(54) Title: ELECTRONIC CLIENT DATA ACQUISITION AND ANALYSIS SYSTEM

(57) Abstract: A medical data acquisition and analysis system is disclosed. The system includes a first computing device, connected to a database for storing data indicative of content, where the first computing device includes software comprising an algorithm engine having at least one algorithm for generating enhanced feedback content, and at least one secondary computing device, interactively connected to the first computing device through a web portal operative across a communications network. A user inputs a plurality of health related information items into the web portal interface of the at least one secondary computing device, and the plurality of health related information items are received by the first computing device and stored in the database, and are further processed with at least one secondary input to generate the enhanced feedback content in accordance with the at least one algorithm of the algorithm engine, and delivers the enhanced feedback content to the user.
Published:

— with international search report (Art. 21(3))
ELECTRONIC CLIENT DATA ACQUISITION AND ANALYSIS SYSTEM

Cross-Reference to Related Applications

[1] This application claims priority to U.S. Provisional Patent Application No. 61/150,455, filed on February 6, 2009, and is further a continuation-in-part of U.S. Patent Application No. 11/474,094, filed June 23, 2006, the entire disclosures of which are incorporated by reference herein as if each is set for herein in their entirety.

Field of the Invention

[2] The present invention relates to data acquisition and analysis systems, particularly to such systems that analyze input data and generate output data using an adaptive algorithm system.

Background of the Invention

[3] Data intake questionnaires are well known and are used throughout the world to assist professionals who serve various types of clients. Questionnaires are used by many types of professionals, including, but not limited to, medical doctors, social scientists, employers, and security screeners. Data intake is also performed for purposes of personal health monitoring (e.g., blood pressure, blood sugar level, temperature). Data intake is also necessary to control various types of automated and semi-automated control systems, including, but not limited to, vehicle systems (e.g., in automobiles, motorcycles, trains, airplanes, space vehicles), building systems (e.g., for security, climate control), and private residence systems (e.g., lighting, music, lawn watering, security, climate control).

[4] One limitation of standard data acquisition systems is that they are used primarily to create a historical record, and perhaps to guide a single set of decisions. This naturally limits the ability of a
professional or computer system to effectively diagnose a problem or to control a system over time using this input information.

[5] Thus, a need exists for a data acquisition and analysis system that captures information electronically, compares it with data already acquired from either the same or other clients, and uses the data to solve problems or control a system over time. Also, a need exists for a data acquisition and analysis system that presents targeted information and/or advertisements to clients and professionals, based on a user's input to the data acquisition and analysis system.

Summary of the Invention

[6] A medical data acquisition and analysis system is disclosed. The system includes a first computing device, connected to a database for storing data indicative of content, where the first computing device includes software comprising an algorithm engine having at least one algorithm for generating enhanced feedback content, and at least one secondary computing device, interactively connected to the first computing device through a web portal operative across a communications network. A user inputs a plurality of health related information items into the web portal interface of the at least one secondary computing device, and the plurality of health related information items are received by the first computing device and stored in the database, and are further processed with at least one secondary input to generate the enhanced feedback content in accordance with the at least one algorithm of the algorithm engine, and delivers the enhanced feedback content to the user.

[7] The present invention also includes a method of generating enhanced feedback content. The method comprises the steps of receiving a plurality of inputs indicative of health related information items from a user operating a first networked computing device, receiving at least one secondary input from a second networked
computing device, processing the plurality of inputs indicative of health related information items and the at least one secondary input according to at least one algorithm of an algorithm engine resident on a central processor(s) communicatively connected to the first and second networked computing devices to generate an enhanced feedback content, and delivering the enhanced feedback content to the user operating the first networked computing device.

Brief Description of the Figures

[8] Understanding of the present invention will be facilitated by consideration of the following detailed description of the embodiments of the present invention taken in conjunction with the accompanying drawings, in which like numerals refer to like parts and in which:

[9] FIG. 1 illustrates a block diagram of the electronic client data acquisition and analysis system according to an aspect of the present invention;

[10] FIG. 2 illustrates a communication flow diagram of the electronic client data acquisition and analysis system according to an aspect of the present invention;

[11] FIG. 3a illustrates a coordinate basis as determined by vector analysis of entire dataset modeled together, according to an aspect of the present invention;

[12] FIG. 3b illustrates a $T^{\text{sup.2}}$ line plot according to an aspect of the present invention;

[13] FIG. 4a illustrates a machine learning node optimization and variables of importance identification according to an aspect of the present invention;

[14] FIG. 4b illustrates relative class strength for ADEN, COID, NORMAL, SCLS, and SQUA according to an aspect of the present invention;
[15] FIG. 5a illustrates a T.sup.2 line plot of cancer subsets run against NORMAL model according to an aspect of the present invention;

[16] FIG. 5b illustrates a fit to model (SPE in this example) according to an aspect of the present invention;

[17] FIG. 6a illustrates class=ADEN membership probability distributions of cancer subset gene vectors belonging to normal subset according to an aspect of the present invention;

[18] FIG. 6b illustrates class=COID membership probability distributions of cancer subset gene vectors belonging to normal subset according to an aspect of the present invention;

[19] FIG. 6c illustrates class=SCLC membership probability distributions of cancer subset gene vectors belonging to normal subset according to an aspect of the present invention;

[20] FIG. 6d illustrates class=SQUA membership probability distributions of cancer subset gene vectors belonging to normal subset according to an aspect of the present invention;

[21] FIG. 7 illustrates a vector machine algorithm 2 results for NORMAL vs. PROSTATE TUMOR classes according to an aspect of the present invention;

[22] FIG. 8a illustrates example waveforms (temporally-paired waveforms) according to an aspect of the present invention;

[23] FIG. 8b illustrates temporal pattern co-evolution of: three ECG leads, arterial pressure, pulmonary arterial pressure, respiratory impedance, and airway CO2 waveforms according to an aspect of the present invention;

[24] FIG. 8c illustrates key variable contribution to temporal pattern change seen in FIG. 7b according to an aspect of the present invention;

[25] FIG. 9 illustrates an exemplary home page for a patient specific web portal according to an aspect of the present invention;
FIG. 10 illustrates an exemplary user account and personal information page in a patient specific web portal according to an aspect of the present invention;

FIG. 11 illustrates an exemplary search page for a patient specific web portal according to an aspect of the present invention;

FIG. 12 illustrates an exemplary page representing patent data entry and generated enhanced feedback for a patient specific web portal according to an aspect of the present invention;

FIG. 13 illustrates an exemplary home page for a doctor specific web portal according to an aspect of the present invention;

FIG. 14 illustrates an exemplary user account and personal information page in a doctor specific web portal according to an aspect of the present invention;

FIG. 15 illustrates an exemplary illness search page for a doctor specific web portal according to an aspect of the present invention;

FIG. 16 illustrates an exemplary system search page for a doctor specific web portal according to an aspect of the present invention;

FIG. 17 illustrates an exemplary risk factor search page for a doctor specific web portal according to an aspect of the present invention;

FIG. 18 illustrates an exemplary lab results page for a doctor specific web portal according to an aspect of the present invention; and

FIG. 19 illustrates an exemplary treatments search page for a doctor specific web portal according to an aspect of the present invention.
Detailed Description of the Invention

It is to be understood that the figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the present invention, while eliminating, for the purpose of clarity, many other elements found in typical data acquisition and analysis systems. Those of ordinary skill in the art will recognize that other elements and/or steps are desirable and/or required in implementing the present invention. However, because such elements and steps are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements and steps is not provided herein. The disclosure herein is directed to all such variations and modifications to such elements and methods known to those skilled in the art. Furthermore, the embodiments identified and illustrated herein are for exemplary purposes only, and are not meant to be exclusive or limited in their description of the present invention.

Referring now to FIG. 1, there is shown a block diagram of the electronic client data acquisition and analysis system according to an aspect of the present invention. As may be seen in FIG. 1, analysis system 100 may include a plurality of clients 110, a client data acquisition process 112, a client data 114, a client data summary 116, a plurality of advertisers 120, a demographic information 122, a plurality of targeted ads for clients 124, a plurality of targeted ads for professionals 126, a data or research 130, an initial 'weights' for adaptive algorithms 132, a master algorithm engine 140, a plurality of logic-based algorithms 142, a plurality of vector math algorithms 144, an output data for professional or control system 150, an output data summary 152, a professional or control system 154, and an output decision or data request 156.
Clients 110 may provide data via client data acquisition process 112, which may produce client data 114, which in turn may produce client data summary 116 (provided to clients 110) and demographic information 122 (provided to advertisers 120). Advertisers 120 may provide targeted ads for clients 124 to be viewed by clients 110 during client data acquisition process 112, and/or at client data summary 116. Advertisers 120 may also provide targeted ads for professionals 126 to be viewed by a plurality of professionals or control systems 154 during viewing of output data for professional or control system 150 or output data summary 152. Data or research 130 may determine initial 'weights' for adaptive algorithms 132. Master algorithm engine 140 may receive input from client data 114 and initial 'weights' for adaptive algorithms 134, and/or rules or initial conditions for algorithms 142 and/or 144. Master algorithm engine 140 may be comprised of a plurality of logic-based algorithms 142 and a plurality of vector math algorithms 144. Master algorithm engine 140 may provide output data for professional or control system 150, which may in turn provide output data summary 152, which may in turn be provided to professionals or control systems 154. Professionals or control systems 154 may use output data for professional or control system 150 and output data summary 152 to make a plurality of output decisions or data requests 156, which in turn may be administered to clients 110.

