(2) 特許協力条約に基づいて公開された国際出願
(19) 世界知的所有権機関
(43) 国際公開日
2012 年 10 月 11 日 (11.10.2012)

(21) 国際出願番号：PCT/JP2012/057278
(22) 国際出願日：2012 年 3 月 22 日 (22.03.2012)
(25) 国際出願の言語：日本語
(26) 国際公開の言語：日本語
(30) 優先権データ：特願 201 1-084203 2011 年 4 月 6 日 (06.04.2011) JP
(71) 出願人 (米国を除く全ての指定国について): 株式会社 日立メディコ社 (ITACHI_MEDICAL COR - PORATION) [JP/JP]; 〒1010021 東京都千代田区外神田四丁目 14 番 1 号 (JP).
(72) 発明者 : および
(75) 発明者 / 出願人 (米国についてのみ): 岡 邦治 (OKA, Kuniharu) [JP/JP]; 〒1010021 東京都千代田区外神田四丁目 14 番 1 号 株式会社 日立メディコ社 (JP).

(51) 国際特許分類：A61B 5/055 (2006.01) G01R 33/54 (2006.01)
(54) タイトル: MAGNETIC RESONANCE IMAGING DEVICE AND RADIAL SAMPLING METHOD
(55) 発明の名称: 磁気共鳴イメージング装置及びラディアルサンプリング方法
(57) Abstract: A radial sampling method in which an FSE sequence is used in order for the contrast of effective TE echo data to be reflected more clearly in the image contrast without the imaging time being extended, and for an image having a contrast closer to the contrast expected from designating an effective TE, wherein the method is characterized in that the measurement sequence of the echo data in at least one blade is different from the measurement sequence of the echo data in another blade. More specifically, the measurement sequence of the echo data in one blade is inverted in the phase encoding direction of the blade with respect to the blade center or the echo data of the effective TE relative to the measurement sequence of the echo data in the other blade.

(57) 要約: FSE シーケンスを用いたラディアルサンプリング方法において、撮像時間を延長することなく、実効 TE のエコーデータのコントラストが画像コントラストにより明確に反映されて、実効 TE の指定値で期待されるコントラストにより近いコントラストを得るために、FSE シーケンスを用いたラディアルサンプリングにおいて、少なくとも 1 つのブレードにおけるエコーデータの計測順序が、他のブレードにおけるエコーデータの計測順序と異なることを特徴とする。具体的には、1つのブレードにおけるエコーデータの計測順序を、他の 1 つのブレードにおけるエコーデータの計測順序に対して、ブレードの中心又は実効 TE のエコーデータに関して、ブレードの位相エンコーディング方向に反転する。
明細書

発明の名称：
磁気共鳴イメージング装置及びラディアルサンプリング方法

技術分野

[0001] 本発明は、磁気共鳴イメージング（以下、MRIという）装置におけるFSEシーケンスを用いたラディアルサンプリングに関し、特に、ブレード内のエコーデータの計測順序に関する。

背景技術

[0002] MRI装置は、被検体、特に人体の組織を構成する原子核スピンが発生するNMR信号（エコー信号）を計測し、その頭部、腹部、四肢等の形態や機能を2次元的に或いは3次元的に画像化する装置である。撮影においては、エコー信号には、傾斜磁場によって異なる位相エコーを付与されるとともに周波数エコーデータとして時系列データとして計測される。計測されたエコー信号は、2次元又は3次元フーリエ变换されることにより画像に再構成される。

[0003] 上記MRI装置においては、高速スピンエコー（以下、FSEという）シーケンスを用いて、被検体の画像が行われている。FSEシーケンスでは、エコー時間（TE）の異なるエコー信号の混在が画像コントラストに影響を与えるため、操作者が設定したTEに計測されるエコーデータのエコー時間は真のTEではなく、実効TEとして扱われる。FSEシーケンスを用いた直交系サンプリング方法では、実効TEに対応するエコーデータがk空間中心に配置されるので、実効TEのエコーデータのコントラストが画像のコントラストに反映される。つまり、実効TEのエコーデータが画像のコントラストを決定する。

[0004] 一方、非直交系サンプリング方法の1つとしてラディアルサンプリングが実用化されている。FSEシーケンスを用いたラディアルサンプリング（以下、ラディアルスキャンともいう）の場合、1繰り返し時間（TR）で取得したTEの異なる複数のエコーデータをブレード内に配置する。その際、実効TEのエコーデータは、ブレード内においてk空間中心を通る軌跡上に配置される。しかし、
プレード内に実効TEと異なるTEのエコーデータが混在し、更に全プレードがk空間中心付近を通って配置されるため、直交系サンプリング方法と比較して、異なるTEのエコーデータが画像コントラストへ与える影響が大きくなり、実効TEで指定される所望のコントラストの画像を得られない場合がある。

特許文献1では、プレード内で端から各エコーデータを順次計測し、その後計測順序を逆にして合計2回計測し、得られたエコーデータをプレード毎に加算して被検体の画像を得ることにより、画質を改善している。

先行技術文献
特許文献

発明の概要
発明が解決しようとする課題

しかしながら、特許文献1に記載の発明では、各エコーデータの計測順序を逆にして2回計測するため、撮像時間が2倍になるので、撮像時間が延長するという未解決の課題を残している。

そこで、本発明の目的は、ラディアルスキャンにおいて、撮像時間を延長することなく、実効TEのエコーデータのコントラストが画像コントラストにより明瞭に反映されて、実効TEの指定で期待されるコントラストにより近いコントラストを有する画像を得ることが可能なMRI装置及びラディアルサンプリング方法を提供することである。

課題を解決するための手段

上記目的を達成するために、本発明は、FSEシーケンスを用いたラディアルサンプリングにおいて、少なくとも1つのプレードにおけるエコーデータの計測順序が、他のプレードにおけるエコーデータの計測順序と異なることを特徴とする。

発明の効果

本発明のMRI装置及びラディアルサンプリング方法は、選択したプレードに
おけるエコーデータの計測順序を、実効TEのエコーデータを中心
に反転することにより、異なるTEのエコーデータが画像コン トラストに与える影響をk空間において
等方的に分散させる。これにより、撮像時間を延長することなく
、実効TEのエコーデータのコン トラストが画像コン トラストにより明瞭に反
映されて、実効TEで指定したTEに近いコン トラストの画像を得ることが可能
となる。

図面の簡単な説明
[0011] [図1] 本発明に係るMRI装置の一実施例の全体構成を示すブロック図
[図2] (kx_ ky) 軸を有する2次元k空間におけるラディアルサンプリングの計測
軌跡の一例を示す図(a)はk空間の全体構成図であり、(iはkx軸に平行なプレ
ード201の詳細を模式的に示した図
[図3] 2次元ラディアルサンプリングを行うための2次元FSEシーケンスの一例
を示すシーケンスチャート
[図4] 図2に示したラディアルサンプリングを表すk空間に第1の実施形態を適
用した場合を示す図(a)は、3つのプレードおきにエコーデータの計測順序を
反転する場合を示すし、(iは、プレーードのエコーデータの計測順序を1
プレーードおきに反転する例を示す図
[図5] 本発明に係るFSEシーケンスを用いたラディアルスキャンにおいて、実
効TEとは異なるTEのエコーデータのみ抽出した場合のk空間におけるデータ分
布図を示す。(a)はk空間分布図の全体図であり、(iは、k空間中心部分の拡
大図
[図6] 従来のFSEシーケンスを用いたラディアルスキャンにおいて、実効TEと
は異なるTEのエコーデータのみ抽出した場合のk空間におけるデータ分布図を
示す。(a)はk空間分布図の全体図であり、(iは、k空間中心部分の拡大図
[図7] 図2に示したラディアルサンプリングを表すk空間に第2の実施形態を適
用した場合を示す図(a)は、3つのプレードおきにエコーデータの計測順序を
反転する場合を示す図であり、(iは、プレーードのエコーデータの計測順序を
1プレーードおきに反転する例を示す図
発明を実施するための形態

