Title: ELECTRIC SHAVER COMPRISING A PIVOTABLE SHAVING HEAD

Abstract: The invention relates to an electric shaver comprising a housing (1) and a shaving head (2) which comprises at least one cutting system, and which is pivotally connected to the housing (1), and further comprises means for locking this pivoting motion at several predetermined positions, whereby the shaving head (2) comprises a multitude of notches (23). To improve the function of comfort of the shaver the housing (1) provides a switch element (6) which is connected to at least one engaging element (10) that is adapted for being coupled with at least one of the notches (23).
ELECTRIC SHAVER COMPRISING A PIVOTABLE SHAVING HEAD

FIELD OF THE INVENTION
The invention relates to an electric shaver according to the generic part of claim 1.

BACKGROUND OF THE INVENTION
Electric shavers of the type initially referred to are known for example from the US 3,797,105. This document discloses an electric dry shaver having a handle and a shaving head pivotally connected to that handle. The shaving head comprises a shaving element of the rotary type and its driving motor. The handle is adapted to carry the batteries and comprises a pair of arms extending from the handle to bear the rockable shaving head. Between the shaving head and the arms clicking means are provided to lock the head at predetermined rocked angles. Due to those clicking means the shaving head itself is never completely freely pivotable relative to the handle.

An electric shaver which comprises a shaving head being freely pivotable connected to the housing of the shaver is known from the US 5,542,179. The advantage of such an electric shaver is that the shaving head is able to adapt perfectly to the contour of the skin to be shaved. However, sometimes, for example when shaving under the nose, there is a need to fix the shaving head relative to the housing at least temporarily.

SUMMARY OF THE INVENTION
It is therefore an objective of the present invention to overcome all the drawbacks of the known shaving systems especially such as discussed above and to provide an improved electric shaver of the type initially referred to such to ensure an optimal handling of the shaver in any shaving situation.

This objective is accomplished by the combination of features as indicated in claim 1.

The electric shaver according to the invention enables a fixing of the shaving head relative to the housing if needed whereby the fixing can take place at a multitude of different predetermined angles.

The electric shaver according to the invention comprises a housing and a shaving head being pivotably connected to the housing. The shaving head comprises at least one cutting element for
cutting hairs. The shaver further comprises means for locking the pivoting motion of the shaver head at several predetermined positions, whereby the shaving head comprises a multitude of notches to be coupled with an engaging element, whereby the engaging element is connected to a switch element which is provided at the housing. This improves the handling of the shaver during the shaving process and leverages the shaving comfort. Whenever needed, the user of the electric shaver is enabled by simply actuating the switch element to lock the shaving head in one of a multitude of possible locking angles by keeping the shaver rested in the user's hand.

Preferably, the switch element is apt to be switched into at least a coupled state or in a decoupled state for the shaving head.

In a preferred embodiment of the invention, the engaging element provides a preloaded connection with the shaving head in case the engaging element is switched in the coupled state. The engaging element preferably comprises a spring element.

Another preferred embodiment of the invention is characterized in that the switch element is connected to the engaging element via a pivoted lever. Preferably, the pivot bearing of this pivoted lever is arranged at the housing of the shaver. To avoid that the shaving apparatus is too heavy but is rather balanced with respect to the distribution of the weight, it is preferred that the electric motor for driving the cutting system(s) of the shaving head is located in the housing.

Often there is a wish to integrate an additional tool in the electric shaver which contacts the skin during its application, for example an additional cutting system or an applicator for fluid or the like. Therefore, a preferred embodiment of the invention comprises a slider which is slidably arranged at the housing in a way that its upper end can get into the pivoting range of the shaving head. To avoid an interference of the slider and the rockable shaving head, a mechanical actuating element is provided to displace the shaving head and daff it aside in order to allow the slider to travel into the direction of its upper end. Preferably, the mechanical actuation element is an operating lever whose pivot bearing is arranged at the housing. To realize this embodiment without a huge mechanical effort the shaving head provides an outer stop to be charged by the actuating lever.

Preferably there is an additional cutting system arranged at the top of the slider, especially it is constructed as a long-hair trimmer.
3

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be further elucidated by detailed explanation of exemplary embodiments and by reference to the figures. In the figures

Fig. 1 is an illustration of a front view of an electric shaver according to the invention,

Fig. 2 is a side view of the shaving head and the locking mechanism,

Fig. 3 is an enlarged view of the shaving head in the locked position,

Fig. 4 is a side view of the shaver in an unlocked position of the locking mechanism,

Fig. 5 to Fig. 8 is an illustration of the pivoted lever according to the invention in different positions,

Fig. 9 and Fig. 10 are side views of the electric shaver having a slider which is shown in different positions,

Fig. 11 is a perspective view of the slider, the long-hair trimmer and the operating lever, and

Fig. 12 is an enlarged view of the operating lever.