Clients 110 may be of any type, including, but not limited to, medical patients (e.g., for uses in places including, but not limited to, hospitals, doctor's offices, ambulances, and at-home patient monitoring), real estate buyers or sellers, subjects of demographic studies (e.g., social sciences, economic behavior, group dynamics), potential employees, and travelers who need to undergo security screens. Clients 110 may be people, computer systems, medical diagnostic devices, researchers, other analysis algorithm systems,
or anything or anyone that would benefit from the use of a data acquisition and analysis system that may be known to those possessing an ordinary skill in the pertinent art. Clients 110 may be people or entities that use automated or semi-automated control systems, which can be of any type, including, but not limited to, vehicle systems (e.g., in automobiles, motorcycles, trains, airplanes, space vehicles), building systems (e.g., for security, climate control), and private residence systems (e.g., lighting, music, lawn watering, security, climate control). In a fully automated control system, clients 110 may be the control system or control system CPU itself.

In an aspect of the present invention, client 110 may be an automobile, which may acquire alertness data from the driver. If the automobile driver’s alertness drops below a pre-defined level, the automobile may alert the driver to pull over to the side of the road to rest until alertness increases.

Client data acquisition process 112 may be of any type, including, but not limited to, typing on a keyboard connected to a personal computer, typing on a keyboard of a self-contained input computer system, tapping on a touch-screen input device with a client 110’s fingers or a stylus, client 110 speaking the information into a microphone or headset, input via an implantable device, input via a hand-held or tablet computer, input via a biomedical device (e.g., heart monitor), or input via any other method known to those possessing an ordinary skill in the pertinent art. Client data acquisition process 112 may be performed at the place of business or residence of the professional or control system (e.g., via a personal computer or via a mobile, portable unit), or it may be performed remotely, via the internet (e.g., form-entry on a website (HTTP-based), e-mail submission, running a specific input software program remotely, and/or via 3rd party software using API's). Client data acquisition process 112 may be performed via add-on toolboxes or suites which are modules that are customized for
particular applications (ER, PCP, GI, etc.). Client data acquisition process 112 may also be done in an automated fashion, in a way including, but not limited to, RFID (radio frequency input device) output from a blue-tooth enabled thermometer, blood-pressure taking device, heart monitor, blood-sugar analysis device, sleep mask for brain waves, respiratory probe, implantable device, or other diagnostic device. Client data acquisition process 112 may also be done via other data acquisition tools, including, but not limited to, vehicular sensors (e.g., for speed, engine R.P.M., altitude, fuel remaining), appliance monitors (for home or industrial appliances), or motion detection sensors (for home or industrial security systems).

[41] Client data acquisition process 112 may be in response to static questions or requests for a few pieces of data, or it may be adaptive, whereby new information requests are presented to client 110 based on the responses given during client data acquisition process 112, using a pre-learned rule set and/or an adaptively-learned rule set. Client data acquisition process 112 may be in response to data requests, and/or it may be in response to other prompts for client 110, including, but not limited to photographs, illustrations, or other means or eliciting information or a preference that are known to those possessing an ordinary skill in the pertinent art. Client data acquisition process 112 may also be in the form of receiving data from an electronic or mechanical device, including, but not limited to, a heart monitor, blood pressure monitor, an automobile engine (e.g., for fault detection), or any other device.

[42] According to an aspect of the present invention, a professional or control system 154 may prepare a list of questions, photographs, images, or other data requests in advance of client data acquisition process 112. The list of data that are desired to be elicited from client 110 may vary, whereby client data acquisition process 112 presents a different list of questions, depending upon some
characteristic of client 110 (e.g., age, gender, model of vehicle), or it may vary the data requests adaptively during client data acquisition process 112. According to an aspect of the present invention, a professional or control system 154 may prepare a list of more probing questions or data requests for client 110, to be presented to client 110 based on the response received to each initially-prepared question, thereby allowing client data acquisition process 112 to function in an adaptive manner. For example, if client 110 reveals during client data acquisition process 112 that he or she has a history of heart disease among his or her progenitors, additional questions or data requests may be presented to client 110 which ask which progenitors had the condition, and at what age range each progenitor had the condition. On the other hand, if client 110 reveals that he or she does not have a family history of heart disease, client data acquisition process 112 may accept the negative response and may therefore not present the additional questions or data requests. The list of more probing questions and/or data requests that allow data acquisition process 112 to function in an adaptive manner may be on any subject (e.g., medical-related, vehicle diagnostic-related, climate control related), and they may be in a multiple-hierarchy style, whereby an answer to an initially-prepared question and/or data request causes a list of more probing questions and/or data requests to be presented to client 110, and the answer to each of the more probing questions may cause further probing questions and/or data requests to be presented to client 110.

Client data acquisition process 112 may include static graphical choices in addition to, or instead of static questions or data requests, or it may be adaptive, whereby new graphical choices and/or questions are presented to client 110 based on the responses given during client data acquisition process 112. According to an aspect of the present invention, a professional or control system 154 (e.g.,
a real estate agent) may prepare a list of questions and/or photographs and/or graphical depictions of homes and/or aspects of homes in advance of client data acquisition process 112. A client 110 may be presented with a questionnaire during client data acquisition process 112, including one or more questions and/or photographs and/or graphical depictions of homes and/or aspects of homes. Based on the responses of client 110 during client data acquisition process 112, which may indicate the preferences of client 110, the client may be presented with different potential homes to view, and the client may be presented with different targeted ads for clients 124. According to another aspect of the present invention, client data acquisition process 112 may request that client 110 click (with a computer mouse or other input device including body parts) on part of a picture, play or stop part of a video, or click on what is liked or disliked.

Client data acquisition process 112 may also include interactive data requests or graphical choices. According to an aspect of the present invention, client data acquisition process 112 may determine what amount of time client 110 takes to respond to certain questions or data requests. Master algorithm engine 140 may use the amount of time as an input to determine information about client 110 regarding the question or data request, including, but not limited to, reading comprehension, ambivalence regarding answer choices, and ethical dilemmas concerning the question or data request. Client data acquisition process 112 may also record biometric or other observations about client 110 curing the data acquisition process, including, but not limited to, input via microphone, eye movement, brainwaves, biometric response, and heart monitor response.

Client data 114 may be the raw data that is input by client 110 through client data acquisition process 112. Client data 114 may comprise a single number (e.g., patient's temperature), a constant
or intermittent stream of data over a period of time (e.g., client 110 brainwaves, thermal imaging), or it may comprise many fields of information, input by a client 110 during a plurality of client data acquisition processes 112, over a period of time. Client data 114 may be printed out on paper, or it may be stored in a variety of ways, including, but not limited to, the hard disk drive of the personal computer used for client data acquisition process 112, the hard disk drive of a self-contained input computer system, a computer server located at the place of business or residence of professional or control system 154, a remote computer server, a USB (universal serial bus) storage drive, a hand-held computer, or a tablet computer. Client data 114 may also be stored via other methods known to those possessing an ordinary skill in the pertinent art.

According to an aspect of the present invention, client data 114 may be stored in a relational database which may catalogue all information received. This database may be designed in modules which may accommodate future expansion (e.g., including more client data acquisition processes 112 or a plurality of types of clients 110). All data records may fit within the database in discrete tables according to database organization rules, which will vary, depending on the type of clients 110 or professional or control systems 154 that are using the system. Most generic information (e.g., that which is common to many clients 110 or professional or control systems 154) may be stored in a central database module, and most unique information (e.g., that which applies to few clients 110 or professional or control systems 154) may be stored in application-specific database modules.

According to an aspect of the present invention, the data storage and transfer system for client data 114 and output data for professional or control system 150 may employ standard data security methods to ensure data and system integrity, confidentiality,
and authenticity. The security methods used may include, but are not limited to, software based network traffic firewalls, encrypted communications (e.g., BlueTooth, SSL, IPSec, VPN), encrypted stored data, and dual factor authentication.

Client data summary 116 may be a summary of the raw data that is input by client 110 through client data acquisition process 112. Professional or control system 154 may designate in advance which client 110 responses will be included in client data summary 116, or client data summary 116 may be fully customizable (e.g., the user selects which questions are included) by professional or control system 154 or by client 110. According to an aspect of the present invention, professional or control system 154 or client 110 may use the internet or other wireless protocols to log into a remote server that contains intake questionnaire data, and professional or control system 154 or client 110 may select individual questions or groups of questions to be presented in client data summary 116. Client data summary 116 may also be used by client 110 to verify that answers provided during client data acquisition process 112 were input correctly and accurately. A plurality of client data summary 116 for each client 110 may be stored on the personal computer hard drive of client 110, on the personal computer hard drive of professional or control system 154, on a remote server, or via other methods known to those possessing an ordinary skill in the pertinent art.

Advertisers 120 may be of any type, including, but not limited to, pharmaceutical companies, medical supply companies, automobile parts suppliers, home improvement contractors, or any other company who desires to reach an audience of clients 110 or professionals or control systems 154.