[001] 以下、添付図面に従って本発明のMRI装置の好ましい実施例について詳説する。なお、発明の実施例を説明するための図面において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。

[002] 最初に、本発明に係るMRI装置を図1に基づいて説明する。図1は、本発明に係るMRI装置の一実施例の全体構成を示すブロック図である。

[003] このMRI装置は、NMR現象を利用して被検体101の断層画像を得るもので、図1に示すように、静磁場発生磁石102と、傾斜磁場コイル103及び傾斜磁場電源109と、RF送信コイル104及びRF送信部110と、RF受信コイル105及び信号検出部106と、信号処理部107と、計測制御部111と、全体制御部110と、表示・操作部113と、被検体101を搭載する天板を静磁場発生磁石102の内部に出し入れするベッド112と、を備えて構成される。

[004] 静磁場発生磁石102は、垂直磁場方式であれば被検体101の体軸と直交する方向に、水平磁場方式であれば体軸方向に、それぞれ均一な静磁場を発生させるもので、被検体101の周りに永久磁石方式、常電導方式あるいは超電導方式の静磁場発生源が配置されている。

[005] 傾斜磁場コイル103は、MRI装置の実空間座標系（静止座標系）であるX、Y、Zの3軸方向に巻かれたコイルであり、それぞれの傾斜磁場コイルは、それを駆動する傾斜磁場電源109に接続され電流が供給される。具体的には、各傾斜磁場コイルの傾斜磁場電源109は、それぞれ後述の計測制御部111からの命令に従って駆動されて、それぞれの傾斜磁場コイルに電流を供給する。これにより、X、Y、Zの3軸方向に傾斜磁場Gx、Gy、Gzが発生する。

[006] 2次元スライス面の撮像時には、スライス面（撮像断面）に直交する方向にスライス傾斜磁場パルス(Gs)が印加されて被検体101に対するスライス面が設定され、そのスライス面に直交して且つ互いに直交する残りの2つの方に位相
エンコード傾斜磁場パルス（Gp）と周波数エンコーディング（アシッド）傾斜磁場パルス（Gf）が印加されて、NMR信号（エコー信号）にそれぞれの方向の位置情報がエンコーディングされる。

[0018]RF送信コイル104は、被検体101にRFパルスを照射するコイルであり、RF送信部110に接続され高周波パルス電流が供給される。これにより、被検体101の生体組織を構成する原子のスピンにNMR現象が誘起される。具体的には、RF送信部110が、後述の計測制御部111からの命令に従って駆動されて、高周波パルスが振幅変調され、増幅された後に被検体101に近接して配置されたRF送信コイル104に供給されることにより、RFパルスが被検体101に照射される。

[0019]RF受信コイル105は、被検体101の生体組織を構成するスピンのNMR現象により放出されるエコー信号を受信するコイルであり、信号検出部106に接続されて受信したエコー信号が信号検出部106に送られる。

[0020]信号検出部106は、RF受信コイル105で受信されたエコー信号の検出処理を行う。具体的には、後述の計測制御部111からの命令に従って、信号検出部106が、受信されたエコー信号を増幅し、直交位相検波により直交する二系統の信号に分割し、それぞれを所定数（例えば128、256、512等）サンプリングし、各サンプリング信号をA/D変換してデジタル量に変換し、後述の信号処理部107に送る。従って、エコー信号は所定数のサンプリングデータからなる時系列のデジタルデータ（以下、エコーデータという）として得られる。

[0021]信号処理部107は、エコーデータに対して各種処理を行い、処理したエコーデータを計測制御部111に送る。

[0022]計測制御部111は、被検体101の断層画像の再構成に必要なエコーデータ収集のための種々の命令を、主に、傾斜磁場電源109と、RF送信部110と、信号検出部106に送信してこれらを制御する制御部である。具体的には、計測制御部111は、後述する全体制御部108の制御で動作し、ある所定のシーケンスの制御データに基づいて、傾斜磁場電源109、RF送信部110及び信号検出部106を制御して、被検体101へのRFパルスの照射及び傾斜磁場パルスの印加と、被検体101からのエコー信号の検出と、を繰り返し実行し、被検体101の撮像領域
についての画像の再構成に必要なエコーデータの収集を制御する。繰り返しの際には、2次元撮像の場合には位相エコーデータ斜磁場の印加量を、3次元撮像の場合には、スライスエコーデータスライス斜磁場の印加量を変えて行なう。位相エコーデータの数は通常1枚の画像あたり128、256、512等の値が選ばれ、スライスエコーデータの数は、通常16、32、64等の値が選ばれる。これらの制御により信号処理部107からのエコーデータを全体制御部108に出力する。

全体制御部108は、計測制御部111の制御、及び、各種データ処理と処理結果の表示及び保存等の制御を行うものであって、CPU及びメモリを内部に有する演算処理部114と、光ディスク、磁気ディスク等の記憶部115とを有して成る。具体的には、計測制御部111を制御してエコーデータの収集を実行させ、計測制御部111からのエコーデータが入力されると、演算処理部114がそのエコーデータに印加されたエコーデータ情報に基づいて、メモリ内のk空間に相当する領域に記憶させる。以下、エコーデータをk空間に配置する旨の記載は、エコーデータをメモリ内のk空間に相当する領域に記憶させるすることを意味する。また、メモリ内のk空間に相当する領域に記憶されたエコーデータ群をk空間データともいう。そして演算処理部114は、このk空間データに対して信号処理やフーリエ変換による画像再構成等の処理を実行し、その結果である被検体101の画像を、後述の表示・操作部113に表示させると共に記憶部115に記録させる。

表示・操作部113は、再構成された被検体101の画像を表示する表示部と、MRI装置の各種制御情報や上記全体制御部108で行う処理の制御情報を入力するトラックボール又はマウス及びキーボード等の操作部と、から成る。この操作部は表示部に近接して配置され、操作者が表示部を見ながら操作部を介してインタラクティブにMRI装置の各種処理を制御する。

