発明者：および
発明者/出願人 (米国についてのみ)：久保田 剛
(KUBOTA Tsuyoshi (JP); #4388501 静岡県磐
田市新興 2500 番地 Yamahabukenkata (JP)

(71) 出願人 (米国を除く全ての指定国について): YAMAHABUENKATA (JP; #4388501 静岡県磐
田市新興 2500 番地 Shizuoka (JP)

(12) 特許協力条約に基づいて公表された国際出願
(19) 世界知的所有権機関
国際事務局
(43) 国際公開日
2011 年 6 月 30 日 (30.06.2011)
(51) 国際特許分類: C22C 8/32 (2006.01) C22C 38/18 (2006.01)
C21D 1/06 (2006.01) C22C 38/22 (2006.01)
C21D 1/70 (2006.01) C22C 8/34 (2006.01)
C21D 9/00 (2006.01) F16C 7/02 (2006.01)
C22C 38/00 (2006.01)
(21) 国際出願番号:
PCT/JP20 10/077328
(22) 国際出願日:
2010 年 11 月 30 日 (30.11.2010)
(25) 国際出願の言語:
日本語
(26) 国際公開の言語:
日本語
(30) 項先権データ:
(30a) 国際出願番号:
PCT/JP20 10/077328
(31) 指定国 (表示のない限り、全ての種類の国内保護が可):

(54) Title: CONNECTING ROD, SINGLE-CYLINDER INTERNAL COMBUSTION ENGINE COMPRISING SAME, AND SADDLE TYPE VEHICLE

発明の名称：コネクティングロッドおよびそれを備えた単気筒内燃機関ならびに鞍乗型車両

(57) A2abstract: Disclosed is a connecting rod (1) which comprises a rod main body (10), a small end part (20) that is provided on one end of the rod main body (10), and a large end part (30) that is provided on the other end of the rod main body (10). The connecting rod (1) is formed from an iron alloy, and has been subjected to a carbonitriding treatment or a carburizing treatment and a nitriding treatment. The carbon content at a depth of 0.1 mm from the inner peripheral surface (30a) of the large end part (30) is 0.8-2.1 wt% (inclusive), and the nitrogen content at a depth of 0.1 mm from the inner peripheral surface (30a) of the large end part (30) is 0.03-0.19 wt% (inclusive). Consequently, the connecting rod is prevented from occurrence of flaking at the inner peripheral surface of the large end part, and has excellent fatigue strength.

(57) 要約: 本発明によるコネクティングロッド (1) は、ロッド本体部 (10) と、ロッド本体部 (10) の一端に設けられた小端部 (20) と、ロッド本体部 (10) の他端に設けられた大端部 (30) とを備える。本発明によるコネクティングロッド (1) は、合金鋼から形成され、炭素窒化処理が施されているが、または、炭素浸炭および窒化処理が施されている。大端部 (30) の内周面 (30a) から 0.1 mm の深さにおける炭素含有量は、0.8 wt% 以上 2.1 wt% 以下である。小端部 (30) の内周面 (30a) から 0.1 mm の深さにおける窒素含有量は、0.03 wt% 以上 0.19 wt% 以下である。本発明によると、大端部の内周面におけるフレーミングの発生が抑制され、疲労強度に優れたコネクティングロッドが提供される。
指定国 表示のない限り、全ての種類の広域保護が可能：ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ヨーロッパ (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ユーラシア (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI

(84) 指定国 表示のない限り、全ての種類の広域保護が可能：ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ヨーロッパ (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ユーラシア (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI

添付公開書類：
国際調査報告（条約第21条（3））
明細書

発明の名称:
コネクティングロッドおよびそれを備えた単気筒内燃機関ならびに鞍乗型車両

技術分野
本発明は、コネクティングロッドに関し、特に、鉄合金から形成されたコ
ネクティングロッドに関する。また、本発明は、そのようなコネクティング
ロッドを備えた単気筒内燃機関や鞍乗型車両に関して。

背景技術

内燃機関には、ピストンとクラランクシャフトとを連結するためにコネクテ
イングロッドと呼ばれる（「コンロッド（con'rod）」と略称されることもある）部材が用
いられている。コネクティングロッドは、棒状のロッド本体と
と、ロッド本体の一端に設けられた小端部と、ロッド本体の他端に設け
られた大端部とを備える。小端部がピストンに接続されるのに対し、大端部
はクラランクシャフトに接続される。より具体的には、小端部に形成された貫
通孔にピストンのピストンピンが押通される。また、大端部に形成された貫
通孔にクラランクシャフトのクラランクピンが押通される。これにより、コネク
テイングロッドがピストンおよびクラランクシャフトに接続される。

コネクティングロッドは、大端部が2つに分割された分割型と、大端部が
分割されていない一体型とに大別される。一体型のコネクティングロッドは
、主に単気筒の内燃機関に用いられる。

一体型コネクティングロッドの大端部の内周面とクラランクピンとの間に
は、יןクショントロッドを低減するためにニードルベアリング或いはベアリン
グなどの転がり軸受けが配置される。内燃機関の運転時にピストンを経由し
て伝わる爆発力は、コネクティングロッドを転がり軸受けに押し付けるので
、大端部の内周面には、大きな応力が発生する。この応力が過大な場合、大
端部の内周面には、フレーキング（faking）と呼ばれる疲労破壊現象が発生
する。

[0005] コネクティングロッドにフレーミングが発生すると、内燃機関のスムーズな回転が妨げられるので、内燃機関や車両に不快な音と振動が発生して商品性や快適性を損なってしまう。そのため、コネクティングロッドにはフレーミングが発生しないことが求められる。

[0006] 従来、フレーミングの発生を抑制して長寿命化を実現するために、肌焼鋼（例えばJIS S CM420）から形成されたコネクティングロッドに対し、浸炭処理を施すことが一般に行われている。浸炭処理によってコネクティングロッドの表面から炭素を浸透させることにより、表面近傍の炭素濃度が高くなる。そのため、焼入れ後に表面硬度が高くなり、そのことによりフレーミングの発生が抑制される。

[0007] また、特許文献1には、コネクティングロッドの表面硬度をさらに高める技術として、高濃度浸炭処理が提案されている。この技術では、カーボンポテンシャル（CP）が0.8%以上である雰囲気下での浸炭を複数回行う。これにより、コネクティングロッドの表面近傍に微細な粒状の炭化物が析出するとともに、表面近傍におけるマルテンサイト組織の結晶粒径が小さくなる。そのため、表面硬度が著しく高くなるので、疲労強度のいっそうの向上が可能となる。また、特許文献1には、高濃度浸炭処理と同様にコネクティングロッドの表面硬度を高める技術として、高濃度浸炭窒化処理にも言及がなされている。

先行技術文献

特許文献

[0008] 特許文献1 : 特開2000-313949号公報

発明の概要

発明が解決しようとする課題

[0009] しかしながら、近年、内燃機関を高性能化した場合、一般的な浸炭処理や、特許文献1に開示されているような高濃度浸炭処理、高濃度浸炭窒化処理
が施されたコネクティングロッドでは、フレーミングが比較的短時間で発生するようになった。そのため、フレーミング寿命が内燃機関の高性能化の妨げとなり、内燃機関のさらなる高性能化のためには、フレーミング寿命の増大（つまりコネクティングロッドの長寿命化）が必須となってきた。

