Abstract:
The invention relates to an active ingredient and/or to a composition having beneficial effect on neurological and cognitive functions.
COMPOSITION COMPRISING VICENIN-2 HAVING A BENEFICIAL EFFECT ON NEUROLOGICAL AND/OR COGNITIVE FUNCTION

Technical field
The invention relates to a food, a dietary supplement and a drug composition comprising as an active ingredient vicenin 2 or a biologically active analogue thereof, and especially its beneficial effects to maintain and/or improve neurological and brain function and to prevent, delay onset, control and/or treat a cognitive dysfunction, condition, disorder or disease, e.g. dementia such as Alzheimer disease.

Background of the invention
Maintenance or improvement of neurological and brain functions is important to vitality and well being throughout all stages of life but particularly important for elderly people. The efficiency of each person's neurological and brain functions can make all the difference in daily and overall health. The ability of cognitive functions, including memory, attention, concentration, alertness, mental flexibility and speed, learning, intelligence, language, problem solving capacity, consciousness, coping with psychological stress or tension, motivation, mobility, decision making and reaction time as well as emotions like anxiety and mood swings affect social and economical status and the overall quality of life. The wish to extend cognitive capacity longer, frame a lifelong challenge, as everybody is effected by aging. In addition, there is an increasing number of individuals, who develop neurodegenerative diseases, like dementia or Alzheimer disease. [1, 2]

Dementia can be divided into three types, referring to their cause of development. The first type is called vascular dementia, caused by reduced circulation; the second type is called secondary dementia, generated as a side effect of e.g. hormonal disorders and the third one, is Alzheimer. Alzheimer disease is the most common form of dementia, forming up to 60% of the cases. There is no cure for the disease, which worsens as it progresses, and eventually leads to death.

Alzheimer is a devastating neurological disorder that affects more than 37 million people worldwide. The economic burden of Alzheimer's disease is massive and currently approved drugs do not prevent or reverse the disease and provide only modest symptomatic benefits. [3]

The pathogenesis of Alzheimer disease is not completely understood. Major characteristics of Alzheimer's disease (AD) are synaptic loss, cholinergic dysfunction, and abnormal protein
depositions in the brain. A combination of several causes may lead to the development of plaques in the brain, which decrease the efficiency of neuronal communication leading to death of neurons. Scientifically these plaques are called "beta amyloid peptides" or "Tau-proteins". [3, 4] Recent studies confirmed that a genetic disposition may be involved and/or infection may contribute to the formation of plaques and the development of Alzheimer disease. The decline in neurological and brain functions is linked to the reduced number of neurons, which lead to a reduced synthesis of the neurotransmitter acetylcholine and glutamine. The increase of neurotransmitter concentration, by inhibiting its metabolism is a possibility to promote beneficially the neurological and brain function or to reduce the development of dementia like Alzheimer disease. [4]

Not many drugs are approved for the treatment of dementia such as Alzheimer. Four approved drugs target the increase of neurotransmitter concentration. Recent drug developments and areas of clinical research focus on treating the cause of the disease by reduction of amyloid beta levels. Immunotherapy or vaccinations with anti-amyloid antibodies are being investigated. Another substance, called PBT2 binds metals which are necessary for building of protein structures forming the plaques. Other proteins may have the ability to cut amyloid beta into small pieces, which can be eliminated. In addition, gab junction antagonists are being investigated. They block confused communication between cells to promote a healthy neurological and brain functionality. [3, 4] As of 2012, more than 1000 clinical trials have been or are being conducted to find ways to treat Alzheimer disease. [11] Despite considerable efforts by academic researchers and pharmaceutical and food industry, the development of novel ingredients for the maintenance and improvement of neurological and brain function and to prevent the development and to slow down the progression of dementia and Alzheimer disease has been dragging and did not lead to many innovations. Thus, there is a need to develop drugs, functional foods and dietary supplement ingredients which may contribute to the maintenance and improvement of neurological and brain function and which may prevent the development of cognitive disorders or slow down the progression of dementia and Alzheimer disease.

The object for the present invention was to provide novel active ingredients suitable as functional food, dietary supplement ingredients and drugs, which are able to maintain and improve neurological and brain function and to prevent, delay onset, control and treat cognitive dysfunctions, conditions, disorders or diseases, in particular dementia such as Alzheimer disease.
Summary of the invention

In accordance with the present invention it has been surprisingly found that the active ingredient vicenin 2 or biologically active analogues thereof and compositions comprising the same have beneficial effects on cognitive functions including memory, attention, concentration, alertness, mental flexibility and/or speed, learning, intelligence, language, problem solving capacity, consciousness, coping with psychological stress or tension, motivation, mobility, decision making capacity and reaction time as well as emotions like anxiety and mood swings.

Thus, the invention describes a new neurological and cognitive active agent which helps to maintain and/or improve neurological and brain function and/or to prevent and/or improve cognitive changes and to prevent and/or treat cognitive disorders like dementia. Preferably, dementia is Alzheimer disease. The cognitive changes may be stress or age related cognitive changes. These changes may be mild.

In particular, the invention relates to vicenin 2 or a biologically active analogue thereof as an active ingredient for use in maintaining and/or improving neurological and/or brain function and/or preventing, delaying onset, controlling and/or treating a neurological dysfunction, condition, disorder or disease.

Preferably, the neurological condition is associated with impaired neurological and/or brain function. In other words, preferably, the maintaining and/or improving neurological and/or brain function may be associated with a neurological dysfunction, condition, disorder or disease.

Thus, the present invention may relate to vicenin 2 or a biologically active analogue thereof as an active ingredient for use in preventing, delaying onset, controlling and/or treating a neurological dysfunction, disorder, disease or condition, which is associated with impaired neurological and/or brain function.

In a further embodiment, the invention relates to a use of vicenin 2 or a biologically active analogue thereof as an active ingredient for maintaining and/or improving neurological and/or brain function. This embodiment relates to a use of vicenin 2 or a biologically active analogue thereof for healthy individuals, who wish to e.g. enhance cognitive performance and/or improve well-being at stress situations.
In a further embodiment, the invention relates to vicenin 2 or a biologically analogue thereof as an active ingredient for use in improving cognitive functions, memory, attention, concentration, alertness, mental flexibility and/or speed, learning, intelligence, language, problem solving capacity, consciousness, coping with psychological stress or tension, motivation, mobility, decision making capacity, reaction time, anxiety and/or mood swings in a patient suffering from a neurological dysfunction, disorder or disease.

Preferably, the neurological dysfunction, condition, disorder or disease is an age or stress related neurological dysfunction, anxiety, a cognitive disorder, depression or dementia, wherein dementia is preferably Alzheimer disease. Furthermore, the active ingredient is preferably derived from a plant and the active ingredient is a plant preparation enriched for the active ingredient. Preferably, the plant is selected from a group consisting of a Anethum, Perilla, Urtica, Passiflora, Camelia, Cayaponia, Colocasia, Cydonia, Desmodium, Hordeum, Origanum, Ocimum, Jatropha, Parkinsonia, Peperonia, Piheranthos, Centaurea, Indigo, Bomba, Lychnophera, Asplenium, Chinotto, Citrus, Viola, Trigonella, Rosemary, Peppermint, Thyme, Basil, Sage, Oregano, Lavandula, Nipponanthemum, Abrus, Viola, Santalum, Oryza, Scleropyrum, Tulsi, Centaurea, Indigofera, Bombax, Glinus, Lychnophora and other species belonging to the Lamiaceae, Labiatae, and Urticaceae, Rosales or Malpighiales or a combination of said plants.

The plant preparation may be selected from the group consisting of a leaf preparation, a fruit preparation, a seed preparation, a stem preparation, a flower preparation, a bud preparation, a root preparation or a mixture of different parts of the plant.

In one embodiment, the active ingredient is an isolated vicenin 2 or a biologically active analogue thereof obtained by isolation or chemical synthesis.

In a preferred aspect of the present invention, the neurological and/or brain function is selected from the group consisting of memory, attention, concentration, alertness, mental flexibility and/or speed, learning, intelligence, language skills, problem solving capacity, consciousness, coping with psychological stress or tension, motivation, mobility, decision making capacity, reaction time and regulation of emotions. The emotions may be e.g. anxiety and/or mood swings. These functions may be impaired in association with a cognitive disorder such as neurodegenerative disorder or dementia.
The active ingredient may be comprised in a preferred embodiment in a composition such as a food product, dietary supplement or medicament, preferably wherein the medicament comprises a pharmaceutically acceptable carrier. In these aspects, the concentration of the active ingredient is from 0.1 µg to 500 µg, preferably from 2.5 µg to 50 µg, preferably from 5 µg to 15 µg or 12 µg to 30 µg, most preferably about 24 µg.