Demographic information 122 may be taken from the information obtained from clients 110 during client data acquisition process 112. Demographic information 122 may be stripped of any information
that would identify a specific client 110. In aspects of the present invention, demographic information 122 may comprise what percentage or number of clients 110 gave a particular answer to a question during client data acquisition process 112, or it may comprise how many times targeted ads for clients 124 were shown to clients 110, or it may comprise how many times targeted ads for professionals 126 were shown to professionals or control systems 154. Demographic information 122 may be used by advertisers 120 to determine what types of ads may be designed for specific targeting to clients 110, based on the client data acquisition process 112 responses. Demographic information 122 may also be used to determine how much money advertisers should pay to reach clients 110 via targeted ads for clients 124 or to reach professionals or control systems 154 via targeted ads for professionals 126.

According to an aspect of the present invention, targeted ads for clients 124 may be shown to clients 110 during and/or after client data acquisition process 112. In one embodiment of the present invention, client data input process is via a keyboard connected to a personal computer, and depending on the answer a particular client 110 submits for a particular question or plurality of questions, specially and individually targeted ads for clients 124 would be shown to that specific client 110. Targeted ads for clients 124 may be fixed or animated graphical displays, rich media, or just clickable links, which may take a client 110 to the websites of advertisers 120 for additional product or service information.

According to an aspect of the present invention, targeted ads for professionals 126 may be shown to professionals or control systems 154 during input of data or during viewing of output data for professional or control system 150 or output data summary 152. The targeted ads for professionals 126 may be targeted to specific professionals or control systems 154 in numerous ways, including,
but not limited to, being based on the customization of output data summary 152, or based on demographic information 122.

[53] Data or research 130 may provide data to establish initial 'weights' for adaptive algorithms 132. These initial "weights" for adaptive algorithms 132 are used by the master algorithm engine 140. Data or research 130 may provide data of various types, including, but not limited to, scientific (cancer research), societal (population research), and mechanical (automobile engine performance research). The data generated may include, but is not limited to, continuous, categorical, nominal, and ordinal. Examples of sources of data or research 130 may include, but is not limited to, biological and environmental laboratory results, clinical results, MRI output, patient-reported symptoms or feelings, blood-pressure, atmospheric pressure, weather data, economic indicators, stock market performance, stress index scores, biosensor data, patient history, genetic analysis, and other qualitative research.

[54] Initial "weights" for adaptive algorithms 132 may be culled from data or research 130. These initial 'weights' for adaptive algorithms 132 may be specifically extracted from data or research 130 in the specific areas of interest of professionals or control systems 154. For example, according to an aspect of the present invention, a doctor may want to obtain initial weights132 related to cholesterol, age, gender, and body-mass index (BMI) (culled from heart disease research 130), to input into a master algorithm engine 140, to receive output data 150 that will give the doctor a health score index (HSI), which the doctor may use to make an output decision or data request 156. Initial 'weights' for adaptive algorithms 132 provide an input into the algorithms 142 and vector math algorithms 144 that comprise the master algorithm engine 140. These 'weights' 132 give master algorithm engine 140 a starting point from which it can adapt itself to find the optimal relationships between the algorithm variables. Initial 'weights' for adaptive algorithms 132 may
be changed, once master algorithm engine 140 begins running. According to an aspect of the present invention, the change or rate of change of these 'weights' may be a separate input to be used by algorithm engine 140.

According to an aspect of the present invention, initial 'weights' for adaptive algorithms 132 may be all set to a zero value, which would remove them from analysis system 100. The use of initial 'weights' for adaptive algorithms 132 as an input to master algorithm engine 140 is optional. According to another aspect of the present invention, master algorithm engine 140 may have its initial state set via a set of rules, unrelated to data or research 130.

Master algorithm engine 140 may have several inputs, including, but not limited to, initial 'weights' for adaptive algorithms 132, client data 114, demographic information 122, all raw data from client 110, previous data requests given to client 110, as well as other data that may be known to those possessing an ordinary skill in the pertinent art. Master algorithm engine 140 may feed these inputs into each of the logic-based algorithms 142 and each of the vector math algorithms 144. Master algorithm engine 140 may receive output from each of the algorithms 142 and 144 and combine the output into a single overall measure (e.g., health score index (HSI)), or it may combine the output into a plurality of overall measures. According to an aspect of the present invention, algorithms 142 and 144 may provide inputs and outputs to each other, working in parallel and/or working in series. There may also be a plurality of master algorithm engines 140, and the output of one engine 140 may provide input to another engine 140, or they may work in series or parallel, providing inputs and outputs to each other.

According to an aspect of the present invention, master algorithm engine 140 may include multivariate trajectory analysis. One embodiment of the invention, using multivariate trajectory analysis, is a method of determining a multivariate health score index (HSI).
This method may be employed to classify/type (or subtype) an observation vector, and then determine and track velocity and acceleration vectors (through repeated measurements at known time intervals). This temporal domain and associated vectors may yield important information which may be critical in determining various outputs, including, but not limited to, prognosis, treatment effectiveness, and treatment progress. This analysis may be used as an output for HSI trajectory tracking and visualization, but it may also be used as an input in a subsequent analysis (using HSI velocity and acceleration as inputs). Also, this analysis may be used to find and leverage trends in the data to identify different relationships, types, or sub-types, and/or how they change with time. When assessed independently, each variable may be observed to be within an agreeable standard deviation, but when assessed together, outliers or different groupings or 'swarms' may be detectable. The output of this analysis may be visualized in various mediums and in various dimensions that are known to those possessing an ordinary skill in the pertinent art.

According to an aspect of the present invention, master algorithm engine 140 may include biological monitoring, biological process monitoring, fault detection, geography, stock market trends, a health score index, or any other data that needs to be monitored that is known to those possessing an ordinary skill in the pertinent art. In one embodiment of the invention, master algorithm 140 may be used to assess, classify, track and monitor a multivariate score over time using an adaptive model, which may compensate for a lack of complete system or variable knowledge and/or missing variables in an input vector. High-order datasets (those that include many variables) may be modeled and have the output reduced to include only important variables and/or variable interactions. The output may be further visually simplified to three charts (although fewer than three or more than three charts may also be used), each
a function of the previously mentioned model and of time. These charts may include, but are not limited to, the standard deviation of the sample vector based on the model, the fit of the sample vector to the model, and the adaptive model limits for the other two charts.

According to an aspect of the present invention, master algorithm engine 140 may include time as a variable. Depending on the type of analysis, time may be used in various ways, including but not limited to, a batch variable (where similar matrixes are stacked in a new time dimension), and a column vector. In one embodiment of the invention, time series data may be used, which offers the ability to track data trends. Time may be an important variable for mathematical and physical reasons. For example, the thermodynamic state of Entropy may be defined in terms of the direction of the time vector. Time is relevant in the discussion of Gibbs Free Energy, non-state functions, and path dependent functions, all of which are important for analysis of biological systems. Time also allows us to calculate determination of velocity and acceleration. For velocity, we employ the operator

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right)$$

which, when operated on the function p in Cartesian coordinates as an example, results in the expression:

$$\nabla p = \left(\frac{\partial p}{\partial x}, \frac{\partial p}{\partial y}, \frac{\partial p}{\partial z} \right).$$

For acceleration, using Cartesian coordinates again, we employ the Laplacian operator:

$$\nabla^2 = \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}. $$

These examples of vector calculus operations may be expressed in Cartesian coordinates for simplicity, but they may also be
expressed in terms of any orthogonal coordinate system (conventional), or any other coordinate system (non-conventional).

Logic-based algorithms 142 and vector math algorithms 144 may contain or be derived from methods known to those possessing an ordinary skill in the pertinent art and may result from some or all combinations, including, but not limited to, linear algebra, calculus, genetic algorithms, scientific laws, empirically derived boundary conditions, artificial constraints, transforms and filters (e.g., Fourier, LaPlace, wavelets). These are hereby referred to as mixed-type models (MTM).

Logic-based algorithms 142 and vector math algorithms 144 may be adaptive and include both supervised and/or unsupervised learning. Additionally, data from various sources (e.g., cancer research, population research, automobile engine research, biological and environmental laboratory results, clinical results, MRI output, patient-reported symptoms or feelings, blood-pressure, atmospheric pressure, weather data, economic indicators, stock market performance, stress index scores, biosensor data, patient history, genetic analysis, and other qualitative research, etc.) can be used as data or research 130 to input to algorithms 142 and 144 to help elucidate interactions, and/or dependent variable modulation. The model may be configured so that we learn as we go, or we learn as we change inputs. It is a dynamic process.

Logic-based algorithms 142 and vector math algorithms 144 may use one or more of the following in its calculations: independent variables only, dependent or system output variables only, independent variables with single dependent or system output variable, independent variables with multiple dependent or system output variables, hierarchical, and mixed type. Independent variables, or transformations thereof, are those which may come from external initial 'weights' 132, and dependent variables may be derived by combining or performing mathematical operations on the
independent variables. The variables may include various data-type categories, including, but not limited to, continuous, semi-continuous, categorical, nominal, and ordinal, and others known to those possessing an ordinary skill in the pertinent art.

