation, the plants were placed in a greenhouse of 23°C during daytime and 20°C during nighttime under a high
humidity for 3 days and were then cultivated in the greenhouse for 7 days, and a lesion area was observed. As a result, the lesion area in plants treated with the control compound, 1-(2-[1-(4-fluorophenyl)-1H-pyrazole-3-yl]oxymethyl)phenyl)-4-methyl-1,4-dihydrotetrazole-5-one showed 70% or more compared to the lesion area in an untreated plant.
1. A tetrazolinone compound of a formula (1):

![Chemical Structure](attachment:image.png)

wherein:

- R^1 represents an C6-C16 aryl group optionally having one or more atoms or groups selected from Group P, an C1-C12 alkyl group optionally having one or more atoms or groups selected from Group P, a C3-C12 cycloalkyl group optionally having one or more atoms or groups selected from Group P, an C2-C12 alkenyl group optionally having one or more atoms or groups selected from Group P, an C3-C12 cycloalkenyl group optionally having one or more atoms or groups selected from Group P, an C2-C12 alkynyl group optionally having one or more atoms or groups selected from Group P, an C2-C12 acyl group optionally having one or more atoms or groups selected from Group P or a hydrogen atom (with the proviso that when the C6-C16 aryl group, the C1-C12 alkyl group, the C3-C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12 cycloalkenyl group, the C2-C12 alkynyl group or the C2-C12 acyl group has two or more atoms or groups selected from Group P, the substituents...
consisting of the atoms and the groups may be same or different to each other);

R² and R³ represent independently of each other a hydrogen atom, an C₁-C₃ alkyl group, a C₁-C₃ haloalkyl group, an C₂-C₁₂ alkoxy carbonyl group, a hydroxycarbonyl group, or a halogen atom;

R⁴ and R⁵ represent independently of each other a hydrogen atom, a halogen atom or an C₁-C₃ alkyl group;

R₆ represents an C₁-C₆ alkyl group, a C₃-C₆ cycloalkyl group, a halogen atom, a C₁-C₆ haloalkyl group, an C₂-C₆ alkenyl group, an C₁-C₆ alkoxy group, an C₁-C₆ alkylthio group, an C₂-C₆ alkynyl group, a nitro group, a cyano group, an aminocarbonyl group optionally having C₁-C₆ alkyl group, a C₂-C₆ haloalkenyl group, a C₂-C₆ haloalkynyl group, a C₃-C₆ halocycloalkyl group, a C₁-C₆ haloalkoxy group, a C₁-C₆ haloalkylthio group, a C₃-C₆ cycloalkyloxy group, a C₃-C₆ halocycloalkyloxy group, a C₃-C₆ cycloalkylthio group, an C₃-C₆ alkenyloxy group, an C₃-C₆ alkynyloxy group, a C₃-C₆ haloalkenyloxy group, a C₃-C₆ haloalkynylthio group, an C₃-C₆ alknylthio group, an C₂-C₆ acyl group, a C₂-C₆ haloacyl group, an C₂-C₆ acyloxy group, an C₂-C₆ acylthio group, an C₂-C₆ acylthio group, an C₂-C₆ alkoxy carbonyl group, a hydroxyl group, a thiol group, an amino group, an
C1-C6 alkylamino group, a pentafluorosulfuranyl group, a C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C4 alkylsulfonyl group, a C1-C4 haloalkylsulfonyl group, an C1-C4 alkylsulfinyl group, a C1-C4 haloalkylsulfinyl group, an C2-C5 alkoxyalkyl group, or an C2-C5 alkylthioalkyl group;

R7, R8 and R9 represent independently of each other a hydrogen atom, a halogen atom, an C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C5 cycloalkyl group, a C3-C5 halocycloalkyl group, an C1-C4 alkoxy group or a C1-C4 haloalkoxy group;

R10 represents an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, an C2-C6 haloalkenyl group, an C2-C6 alkoxyalkyl group, a C3-C6 cycloalkyl group or a C3-C6 halocycloalkyl group; and

X represents an oxygen atom or a sulfur atom;

