Abstract:

A method for pre-treating catalyst used in preparing low carbon alkenes with methanol or dimethyl ether is provided. It comprises: (1) putting the catalyst to be treated in a pre-treating reactor; (2) leading pre-treating gas into the pre-treating reactor for the catalyst pretreatment to enable the pre-treated catalyst to contain more than 2% and less than 15% of coke based on the weight of the catalyst; the pre-treating gas is one or more of hydrocarbon and hydrocarbon-oxygen compounds containing 2-6 carbon atoms.

Abstract:

提供一种对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法。该方法包括：（1）将待处理的催化剂装入预处理反应器；（2）向预处理反应器中通入预处理气体，对催化剂进行预处理，使得经过预处理后的催化剂，以催化剂重量为基准计，含有人士２％，小于１５％的焦炭，预处理气体为含有２～６个碳原子的碳氢化合物和碳氢氧化合物中的一种或多种。
对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法

技术领域

本发明涉及一种对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，属于化工材料制备技术领域。

背景技术

乙烯、丙烯等低碳烯烃是重要的化工原料，目前制取乙烯、丙烯等低碳烯烃的重要途径是通过裂解石脑油、轻柴油等轻质油来获取，而石脑油、轻柴油主要来源于石油。随着石油资源的逐渐匮乏，采用丰富的煤、天然气等原料制取乙烯、丙烯的技术路线，愈来愈受到国内外的重视。

发明内容

1976年，Mobile公司就开发了以ZSM-5中孔沸石分子筛为催化剂的甲醇制汽油（MTG）工艺，主要用来由甲醇合成汽油，同时发现该催化剂可使甲醇直接变成低碳烯烃。20世纪80年代初，UCC公司成功开发出了SAP0系列分子筛，其中SAP0-34分子筛催化剂在用于甲醇制烯烃（MTO）反应时表现出优异的催化性能，具有很高的低碳烯烃选择性，而且活性很高，但催化剂在使用一段时间后由于催化剂表面积有焦炭而失去活性。

CN116478A公开了一种由甲醇或二甲醚制取乙烯、丙烯等低碳烯烃的方法，催化剂在密相床循环流化反应装置进行使用和再生，催化剂在再生后，表面上积的焦炭被烧除，活性得以回复，从而实现催化剂在预处理反应器和再生器中循环使用，能连续的制取乙烯、丙烯等低碳烯烃。

SAP0-34分子筛催化剂在使用过程中存在明显的诱导期，在诱导期内，烯烃的选择性较低，烯烃的选择性较高，随着反应时间的增加，低碳烯烃选择性逐渐上升，诱导期过后，催化剂在一定时间内保持高的选择性和高的活性，随时间的继续延长，催化剂的活性迅速下降。

US7045672B2和US7057083B2分别公开了一种用二甲醚和用C4-C7烯烃对催化剂对行预处理的方法，其中采用的二甲醚和C4-C7烯烃来自甲醇制烯烃工艺后续的分离和精制工艺。采用二甲醚或C4-C7烯烃对催化剂进行预处理后，使催化剂中产生哪种烯烃和助催化剂，以获得更高的乙烯和丙烯收率，发明中指出经处理后，以分子筛质量为基准计，该催化剂中含有的不超过2%的焦炭，更优的是不超过1.5%的焦炭，更优的是不超过1%的焦炭，更优的是不超过0.5%的焦炭。

伴随着甲醇/二甲醚制低碳烯烃的催化剂和工艺的研究进展，如何在甲醇/二甲醚制低碳烯烃工艺中提高催化剂对乙烯和丙烯的选择性，以获得尽量多的乙烯和丙烯收率有非常重要的意义。

发明内容

本发明的目的是提出了一种对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，该
方法是在新鲜或再生的催化剂的内孔表面预先附上一定的焦炭，其目的是覆盖分子筛结构中活性相对较高但选择性相对较差的活性位，并缩小分子筛内孔的直径，减少烷烃和高碳烯烃的生成，从而增加乙烯和丙烯的选择性，使催化剂处于最佳的操作状态，以便在 MTO 反应器中获得更高的乙烯和丙烯的收率。