現在MRI装置の撮像対象核種は、臨床で普及しているものとしては、被検体の主たる構成物質である水素原子核 (プロトン)である。プロトン密度の空間分布や、励起状態の緩和時間の空間分布に関する情報を画像化することで、人体頭部、腹部、四肢等の形態は、機能を2次元もしくは3次元的に撮像
する。
[0026] （ラディアルスキャンのk空間内計測軌跡）
最初に本発明に係るラディアルスキャンについて説明する。
[0027] ラディアルサンプリングは、k空間において、複数の平行軌跡を有して成る
プレートを単位領域として、このプレートを原点の周りに回転角度を変えて
複数配置して、k空間の略全域をサンプリングする。プレート間の角度は等角
度が好適であるが、等角度で無くてもよい。各プレートは、複数の平行軌跡
を有して成るので、その平行軌跡に垂直な方向を位相エンコーディング方向として
各並行軌跡のエコーデータには位相エンコーディングが付与されて計測される。
そして、各プレートは、k空間の中心近傍の低空間周波数領域で互いに重なり
合わせて配置されるので、そのk空間の中心近傍の低空間周波数領域のエコーデ
タは複数回又は密に計測されることになる。
[0028] 1つのプレートにおいては、シーケンシャルオーダーの計測順序であれば、
プレートの位相エンコーディング方向に関して、一方の端から他方の端に向けて各
平行軌跡のエコーデータが順次計測される。他方、セントリックオーダーの
計測順序であれば、プレートの位相エンコーディング方向に関して、中心から両端
に向けて位相エンコーディングの極性を交互反転させながら各平行軌跡のエコーデ
ータが順次計測される。
[0029] 図2に、(kx ky) 軸を有する2次元k空間におけるラディアルサンプリングの
計測軌跡の一例を示す。図2(a) はk空間の全体構成であり、図2(b) はkx軸に平
行なプレートδ01の詳細を模式的に示したものである。一つの長方形が1つの
計測軌跡及び該軌跡に対応するエコーデータを意味する。このラディアルサ
ンプリングの計測軌跡は、5つの平行軌跡（図2(b) の例では5つの長方形）を有
して成るプレートをk空間原点の周りに30° 毎に6つ配置した例である。特に
kx軸に平行なプレート δ01では、平行軌跡20-1-20 1-5 のエコーデータが計
測されることを示す。図2(b) に示すプレート δ01において、シーケンシャルオー
ダーやの計測順序であれば、(20 1-1-20 1-2-20 1-3-20 1-4-20 1-5) 212-1 又
は(20 1-5->20 1-4-20 1-3-20 1-2-20 1-1) 212-2 の順序で各軌跡のエコーデー
タが計測される。セントリックオーダーであれば、(201-3->20 1-4->20 1-2->2
0 1-5->20 1-1) 213-1又は(201-3->20 1-2->20 1-4->20 1-1-5->20 1-1) 213-2の順序で
各軌跡のエコーデータが計測される。他のプレードにおいても同様である。

図2に示す例では、プレード毎に5つのエコーデータが計測されるので、プレードの中心に配置されるエコーデータが実効TEの時刻で計測されたエコーデータとなる。プレード201の場合には、その中心に配置されるエコーデータ201-3が実効TEのエコーデータとなる。なお、各プレードで偶数個のエコーデータが計測される場合には、実効TEの時刻で計測されるエコーデータはなく、実効TEの前後で計測される2つのエコーデータがプレードの中心を挟んで配置されることになる。

（ラディアルサンプリングを行うFSEシーケンス）

次に、ラディアルスキャンを行う場合の、そのFSEシーケンスについて、図3を用いて説明する。図3は、2次元ラディアルサンプリングを行うための2次元FSEシーケンスの一例であって、1回の励起で、つまり1繰り返し時間(TR)内で、1つのプレードを構成する各平行軌跡に沿うエコーデータをそれぞれ計測する場合を示すシーケンスチャートである。従って、1繰り返し時間(TR)内で計測するエコーデータの数(ETL; Echo Train Length)と、1つのプレードを構成する平行軌跡の数とは同じ値になる。

図3において、RF、Gs、Gkx、Gky、Echoはそれぞれ、RFパルス、スライス傾斜磁場、kx方向エコーデータ傾斜磁場、ky方向エコーデータ傾斜磁場、エコー信号の軸を表す。ラディアルサンプリングにおけるFSEシーケンスと、直交系サンプリング方法におけるFSEセクエンスとの主な違いは、位相エコーデータ方向Gpと周波数エコーデータ方向Gfとの区別がない事である。そこで、図3では、位相エコーデータ傾斜磁場軸Gpと周波数エコーデータ傾斜磁場軸Gfと表さずに、kx方向エコーデータ傾斜磁場Gkx及びky方向エコーデータ傾斜磁場Gkyとして、スライス方向に垂直な2方向の傾斜磁場方向を表している。

FSEシーケンス300では、1回の励起RFパルス301後に再収束RFパルス302を順次印加し、再収束RFパルス302間で各エコー信号341を計測し、合計5個(ETL=5
のエコー信号群 (341-1~341-5) を計測する例である。具体的には、撮像面内のスピンに励起RFパルス301を印加するとともに、スライス選択傾斜磁場パルス311を印加する。その後、スピンをスライス面内で反転するための再収束RFパルス302を繰り返し印加する。ここでは、上述のように、1回の励起RFパルス301について5個のエコー信号群 (341-1~341-5) を計測するため、再収束RFパルス302を5回 (302-1~302-5) 印加する。そして、各再収束RFパルス302の印加毎に、スライスを選択するスライス選択傾斜磁場パルス312を印加し、kx方向に、位相エンコーデすなりく反斜磁場パルス321と読み出し傾斜磁場パルス322とリフエーズ傾斜磁場パルス323を印加し、ky方向に、位相エンコーデすなりく反斜磁場パルス331と読み出し傾斜磁場パルス332とリフエーズ傾斜磁場パルス333を印加して、エコー信号341を計測する。

各エコー信号 (341-1~341-5) には異なる位相エンコードを付与するために、各位相エンコーデすなりく反斜磁場パルス321及び331の印加量は、エコー信号毎に異なる。リフエーズ傾斜磁場パルス323は、位相エンコーデすなりく反斜磁場パルス321の印加量をキャンセルしてゼロに戻すための傾斜磁場パルスであるため、リフエーズ傾斜磁場パルス323と位相エンコーデすなりく反斜磁場パルス321とは逆極性で絶対値が同じ印加量となる。つまり、矢印で示すように印加順序が逆方向となる。同様に、リフエーズ傾斜磁場パルス333と位相エンコーデすなりく反斜磁場パルス332とは逆極性で絶対値が同じ印加量となり、矢印で示すように印加順序が逆方向となる。

また、回転角度の異なる複数のブレードをそれぞれ計測するために、隣接する励起RFパルス301間の時間間隔 (TR) 351毎に、Gkx方向とGky方向の各傾斜磁場パルスの振幅及び印加量 (=波形と軸とで囲まれる面積) を回転角度に応じて変える。このFSEシーケンス300を繰り返し、画像再構成に必要な全てのブレードのエコー信号341群が計測される。計測するブレードの回転角度に応じて、Gkx方向とGky方向に配分される各傾斜磁場パルスの振幅及び印加量が変化するので、図3のGkx及びGkyの横縦模様が回転角度に応じてこれらの
傾斜磁場パルスが変化することを示している。

なお、励起RFパルス301による1回の励起、つまり、1回のFSEシーケンス300の実行をショットともと呼ぶ。従って、ラディアルサンプリングを行うFSEシーケンス300は、マルチショットFSEシーケンスでもある。