Group P: a group consisting of a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, an C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkythio group, a C3-C6 cycloalkylthio group, a C3-C6 halocycloalkylthio group, a C3-C6 alkenyloxy group, an C3-C6 alkynyloxy group, a C3-C6 alkenylthio group, a C3-C6 alkynythio group.
haloalkenyloxy group, a C3-C6 haloalkynyloxy group, an C3-C6 alkenylthio group, an C3-C6 alkynylthio group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynyloxy group, an C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, a hydroxycarbonyl group, a formyl group, an C2-C6 alkoxy carbonyl group, a nitro group, a cyano group, a hydroxyl group, an C6-C16 aryl group, a C6-C16 haloaryl group, an C6-C16 aryloxy group, a C6-C16 haloaryloxy group, an C6-C16 arylthio group, a C6-C16 haloarylthio group, an C7-C18 aralkyl group, a C7-C18 haloaralkyl group, an C7-C18 aryalkoxy group, a C7-C18 haloarylkalkoxy group, a thiol group, a pentafluorosulfuranyl group, a C3-C12 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C6 alkylsulfonyl group, a C1-C6 haloalkylsulf onyl group, an C6-C16 arylsulfonyl group, a C6-C16 haloarylsulf onyl group, an C1-C6 alkylsulf inyl group, a C1-C6 haloalkylsulf inyl group, an C6-C16 arylsulfinyl group, a C6-C16 haloarylsulf inyl group, an aminosulfonyl group optionally having C1-C6 alkyl group or C6-C12 aryl group, and an aminocarbonyl group optionally having C1-C6 alkyl group.

2. The tetrazolinone compound according to claim 1 wherein

R², R³, R⁴ and R⁵ represent a hydrogen atom;

R¹₀ represents a methyl group; and
X represents an oxygen atom.

3. The tetrazolinone compound according to claim 1 wherein

\(R^1 \) represents an \(\text{C}_6-\text{C}_{16} \) aryl group optionally having one or more atoms or groups selected from Group \(P \) (with the proviso that when the \(\text{C}_6-\text{C}_{16} \) aryl group has two or more atoms or groups selected from Group \(P \), the substituents consisting of the atoms and the groups may be same or different to each other);

\(R^2, R^3, R^4 \) and \(R^5 \) represent a hydrogen atom;

\(R^{10} \) represents a methyl group; and

\(X \) represents an oxygen atom.

4. The tetrazolinone compound according to claim 1 wherein

\(R^1 \) represents an \(\text{C}_{1}-\text{C}_{12} \) alkyl group optionally having one or more atoms or groups selected from Group \(P \), a \(\text{C}_3-\text{C}_{12} \) cycloalkyl group optionally having one or more atoms or groups selected from Group \(P \), an \(\text{C}_2-\text{C}_{12} \) alkenyl group optionally having one or more atoms or groups selected from Group \(P \), a \(\text{C}_3-\text{C}_{12} \) cycloalkenyl group optionally having one or more atoms or groups selected from Group \(P \), a \(\text{C}_3-\text{C}_{12} \) cycloalkenyl group optionally having one or more atoms or groups selected from Group \(P \), an \(\text{C}_2-\text{C}_{12} \) alkynyl group optionally having one or more atoms or groups selected from Group \(P \), an \(\text{C}_2-\text{C}_{12} \) acyl group optionally having one or more atoms or groups selected from Group \(P \) (with the proviso that when the \(\text{C}_{1}-\text{C}_{12} \) alkyl group, the \(\text{C}_3-\text{C}_{12} \) cycloalkenyl group, etc., have two or more atoms or groups, the substituents consisting of the atoms and the groups may be same or different to each other).
C12 cycloalkyl group, the C2-C12 alkenyl group, the C3-C12
cycloalkenyl group, the C2-C12 alkynyl group or the C2-C12
acyl group has two or more atoms or groups selected from
Group P, the substituents consisting of the atoms and the
groups may be same or different to each other);

R2, R3, R4 and R5 represent a hydrogen atom;

R10 represents a methyl group; and

X represents an oxygen atom.