Most preferably, the active ingredient is administered at a dose of 0.1 - 0.5 µg/kg, 0.17 — 0.42 µg/kg or 0.07 - 0.3 µg/kg.

Furthermore, in a preferred embodiment the active ingredient may be comprised in globules, pellets, powder formulations, tablets, capsules, stick formulations, sachet formulations or a fluid. The fluid may be in a bottle with a dropper.

Preferably, the composition is substantially free of other plant flavonoids derived from the same plant or other plant extracts or free of flavonoids of other plants.

In another preferred embodiment, the composition comprises one or more further agents capable of maintaining and/or improving neurological and/or brain function and/or preventing, delaying onset, controlling and/or treating a neurological dysfunction, condition, disorder or disease as defined in any one of the preceding claims. This agent may be a lipid, a lipid containing omega-3-fatty acid, a physiologically active fatty acid, an antioxidant, an anti-inflammatory agent, a bulking agent, an immune system modulatory agent or a vaccine, an antibody, a metal-protein interaction attenuation agent, a plant preparation, curcumin, coenzym Q10, L-carnitine, zinc, epigallocatechingallate, thymol, p-cymere, vinpocetine, hyperzine A, phosphatidylserine, a vitamin, alpha liponic acid, a TNF alpha inhibitor, a flavonoid, an anthocyanidin, a biflavonoid, a flavon, a flavonglycoside or a carboxylic acid.

Preferably, the plant preparation is selected from one or more extracts from a group consisting of an extract of Ginkgo biloba, Hypericum perforatum, Hyperzia serrata, Galanthus nivalis, Salvia officinalis, Panex ginseng, Lippia citriodora, Melissa officinalis, Passiflora incarnate, Passiflora edulis, Bacopa monniera, Zingiber officinalis, Leucojum aestrum, Concolulus pluricaulis and Centella asiatica, Emblica officinalis, Coptidis Rhizoma, Salvia triloba, Piper nigrum, Trigonella foenum-graecum, Cimicifuga racemosa, Salvia miltiorrhiza, Rhodiola rosea, Habranthus jamesonii, Phycella herbertiana, Rhodophiala mendocina, Zephyranthes filifolia, Stephania pierrei, Kaempfera parviflora, Stephania venosa, Crocus sativus, Salvia species, Bacopa monnieri, Centella asiatica, Ptychopetalum olacoides, Withania somnifera,
Coptis chinensis, Mangifera indica, Polygala caudata, Polygala tenuifolia, Halenia elliptica, Evolvilus alsinoides, Celastrus paniculatus, Clitoria ternatea, Curcuma longa, Acorus calamus, Terminalia chebula, Lycoris radiata, Magnolia officinalis, Biota orientalis, Codonopsis pilosula, Evodia rutaecarpa, Polygonum multiflorum, Aspalathus linearis, Cyclopia species, Adansonia digitata, Sclerocarya birrea, Actinidia chinensis, Matricaria recutita or combinations thereof. In a more preferred embodiment, the plant preparation is a preparation of Melissa officinalis, Rhodiole rosea, Magnifera indica or a Cyclopie species or any combination thereof.

In a preferred embodiment, the agent capable of maintaining and/or improving neurological and/or brain function and/or preventing, delaying onset, controlling and/or treating a neurological dysfunction, condition, disorder or disease is an acetylcholinesterase inhibitor, a NMDA (N-methyl-D-aspartate) receptor inhibitor, a non steroidal anti-rheumatic agent, a neuroleptic agent, a tricyclic antidepressant, an anti-psychotic agent, a gab junction inhibitor, a non selective monoaminoxidase inhibitor, an ABCC1 Transporter, an ADAM 10 protein, methylthioninium chloride, an antibiotic agent, an antiviral agent, a gamma secretase inhibitor, a beta secretase inhibitor, an angiotensin receptor antagonist (ATI antagonist), a cannabinoid, allopregnanolone or an insulin sensitizer.

In a further embodiment the present invention relates to a process of producing a preparation of the active ingredient as defined above comprising the steps of:

a) selection of the raw plant material,

b) preparation of the raw plant material,

c) applying an extraction process using solvent extraction and/or filtration techniques, preferably followed by concentration and/or spray drying of the liquid extract into a powder,

d) determining the concentration of the active ingredient; and

e) selecting the preparation comprising the active ingredient at a concentration of at least 0.01%.

Preferably, the process comprises an extraction process using aqueous solvent extraction, more preferably water extraction.
Preferably, the solvent is water. In a more preferred embodiment, the extraction is carried out at a temperature of 90°C to 125°C and/or the temperature of the solvent is 55°C or above, preferably 70°C or above.

Preferably, the plant is selected from one or more plants of the group consisting of Anethum, Perilla, Urtica, Passiflora, Camelia, Cayaponia, Colocasia, Cydonia, Desmodium, Hordeum, Origanum, Ocimum, Jatropha, Parkinsonia, Peperomia, Pipheranthos, Centaurea, Indigo, Bomba, Lychnophera, Asplenium, Chinotto, Citrus, Viola, Trigonella, Rosemary, Peppermint, Thyme, Basil, Sage, Oregano, Lavandula, Nipponanthemum, Abrus, Viola, Santalum, Oryza, Scleropyrum, Tulsi, Centaurea, Indigofera, Bombax, Glinus, Lychnophora and other species belonging to the Lamiacea, Labiatae, Urticaceae, Rosales or Malpighiales or combinations thereof.

In addition, the invention relates to a preparation of the active ingredient obtainable by the above described process. The preparation may be used as an active ingredient for use in maintaining and/or improving neurological and/or brain function and/or for preventing, delaying onset, controlling and/or treating a neurological dysfunction, condition, disorder or disease as defined in any one of the preceding claims.

Preferably, the preparation comprises the active ingredient at a concentration of at least, 0.02%, more preferably, at a concentration of at least 0.1%, 0.15%, 0.2% or most preferably at a concentration of at least 0.2%, 0.25% or 0.3%.

In some cases, the preparation may comprise the active ingredient at a concentration of at least 0.001%, more preferably, at a concentration of at least 0.002%, 0.005%, 0.008% or preferably at a concentration of at least 0.010%, 0.015% or 0.02%.

In some cases, the preparation may comprise the active ingredient at a concentration of at least 0.2%, more preferably, at a concentration of at least 0.5%, 1.5%, 3.0% or most preferably at a concentration of at least 2.0%, 3.0% or 5.0%.

Detailed descriptions of conventional extraction methods, such as those employed herein can be found in the literature, for example in the book "Industrial Scale Natural Products Extraction", published in 2011 by Wiley-VCH.

The analytical method to determine the vicenin 2 concentration may be e.g. a chromatographic method called high performance liquid chromatography. High performance liquid chromatography (HPLC) is one of the most popular techniques of analytical chemistry.
A UV detector is used, detecting at 320nm. For determining the concentration of vicenin 2, a vicenin 2 reference or its derivates may be used as reference material. For example, apigenin may be used as reference substance and the vicenin 2 content is calculated via the difference in molecule weight and the slope and intercept of the calibration curve for apigenin.

In the process, the raw plant material is preferably Perilla species, more preferably Perilla frutescens Britton var.crispa or var.acuta Kudo. The raw plant material is preferably prepared by drying, cutting and/or milling. Extraction can be preferably done with a raw material which particle size is reduced to lower than 2mm². The solvent may be, preferably, water, methanol, ethanol, propanol, isopropanol, ethyl acetate, hexane, chloroform or dichloromethane. Most preferably an aqueous solvent, preferably water, is used since glycosides, like vicenin 2, which have hygroscopic properties, are extracted by hot water more efficiently than alcohol. Moreover, some volatile, allergenic compounds like Perillaldehyde, Methyleugenol and Myristicin, which may occur in targeted species containing vicenin 2, can be eliminated by hot water.

Ratio of raw material to solvent is preferably between 1:100 to 20:100 and more preferably 2:100 to 10:100.

Extraction can be preferably done by room temperature to up to 150°C. Extraction is more preferably carried out from 90°C to 125°C. In a further preferred embodiment, heat with additional pressure can be used.

In a preferred embodiment the extraction time is 10 min to 2 hours, more preferably from 20 min to 50 min.

Preferably, the plant for the process is selected from one or more plants from the group consisting of Anethum, Perilla, Urtica, Passiflora, Camelia, Cayaponia, Colocasia, Cydonia, Desmodium, Hordeum, Origanum, Ocimum, Jatropha, Parkinsonia, Peperomia, Pheranthos, Centaurea, Indigo, Bombax, Lychnophera, Asplenium, Chinotto, Citrus, Viola, Trigonella, Rosemary, Peppermint, Thyme, Basil, Sage, Oregano, Lavandula, Nipponanthemum, Abrus, Viola, Santalum, Oryza, Scleropyrum, Tulsi, Centaurea, Indigofera, Bombax, Glinus, Lychnophora and other species belonging to Lamiaceae, Labiatae, Urticaceae, Rosales or Malpighiales or combinations thereof.