According to an aspect of the present invention, incorporating large datasets into the master algorithm engine (via initial 'weights' for adaptive algorithms), may allow populations and subpopulations of similar structure to determined, and different treatments may be evaluated to define the allowable return to health (RtH) hyperpath. According to another aspect of the present invention, the vector basis space used may be non-predetermined but is a variable. The vector basis space used may be determined using training data; then test data may run against that model. A mixed model (part predetermined basis space and part un-predetermined basis space) may be employed. The changes in the model over time may be tracked and analyzed, because potentially useful data may be discovered (e.g., changes in the environment driving changes in the model, disease progression, etc.)

According to an aspect of the present invention, a higher-level master algorithm engine may try different variations of various models so that genetic algorithms (AI) govern over all model development, so that the best combinations are kept (e.g., linear algebra in one algorithm or 144, physical modeling in another algorithm 142 or 144, use those model outputs as inputs for an AI model master algorithm engine 140). Also, the master algorithm engine 140 may vary different combinations of model optimization parameters, including, but not limited to, 'lag' and data filters (and optimization parameters of those). A master algorithm engine 140 might also be used to determine natural groupings in the data. Once identified, the master algorithm engine 140 may perform subsequent analysis such as vector machine. In addition, Eatch or Phase analysis may be used by master algorithm engine 140, wherein
matrixes of similar input and structure can be stacked into an additional dimension and analyzed by utilizing this new dimension.

According to an aspect of the present invention, a higher-level master algorithm engine 140 may use logic-based algorithms 142 and vector math algorithms 144 to determine relationships between the input variables or variables created from combinations of these input variables. Master algorithm engine 140 may also determine key combinations of variables that may be driving the difference between one data set (e.g., cancerous sample) and another data set (e.g., non-cancerous sample). Master algorithm engine 140 may also determine if delineations are present in the data, it may compare output variables of one data set against other data sets, and it may compare results over time using one or more of the data analysis methods described above, or using other data analysis methods known to those possessing an ordinary skill in the pertinent art. According to another aspect of the present invention, master algorithm engine 140 may employ a survival-of-the-fittest type scheme to achieve optimal results from algorithms 142 and 144. In complex multivariate analysis with multiple algorithms, local minima and maxima may be present, which may result in different outputs from different algorithms that use the same input data. To improve performance in this situation, master algorithm 140 may compare and contrast the intermediate and final results from algorithms 142 and 144, and it may choose the best results or best combinations of results. Algorithms 142 and 144 may also help each other learn and produce more optimal results. Master algorithm engine 140 may obtain intermediate results from algorithms 142 and 144 to try to find unstable nodes in the analysis. Master algorithm 140 may assess the strengths and/or weaknesses of individual algorithms, and it may use the outputs from the strongest performing algorithms.
Output data for professional or control system 150 may be produced as a result of the calculations within master algorithm engine 140 for each client 110. The output data 150 may be a single number representing a single result (e.g., patient temperature), a single response (e.g., yes/no), a continuous stream of results, a complex score (e.g., health score index (HSI)), or a continuous stream of scores, which combines many input data (from initial 'weights' 132 and client data 114) to produce an output that is useful to a professional or control system 154. According to an aspect of the present invention, output data 150 may be stored in a relational database which may catalogue all information received. This database may be designed in modules which may accommodate future expansion. All data records may fit within the database in discrete tables according to database organization rules, which will vary, depending on the type of professional or control systems 154 that are using the system. According to another aspect of the present invention, output data 150 may be used to motivate a request for more data (156) from client 110.

Output data summary 152 may be a summary of the raw output data for professional or control system 150. Professional or control system 154 may designate in advance which output data 150 will be included in output data summary 152, or output data summary 152 may be fully customizable (e.g., the user selects which questions are included) by professional or control system 154. According to an aspect of the present invention, professional or control system 154 may use the internet to log into a remote server that contains output data for professional or control system 152, and professional or control system 154 may select individual data fields or groups of data to be presented in output data summary 152. A plurality of output data summaries 152 for each client 110 may be stored on the personal computer hard drive of professional or
control system 154, on a remote server, or via other methods known to those possessing an ordinary skill in the pertinent art.

Professional or control system 154 may be any of a broad range of client-service professional, including, but not limited to, medical doctors, social scientists, employers, and security screeners. Professional or control system 154 may be a person, another algorithm, a set of algorithms, or a hierarchal algorithm system, or any other entity that has a need for the output data 150 that is known to those possessing an ordinary skill in the pertinent art. Professional or control system 154 may also be any of a broad range of automated and semi-automated control systems, including, but not limited to, vehicle systems (e.g., in automobiles, motorcycles, trains, airplanes, space vehicles), building systems (e.g., for security, climate control, lighting), and private residence systems (e.g., lighting, music, lawn watering, security, climate control). According to an aspect of the present invention, a professional 154 may be a doctor, who is treating patient clients 110 to diagnose and treat various conditions and illnesses (e.g., common cold, heart disease, etc.).

Output decision or data request 156 may be made by professional or control system 154 to treat or control client 110. The electronic client data acquisition and analysis system 100 may assist the professional 154 to make an optimal output decision or data request 156, using the benefit of the master algorithm engine 140, which in turn uses the information culled from a research area of data 130 and the client data acquisition process 112. According to an aspect of the present invention, a doctor 154 makes an output decision 156 to determine a treatment course and track relevant data over time to cure an illness for client 110. According to another aspect of the present invention, a climate control CPU may make an output decision 156 by increasing the flow of air to one part of a building or by opening windows in a part of a building, based on the values and
rate of change of temperature and humidity input data 112 from all areas of the building.

Referring now to FIG. 2, there is shown a communication flow diagram of the electronic client questionnaire analysis system according to an aspect of the present invention. As may be seen in FIG. 2, the electronic client questionnaire analysis system may contain many channels of communication between the various potential elements of the system. For example, a client may provide information to (e.g., question responses), and receive information from (e.g., additional adaptive questions and/or advertisements) the input device; a client may provide information to (e.g., choices of fields for custom client input data summary reports), and receive information from (e.g., client input data summary reports) the data storage device; a client may provide information to (e.g., demographic information), and receive information from (e.g., advertisements or special offers) an advertiser; and a client may provide information to (e.g., questions about treatment), and receive information from (e.g., treatment or control decision) a professional or control system. Also, many of the component elements of the questionnaire analysis system communicate with many other elements. For example, the Master Algorithm Engine may communicate with the input device, data storage device, the output device, and it receives input from research data. Also, the professional/control system may communicate with clients, advertisers, and he/she/it may supply or receive research data. In addition, many other combinations of communication are possible between the system elements, as shown in FIG. 2, and in various other ways.

Referring now to FIG. 3a, there is shown a coordinate basis as determined by vector analysis of entire dataset modeled together, according to an aspect of the present invention. As may be seen in FIG. 3a, the Master Algorithm Engine may take a large number of
variables from a sample data set and perform a vector analysis to extract the most meaningful combination of variables to provide to a professional or control system 154. In this example, Harvard Lung Cancer Data was taken from a publicly available reference (Arindam Bhattacharjee, et al. "Classification of Human Lung Carcinomas by mRNA Expression Profiling Reveals Distinct Adenocarcinoma Subclasses". PNAS, 98(24):13790-13795, November 2001). From 203 instances of lung tumors and normal lung tissue, 12,600 gene variables were input into a vector analysis. A vector analysis was performed with all the data run together to create a global model in order to determine key combinations of variables and the output of that analysis was used as input for a basic machine learning algorithm. The output of this example might be used in many ways, including, but not limited to, diagnosis, prognosis, treatment course decisions, and determining which key gene interactions are present. FIG. 3a shows that the data can be separated using the three most meaningful combinations of the 12,600 variables; each of the five samples (adenocarcinomas (ADEN), squamous cell lung carcinomas (SQUA), pulmonary carcinoids (COID), small-cell lung carcinomas (SCLC), normal lung samples (NORMAL)) can be observed to take up a primarily different portion of three-dimensional space. This may demonstrate that some structure is present in the dataset. According to an aspect of the present invention, one vector-based and one logic-based algorithm may be used, or a vector analysis may be performed on each data sample, or the output of a vector-based algorithm may be input into a machine-learning algorithm.

Referring now to FIG. 3b, there is shown a T² line plot, according to an aspect of the present invention. As may be seen in FIG. 3b, some structure is present in the dataset. FIG. 3b shows that most of the data points shown in FIG. 3a fit the vector model (created from the combination of the 12,600 variables) relatively well.
Referring now to FIG. 4a, there is shown a machine learning node optimization and variables of importance identification, according to an aspect of the present invention. As may be seen in FIG. 4a, a machine learning algorithm was used to identify which combinations of the 12,600 variables were most relevant for separating the 5 types of samples in three-dimensional space. The scores and loadings from vector machine analysis were used as input into the machine learning algorithm. In FIG. 4a, variables 3, 2, and 5 (each is a linear combination of the 12,600 variables) were most important. Also, in FIG. 4a, it can be seen that using seven combinations of variables resulted in the lowest degree of model error.

Referring now to FIG. 4b, there is shown relative class strength for ADEN, COID, NORMAL, SCLS, and SQUA, according to an aspect of the present invention. As may be seen in FIG. 4b, a two-dimensional combination of variables 2 and 3 from FIG. 4a may be used to determine the likelihood that a tissue sample belongs to each of the five known types. For example, in the ADEN chart, if variable 2 is between -30 and 0, and variable 3 is between -30 and 30, there is approximately a 60% chance that such a tissue sample belongs to the ADEN tissue group (as denoted by the lighter shading of the dots in that numerical range).

