(51) International Patent Classification:
D06F 39/00 (2006.01) D06F 39/08 (2006.01) A47L 15/42 (2006.01)

(21) International Application Number:
PCT/EP2012/075990

(22) International Filing Date:
18 December 2012 (18.12.2012)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
201120577597.8 31 December 2011 (31.12.2011) CN

(71) Applicant (for all designated States except US): BSH BOSCH UND SIEMENS HAUSGERÄTE GMBH [DE/DE]; Carl-Wery-Str. 34, 81739 Munchen (DE).

(72) Inventors: and
ZIEGLER, Jorg [DE/DE]; WANG, Wenfeng [CN/CN]; No.208 Yaxin Road (No.1ixmenzi Road) Nanjing, Nanjing, Jiangsu 210046 (CN); CHEN, Yan-hong [CN/CN]; 18-1-602,e mei ling,Gulou district,Nanjing,China, Nanjing, Jiangsu 210000 (CN); ZHU, Yanglei [CN/CN]; 8-107,Yuyuan er cun,Xuanwu district,Nanjing, China, Nanjing, Jiangsu 210000 (CN).

(74) Common Representative: BSH BOSCH UND SIEMENS HAUSGERÄTE GMBH; Postfach 83 01 01, 81701 Munchen (DE).


Title: LAUNDRY PROCESSOR BY USE OF CIRCULATING WATER

Abstract: The invention relates to a laundry processor (1) by use of circulating water, which is provided with a water storage device (4) for containing circulating water. The water storage device (4) has a water outlet (6) located at a bottom of the water storage device (4), the water outlet (6) includes a movable wall (63, 82), and the movable wall (63, 82) is disposed in a drainage passage (61, 81) tending to compress the water outlet (6) under the effect of water pressure. When more water is stored in the water storage device (4), a greater water pressure acting force is applied on the movable wall (63, 82), and the drainage passage (61, 81) of the water outlet (6) becomes narrower. When the water level in the water storage device (4) declines gradually, the water pressure acting force on the movable wall (63, 82) decreases gradually, and the drainage passage (61, 81) of the water outlet (6) becomes wider gradually. Therefore, water flow of the drainage passage (61, 81) can maintain a stable state.

FIG. 1
Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
LAUNDRY PROCESSOR BY USE OF CIRCULATING WATER

The present invention relates to a structure of a circulating water storage device in a laundry processor, and in particular, to the design of a water outlet of a water storage device.

A washing machine using recycled water is available in the prior art. Generally, a circulating water storage device is disposed in the washing machine. An upstream of the water storage device is connected to a laundry processing barrel of the washing machine through a water pump, and a downstream is connected to a water device such as a laundry processing barrel or a condenser, thereby utilizing water used in the previous operation of the washing machine for a second time or for several times, and achieving the goal of saving water resources.

Because a water outlet of the water storage device is generally located at the bottom, water flow is greatly affected by the water level in the water storage device. When the water level is high, the water pressure near the water outlet is high and the water flow is great. As water flows out, the water level declines, the water pressure near the water outlet is reduced, and the water flow becomes smaller.

The unstable flow is adverse to reasonable utilization of water in some cases. For example, it is common to use secondary water for condensation in the drying process; in this case, the water outlet of the water storage device is connected to a condensation passage to cool drying air passing through the condensation passage, so that water vapor carried in the drying air is cooled and condensed and separated from the air. The excessive supply of the secondary water for condensation causes an unnecessary waste, and the insufficient supply fails to produce an expected drying effect. When the water storage device in the prior art is used to provide cooling water to the condensation passage, the cooling water flow inevitably becomes smaller, thereby failing to achieve an ideal utilization effect.

An objective of the present invention is to stabilize the flow at a water outlet of a circulating water storage device.
Accordingly, the present invention provides a solution as defined in the independent claim attached. Preferred embodiments of the invention are subjects of dependent claims, the subsequent disclosure and the drawing attached.

Therefore the invention adopts the following technical solution: A laundry processor by use of circulating water is provided with a water storage device for containing the circulating water. The water storage device has a water outlet located at the bottom of the water storage device. The water outlet includes a movable wall, and the movable wall is disposed into a drainage passage tending to compress the water outlet under the effect of water pressure.

Preferably, the movable wall is made of an elastic material. The elastic material may be rubber.

Preferably, the laundry processor further includes a condensation passage. The water outlet of the water storage device is connected to the condensation passage, to supply cooling water to the condensation passage.

Preferably, the laundry processor further includes a laundry processing barrel. An upstream of the water storage device is connected to the laundry processing barrel through a water pump.