[001 0] 本発明は、上記問題に鑑みてなされたものであり、その目的は、大端部の内周面におけるフレーミングの発生が抑制され、疲労強度に優れたコネクティングロッドを提供することにある。

課題を解決するための手段

[001 1] 本発明によるコネクティングロッドは、ロッド本体部分、前記ロッド本体部分の一部に設けられた小端部と、前記ロッド本体部の他端に設けられた大端部とを備え、鉄合金から形成され、浸炭窒化処理が施されたが、または、浸炭処理および窒化処理が施されたコネクティングロッドであって、前記大端部の内周面から0.1mmの深さにおける炭素含有量が0.8wt%以上2.1wt%以下であり、前記大端部の内周面から0.1mmの深さにおける窒素含有量が0.03wt%以上0.19wt%以下である。

[001 2] ある好適な実施形態において、本発明によるコネクティングロッドは、前記大端部の内周面から0.1mmの深さにおける窒素含有量が0.04wt%以上0.18wt%以下である。

[001 3] ある好適な実施形態において、本発明によるコネクティングロッドは、前記大端部の内周面から0.1mmの深さにおける窒素含有量が0.05wt%以上0.15wt%以下である。

[001 4] ある好適な実施形態において、前記鉄合金は、0.1wt%以上0.4wt%以下の炭素、0.1wt%以上0.5wt%以下のケイ素および0.3wt%以上1.2wt%以下のクロムを含む。

[001 5] ある好適な実施形態において、前記鉄合金のニッケル含有量は0.7wt%未満である。

[001 6] ある好適な実施形態において、本発明によるコネクティングロッドは、非拡散性水素含有量が0.46ppm以下である。
ある好適な実施形態において、前記浸炭窒化処理、前記浸炭処理および前記窒化処理は、標準大気圧の1/10以下の圧力に減圧された炉内において施されている。

ある好適な実施形態において、前記大端部の内周面近傍に析出している炭化物および炭窒化物の粗径は10μm以下である。

本発明による単気筒内燃機関は、上記構成を有するコネクティングロッドと、前記コネクティングロッドに接続されたクランクシャフトと、を備える。

ある好適な実施形態において、前記クランクシャフトは、前記コネクティングロッドの前記大端部に挿通されたクランクビンと、前記クランクビンとは別体に形成されたクランクウェブと、を有する。

ある好適な実施形態において、本発明による単気筒内燃機関は、前記大端部の内周面と前記クランクビンとの間に設けられた転がり軸受けをさらに備える。

ある好適な実施形態において、前記クランクビンは、浸炭処理または浸炭窒化処理を施されている。

本発明による軽乗用車両は、上記構成を有する単気筒内燃機関を備える。

本発明によるコネクティングロッドの製造方法は、ロッド本体部、前記ロッド本体部の一端部に設けられた小端部および前記ロッド本体部の他端部に設けられた大端部を備えるコネクティングロッドの製造方法であって、鉄合金から形成されたワークピースを用意する工程（A）と、前記ワークピースに対して0．8％以上のカーポンポテンシャルを有する雰囲気下で浸炭処理を施す工程（B）と、前記工程（B）の後に、前記ワークピースに対して0．8％以上のカーポンポテンシャルを有する雰囲気下で浸炭窒化処理を施す工程（C）と、を包含し、前記工程（C）は、前記ワークピースの前記大端部となる領域の内周面から0．1mmの深さにおける窒素含有量が0．03wt％以上0．19wt％以下となるように実行される。

ある好適な実施形態において、前記工程（B）における前記浸炭処理およ
び前記工程 (C) における前記浸炭窒化処理は、標準大気圧の1/10以下の圧力に減圧された炉内において施される。

[0026] あるいは、本発明によるコネクティングロッドの製造方法は、ロット本体部、前記ロット本体部の一端部に設けられた小端部および前記ロット本体部の他端部に設けられた大端部を備えるコネクティングロッドの製造方法であって、鉄合金から形成されたワークピースを用意する工程 (A) と、前記ワークピースに対し0.8％以上のカーボンボテンシャルを有する雰囲気下で複数回浸炭処理を施す工程 (B) と、前記工程 (B) の後に、前記ワークピースに対して窒化処理を施す工程 (C) と、を含む。前記工程 (C) は、前記ワークピースの前記大端部となる領域の内周面から0.1mmの深さにおける窒素含有量が0.03wt％以上0.19wt％以下となるように実行される。

[0027] ある好適な実施形態において、前記工程 (B) における前記浸炭処理および前記工程 (C) における前記窒化処理は、標準大気圧の1/10以下の圧力に減圧された炉内において施される。

[0028] 本発明によるコネクティングロッドは、鉄合金から形成され、浸炭窒化処理が施されているが、または、浸炭処理および窒化処理がされている。浸炭窒化処理 (または浸炭処理と窒化処理) により、コネクティングロッドの表面硬度が高くなり、疲労強度が向上する。また、本発明によるコネクティングロッドでは、大端部の内周面から0.1mmの深さにおける炭素含有量が0.8wt％以上2.1wt％以下である。これら、上記の浸炭窒化処理または浸炭処理が、カーボンボテンシャル (C,P) が0.8％以上である雰囲気下で行われたことを意味している。つまり、コネクティングロッドに対して、高濃度浸炭窒化処理または高濃度浸炭処理が施されたことを意味している。高濃度浸炭窒化処理または高濃度浸炭処理によれば、コネクティングロッドの表面近傍に微細な粒状の炭化物および/または炭窒化物が析出するとともに、表面近傍におけるマルテンサイト組織の結晶粒径が小さくなる。そのため、表面硬度が著しく高くなり、疲労強度の向上効果が高い。さらに
、本発明によるコンネクティングロッドでは、大端部の内周面から所定の深さにおける窒素含有量が特定の範囲に設定されており、具体的には、大端部の内周面から0.1ミリメートルの深さにおける窒素含有量が0.03セント以上、19ワット％以下である。このことにより、耐フレーキング性が顕著に向向上し、フレーキングの発生を長期間にわたって防止することができる。そのため、本発明によるコンネクティングロッドは、単に高濃度浸炭窒化処理や高濃度浸炭処理が施されたコンネクティングロッドに比べ、優れた疲労強度を有する。

[0029] 耐フレーキング性のいっそうの向上を図る観点からは、大端部の内周面から0.1ミリメートルの深さにおける窒素含有量は、0.04ワット％以上0.18ワット％以下であることが好ましく、0.05ワット％以上0.15ワット％以下であることがさらに好ましい。

[0030] 本発明によるコンネクティングロッドの材料である鉄合金は、0.1ワット％以上0.4ワット％以下の炭素、0.1ワット％以上0.5ワット％以下のケイ素および0.3ワット％以上1.2ワット％以下のクロムを含むことが好ましい。

炭素含有量が0.1ワット％以上0.4ワット％以下であることにより、熟処理後のコンネクティングロッドの内部硬さを200HV以上500HV以下にすることができるのに対して、コンネクティングロッド内部の強度および靭性を十分に高く保つことができる。また、ケイ素含有量が増加すると、耐フレーク性は向上するが、靭性は低下するおそれがある。ケイ素含有量が0.1ワット％以上0.5ワット％以下であることにより、耐フレーキング性を十分に向上させ、且つ、十分な靭性を確保することができる。また、クロム含有量が増加すると、焼入れ性が良くなる。ただし、クロム含有量が過度に多くなると、焼戻し脆化が発生することがある。クロム含有量が0.3ワット％以上1.2ワット％以下であることにより、適切な焼入れ性を得つつ、焼戻し脆化の発生を防止することができる。