Referring now to FIG. 5a, there is shown a T^2 line plot of cancer subsets run against NORMAL model, according to an aspect of the present invention. As may be seen in FIG. 5a, another vector model was created, using only the NORMAL subset of the overall dataset modeled in FIG. 3a. Then the cancer subsets were run against that model. The output of this example might be used in many ways, including, but not limited to, diagnosis, prognosis, treatment course, and identifying promising future research areas. FIG. 5a shows that most of the cancer sample data points fit this new NORMAL vector model (created from the combination of the 12,600 variables) relatively well.
Referring now to FIG. 5b, there is shown a fit to model (SPE in this example), according to an aspect of the present invention. As may be seen in FIG. 5b, it may be seen that the fit to model limits has been exceeded. This implies that different relationships among the 12,600 genes are present in the NORMAL subset vs. the cancer subsets. Additionally, differences among the cancer subsets may also be present.

Referring now to FIGS. 6a, 6b, 6c, and 6d, there are shown class=ADEN, class=COID, class=SCLC, and class=SQUA membership probability distributions of cancer subset gene vectors belonging to normal subset, according to an aspect of the present invention. As may be seen in FIGS. 6a, 6b, 6c, and 6d, the NORMAL vector model shown in FIGS. 5a and 5b may be used to determine the probability that each of the cancer type samples belongs to the NORMAL subset. In FIG. 6a, the ADEN cancer sample set was run against the NORMAL model. In FIG. 6b, the COID cancer sample set was run against the NORMAL model. In FIG. 6c, the SCLC cancer sample set was run against the NORMAL model. In FIG. 6d, the SQUA cancer sample set was run against the NORMAL model. These analyses seem to indicate a clear delineation among the NORMAL and cancer groups, which may indicate that the NORMAL model is effective at predicting whether a new sample belongs to the NORMAL group (low probability of cancer) or one of the cancer groups (perhaps an additional medical procedure would then be recommended).

Referring now to FIG. 7, there is shown a vector machine algorithm 2 results for NORMAL vs. PROSTATE TUMOR classes, according to an aspect of the present invention. As may be seen in FIG. 7, the Master Algorithm Engine may take a large number of variables from a sample data set and perform a vector analysis to extract the most meaningful combination of variables to provide to a professional or control system 154. In this example, Prostate Cancer Data was
taken from a publicly available reference (Dinesh Singh, et al. "Gene Expression Correlates of Clinical Prostate Cancer Behavior". Cancer Cell, 1:203-209, March, 2002). From 102 specimens of prostate tumor samples and non-tumor prostate samples, 12,600 gene variables were input into a vector analysis. A new vector machine algorithm was used for this dataset, because the algorithm used in the lung cancer example did not reveal obvious distinctions between the prostate cancer and normal prostate subsets. A different vector analysis was performed to create a model to determine key combinations of variables, and the output of that analysis was used as input for a basic machine learning algorithm. Machine learning was used after that to cluster the variables into color groups. The output of this example might be used in many ways, including, but not limited to, diagnosis, prognosis, treatment course decisions, and determining which key gene interactions are present. FIG. 7 shows that the data can be separated using the three most meaningful combinations of the 12,600 variables; each of the two samples (tumor and normal) can be observed to take up a primarily different portion of three-dimensional space. This may demonstrate that some structure is present in the dataset.

Referring now to FIG. 8a, there are shown example waveforms (temporally-paired waveforms), according to an aspect of the present invention. As may be seen in FIG. 8a, the Master Algorithm Engine may take a large number of variables from a waveform data set and perform a temporally-based vector analysis to extract the most meaningful combination of variables to provide to a professional or control system 154. In this example, waveform data was taken from a publicly available reference (Massachusetts General Hospital/Marquette Foundation (MGH/MF) Waveform Database). From waveform recordings of 250 patients, one-minute samples were taken, using the following variables: three ECG leads, arterial pressure, pulmonary arterial pressure, respiratory
impedance, and airway CO2 waveforms. The original signals were recorded on 8-channel instrumentation tape and then digitized at twice real time. The raw sampling rate of 1440 samples per second per signal was reduced by a factor of two to yield an effective rate of 360 samples per second per signal relative to real time. This approach permitted the use of low-order analog anti-aliasing in combination with high-order digital FIR anti-aliasing to minimize phase distortion in the digitized signals. For this example, the data was analyzed using a temporally-based vector algorithm to determine important variable interactions as a function of time. The output of this example might be used in a variety of ways, including, but not limited to, routine medical treatment, emergency response vehicle treatment, diagnosis, prognosis, and treatment course decisions. FIG. 8a shows an example set of temporally-paired waveforms for a single patient sample, which includes the variables used in the vector algorithm (three ECG leads, arterial pressure, pulmonary arterial pressure, respiratory impedance, and airway CO2 waveforms). These waveforms may be tracked and trended over time by master algorithm engine 140, in order to determine which variables are driving changes in the waveforms. According to an aspect of the present invention, transformations of waveforms may be used, instead of, or in addition to, temporally-paired or other waveforms.

Referring now to FIG. 8b, there is shown temporal pattern co-evolution of: three ECG leads, arterial pressure, pulmonary arterial pressure, respiratory impedance, and airway CO2 waveforms, according to an aspect of the present invention. As may be seen in FIG. 8b, the data can be separated using the three most meaningful combinations of the waveform variables; the value of the variables over time can be observed to take up a primarily different portion of three-dimensional space (e.g., time groups A and B are separated in visual space). This example allows multiple inputs to be
summarized and visualized in a single plot, with additional plots easily available for drill-down. The advantages this provides may include, but are not limited to, identification of changes in variables and variable interactions, ease of visualization, and ease of drill-down determination of key variables driving change.

[81] Referring now to FIG. 8c, there is shown key variable contribution to temporal pattern change seen in FIG. 8b, according to an aspect of the present invention. As may be seen in FIG. 8c, the independent variables that are driving the difference between groups A and B are ECG lead 1, respiratory impedance, and airway CO2. This information may guide a doctor to monitor these outputs most carefully during patient treatment.

[82] As explained hereinthroughout, the present invention may further include a software architecture, which may be overseen by a managerial or administrative body and executable over a central server or servers. The software architecture may include a software framework that optimizes ease of use of at least one existing software platform, and that may also extend the capabilities of at least one existing software platform. The software architecture may approximate the actual way users organize and manage data, and thus may organize use activities, such as the completion of interactive questionnaires, in a natural, coherent manner while delivering such use activities through a simple, consistent, and intuitive interface within each application and across applications. The software architecture may also be reusable, providing plug-in capability to any number of additional applications, without extensive re-programming, which may enable parties outside of the system of the present invention to create components that plug into the system platform. Thus, software or portals may be extensible and new software or portals may be created for the architecture by any party.
As used herein, a "user" or "users" of the system software architecture may include clients, patients, doctors, medical professionals, medical staff, or any other person that may access and enter the system software architecture as described herein. Further, the system software architecture may be managed by a central system manager or administrator, or it may be managed by multiple parties communicatively connected via a computer network.

The software architecture may provide, for example, applications accessible to one or more users to perform one or more functions. Such applications may be available at the same location as the user, or at a location remote from the user. Each application may provide a graphical user interface (GUI) for ease of interaction by the user with information resident in the system of the present invention. A GUI may be specific to a user, set of users, or type of user, or may be the same for all users or a selected subset of users. For example, separate and distinct GUIs may be designed for patients verses doctors. In other embodiments, individual users may customize their GUI to meet their personal requirements. The software architecture may also provide a master GUI set that allows a user to select or interact with GUIs of one or more other applications, or that allows a user to simultaneously access a variety of information otherwise available through any portion of the system.

The software architecture may also be a portal that provides, via the GUI, remote access to and from the system of the present invention. The software architecture may include, for example, a network browser. The software architecture may include the ability, either automatically based upon a user request in another application, or by a direct user request, to search or otherwise retrieve particular data from a centralized server or other remote points, such as standard information accessed from a database, via the internet. The software architecture may vary by user type, or may be
available to only a certain user types, depending on the needs of the system of the present invention. Users may have some portions, or all of the software architecture resident on a local computer device (which may be originally provided to the device by download) or may simply have linking mechanisms, as understood by those skilled in the art, to link such computer devices to the software architecture running on a central server via a communications network.

Presentation of data through the software architecture may be in any sort and number of selectable formats. For example, a multi-layer format may be used, wherein additional information is available by viewing successively lower layers of presented information. Such layers may be made available by the use of drop down menus, tabbed folder files, or other layering techniques as would be understood by those skilled in the art. Formats may also include AutoFill functionality, wherein data may be filled responsively to the entry of partial data in a particular field by the user, or by information stored for a particular registered user. All formats may be in standard readable formats, such as XML, or any other formatting, including audio/video flash, or other programming, as would be understood by those skilled in the art. As described hereinafter, the software architecture may also support interactive platforms, where users, such as clients 110, input information via client data acquisition process 112 and receive adaptive feedback, or where a user may receive advertisements and purchase items either from an operator of the system or from any third party connected to the system via the communications network. The software architecture may further include a control panel or panels, as would be understood by those skilled in the art, to be operated by a system administrator or other managing personnel through a GUI. It should be appreciated that such a control panel may allow the provider of the system (or "system
provider") the ability to access all data and activate and/or manipulate any rules sets, such as those rules associated with master algorithm engine 140.