DETAILED DESCRIPTION OF THE INVENTION

Fig. 1 shows an illustration of an electric shaver having a housing 1 and a shaving head 2 which is connected via bearing arms 3 with the housing in a manner so that it is able to pivot around the lateral axis x. The shaving head 2 encompasses cutting systems having an inner cutter 4 and an outer cutter 5. This kind of features is known in general for example from the US 5,542,179. A housing 1 accommodates the electric motor (not shown) for driving the undercutter 4 which is coupled to the electric motor in a known manner. Housing 1 further encompasses the batteries (not shown) for energizing the electric motor. Fig. 1 shows a switch element 6 which is slidable mounted on the front side of the housing 1 and adapted to be moved along the vertical axis y. In Figures 1 and 2, the switch element 6 is shown in its lower (locking) position. Switch element 6 comprises a catch 7 for the left one of the two free ends of a pivoting lever 8 which is connected
to the housing 1 via a pivot bearing 9. The right free end of the pivoting lever 8 is constructed to control the free end 12 of the engaging element 10. The engaging element 10 comprises further a fixed end 11 which is clamped at the housing 1. The engaging element 10 is generally constructed as a beam in bending having, according to Figures 3 and 4, a fixed end 11 clamped to the housing and a free end 12 which is controlled by the pivoting lever 8 and guided via a cam 13 of a guidance plate 14 (see Figures 5 to 8).

As can be taken best from the Figures 1 to 4, the engaging element 10 is shaped essentially as a squared U with a first arm 15 providing a fixed end 11, a middle section 17 and a second arm 16 which provides the free end 12. Seen from the front according to Fig. 1 the fixed end 11 is located to the right of the pivoting lever 8 whereby its first arm 15 extends to the back of the housing where the spring wire, of which the engaging element 10 is made of, is bent to the right hand side where it leads as a middle section 17 to the right. The middle section 17 is arranged in parallel to the back of the housing. At the right end of the middle section 17, there is a rectangular curve followed by the second arm 16 which is directed to the front of the housing. The second arm 16 provides a hump-like protuberance 18 located approximately in the middle of the second arm 16. The protuberance 18 divides the second arm 16 into two parts whereby each of the two parts is inclined upwardly into the direction of the protuberance 18.

At its free end 12 the second arm 16 of the engaging element 10 is guided through the cam 13 of the guidance plate 14. The second arm 16 is projecting with its free end 12 to the outside of the guidance plate 14 and is acted upon by the pivoting lever 8.

The guidance plate 14 is shown in Fig. 5. It comprises a vertical slot 19. The width of the slot 19 is a little bit broader than the diameter of the second arm 16. The cam 13 has a vertical section 20 and an inclined section 21.

In Figures 1 to 3 and 6, the pivoting lever 8 is shown in a position where the switch element 6 is in its downward lock position and the shaving head 2 is locked via the protuberance 18 of the engaging element 10. The engaging element 10 is preloaded in a way that its second arm 16 is biased upwardly into the direction of the shaving head 2. Consequently the free end 12 of the second arm 16 rests on the upper end of the vertical slot 19 if unaffected by the pivoting lever 9 via its convex cam section 22. This position is illustrated in Fig. 6. As can be taken best from Fig. 3 in this position - unaffected by the pivoting lever 9 - the protuberance 18 is pressed into one of
the nuts 23 provided in the bottom 24 of the shaving head 2. The bottom 24 is curved with an
radius which equals the distance between axis X and the bottom 24. The nuts 23 are essentially
V-shaped having a rounded ground. The pressing force of the protuberance 18 into the nuts 23
due to the elastical preload of the second arm 16 is about 4 N. Predetermined by this value of the
pressing force and the angle of the flanks as well as the distance between the lateral axis X and
the bottom 24 it is possible to override the locking force with a pivoting force of about 6 N if
applied circumferentially at the bottom 24. This means that even if the shaving head 2 is "locked"
it can be pivoted if the pivoting force is high enough which means that in this situation the
engaging element has the function of a clicking mechanism whereby the user can override the
locking force by applying a tangential force which exceeds a certain value (6 N). This force is
predetermined at a value which is higher than the pivoting forces which occur during the normal
shaving process. Figures 4 and 8 are depicting the unlocked state of the shaving head 2 where the
switch element 6 is in its upward end position. The transition from the locked position as shown
in Fig. 6 to the unlocked position is illustrated in Figures 6 to 8. Starting from Fig. 6, the pivoting
lever 8 is turned clockwise around the pivot bearing 9 via the catch 7 which is connected to the
switch element 6. The bracket type catch 7 is receiving the spherical end portion 25 of the
pivoting lever 8 which is at the left-hand side of the pivoting lever 8, as illustrated in Figures 6 to
8. When moving the switch element 6 upwardly and consequently starting turning the pivoting
lever 8 clockwise, the convex cam section 22 located at the right side end of the pivoting lever 8
is pressing down the free end 12 of the second arm 16 of the engaging element 10 vertically
along the vertical slot 19. When the free end 12 has reached the end of the vertical section 20 of
the slot where the inclined section 21 starts - this is illustrated in Fig. 7 - the free end 12 follows
the inclined section 21 and is pushed to the right side following the inclined section 21 as well as
the convex cam section 22. The end position of this rotation of the pivoting lever 8 when also the
switch element has reached its upper end position is illustrated in Fig. 8. When the free end 12
has reached its end position according to Fig. 8, the biasing force of the engaging element is
essentially received by the guidance plate 14. The pivoting lever 8 is nearly released from this
biasing force. It should be noted that the switch 6 may provide a detent which enables a snapping
to the housing 1 in its end positions.

