The present invention relates to a compound of formula (I) wherein \(R^1, R^2 \) and \(n \) are as defined herein. The invention also relates to processes for making the compounds of formula (I) and methods of using the compounds of formula (I) as reagents in organic synthesis.
Published:

- with international search report (Art. 21(3))
2-OXO-1,2-DIHYDROPYRIDIN-4-YLBORONIC ACID DERIVATIVES

FIELD OF THE INVENTION

The invention relates to 2-oxo-1,2-dihydropyridin-4-ylboronic acid derivatives, methods of making these compounds, and their use in chemical processes.

BACKGROUND OF THE INVENTION

The Suzuki coupling reaction provides an efficient process for joining arenes (aryls and/or heteroaryls) in the presence of a palladium catalyst (see, e.g., N. Miyaura et al., Synthetic Communications 77, 51-519 (1981); and N. Miyaura et al. Chem. Rev. 95: 2457-2483 (1995). In the Suzuki reaction, a haloarene is reacted with an areneboronic acid in the presence of Pd catalyst and base to form a biarene product. The reaction can also be carried out using areneboronic esters instead of areneborate acids.

WO2009074812 describes a Suzuki couplings using an areneborate ester, that is, 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) pyridin-2(1 H)-one.

WO2009/017664, WO2009/134400, WO2009/017671, and WO2010/011314 describe Suzuki coupling reactions using a reagent of formula (HO)2B-Cy2, where Cy is described as aryl, heteroaryl, cycloalkyl or heterocyclyl. The references also describe compounds where Cy is pyridine and oxo-pyridine.

However, Applicants are unaware of any 2-oxo-1,2-dihydropyridin-4-ylboronic acid derivative where the pyridine nitrogen atom is substituted by an alkyl or cycloalkyl.

Such compounds are useful for making compounds in which a 2-oxo-1,2-dihydropyridine derivative is coupled to an aryl or heteroaryl ring at the 4-position of the pyridine.

BRIEF SUMMARY OF THE INVENTION
In its broadest embodiment the invention relates to 1-alkyl- and l-cycloalkyl-2-oxo-1,2-dihydropyridin-4-ylboronic acid derivatives of formula (I):

\[
\text{HO} \quad \text{B} \quad \text{OH}
\]

\[
\text{N} \quad \text{R}^1
\]

\[
\text{R}^2
\]

\[
\text{R}^n
\]

(I)

wherein:

- \(n \) is 0, 1, 2 or 3;
- \(R^1 \) is -(Ci-C6)alkyl or -(C3-C6)cycloalkyl, wherein said -(Ci-C6)alkyl and -(C3-C6)cycloalkyl may be optionally substituted with one to three groups independently selected from -(Ci-C6)alkyl, -(0(Ci-C6)alkyl, halo, -NH2, -NH(Ci-C6)alkyl, -N((Ci-C6)alkyl)2, and-CN; and
- each \(R^2 \) is independently selected from -(Ci-C6)alkyl, -(0(Ci-C6)alkyl, -(C3-C6)cycloalkyl, halo, -NH2, -NH(Ci-C6)alkyl, -N((Ci-C6)alkyl)2, and-CN.

In one embodiment, the invention relates to a compound of formula (I) wherein \(R^1 \) is -(Ci-C6)alkyl.

In another embodiment, the invention relates to a compound of formula (I) wherein \(R^1 \) is methyl.

In one embodiment, the invention relates to a compound of formula (I) wherein \(R^1 \) is -(C3-C6)cycloalkyl.

In another embodiment, the invention relates to a compound of formula (I) wherein \(R^1 \) is cyclopropyl.

In another embodiment, the invention relates to any of the preceding embodiments wherein \(n \) is 0.

In another embodiment, the invention relates to a compound of formula (I) wherein \(R^1 \) is methyl and \(n \) is 0.
In another embodiment, the invention relates to a compound of formula (I) wherein
\[R^1 \] is cyclopropyl and \(n \) is 0.