The process of the invention provides an extract with a higher concentration of the active ingredient as the prior art processes due to concentration of the active ingredient. The higher
concentration is achieved using state of the art extraction equipment, which allows an optimal interaction between the raw material and the extraction solvents. All critical process steps, for example temperature, are controlled in process at any times and adaptations are continuously possible to ensure highest yield for the active ingredient. Due to the selection of the extraction solvents combined with optimized physical conditions it is possible to diminish unwanted substances which may occur naturally in the different raw materials.

In one embodiment, the invention provides a method for maintaining and/or improving neurological and/or brain function and/or for preventing, delaying onset, controlling and/or treating a neurological dysfunction, condition, disorder or disease in a subject in need thereof comprising administering an active ingredient as defined above, the composition as defined above or the preparation as defined above. Preferably, the neurological dysfunction, condition, disorder or disease is an age or stress related neurological dysfunction, anxiety, a cognitive disorder, depression or dementia, wherein preferably the dementia is Alzheimer disease.

In a preferred embodiment, the neurological and/or brain function is selected from the group consisting of memory, attention, concentration, alertness, mental flexibility and/or speed, learning, intelligence, language, problem solving capacity, consciousness, coping with psychological stress or tension, motivation, mobility, decision making capacity, reaction time and regulation of emotions.

In addition, the present invention provides a kit comprising an active ingredient as defined above, the composition as defined above or the preparation as defined above and instructions for administering said composition. Preferably, the kit is for use in maintaining and/or improving neurological and/or brain function and/or preventing, delaying onset, controlling and/or treating a neurological dysfunction, condition, disorder or disease.

The present invention further provides a composition comprising the active ingredient as defined above, the preparation as defined above or the composition as defined above for use in preventing, delaying onset, controlling and/or treating a disorder or disease associated with autonomous neuronal death by blocking the gap junction hemichannel of activated microglia and reducing their glutamate release. Preferably, said disorder or disease is a neurodegenerative disorder, such as Alzheimer disease, Parkinson disease, Huntington disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), viral encephalitis or AIDS. Preferably, said composition comprises or is derived from a plant preparation comprising the
active ingredient. More preferably, the plant preparation is derived from a plant and/or plant preparation as defined above. In this embodiment the composition is preferably Perilla extract.

In a further embodiment, the present invention relates to a composition comprising the active ingredient, i.e. vicenin 2 or biologically active analogue as thereof, as defined above or the preparation as defined above, or the composition as defined above for use in preventing, delaying onset, controlling and/or treating a condition associated with glutamate and tumor necrosis factor a released by activated microglia inducing excitotoxic neuronal death. In this embodiment, the composition is preferably Perilla extract.

Furthermore, the present invention relates to a composition comprising the active ingredient having one or more effects, preferably more than one, more preferably more than two, more than three, more than four or more than five effects, selected from the group consisting of reversible acetylcholinesterase inhibition, blockade of gap junction hemichannels, neuroleptic effect, anti-depressive effect, enkephalin like effect and reduction in TNF alpha for use in maintaining and/or improving neurological and/or brain function and/or preventing, delaying onset, controlling and/or treating neurological dysfunction, condition, disorder or disease. Preferably, said condition is associated with impaired neurological and/or brain function.

In a further embodiment, the invention relates to a vicenin 2 or a functionally active derivative thereof as an active ingredient for use in maintaining and/or improving neurological and/or brain function and/or preventing, delaying onset, controlling and/or treating a neurological dysfunction, condition, disorder or disease, wherein the active ingredient is not derived from Perilla.

**Brief description of the Figures:**

**Figure 1:** Acute effects of vicenin 2 (AUC-V) on the cortical network activity in vitro. Plotted are the spike rate changes for treatment of 9 accumulating concentrations in the range of 10 pg/ml to 300 µg/ml (mean ± standard error, n=17; Student’s paired t-test: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001).

**Figure 2:** Acute effects of Perilla leaf extract (AUC-P) on the cortical network activity in vitro. Plotted are the spike rate changes for treatment of 9 accumulating concentrations in the
range of 10 ng/ml to 1 mg/ml (mean ± standard error, n=15; Student’s paired t-test: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001).

**Figure 3:** A dose-depending effect of a plant extract comprising vicenin 2 was shown to reduce TNFa. TNF alpha secretion [pg/ml] after co-incubation with LPS and Perilla extract of different concentration (^g/ml, 2.5 µg/ml and 50 µg/ml) against 450 µg/ml a benchmark blend, containing e.g. Boswellia extract, Omega 3 fatty acids, ALA and Curcumin.

### Detailed description of the invention

The inventors surprisingly found an agent having beneficial effects on neurological function and brain health, like cognitive functions, including memory, attention, concentration, alertness, mental flexibility and/or speed, learning, intelligence, language, problem solving capacity, consciousness, coping with psychological stress or tension, motivation, mobility, decision making capacity and reaction time as well as emotions like anxiety and mood swings.

In particular, the inventors surprisingly found that vicenin 2 or functionally active derivatives, i.e. biologically active analogues, thereof have beneficial effects to maintain and improve neurological and brain function and to prevent and improve age or stress related cognitive changes, which may be mild, and to prevent and treat cognitive disorders, for example dementia, in particular Alzheimer disease. This efficacy is very beneficial for cognitive functions, including memory, attention, concentration, alertness, mental flexibility and/or speed, learning, intelligence, language skills, problem solving capacity, consciousness, coping with psychological stress or tension, motivation, mobility, decision making and reaction time as well as emotions like anxiety and mood swings.

Although Alzheimer disease develops differently for every individual, there are many common symptoms. Early symptoms are decrease in memory, concentration and alertness, escalating into confusion, mood swings and emotional difficulties, loss in orientation, language problems and loss of long-term memory. Even early symptoms lead to a disconnection to family and society, which triggers mood swings, including aggression as well as anxiety. In the advanced status of Alzheimer disease body functions decrease ultimately leading to death. [4]
The pathogenesis of Alzheimer disease is not completely understood and a combination of several causes may lead to the development of plaques in the brain, which decrease the efficiency of neuronal communication leading to die off of neurons. Scientifically these plaques are called "beta amyloid peptides" or "Tau-proteines". Recent studies confirmed that a genetic disposition may be involved and/or infection may contribute to the formation of plaques and the development of Alzheimer disease. [3, 4]

First-line therapy for all forms of dementia, including Alzheimer, is intellectual activities, such as reading, playing board games, completing crossword puzzles, playing musical instruments, or regular social interaction. Life experiences result in more efficient neural functioning providing the individual a cognitive reserve that delays the onset of dementia manifestations. Physical activity may also be associated with a reduced risk of dementia and the slowdown in progression. Psychosocial therapies to reduce daily stress and anxiety are as important as dietary modifications to increase the intake of antioxidants. [4]

Several dietary supplement products are available to support brain health. Most of them are linked to antioxidant and anti-aging efficacy, for example, long chain omega 3 fatty acids, an physiological active fatty acid, eicosapentanoic acid EPA, docosahexanoic acid DHA, Ginkgo biloba extract, Curcumin or other polyphenols, catechins, flavonoids or phenolic carboxylic acid based plant preparations, including TCMs. Choline and Uridine monophosphate are also used as well as Vitamins, like folic acid and the pyridoxine (B6) and B12, vitamin C, vitamin E and selenium. The functional food products for these areas are-can also be defined as medical food which use and intake is to be recommended and supervised by a medical doctor. The medical food market segment is a developing market segment.

The invention provides a new important possibility of application for brain health, to maintain and improve neurological and brain function and to prevent and improve age or stress related associated cognitive changes, which may be even mild, and to prevent and treat cognitive disorders, dementia and Alzheimer disease.

Surprisingly, as shown by the Examples the active ingredient of the invention and the composition comprising the active ingredient demonstrate a plurality of modes of action beneficial for neurological and/or brain function. Thus, the composition comprising the active ingredient can be used for treating an individual suffering from several conditions. These may include conditions associated with reversible acetylcholinesterase inhibition, blockade of gap junction hemichannels and reduction in TNF alpha. Furthermore, the active ingredient as well
as the composition comprising the same show neuroleptic effect and anti-depressive effects. Therefore, the active ingredient and compositions comprising the same result in a higher success rate in the treatment of an individual suffering from a neurological dysfunction, condition, disorder or disease. The disorder may be a neurodegenerative disorder, preferably Alzheimer disease, Parkinson disease, Huntington disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), encephalitis or AIDS.