図2に示したk空間及び図3に示したFSEシーケンスは2次元撮像の場合を示したが、3次元撮像の場合には、3次元FSEシーケンスを用いて3次元k空間 (kx, ky, ks) データが取得される。3次元FSEシーケンスでは、エコー信号にスライスエンコード(kx)を行うために、スライス方向Gsにスライスエンコード傾斜磁場パルスが印加されて、3次元k空間 (kx, ky, ks) データが取得されることになる。この3次元k空間データは、図2に示した2次元k空間データをks方向に積み上げた構成となるので、3次元撮像は、スライスエンコードを所定の値に設定した状態で、前述の2次元k空間データを取得する処理を、スライスエンコードを変えながら繰り返すことにより行われる。

（本発明の概要）

本発明は、ラディアルスキャン法において、少なくとも1つのブレードにおけるエコーデータの計測順序が、他のブレードにおけるエコーデータの計測順序と異なることを特徴とする。具体的には、1つのブレードと、他の1つのブレードとで、ブレードの中心又は実効TEのエコーデータに関して、ブレードの位相エンコード方向のエコーデータの計測順序が互いに反対になるようにする。つまり、ブレードの位相エンコード方向のエコーデータの計測順序に関して、1つのブレードを他の1つのブレードに対して反転する。この計測順序の反転は、ブレードの中心又は実効TEのエコーデータに関して行う。換言すれば、1つのブレードにおけるエコーデータの計測順序を、他の1つのブレードにおけるエコーデータの計測順序に対して、ブレードの中心又は実効TEのエコーデータに関して、ブレードの位相エンコード方向に反転する。

以下、ブレードのエコーデータの計測順序の異ならせ方についての実施形態をいくつか説明する。

（第1の実施形態：シーケンシャルオーダーの場合）
次に、本発明のMRI装置及びラディアルサンプリング方法の第1の実施形態を説明する。本実施形態は、プレート内の各エコーデータの計測順序を、該プレートの位相エンコード方向に関して、一方の端から他方の端に向けて順次行うシーケンシャルオーダーとする。そして、1つのプレートと他の1つのプレートとで、エコーデータの計測順序を、プレートの位相エンコード方向に関して、互いに逆方向とする。具体的には、1つのプレートでは、位相エンコードが増加する方向にエコーデータを計測する計測順序とし、他の1つのプレートでは、位相エンコードが減少する方向にエコーデータを計測する計測順序とする。その結果、一つのプレートと他の1つのプレートとで、プレートの中心又は実効TEのエコーデータに関して、プレートの位相エンコード方向のエコーデータの計測順序が互いに反対になる。以下、図4に基づいて、本実施形態を詳細に説明する。

図4は、図2に示したラディアルサンプリングを表すk空間に本実施形態を適用した場合を示す。なお、各プレート201-206には、同じ位置のエコーデータと同じ1-5の番号を付している。この場合、エコーデータが実効TEのエコーデータであってプレートの中心に配置される。図4(a)は、プレートのエコーデータの計測順序を複数プレートおきに反転する例として、3つのプレートおきにエコーデータの計測順序を反転する場合を示している。具体的には、プレート201-203では、エコーデータを位相エンコードが増加する1, 2, 3, 4, 5の順で計測し、他のプレート204-206では、逆方向として、エコーデータを位相エンコードが減少する5, 4, 3, 2, 1の順で計測する例である。図4(b)は、プレートのエコーデータの計測順序を1プレートおきに反転する例である。具体的には、プレート201, 203, 205では、エコーデータを位相エンコードが増加する1, 2, 3, 4, 5の順で計測し、他のプレート202, 204, 206では、逆方向として、エコーデータを位相エンコードが減少する5, 4, 3, 2, 1の順で計測する例である。

なお、図4(a)の例は、全プレートをプレート201-203のグループと、プレート204-206のグループに2分割して、プレート204-206のグループをプレート201-203のグループに加えた場合である。
ド201~203に対して、エコーデータの計測順序を反転する場合とみなすこともできる。

計測順序を異ならせると、プレートの選択及び組み合わせは、操作者が直接プレートを選択しても良いし、予め定めておいた複数のプレートパターンの内から操作者が選択しても良いし、自動で行っても良い。詳細は後述する。

本実施形態の効果を図5, 6に基づいて説明する。図5, 6はFSE シーケンスを用いたラディアルスキャンにおいて、実効TE とは異なるTE のエコーデータのみ抽出した場合のk空間におけるデータ分布図 (以下、k空間分布図という) を示している。TE が異なるエコーデータが重なる部分は、画像コントラストへの寄与率が異なることから、その寄与率に基づいて、表示態様を変えていく。つまり、k空間の中心近傍では、実効TE

図5(a) の501は、k空間分布図の全体図であり、図4(b) に示したプレートのエコーデータの計測順序を1プレートおきに反転する場合を示す。図5(b) の502 は、501のk空間中心部分の拡大図である。501に示すように、寄与率はk空間全体に等方的に分散していることが理解される。また、502に示すように、k空間中心近傍においては、高い寄与率を示す部分が存在しないことが理解される。つまり、プレートのエコーデータをシーケンシャルオーダーで計測する際に、計測順序を1プレートおきに反転することによって、k空間の中心近傍での、実効TE 以外のエコーデータが分散されることになり、画像コントラストは実効TE で期待されるコントラストに近くなる。なお、図4(a) に示したプレートのエコーデータの計測順序を3プレートおきに反転する場合も同様であり、少なくとも1つのプレートと他の1つのプレートとでエコーデータの計測順序をプレートの位相エンコード方向に関しても反転方向をすることで、同様の効果を得られる。

比較例として、図6に全てのプレートにおいてエコーデータの計測順序を同一にした場合を示す。601が501に対応し、602が502に対応する。601に示すように、501と比較して、寄与率が片側に集中していることが理解される。また、602に示すように、502と比較して、k空間中心近傍において高い寄与率を示す部分が存在することが理解される。つまり、k空間の中心近傍では、実効TE
と異なるTEのエコーデータが多数混在することになり、画像コントラストは実効TEで期待されるコントラストにならない。従って、501のk空間データを再構成して得られる画像は、601のk空間データを再構成して得られる画像よりも、画像コントラストが実効TEで期待されるコントラストにより近くなる。しかも、少なくとも1つのプレードと他の1つのプレードでエコーデータの計測順序をプレードの位相エンコード方向に関して逆方向とするだけなので、撮像時間を延長することもない。

[0048]（第2の実施形態：セントリックオーダーの場合）

次に、本発明のMRI装置及びラディアルサンプリング方法の第2の実施形態を説明する。本実施形態は、プレード内の各エコーデータの計測順序を、各プレードの位相エンコード方向に関して、中心から両端に向けて位相エンコードの極性を交互反転するセントリックオーダーとする。そして、少なくとも1つのプレードと他の1つのプレードとで、交互反転の仕方を互いに反対にする。具体的には、1つのプレードでは、位相エンコードの極性が(0 + - + - + ...)となるように計測する計測順序とし、他の1つのプレードでは、位相エンコードの極性が(0 _ + _ + ... + _)となるように計測する計測順序とする。ここで、()内の0又は+ —の符号は位相エンコードの極性を示す。その結果、一つのプレードと他の1つのプレードとで、プレードの中心又は実効TEのエコーデータに関して、プレードの位相エンコード方向のエコーデータの計測順序が互いに反対になる。以下、図7に基づいて、本実施形態を詳細に説明する。