为了实现上述目的，本发明提供了一种对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，其技术方案如下：

一种对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，该方法包括如下步骤：
1) 将待处理的催化剂装入预处理反应器；
2) 向预处理反应器中通入预处理气体，对催化剂进行预处理，使得经过预处理后的催化剂，以催化剂的重量为基准计，含有大于 2%，小于 15%的焦炭，其中所述的预处理气体采用分子式中含有 2-6 个碳原子的碳氢化合物和碳氢氧化合物中的一种或多种的混合物。

所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，在步骤 2) 中所述的预处理气体中还包含助流化气体。

所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，所述的助流化气体是氮气、水蒸汽、氢气、氮气和甲烷中的一种或多种的混合物。

所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，采用的催化剂是硅铝磷酸分子筛催化剂。

所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，所述的预处理气体是含有 2-6 个碳原子的烷烃、烯烃、炔烃、醇、酮、醚和环烷烃中的一种或多种的混合物。

所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，预处理反应器内温度为 300-800 °C，优选的温度为 400-700 °C。

所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，待处理的催化剂为新鲜催化剂、经过再生的催化剂或两种催化剂的混合物；以催化剂的重量为基准计，待处理的催化剂含有 0.3%的焦炭。

所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，经过预处理的催化剂，以催化剂的重量为基准计，含有 2-7%的焦炭，待处理的催化剂含有 0-1%的焦炭。

所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，所述的预处理反应器采用固定床、流化床或移动床，预处理反应器优选采用流化床。

所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，预处理反应器内的绝对压力优选为 0.05-1 Mpa，更优选为 0.1-0.5 Mpa。

本发明与现有技术相比，本发明具有以下优点及突出性效果：经预处理的催化剂，由于其中含有的至少 2%的焦炭将选择性较低的活性位基本上全部覆盖，在催化甲醇和二甲醚制取低碳烯烃时，明显缩短或消除了催化剂的诱导期，因此，乙烯和丙烯的选择性得到有效的提高，即
催化剂经预处理后，可跨过未预处理的催化剂所必须经过的诱导期前期，使催化剂处于最佳的操作状态，在相同的原料量情况下可获得更多的乙烯和丙烯。

具体实施方式

本发明提供的一种对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，该方法具体包括如下步骤：

1) 将待处理的催化剂装入预处理反应器；

2) 向预处理反应器中通入预处理气体，对催化剂进行预处理，使得经过预处理后的催化剂，以催化剂的重量为基准计，含有大于 2%、小于 15%的焦炭。其中所述的预处理气体采用分子式中含 2-6 个碳原子的碳氢化合物和碳氢氧化合物中的一种或多种的混合物。

其中所述的催化剂是硅铝磷酸盐（SAPO）分子筛催化剂或ZSM系分子筛催化剂，本发明优选使用SAPO分子筛催化剂，催化剂的可按发明CN1088483A提供的方法获得。其中所述的预处理气体优选是含有 2-6 个碳原子的烷烃、烯烃、炔烃、醇、醛和环烷烃中的一种或多种的混合物。通过步骤 2) 预处理后的催化剂中优选含有 2-7% 的焦炭。

在步骤 2) 中所述的预处理气体中还包含助流化气体，优选的助流化气体是氮气、水蒸汽、氩气、氢气和甲烷中的一种或多种的混合物。

对于预处理反应器的温度，通常使得碳源能够分解成焦炭而不得分子筛坍塌的反应温度均可以实现焦炭在分子筛表面的沉积；并且本领域技术人员根据本发明给出的技术教导，可以根据不同碳源通过常规的实验进行选择。

但是通常来说，预处理温度过高，碳源分解速度慢，使得需要较长的预处理时间才能获得足够的焦炭沉积量，一方面碳源分解速度快，使得催化剂表面焦炭沉积不均匀，另一方面温度过高会导致分子筛结构坍塌从而永久失效。因此，本发明中优选的预处理反应的反应温度为 300-800 ℃，更优选的预处理反应的反应温度为 400-700 ℃。