In addition to above, the active ingredient may be used in treatment of individuals suffering from more than one dysfunctions, conditions, diseases or disorders. These may include e.g. dementia, in particular Alzheimer disease, a disorder associated to neuronal cell death or inflammation.

A further advantage of the composition of the invention comprising the active ingredient is that it has a plurality of therapeutic properties; i.e. the active ingredient or composition comprising the same has one or more of the following properties (i) an anti-inflammatory effect, (ii) anti-nociceptive effect, (iii) sedative effect, (iv) anxiolytic effect, (v) anti-cancer effect, (vi) immuno-modulation inducing effect and/or (vii) a beneficial effect on cognitive behavior and/or mood.

Definitions

It is to be noted that the term "a" or "an" entity refers to one or more of that entity; for example, "an antibody", is understood to represent one or more antibodies. As such, the terms "a" (or "an"), "one or more", and "at least one" can be used interchangeably herein.

By an "isolated" ingredient, variant, or derivative thereof is intended an agent that is not in its natural milieu. No particular level of purification is required. For example, an isolated active ingredient can be removed from its native or natural environment. Synthetically produced active ingredients are considered "isolated" for purpose of the invention, as are native or synthetic active ingredients which have been separated, fractionated, or partially or substantially purified by any suitable technique.

By "subject" or "individual" or "animal" or "patient" or "mammal", is meant any subject, particularly a mammalian subject, e.g., a human patient, for whom diagnosis, prognosis, prevention, or therapy is desired.

"Maintaining a healthy brain" according to the invention can be understood as maintaining a normal neurological and brain function, wherein the normal cognitive function encompasses
several domains, including memory, attention, concentration, alertness, mental flexibility
and/or speed, learning, intelligence, language, problem solving capacity, consciousness,
coping with psychological stress or tension, motivation, mobility, decision making and
reaction time as well as emotions like anxiety and mood swings.

"Cognitive changes" relate to changes, for example, in memory, attention, concentration,
alertness, mental flexibility and/or speed, learning, intelligence, language, problem solving
capacity, consciousness, coping with psychological stress or tension, motivation, mobility,
decision making and reaction time as well as emotions like anxiety and mood swings. These
changes may be age or stress related. Furthermore, the changes may be mild, moderate or
strong.

"A neurological condition" may refer to a state of an individual having one or more impaired
neurological and/or cognitive functions. This state is milder than a disorder or disease, and
may be caused, for example, by age or stress.

"Prevention of dementia, in particular Alzheimer disease, or improvement of the status of
dementia, in particular Alzheimer disease" according to the invention can be understood as
that the active ingredient has beneficial physiological effects to prevent or improve
neurological function, cognitive functions, including memory, attention, concentration,
alertness, mental flexibility and/or speed, learning, intelligence, language, problem solving
capacity, consciousness, coping with psychological stress or tension, motivation, mobility,
decision making and reaction time as well as emotions like anxiety and mood swings.

"Delaying onset of a dysfunction, condition, disorder or disease" can be understood as shifting
the beginning of the dysfunction, condition, disorder or disease to a later time point.

"Controlling a dysfunction, condition, disorder or disease" means keeping or stabilizing a
dysfunction, condition, disorder or disease at a level, which does not worsen dramatically.

"Dementia" means in this context a significant loss of intellectual abilities such as memory
capacity, severe enough to interfere with social or occupational functioning.

"Alzheimer disease" means in this context a progressive neurologic disease of the brain that
leads to the irreversible loss of neurons and dementia. The clinical hallmarks of Alzheimer's
disease are progressive impairment in memory, judgment, decision making, orientation to
physical surroundings, and language.
"Neurodegenerative diseases" include i.a. Alzheimer disease, Parkinson disease, Huntington disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), encephalitis or AIDS. [21]

Vicenin 2 is a flavonoid having a number of derivatizations. Vicenin 2 or its synonyms Apigenin-6,8-di-C-glycoside, 5,7,4'-Trihydroxyflavone-6,8-di-C-glucoside, 5,7-Dihydroxy-2-(4-hydroxyphenyl)-6,8-bis[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one with the CAS Registry Number 23666-13-9 is a flavonoid found in a number of plant species, Passiflora species, Camelia species, Cayaponia species, Cydonia species, Colocasia species, Desmodium species, Hordeum species, Origanum species, Ocimum species, Jatropha species, Parkinsonia species, Peperomia species, Piheranthos species, Centaurea species, Indigo species, Bomba species, Lychnophora species, Aspleniun species, Chinotto species, Citrus species, Viola species, Trigonella species, species belonging to the Lamiaceae, Labiatae and e.g. Rosemary, Peppermint, Thyme, Basil, Sage, Oregano, Lavandula, Nipponanthemum, Abrus, Viola, Santalum, Oryza, Scleropyrum, Tulsi, Centaurea, Indigofera, Bombax, Glinus, Lychnophora and species belonging to Urticaceae, Rosales or Malpighiales.

The standard process to purify vicenin 2 out of plant material is based on different chromatographic methods known by person skilled in the art and consequently, vicenin 2 may be identified by spectroscopy. These processes can be reviewed in several publications. [13]

So far the literature describes that vicenin 2 has an anti-cancer, anti-inflammatory and anti-nociceptive effect. [12, 13, 14]

"A plant extract comprising vicenin 2 or biologically active analogue thereof is herein understood according to this invention to be an extract comprising vicenin 2 at a concentration which can be measured. The plant extract or preparation preferably comprises the active ingredient preferably at a concentration of at least 0.001%, 0.002%, 0.005%, 0.008%, 0.010% or at least 0.015% or from 0.02% to 0.3%, more preferably from 0.1% to 0.2% and preferably from 0.15% to 0.2%.

In some cases, the preparation may comprise the active ingredient at a concentration of at least 0.001%, more preferably, at a concentration of at least 0.002%, 0.005%, 0.008% or preferably at a concentration of at least 0.010%, 0.015% or 0.02%.
In some cases, the preparation may comprise the active ingredient at a concentration of at least 0.2%, more preferably, at a concentration of at least 0.5%, 1.5%, 3.0% or most preferably at a concentration of at least 2.0%, 3.0% or 5.0%.

As used herein "biologically active derivatives", "biologically active analogues", "functionally active derivatives" or "functionally active analogues", which are used interchangeably herein, of vicenin 2 relate to structurally similar compounds to vicenin 2, e.g. flavone c-glycosides or flavone o-glycosides, in particular, apigenin 7-0- β -glucuronide, apigenin-7-0-[ β-glucuronosyl (1→2 β-glucuronide], luteolin 7-0- [P-glucuronosyl(1→2) β-glucuronide], luteolin 7-0^-[glucuronide or scutellarein O-β-glucuronide (scutellarin), which also show effects beneficial for neurological function and brain health. These effects may include reversible acetylcholinesterase inhibition, blockade of gap junction hemichannels and reduction in TNF alpha. The beneficial effects to neurological function and brain health can be measured as shown in the examples.

There are several possibilities to investigate neurological effects, which are known to the skilled person. In vitro studies, like receptor binding or enzyme inhibition studies, are standard methods known to the person skilled in the art to identify activity and its mode of actions. This kind of test is shown in example 2. In addition it is possible to apply methods, which are known to the person skilled in the art and commonly used within the preclinical development phase of pharmaceutical agents in order to determine neurological activity when testing the acute neuroactive effects of substances on neuronal networks of murine cortex being grown on micro chips. By means of electrophysiological multi-channel recording, electrical potential are compared to benchmarks to identify potential effects as well as side effects. This kind of test is shown in example 1. [15, 16, 17]

Furthermore, in vivo animal and in vivo human studies are used to confirm the effect within the biological system. There are many well established animal tests to investigate neurological abilities like for example the forced swimming test. [18] Computer-based test for the assessment of working and short-term memory and selective attention are many times used to assess cognitive function and progression in cognitive disorders. [19] These kinds of studies are well known for the person skilled in the art.

"The active ingredient" as used herein relates to vicenin 2 or functionally or biologically active derivative or analogue thereof.
In order to induce the beneficial neurological and brain health effects, the concentration of the active ingredient in the composition is 0.1 µg to 500 µg, preferably of 2.5 µg to 50 µg and more preferably of 5 µg to 15 µg or 12 µg to 30 µg, most preferably about 24 µg vicenin 2.

The composition may be a plant preparation or plant extract, most preferably a liquid or powder extract obtained by extraction and comprising vicenin 2.

The composition according to the present invention may be comprised in a functional food product, dietary supplement or in a drug.

"A functional food product" according to this invention is understood to be a food, beverage or infant formular product, which offers, in addition, to nutritional value a health benefit, which supports and improves health and wellbeing or helps to reduce the risk to develop a disease.