Figures 9 and 10 are showing a version of an electric shaver which provides an additional long-
hair trimmer 26 which is arranged at the back of the housing 1. The long-hair trimmer 26 is
located at the top of a slider 27 which is slidably born on the housing 1. It becomes evident from
Fig. 9 that in case of a linear movement of the slider 27 in the direction of the arrow A a collision
of the long-hair trimmer 26 and the shaving head 2 could occur if the shaving head 2 is pivoted clockwise above a certain angle since the areas of movement of the slider 27 and of the shaving head 2 are overlapping. To avoid this collision the following mechanism is provided. An operating lever 28 is connected via a pivot bearing 31 at the top end 38 of the housing 1. The operating lever 28 has a first end 32 and a second end 33. When the slider 27 is in its retracted parking position as shown in Fig. 9, the second end 33 of the operating lever 28 rests in the catch 30 which is provided on the inner side of the slider 27. The operating lever 28 is elastically preloaded by a wound spring 34, which spring is illustrated in the Figures 11 and 12. According to the view of Fig. 9, the spring 34 is biasing the operating lever 28 counter-clockwise. As can be taken best from Fig. 10, the catch 30 provides a concave contour 35 and a stop 36 which is essentially perpendicular to the vertical extension of the slider 27. The bottom 24 of the shaving head 2 provides a stop 29 which interacts with the first end 32 of the operating lever 28.

When starting from the position as shown in Fig. 9, the slider 27 is moved upwardly according to the arrow A and the stop 36 of the catch 30 turns the operating lever 28 clockwise around the pivot bearing 31. In case the shaving head 2 is swung out to the right (clockwise around the lateral axis X), the first end 32 of the operating lever 28 acts upon the outer stop 29 to rotate the shaving head counter-clockwise to clear the travel of the slider 27. Hereby the operating lever 28 is turned against the preload of the spring 34. After a certain distance of travelling of the slider 27 the operating lever 28 is completely swung out into the position shown in Fig. 10. At that point of travel of the slider 27, the second end 33 of the operating lever is acted upon by the support area 37 which holds the operating lever in the position as shown in Fig. 10. In this position the drive chain of the long-hair trimmer 26 is coupled in a generally known way to the electric motor (not shown) and the respective cutting element of the long-hair trimmer 26 are driven in a known way.

When - starting from the extracted position as shown in Fig. 10 - the slider 27 is drawn back into its parking position, the long-hair trimmer 26 is decoupled from the electric motor and the operating lever 28 remains in the position as shown in Fig. 10 since the support area 37 acts upon the second end 33 of the operating lever 28. If the upper end of the support area 37 reaches the second end 33 of the operating lever 28 at the stop 36, the operating lever 28 is pivoted counter-clockwise into the position as shown in Fig. 9. This counter-clockwise rotation is forced by the spring 34. In this parking position the shaving head 2 is free to pivot around the lateral axis X. The relationship of the two levers of the operating lever 28 are chosen in a way that the shaving
head 2 can be pushed away counter-clockwise even if the engaging element 10 is in its locked position.

In case the shaving head 2 is completely blocked, for example manually by the user of the shaver, the following will happen when the slider 27 is moved upwardly into an extracted position as shown in Fig. 10. As can be taken from Fig. 12, the pivot bearing 31 is carried out by two pins 39 and 40 which are supported in a recess 41 which is provided at the top end 38 of the housing 1. The spring 34 does not only provide the restoring torque for the operating lever 28 as explained for the Figures 9 and 10 but additionally provides a biasing force to the operating lever into the downward direction. Therefore, the pins 39 and 40 are pressed in the direction of the recess 41.

As shown in Fig. 11, the spring 34 additionally provides a torque moment T in counter-clockwise direction.