对于预处理反应器的压力，通常的压力均能实现本发明中对催化剂进行预处理的方法。但是通常来说反应压力过高，反应器的设计和操作不容易实现；反应压力过高，会增加设备的制作成本和动力系统的负荷。因此，本发明中优选的预处理反应器的反应绝对压力为 0.05-1 MPa，更优选的预处理反应器的反应绝对压力为 0.1-0.5 MPa。

对于预处理所采用的硅铝磷酸盐（SAPO）分子筛催化剂，其可以是新鲜制备的催化剂，也可以是经过再生的催化剂或两者的混合物。待处理的催化剂中优选含有 0-3% 的焦炭，更优选含有 0-1% 的焦炭。

预处理过程采用的反应器，并没有具体的限制，任何可以使得碳源分解并在分子筛上实现焦炭沉积的反应器均可实现本发明，例如通常的固定床反应器、流化床反应器或移动床反应器。

为了更好的说明本发明的技术方案和技术效果，下面将通过具体的实施例进行说明。

实施例 1：
催化剂预处理：将 10 g 新鲜的 SAP0-34 催化剂加入内径为 30 mm 的固定床反应器中，催化剂的重量为基准，催化剂初始含碳量为 0，反应温度为 350 °C，绝对压力为 1 MPa，先用高纯 N2 吹扫 30 min，氮气流量为 100 ml/min，再将预处理气从预处理反应器底部加入，预处理气的成分是乙烯，其质量空速为 0.2/h，通入时间持续 20 min，再用高纯 N2 吹扫 30 min，处理后的催化剂含炭量见表 1。

催化剂性能评价：将预处理后的催化剂装入内径为 20 mm 的石英管流化床反应器中，维持反应温度为 450 °C，绝对压力为 0.15 MPa，原料甲醇经预热器气化后通入反应器中，甲醇相对于催化剂的质量空速为 3/h，反应器出口产品用冷凝管冷凝，经冷凝后的反应气体用集气瓶进行收集，液体进行在线甲醇浓度分析，反应直至出口液相甲醇质量浓度达到 4%时停止反应，取集气瓶中气体用气相色谱进行烃类含量的分析，气相产品中乙烯和丙烯（双烯）选择性见表 1。

实施例 2：
催化剂预处理：将 10 g 再生的 SAP0-34 催化剂加入内径为 20 mm 的石英管流化床反应器中，催化剂的重量为基准，催化剂初始含碳量为 0.1%，反应温度为 450 °C，绝对压力为 0.15 MPa，先用高纯 N2 吹扫 30 min，氮气流量为 300 ml/min，再将预处理气从预处理反应器底部加入，预处理气的成分是丙烯，其质量空速为 1.5/h，通入时间持续 8 min，再用高纯 N2 吹扫 30 min，处理后的催化剂含炭量见表 1。

催化剂性能评价方式与实施例 1 相同，气相产品中双烯选择性见表 1。

实施例 3：
催化剂预处理：将 10 g 再生的 SAP0-34 催化剂加入内径为 20 mm 的石英管流化床反应器中，催化剂的重量为基准，催化剂初始含碳量为 0.1%，反应温度为 500 °C，绝对压力为 0.15 MPa，先用高纯 N2 吹扫 30 min，氮气流量为 300 ml/min，再将预处理气从预处理反应器底部加入，预处理气的成分是 1-丁烯，其质量空速为 2/h，通入时间持续 5 min，再用高纯 N2 吹扫 30 min，处理后的催化剂含炭量见表 1。