"A dietary supplement product" according to this invention is a food product in form of a pill, tablet, capsule, pellet, globule, stick formulation, powder formulation, sachet formulation, powder or liquid form, which are meant to be taken by mouth, and contain substances like vitamins, minerals, foods, plant preparations, amino acids and are intended to supplement the usual intake of these substances via the normal diet.

"A medicament/ drug/ medicine" according to this invention is any substance with the potential to prevent or cure disease or enhance physical or mental welfare. If not stated otherwise the term "drug", "medicine", or "medicament" are used interchangeably herein and shall include but are not limited to all (A) articles, medicines and preparations for internal or external use, and any substance or mixture of substances intended to be used for diagnosis, cure, mitigation, treatment, or prevention of disease of either man or other animals; and (B) articles, medicines and preparations (other than food) intended to affect the structure or any function of the body of man or other animals; and (C) articles intended for use as a component of any article specified in clause (A) and (B). The term "drug", "medicine" or "medicament" shall include the complete formula of the preparation intended for use in either man or other animals containing one or more "agents", "ingredients", "compounds", "substances" or "(chemical) compositions" as and in some other context also other pharmaceutically inactive excipients as fillers, disintegrants, lubricants, glidants, binders or ensuring easy transport, disintegration, disaggregation, dissolution and biological availability of the "drug", "medicine", or "medicament" at an intended target location within the body of man or other animals, e.g., at the skin, in the stomach or the intestine. The terms "agent", "compound" or
"substance" are used interchangeably herein and shall include, in a more particular context, but are not limited to all pharmacologically active agents, i.e. agents that induce a desired biological or pharmacological effect or are investigated or tested for the capability of inducing such a possible pharmacological effect by the methods of the present invention.

"Pharmacologically acceptable carrier" may include, but are not limited to aqueous non-aqueous base solutions, suspensions, emulsions, microemulsions, micellar solutions, gels and ointments. The pharmacologically acceptable carrier may also contain ingredients that include, but are not limited to, saline and aqueous electrolyte solutions; ionic and nonionic osmotic agents such as sodium chloride, potassium chloride, glycerol, and dextrose; pH adjusters and buffers such as salts of hydroxide, hydronium, phosphate, citrate, acetate, borate, and tromethamine; antioxidants such as salts, acids and/or bases of bisulfite, sulfite, metabisulfite, thiosulfite, ascorbic acid, acetyl cysteine, cystein, glutathione, butylated hydroxyanisole, butylated hydroxytoluene, tocopherols, and ascorbly palmitate; surfactants such as lecithin, phospholipids, including but not limited to phosphatidylcholine, phosphatidylethanolamine and phosphatidyl inositol; poloxamers and poloxamines, polysorbates such as polysorbate 80, polysorbate 60, and polysorbate 20, polyethers such as polyethylene glycols and polypropylene glycols; polyvinyls such as polyvinyl alcohol and povidone; cellulose derivatives such as methylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose and hydroxypropyl methylcellulose and their salts; petroleum derivatives such as mineral oil and white petrolatum; fats such as lanolin, peanut oil, palm oil, soybean oil; mono-, di-, and triglycerides; polymers of acrylic acid such as carboxypolymethylene gel, and polysaccharides such as dextran, and glycosaminoglycans such as sodium hyaluronate. Such pharmaceutically acceptable carriers may be preserved against bacterial contamination using well-known preservatives, these include, but are not limited to, benzalkonium chloride, ethylene diamine tetra-acetic acid and its salts, benzethonium chloride, chlorhexidine, chlorobutanol, methylparaben, thimerosal, and phenylethyl alcohol, or may be formulated as a non-preserved formulation for either single or multiple use.

As used herein, the terms "treat" or "treatment" refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological change or disorder, such as the development of a cognitive dysfunction, condition, disorder or disease. Beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilization
(i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. Those in need of treatment include those already with the condition or disorder as well as those prone to have the condition or disorder or those in which the manifestation of the condition or disorder is to be prevented.

These and other embodiments are disclosed and encompassed by the description and examples of the present invention. Further literature concerning any one of the materials, methods, uses and compounds to be employed in accordance with the present invention may be retrieved from public libraries and databases, using for example electronic devices. For example the public database "Medline" or "Pubmed" may be utilized, which is hosted by the National Center for Biotechnology Information and/or the National Library of Medicine at the National Institutes of Health. Further databases and web addresses, such as the virtual library "Martindale's center" are known to the person skilled in the art and can also be obtained using internet search engines.

Several documents are cited throughout the text of this specification. The contents of all cited references (including literature references, issued patents, published patent applications as cited throughout this application and manufacturer's specifications, instructions, etc.) are hereby expressly incorporated by reference; however, there is no admission that any document cited is indeed prior art as to the present invention.

The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific examples which are provided herein for purposes of illustration only and are not intended to limit the scope of the invention.

**EXAMPLES**

The examples which follow further illustrate the invention, but should not be construed to limit the scope of the invention in any way.

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of plant biology, chemistry, biochemistry, physiology and pharmacology which are within the skill of the art.
Example 1: Vicenin 2 and Perilla extract comprising Vicenin 2 and their neurological efficacy

Methods and Compounds

Purpose of this example was the evaluation of the acute neuroactive effects of vicenin 2 (named AUC-V) and of Perilla extract (named AUC-P) comprising and standardized on Vicenin 2 on the neuronal activity of murine frontal cortex networks in vitro by means of electrophysiological multi-channel recordings. In this system, cells or tissues are grown directly on the chip surface and communicate via chemical and electrical signals. The MEA-neurochip allows the non-invasive, long-term, multisite recording of electrical signal patterns of primary neuronal networks. Said MEA-neurochip technology enables the characterization of network activity pattern on the single-cell action-potential level and on the level of complex neuronal networks as the basic functional units. This can also be used as a test system for investigating neuro-physiological properties of compounds. Despite the complexity, the neurophysiological action profiles of neuroactive compounds are sensitive and selective as well as robust and stable, allowing a precise pharmacological "fingerprinting" and the creation of a database of information on well-characterized neuroactive substances. The multiparametric description of the activity pattern changes caused by treatment of a brain-region-specific neuronal network is a sophisticated approach to quantify the complex effects of neuroactive agents, of unknown compounds, and of complex mixtures such as biological extracts. Correlation with well-known neuroactive substances and their specific pattern, available in specific databased, provides novel insights into the possible pharmacological and physiological mechanisms of modes of action of herbal preparations or isolated substances. [15, 16, 17]

In a first step the dose-effect curve of vicenin 2 (AUC-V) and the plant extract (AUC-P) were plotted by means of cumulatively increasing the substance concentration, so that the spectrum of activity of the substance is optimally covered with 9 concentrations. Concentration for Vicenin 2 from 100 fg/ml, 10 pg/ml, 100 pg/ml, 1 ng/ml, 100 ng/ml, 1 µg/ml, 10 µg/ml, 100 µg/ml and 300 µg/ml were used. Concentration for the plant extract from 10 ng/ml, 100 ng/ml, 1 µg/ml, 10 µg/ml, 30 µg/ml, 100 µg/ml, 200 µg/ml, 500 µg/ml, 1 mg/ml were used.
Subsequently, the measurements of the dose-effect curve of the test substances were repeated at least 10 times. The recorded electrical activity patterns were characterized by 200 features and their changes were statistically evaluated.

Afterwards, a further analysis was carried out through a pattern-recognition analysis and through comparison with NeuroProof database to determine relevant mechanisms involved in the frontal cortex activity pattern induced changes by each substance.

Materials
The chemicals 5-fluoro-2'-deoxyuridine + uridine (FDU), and poly-D-lysine were ordered from Sigma-Aldrich Chemical GmbH (Steinheim, Taufkirchen, Germany). DNase I (from bovine pancreas), and laminin were purchased from Roche (Mannheim, Germany), fetal bovine serum from Pan Biotech GmbH (Aidenbach, Germany), and accutase from PAA (Germany). Horse serum and Dulbecco’s Modified Essential Medium (DMEM) were ordered from GIBCO BRL (Paisley, UK).

Microelectrode Array Neurochips
The microelectrode array neurochips (MEA neurochips) were provided by the Center for Network Neuroscience (CNNS) at the University of North Texas. These 5x5 cm² glass chips have a central recording matrix with 64 passive electrodes and indium tin oxide conductors. The hydrophobic insulation material surface was activated by a brief butane flame pulse through a stainless steel mask. Thus, cell attachment on a confined adhesive region (5 mm diameter centered on the electrode array) is ensured. The activated surface regions were coated with poly-D-lysine (25 µg/ml; 30-70kD) and laminin (16 µg/ml). Fabrication techniques and culture methods have been described previously.