In an exemplary embodiment of the present invention, client data acquisition process 112 may include a patient specific web portal utilizing a GUI for users, such as for clients 110, to input client data 114. Use of a web portal may further provide for continuous connectivity with a relational database, so as to allow for maximum interactivity and provide adaptive feedback to the client based on the information submitted. The relational database may contain stored medical content, and may operate within the system as part of an open-source medical information and/or decision support tool to be accessed by the analysis system of Figure 1 and any of the web portals as described herein.

For example, as shown generally in Figures 9-12, the data acquisition process (as illustrated generally in Figure 1) may include a web portal where the client can register with the system, and create a secure connection via use of a username and password, or any other security measure as would be understood by those skilled in the art. Once logged in, the user may access the pages of the web portal, which may include a variety of pages, such as (by non-limiting example) a home page, a user account page, a personalized health page, a diagnosis tool page, an illness and treatment page, a medications page, a healthy living page, a search page, a facts page, and pages representing historical activity by the client. It should be appreciated that any sort of organizational system may be used to layout, organize and present information via the web portal, as would be understood by those skilled in the art.

The system may thus be used to better educate patients prior to their doctor visits, so that they can make the best use of the limited visit time they have with their doctor. For example, when a user, such as client 110, is preparing for a future doctor visit, or is
independently investigating their own health status, the user may select a data entry page, which may display various fields for entering text, or simply to select items, such as via a "check box" to provide a "yes/no" data entry. For example, the system may present a first set of symptoms for client 110 to choose from, such that client 110 may identify certain symptoms as being present or absent in their current state of health. Depending on the symptoms selected, the system may adaptively present other symptoms or selectable questions to narrow down the possibilities of illnesses or health issues that client 110 may currently have. It should be appreciated that any type of symptom may be described, and any amount of detail per symptom may be used to assist in the narrowing of symptoms to identify a possible current health condition. Thus, the system may use a hierarchical question tree, optionally based on client data 114 provided, to assist client 110 in potentially determining what specific state of health they might have. The system may also ask for personal historical information from client 110 to assist in the narrowing of any particular determination of patient health. Further to this, the system may also incorporate historical health data that is non-specific to that client, such as various demographic information, public health information specific to a defined geographic environment, or any other health related information to assist in determining the user's current state of health, provided that such prior information is available within the system database. It should be appreciated that the system may maintain a historical record of all entered medical information, as well as any searched information, and may provide a date/time stamp with any such data, as requested by any authorized user, via any particular web portal.

As the system collects information, the system may begin to present possible current health conditions for the user. In certain embodiments, this presentation may go directly to the user, or
alternatively, it may go through the analysis system of Figure 1, as described hereinabove, where it may be presented to doctors or other health professionals for review. A presentation may further be updated with targeted advertisements based upon the information entered by the user and/or the related input provided by the doctors or health professionals.

According to another aspect of the present invention, the system may provide a second web portal, separate and distinct from the client or patient web portal, where the second web portal has its own GUI. As shown generally in Figures 13-19, this second web portal may be designed specifically for doctors, health professionals, and/or their staff. For example, after creating an authorized account with the system, the doctor can add new medical information into the system database. This data input may then form part of any diagnosis tool and/or treatment information and be available to authorized viewers. Thus, the system may provide these doctors a separate web portal for entering information or data regarding the health of their patients, regarding their practice, areas of interest, or any other type of information specific to a licensed medical professional.

Of course, it should be appreciated that the system of the present invention is not designed to provide an actual diagnosis, but rather is a novel way of mining a relational database to educate each user of the system. Further, the system may be designed so as not to be inconsistent with any laws and regulations related to the acquisition and disclosure of medical information. For example, information relating to the health or diagnosis of an individual may be added to the database of the system via an upload that ensures the anonymity of the particular individual to whom that diagnosis or health related information is associated with, or it may include a legal waiver of such anonymity, providing authorization from the
individual to disclose all or portions of their personal medical information.

[93] Such a doctor specific web portal may also include different medical information sets more specific to the practice of medicine, to assist doctors in assessing any particular medical condition and to further assist the doctor in making a diagnosis. Similar to the previously described patient specific web portal, advertisements may also be presented and targeted specifically to the particular doctors using the system, based on their personal profiles, their type of practice, key interests, or any other information they may provide to the system. Further still, the doctor specific web portal may include any form of reward system, such as reward points, loyalty points, discounted or free product trials, or any other reward system mechanism as would be understood by those skilled in the art. Of course, any such reward system should also be in compliance with any state or federal law requirements associated with the solicitation and marketing to health professionals.

[94] In another example, the system may include a lab testing company-specific web portal, such that laboratory testing companies may upload their test results into the system, for access by authorized health professionals and clients.

[95] According to another aspect of the present invention, the system, via web portals, may include social networking platforms, as would be understood by those skilled in the art. For example, a doctor specific web portal may further include, or link to, a social network made up of other registered doctors or health care professionals. This sort of social network may be used by doctors to present questions or problems that they may be facing in their practice to others within the social network. In another example, a the system may include a patient specific social network, such that patients can discuss issues related to health with others who may be either interested in the same issues, or have similar health concerns.
Such a platform may also provide patients or other users the ability to make recommendations or criticisms of healthcare professionals within their knowledge base, or within a specific geographic location. Of course, any such input via a social networking platform may also be collected and stored within the system database for use in the presentation of any interactive and/or enhanced feedback as contemplated herein.

In a further embodiment, the system may also present discussion boards for registered users of the system to add comments or other types of information relating to a particular topic of the discussion board. Again, this may include recommendations, criticisms, helpful links, contact information, and the like, as would relate to the subject matter of the board.

As mentioned previously, a lab results page may be included in a patient and/or doctor specific web portal page set, and may reflect previously taken laboratory testing results. These testing results may be accessible to the user, or alternatively, they may be at least temporarily restricted, depending on the conditions established by the system. For example, a lab result may be temporarily restricted for viewing until a disclosure waiver is executed, or until the doctor who ordered the test has authorized access of the results for the patient to view. Further, the lab results page may reflect the status of pending results that the user is waiting for.

In another aspect of the present invention, the system may include a "health risks" page specific for a user, or otherwise present future health related information that might be of a forward looking concern for that user. For example, as the user builds a health profile, and as that user inputs ongoing health concerns into the system, the system can begin to predict with a percent likelihood that certain health conditions may be in the future for that user. For example, a male user may identify that they have multiple incidences of prostate cancer within their genealogy, and further,
during a data acquisition process, this male user has selected the presence of a symptom associated with the beginning of prostate cancer. Yet, because the male user does not have any other symptoms of prostate cancer, it may not yet be presented as a possible condition to the user (as described herein). However, on the "health risks" page, the system may identify prostate cancer as a future condition of concern, and may further present additional symptoms to be "on the lookout" for.

[99] In another aspect of the present invention, the system may include a "suggested test" page, which utilizes the information (new and historical) entered by a particular user, as well as relevant general information within the database, to present suggested or recommended tests specific for that user. For example, a female user of age 42 may have on her suggested tests page a mammogram. If the female user identifies that she had a mammogram 6 months ago, the page may suggest having one within the next 6 to 18 months. Of course, it should be appreciated that any list of suggested tests may also include any sort of scheduling and calendar feature to help count down and/or provide alerts or reminders for the scheduling or taking of any such tests.

[100] In another aspect of the present invention, the system may provide a searching page or field, and may include any searching format as would be understood by those skilled in the art. For example, a user may search a symptom, an illness, a condition, a treatment, a medication, a anatomical or physiological system, a risk factor, or any other type of health related topic, and further may select or filter what resource is being used for any particular search result. As part of any such search, the user may select data in the search to stem from categories such as "accepted medical textbooks", "peer-reviewed medical publications", "evidence-based treatment", or even theory or hypothesis. Because the database of the present invention collects data from all known sources of information, any
sort of filtering category of data source may be used as would be understood by those skilled in the art.

The system may provide for additional search types, such as for laboratory results or laboratory testing facilities, for doctors within a specified area and/or within a specialized practice, or any other selectable information type that is searchable within the system database by searching mechanisms as would be understood by those skilled in the art. Further, searches may also be incorporated into the social networking aspects of the present invention, as describe herein. For example, the system may utilize a searching mechanism to match patients with similar illnesses. Thus, the system may allow a first user to search for a second user by illness, treatment, condition, risk factor, or any other relevant parameter.

It should be appreciated that while the system, as contemplated herein, may include multiple web portals and GUIs for patients and doctors, each web portal may add to, and draw from, the same database, such that information collected from a first web portal may be used to form part of the adaptive feedback and/or other information based functions for the other web portal or portals. For example, prior to a patient’s first visit with his doctor, the patient may access a patient specific web portal of the system, and fill out an initial data acquisition form via data acquisition process 112 of Figure 1. This information may then flow through the analysis system of Figure 1 as described herein, then return to the patient all necessary feedback prior to the patient’s visit with his doctor. Subsequently, when the doctor has finished examining the same patient during the scheduled appointment, the doctor may enter diagnosis information into the system via the doctor specific web portal. Then, at a later point in time, that same patient may again access the system via the patient specific web portal, and enter current information regarding their current health status. At this point, the system may utilize both demographic information,
personal information entered by the patient, and the information entered by that patient's doctor.