If now, as mentioned before in a blocked system (completely blocked shaving head 2), an overload occurs when the slider 27 is shifted upwardly, the operating lever 28 can be rotated against the torque moment T so that the second end 33 of the operating lever 28 is moving laterally away from the catch 30 into the direction of the arrow D. The slider 27 can then be moved upwardly until it contacts the bottom 24 of the shaving head 2. If the slider 27 is then moved back again into its retracted parking position, the second end 33 is pushed back into the catch 30 by the biasing torque T.

The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm."
What is claimed is:

1. An electric shaver comprising a housing (1) and a shaving head (2) which comprises at least one cutting system, and which is pivotably connected to the housing (1), and further comprises means for locking this pivoting motion at several predetermined positions, whereby the shaving head (2) comprises a multitude of notches (23), characterized in that the housing (1) provides a switch element (6) which is connected to at least one engaging element (10) that is adapted for being coupled with at least one of the notches (23).

2. A shaver as claimed in claim 1, characterized in that the switch element (6) is apt to be switched into at least a coupled state or in a decoupled state for the shaving head.

3. A shaver as claimed in claim 2, characterized in that in the coupled state the engaging element provides a preloaded connection with the shaving head (2).

4. A shaver as claimed in anyone of the preceding claims, characterized in that the engaging element (10) comprises a spring element.

5. A shaver as claimed in anyone of the preceding claims, characterized in that the switch element (6) is connected via a pivoted lever (8) to the engaging element.

6. A shaver as claimed in claim 5, characterized in that the pivot bearing (9) of the pivoted lever (8) is engaged at the housing (1).

7. A shaver as claimed in anyone of the preceding claims, characterized in that the electric motor for driving the cutting system (4, 5) of the shaving head (2) is arranged in the housing (1).

8. A shaver as claimed in anyone of the preceding claims, characterized in that the shaver comprises a slider (27) having an upper end, which slider is slidably arranged at the housing (1) in a way that its upper end can get into the pivoting range of the shaving head (2), whereby a mechanical actuating element (28) is provided to displace the shaving head (2) and daff it aside in order to allow the slider (27) to travel into the direction of its upper end.
9. A shaver as claimed in claim 8, characterized in that the mechanical actuation element is an operating lever (28) and its pivot bearing (31) is arranged at the housing (1).

10. A shaver as claimed in claim 9, characterized in that the shaving head (2) provides an outer stop (29) to be charged by the operating lever.

11. A shaver as claimed in one of the claims 8 to 10, characterized in that an additional cutting system is arranged at the top end of the slider (27).

12. A shaver as claimed in claim 11, characterized in that the additional cutting system is a long-hair trimmer (26).
INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2012/056197

A. CLASSIFICATION OF SUBJECT MATTER

INV. B26B19/04 B26B19/06

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B26B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 23 03 377 Al (MATSUSHITA ELECTRIC WORKS LTD) 16 August 1973 (1973-08-16) the whole document</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>EP 1 403 Ol (IZUMI PROD CO [JP]) 31 March 2004 (2004-03-31) the whole document</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>EP 2 095 914 A2 (SANYO ELECTRIC CO [JP]) 2 September 2009 (2009-09-02) the whole document</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>DE 44 10 543 Cl (BRAUN AG [DE]) 22 December 1994 (1994-12-22) the whole document</td>
<td>1-12</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. ☑ See patent family annex.

Date of the actual completion of the international search
4 February 2013

Date of mailing of the international search report
11/02/2013

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340.2040
Fax: (+31-70) 340.3016

Authorized officer
Cardan, Cosmin
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 2303377</td>
<td>16-08-1973</td>
<td>DE 2303377</td>
<td>16-08-1973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 48081657</td>
<td>01-11-1973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 53031056 B</td>
<td>31-08-1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 3797109 A</td>
<td>19-03-1974</td>
</tr>
<tr>
<td>EP 1403011</td>
<td>31-03-2004</td>
<td>CA 2441140 Al</td>
<td>19-03-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1491781 A</td>
<td>28-04-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1403011 Al</td>
<td>31-03-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1065507 Al</td>
<td>17-11-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA03008379 A</td>
<td>29-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004055158 Al</td>
<td>25-03-2004</td>
</tr>
<tr>
<td>EP 2095914</td>
<td>02-09-2009</td>
<td>CA 2655968 Al</td>
<td>28-08-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101518908 A</td>
<td>02-09-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2095914 A2</td>
<td>02-09-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009201714 A</td>
<td>10-09-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090093785 A</td>
<td>02-09-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009217531 Al</td>
<td>03-09-2009</td>
</tr>
<tr>
<td>DE 4410543</td>
<td>22-12-1994</td>
<td>AT 146394 T</td>
<td>15-01-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1112867 A</td>
<td>06-12-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 4410543 C1</td>
<td>22-12-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0673728 Al</td>
<td>27-09-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 33897 A</td>
<td>27-03-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7299262 A</td>
<td>14-11-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5542179 A</td>
<td>06-08-1996</td>
</tr>
</tbody>
</table>