Cell Culture
Frontal cortex tissue was harvested from embryonic day 15, or day 14 chr:NMRI mice. After ethyl ether anesthesia, mice were sacrificed by cervical dislocation according to the German Animal Protection Act §4. Neuronal tissue was cultured including the use of DNase I (8000 units/ml) and accutase (10 U/ml) for tissue dissociation. The tissue was dissociated enzymatically with accutase and mechanically with transfer pipettes. The cells were resuspended in DMEM 10/10 (10 % horse and 10 % fetal calf serum) at a density of 1.0 x 10^6 cells/ml, and 400 µl were seeded onto MEA surfaces. Cultures were incubated at 37 °C in a 10% CO₂ atmosphere until ready for use, which usually is four weeks to three months after
seeding. Culture media were replenished three times a week with DMEM containing 10% horse serum. Like in the tissue of origin, networks develop from a mixture of different types of postmitotic neurons and glial cells. The glial cells have important auxiliary functions for the metabolism and for supplying the neurons with ions and nutrients. The developing co-cultures were treated with 5-fluoro-2'-deoxyuridine (25 µM) and uridine (63 µM) for 48 h to prevent further glial proliferation.

The cells growing directly on the neurochips emerge as natural neuronal networks. These are composed of a mixture of neurons and glial cells comparable to the tissue of origin, whereas in interaction with the neurons, the glial cells fulfill various metabolism and transport functions. The neurons were coupled electrically to the neurochip electrodes whereby the action potentials of the cells can be recorded and their amplitudes and the electrical activity pattern can be evaluated.

Activity starts after approximately three to four days in vitro in form of random spiking. Only after establishing a stable activity pattern after 4 weeks, the neuronal networks are employed in substance testing. For this study, cultures between 26 and 29 days in vitro were used.

Multichannel Recording

For extracellular recording, MEA neurochips were placed into sterilized constant-bath recording chambers and maintained at 37 °C. Recordings were made in DMEM/10% horse serum. The pH was maintained at 7.4 with a continuous stream of filtered, humidified airflow with 10% CO₂. Sets of preamplifiers were positioned to either side of the recording chamber. Recording was performed with the multichannel acquisition processor system, a computer-controlled 64-channel amplifier system (Plexon, Inc., Dallas, TX, USA) providing programmable amplification, filtering, switching, and digital signal processing of microelectrode signals. The total system gain used was 10K with a simultaneous 40 kHz sampling rate. The signals routinely recorded by these neurochips are located in a range of 15-1800 µV.

The multichannel signal acquisition system delivered single neuron spike data. Spike identification and separation were accomplished with a template-matching algorithm in real time. This allowed the extracellular recording of action potentials from a maximum of 256 neurons simultaneously.
The action potentials, or "spikes", were recorded in spike trains and are clustered in so-called bursts. Bursts were quantitatively described via direct spike train analysis using the program NeuroEXplorer (Plexon Inc., Dallas, TX, USA) and in-house programs. Bursts were defined by the beginning and end of short spike invents. Maximum spike intervals defining the start of a burst were adjusted from 50 to 150 ms and maximum intervals to end a burst from 100 to 300 ms.

**Multiparametric Data Analysis**

The high content analysis of the network activity patterns provided a multiparametric description characterizing the changes in four categories: general activity, burst structure, synchronicity and oscillatory behavior. The substance-specific activity changes were quantified by calculating for each stable activity phase after substance application a total of 200 activity-describing spike train parameters for these four categories below.

**Statistical Analysis**

Results are expressed as series means ± SEM. The absolute parameters' distributions were tested for normality. The level of significance after compound application was assessed using Student's paired t-test. Significance between two substances or relative to a contained solvent (e.g. DMSO) was assessed using Student's unpaired t-test. P < 0.05 was considered statistically significant.

For direct comparability all parameters were normalized for each experiment and each experimental treatment with regard to the corresponding values of the reference activity (native or after receptor blockade if applicable set to 100%).

For each experiment, the changing spike rate as a function of the concentration was fitted to a one-sigmoidal or multiphasic-sigmoidal dose-response curve given by the equation:

\[ y' = y_{\text{START}} + \frac{y_{\text{END}} - y_{\text{START}}}{1 + \left( \frac{\log(EC_{50}) - \log(x)}{nH} \right)^2} \]

determining the values of the effective concentration causing 10, 50, and 90% effect (EC_{10}, EC_{50}, and EC_{90}) and of the slope (Hill coefficient nH; describes the slope of the curve: a high value corresponds to steep decline which might correspond to functional neurotoxicity). In case of multiphasic response due to several mechanisms of action, the right term is repeatedly added for further phases.
Pattern Recognition and Classification

To clarify the mode of action of the test substance on the activity of cortical networks these experiments were further analyzed using methods of pattern recognition. For each stable concentration activity phase the 200 spike train parameters were normalized by the native reference activity. These data records were computed for the test substances and the reference substances.

Using a feature selection algorithm, on the basis of the reference substances, the 40 most descriptive parameters for all 200 spike train parameters were selected. The rankings of activity features using various score methods based on classification experiments and comparing their total correct predictions were calculated. In this manner, the best results for a MDL (minimal description length) modified algorithm were obtained. A training data set with these 40 spike train parameters was established in the form of data records from the reference substances. An artificial neuronal network, multi layer feed forward network and back propagation algorithm without hidden units was then trained. The respective data records of the four substances were all subsequently classified. A classification against 105 substances in the database was carried out.

Results:

Vicenin 2 showed an effect to induce a decrease of the cortical network activity with an EC50 at 2 pg/ml and a maximum decrease to 80% of the native activity with no affects on the burst structure, however on the oscillatory behaviour of the network. This means that the undesired overload of the cortical networks can be diminished by vicenin 2. These results are shown in figure 1, which illustrates the concentration depending changes in the activity of the cortical network. It could be seen that vicenin 2 has an influence on the neuroactivity.

In addition, the extract comprising vicenin 2 has an effect to induce a decrease of the cortical network activity with an EC50 at 90 ng/ml and 200 µg/ml and a maximum decrease to 16% of the native activity with no affects on the burst structure, however on the oscillatory behaviour of the network. These results are shown in figure 2, which illustrates the concentration depending changes in the activity of the cortical network. It could be seen that the extract comprising vicenin 2 has an influence on the neuroactivity.
In a second step, these activities were further evaluated by a classification against positive controls.

Classifications for vicenin 2 and the Perilla extract

The classification was carried out against 105 substances using the electrophysiological multi-channel recording of vicenin 2 as well as the Perilla extract.

Table 1 shows the summaries of the 10 highest-ranking classifications.

<table>
<thead>
<tr>
<th>AUC-P, all reference</th>
<th>122</th>
<th>AUC-V, all reference</th>
<th>143</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscimol</td>
<td>25</td>
<td>Olanzapine</td>
<td>17</td>
</tr>
<tr>
<td>Eserine</td>
<td>24</td>
<td>Eserine</td>
<td>15</td>
</tr>
<tr>
<td>DPDPE</td>
<td>19</td>
<td>Amisulpride</td>
<td>15</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>18</td>
<td>Enkephalin</td>
<td>14</td>
</tr>
<tr>
<td>Cortisol</td>
<td>14</td>
<td>Sodium dodecyl sulfate</td>
<td>12</td>
</tr>
<tr>
<td>Amitriptyline</td>
<td>13</td>
<td>Atropine methylbromide</td>
<td>12</td>
</tr>
<tr>
<td>Amisulpride</td>
<td>12</td>
<td>Nicotine</td>
<td>12</td>
</tr>
<tr>
<td>Sodium propionate</td>
<td>12</td>
<td>Indatraline</td>
<td>12</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>11</td>
<td>Modafinil</td>
<td>12</td>
</tr>
<tr>
<td>Carbenoxolone</td>
<td>11</td>
<td>DPDPE</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 1. Classification of vicenin 2 (AUC-V) and the extract (AUC-P) against the NeuroProof database. Shown is a ranking of classification results, which means that x-% of all data records of this substance were classified as the respective substance in the left column; DS corresponds to the relative overall ranking.

For example, it was possible to identify a sedative and anxiolytic activity of vicenin 2 as well as of the Perilla extract by the classification against Amisulpride, which is a known neuroleptica. It was also possible to identify a sedative and anxiolytic activity for Perilla extract by classification against Muscimol, which is a known GABA receptor agonist.

Surprisingly, it was also possible to identify an enkephalin-like activity for vicenin 2. Enkephalins are endogenous ligands that bind to the body's opioid receptors to modulate neuronal function, like learning or emotional behaviour, which can be altered by neurodegenerative disorders. In Alzheimer disease, elevated enkephalin levels may reflect compensatory or contribute to cognitive impairments.