[0049]図7は、図2に示したラディアルサンプリングを表すk空間に本実施形態を適用した場合を示す。なお、各プレード201~206とは、同じ位置のエコーデータに同じ1~5の番号を付している。この場合も、エコーデータ3と実効TEのエコーデータであってプレードの中心に配置される。図7(a)は、プレードのエコーデータの計測順序を複数プレードおきに反転する例として、3つのプレードおきにエコーデータの計測順序を反転する場合を示している。具体的には、プレード201~203では、エコーデータを位相エンコードが3(0) , 2(+) , 4(
-), 1(+), 5(_)' の順序で計測し、他のプレーデoid 204~206 では、エコーデータを位相エンコードが 3(0), 4(_), 2(+), 5(_), 1(+)' の順序で計測する例である。図 7(b) は、プレードのエコーデータの計測順序を 1プレードおきに反転する例である。具体的には、プレード 201, 203, 205 では、エコーデータを位相エンコードが 3(0), 2(+), 4(_), 1(+), 5(_)' の順序で計測し、他のプレード 202, 204, 206 では、エコーデータを位相エンコードが 3(0), 4(_), 2(+), 5(_), 1(+) の順序で計測する例である。

なお、図 7(a) の例は、図 4(a) の場合と同様に、全プレードをプレード 201~203 のグループと、プレード 204~206 のグループに 2 分割して、プレード 204~206 のグループをプレード 201~203 に対して、エコーデータの計測順序を反転する場合とみなすこともできる。

計測順序を異ならせるプレードの選択及び組み合わせは、前述の第 1 の実施形態と同様である。

本実施形態の効果については、前述の第 1 の実施形態で説明した図 5 と同様である。即ち、501 は、図 7(a) に示したプレードのエコーデータの計測順序を 3 プレードおきに反転する場合、又は、図 7(b) に示したプレードのエコーデータの計測順序を 1 プレードおきに反転する場合に対応する。本第 2 の実施形態でも、前述の第 1 の実施形態と同様に、寄与率が k 空間全体に等方的に分散し、k 空間中心付近においては、高い寄与率を示す部分が存在しない。従って、プレードのエコーデータをセントリックオーダーで計測する際に、少なくとも 1 つのプレードと、他の 1 つのプレードとで、交互反転の仕方を反対にすることによっても、k 空間の中心近傍では、実効 TE 以外のエコーデータが分散されることになる。その結果、図 6 に示した全てのプレードにおいてエコーデータの計測順序を同一にした場合と比較して、本実施形態の画像コントラストは実効 TE で期待されるコントラストより近くなる。

(計測順序を反転するプレードの選択)
エコーデータの計測順序を反転するプレードは、全プレードの内の少なくとも 1 つであれば、本発明の効果を発揮することが可能になる。好ましくは、エ
コーデータの計測順序を反転するプレードを全プレードの半分にすると、エコーデータの計測順序を反転しないプレードとバランスが取れて、寄与率がk空間全体により等方的に分散する。

[0054] エコーデータの計測順序を反転するプレードの組み合わせは複数可能であり、図4,7に示したように、複数のプレードおきや1プレードおきにエコーデータの計測順序を反転してもよい。また、全プレードを複数のグループに分割して、選択したグループに属するプレード群のエコーデータの計測順序を反転してもよい。

[0055] また、エコーデータの計測順序を反転するプレードの選択は、操作者が直接プレードを選択しても良いし、予め定めておいた複数のプレードパターンの内から操作者が選択しても良い。プレードパターンとして、上述したように、複数プレードおき又は1プレードおき、或いは、プレードグループがある。

[0056] また、同じプレードを複数回計測する場合には、同じプレードでエコーデータの計測順序の反転の有無を切り替えて、加算平均しても良い。

[0057] （実施例）
以上の本発明の各実施形態の概要を踏まえて、本発明に係る具体的な実施例を説明する。

[0058] 最初に、本実施例のラジアルサンプリングに係る演算処理部114の各機能を、図8に示す機能ブロック図に基づいて説明する。本実施例に係る演算処理部114は、撮像パラメータ表示制御部801、ラジアルサンプリング設定部802、計測順序反転プレード選択部803、エコーデータ計測順序設定部804、位相エンコード傾斜磁場設定部805、撮像起動部806、有しして成る。以下、各機能の概要を説明する。

[0059] 撮像パラメータ表示制御部801は、図9に示すような撮像パラメータ設定GUI（詳細は後述する）を生成して、表示部に表示させる。そして、操作者からの撮像パラメータの設定又は変更を受け付ける。特に、計測順序に関して、シーケンシャルオーダーかセントリックオーダーかの選択を受け付ける。そして
て、設定又は変更された撮像パラメータの値をラディアルサンプリング設定部802に通知する。

[0060] ラディアルサンプリング設定部802は、撮像パラメータ表示制御部801で設定された撮像/挿入の値が入力される。その挿入/格取の値に基づいて、ラディアルサンプリングを行うためのFSEシーケンスに関して、そのRFパルスや傾斜磁場パルスの印加タイミングや印加量を含む、該FSEシーケンスの実行に必要な具体的な制御データを生成する。特に、計測順序が、シーケンシャルオーダーか、セントリックオーダーか、に応じて、プレートのエコーデータの位相エンコード方向の計測順序(つまりエコーデータ毎の位相エンコード順序)仮設計を設定する。

[0061] 計測順序反転プレート選択部803は、ラディアルスキャンにおいて、撮像パラメータ設定GUI上で、エコーデータの計測順序を反転するプレートの操作者による選択を受け付け、選択されたプレート情報をエコーデータ計測順序設定部804に通知する。おはあ、エコーデータの計測順序を反転するプレートを自動で選択し、選択したプレート情報をエコーデータ計測順序設定部804に通知しても良い。エコーデータの計測順序を反転するプレートの選択については、前述したとおりである。

[0062] エコーデータ計測順序設定部804は、計測順序反転プレート選択部803で選択されたエコーデータの計測順序を反転するプレートの情報と、ラディアルサンプリング設定部802によって仮設計されたプレートのエコーデータの位相エンコード方向の計測順序と、が入力される。そして、選択されなかったプレートについては、ラディアルサンプリング設定部802で仮設計されたエコーデータの計測順序をそのまま設定(確定)する。一方、選択されたプレートについて、ラディアルサンプリング設定部802で仮設計されたエコーデータの計測順序を反転して該プレートのエコーデータの計測順序を設定(確定)する。

具体的には、計測順序がシーケンシャルオーダーの場合には、前述の第1の実施形態で説明したエコーデータの計測順序の反転を、選択されたプレートにおいて実施する。計測順序がセントリックオーダーの場合には、前述の第2の
実施形態で説明したエコーデータの計測順序の反転を、選択されたプレードにおいて実施する。そして、設定した各プレードのエコーデータの計測順序となるように、各プレードのエコーデータ毎の位相エンコード順序を設定する。