The invention also relates to methods of making the compounds of formula (I) and
the use of compounds of formula (I) as reagents in chemical synthesis, e.g., in Suzuki

DETAILED DESCRIPTION OF THE INVENTION

The term "-(Ci-C6)alkyl" refers to branched and unbranched alkyl groups having
from 1 to 6 carbon atoms. Examples of -(Ci-C6)alkyls include methyl, ethyl, n-propyl,
isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentane, iso-pentyl, neopentyl, n-
hexane, iso-hexanes (e.g., 2-methylpentyl, 3-methylpentyl, 2,3-dimethylbutyl, and 2,2-
dimethylbutyl). It will be understood that any chemically feasible carbon atom of the -(Ci-
C6)alkyl group can be the point of attachment to another group or moiety.

The term "-(C3-C6)cycloalkyl" refers to a nonaromatic 3- to 6-membered
monocyclic carbocyclic radical. Examples of -(C3-C6)cycloalkyls include cyclopropyl,
cyclobutyl, cyclohexyl, cyclopentyl and cyclohexyl.

The term "C6-10 aryl" refers to aromatic hydrocarbon rings containing from six to
ten carbon ring atoms. The term C6-10 aryl includes monocyclic rings and bicyclic rings
where at least one of the rings is aromatic. Non-limiting examples of C6-10 aryls include
phenyl, indanyl, indenyl, benzocyclobutanyl, dihydronaphthyl, tetrahydronaphthyl,
naphthyl, benzocycloheptanyl and benzocycloheptenyl.

The term "5 to 11-membered heteroaryl" refers to an aromatic 5 to 6-membered
monocyclic heteroaryl or an aromatic 7 to 11-membered heteroaryl bicyclic ring where at
least one of the rings is aromatic, wherein the heteroaryl ring contains 1-4 heteroatoms
such as N, O and S. Non-limiting examples of 5 to 6-membered monocyclic heteroaryl
rings include furanyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, pyrazolyl, pyrrolyl,
imidazolyl, tetrazolyl, triazolyl, thiienyl, thiazolyl, pyridinyl, pyrimidinyl, pyridazinyl,
pyrazinyl, triazinyl, and purinyl. Non-limiting examples of 7 to 11-membered heteroaryl
bicyclic heteroaryl rings include benzimidazolyl, quinolinyl, dihydro-2H-quinolinyl,
isoquinolinyl, quinazolinyl, indazolyl, thieno[2,3-d]pyrimidinyl, indolyl, isoindolyl, benzofuranyl, benzopyranyl, benzodioxolyl, benzoxazolyl and benzothiazolyl.

The term "arene" refers to a C₆-aryl or 5 to 11-membered heteroaryl.

The terms "haloarene" and "trifluoromethanesulfonyloxyarene" refer to a C₆-aryl or 5 to 11-membered heteroaryl containing at least one halogen (haloarene) or trifluoromethanesulfonyloxyarene (trifluoromethanesulfonyloxyarene) bonded to an arene carbon ring atom. It will be understood that the haloarene or trifluoromethanesulfonyloxyarene may be a moiety that is part of a larger molecule such as described in WO2009/017664, WO2009/134400, WO2009/017671, and WO2010/01314, the content of each of the foregoing being incorporated by reference in its entirety.

The term "halo" or "halogen" refers to fluoro, chloro, bromo or iodo.

As noted above, the invention also relates to compounds of formula (I) and methods of making the compounds of formula (I). A nonlimiting method of making the compounds of formula (I) is depicted below in Scheme 1.

Scheme 1

Accordingly, in one embodiment, the invention relates to a method of making the compounds of formula (I) as depicted in Scheme 1 comprising:

- allowing a compound of formula (II) to react with a Grignard reagent to form a first intermediate ("Intermediate 1");
- allowing the first intermediate to react with an alkylborate to form a second intermediate ("Intermediate 2");
- and hydrolyzing the second intermediate ("the hydrolyzing step") to provide the compound of formula (I); wherein
 \[R^1, R^2 \text{ and } n \] are as defined above for the compound of formula (I);
R³ and R⁴ are each independently a -(Ci-C6)alkyl;
L is a leaving group selected from halo and trifluoromethanesulfonyloxy; and
X is a chloro, bromo, or iodo.