5. The tetrazolinone compound according to claim 1

wherein

R1 represents a group represented by a formula (2):

\[
\begin{array}{c}
\text{R}\text{11} \\
\text{R}\text{12} \\
\text{R}\text{13} \\
\text{R}\text{14} \\
\text{R}\text{15}
\end{array}
\]

(2)

[wherein

R11 represents a halogen atom, a hydrogen atom, an C1-C6
alkyl group, a C1-C6 haloalkyl group, an C2-C6 alkenyl
group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a
C2-C6 haloalkynyl group, an C3-C6 cycloalkyl group, a C3-C6
halocycloalkyl group, an C1-C6 alkoxy group, a C1-C6
haloalkoxy group, an C1-C6 alkylthio group, a C1-C6
haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6
halocycloalkyloxy group, a C3-C6 cycloalkylthio group, a
C3-C6 alkenyloxy group, a C3-C6 alknyloxy group, a C3-C6
haloalkenyloxy group, a C3-C6 haloalkenyloxy group, an C3-
C6 alkenylthio group, an C3-C6 alkynylthio group, a C3-C6 haloalkenylthio group, a C3-C6 haloalkynylthio group, an C2-C6 acyl group, C2-C6 haloacyl group, C2-C6 acyloxy group, C2-C6 acylthio group, a hydroxycarbonyl group, formyl group, C2-C6 alkoxyacarbonyl group, a nitro group, a cyano group, a hydroxyl group, an C6-C16 aryl group, a C6-C16 haloaryl group, an C6-C16 aryloxy group, a C6-C16 haloaryloxy group, an C6-C16 arylthio group, a C6-C16 haloarylthio group, an C7-C18 aralkyl group, a C7-C18 haloaralkyl group, an C7-C18 arylalkoxy group, a C7-C18 haloarylalkoxy group, a thiol group, a pentafluorosulfuryl group, a C3-C12 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C6 alkylsulfonyl group, a C1-C6 haloalkylsulfonl group, an C6-C16 arylsulfonyl group, a C6-C16 haloaryl sulfonyl group, an C1-C6 alkylsulfenyl group, a C1-C6 haloalkylsulfenyl group, an C6-C16 arylsulfenyl group, an aminosulfonyl group optionally having C1-C6 alkyl group or C6-C12 aryl group, or an aminocarbonyl group optionally having C1-C6 alkyl group; and

R12, R13, R14 and R15 represent independently of each other a hydrogen atom or a halogen atom;

R2, R3, R4 and R5 represent a hydrogen atom;

R7, R8 and R9 represent independently of each other a hydrogen atom or fluorine atom;
R represents a methyl group; and
X represents an oxygen atom.

6. The tetrazolinone compound according to claim 5 wherein
R^6 represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkythio group or an C1-C4 alkylamino group;

R^7, R^8 and R^9 represent independently of each other a hydrogen atom;

R^11 represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkythio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group.

7. The tetrazolinone compound according to claim 6 wherein
R^6 represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C2-C3 alkynyl group or a C1-C3 haloalkoxy;

R^11 represents a halogen atom, a hydrogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C1-C3 alkoxy group, a C1-C3 alkylthio group, a C1-C3 haloalkoxy group, a C1-C3 haloalkythio group, an C1-C3 haloalkoxy group, an C1-C3 alkylamino group;
a C1-C3 haloalkyl thio, a nitro group or a cyano group.

8. The tetrazolinone compound according to claim 6 wherein

R⁶ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

R¹¹ represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R¹², R¹³, R¹⁴ and R¹⁵ represent independently of each other a hydrogen atom or a fluorine atom.