位相エンコード傾斜磁場設定部805は、エコーデータ計測順序設定部804で設定された各プレードにおける位相エンコード順序が入力される。そして、この位相エンコード順序に基づいて、各プレードにおいて各エコーデータの計測時に印加する位相エンコード傾斜磁場パルスの印加量をエコーデータ毎に設定する。具体的には、エコーデータの計測順序が反転されないプレードに関しては、ラディアルサンプリング設定部802で仮設定されたエコーデータの計測順序となるように、該プレードにおいて各エコーデータの計測時に印加する位相エンコード傾斜磁場パルスの印加量をエコーデータ毎に設定する。一方、エコーデータの計測順序が反転されたプレードにおいては、エコーデータ計測順序設定部804で反転されたエコーデータの計測順序となるように、該プレードにおいて各エコーデータの計測時に印加する位相エンコード傾斜磁場パルスの印加量をエコーデータ毎に設定する。そして、エコーデータ毎に設定した位相エンコード傾斜磁場パルスの印加量となるように制御データを生成する。

撮像起動部806は、ラディアルサンプリング設定部802によって生成された制御データと、位相エンコード傾斜磁場設定部805で設定されたエコーデータ毎の位相エンコード傾斜磁場の印加量の制御データとが入力される。そして、ラディアルサンプリングを行うFSEシーケンスの実行に必要な具体的な制御データを計測制御部111に通知する。そして、計測制御部111を介して、ラディアルスキャンによる撮像を起動する。

次に、上記演算処理部114の各機能部が連携して行なう、本実施例の処理フローを図9に示すフローチャートに基づいて説明する。本フローチャートはラディアルサンプリングプログラムとして予め記憶部115に記憶されており、必要に応じて演算処理部114のメモリにロードされてCPU等により実行されるこ
とで実施される。以下、各ステップの処理を説明する。

[0066] ステップ901で、撮像パラメータに具体的な値が設定される。撮像パラメータ表示制御部801は、例えば、図9に示すような撮像パラメータ設定GUIを生成して、表示部に表示させる。操作者は、この撮像パラメータ設定GUI上で、各撮像パラメータに具体的な値を設定し、変更又は選択する。

[0067] ステップ902で、操作者は、撮像シーケンスとして、ラディアルスキャンを行うか否かを選択する。例えば、操作者が、撮像パラメータ設定GUI上で、撮像シーケンスとしてFSEシーケンスを選択し、ラディアルサンプリングをONに指定すると、ラディアルスキャンが選択され、ステップ903に移行する。選択されなかった場合には、他のパルスシーケンスを用いた撮像を実行することになり、ステップ907に移行してそのパルスシーケンスを用いた撮像を実行する。

[0068] ステップ903で、ステップ902でラディアルスキャンが選択されたので、ラディアルサンプリング設定部802は、ラディアルスキャンの実行に必要な具体的な制御データを生成する。このステップ903でのラディアルスキャンは、本発明に係るエコーデータの計測順序の反転を行う前の、従来のラディアルスキャンのままである。

[0069] ステップ904で、操作者は、撮像パラメータ設定GUI上で、エコーデータの計測順序の反転を行うか否かを設定する。なお、この設定は、ステップ905におけるエコーデータの計測順序を反転するプレードの選択の有無のよっても判定することが可能である。計測順序の反転を行う場合はステップ905へ移行する。計測順序の反転を行わない場合は、ステップ907へ移行して、ステップ902で設定された従来のラディアルスキャンを行うことになる。

[0070] ステップ905で、エコーデータの計測順序を反転するプレードの選択が行われる。計測順序反転プレード選択部803は、操作者による、エコーデータの計測順序を反転するプレードの選択を受け付けるためのGUIを表示部に表示させ、操作者の選択を受け付ける。例えば、計測順序反転プレード選択部803は、撮像パラメータ設定GUIを表示部に表示させて、操作者の選択を受け付ける。
そして、操作者は、撮像パラメータ設定GUI上で、エコーデータの計測順序を反転するプレートを選択する。計測順序反転プレート選択部803は、選択されたプレート情報を、エコーデータ計測順序設定部804に通知する。または、計測順序反転プレート選択部803が自動で、エコーデータの計測順序を反転するプレートを選択して、選択したプレート情報をエコーデータ計測順序設定部804に通知してもよい。エコーデータの計測順序を反転するプレートの選択については、前述したとおりである。

ステップ906で、位相エンコーデク傾斜磁場設定部805は、ステップ905で選択されたプレートにおいて、エコーデータの計測順序が反転するように、該プレートのエコーデータ計測時に用いる位相エンコード傾斜磁場の印加順序を設定する。具体的には、計測順序がシーケンシャルオーダーの場合には、選択されたプレートにおいて前述の第1の実施形態で説明した計測順序の反転となるように、位相エンコーデク傾斜磁場の印加順序を設定し、そのための制御データを生成する。計測順序がセントリックオーダーの場合には、選択されたプレートにおいて前述の第2の実施形態で説明した計測順序の反転となるように、位相エンコーデク傾斜磁場の印加順序を設定し、そのための制御データを生成する。

ステップ907で、撮像起動部806は、ステップ906で生成された、エコーデータの計測順序を反転するプレートにおける位相エンコーデク傾斜磁場の印加量の制御データを含めて、ステップ903で生成された、ラディアルスキャンの実行に必要な他の制御データを計測制御部111に通知して、ラディアルスキャンによる撮像を起動する。そして、計測制御部111は、ステップ905で選択されたプレートにおいてエコーデータの計測順序を反転させてラディアルスキャンを実行する。これにより、計測制御部111は、少なくとも1つのプレートにおけるエコーデータの計測順序を、他のプレートにおけるエコーデータの計測順序と異ならせてラディアルスキャンを実行することになる。

以上までが、本実施例の処理フローの説明である。

次に、ステップ901における撮像パラメータ設定GUIの一例を図10に基づい
て説明する。図10に示す撮像パラメータ設定GUI1001は、患者情報表示領域1001、図形操作による撮像パラメータ設定入力領域1002、値の入力による撮像パラメータ設定入力領域1003、撮像コントロール領域1004により構成される。

[0075] 図形操作による撮像パラメータ設定入力領域1002では、領域上に表示されたパラメータ値入力補助図形を操作者が操作することにより、スライス断面の回転等の撮像パラメータ値の設定・変更を行うことができる。撮像パラメータ設定入力領域1003では、操作者による値の直接入力によるパラメータ値の設定・変更を受け付ける領域である。

[0076] 本発明のラジアルスキャンに関係する撮像パラメータ及びその値として、撮像パラメータ設定入力領域1003には、

1) シーケンスパラメータ（図中Sequence）に、値：FSEシーケンス（図中FSE）が設定され、

2) ラジアルスキャンを指定するパラメータ（図中Radio LScan）に、値：ONが設定され、

3) プレード内のエコーデータ配置方法を指定するパラメータ（図中EchoALLoc）に、値：シーケンシャルオーダー（図中Sequential）が設定され、

4) エコーデータの計測順序を反転するプレードの選択方法を決めるパラメータ（図中B LadeTy pe）に、一プレード毎（図中Type 1）が設定されることになる。この撮像パラメータ設定GUI1000の例では、エコーデータの計測順序を反転するプレードの選択方法を決めるパラメータ4）に関して、予め計測順序を反転するプレードパターンをいくつか用意しておく（Type1, Type2, ...）、その中から選択する例を示している。