In one embodiment, the invention relates to a method of making the compound of
formula (I) in the embodiment described above, wherein L is bromo.

In another embodiment, the invention relates to a method of making the compound of
formula (I) in any of the embodiments described above, wherein n is 0.

In another embodiment, the invention relates to a method of making the compound of
formula (I) in any of the embodiments described above, wherein R¹ is methyl or
cyclopropyl.

In another embodiment, the invention relates to a method of making the compound of
formula (I) as described in the broadest embodiment, wherein L is bromo or
chloro; n is 0, and R¹ is methyl.

In another embodiment, the invention relates to a method of making the compound of
formula (I) as described in the broadest embodiment, wherein L is bromo or
chloro; n is 0, and R¹ is cyclopropyl.

In another embodiment, the invention relates to a method of making the compound of
formula (I) as described in all the embodiments above, wherein R³ is a branch-chain
-(Ci-C₆)alkyl.

In another embodiment, the invention relates to a method of making the compound of
formula (I) as described in all the embodiments above, wherein R³ is isopropyl.

In another embodiment, the invention relates to a method of making the compound of
formula (I) as described in all the embodiments above, wherein R⁴ is a straight-chain
-(Ci-C₆)alkyl.

In another embodiment, the invention relates to a method of making the compound of
formula (I) as described in all the embodiments above, wherein R⁴ is methyl.

As depicted in Scheme 1, reaction of the Grignard reagent with the compound of
formula (I) forms Intermediate 1. The Grignard reaction step used to form Intermediate 1
is carried out under anhydrous conditions in an ethereal solvent such as, e.g., diethyl ether,
diisopropyl ether, methyl t-butyl ether, tetrahydrofuran (THF), dioxane, and combinations
thereof. A preferred solvent for the Grignard reaction step is tetrahydrofuran.

-5-
Nonlimiting examples of useful Grignard reagents include alkyl magnesium halides, e.g., isopropylmagnesium chloride. The reaction with the Grignard reagent is carried out for a time and at a temperature sufficient to allow substantially all of the Grignard reagent to react with the compound of formula (I). In one embodiment, a suitable temperature is from about -30°C to about 50°C; in another embodiment, from about -30°C to about 0°C; and in another embodiment, from about -25°C to about 0°C.

In one embodiment, a suitable time for reacting the Grignard reagent with the compound of formula (I) is from about 0.25 hours to about 48 hours; in another embodiment, from about 1 hour to about 24 hours; and in another embodiment, from about 1 hour to about 12 hours. It will be understood that the above reaction times also includes the time required to contact the Grignard reagent with compound of formula (I).

The reaction of Intermediate 1 with the alkylborate is typically carried out by adding the alkylborate portion-wise to the first intermediate. The alkylborate can be added neat (i.e., without further dissolution in a solvent) or as a solution. When used as a solution, the solvent is typically the same solvent as used during reaction of the Grignard reagent with the compound of formula (II) (e.g., an ethereal solvent).

The reaction of Intermediate 1 with the alkylborate is carried out for a time and at a temperature sufficient to allow substantially all of Intermediate 1 to react with the alkylborate. In one embodiment, a suitable temperature is from about -30°C to about 50°C; in another embodiment, from about -30°C to about 0°C; and in another embodiment, from about -25°C to about 0°C.

In one embodiment, a suitable time for reacting the alkylborate with Intermediate 1 is from about 0.25 hours to about 48 hours; in another embodiment, from about 0.5 hours to about 24 hours; and in another embodiment, from about 0.5 hours to about 12 hours. It will be understood that the above reaction times also includes the time required to contact the alkylborate with Intermediate 1.