9. The tetrazolinone compound according to claim 1 wherein

R¹ represents a group represented by a formula (2):

\[
\begin{array}{c}
\text{R}^{12} \\
\text{R}^{11} \\
\text{R}^{13} \\
\text{R}^{14} \\
\text{R}^{15}
\end{array}
\]

(2)

[wherein

R¹¹ represents a halogen atom, a hydrogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, an C1-C3 alkoxy group, a C1-C3 haloalkoxy group, an C1-C3 alkythio group, a C1-C3 haloalkylthio group, a nitro group or a cyano group;

R², R³, R⁴, R⁵, R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom or a halogen atom] ;
each other a hydrogen atom;

\(R^6 \) represents an C1-C3 alkyl group, a halogen atom, a C1-C3 haloalkyl group, an C1-C3 alkoxy group or a C1-C3 haloalkoxy group;

\(R^{10} \) represents a methyl group; and

\(X \) represents an oxygen atom.

10. The tetrazolinone compound according to claim 9 wherein

\(R^{11} \) represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

\(R^{12}, R^{13}, R^{14} \) and \(R^{15} \) represent independently of each other a hydrogen atom or a fluorine atom;

\(R^6 \) represents a methyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group.

11. The tetrazolinone compound according to claim 1 wherein

\(R^6 \) represents an C3-C6 cycloalkyl group, an C2-C6 alkenyl group, a C2-C6 haloalkenyl group, an C2-C6 alkynyl group, a C2-C6 haloalkynyl group, a C3-C6 halocycloalkyl group, an C1-C6 alkylthio group, a Cl-CG haloalkylthio group, a C3-C6 cycloalkyloxy group, a C3-C6 halocycloalkyloxy group, a C3-C6 cycloalkylthio group, an C3-C6 alkenyloxy group, a C3-C6 alknyloxy group, a C3-C6 haloalkenyloxy group, a C3-C6 haloalkynylthio group, a C3-C6 alkenylthio group, an C3-C6 alkynylthio group, a C3-C6
haloalkenylthio group, a C3-C6 haloalkynylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, an C2-C6 acyloxy group, an C2-C6 acylthio group, an C2-C6 alkoxy carbonyl group, a hydroxyl group, a thiol group, an amino group, an C1-C6 alkylamino group, a pentfluorosulfuranyl group, a C3-C9 trialkylsilyl group, a C5-C14 trialkylsilylethynyl group, an C1-C4 alkylsulfonyl group, a C1-C4 haloalkylsulf onyl group, an C1-C4 alkylsulfinyl group, a C1-C4 haloalkylsulf inyl group, an C2-C5 alkoxy alkyl group, an C2-C5 alkylthio alkyl group or an aminocarbonyl group optionally having C1-C6 alkyl group.

12. The tetrazolinone compound according to claim 1 wherein

\[R^1 \text{ represents a group represented by a formula } (3): \]

\[
\begin{array}{c}
\begin{array}{c}
\text{R}^{30} \\
\text{R}^{31} \\
\text{R}^{32} \\
\text{R}^{33} \\
\text{R}^{34}
\end{array}
\end{array}
\]

(3)

[wherein

\(R^{31} \) represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkythio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

\(R^{30}, R^{32}, R^{33} \) and \(R^{34} \) represent independently of each other a hydrogen atom or a halogen atom;]
R², R³, R⁴ and R⁵ represent independently of each other a hydrogen atom;

R⁶ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom;

R₁⁰ represents a methyl group; and

X represents an oxygen atom.

13. The tetrazolinone compound according to claim 12 wherein

R⁶ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C2-C3 alkynyl group or a C1-C3 haloalkoxy group;

R¹¹ represents an C1-C3 alkoxy group, a halogen atom, a hydrogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, a C1-C3 haloalkoxy group, an C1-C3 alkylthio group, a C1-C3 haloalkylthio group or a nitro group or a cyano group.

14. The tetrazolinone compound according to claim 12 wherein

R⁶ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy...
group;

R^{31} represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R^{30}, R^{32}, R^{33} and R^{34} represent independently of each other a hydrogen atom or a fluorine atom.