Compared with the prior art, the present invention has the following the advantages: when more water is stored in the water storage device, a greater water pressure acting force is applied on the movable wall. Thus the drainage passage of the water outlet becomes narrower. When the water level in the water storage device declines gradually, the water pressure acting force on the movable wall decreases gradually, and the drainage passage of the water outlet becomes wider gradually. It can be seen that, when the water pressure near the water outlet is great, the drainage passage is narrow, and when the water pressure is small, the drainage passage is wide. Therefore, the water flow of the drainage passage can maintain a stable state, thereby overcoming the deficiency mentioned in background of the invention.
The following disclosure uses a washing and drying machine as an example for further describe preferred embodiments of the present invention with reference to the accompanying drawing. In the drawing,

5 FIG. 1 is a composition block diagram of a washing and drying machine;

FIG. 2 is a cross-section diagram of a first embodiment of a water outlet of a water storage device;

10 FIG. 3A is a front view of a second embodiment of a water outlet of a water storage device; and

FIG. 3B is a cross-section diagram along A-A of second embodiment of a water outlet of a water storage device.

As shown in FIG. 1, a laundry processor 1 as embodied in a washing and drying machine 1 includes a laundry processing barrel or tub 2, and the bottom of the laundry processing barrel 2 is connected to a water inlet 5 of a water storage device 4 through a water pump 3. Water outlets 6 and 8 located at the bottom of the water storage device 4 are connected to a condensation passage 7, to supply cooling water to the condensation passage 7, so as to cool drying air passing through the condensation passage 7. The condensation passage 7 is connected to the laundry processing barrel 2. In the laundry drying process in the laundry processing barrel 2, hot and damp drying air carrying moisture enters from the bottom of the condensation passage 7, and after cooled by the cooling water, the moisture in the drying air is condensed and separated. The rest of relatively dry air re-enters the laundry processing barrel 2 from the top of the condensation passage 7, and enters next circulation.

As shown in FIG. 2, a first embodiment of the water outlet 6 of the water storage device 4 includes a drainage passage 61. The drainage passage 61 is provided with a fixed wall 62 made of a hard material and an elastic wall 63 made of an elastic material. The elastic wall 63 tends to compress the drainage passage 61 under the effect of water pressure in the water storage device 4, and the compressed degree of the drainage passage 61 increases and decreases as the water pressure increases and decreases.
Therefore, when more water is stored in the water storage device 4, a greater water pressure acting force is applied on the elastic wall 63, and the drainage passage 61 becomes narrower; as the water level in the water storage device 4 declines gradually, the water pressure acting force on the elastic wall 63 decreases gradually, and the drainage passage 61 becomes wider gradually.

As shown in FIG. 3A and FIG. 3B, a first embodiment of a water outlet 8 of a water storage device 4 includes a drainage passage 81. A wall of the drainage passage 81 includes several elastic strips 82 concentrated inwardly to form a taper. The top of the taper is oriented toward the inside of the water storage device 4. Therefore, under the effect of the pressure of water 83, the elastic strips 82 are concentrated inwardly, and compress the drainage passage 81. Compression of the drainage passage 81 increases and decreases as the water pressure increases or decreases. When more water is stored in the water storage device 4, a greater water pressure acting force is applied on the elastic strips 82; accordingly the elastic strips 82 are more concentrated inwardly, and the drainage passage 81 is narrower; as the water level of the water storage device 4 declines gradually, the water pressure acting force on the elastic strips 82 decreases gradually, and the drainage passage 81 becomes wider gradually.
CLAIMS

1. A laundry processor (1) by use of circulating water, provided with a water storage device (4) for containing the circulating water, wherein the water storage device (4) has a water outlet (6) located at a bottom of the water storage device (4), characterized in that the water outlet (6) comprises a movable wall (63, 82), and the movable wall (63, 82) is disposed in a drainage passage (61, 81) tending to compress the water outlet (6) under the effect of water pressure.

2. The laundry processor (1) according to claim 1, characterized in that the movable wall (63, 82) is made of an elastic material.

3. The laundry processor (1) according to claim 2, characterized in that the elastic material is rubber.

4. The laundry processor (1) according to any preceding claim, characterized by comprising a condensation passage (7), wherein the water outlet (6) of the water storage device (4) is connected to the condensation passage (7), to supply cooling water to the condensation passage (7).

5. The laundry processor (1) according to claim 1, characterized by comprising a laundry processing barrel (2), wherein an upstream of the water storage device (4) is connected to the laundry processing barrel (2) through a water pump (3).
A. CLASSIFICATION OF SUBJECT MATTER

INV. D06F39/00 A47L15/42 D06F39/08

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
D06F A47L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

* Special categories of cited documents:

*“A”* document defining the general state of the art which is not considered to be of particular relevance

*“E”* earlier application or patent but published on or after the international filing date

*“L”* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

*“O”* document referring to an oral disclosure, use, exhibition or other means

*“P”* document published prior to the international filing date but later than the priority date claimed

*“T”* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*“X”* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*“Y”* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

Date of the actual completion of the international search

11 Apr I 2013

Date of mailing of the international search report

22/04/2013

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Diáz y Diáz-Caneja
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 69802648 T2</td>
<td>01-08-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0911438 Al</td>
<td>28-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2168712 T3</td>
<td>16-06-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1296335 Bl</td>
<td>25-06-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5031427 A</td>
<td>16-07-1991</td>
</tr>
</tbody>
</table>