[0077] 以上説明したように、本実施例のMRI装置及びラジアルサンプリング方法は、ラジアルスキャンにおいて、操作者が選択したプレードは自動で選択したプレードにおいて、プレードのエコーデータの計測順序がシーケンシャルオーダーかセントリックオーダーカに応じて、少なくとも1つのプレードにおけるエコーデータの計測順序を反転することにより、他のプレードにお
けるエコーデータの計測順序と異ならせる。これにより、撮像時間を延長することなく、k空間の中心近傍での実効TE以外のエコーデータを分散させることができる。その結果、画像コントラストを実効TEで期待されるコントラストに近づけることができる。

[0078] 以上、本発明の実施例を述べたが、本発明はこれらに限定されるものではない。例えば、前述の実施形態は、ブレートのエコーデータの計測順序がシーケンシャルオーダー又はセントリックオーダーの場合であったが、本発明はこの2つの計測順序に限定されることなく、他の任意の計測順序にも適用可能である。つまり、少なくとも1つのブレートと、他の1つのブレートとで、ブレードの中心又は実効TEのエコーデータに関して、位相エンコード方向のエコーデータの計測順序を互いに反対にすることができればどのような計測順序でもよい。

符号の説明

[0079] 101 被検体、102 静磁場発生磁石、103 傾斜磁場コイル、104 送信RFコイル、105 RF受信コイル、106 信号検出部 106、107 信号処理部、108 全体制御部、109 傾斜磁場電源、110 RF送信部、111 計測制御部、112 ベッド、113 表示・操作部、114 演算処理部、115 記憶部
請求の範囲

[請求項1] k空間において、複数の平行軌跡を有して成るブレード内の各平行軌跡に沿って複数のエコーデータを1回の繰り返し時間で計測し、前記k空間の中心の周りに前記ブレードを回転させて、各ブレードのエコーデータの計測を繰り返すラディアルサンプリングの制御データを生成するラディアルサンプリング設定部と、

前記ラディアルサンプリングの制御データに基づいて、被検体からエコーデータの計測を制御する計測制御部と、

を備えた磁気共鳴イメージング装置であって、

少なくとも1つのブレードにおけるエコーデータの計測順序を、他
のブレードにおけるエコーデータの計測順序と異ならせるエコーデータ計測順序設定部を備えることを特徴とする磁気共鳴イメージング装置。

[請求項2] 請求項1記載の磁気共鳴イメージング装置において、

前記エコーデータ計測順序設定部は、1つのブレードにおけるエコーデータの計測順序を、他
の1つのブレードにおけるエコーデータの計測順序に対して、ブレードの中心又は実効のエコーデータに関
して、ブレードの位相エンコーデー方向に反転することを特徴とする磁気共鳴イメージング装置。

[請求項3] 請求項2記載の磁気共鳴イメージング装置において、

前記ブレード内の各エコーデータの計測順序は、該ブレードの位相エンコーデー方向に関して、一方の端から他方の端に向けて順次進行シーケンシャルオーダーであって、

前記エコーデータ計測順序設定部は、前記1つのブレードと前記他
の1つのブレードとで、エコーデータの計測順序を、ブレードの位相エンコーデー方向に関して、互いに逆方向にすることを特徴とする磁気共鳴イメージング装置。

[請求項4] 請求項3記載の磁気共鳴イメージング装置において、
前記エコーデータ計測順序設定部は、プレードの位相エンコーデ方向に関して、前記1つのプレードでは、位相エンコーデが増加する方向にエコーデータを計測する計測順序とし、前記他の1つのプレードでは、位相エンコーデが減少する方向にエコーデータを計測する計測順序とすることを特徴とする磁気共鳴イメージング装置。

[請求項5] 請求項2記載の磁気共鳴イメージング装置において、

前記プレード内の各エコーデータの計測順序は、該プレードの位相エンコーデ方向に関して、中心から両端に向けて位相エンコーデの極性を交互反転するセントリックオーダーであって、

前記エコーデータ計測順序設定部は、前記1つのプレードと前記他の1つのプレードとで、前記交互反転の仕方を互いに反対にすることを特徴とする磁気共鳴イメージング装置。

[請求項6] 請求項2記載の磁気共鳴イメージング装置において、

前記エコーデータの計測順序を反転するプレードを選択する計測順序反転プレード選択部を備えることを特徴とする磁気共鳴イメージング装置。

[請求項7] 請求項6記載の磁気共鳴イメージング装置において、

前記計測順序反転プレード選択部は、前記エコーデータの計測順序を反転するプレードの数が、全プレード数の半分となるように、前記エコーデータの計測順序を反転するプレードを選択することを特徴とする磁気共鳴イメージング装置。

[請求項8] 請求項6記載の磁気共鳴イメージング装置において、

前記計測順序反転プレード選択部は、複数プレードおきに、前記エコーデータの計測順序を反転するプレードを選択することを特徴とする磁気共鳴イメージング装置。

[請求項9] 請求項6記載の磁気共鳴イメージング装置において、

前記計測順序反転プレード選択部は、1プレードおきに、前記エコーデータの計測順序を反転するプレードを選択することを特徴とする
磁気共鳴イメージング装置。

[請求項10] 請求項2記載の磁気共鳴イメージング装置において、
前記エコーデータ計測順序設定部は、全プレードを複数のグループ
に分割して、少なくとも1つのグループに属するプレード群を、前記
エコーデータの計測順序を反転するプレードとして選択することを特
徴とする磁気共鳴イメージング装置。

[請求項11] 請求項1記載の磁気共鳴イメージング装置において、
前記エコーデータの計測順序を反転するプレードを選択するための
入力部を備え、
前記エコーデータ計測順序設定部は、前記入力部を介して選択され
たプレードを、前記エコーデータの計測順序を反転するプレードとし
て選択することを特徴とする磁気共鳴イメージング装置。

[請求項12] k空間において、複数の平行軌跡を有して成るプレード内の各平行
軌跡に沿って複数のエコーデータを1回の繰り返し時間で計測し、前記
k空間の中心の周りに前記プレードを回転させて、各プレードのエ
コーデータの計測を繰り返すラディアルサンプリングの制御データを
生成するラディアルサンプリング設定ステップと、
前記ラディアルサンプリングの制御データに基づいて、被検体から
エコーデータの計測を制御する計測制御ステップと、
を備えたラディアルサンプリング方法であって、
少なくとも1つのプレードにおけるエコーデータの計測順序を、他
のプレードにおけるエコーデータの計測順序と異なるエコーデー
ータ計測順序設定ステップを備えることを特徴とするラディアルサンプ
リング方法。

[請求項13] 請求項12記載のラディアルサンプリング方法において、
前記エコーデータ計測順序設定ステップは、1つのプレードにおけ
るエコーデータの計測順序を、他の1つのプレードにおけるエコーデー
ータの計測順序に対して、プレードの中心又は実効TEのエコーデータ
に関して、プレーデの位相エンコード方向に反転することを特徴とするラディアルサンプリング方法。

[請求項14] 請求項13記載のラディアルサンプリング方法において、
前記プレーデ内の各コーデータの計測順序は、該プレーデの位相エンコード方向に関して、一方の端から他方の端に向けて順次行うシーケンシャルオーダーであって、
前記コードータ計測順序設定ステップは、前記1つのプレーデと前記他1つのプレーデとで、コーデータの計測順序を、プレーデの位相エンコーデ方向に関して、互いに逆方向にすることを特徴とするラディアルサンプリング方法。