15. The tetrazolinone compound according to claim 1 wherein

R^1 represents a group represented by a formula (4):

\[
\begin{array}{c}
\text{R}^{36} \\
\text{R}^{35} \\
\text{R}^{38} \\
\text{R}^{32} \\
\text{R}^{37}\\
\end{array}
\]

[wherein

$R^{35}, R^{36}, R^{37}, R^{38}$ and R^{39} represent independently of each other a hydrogen atom, an C1-C6 alkoxy group, a halogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a C3-C4 cycloalkyl group, a C3-C4 cycloalkyloxy group, a nitro group or a cyano group];

R^2, R^3, R^4 and R^5 represent independently of each other a hydrogen atom;

R^6 represents an C1-C3 alkyl group, a C3-G4 cycloalkyl group, a halogen atom, an C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a
C1-C2 haloalkylthio group or an C1-C4 alkylamino group;

R⁷, R⁸ and R⁹ represent independently of each other a hydrogen atom;

R¹⁰ represents a methyl group; and

X represents an oxygen atom.

16. The tetrazolinone compound according to claim 15 wherein

R⁶ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C2-C3 alkynyl group or a C1-C3 haloalkoxy group; and

R³⁵, R³⁶, R³⁷, R³⁸ and R³⁹ represent independently of each other a hydrogen atom, an C1-C3 alkoxy group, a halogen atom, an C1-C3 alkyl group, a C1-C3 haloalkyl group, a C1-C3 haloalkoxy group, an C1-C3 alkylthio group, a C1-C3 haloalkylthio group, a nitro group or a cyano group.

17. The tetrazolinone compound according to claim 15 wherein

R⁶ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group;

R³⁵, R³⁶, R³⁷, R³⁸ and R³⁹ represent independently of each other a hydrogen atom, a methoxy group, a ethoxy group, a halogen atom, a methyl group or an ethyl group.

18. An agent for controlling pests comprising the
tetrazolinone compound according to any one of claims 1 to 17.

19. A method for controlling pests comprising applying an effective amount of the tetrazolinone compound according to any one of claims 1 to 17 to plant or soil.

20. Use of the tetrazolinone compound according to any one of claims 1 to 17 for controlling pests.

21. A tetrazolinone compound represented by a formula (5):

\[
\begin{align*}
\text{R}^{21} & \quad \text{R}^{22} \\
\text{R}^{23} & \quad \text{R}^{24} \\
\text{R}^{25} & \quad \text{R}^{26}
\end{align*}
\]

(wherein

\(\text{R}^{21} \) represents a halogen atom, a hydrogen atom, an \(\text{C}_{1-6} \) alkyl group, a \(\text{C}_{1-6} \) haloalkyl group, an \(\text{C}_{1-6} \) alkoxy group, a \(\text{C}_{1-6} \) haloalkoxy group, an \(\text{C}_{1-6} \) alkylthio group, a \(\text{C}_{1-6} \) haloalkylthio group, an \(\text{C}_{2-6} \) acyl group, a \(\text{C}_{2-6} \) haloacyl group, a nitro group or a cyano group;

\(\text{R}^{22}, \text{R}^{23}, \text{R}^{24} \) and \(\text{R}^{25} \) represent independently of each other a hydrogen atom or a halogen atom; and

\(\text{R}^{26} \) represents an \(\text{C}_{1-3} \) alkyl group, a \(\text{C}_{3-4} \) cycloalkyl group, a halogen atom, a \(\text{C}_{1-3} \) haloalkyl group, an \(\text{C}_{2-3} \) alkenyl group, an \(\text{C}_{1-3} \) alkoxy group, an \(\text{C}_{1-2} \) alkylthio group, an \(\text{C}_{2-3} \) alkynyl group, a \(\text{C}_{1-3} \) haloalkoxy group, a \(\text{C}_{1-2} \) haloalkylthio group or an \(\text{C}_{1-4} \) alkylamino
22. The tetrazolinone compound according to claim 21 wherein

R²¹ represents a halogen atom, a methyl group, an ethyl group or a methoxy group;

R²⁶ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group; and

R²², R²³, R²⁴ and R²⁵ represent independently of each other a hydrogen atom or fluorine atom.

23. A tetrazolinone compound represented by a formula (6):

[wherein

R⁴² represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R⁴¹, R⁴³, R⁴⁴ and R⁴⁵ represent independently of each other a hydrogen atom or a halogen atom;

R⁴⁶ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group,
an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, C1-C2 haloalkylthio group or an C1-C4 alkylamino group].