催化剂性能评价方式与实施例 1 相同，气相产品中双烯选择性见表 1。

实施例 4：
催化剂预处理：将 10 g 再生的 SAP0-34 催化剂加入内径为 20 mm 的石英管流化床反应器中，催化剂的重量为基准，催化剂初始含碳量为 0.1%，反应温度为 550 °C，绝对压力为 0.15 MPa，先用高纯 N2 吹扫 30 min，氮气流量为 300 ml/min，再将预处理气从预处理反应器底部加入，预处理气的成分是体积含量分别为 4.1%、30.3%、3.2%、15.7%、0.8%、3.5%、23.1%、19.3%的丁烷、丁烯、戊烷、戊烯、己烷、己烯、甲烷和氢气的混合物，其质量空速为 1.5/h，通入时间持续 8 min，再用高纯 N2 吹扫 30 min，处理后的催化剂含炭量见表 1。

催化剂性能评价方式与实施例 1 相同，气相产品中双烯选择性见表 1。

实施例 5：
催化剂预处理：将 10 g 再生的 SAP0-34 催化剂加入内径为 20 mm 的石英管流化床反应器中，
以催化剂的重量为基准计，催化剂初始含碳量为 0.1% ，反应温度为 600 ℃，绝对压力为 0.15 MPa，
先用高纯 N2 吹扫 30 min，氮气流量为 300 ml/min，再将预处理气从预处理反应器底部加入，
预处理气的成分是体积含量分别为 69.5%、12%、0.5%、17.7%、0.3% 的乙烯、乙烷、环氧乙烷、
丙烷、丙酮的混合物，其质量空速为 1.5/h，通入时间持续 12 min，再用高纯 N2 吹扫 30 min，
处理后的催化剂含碳量见表 1。

催化剂性能评价方式与实施例 1 相同，气相产品中双烯选择性见表 1。

实施例 6：
催化剂预处理：将 10 g 再生的 SAP0-34 催化剂加入内径为 20 mm 的石英管流化床反应器中，
以催化剂的重量为基准计，催化剂初始含碳量为 0.1% ，反应温度为 700 ℃，绝对压力为 0.15 MPa，
先用高纯 N2 吹扫 30 min，氮气流量为 300 ml/min，再将预处理气从预处理反应器底部加入，
预处理气的成分是二甲醚，其质量空速为 2.5/h，通入时间持续 9 min，再用高纯 N2 吹扫 30 min，
处理后的催化剂含碳量见表 1。

催化剂性能评价方式与实施例 1 相同，气相产品中双烯选择性见表 1。

实施例 7：
催化剂预处理：将 10 g 再生的 SAP0-34 催化剂加入内径为 20 mm 的石英管流化床反应器中，
以催化剂的重量为基准计，催化剂初始含碳量为 1% ，反应温度为 800 ℃，绝对压力为 0.1 MPa，
先用高纯 N2 吹扫 30 min，氮气流量为 300 ml/min，再将预处理气从预处理反应器底部加入，
预处理气的成分是体积含量分别为 25%、25%、50% 的乙醇、丙醇、水蒸气的混合物，其质量空速为
1.5/h，通入时间持续 15 min，再用高纯 N2 吹扫 30 min，处理后的催化剂含碳量见表 1。

催化剂性能评价方式与实施例 1 相同，气相产品中双烯选择性见表 1。

对比例 1：
将 10 g 新鲜的 SAP0-34 催化剂加入内径为 20 mm 的石英管流化床反应器中，以催化剂的重量
为基准计，催化剂初始含碳量为 0，请温度为 450 ℃，绝对压力为 0.15 MPa，先用高纯 N2 吹
扫 30 min，氮气流量为 300 ml/min，原料甲醇经预热器气化后通入反应器中，甲醇相对于催化
剂的质量空速为 3/h，反应器出口产品用冷凝管冷凝，经冷凝后的反应气体用集气瓶进行收集，
液体进行在线甲醇浓度分析，反应直至出口液相甲醇质量浓度达到4%时停止反应，取集气瓶中气体用气相色谱进行烃类含量的分析，气相产品中双烯选择性见表1。