Surprisingly, vicenin 2 a well as the extract comprising vicenin 2 showed also an electrophysiological multi-channel recording comparable with the pattern of the positive control eserine and nicotine. The extract shows also an electrophysiological multi-channel recording comparable with the pattern of the positive control eserine. Eserine and analoga are
used in the treatment of Alzheimer disease as reversible acetylcholinesterase inhibitors to improve short term memory. [6, 7]

In addition, surprisingly vicenin 2 and the plant extract comprising the same demonstrated an electrophysiological multi-channel recording comparable with the pattern of the positive control of carboxolone. Carbenoxolone blocks gap junction hemichannel of activated microglia and reduces their glutamate release and consequently diminishes cell autonomous neuronal death in neurodegenerative diseases. Therefore, gap junction inhibitors are beneficial in treatment of neurodegenerative diseases. Carboxolone and analoga are used in the treatment of Alzheimer disease. [10]

Further, both the standardized extract as well as the isolated vicenin 2 demonstrated effects similar to amisulpride, which is a known neuroleptic agent. In addition, the extract showed an effect to anti-depressive amitriptyline and the active ingredient vicenin 2 to the anti-depressives and antipsychotics olanzapine and indatraline. Neuroleptika and antipsychotics are also used as companying therapy of Alzheimer to increase mood and motivation and to decrease anxiety and depression. This demonstrates further the effect of vicenin 2 and a composition comprising it in neurological and/or brain function and/or in maintaining and/or improving neurological and/or brain function and/or preventing, delaying onset, controlling and/or treating a neurological dysfunction, condition, disorder or disease.

Thus, example 1 surprisingly shows for the first time that vicenin 2 and an extract comprising the same (Perilla extract) can be used as a beneficial agent for neurological and brain functions or for the treatment of a cognitive disorder. Cognitive functions include, memory, attention (concentration), alertness, learning, intelligence, language, problem solving capacity, coping with psychological stress or tension, anxiety and mood alterations.

**Example 2: Perilla extract comprising and standardized on vicenin 2 has the ability to reduce TNFα**

This study investigated the efficacy of Perilla extract comprising vicenin 2 to contribute to reduce TNFα levels. The study was designed as an ex vivo study, where human whole blood samples were treated with LPS, a bacterial blend, to stimulate inflammation which leads to an increase of the cytokine TNFα. Furthermore, the effect to reduce TNFα by Perilla extract was measured in comparison to a negative and positive control. Perilla extract demonstrated a dose-depending effect to reduce TNFα (see figure 3).
Surprisingly, the extract as well as the isolated vicenin 2 demonstrated anti-inflammatory effects. Perilla extract demonstrated TNFa inhibiting efficacy within this ex vivo study showing a further beneficial effect in treatment if a cognitive disorder. In addition, TNFa has been recognized to be a gliatransmitter that regulates synaptic function in neural networks. Anti-TNF a treatment may thus lead to cognitive improvement. [8]

Even though anti-inflammatory agents have already been connected with Alzheimer disease, classical anti-inflammatory drugs, like NSAR, which act via the prostaglandin pathway most probably do not work in Alzheimer disease. Inflammation in the brain is mediated rather by activated microglial cells having an increased metabolic activity resulting in the production of proteins, which may contribute to the invasion of plaques. In addition, they produce inflammatory markers, like cytokines. Therefore, inhibition of cytokines, like tumor necrose factor-alpha (TNFa), antioxidants and anti-inflammatory agents may also prevent the formation of amyloid beta, thus having a beneficial effect in Alzheimer disease [8].

Alzheimer is a multiplex disease and each person reacts differently on possible treatments. It is difficult to select the right treatment and therefore, ingredients which combine several mode of actions are preferred. However, before the present invention such agents lacking more than one effective mode of actions were lacking. Surprisingly, the present inventors showed that vicenin 2 and functionally active derivatives thereof as well as plant extracts comprising the same have more than one beneficial mode of actions for neurological and brain functions. This inventive agent may combine synergistically several mode of actions, i.e. at least blocking activity of gap junction hemichannel of activated microglia, inhibiting activity of tumor necrose factor a and inhibiting activity of acetylcholinesterase as well as having neuroleptic, anti-depressive effects and enkephaline like effects, and provides a new treatment possibility to maintain and improve neurological and/or brain function and to prevent and/or improve cognitive changes and to prevent and/or treat cognitive disorders, dementia including Alzheimer disease. The cognitive changes may be age or stress related and even mild.

Isolated vicenin 2 and derivates thereof as well as plant extracts comprising the same may combine synergistically several mode of actions being beneficial for maintenance and improvement of neurological and brain functions and for preventing and treating a cognitive disorder, dementia such as Alzheimer disease. The combination to offer several mode of actions within one agent is surprising and extremely beneficial as it contributes to a higher rate of success in the treatment of such a multi-complex and inter-individually disease like
Alzheimer disease. The invention offers a highly effective beneficial agent and composition with a high compliance as individuals prefer to take one agent at once instead of many.

**Summary**

Summarizing, vicenin 2 and biologically active derivatives thereof as well as composition comprising the same demonstrated surprisingly beneficial neurological efficacy.

**References**


4. Alzheimer disease: Time to improve, its diagnosis and treatment, Salloway S., Correia S, Cleveland Clinical Journal of Medicine, 76, 1, 2009

5. Alzheimer disease prevention: Focus on cardiovascular risk, not amyloid? Geldmacher D.S., Cleveland Clinical Journal of Medicine, 77, 10, 2010

6. The Experimental Alzheimer's Disease Drug Posiphen -Phenserine Lowers Amyloid-


10. Investigational Medications for Treatment of Patients with Alzheimer Disease, Potter P.E., J Am Osteopath Assoc., 110 (9,8) 27-36, 2010


20. Modulation of Brain Hemichannels and Gap Junction Channels by Pro-Inflammatory Agents and Their Possible Role in Neurodegeneration, Orellana J. et al., Antioxid Redox Signal 11 (2): (369-99), 2009
Claims

1. Vicenin 2 or a biologically active analogue thereof as an active ingredient for use in maintaining and/or improving neurological and/or brain function and/or preventing, delaying onset, controlling and/or treating a neurological dysfunction, condition, disorder or disease.

2. Use of vicenin 2 or a biologically active analogue thereof as an active ingredient for maintaining and/or improving neurological and/or brain function.

3. The active ingredient according to claim 1 or the use of claim 2, wherein the neurological dysfunction, condition, disorder or disease is an age or stress related neurological dysfunction, anxiety, a cognitive disorder, depression or dementia, wherein dementia is preferably Alzheimer disease.

4. The active ingredient according to any one of claims 1 to 3 or the use of claim 2 or 3, wherein the active ingredient is derived from a plant.

5. The active ingredient or the use according to claim 4, wherein the active ingredient is comprised in a plant preparation enriched for the active ingredient.

6. The active ingredient or the use according to claim 4 or 5, wherein the plant is selected of one or more plants from a group consisting of a Anethum, Perilla, Urtica, Passiflora, Camelia, Cayaponia, Colocasia, Cydonia, Desmodium, Hordeum, Origanum, Ocimum, Jatropha, Parkinsonia, Peperomia, Pitheranthos, Centaurea, Indigo, Bomba, Lychnophera, Asplenium, Chinotto, Citrus, Viola, Trigonella, Rosemary, Peppermint, Thyme, Basil, Sage, Oregano, Lavandula, Nipponanthemum, Abrus, Viola, Santalum, Oryza, Scleropyrum, Tulsi, Centaurea, Indigofera, Bombax, Glinus, Lychnophora, other species belonging to the Lamiacea, Labiatae, and Urticaceae, Rosales or Malpighiales or a combination thereof.

7. The active ingredient according to any one of claims 1 to 6 or the use according to any one of claims 2 to 6, wherein the active ingredient is derived from a plant preparation selected from the group consisting of a leaf preparation, a fruit preparation, a seed preparation, a stem preparation, a flower preparation, a bud preparation, a root preparation and a mixture of different parts of the plant.
8. The active ingredient according to any one of claims 1 to 7 or the use according to any one of claims 2 to 7, wherein the active ingredient is an isolated vicenin 2 or biologically active analogue thereof obtained by isolation or chemical synthesis.

9. The active ingredient according to any one of claims 1 to 8 or the use according to the claims 2 to 8, wherein the neurological and/or brain function is selected from the group consisting of memory, attention, concentration, alertness, mental flexibility and/or speed, learning, intelligence, language skills, problem solving capacity, consciousness, coping with psychological stress or tension, motivation, mobility, decision making capacity, reaction time and regulation of emotions.