Intermediate 2 is then hydrolyzed ("the hydrolysis step") under conditions sufficient to convert Intermediate 2 into the compound of formula (I). The hydrolysis step can be carried out under acidic, neutral or basic conditions. Typically, the hydrolysis step is carried out under acidic conditions at a temperature of from about 0°C to about 50°C; more typically at a temperature of from about 0°C to about 30°C.
After hydrolysis the compound of formula (I) is separated from the reaction mixture, purified, and dried using methods known in the art. For example, when the compound of formula (I) formed in the hydrolysis step is a solid, then the solid can be separated from the liquid phase by filtration or decantation. The solids can then be washed with a suitable solvent and dried. If desired, additional compound of formula (I) may be recovered from the liquid phase and/or solvent washes.

The compound of formula (II) is commercially available or can be made by methods known in the art (see, e.g., WO2010043396, WO2010025890, WO2010010157, WO2009134400, WO2009074812, WO2009033703, WO2009033704, WO2008107479, WO2007104783, WO2005007644, WO2006017443, and references cited therein).

As noted above, the compounds of formula (I) are useful reagents in Suzuki coupling reactions. For example, the compound of formula (I) can be reacted with a haloarene or trifluoromethanesulfonyloxyarene to form the corresponding pyridin-4-yl-2-oxo of formula (IV) as depicted below in Scheme 2.

Scheme 2

As depicted in Scheme 2, the compound of formula (I) is reacted with a compound of formula (III) which is an arene substituted with a leaving group L. (The arene ring shown in Scheme 2 is depicted as 6-membered ring A for clarity.) The reaction is carried out in the presence of a palladium catalyst (e.g., PdCl₂(dpff) and base (e.g., Na₂CO₃) to provide the compound of formula (IV).

The leaving group (L) depicted in the compound of formula (III) is a group that can be displaced by the boric acid moiety of the compound of formula (I). Nonlimiting
examples of leaving groups (L) include halo (chloro, bromo, or iodo) and
trifluoromethanesulfonyloxy. In a preferred embodiment, L is bromo or chloro.

In one embodiment, the compound of formula (III) is a haloarene or
trifluoromethanesulfonyloxyarene.

In a preferred embodiment, the compound of formula (III) is a haloarene or
trifluoromethanesulfonyloxyarene as disclosed in WO2009/017664, WO2009/134400,
WO2009/017671, and WO20 10/01 1314.

Nonlimiting examples of palladium catalysts useful for carrying out the coupling
reaction depicted in Scheme 2 include

1,1'-bis(diphenylphosphino)ferronocene|dichloropalladium(II),
tetrakis(triphenylphospine)palladium(0) (Pd(Ph3)4), palladium acetate (Pd(OAc)2),
tris(dibenzylideneacetone)dipalladium(0), palladium on charcoal, and combinations
thereof.

In one embodiment, the invention relates to a method of making a compound of
formula (IV) as depicted in Scheme 2 above comprising:

allowing a compound of formula (III) to react with a compound of formula (I) in
the presence of a palladium catalyst and base.

In one embodiment, the invention relates to a method of making the compound of
formula (IV) as described in the embodiment above, wherein L is bromo or chloro.

In another embodiment, the invention relates to a method of making the compound
of formula (IV) as described in any of the embodiments above, wherein n is 0.

In another embodiment, the invention relates to a method of making the compound
of formula (IV) as described in any of the embodiments above, wherein R1 is methyl or
cycloalkyl.

In another embodiment, the invention relates to a method of making the compound
of formula (IV) as described in any of the embodiments above, wherein the palladium
catalyst is [1,1'-bis(diphenylphosphino)ferronocene|dichloropalladium(II), complex with
dichloromethane.

In another embodiment, the invention relates to a method of making the compound
of formula (IV) as described in any of the embodiments above, wherein the compound of
formula (III) is \((S)-3-((S)-1-(4\text{-bromophenyl})\text{ethyl})-6-(2\text{-hydroxy-2-methylpropyl})\text{-6-phenyl-1,3-oxazinan-2-one})\), or a hydrate thereof.

In another embodiment, the invention relates to a method of making the compound of formula (IV) as described in any of the embodiments above, wherein the compound of formula (III) is \((S)-3-((S)-1-(4\text{-bromophenyl})\text{ethyl})-6-(2\text{-hydroxy-2-methylpropyl})\text{-6-phenyl-1,3-oxazinan-2-one})\) is a monohydrate.