对比比例2:
催化剂预处理：将10g再生的SAP0-34催化剂加入内径为20mm的石英管流化床反应器中，以催化剂的重量为基准计，催化剂初始含碳量为0，反应温度为550℃，绝对压力为0.15MPa，先用高纯N2吹扫30min，再将预处理气从预处理反应器底部加入，预处理气的成分是二甲醚，其质量空速为1.5h⁻¹，通入时间持续1min，再用高纯N2吹扫30min，处理后的催化剂含碳量见表1。

催化剂性能评价方式与实施例1相同，气相产品中双烯选择性见表1。

对比比例3
催化剂预处理：将10g再生的SAP0-34催化剂加入内径为20mm的石英管流化床反应器中，以催化剂的重量为基准计，催化剂初始含碳量为0.1%，反应温度为600℃，绝对压力为0.15MPa，先用高纯N2吹扫30min，再将预处理气从预处理反应器底部加入，预处理气的成分是1-丁烯，其质量空速为2h⁻¹，通入时间持续1min，再用高纯N2吹扫30min，处理后的催化剂含碳量见表1。

催化剂性能评价方式与实施例1相同，气相产品中双烯选择性见表1。

<table>
<thead>
<tr>
<th>序号</th>
<th>处理后催化剂含碳量（wt%）</th>
<th>烃类中双烯选择性（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例1</td>
<td>2.1</td>
<td>80.1</td>
</tr>
<tr>
<td>实施例2</td>
<td>2.8</td>
<td>81.6</td>
</tr>
<tr>
<td>实施例3</td>
<td>3.6</td>
<td>82.3</td>
</tr>
<tr>
<td>实施例4</td>
<td>4.5</td>
<td>83.8</td>
</tr>
<tr>
<td>实施例5</td>
<td>5.3</td>
<td>83.5</td>
</tr>
<tr>
<td>实施例6</td>
<td>5.8</td>
<td>83.3</td>
</tr>
<tr>
<td>实施例7</td>
<td>6.2</td>
<td>83.2</td>
</tr>
<tr>
<td>实施例8</td>
<td>6.3</td>
<td>84.1</td>
</tr>
<tr>
<td>对比例1</td>
<td>0</td>
<td>78.2</td>
</tr>
<tr>
<td>对比例2</td>
<td>0.3</td>
<td>78.8</td>
</tr>
<tr>
<td>对比例3</td>
<td>0.4</td>
<td>78.9</td>
</tr>
</tbody>
</table>

从表1可以看出，采用本发明的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法获得了更高双烯选择性，并且克服了现有技术中所认为的催化剂上沉积焦炭应小于2%的技术偏见。
权利要求书

1. 一种对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，其特征在于该方法包括如下步骤：
 1) 将待处理的催化剂装入预处理反应器；
 2) 向预处理反应器中通入预处理气体，对催化剂进行预处理，使得经过预处理后的催化剂，以催化剂的重量为基准计，含有大于 2%，小于 15% 的焦炭，其中所述的预处理气体内具有分子式中含有 2-6 个碳原子的碳氢化合物和碳氢氧化合物中的一种或多种的混合物。

2. 如权利要求 1 所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，其特征在于，在步骤 2) 中所述的预处理气体中还包含助流化气体。

3. 如权利要求 2 所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，其特征在于，所述的助流化气体是氮气、水蒸汽、氢气、氢气和甲烷中的一种或多种的混合物。

4. 如权利要求 1 所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，其特征在于，采用的催化剂是硅铝磷酸盐分子筛催化剂。

5. 如权利要求 1 所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，其特征在于，所述的预处理气体内含有 2-6 个碳原子的烯烃、烯烃、炔烃、醇、醚等碳氢化合物中的一种或多种的混合物。

6. 如权利要求 1-5 任一权利要求所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，其特征在于，所述预处理反应器内温度为 300-800 ℃，优选的温度为 400-700 ℃。

7. 如权利要求 1-5 任一权利要求所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，其特征在于，待处理的催化剂为新鲜催化剂、经过再生的催化剂或两种催化剂的混合物；以催化剂的重量为基准计，所述待处理的催化剂含有 0-3% 的焦炭。

8. 如权利要求 7 所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，其特征在于，经过预处理的催化剂，以催化剂的重量为基准计，含有 2-7% 的焦炭，待处理的催化剂含有 0-1% 的焦炭。

9. 如权利要求 1-5 任一权利要求所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，其特征在于，所述的预处理反应器采用固定床、流化床或移动床，预处理反应器优选采用流化床。

10. 如权利要求 1-5 任一权利要求所述的对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法，其特征在于，所述预处理反应器内的绝对压力为 0.05-1 Mpa，优选为 0.1-0.5 Mpa。
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION NO.