[0031] 鉄合金のニッケル含有量は、なるべく少ないことが好ましく、具体的には、0.7ワット％未満であることが好ましい。ニッケル含有量が増加すると、
熱処理後の残留オーステナイト量が増加するので、表面硬度が低下することがある。

フレーキング寿命のいっそうの向上を図る観点からは、非拡散性水素含有量が0.46ppm以下であることが好ましい。非拡散性水素含有量が0.46ppm以下であることにより、水素脆性型剥離の発生を抑制することができるので、フレーキング寿命をいっそう向上させることができる。

浸炭窒化処理（または浸炭処理と窒化処理）は、真空引きされた炉内において施されることが好ましく、より具体的には、標準大気圧の1/10以下の圧力で検圧された炉内において施されることが好ましい。このような炉内に窒素ガスを導入することにより、表面（大端部の内周面）から深さ0.1mmにおける窒素含有量を精度良く調節することができる。

大端部の大端部の内周面近傍に析出している炭化物および炭窒化物の粒径は、なるべく小さいことが好ましく、具体的には10μm以下であることが好ましい。炭化物および炭窒化物の粒径が10μmを超えると、靭性が低下して十分な強度が得られないことがある。

本発明によるコネクティングロッドは、シリンダの数が1つである単気筒内燃機関に好適に用いられる。単気筒内燃機関のクランクシャフトは、典型的には、組立て式のクランクシャフトである。つまり、クランクビンと、クランクウェブとが別体に形成されている。単気筒内燃機関では、フリクションロスの低減が重要であるので、一般的には、大端部の内周面とクランクビンとの間に転がり軸受け（例えばニードルベアリングやボールベアリング）が設けられる。転がり軸受けが設けられている場合、コネクティングロッドが転がり軸受けに押し付けられることにより、大端部の内周面に応力が発生する。この応力が過大であると、フレーキングの発生が懸念されるが、本発明によるコネクティングロッドは、耐フレーキング性に優れているので、フレーキングの発生が長期間にわたって防止される。

内燃機関全体の耐久性を高める観点からは、クランクビンの表面硬度および疲労強度も高いことが好ましい。そのため、クランクビンは、浸炭処理ま
たは浸炭窒化処理を施されていることが好ましい。

[0037] 本発明によるコネクティングロッドを備えた単気筒内燃機関は、各種の乗
乗型車両（例えば自動二輪車）に好適に用いられる。

[0038] 本発明によるコネクティングロッドの製造方法では、鉄合金から形成され
たワークピースに対し、浸炭窒化処理が施されるか、あるいは、浸炭処理お
よび窒化処理が施される。浸炭窒化処理（または浸炭処理と窒化処理）によ
り、コネクティングロッドの表面硬度が高くなり、疲労強度が向上する。ま
た、本発明による製造方法では、上記の浸炭窒化処理や浸炭処理が、カーポ
ンポテンシャル（CＰ）が0.8％以上である雰囲気下で行われる。つまり
、ワークピースに対して、高濃度浸炭窒化処理または高濃度浸炭処理が施さ
れる。高濃度浸炭窒化処理または高濃度浸炭処理によれば、ワークピースの
表面近傍に微細な粒状の炭化物および／または炭窒化物が析出するとともに
、表面近傍におけるマルテンサイト組織の結晶粒径が小さくなる。そのため
、表面硬度が著しく高くなり、疲労強度の向上効果が高い。さらに、本発明
による製造方法では、浸炭窒化処理や窒化処理は、ワークピースの大端部と
なる領域の内周面から所定の深さにおける窒素含有量が0.03wt％以上
0.19wt％以下となるように実行される。このことにより、耐フレーキ
ング性が顕著に向上し、フレーキングの発生を長期間にわたって防止するこ
とができる。そのため、本発明による製造方法により製造されたコネクティ
ングロッドは、単に高濃度浸炭窒化処理や高濃度浸炭処理が施されたコネク
ティングロッドに比べ、優れた疲労強度を有する。

[0039] 浸炭窒化処理（または浸炭処理と窒化処理）は、真空引きされた炉内にお
いて施されることが好ましく、より具体的には、標準大気圧の1/10以下の
圧力に減圧された炉内において施されることが好ましい。このような炉内
に窒素を含有するガスを導入することにより、表面（大端部の内周面）から
深さ0.1mmにおける窒素含有量を精度良く調節することができる。

発明の効果

[0040] 本発明によると、大端部の内周面におけるフレーキングの発生が抑制され
疲労強度に優れたコネクティングロッドが提供される。

図面の簡単な説明

[図1] 本発明の好適な実施形態におけるコネクティングロッド1を模式的に示す図であり、(a) は平面図、(b) は(a) 中の1B_1B’ 線に沿った断面図、(c) は(a) 中の1C_1C’ 線に沿った断面図である。

[図2] 一般的なコネクティングロッドの大端部内周面における深さ方向の応力分布（内燃機関の運転時で応力が最大になるときの応力分布）を示す図である。

[図3] 本発明の好適な実施形態におけるコネクティングロッド1の製造方法を示すフローチャートである。

[図4] (a) および(b) は、コネクティングロッド1の表面近傍における断面の金属顕微鏡写真である。

[図5] コネクティングロッド1の深さ方向における炭素濃度（炭素含有量）の分布を示すグラフである。

[図6] コネクティングロッド1の深さ方向における硬度分布を示すグラフである。

[図7] 大端部の内周面から0.1mmの深さにおける窒素含有量（wt%）と、フレーキング寿命（L 50寿命）との関係を示すグラフである。

[図8] 本発明の好適な実施形態におけるコネクティングロッド1の製造方法を示すフローチャートである。

[図9] 窒化処理または高濃度浸炭窒化処理をガス浸炭用の炉内で行う場合と、真空浸炭用の炉内で行う場合とについて、コネクティングロッドの表面から深さ0.1mmにおける窒素含有量と、窒化時間との関係を示すグラフである。

[図10] 本発明の好適な実施形態におけるコネクティングロッド1を備えた単気筒内燃機関100を模式的に示す断面図である。

[図11] 図10に示す内燃機関100を備えた自動二輪車を模式的に示す側面図である。
発明を実施するための形態

【0042】本願発明者は、高濃度浸炭処理や高濃度浸炭窒化処理が施されたコネクティングロッドにおいてもフレーキングが発生する理由を詳細に検討し、その結果、以下に説明する知見を得た。

【0043】フレーキングの原因は、既に説明したように、ニードルベアリングやポールベアリングなどの軸受から外端部の内周面に大きな応力が伝達されることにある。そのため、コネクティングロッドの表面硬度を、高濃度浸炭処理や高濃度浸炭窒化処理によって上昇させることにより、フレーキングの発生を防止することができると考えられるが、実際には、十分な効果を得ることができない。つまり、単純にコネクティングロッドの表面硬度を高くしても、十分な耐フレーキング性は得られない。

【0044】そこで、本願発明者が、コネクティングロッドの深さ方向における応力分布を分析したところ、表面ではなく、表面からある程度の深さにおいてもしそも大きな応力が作用するものがわかった。さらに、最大応力が作用する深さにおける元素濃度と、耐フレーキング性との関係を検証したところ、最大応力が作用する深さにおける窒素濃度（窒素含有量）が耐フレーキング性に大きな影響を与えていることがわかった。