In another embodiment, the invention relates to a method of making the compound of formula (IV) as described as described second embodiment immediately above, wherein the compound of formula (III) is \((S)-3-((S)-1-(4\text{-bromophenyl})\text{ethyl})-6-(2\text{-hydroxy-2-methylpropyl})\text{-6-phenyl-1,3-oxazinan-2-one})\) in the form of a nonsolvate.

Examples

The following HPLC conditions are used to determine the purity of Compound 1 prepared in Example 1:

- **Column:** Halo C18 (MAC-MOD Analytical, Inc. No. 92814-702, s/n AH072246).
 - 4.6 x 150 mm. Particle size 2.7 µm.
 - Mobile phase A: water with 0.05%(v/v) phosphoric acid.
 - Mobile phase B: acetonitrile with 0.05%(v/v) phosphoric acid.
 - Gradient: 5% mobile phase B to 95% mobile phase B in 7 min; held at 95% mobile phase B for 3 min.
 - Runtime: 10 minutes with a post run of 2 min.
 - Flow rate: 1.20 mL/min.
 - Temperature: 25°C.
 - Injection: 2.0 µl.
 - UV detector: 220 nm, bandwidth 8 nm; ref 500 nm, bandwidth 100 nm.

Example 1

Synthesis of 1-methyl-2-oxo-1,2-dihydropyridin-4-ylboronic acid (1). Compound 1 is prepared using the procedure depicted in Scheme 3 and described below.
Step 1. A solution of isopropylmagnesium chloride (175 mL, 1.85 M in THF, 0.32 mol, 1.54 eq.) is charged to a 500-mL jacketed reactor under nitrogen atmosphere with mechanical agitation. The contents of the reactor are cooled to -18°C and treated with a solution of 4-bromo-l-methylpyridine-2(lH)-one (40.0 g, 0.21 mol, 1.00 eq.) over about 1 hour. The rate of addition is controlled to maintain a reaction temperature of no higher than -15°C. The contents of the reactor are warmed to -10°C, mixed for 1 hour, and warmed to 20°C.

Step 2. The contents of the reactor from Step 1 are cooled to -20°C and treated with neat trimethylborate (38 mL, 0.36 mol, 1.62 eq.) at a rate sufficiently slow (approximately 1 hour) to keep the batch temperature at or below -15°C. The contents of the reactor are then warmed to -10°C, mixed for 1 hour, and warmed to 20°C.

Step 3. Hydrochloric acid (140 mL, 2.56 N, 0.36 mol, 1.70 eq.) is cooled to about 5°C and treated with the reaction mixture from Step 2. The rate of addition is slow enough to maintain a reaction temperature of less than 25°C. The contents of the reactor are then mixed at 20°C for 6 hours. The resultant solids are collected by filtration, washed with isopropyl acetate (50 mL), and dried under reduced pressure at 21°C to provide a first crop of 1 as a white crystalline solid. Yield: 14.72 g, 42%. Purity: 98.9 A% by HPLC (220 nm); 91.7 wt% by 1H NMR.

1H NMR (DMSO-d6, 500 MHz) δ 8.37 (brs, 2H), 7.59 (d, J = 6.60 Hz, 1H), 6.78 (s, 1H), 6.40 (d, J = 6.55 Hz, 1H), 3.40 (s, 3H).

MS (ES) m/z = 154 [M+H]+.

A second batch of product is collected by reducing the volume of the filtrate under reduced pressure, adding isopropyl acetate (200 mL) at 21°C to the concentrated solution, and mixing the resultant slurry for 2 hours. The resultant solids are collected by filtration,
washed with isopropyl acetate (50 mL) and dried under reduced pressure at 21°C to provide a second crop of 1 as a white solid. Yield: 10.42 g, 28%. Purity: 98.0 A% by HPLC (220 nm); 85.6 wt% by 1H NMR. Total yield based on both crops of 1: 70%.