PCT/CN2010/07445

CLASSIFICATION OF SUBJECT MATTER

B01J37/00 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: B01J37/-

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WIPO, EPDOC, CNPAT, CNKI, ISI. Web of Knowledge: methanol, methyl alcohol, ester, dimethyl ether, ketone, hydrocarbon, alkene, alkyne, per 1 w treat*, catalyst*, coke.

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CNI 890 178A (EXXONMOBIL CHEMICAL PATENTS INC.) 03 Jan. 2007 (03.01.2007) Description page 2, lines 23-24, page 11, lines 1-9, page 12, line 23 - page 13, line 5</td>
<td>1-10</td>
</tr>
<tr>
<td>X</td>
<td>CNI 199686C (EXXONMOBIL CHEMICAL PATENTS INC.) 27 Apr. 2005 (27.04.2005) example 1</td>
<td>1-10</td>
</tr>
<tr>
<td>PX</td>
<td>CN10169574A (SURE BILLION CORPORATION LIMITED) 21 Apr. 2010 (21.04.2010) claims 1-10</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>US7045672B2 (EXXONMOBIL CHEMICAL PATENTS INC.) 16 May 2006 (16.05.2006) column 12, lines 36-50</td>
<td>1-10</td>
</tr>
</tbody>
</table>

- Further documents are listed in the continuation of Box C. See patent family annex.

- "A" Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

- "&" document member of the same patent family

Date of the actual completion of the international search

01 Sep. 2010 (01.09.2010)

Date of mailing of the international search report

30 Sep. 2010 (30.09.2010)

Name and mailing address of the ISA/CN

The State Intellectual Property Office, the P.R.China
6 Xitucheng Rd. Jimen Bridge, Haidian District, Beijing, China 100088
Facsimile No. 86-10-62019451

Authorized officer

SU, Min

Telephone No. (86-10) 82245681

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1890178A</td>
<td>03.01.2007</td>
<td>WO2005063622A2</td>
<td>14.07.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2005 197520A1</td>
<td>08.09.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7067 108B2</td>
<td>27.06.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1701 913A2</td>
<td>20.09.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2007534582T</td>
<td>29.1.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INDELNP20060027</td>
<td>10E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA200603767A</td>
<td>25.06.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2547895C</td>
<td>15.09.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN101607716A</td>
<td>23.12.2009</td>
</tr>
<tr>
<td>CN1 198686C</td>
<td>27.04.2005</td>
<td>WO0162382A2</td>
<td>30.08.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU3868501A</td>
<td>03.09.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO20023877A</td>
<td>15.08.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1257359A2</td>
<td>20.1.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA200206769A</td>
<td>25.06.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1438921A</td>
<td>27.08.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEXPA02008221A</td>
<td>01.02.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6734330B1</td>
<td>11.05.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6743747B2</td>
<td>01.06.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU776126B2</td>
<td>26.08.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEX230544B</td>
<td>12.09.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INMUMNP200600145E</td>
<td>06.10.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE6012393 1E</td>
<td>30.1.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES2274870T3</td>
<td>01.06.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INMUMNP200800914E</td>
<td>27.06.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N0327769B1</td>
<td>21.09.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2399232C</td>
<td>24.1.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN228537B</td>
<td>13.02.2009</td>
</tr>
<tr>
<td>CN101695674A</td>
<td>21.04.2010</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

None

| | | WO2005056500A1| 23.06.2005 |
International Patent Classification (IPC) or both International Classification (IPC) and National Classification

A. Classification of the Theme

B01J37/00(2006.01)

B. Search Domain

Search Limitation Document (Classifications and Classification Numbers)

IPC:B01J37/00

Search Limitation Document

Included in the search domain in addition to the above search documents

In the International Search and Reading Database (database name and search terms)

Web of Knowledge: alcohol, aether, alkene, alkyl, alkyne, alkene, hydrations, aforesaid, methyl alcohol, ethereal alcohol, ethereal ether, ketone, hydrocarbon, alkene, alkyne, preparation, catalyst, molecular sieve, activated carbon.