24. The tetrazolinone compound according to claim 23 wherein

R⁴² represents a methoxy group, a halogen atom, a methyl group or an ethyl group;

R⁴⁶ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group; and

R⁴¹, R⁴³, R⁴⁴ and R⁴⁵ represent independently of each other a hydrogen atom or a fluorine atom.

25. A tetrazolinone compound represented by a formula (7):

[wherein

R⁵³ represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

R⁴², R⁵², R⁵⁴ and R⁵⁵ represent independently of each
other a hydrogen atom or a halogen atom;

\[R^{56} \text{ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group} \].

26. The tetrazolinone compound according to claim 25 wherein

\[R^{53} \text{ represents a methoxy group, an ethoxy group, a halogen atom, a methyl group or an ethyl group}; \]

\[R^{56} \text{ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group}. \]

27. A tetrazolinone compound represented by a formula (8):

\[
\begin{array}{c}
\text{H} \\
\text{A} \\
\text{H} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{R}^{28} \\
\end{array}
\]

[wherein

\[R^{27} \text{ represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino} \]
R28 represents a methyl group or a hydrogen atom;

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C3 alkylthio) methyl group, an (C1-C6 acyloxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16 arylsulfonxyloxy) methyl group, an (C6-C16 haloaryl sulfonxyloxy) methyl group, an (C1-C6 alkylamino) methyl group, a methyl group having a heterocyclyl group (with the proviso that the heterocyclyl group includes one or more nitrogen atoms as ring-constituent atom and may further include one or more oxygen atoms or sulfur atoms, and the nitrogen atom being the ring-constituent atom for the heterocyclyl group and a methyl group connects to each other), a formyl group or an C2-C6 alkoxy carbonyl group).

28. The tetrazolinone compound according to claim 27 wherein

R27 represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group; and

A represents a methyl group, a halomethyl group, a hydroxymethyl group, an (C1-C3 alkoxy) methyl group, an (C1-C6 alkylsulfonxyloxy) methyl group, an (C6-C16...
arylsufonyloxy) methyl group, a formyl group or an C2-C6 alkoxy carbonyl group.

29. The tetrazolinone compound according to claim 27 wherein

R^{27} represents a methyl group, an ethyl group, a halogen atom, a trifluoromethyl group or a methoxy group; and

A represents a methyl group, a chloromethyl group or bromomethyl group.

30. The tetrazolinone compound according to claim 27 wherein

R^{27} represents an C2-C3 alkyl group, a C3-C4 cycloalkyl group, an C2-C3 alkenyl group, an C2-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkylnyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group.

31. A pyrazole compound represented by a formula (9):

\[
\begin{array}{c}
\text{R}^{211} \text{R}^{221} \text{R}^{231} \\
\text{R}^{241} \text{N} \text{O} \\
\text{H} \text{H} \\
\text{H} \text{H} \\
\text{L}^{1}
\end{array}
\]

[wherein

R^{211} represents a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, an C1-C6 alkoxy group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6
haloacyl group, a nitro group or a cyano group;

\(R^{221}, R^{231}, R^{241} \) and \(R^{251} \) represent independently of each other a hydrogen atom or a halogen atom;

\(R^{261} \) represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

\(L^1 \) represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON\(_3\), CONH\(_2\), CONHC\(_1\), CONHBr or CONHOH).

32. The pyrazole compound according to claim 31 wherein

\(R^{211} \) represents a halogen atom, a methyl group, an ethyl group or methoxy group;

\(R^{251} \) represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group; and

\(R^{221}, R^{231}, R^{241} \) and \(R^{251} \) represent independently of each other a hydrogen atom or fluorine atom.