【0045】本発明は、本願発明者が見出した上記知見に基づいてなされたものである。以下、図面を参照しながら本発明の実施形態を説明する。なお、本発明は以下の実施形態に限定されるものではない。

【0046】図1（a）～（c）に、本実施形態におけるコネクティングロッド1を示す。図1（a）は、コネクティングロッド1を模式的に示す平面図である。また、図1（b）は、図1（a）中の1B－1B′線に沿った断面図であり、図1（c）は、図1（a）中の1C－1C′線に沿った断面図である。

【0047】コネクティングロッド1は、図1（a）および（b）に示すように、ロッド本体部10と、ロッド本体部10の一端に設けられた小端部20と、ロッド本体部10の他端に設けられた大端部30を備える。

【0048】ロッド本体部（軸部）10は、棒状である。ロッド本体部10の断面形状
は、典型的には、図1（c）に示すように、H字状である。

小端部20は、ピストンピンを通すための貫通孔（ピストンピン孔）22を有する。小端部20は、ピストンピンを介してピストンに接続される。小端部20の内周面（ピストンピン孔22の外縁を規定する面）20aは、典型的には、ベアリングを介さずにピストンピンと接触する。

大端部30は、クランクピンを通すための貫通孔（クランクピン孔）32を有している。大端部30は、クランクピンを介してクランクシャフトに接続される。クランクピン孔32内には、典型的には、転がり軸受けが配置されるため、大端部30の内周面（クランクピン32の外縁を規定する面）30aは、転がり軸受けと接触する。コネクティングロッド1は、大端部30が2つに分割されていない、一体型のコネクティングロッドである。

本実施形態におけるコネクティングロッド1は、鉄合金から形成されている。また、コネクティングロッド1は、浸炭窒化処理が施されているが、または、浸炭処理および窒化処理が施されている。

ただし、大端部30の内周面30aから0.1mmの深さにおける炭素含有量は、0.8wt%以上2.1wt%以下である。これは、上記の浸炭窒化処理または浸炭処理が、カーボンボテンシャル（CP）が0.8%以上である雰囲気下で行われたことを意味している。つまり、コネクティングロッド1に対して施された浸炭窒化処理または浸炭処理は、普通の浸炭窒化処理や浸炭処理ではなく、高濃度浸炭窒化処理または高濃度浸炭処理である。高濃度浸炭窒化処理または高濃度浸炭処理によれば、コネクティングロッド1の表面近傍に微細な粒状の炭化物およびノまたは炭窒化物が析出するとともに、表面近傍におけるマルテンサイト組織の結晶粒径が小さくなる。そのため、表面硬度が著しく高くなり、疲労強度の向上効果が高い。

さらに、本実施形態におけるコネクティングロッド1では、大端部30の内周面30aから0.1mmの深さにおける窒素含有量が0.03wt%以上0.19wt%以下である。このことにより、耐フレーキング性が顕著に向上する。
図2 に、一般的なコネクティングロッドの大端部内周面における深さ方向の応力分布（内燃機関の運転時で応力が最大になるときの応力分布）を計算した結果を示す。図2中には、内周面からの深さを負の値で示されている。例えば、深さ0.15mmの位置は、「0.15」と表記されている。また、図2中で応力を示す複数の曲線には、1〜22の番号が付されており、番号が大きいほど大きい応力を示している。

図2からわかるように、応力は最表面においてもっとも大きいわけではな
し。また、図2から、内周面から約0.1mmの深さにおいて応力が最大とな
ることがわかる。そこで、本願発明者が、深さ0.1mmの位置における元
素濃度と耐フレーティング性との関係を詳細に検証したところ、深さ0.1
mmの位置における窒素濃度（窒素含有量）が耐フレーティング性に大きな
影響を与えることがわかった。具体的には、後に検証結果とともに説明するよ
うに、この深さにおける窒素含有量が0.03wt%以上0.19wt%以下であることにより、耐フレーティング性の向上効果が段階に高くなることがわ
かった。

本実施形態におけるコネクティングロッド1では、大端部30の内周面3
0aから0.1mmの深さにおける窒素含有量が0.03wt%以上0.19wt%以下であ
るのので、耐フレーティング性が顕著に向上し、フレーティングの発生を長期間にわたって防止することができる。そのため、本実施形態にお
けるコネクティングロッド1は、単に高濃度浸炭窒化処理や高濃度浸炭処
理が施されたコネクティングロッドに比べ、優れた疲労強度を有する。

なお、耐フレーティング性のいっそうの向上を図る観点からは、大端部30
の内周面30aから0.1mmの深さにおける窒素含有量は、0.04wt%
以上0.18wt%以下であることが好ましく、0.05wt%以上0.15wt%以下であることがさらに好ましい。

続いて、図3を参照しながら、本実施形態におけるコネクティングロッド
1の製造方法を説明する。図3は、コネクティングロッド1の製造工程を示すフローチャートである。
まず、鉄合金から鍛造により成形されたワークピースを用意する（工程 S1）。鉄合金の組成に特に限定はないが、鉄合金の炭素 (C) 含有量は、0.1 wt% 以上 0.4 wt% 以下であることが好ましい。炭素含有量が 0.1 wt% 以上 0.4 wt% 以下であることにより、熱処理後のコンテクティングロッド1の内部硬度（ビッカース硬度）を 200HV 以上 500HV 以下にすることができるので、コンテクティングロッド1内部の強度および靭性を十分に高く保つことができる。

また、鉄合金のケイ素 (Si) 含有量は、0.1 wt% 以上 0.5 wt% 以下であることが好ましい。ケイ素含有量が増加すると、耐フレーキング性は向上するが、靭性は低下するおそれがある。ケイ素含有量が 0.1 wt% 以上 0.5 wt% 以下であることにより、耐フレーキング性を十分に向上させ、且つ、十分な靭性を確保することができる。

さらに、クロム含有量は、0.3 wt% 以上 1.2 wt% 以下であることが好ましい。クロム含有量が増加すると、焼入れ性（熱処理による硬化のし易さを示す性質）が良くなるものの、クロム含有量が過度に多くなると、焼戻し脆化（鉄合金が所定の温度範囲に長時間保持された場合に生じる脆化現象）が発生することがある。クロム含有量が 0.3 wt% 以上 1.2 wt% 以下であることにより、適切な焼入れ性を保つ、焼戻し脆化の発生を防止することができる。

このように、ワークピースの材料（コンテクティングロッド1の材料）である鉄合金は、0.1 wt% 以上 0.4 wt% 以下の炭素、0.1 wt% 以上 0.5 wt% 以下のケイ素および 0.3 wt% 以上 1.2 wt% 以下のクロムを含むことが好ましい。炭素含有量、ケイ素含有量およびクロム含有量が上記の範囲内にある鉄合金としては、例えば JIS SCM420 鋼や、JIS S Cr420 鋼を用いることができる。SCM420 鋼は、0.18 wt% 以上 0.23 wt% 以下の炭素、0.15 wt% 以上 0.35 wt% 以下のケイ素、0.90 wt% 以上 1.2 wt% 以下のクロム、0.60 wt% 以上 0.85 wt% 以下のマンガン、0.15 wt% 以上 0.30 wt% 以下の
モリブデンを含む。SCr420鋼は、0.18w%以上0.23wt%以下の炭素、0.15wt%以上0.35wt%以下のケイ素、0.90wセ%以上1.2wt%以下のクロム、0.60wt%以上0.85wt%以下のマンガンを含む。