C. Related Documents

<table>
<thead>
<tr>
<th>Type</th>
<th>Reference Document Details</th>
<th>Rights Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN1890178A (ExxonMobil Chemical Co., Ltd) 03 January 2007 (03.01.2007)</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td>说明书中的第2页23-24行,第11页第1-9行,第12页第23行-第13页第5行</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>CN101695674A (ExxonMobil Chemical Co., Ltd) 27 April 2005 (27.04.2005)</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td>实施例1</td>
<td></td>
</tr>
<tr>
<td>PX</td>
<td>CN101695674A (ExxonMobil Chemical Co., Ltd) 21 April 2010 (21.04.2010)</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td>权利要求1-10</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US7045672B2 (EXXONMOBIL CHEMICAL PATENTS INC.) 16 May 2006</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td>(18.05.2006) 第12栏第36-50行</td>
<td></td>
</tr>
</tbody>
</table>

Other documents listed in column C are not included.

* Indicates the document type:

- "A" indicates that the document is not the main document of the invention.
- "X" indicates that the document is not the main document of the invention.
- "PX" indicates that the document is not the main document of the invention.

- "O" indicates that the document is not the main document of the invention.
- "P" indicates that the document is not the main document of the invention.

Other related documents:

International Patent Application Number:
PCT/CN2010/074451

International Search Report

01.09.2010

PCT/ISA/210 表(第 2 页) (2009 年 7 月)
国际检索报告

关于同族专利的信息

国际申请号
PCT/CN20 10/074451

<table>
<thead>
<tr>
<th>检索报告中引用的专利文件</th>
<th>公布日期</th>
<th>同族专利</th>
<th>公布日期</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1890178A</td>
<td>03.01.2007</td>
<td>WO2005063622A2</td>
<td>14.07.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2005197520A1</td>
<td>08.09.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US70671088B2</td>
<td>27.06.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1701913A2</td>
<td>20.09.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2007534582T</td>
<td>29.11.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INDELNP200602710E</td>
<td>10.08.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA200603767A</td>
<td>25.06.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2547895C</td>
<td>15.09.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN101607716A</td>
<td>23.12.2009</td>
</tr>
<tr>
<td>CN1 198686C</td>
<td>27.04.2005</td>
<td>WO0162382A2</td>
<td>30.08.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU3868501A</td>
<td>03.09.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO20023877A</td>
<td>15.08.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1257359A2</td>
<td>20.11.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA200206769A</td>
<td>25.06.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1438921A</td>
<td>27.08.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MXPAP02008221A</td>
<td>01.02.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6734330B1</td>
<td>11.05.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6743747B2</td>
<td>01.06.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU776126B2</td>
<td>26.08.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX230544B</td>
<td>12.09.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INMUMNP200600145E</td>
<td>06.10.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE6012393 1E</td>
<td>30.11.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES2274870T3</td>
<td>01.06.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INMUMNP200800914E</td>
<td>27.06.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO327769B1</td>
<td>21.09.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2399232C</td>
<td>24.11.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN226537B</td>
<td>13.02.2009</td>
</tr>
<tr>
<td>CN101695674A</td>
<td>21.04.2010</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>US7045672B2</td>
<td>16.05.2006</td>
<td>US2005101815A1</td>
<td>12.05.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2005056500A1</td>
<td>23.06.2005</td>
</tr>
</tbody>
</table>

PCT/ISA/210 表（同族专利附件）(2009 年 7 月)