In another exemplary embodiment where data is shared between separate and distinct web portals within the system of the present invention, the system may create health maps, or health risk areas defined within a specific geographical region and within a specific timeframe. For example, in a geographical region such as the Delaware Valley within the northeastern region of the United States, several doctors residing in different offices scattered throughout the Delaware Valley may independently diagnose instances of meningitis. Normally, these doctors would not be made aware of those similar diagnoses made by their colleagues for a significant period of time. However, when these doctors enter their diagnoses of meningitis into the doctor specific web portal, that information is collected and pooled within the system database, and may be immediately and collectively accessible to those doctors, and subsequent doctors who may find or discover future instances of meningitis within the Delaware Valley. Likewise, a person who is not feeling well may access the system via a patient specific web portal, and query the system by entering their current symptoms to discover the presence or absence of any potential illness. During this process, that person may enter a significant number of symptoms associated with meningitis, but not enough to generate meningitis as a proposed condition under standard system algorithms. However, because multiple instances of meningitis have been entered into the system within that patients geographic area, the system can alert that person to the fact that there have been several recent instances of meningitis in their area, and that they should consider discussing their current health condition with their doctor. It should be appreciated that the system of the present invention as described herein may thus serve as an early warning or alerting system for larger health associations, such as the
American Medical Association, Center for Disease Control, local hospitals, and the like, to a potential outbreak or health hazard within a defined geographic area and period of time.

In other exemplary embodiments, the system may utilize visual indicators of measurement, severity, percent likelihood of accuracy, and any combination of such indicators as would be understood by those skilled in the art. For example, items within the GUI may be colored green when representing a "healthy" state, or items may be colored red when representing a "hazardous" state of health. Of course, any colorimetric identification mechanism may be used, as would be understood by those skilled in the art.

According to another aspect of the present invention, the presentation of current health conditions may include a set of possible conditions, with each possible condition indicating a score of likelihood. For example, a particular condition may involve 10 symptoms, of which a user may identify 7 as being present, and 3 that are not. Thus, the possible condition may be presented as an open bar length, with 70% of the bar filled in with a color. In other embodiments, multiple colors may be used to identify present symptoms and absent symptoms associated with the possible condition. In alternative embodiments, symptoms for a particular health condition may be weighted differently, such as by "primary" and "secondary" symptoms, where primary symptoms are given a higher weight to the possible condition presented. Of course, any sort of weighting and/or tiering mechanism may be used as would be understood by those skilled in the art.

In another aspect of the present invention, a user may select a presented condition, which may open a new web page that displays information about the condition, including treatments and medications, and further may include any advertisements associated with the identified condition.
Advertisements, as explained previously, may be presented in any manner via the web portal GUI, as would be understood by those skilled in the art. For example, ads may refresh at a designated time period, such as every 30 seconds, and ads may be placed within specified web page regions, such as in a defined field or a banner, or they may overlay web page formatting, so as to move across the various fields of the web page. Further, ads may be static or animated, and they may optionally include any audio, or video flash feature.

Additionally, the presentation of these ads may change according to the real-time input of information from an active user, such as client 110 of Figure 1, such that the ads remain targeted to the user according to the most current information entered by that user, and that user's historical information. For example, if the user is searching for information about heart disease, the search query may trigger the display of established advertisements for products related to heart disease. Likewise, when that same user discontinues the search, and then enters a chat room within a social network, as described herein, advertisements that are specific for a designated topic of the chat room may be displayed, or advertisements specific to the entered text of the users (such as via use of keywords) within the chat room, may be displayed. In yet another example, a user who has previously entered personal historical health information, such as having diabetes, the system may trigger the presentation of advertisements targeted to people with diabetes at any given point in time during that user's activity while logged into the system.

It should be appreciated that the present invention may function as an ideal differential diagnosis tool for doctors, whereby a given condition or circumstance is examined in terms of underlying causal factors and concurrent phenomena, according to several theoretical paradigms and compared to known categories of health. Thus, the
present invention may provide users with a better understanding of
the medical or health related condition or circumstance in question,
while potentially eliminating concern of any imminently life-
threatening conditions. It may also assist in the planning of
treatment or intervention for a particular condition or circumstance,
and may enable a user to find ways to integrate a particular
condition or circumstance into their life.

It should be appreciated that the present invention is not designed
to replace the proper diagnosis of a licensed medical practitioner.
To ensure that the system as described herein is not providing any
such diagnosis, each page of the web portal may include a
disclaimer to inform any client, doctor, or other user that the system
is not providing an official diagnosis. Alternatively, disclaimers may
be used within pop-up windows or selectable links embedded within
any particular page of the web portals. Further, use of any such
disclaimer may include a confirmation button, such as a selectable
"OK" that a user may click to affirm agreement with the disclaimer.

Those of ordinary skill in the art will recognize that many
modifications and variations of the present invention may be
implemented without departing from the spirit or scope of the
invention. Thus, it is intended that the present invention cover the
modification and variations of this invention provided they come
within the scope of the appended claims and their equivalents.
Claims

1. A medical data acquisition and analysis system, comprising:
 a first computing device communicatively associated with a database for
 storing data indicative of content, and comprising first computing code for
 generating enhanced feedback content;
 at least one secondary computing device comprising at least one
 interactive connection to the first computing device through at least one web portal
 interface operative across a communications network;
 wherein a user inputs a plurality of health related information items into the
 web portal interface of the at least one secondary computing device; and
 wherein the plurality of health related information items are received by the
 first computing device and stored in the database, and are further processed with
 at least one secondary input by the first computing code to generate the enhanced
 feedback content, and wherein the first computing device delivers the enhanced
 feedback content to the user via the at least one secondary computing device.

2. The system of claim 1, wherein the at least one secondary input is received
 from a collaborator.

3. The system of claim 1, wherein the first computing code is logic-based.

4. The system of claim 1, wherein the first computing code comprises vector
 math.

5. The system of claim 1, wherein the enhanced feedback content includes an
 advertisement.

6. The system of claim 5, wherein the advertisement is selected according to
 at least a portion of the received ones of health related information items.

7. The system of claim 1, wherein the at least one web portal further
 comprises a social networking platform.
8. The system of claim 1, wherein the at least one web portal further comprises a searching function.

9. The system of claim 8, wherein the search function searches for health related content from at least one of the group consisting of a symptom, an illness, a condition, a treatment, a medication, an anatomical or physiological system, and a risk factor.

10. The system of claim 9, wherein results from the searching function include a matching.

11. The system of claim 1, wherein the at least one web portal includes a patient specific web portal and a doctor specific web portal.

12. The system of claim 11, wherein the enhanced feedback content for each user of the patient specific web portal and the doctor specific web portal includes at least a portion of the plurality of health related information items received from the other web portal.

13. A method of generating enhanced feedback content, comprising:
 receiving a plurality of inputs indicative of health related information items from a user operating a first networked computing device;
 receiving at least one secondary input from a second networked computing device;
 processing the plurality of inputs indicative of health related information items and the at least one secondary input according to a software engine resident on a central processor communicatively connected to the first and second networked computing devices to generate an enhanced feedback content; and
 delivering the enhanced feedback content to the user operating the first networked computing device.
14. The method of claim 13, wherein the at least one secondary input is received from a collaborator.

15. The method of claim 13, wherein the software engine is logic-based.

16. The method of claim 13, wherein the software engine is vector math based.

17. The method of claim 13, wherein the enhanced feedback content includes an advertisement.

18. The method of claim 17, wherein the advertisement is selected according to at least a portion of the received health related information items.

19. The method of claim 13, wherein the enhanced feedback content includes search results for health related content from at least one of the group consisting of a symptom, an illness, a condition, a treatment, a medication, an anatomical or physiological system, and a risk factor.

20. The method of claim 13, wherein the enhanced feedback content includes a matching.
Figure 1
Figure 5a

Figure 5b
Figure 6a

Figure 6b
Figure 6c

Quantiles

- 100.0% maximum: 0
- 99.5%:
- 97.5%:
- 90.0%:
- 75.0% quartile:
- 50.0% median:
- 25.0% quartile:
- 10.0%:
- 2.5%:
- 0.5%:
- 0.0% minimum: 0

Moments

- Mean: 0
- Std Dev: 0
- Std Err Mean: 0
- upper 95% Mean: 0
- lower 95% Mean: 0
- N: 6

Figure 6d

Quantiles

- 100.0% maximum: 0
- 99.5%:
- 97.5%:
- 90.0%:
- 75.0% quartile:
- 50.0% median:
- 25.0% quartile:
- 10.0%:
- 2.5%:
- 0.5%:
- 0.0% minimum: 0

Moments

- Mean: 0
- Std Dev: 0
- Std Err Mean: 0
- upper 95% Mean: 0
- lower 95% Mean: 0
- N: 21
The temporal nature of the data is revealed (i.e. the variables are varying at the same time and a pattern becomes apparent)

Figure 8b

Ave difference between time A and B

Summary: It quickly becomes apparent that changes in lead 1, p-trig, and CO2 (primary difference) are driving the difference between the time A and B groupings.