また、鉄合金のニッケル含有量は、なるべく少ないことが好ましく、具体的には、0.7wt%未満であることが好ましく、0.25wt%以下であることがさらに好ましい。ニッケル含有量が増加すると、熱処理後の残留オーステナイト量が増加するので、表面硬度が低下することがある。

なお、ここでは鍛造を例示したが、ワークピースを用いる工程における成形手法はこれに限定されるものではない。ワークピースは、例えば、焼結や鍛造、焼結鍛造などによって成形されてもよい。

次に、ワークピースに対して機械加工を行う（工程S2）。この機械加工により、鍛造後のワークピースの外径寸法が整えられる。例えば、バリ取り、ピストンピン孔22およびクランクピン孔32の形成、小端部20および大端部30の端面加工などが行われる。このように、この工程では主に切削が行われる。

続いて、ワークピースに対して1回目の高濃度浸炭処理を施す（工程S3）。浸炭手法としては、固体浸炭、液体浸炭、ガス浸炭などが知られており、現在ではガス浸炭が主流であるが、ここでは、真空浸炭（「真空ガス浸炭」または「減圧浸炭」と呼ばれることもある）を行う。つまり、この工程における高濃度浸炭処理は、真空引きされた炉内（より具体的には、標準大気圧の1/10以下、減圧された炉内）において施される。このような炉内をA1変態点（鋼の共析変態温度）以上の温度に設定するとともに、カーボンポテンシャルが0.8%以上になるように炭化水素ガスを炉内に導入し、所定時間浸炭を行う。例えば、1000℃で170分間、浸炭を行う。1回目の高濃度浸炭処理により、鉄合金の表面は過剰浸炭される。その後、ガス冷却を行う（工程S4）。例えば、窒素（N2）ガスを導入することにより、冷却を行う。
次に、ワークピースに対して2回目の高濃度浸炭処理を施す（工程S5）。ここでも、真空浸炭を行う。真空引きされた炉内をA1変態点以上で、Acm変態点（鉄合金のオーステナイトからセメンタイトが析出する変態温度）以下の温度に設定するとともに、カーボンポテンシャルが0.8%以上になるように炭化水素ガスを炉内に導入し、所定時間浸炭を行う。例えば、850℃で150分間、浸炭を行う。2回目の高濃度浸炭処理により、過剰浸炭された表面層の炭素が内部に拡散する。その後、ガス冷却を行う（工程S6）。

続いて、ワークピースに対して窒化処理を施す（工程S7）。この窒化処理も、真空引きされた炉内で行う。真空引きされた（具体的には標準大気圧の1/10以下の圧力に減圧された炉内）をA1変態点以上で、Acm変態点以下の温度に設定するとともに、アンモニアガスを炉内に導入し、所定時間窒化を行う。例えば、850℃で130分間、浸炭を行う。その後、油冷（焼入れ）を行う（工程S8）。

次に、焼入れを行う（工程S9）。焼入れは、例えば、190℃で120分間行われる。その後、空冷を行う（工程S10）。

最後に、ワークピースに対して機械加工を行う（工程S11）。例えば、小端部20の内周面20aや大端部30の内周面30aの研磨が行われる。このように、この工程では主に研磨が行われる。上述したようにして、コネクティングロッド1が完成する。

図4（a）および（b）に、完成したコネクティングロッド1の金属組織を示す。図4（a）および（b）は、コネクティングロッド1の表面近傍における断面の金相顕微鏡写真であり、図4（b）は図4（a）の一部を拡大したものである。図4（a）および（b）に示されているように、マルテンサイトの結晶粒の間に、微細な粒状の炭化物（炭化鉄）および炭窒化物（炭窒化鉄）が析出している。

図5に、コネクティングロッド1の深さ方向における炭素濃度（炭素含有量）の分布を示す。図5に示されているように、表面から0.1mmの深さ
における炭素濃度が約0.92 wt%であり、高濃度浸炭処理によって、この深さにおける炭素濃度（炭素含有量）が0.8 wt%以上になることがわかる。なお、図5に示したような炭素濃度分布は、例えば電子線マイクロアナライザ（EPM A）により測定することができる。

図6に、コネクティングロッド1の深さ方向における硬さ分布を示す。図6に示されているように、表面から0.1 mmの深さにおける硬さは約770HVである。

次に、大端部30の内周面30aの表層（つまり深さ0mm）、内周面30aから0.1 mmの深さ、内周面30aから0.2 mmの深さにおける窒素含有量（wt%）を変化させ、フレーキング寿命への影響を検証した結果を説明する。ここでいうフレーキング寿命は、累積破損確率50%の寿命（L50寿命」と呼ばれる）である。

表1に、深さ0.1 mmの位置における窒素含有量が0.03 wt%以上0.19 wt%以下の範囲内にある実施例1～4と、深さ0.1 mmの位置における窒素含有量が0.03 wt%以上0.19 wt%以下の範囲外にある比較例1および2について、検証結果を示す。実施例1～4と、比較例1および2とは、窒化処理の条件が異なる点以外は同じ製法により製造されている。また、表1には、従来のコネクティングロッドとして、普通の浸炭処理（高濃度浸炭処理ではない浸炭処理）が施された比較例3と、特許文献1に開示されているような高濃度浸炭処理が施された比較例4とを併せて示している。なお、深さ方向における窒素含有量の分布は、例えば電子線マイクロアナライザ（EPM A）により測定することができる。

[表1]

<table>
<thead>
<tr>
<th>実施例</th>
<th>窒素含有量（wt%）</th>
<th>L50寿命 (X.10^9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>表層（深さ0mm）</td>
<td>深さ0.1mm</td>
</tr>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>2</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>3</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>4</td>
<td>0.20</td>
<td>0.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>比較例</th>
<th>窒素含有量（wt%）</th>
<th>L50寿命 (X.10^9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>表層（深さ0mm）</td>
<td>深さ0.1mm</td>
</tr>
<tr>
<td>1</td>
<td>0.09</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>0.23</td>
<td>0.20</td>
</tr>
<tr>
<td>3</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>4</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>
表1に示されているように、深さ0.1mmの位置における窒素含有量が0.03wt%未満である比較例1および0.19wt%を超える比較例2では、従来のコンネクティングロッド（比較例3および4）と同程度のフレーキング寿命しか得られない。これに対し、深さ0.1mmの位置における窒素含有量が0.03wt%以上0.19wt%以下の範囲内に実施例1～4では、従来のコンネクティングロッド（比較例3および4）よりも長いフレーキング寿命が実現されることがわかる。また、図7から、表...