10. The active ingredient according to any one of claims 1 to 9 or the use according to claims 2 to 9, wherein the active ingredient is comprised in a composition such as a food product, dietary supplement or medicament, preferably wherein the medicament comprises a pharmaceutically acceptable carrier.

11. The composition according to 10, wherein the concentration of the active ingredient is from 0.1 µg to 500 µg, preferably from 2.5 µg to 50 µg, preferably from 5 µg to 15 µg, 12 µg to 30 µg or preferably about 24 µg.

12. The composition according to claim 10 or 11, which is substantially free of flavonoids of other plants, other plant extracts or other plant flavonoids.

13. The composition according to any one of claims 10 to 12, comprising a further agent capable of maintaining and/or improving neurological and/or brain function and/or preventing, delaying onset, controlling and/or treating a neurological dysfunction, condition, disorder or disease as defined in any one of the preceding claims.

14. The composition according to claim 13, wherein the agent is a lipid, a lipid containing omega-3 fatty acid, physiological active fatty acid, an antioxidant, an anti-inflammatory agent, a bulking agent, an immune system modulatory agent or a vaccine, an antibody, a metal-protein interaction attenuation agent, a plant preparation, curcumin, coenzym Q10, L-carnitine, zinc, epigallocatechingallate, thymol, p-cymere, vinpocetine, hyperzine A, phosphatidylserine, a vitamin, alpha liponic acid, a TNF alpha inhibitor, a flavonoid, an anthocyanin, a biflavonoid, a flavon, a flavonglycoside or a carboxylic acid.
15. The composition according to claim 14, wherein the plant preparation is selected from one or more extracts from a group consisting of an extract of Ginkgo biloba, Hypericum perforatum, Hyperzia serrata, Galanthus nivalis, Salvia officinalis, Panax ginseng, Lippia citriodora, Melissa officinalis, Passiflora incarnate, Passiflora edulis, Bacopa monniera, Zingiber officinalis, Leucojum aestrum, Convolvulus pluricaulis, Centella asiatica, Emblica officinalis, Coptidis Rhizoma, Salvia miltiorrhiza, Rhodiola rosea, Habranthus jamesonii, Phycella herbertiana, Rhodophiala mendocina, Zephyranthes filifolia, Stephania pierrei, Kaempfera parviflora, Stephania venosa, Crocus sativus, Salvia species, Bacopa monnieri, Centella asiatica, Ptychopetalum olacoides, Withania somnifera, Coptis chinensis, Mangifera indica, Polygonum caudata, Polygala tenuifolia, Halenia elliptica, Evolvilus alsinoides, Celastrus paniculatus, Clitoria ternatea, Curcuma longa, Acorus calamus, Terminalia chebula, Lycoris radiata, Magnolia officinalis, Biota orientalis, Codonopsis pilosula, Evodia rutaecarpa, Polygonum multiflorum, Aspalathus linearis, Cyclopia species, Adansonia digitata, Sclerocarya birrea, Mangifera indica, Actinidia chinensis and/or Matricaria recutita or combinations thereof.

16. The composition according to any one of claims 13 to 15, wherein the agent is an acetylcholinesterase inhibitor, a NMDA (N-methyl-D-aspartate) receptor inhibitor, a non steroidal anti-rheumatic agent, a neuroleptic agent, a tricyclic antidepressant, an anti-psychotic agent, a gab junction inhibitor, a non selective monoaminooxidase inhibitor, an ABCC1 Transporter, an ADAM 10 protein, methylthioninium chloride, an antibiotic agent, an antiviral agent, a gamma secretase inhibitor, a beta secretase inhibitor, an angiotensin receptor antagonist (ATI antagonist), a cannabinoid, allopregnanolone or an insulin sensitizer.

17. A process of producing a preparation of the active ingredient as defined in any one of the claims 1 to 12 comprising the steps of:

f) selection of the raw plant material,

g) preparation of the raw plant material,
h) applying an extraction process using aqueous solvent extraction, preferably water extraction, and/or filtration techniques, preferably followed by concentration and/or spray drying of the liquid extract into a powder,

i) determining the concentration of the active ingredient; and

j) selecting the preparation comprising the active ingredient at a concentration of at least 0.01%.

18. The process of claim 17, wherein the plant is selected from the group consisting of Anethum, Perilla, Urtica, Passiflora, Camelia, Cayaponia, Colocasia, Cydonia, Desmodium, Hordeum, Origanum, Ocimum, Jatropha, Parkinsonia, Peperomia, Pitheranthos, Centaurea, Indigo, Bomba, Lychnophera, Asplenium, Chinotto, Citrus, Viola, Trigonella, Rosemary, Peppermint, Thyme, Basil, Sage, Oregano, Lavandula, Nipponanthemum, Abrus, Viola, Santalum, Oryza, Scleropyrum, Tulsi, Centaurea, Indigofera, Bombax, Glinus, Lychnophora, other species belonging to the Lamiacea, Labiatae, and Urticaceae, Rosales or Malpighiales or a combination thereof.

19. A preparation of the active ingredient obtainable by the process of claim 17 or 18.

20. The preparation of claim 19 as an active ingredient for use in maintaining and/or improving neurological and/or brain function and/or for preventing, delaying onset, controlling and/or treating a neurological dysfunction, condition, disorder or disease as defined in any one of the preceding claims.

21. A method for maintaining and/or improving neurological and/or brain function and/or for preventing, delaying onset, controlling and/or treating a neurological dysfunction, condition, disorder or disease in a subject in need thereof comprising administering an active ingredient as defined in any one of claims 1 to 10, the composition of any one of claims 10 to 16 or the preparation of claim 19 or 20.

22. The method according to claim 21, wherein the neurological dysfunction, condition, disorder or disease is an age or stress related neurological dysfunction, anxiety, a cognitive disorder, depression or dementia, wherein preferably the dementia is Alzheimer disease.

23. The method according to any one of claims 21, wherein the neurological or brain function is selected from the group consisting of memory, attention, concentration,
alertness, mental flexibility and/or speed, learning, intelligence, language skills, problem solving capacity, consciousness, coping with psychological stress or tension, motivation, mobility, decision making capacity, reaction time and regulation of emotions.

24. A kit comprising an active ingredient as defined in any one of claims 1 to 10, the composition of any one of claims 10 to 16 or the preparation of claim 19 or 20 and instructions for administering said composition.

25. The active ingredient as defined in any one of claims 1 to 10, the preparation of claim 19 or 20, or the composition of any one of claims 10 to 16 for use in preventing, delaying onset, controlling and/or treating a disorder associated with autonomous neuronal death by blocking the gap junction hemichannel of activated microglia and reducing their glutamate release.

26. The active ingredient, preparation or composition according to claim 25, wherein the disorder is Alzheimer disease, Parkinson disease, Huntington disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), encephalitis or ADDS.

27. The active ingredient, preparation or composition according to claim 25 or 26, wherein the composition comprises or is derived of a plant preparation comprising the active ingredient.

28. The active ingredient, preparation or composition of claim 27, wherein the plant preparation is derived from a plant as defined in claim 6 and/or is plant preparation as defined in claim 7.

29. The active ingredient as defined in any one of claims 1 to 10, the preparation of claim 19 or 20 or the composition of any one of claims 10 to 16 having more than one effect selected from the group consisting of reversible acetylcholinesterase inhibition, blockade of gap junction hemichannels, neuroleptic effect, anti-depressive effect, enkephaline like effect and reduction in TNF alpha for use in maintaining and/or improving neurological and/or brain function and/or preventing, delaying onset, controlling and/or treating neurological dysfunction, condition, disorder or disease.
Fig. 1

EC50 = 1.97 pM
nH = 0.22
EC10 = 73.6 aM
EC90 = 52.9 nM
EC50 = 87.5 ng/ml
nH = 0.62
EC10 = 2.55 ng/ml
EC90 = 3.00μg/ml nM
TNF-alpha

Fig. 3
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>L. M. SENA ET AL: &quot;Neuropharmacological Activity of the Pericarp of Passiflora edulis flavicarpa Degener: Putative Involvement of C-Glycosyl flavonoids&quot;, EXPERIMENTAL BIOLOGY AND MEDICINE, vol. 234, no. 8, 1 August 2009 (2009-08-01), pages 967-975, XP055026536, ISSN: 1535-3702, DOI: 10.3181/0902- RM-84 the whole document abstract page 967, right-hand column - page 968, right-hand column, paragraph 1 figure 1 page 973, right-hand column, last paragraph - page 974, right-hand column, paragraph 2</td>
<td>1-8, 10-25, 27-29</td>
</tr>
</tbody>
</table>

**A** Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) on which it is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

**T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

**X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

**Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

**A** document member of the same patent family

Date of the actual completion of the international search: 22 February 2013

Date of mailing of the international search report: 06/03/2013

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer:

Economou, Dimi tri os