Figure 8c
It's an intuitive and interactive process:

1. Build your list by entering symptoms using our advanced search and match system.
2. Watch the illness list sort and match in real time as you enter your data.
3. Refine the matches by selecting the Risk Factors that apply to you and are associated with the top illness matches; watch the illness matches re-sort in real time with any of your changes.
4. Click on an illness to learn more about treatment options.
5. Save and print your results to bring to your doctor’s appointment.

Patent-Pending Diagnosis Tool

Our diagnosis tool allows the user to enter symptoms, symptom presentations, and risk factors on a totally unique and interactive way. There is nothing else out there like it. You define the path of data collection and arrive at a ranked list of potential illnesses and treatments.

This tool intended for educational purposes only and is best used prior to your doctor's appointment, so you can go in more informed and better educated.

Doctors Share, Patients Learn.

Here's how it works. After creating an authorized account with us at www.RealDiagnosis.com MD's & DO's can add new medical information to our database which is then accessible as part of the Diagnosis Tool and Treatment Information available to the public at RealDiagnosis.com.

Patients can access this medical data (symptoms, risk factors, and treatments) here at this site prior to an appointment with their physician so they go into their appointment more educated.
FIGURE 10
FIGURE 11
FIGURE 12
Contribute to the ever growing body of medical knowledge by:
adding and associating symptoms, presentations, and risk factors
with illnesses. Tag and reference the level of medical acceptance
of the data entered:
1. accepted medical textbook knowledge
2. peer-reviewed article
3. other publications/evidence-based or
4. theory

How it Works
MD's and DO's go through a verification process
to validate their credentials and set-up a secure
account. They can then access the medical
casebase and it desired, submit new data.
Click here to see a flow chart of the sign-up
process. All memberships and tools are free of
charge.

Medical Database
Our Medical Content Database is the first open-
source medical decision support tool of its kind.
We allow verified MD and DO users to search and
add illnesses, Symptoms, Symptom Presentations,
Risk Factors and Differential Diagnoses data and
tag it by the level of medical acceptance. It is all
done in an very intuitive and interactive way. Click
here to see screen captures.

What's Unique?
In addition to our interactive cross-referencing
system, we allow verified MD/DO users to enter
new data which is categorized into the following
different levels:
1. Accepted medical textbook knowledge
2. Peer-reviewed publication
3. Other publications/evidence-based

Instead of live other internet sites, you can access
to new and cutting-edge medical information,
but now you can weigh the data
visibly according to its tags and relevancy.
The data in the DiffyDX.com database is made
available to the public at www.RealDiagnosis.com
via our patent pending Real Diagnoses tool.

FIGURE 13
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>prakash</td>
</tr>
<tr>
<td>Approval Status</td>
<td>☑</td>
</tr>
<tr>
<td>Email</td>
<td>prakash.admane@spadeworx.com</td>
</tr>
<tr>
<td>Password</td>
<td>****** (Change Password)</td>
</tr>
<tr>
<td>Medical School</td>
<td></td>
</tr>
<tr>
<td>First Name</td>
<td>prakash</td>
</tr>
<tr>
<td>Last Name</td>
<td>admane</td>
</tr>
<tr>
<td>License Type</td>
<td>MD</td>
</tr>
<tr>
<td>Specialty</td>
<td>Select</td>
</tr>
<tr>
<td>Office Address</td>
<td>OfficeAddress</td>
</tr>
<tr>
<td>Country</td>
<td>United States</td>
</tr>
<tr>
<td>State</td>
<td>0</td>
</tr>
<tr>
<td>City</td>
<td>CityName</td>
</tr>
<tr>
<td>Zip</td>
<td>45000</td>
</tr>
<tr>
<td>Practice Website Address</td>
<td></td>
</tr>
<tr>
<td>Practice Phone</td>
<td>345345435435</td>
</tr>
<tr>
<td>Practice Fax</td>
<td></td>
</tr>
<tr>
<td>Medical License</td>
<td></td>
</tr>
<tr>
<td>State of License</td>
<td></td>
</tr>
<tr>
<td>Graduation</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 14
Search For Illnesses

Illness

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal Cryptorchidism</td>
<td>Located inside the internal ring</td>
<td>Symptoms</td>
</tr>
<tr>
<td>Abnormal Pap and Cervical Dysplasia</td>
<td>Cervical dysplasia: Precancerous epithelial changes in the transformation zone of the uterine cervix often associated with human papilloma virus (HPV) infections: Mild dysplasia: Cellular changes are limited to the lower 1/3 of the squamos epithilium. Moderate dysplasia: Cellular changes are limited to the lower 2/3 of the squamos epithilium. Severe dysplasia: Cellular changes involve the full thickness of the squamos epithilium.</td>
<td>Symptoms</td>
</tr>
<tr>
<td>Abortion, Spontaneous</td>
<td>Abortion: Separation of products of conception from the uterus prior to the potential for fetal survival outside the uterus. Spontaneous abortion, Expulsion or extraction of an embryo or fetus weighing 2500 g from the uterus.</td>
<td>Symptoms</td>
</tr>
<tr>
<td>Abruptio Placentae</td>
<td>Premature separation of otherwise normally implanted placenta: Grades: Grade 1: Minimal or no bleeding, detected as retroplacental clot after delivery of viable fetus. Mild uterine irritability [40% of cases]. Grade 2: Viable fetus with bleeding and tender,</td>
<td>Symptoms</td>
</tr>
</tbody>
</table>

FIGURE 15
Search For Systems

Systems

Name:

- Add New System

<table>
<thead>
<tr>
<th>AprvSystems</th>
<th>Description</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>all body systems</td>
<td></td>
<td>View Illness</td>
</tr>
<tr>
<td>auditory</td>
<td></td>
<td>View Illness</td>
</tr>
<tr>
<td>Body composition strength</td>
<td></td>
<td>View Illness</td>
</tr>
<tr>
<td>Bone</td>
<td></td>
<td>View Illness</td>
</tr>
<tr>
<td>Bone Marrow</td>
<td></td>
<td>View Illness</td>
</tr>
<tr>
<td>Bone/Joint</td>
<td></td>
<td>View Illness</td>
</tr>
<tr>
<td>Cardiac</td>
<td></td>
<td>View Illness</td>
</tr>
<tr>
<td>Cardiovascula</td>
<td></td>
<td>View Illness</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td></td>
<td>View Illness</td>
</tr>
<tr>
<td>Cardiovascular/Pulmonary</td>
<td></td>
<td>View Illness</td>
</tr>
</tbody>
</table>
Search For Risk Factors

Risk Factor
Name:

Add New Risk Factor

Found Existing Risk Factors: 3843

<table>
<thead>
<tr>
<th>AprvRisk Factor</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 obese parent</td>
<td>View Illness</td>
</tr>
<tr>
<td>1st birth >30 years</td>
<td>View Illness</td>
</tr>
<tr>
<td>1st born boys</td>
<td>View Illness</td>
</tr>
<tr>
<td>1st degree relative family history</td>
<td>View Illness</td>
</tr>
<tr>
<td>1st degree relative with BPH</td>
<td>View Illness</td>
</tr>
<tr>
<td>1st degree relative with TYPE 2 diabetes</td>
<td>View Illness</td>
</tr>
<tr>
<td>1st degree relative with TYPE 1 diabetes</td>
<td>View Illness</td>
</tr>
<tr>
<td>1st degree relatives</td>
<td>View Illness</td>
</tr>
<tr>
<td>1st full-term pregnancy after age 30</td>
<td>View Illness</td>
</tr>
<tr>
<td>1st-born child</td>
<td>View Illness</td>
</tr>
</tbody>
</table>
FIGURE 19
INTERNATIONAL SEARCH REPORT

International application No

PCT/US 10/24045

A CLASSIFICATION OF SUBJECT MATTER

IPC(8) - G06F 7/00 (2010.01)

USPC - 707/705

According to International Patent Classification (IPC) or to both national classification and IPC

B FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

USPC 707/705

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPC 707/705,767-771 | 705/1 1.2-3 | 709/203,217,219

C DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2007/0094044 A1 (Stone et al.) 26 April 2007 (26 04 2007) (para [Abstract], [0016], [0018]-[0021], [0026], [0032]-[0035], [0050]-[0051], [0053]-[0058], [0062], [0157], [0160], [0165], [0167], [0173]-[0174], [0180]-[0182], [0184], [0187]-[0188])</td>
<td>1-20</td>
</tr>
<tr>
<td>Y</td>
<td>US 2006/0247968 A1 (Kadry) 02 November 2006 (26 11 2006) (Fig 3, para [0019]-[0020], [0037], [0087], [0090], [0092]-[0093], [0099]-[0102], [0112], [0129], [0151]-[0152], [0154], [0156]-[0157])</td>
<td>1-20</td>
</tr>
<tr>
<td>Y</td>
<td>US 2007/0273583 A1 (Rosenberg) 29 November 2007 (29 11 2007) (para [0073]-[0075], [0085])</td>
<td>4, 16</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search

30 April 2010 (30 04 2010)

Date of mailing of the international search report

26 MAY 2010

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents

P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No 571-273-3201

Authorized officer

Lee W. Young

PCT Helpdesk 571 272 4350

PCT OSP 571 272 7774