また、表1から、表層および深さ0.2mmの位置における窒素含有量には、フレーキング寿命との明確な相関がないことがわかる。例えば比較例1では、表層における窒素含有量が比較例3および4よりも著しく多いにも関わらず、従来と同程度のフレーキング寿命しか得られない。また、実施例1および3では、深さ0.2mmの位置における窒素含有量は比較例3および4と同程度であるにも関わらず、従来よりも長いフレーキング寿命が得られている。

このように、表層や深さ0.2mmの位置ではなく、深さ0.1mmの位置における窒素含有量を所定の範囲内（0.03wt%以上0.19wt%以下）にすることにより、フレーキング寿命を従来よりも長くし得ることがわかった。なお、比較例2のように、深さ0.1mmの位置における窒素含有量が多すぎるとフレーキング寿命が低下してしまうのは、窒素化合物が増えることによって、靭性が低下し、金属組織がコネクティングロッドの使用中の（燃焼機関の運転中）の変形に追随できず、微小な欠陥が発生するためと考えられる。

図7に、深さ0.1mmの位置における窒素含有量と、フレーキング寿命（L50寿命）との関係をグラフとして示す。図7のグラフには、表1に示した例よりもさらに多くの例が示されている。

図7からも、表面から0.1mmの深さにおける窒素含有量が0.03wt%以上0.19wt%以下（図7中の範囲A）であることにより、従来よりも長いフレーキング寿命が実現されることがわかる。また、図7から、表
面から0.1mmの深さにおける窒素含有量が0.04wt%以上0.18wt%以下（図7中の範囲B）であることにより、さらに長いフレーキング寿命が実現され、0.05wt%以上0.15wt%以下（図7中の範囲C）であることにより、いっそう長いフレーキング寿命が実現されることがわかる。

なお、本実施形態では、コネクティングロッド1に対し、高濃度浸炭処理と窒化処理を別々に（順次）施す場合を説明したが、高濃度浸炭処理を施す際に窒化処理を同時に施してもよい。つまり、コネクティングロッド1に対し、高濃度浸炭窒化処理を施してもよい。図8に、高濃度浸炭窒化処理を施す場合のコネクティングロッド1の製造工程の例を示す。

図8に示す例では、まず、鉄合金から鍛造により成形されたワークピースを用意し（工程S1）、次に、ワークピースに対して機械加工（主に切削）を行う（工程S2）。続いて、ワークピースに対して高濃度浸炭処理を真空引きされた炉内で施し（工程S3）、その後、ガス冷却を行う（工程S4）。

次に、ワークピースに対して高濃度浸炭窒化処理を真空引きされた炉内で施す（工程S5）。高濃度浸炭窒化処理は、炉内に炭素ガスとともにアンモニアガスを導入することにより行う。その後、油冷（焼入れ）を行う（工程S6）。

次に、焼戻しを行い（工程S7）、その後、空冷を行う（工程S8）。最後に、ワークピースに対して機械加工（主に研磨）を行う（工程S9）。上述したようにして、コネクティングロッド1が完成する。

なお、高濃度浸炭処理（図3中の工程S3、S5および図8中の工程S3）および高濃度浸炭窒化処理（図8中の工程S5）は、上述したように、真空引きされた炉内で施される（つまり真空浸炭または真空浸炭窒化である）ことが好ましい。真空浸炭および真空浸炭窒化では、その後の熱処理として炉冷や焼入れの代わりに、ガス冷を行うことができるので、処理時間を短縮を図ることができる。
また、表面から深さ0.1mmにおける窒素含有量を0.03wt%以上0.19wt%以下の範囲内に制御するためには、窒化処理（図3中の工程S7）および高濃度炭素窒化処理（図8中の工程S5）が、真空引きされた炉内で施されることが好ましい。真空雰囲気の窒素を含有するガス（例えばアンモニアガス）を導入することにより、表面（大端部30の内周面30a）から深さ0.1mmにおける窒素含有量を精度良く調節することができる。

これに対し、ガス炭化用の炉内（真空引きされていない炉内）で窒化処理や高濃度炭素窒化処理を行うと、表面から深さ0.1mmにおける窒素含有量を0.03wt%以上0.19wt%以下の範囲内にすることが困難である。図9に、窒化処理または高濃度炭素窒化処理をガス炭化用の炉内で行う場合と、真空炭化用の炉内で行う場合とについて、表面から深さ0.1mmにおける窒素含有量と、窒化時間との関係を示す。

図9からわかるように、ガス炭化用の炉内で処理を行う場合の適切な窒化時間の範囲Cは、真空炭化用の炉内で処理を行う場合の適切な窒化時間の範囲Dよりも著しく短く、窒化時間を実際にこの範囲Cに収めることは非常に難しい。特許文献1に開示されている技術は、ガス炭化を前提としているため、特許文献1に教示されている高濃度炭素窒化処理を用いても、表面から0.1mmの深さにおける窒素含有量を0.03wt%以上0.19wt%以下の範囲内にはすることはできない。

なお、図3に示したようにコネクティングロッド1に対して高濃度炭化処理と窒化処理を別々に（順次）施す場合、図8に示したように高濃度炭化窒化処理を施す場合に比べ、窒素含有量の制御がより容易となる。真空引きされた炉内に導入されるガスが、窒素含有ガスのみであるからである。これに対し、図8に示したように高濃度炭化窒化処理を施す場合、製造工程を簡略化し、処理時間を短縮できるという効果が得られる。

大端部30の内周面30a近傍（具体的には表面から深さ0.1mmまでの領域）に析出している炭化物および炭窒化物の粒径（より具体的には外接
円直径）は、なるべく小さいことが好ましく、具体的には 10 μm 以下であることが好ましい。炭化物および炭窒化物の粒径が 10 μm を超えると、靭性が低下して十分な強度が得られないことがある。

また、必ずしも神経ディングロッド1の全体に高濃度浸炭処理や窒化処理、高濃度浸炭窒化処理を施す必要はなく、少なくとも大端部 30 の内周面 30a 付近にこれらの処理を施すことが好ましい。例えば、ロッド本体部 10 は、大端部 30 よりも靭性が高いことが好ましいので、1回目の高濃度浸炭処理（図3 中の工程 S3 および図8 中の工程 S3）の前にロッド本体部 10 を銅めつきや防炭剤等によりマスキングしてもよい。

あるいは、2回目の高濃度浸炭処理、焼入れ、焼戻しの後（図3 中の工程 S9 の後）や、高濃度浸炭窒化処理、焼入れ、焼戻しの後（図8 中の工程 S7 の後）に、ロッド本体部 10 に選択的なさらなる焼戻しを行うことによって、ロッド本体部 10 の靭性を高くすることもできる。局所的な焼戻しは、例えば、高周波誘導加熱により行うことができる。

なお、実施形態では、図3 に示したように高濃度浸炭処理を 2 回行う場合と、図8 に示したように高濃度浸炭処理と高濃度浸炭窒化処理を 1 回ずつ（計 2 回）行う場合とを示示したが、高濃度浸炭処理および／または高濃度浸炭窒化処理を 3 回以上行ってもよい。

また、本願発明者の検討によれば、フレーキング寿命には、コネクティングロッド 1 の非拡散性水素含有量も大きな影響を与えることがわたった。合金中の水素は、その固溶状態により 2 種類に分類される。室温で拡散する水素は拡散性水素と呼ばれ、介在物等にトラップされて室温から 200°C 程度までの温度では拡散しにくい水素は非拡散性水素と呼ばれる。

フレーキング寿命のいっそうの向上を図る観点からは、非拡散性水素含有量は、具体的には、46 ppm 以下であることが好ましい。非拡散性水素含有量が 46 ppm 以下であることにより、水素脆性型剥離の発生を抑制することができるので、フレーキング寿命をいっそう向上させることができる。
表2に、表1中に示した実施例1〜4および比較例1〜4について、非拡散性水素含有量を示す。また、表2には、さらなる実施例5〜7についても、非拡散性水素含有量を示している。実施例5〜7では、深さ0．1mmの位置における窒素含有量は0．03wt％以上0．19wt％以下の範囲内にある。さらに、表2には、各例における浸炭処理（あるいは浸炭窒化處理）ガス浸炭（ガス浸炭窒化）であるか真空浸炭（真空浸炭窒化）であるかも示している。なお、非拡散性水素含有量の測定は、昇温脱法により行った。試験片を200℃から600℃まで徐々に昇温させ、試験片から放出された水素量を、質量分析計により定量分析した。