Example 2

Synthesis of (S)-6-(2-hydroxy-2-methylpropyl)-3-((S)-1-(4-(1-methyl-2-oxo-1,2-dihydropyridin-4-yl)phenyl)ethyl)-6-phenyl-1,3-oxazinan-2-one monohydrate (2)

Compound 2 is prepared using the procedure depicted in Scheme 4 and described below.

Scheme 4

A reaction flask is charged with (S)-3-((S)-1-(4-bromophenyl)ethyl)-6-(2-hydroxy-2-methylpropyl)-6-phenyl-1,3-oxazinan-2-one (19.66 g, 45.47 mmol) (see Ex. 588 of WO/2009/017664), compound 1 (7.65 g, 50.02 mmol), [1,1'-bis(diphenylphosphino)ferrocenec]dichloropalladium (II), complex with dichloromethane (37.40 mg, 0.046 mmol), potassium carbonate (18.85 g, 136.42 mmol) and 2-propanol (100 mL). The flask is evacuated and refilled with argon three times. The contents of the reactor are heated to 80°C and held for about 6 hours at which time compound 1 is completely consumed. The contents of the reactor are then treated with a solution of N-acetyl-L-cysteine (0.75 g, 4.58 mmol) in 2-propanol (100 mL) and stirred at 80°C for 2 hours. The resultant suspension is then filtered. (The suspension is maintained at 50°C to 70°C during the filtration step.) The resultant solids are then rinsed with 2-propanol (50 mL pre-heated to 70°C). The combined filtrate and washes is heated to 70°C, maintained at reduced pressure until about 150 ml of volatiles are removed, cooled to 65°C, and
seeded with compound 2. The resultant suspension is stirred at 60 - 65°C for 0.5 hours, cooled to 0°C over about 2 hours, and maintained at 0°C for 1 hour. The resultant solids are collected by filtration and washed with cold 2-propanol (50 mL). The solids are then recrystallized from a mixture of 2-propanol (40 mL) and water (200 mL) to provide compound 2 (monohydrate) as a white solid. Yield: 19.38 g, 88.2 % yield based on BI135541. Purity: 98.96 wt%. Analysis of the product agrees with the data reported in Example 48, Method 2 of WO/2009/134400 which describes the synthesis of the monohydrate of compound 1 by reacting 4-iodo-1-methylpyridin-2(1H)-one with (S)-6-(2-hydroxy-2-methylpropyl)-6-phenyl-3-((S)-l-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethyl)-1,3-oxazinan-2-one.
What is claimed is:

1. A compound of formula (I):

 \[
 \text{(I)}
 \]

 wherein:

 - \(n \) is 0, 1, 2 or 3;
 - \(R^1 \) is \(-(C_1-C_6)\text{alkyl} \) or \(-(C_3-C_6)\text{cycloalkyl} \); wherein said \(-(C_1-C_6)\text{alkyl} \) and \(-(C_3-C_6)\text{cycloalkyl} \) may be optionally be substituted with one to three groups independently selected from \(-(C_1-C_6)\text{alkyl} \), \(-(0(C_1-C_6)\text{alkyl} \), \(-\text{halo} \), \(-\text{NH}_2 \), \(-\text{NH}(C_1-C_6)\text{alkyl} \), \(-N((C_1-C_6)\text{alkyl})_2 \), and \(-\text{CN} \); and

 each \(R^2 \) is independently selected from \(-(C_1-C_6)\text{alkyl} \), \(-(0(C_1-C_6)\text{alkyl} \), \(-(C_3-C_6)\text{cycloalkyl} \), \(-\text{halo} \), \(-\text{NH}_2 \), \(-\text{NH}(C_1-C_6)\text{alkyl} \), \(-N((C_1-C_6)\text{alkyl})_2 \), and \(-\text{CN} \).