33. A pyrazole compound represented by a formula (10):
wherein

R⁴²¹ represents an C₁-C₆ alkoxy group, a halogen atom, a hydrogen atom, an C₁-C₆ alkyl group, a C₁-C₆ haloalkyl group, a C₁-C₆ haloalkoxy group, an C₁-C₆ alkylthio group, a C₁-C₆ haloalkyl thio group, an C₂-C₆ acyl group, a C₂-C₆ haloacyl group, a nitro group or a cyano group;

R⁴¹, R⁴³¹, R⁴⁴¹ and R⁴⁵¹ represent independently of each other a hydrogen atom or a halogen atom;

R⁴⁶¹ represents an C₁-C₃ alkyl group, a C₃-C₄ cycloalkyl group, a halogen atom, a C₁-C₃ haloalkyl group, an C₂-C₃ alkenyl group, an C₁-C₃ alkoxy group, an C₁-C₂ alkylthio group, an C₂-C₃ alkynyl group, a C₁-C₃ haloalkoxy group, a C₁-C₂ haloalkylthio group or an C₁-C₄ alkylamino group; and

L² represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C₂-C₆ alkoxycarbonyl group, a halogen atom, a halogenated acyl group, NSO, CON₃, CONH₂, CONHCl, CONHBr or CONHOH.

34. The pyrazole compound according to claim 33 wherein

R⁴²¹ represents a methoxy group, a halogen atom, a methyl group or an ethyl group,

R⁴⁶¹ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group or a methoxy group; and

R⁴¹, R⁴³¹, R⁴⁴¹ and R⁴⁵¹ represent independently of each
other a hydrogen atom or a fluorine atom.

35. A pyrazole compound represented by a formula (11):

\[
\begin{array}{c}
R^{531} \quad R^{521} \quad R^{511} \\
R^{541} \\
R^{531} \quad R^{541} \quad R^{511}
\end{array}
\]

[wherein

\(R^{531} \) represents an C1-C6 alkoxy group, a halogen atom, a hydrogen atom, an C1-C6 alkyl group, a C1-C6 haloalkyl group, a C1-C6 haloalkoxy group, an C1-C6 alkylthio group, a C1-C6 haloalkylthio group, an C2-C6 acyl group, a C2-C6 haloacyl group, a nitro group or a cyano group;

\(R^{511}, R^{521}, R^{541} \) and \(R^{551} \) represent independently of each other a hydrogen atom or a halogen atom;

\(R^{561} \) represents an C1-C3 alkyl group, a C3-C4 cycloalkyl group, a halogen atom, a C1-C3 haloalkyl group, an C2-C3 alkenyl group, an C1-C3 alkoxy group, an C1-C2 alkylthio group, an C2-C3 alkynyl group, a C1-C3 haloalkoxy group, a C1-C2 haloalkylthio group or an C1-C4 alkylamino group; and

\(L^3 \) represents a nitro group, an amino group, an isocyanato group, a carboxyl group, an C2-C6 alkoxy carbonyl group, a halogen atom, a halogenated acyl group, NSO, CON\(_3\), CONH\(_2\), CONHCl, CONHBr or CONHOH].

36. The pyrazole compound according to claim 35 wherein

\(R^{531} \) represents a methoxy group, an ethoxy group, a
halogen atom, a methyl group or an ethyl group; and

R⁵⁶¹ represents a methyl group, a cyclopropyl group, a chlorine atom, a bromine atom, an ethyl group a methoxy group.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D403/12 A01N43/713

According to International Patent Classification (IPC) and to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07D A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 99/05139 AI (BASF AG [DE]; MUELLER BERND [DE]; SAUTER HUBERT [DE]; BAYER HERBERT [D]) 4 February 1999 (1999-02-04) cited in the application on claims 1, 6-8; example 2</td>
<td>1-36</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

16 July 2013

Date of mailing of the international search report

30/07/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Saez Díaz, R

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BR 9810770 A</td>
<td>15-08-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2296729 A</td>
<td>04-02-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 19731153 A</td>
<td>28-01-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0002894 A2</td>
<td>29-01-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 133997 A</td>
<td>12-02-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001510840 A</td>
<td>07-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 338429 A</td>
<td>06-11-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 412000 A3</td>
<td>11-07-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7056941 B1</td>
<td>06-06-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9905139 A1</td>
<td>04-02-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9806421 A</td>
<td>20-01-2000</td>
</tr>
</tbody>
</table>