表2

<table>
<thead>
<tr>
<th>実施例</th>
<th>室素含有量(wt%)</th>
<th>L50寿命 (×10⁹)</th>
<th>非拡散性水素含有量 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>表層 (深さ0mm)</td>
<td>深さ 0.1mm</td>
<td>深さ 0.2mm</td>
</tr>
<tr>
<td>1</td>
<td>真空</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>2</td>
<td>高濃度浸炭</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>3</td>
<td>浸炭窒化</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>4</td>
<td>ガス浸炭</td>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>5</td>
<td>ガス浸炭窒化</td>
<td>0.19</td>
<td>0.17</td>
</tr>
<tr>
<td>6</td>
<td>ガス浸炭窒化</td>
<td>0.29</td>
<td>0.18</td>
</tr>
<tr>
<td>7</td>
<td>高濃度浸炭窒化</td>
<td>0.24</td>
<td>0.17</td>
</tr>
</tbody>
</table>

比較例

<table>
<thead>
<tr>
<th></th>
<th>表層 (深さ0mm)</th>
<th>深さ 0.1mm</th>
<th>深さ 0.2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>真空</td>
<td>0.09</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>高濃度浸炭</td>
<td>0.23</td>
<td>0.20</td>
</tr>
<tr>
<td>3</td>
<td>ガス浸炭</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>4</td>
<td>ガス浸炭窒化</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

表2における実施例4と実施例6との比較、あるいは、実施例5と実施例7との比較から、深さ0．1mmの位置における窒素含有量が同じであっても、非拡散性水素含有量が少ないほど、フレーキング寿命が長く、非拡散性水素含有量は0．46ppm以下が好ましいことがわかる。

また、表2から、浸炭処理（浸炭窒化処理）ガス浸炭（ガス浸炭窒化）である場合よりも、真空浸炭（真空浸炭窒化）である場合の方が、非拡散性水素含有量が少なく、この点からも真空浸炭（真空浸炭窒化）が好ましいことがわかる。

本実施形態におけるコネクティングロッド1は、シリングの数が1つであ
単気筒内燃機関に好適に用いられる。図 10 に、本実施形態におけるケーブリングロッド1を備えた単気筒内燃機関の一例を示す。内燃機関100は、クランクケース110、シリンダブロック120およびシリンダヘッド130を有している。

クランクケース110内にはクランクシャフト111が収容されている。クランクシャフト111は、クランクビン112およびクランクウェブ113を有している。クランクビン112と、クランクウェブ113とは、別体に形成されている。つまり、クランクシャフト111は、組立て式のクランクシャフトである。

クランクケース110の上に、シリンダブロック120が設けられている。シリンダブロック120には、円筒状のシリンダスリーブ121が設けられており、ピストン122は、シリンダスリーブ121内を往復し得るよう設けられている。

シリンダブロック120の上に、シリンダヘッド130が設けられている。シリンダヘッド130は、シリンダブロック120のピストン122とシリンダスリーブ121とともに燃焼室131を形成する。シリンダヘッド130は、吸気ポート132および排気ポート133を有している。吸気ポート132内には燃焼室131内に混合気を供給するための吸気弁134が設けられており、排気ポート133内には燃焼室131内の排気を行うための排気弁135が設けられている。

ピストン122とクランクシャフト111とは、コネクティングロッド1によって連結されている。具体的には、コネクティングロッド1の小端部20に形成されたピストンビン孔にピストン122のピストンビン123が挿通されているとともに、大端部30に形成されたクランクビン孔にクランクシャフト111のクランクビン112が挿通されており、そのことによってピストン122とクランクシャフト111が連結されている。

単気筒内燃機関100では、フリクションロスの低減が重要であるので、図10に示すように、コネクティングロッド1の大端部30の内周面30a
とクランクピン112との間には、ニードルベアリング114が設けられている。ニードルベアリング114が設けられている場合、コネクティングロッド1がニードルベアリング114に押し付けられることにより、大端部30の内周面30aに応力が発生する。この応力が過大であると、フレーシングの発生が懸念される。しかしながら、本実施形態におけるコネクティングロッド1は、耐フレーシング性に優れているので、フレーシングの発生が商品として必要な期間以上の長期間にわたって防止される。

[0107] 内燃機関100全体の耐久性を高める観点からは、クランクピン112の表面硬度および疲労強度も高いことが好ましい。そのため、クランクピン112は、炭素処理または炭素窒化処理を施されていることが好ましい。

[0108] なお、図10には、転がり軸受けとしてニードルベアリング114を例示したが、転がり軸受けは、ニードルベアリングのようなころ軸受けに限定されるものではなく、ポールベアリング（圧軸受け）であってもよい。

[0109] 図11に、図10に示した内燃機関100を備えた自動二輪車を示す。図11に示す自動二輪車では、本体フレーム301の前端にヘッドパイプ302が設けられている。ヘッドパイプ302には、フロントフォーク303が車両の左右方向に挙動し得るように取り付けられている。フロントフォーク303の下端には、前輪304が回転可能のように支持されている。

[0110] 本体フレーム301の後端上部から後方に延びるようにシートレール306が取り付けられている。本体フレーム301上に燃料タンク307が設けており、シートレール306上にメインシート308aおよびタンデムシート308bが設けられている。

[0111] また、本体フレーム301の後端に、後方へ延びるリアアーム309が取り付けられている。リアアーム309の後端に後輪310が回転可能のように支持されている。

[0112] 本体フレーム301の中央部には、図10に示した内燃機関100が保持されている。内燃機関100は、本実施形態におけるコネクティングロッド1を備えている。内燃機関100の前方には、ラジエータ311が設けられ
ている。内燃機関100の排気ポートには排気管312が接続されており、排気管312の後端にマフラーや313が取り付けられている。

[0113] 内燃機関100には変速機315が連結されている。変速機315の出力軸316に駆動スプロケット317が取り付けられている。駆動スプロケット317は、チェーン318を介して後輪310への後輪スプロケット319に連結されている。変速機315およびチェーン318は、内燃機関100により発生した动力を駆動輪に伝える伝達機構として機能する。

[0114] 図11に示した自動二輪車には、本実施形態におけるコネクティングロッド1を備えた内燃機関100が用いられているので、商品として必要な期間以上の長期間にわたってフレーキングの発生が防止される。また、本実施形態におけるコネクティングロッド1は、小型軽量化にも適している。高寿命化により、高負荷をコネクティングロッド1にかけることが可能になるためである。コネクティングロッド1の小型軽量化により、内燃機関100や車体も軽量化され、自動二輪車の走行安定性や、乗りやすさ、扱いやすさが向上し、商品性が向上する。

[0115] なお、本実施形態におけるコネクティングロッド1を備えた内燃機関100は、自動二輪車に限定されず、ライダーが跨って乗る軽乗用車両全般に好適に用いられる。例えば、バギーなどのATVにも用いられる。