[請求項15] 請求項13記載のラディアルサンプリング方法において、
前記プレーデ内の各コーデータの計測順序は、該プレーデの位相エンコード方向に関して、中心から両端に向けて位相エンコードの極性を交互反転するセントリックオーダーであって、
前記コードータ計測順序設定ステップは、前記1つのプレーデと前記他1つのプレーデとで、前記交互反転の仕方を互いに反対にすることを特徴とするラディアルサンプリング方法。
[図4]

(a)

(b)
[図5]

(a) 501

(b) 502
[図7]

(a)

(b)
[図9]

スタート
→ 撮像パラメータ表示 901

No 902 → FSEシーケンスを用いたラディアルサンプリングを行うか？

Yes 903 → FSEシーケンスを用いたラディアルサンプリングの設定を行う。

No 904 → エコーデータの計測順序の反転を行うか？

Yes 905 → エコーデータの計測順序を反転するプレードを選択する。

No 906 → プレード毎のエンコード傾斜磁場の増加順序を設定する。

→ 撮像開始 907

→ エンド
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A 61 B 5 / 0 5 5 , G 0 1 R 3 / 3 , G 0 1 R 3 / 3 / 5 4

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A JP 2008-295925 A (Hitachi Medical Corp.), 11 December 2008 (11.12.2008), paragraphs [0056] to [0067]; fig. 10 to 12 (Family: none)

A WO 2009/093517 A1 (Hitachi Medical Corp.), 30 July 2009 (30.07.2009), entire text; all drawings (Family: none)

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search

13 April 1, 2012 (13.04.12)

Date of mailing of the international search report

24 April 1, 2012 (24.04.12)

Name and mailing address of the ISA/Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>J P 2 0 0 6 - 3 0 4 9 5 5 A (GE Medi cal Systems Global Technology Co., L.L.C.), 09 November 2006 (09.11.2006), ent ire text ; a l l drawings (Fam ily : none)</td>
<td>1-15</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [] Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. [] Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. [] Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

The inventions of claims 1-15 have a common invention definition matter which is relevant to the matter to define the invention of claim 1. However, the invention of claim 1 is disclosed in "Preserving Phased Information in Proportioning Volumes" Proc. Int'l. Soc. Mag. Reson. Med., 2007.05.19. P1735", and the therefore do not have novelty and inventive steps. Consequently, the inventions of claims 1-15 have no common special technical feature, and do not comply with the requirement of unity of invention.

Meanwhile, claims 1-15 are classified into two inventions on groups 1: claims 1-10 and 12-15 and invention on group 2: claim 11.

1. [] All required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. [X] All searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. [] All of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1

Remark on Protest

The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

No protest accompanied the payment of additional search fees.
国際調査報告
国際出願番号 P C T / J P 2 0 1 2 / 0 5 7 2 7 8

第II欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（P C T 17条 (2) (a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. 請求項は、この国際調査機関が調査をすることを要しない対象のものである。つまり、

2. 請求項は、有意義な国際調査をすることができる程度まで所定の要件を満たしていな国際出願の部分に係るものである。つまり、

3. 請求項は、従属請求の範囲であってP C T規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第III欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に2以上の発明があるとこの国際調査機関は認めた。

請求項1-15に係る発明は、請求項1に係る発明の発明特定事項を共通する発明特定事項としている。しかし、請求項1に係る発明（ま"Preserving Phase Information in Propeller Imaging"、Proz. Int. Soc. Mag. Reson. Med.、2007. 05. 19、P1735Jに記載されており、新規性、進歩性を有していない。よって、請求項1-15に係る発明は共通する特別な技術的特徴を有しておらず、発明の単一性の要件を満たしていない。

なお、請求項1-15は、以下の2つの発明群に分類される。
発明群1:請求項1-10、12-15
発明群2:請求項11

1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求項について作成した。

2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求項について調査することができたので、追加調査手数料の納付を求めなかった。

3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求項のみについて作成した。

4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求項について作成した。

追加調査手数料の異議の申立てに関する注意
□ 追加調査手数料及び、該当する場合には、異議申立手数料の納付と共に、出願人から異議申立てがあった。
□ 追加調査手数料の納付と共に出願人から異議申立てがあつが、異議申立手数料が納付命令書に示した期間内に支払われなかった。
□ 追加調査手数料の納付はあったが、異議申立てはなかった。

様式P C T / ISA / 2 1 0（第1ページの統葉（2））（2 0 0 9年7月）
国際調査報告

国際出願番号 PCT/JP2012/057278

A. 発明の属する分野の分類（国際特許分類 （I P C））
Int.Cl. A61B5/055 (2006. 01) i , G01R33/48 (2006. 01) i , G01R33/54 (2006. 01) i

B. 調査を行った分野
調査を行った最小限資料（国際特許分類 （I P C））
Int.Cl. A61B5/055, G01R33/48, G01R33/54

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1922-
日本国公開実用新案公報 1971-2
日本国実用新案登録公報 1996-
日本国登録実用新案公報 1994-2

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）
Wiley InterScience

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
</table>

☑ c欄の続きにても文献が列挙されている。

同 1. パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリ
IA 特に関連のある文献ではなく、一般的な技術水準を示すもの
IB 特に関連のある文献で、国際出願日前出願みた特許であるが、国際出願日以後に公表されたもの
IE 特に関連のある文献で、国際出願日前出願みた特許であるが、国際出願日以後に公表されたもの
IF 特に関連のある文献で、国際出願日前出願みた特許であるが、国際出願日以後に公表されたもの
IG 特に関連のある文献で、国際出願日前出願みた特許であるが、国際出願日以後に公表されたもの
IH 特に関連のある文献で、国際出願日前出願みた特許であるが、国際出願日以後に公表されたもの
I1 引用文献の日付の後に公表された文献
I2 特に関連のある文献で、国際出願日前出願みた特許であるが、国際出願日以後に公表されたもの
I3 特に関連のある文献で、国際出願日前出願みた特許であるが、国際出願日以後に公表されたもの
I4 特に関連のある文献で、国際出願日前出願みた特許であるが、国際出願日以後に公表されたもの
I5 特に関連のある文献で、国際出願日前出願みた特許であるが、国際出願日以後に公表されたもの
I6 特に関連のある文献で、国際出願日前出願みた特許であるが、国際出願日以後に公表されたもの
I7 特に関連のある文献で、国際出願日前出願みた特許であるが、国際出願日以後に公表されたもの
I8 特に関連のある文献で、国際出願日前出願みた特許であるが、国際出願日以後に公表されたもの

国際調査を完了した日
13. 04. 2012

国際調査報告の発送日
24. 04. 2012

国際調査機関の名称及び住所
日本国特許庁（ISA／JP）
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
島田 保
電話番号03-3581-1101 内線3292

様式PCT／ISA／210（第2ページ）（2009年7月）
国際調査報告 国際出願番号 PCT/JP2012/057278

C（続き） 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A wo 2009/093517 Al (株式会社 日立メディコ) 2009-07-30, 全文、全図（ファミリーなし）</td>
<td></td>
<td>1-15</td>
</tr>
<tr>
<td>A JP 2006-304955 A (ジ・イ・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー) 2006.11.09, 全文、全図（ファミリーなし）</td>
<td></td>
<td>1-15</td>
</tr>
</tbody>
</table>