2. The compound of claim 1, wherein \(R^1 \) is \(-(C_1-C_6)\text{alkyl} \).

3. The compound of claim 1 or 2, wherein \(R^1 \) is methyl.

4. The compound of claim 1, wherein \(R^1 \) is \(-(C_3-C_6)\text{cycloalkyl} \).

5. The compound of claim 1 or 4, wherein \(R^1 \) is cyclopropyl.

6. The compound of any of claims 1-5, wherein \(n \) is 0.

7. The compound of claim 1, wherein \(R^1 \) is methyl and \(n \) is 0.

8. The compound of claim 1, wherein \(R^1 \) is cyclopropyl and \(n \) is 0.

9. A method of making the compound of formula (I) of claim 1, comprising allowing the compound of formula (II)
to react with a Grignard reagent of formula R_3MgX to form a first intermediate;
allowing the first intermediate to react with an alkylborate of formula $B(OR_4)_3$ to form a second intermediate; and
hydrolyzing the second intermediate to form the compound of formula (I); wherein R^1, R^2 and n are as defined above for the compound of formula (I);
R^3 and R^4 are each independently a $-(C_1-C_6)$alkyl;
L is a leaving group selected from halo and trifluoromethanesulfonyloxy; and
X is a chloro, bromo, or iodo.

10. A method of making a compound of formula (IV), or a hydrate thereof:

the method comprising:
allowing a compound of formula (I):

to react with a compound of formula (III):
wherein:

ring A in the compound of formula (III) is a C_{6-10} aryl or 5 to 11-membered heteroaryl;

L is a leaving group;

n is 0, 1, 2 or 3;

R^1 is -(C_{1-6})alkyl or -(C_{3-6})cycloalkyl; wherein said -(C_{1-6})alkyl and -(C_{3-6})cycloalkyl may be optionally be substituted with one to three groups independently selected from -(C_{1-6})alkyl, -(C_{1-6})alkyl, halo, -NH$_2$, -NH(C_{1-6})alkyl, -N((d-C$_6$)alkyl)$_2$, and -CN; and

each R^2 is independently selected from -(C_{1-6})alkyl, -(C_{1-6})alkyl, -(C_{3-6})cycloalkyl, halo, -NH$_2$, -NH(C_{1-6})alkyl, -N((C_{1-6})alkyl)$_2$, and -CN.

11. The method of claim 10, wherein:

the compound of formula (I) is 1-methyl-2-oxo-1,2-dihydropyridin-4-ylboronic acid;

the compound of formula (III) is (S)-3-((S)-l-(4-bromophenyl)ethyl)-6-(2-hydroxy-2-methylpropyl)-6-phenyl-1,3-oxazinan-2-one; and

the compound of formula (IV) is (S)-6-(2-hydroxy-2-methylpropyl)-3-((S)-l-(4-(1-methyl-2-oxo-1,2-dihydropyridin-4-yl)phenyl)ethyl)-6-phenyl-1,3-oxazinan-2-one, or a hydrate thereof.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07F5/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbol)

C07F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, CHEM ABS Data, COMPENDEX, EMBASE, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 2006/017443 A2 (OSI PHARM INC [US]; AHMED SALEH [GB]; BARBA OSCAR [GB]; BLOXHAM JASON) 16 February 2006 (2006-02-16) example 77</td>
<td>1-10</td>
</tr>
<tr>
<td>X,P</td>
<td>wo 2010/104830 AI (SQUIBB BRISTOL MYERS CO [US]; AHMAD SALEEM [US]; WASHBURN W LIAM N [U] 16 September 2010 (2010-09-16) pages 96-97</td>
<td>1-10</td>
</tr>
<tr>
<td>A, P</td>
<td>wo 2011/031979 AI (CYLENE PHARMACEUTICALS INC [US]; HADDACH MUSTAPHA [US]; RYCKMAN DAVID) 17 March 2011 (2011-03-17)</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another document or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 I later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance: the claimed invention cannot be considered to be novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 A document member of the same patent family

Date of the actual completion of the international search

24 August 2011

Date of mailing of the international search report

05/09/2011

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Bareyt, Sebastian
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2006017443 A2</td>
<td>16-02-2006</td>
<td>BR PID0514094 A</td>
<td>27-05-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2575808 A1</td>
<td>16-02-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008508358 A</td>
<td>21-03-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2010104830 A1</td>
<td>16-09-2010</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>