[0116] また、本実施形態におけるコネクティングロッド1は、発電機や農作業機器などで用いられる小型内燃機関100にも用いることができる。

産業上の利用可能性

[0117] 本発明によると、大端部の内周面におけるフレーキングの発生が抑制され、疲労強度に優れたコネクティングロッドが提供される。

[0118] 本発明によるコネクティングロッドは、各種の軽乗用車両用の内燃機関（例えば自動二輪車用の内燃機関）に広く用いられる。

符号の説明

[0119] 1 コネクティングロッド
10 ロッド本体部
<table>
<thead>
<tr>
<th>20</th>
<th>小端部</th>
</tr>
</thead>
<tbody>
<tr>
<td>20a</td>
<td>小端部の内周面</td>
</tr>
<tr>
<td>22</td>
<td>ピストンピン孔</td>
</tr>
<tr>
<td>30</td>
<td>大端部</td>
</tr>
<tr>
<td>30a</td>
<td>大端部の内周面</td>
</tr>
<tr>
<td>32</td>
<td>クランクピン孔</td>
</tr>
<tr>
<td>100</td>
<td>単気筒内燃機関</td>
</tr>
</tbody>
</table>
請求の範囲

[請求項1] ロッ ド本体部と、
前記 ロッ ド本体部の一端 に設 けられた小端部と、
前記 ロッ ド本体部の他端 に設 けられた大端部と、を備 え、
鉄合金 か ら形成 され、
浸炭窒化処理が施 され たか、また ... 口ッ ド。
前記浸炭窒化処理、前記浸炭処理 および前記窒化処理 は、標準大気圧の 1 1 0 以下の圧 力に減圧 され た炉 内において施 され て いる請求
項 1 か ら6 の いずれ か に記載の コネクテ ィング 口ッ ド。
[請求項8] 前記大端部の内周面近傍に析出ししている炭化物および炭窒化物の粒径が10μm以下である請求項1から7のいずれかに記載のコネクティングロッド。

[請求項9] 請求項1から8のいずれかに記載のコネクティングロッドと、前記コネクティングロッドに接続されたクランクシャフトと、を備える単気筒内燃機関。

[請求項10] 前記クランクシャフトは、前記コネクティングロッドの前記大端部に挿通されたクランクビンと、前記クランクビンとは別体に形成されたクランクウェブと、を有する請求項9に記載の単気筒内燃機関。

[請求項11] 前記大端部の内周面と前記クランクビンとの間に設けられた軸受けをさらに備える請求項10に記載の単気筒内燃機関。

[請求項12] 前記クランクビンは、浸炭処理または炭窒化処理を施されている請求項11に記載の単気筒内燃機関。

[請求項13] 請求項9から12のいずれかに記載の単気筒内燃機関を備えた乗型車両。

[請求項14] ロッド本体部、前記ロッド本体部の一端部に設けられた小端部および前記ロッド本体部の他端部に設けられた大端部を備えるコネクティングロッドの製造方法であって、鉄合金から形成されたワークピースを用意する工程（A）と、前記ワークピースに対して0.8％以上のカーボンポテンシャルを有する雰囲気下で浸炭処理を施す工程（B）と、前記工程（B）の後に、前記ワークピースに対して0.8％以上のカーボンポテンシャルを有する雰囲気下で浸炭窒化処理を施す工程（C）と、を包含し、前記工程（C）は、前記ワークピースの前記大端部となる領域の内周面から0.1mmの深さにおける窒素含有量が0.03wt％以上0.19wt％以下となるように実行されるコネクティングロッドの製造方法。
前記工程 (B) における前記浸炭処理および前記工程 (C) における
前記浸炭窒化処理は、標準大気圧の 1/1.0 以下の圧力に減圧され
た炉内において施される請求項 14 に記載のコネクティングロッドの
製造方法。

ロッド本体部、前記ロッド本体部の一端部に設けられた小端部およ
び前記ロッド本体部の他端部に設けられた大端部を備えるコネクティ
ングロッドの製造方法であって、鉄合金から形成されたワークピースを用意する工程 (A) と、
前記ワークピースに対して 0.8% 以上のカーボンポテンシャルを
有する雰囲気下で複数回浸炭処理を施す工程 (B) と、
前記工程 (B) の後に、前記ワークピースに対して窒化処理を施す
工程 (C) と、を包含し、
前記工程 (C) は、前記ワークピースの前記大端部となる領域の内
周面から 0.1 mm の深さにおける窒素含有量が 0.03 wt % 以上
0.19 wt % 以下となるように実行されるコネクティングロッドの
製造方法。

前記工程 (B) における前記浸炭処理および前記工程 (C) におけ
る前記窒化処理は、標準大気圧の 1/1.0 以下の圧力に減圧された炉
内において施される請求項 16 に記載のコネクティングロッドの製造
方法。
開始
→ 鍛造 S1
→ 機械加工 S2
→ 高濃度浸炭処理 S3
→ ガス冷 S4
→ 高濃度浸炭窒化処理 S5
→ 油冷（焼入れ） S6
→ 焼戻し S7
→ 空冷 S8
→ 機械加工 S9
→ 終了
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C23C8/32 (2006.01)i, C21 D1/06 (2006.01)i, C21 D1/70 (2006.01)i, C21 D9/00 (2006.01)i, C22C3/8/18 (2006.01)i, C22C3/34, F16C7/02 (2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C23C8/32, C21D1/06, C21D1/70, C21D9/00, C22C3/8/00, C22C3/18, C22C3/22, C23C8/34, F16C7/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1 996 Jitsuyo Shinan Toroku Koho 1996-2011

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

14 January, 2011 (14.01.11)

Date of mailing of the international search report

25 January, 2011 (25.01.11)

Name and mailing address of the ISA/ Japanese Patent Office

Authorized officer

Facsimile No. Telephone No.
A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. C23C8/32 (2006.01),
C21D1/06 (2006.01),
C21D1/70 (2006.01),
C21D9/00 (2006.01),
C22C38/00 (2006.01),
C22C38/18 (2006.01),
C22C38/22 (2006.01),
C22C38/34 (2006.01),
F16C7/02 (2006.01)

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl. C23C8/32, C21D1/06, C21D1/70, C21D9/00, C22C38/00, C22C38/18, C22C38/22, C22C38/34, F16C7/02

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2000-313949 A（ヤマハ発動機株式会社）2000.11.14, 全文 (ファミリーなし)</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>JP 2009-019639 A（NTN株式会社）2009.01.29, 全文 & US 2004/007931</td>
<td>1-17</td>
</tr>
<tr>
<td>& EP 14111142 A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 10-046286 A（日本精工株式会社）1998.02.17, 全文 & US 6171411</td>
<td>1-17</td>
</tr>
<tr>
<td>B1 & GB 9715699 AO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† C欄の続きにも文献が列挙されている。

†† パテントファミリーに関する別紙を参照。

「引用文献のカテゴリー」

FA」特に関連のある文献ではなく、一般的技術基準を示すもの

IE」国際出願 日前の出願 または特許であるが、国際出願 日 に至る出願

E」prior art 文献

IE」国際出願 日前の出願 または特許であるが、国際出願 日 に至る出願

FA」特に関連のある文献であって、国際出願 日 に至る出願

IA」同一家族文献

国際調査を完了した日

14.01.2011

国際調査報告の発送日

25.01.2011

国際調査機関の名称及びあて先

日本国特許庁（ISA／JP）
郵便番号100－8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

4E 3548

市枝 信之

電話番号 03－3581－1101 内線 3425

模式PCT／ISA／210（第2ページ）（2009年7月）