A headset (1) for voice communication comprising a housing (2) and a pickup unit (8) rotatably connected to the housing via a joint (7). The pickup unit (8) comprises at least a first microphone (5), which is electrically connected via at least a first electrical connection to an electronic circuit for processing signals from the first microphone (5). The electronic circuit is arranged in the housing (2). The first electrical connection comprises a first sliding contact (20, 70), which comprises a housing side and a microphone side. The two sides are mutually rotatable about a rotational axis (26). One of the housing side or the microphone side of the sliding contact comprises a first annular ring (50) arranged so that the ring (50) is positioned around the rotational axis (26). The other of the housing side or the microphone side comprises a number of contact members (30) arranged in a radial distance from the rotational axis (26) so as to provide an electrical connection between the first annular ring (50) and the contact members (30).
A headset with a 360 degrees rotatable microphone boom

[0001] The present invention relates to a headset for voice communication comprising a housing and a pickup unit rotatably connected to the housing via a joint.

Background Art

[0002] It is well known to provide a headset for voice communication with a microphone on a microphone boom that is rotatably mounted to the remaining parts of the headset via a joint. To establish an electrical connection to the microphone from the electrical circuit in the headset, a set of wires are commonly run through the joint. In order to protect these wires from damage due to twisting, arising from rotation of the joint, a mechanical stop is typically included to restrict rotation. Such a mechanical stop then acts to limit the travel of the joint to less than a full revolution or to less than 360 degrees. However, failure of the mechanical stop is a common cause for malfunction of headsets, as such stops may simply break off. Furthermore, the mechanical stop makes it more cumbersome for a headset user to change the microphone position, e.g. when switching from one ear to the other.

[0003] It is known to provide a headset with a sliding contact comprising a jack and a jack socket, e.g. from US 3445597 (P M) and EP 1478207 A (HERMESMEYER). However, this solution is space consuming and difficult to integrate with an electronic circuit in the headset housing. Furthermore, the solution is detrimental to the audio quality of the signal transmitted over the sliding contact.

Disclosure of Invention

[0004] It is an object of the invention to obtain a new headset, which overcomes or ameliorates at least one of the disadvantages of the prior art or which provides a useful alternative.
According to a first aspect of the invention, the headset for voice communication comprises a housing and a pickup unit rotatably connected to the housing via a joint. The pickup unit comprises at least a first microphone, which is electrically connected via at least a first electric connection to an electronic circuit for processing signals from the first microphone. The electronic circuit is arranged in the housing. The first electric connection comprises a first sliding contact, which comprises a housing side and a microphone side. The two sides are mutually rotatable about a rotational axis. One of the housing side or the microphone side of the sliding contact comprises a first annular ring arranged so that the ring is positioned around the rotational axis. The other of the housing side or the microphone side comprises a number of contact members arranged in a radial distance from the rotational axis so as to provide an electrical connection between the first annular ring and the contact members. Providing a sliding electrical connection between the headset housing and the pickup unit eliminates the need for running wires for connection of the microphone to the electronic circuit through the joint. According to the objective of the invention, this overcomes the problems with such wires, by achieving a headset that improves user ergonomics, while maintaining a good sound quality of the audio signal transmitted from the microphone to the electrical circuit. Particularly, it eliminates the need for introducing a rotation stop in the joint to prevent wires from becoming twisted. Therefore, the resulting joint may be rotated 360 degrees, or even complete multiple rotations. As known in the art, the headset may comprise a secondary housing which comprises a second loudspeaker. In this case, the housing and the secondary housing may be connected by a headband, a neckband, or other suitable means of connection. The annular ring, of course, needs to be made of an electrically conductive material.

Processing of signals may, e.g., be any one or more of a digital signal processing, an analogue signal processing, active filtering, or passive filtering.
According to a first embodiment, the radial distance is substantially equal to a radius of the annular ring so that the contact members contact a ring face of the annular ring. Alternatively, the radial distance may be slightly larger than the radius so that the contact members contact the annular ring on an outer periphery thereof.

In another embodiment, the annular ring is arranged in a first plane, and the contact members are arranged in a second plane adjacent to or in a distance from the first plane.

In a particular embodiment, both the first plane and the second plane are arranged substantially normal to the rotational axis.

In a further embodiment, the contact members are adapted to extend from the second plane in direction towards the first plane.

According to another embodiment of the invention, the pickup unit comprises or consists of a microphone boom. However, the pickup unit may take many forms and may comprise additional components besides e.g. a microphone.

According to a further embodiment, the microphone side or the housing side of the sliding contact further comprises at least a second annular ring, and the other of the housing side or the microphone side comprises a number of second contact members arranged in a radial distance from the rotational axis so as to provide a second electrical connection between the second annular ring and the second contact members. Thus, the microphone, first, and second electrical connection form a circuit that is connected to the electronic circuit in the housing.

In an embodiment, the first annular ring and the second annular ring are arranged concentrically around the rotational axis. In this configuration, a particularly efficient geometry is realized, since the annular rings may be
minimized in size. If the sliding contact is provided with even more annular rings, these may naturally also be arranged concentrically around the rotational axis.

[0014] In another embodiment, two or more contact members are electrically connected in parallel for providing parallel electrical connections between the first annular ring and contact members. If only one contact member is used per connection, variations in resistance will lead to introduction of noise in the audio signal transmitted over the connection. This problem may be resolved by using two or more contact members, connected in parallel. Likewise, any further annular rings that the sliding contact may have, may also have two or more contact members corresponding to each additional annular ring for providing parallel electrical connections between the annular rings and the contact members.

[0015] In a preferred embodiment, the contact members are arranged in such a way that under rotation of the sliding contact, at least a first and a second contact member, which are connected in parallel, extend from the second plane towards the first plane at oblique angles. The first contact member extends in the direction of rotation, and the second contact member extends opposite to the direction of rotation. By arranging the two contact members to extend in opposite directions around the rotational axis, one contact member is always pulled along the annular ring while another is always pushed, regardless of the direction of rotation. This helps to improve the quality of the electrical connection, since a contact member that is pushed along the annular ring may skip, thus breaking the connection, while a contact member that is pulled along is better adapted to maintain connection.

[0016] In an additional embodiment of the invention, either one or more of the first annular ring or the contact members comprise gold surfaces, at least in a region where the first annular ring and the contact members come in contact. Changes, e.g. oxidization, in the surfaces of the first annular ring
and/or the contact members where they may come in contact have detrimental effects on the sound quality of the audio signal transmitted over the connection, since such changes may cause variations in the resistance of the connection, as the joint is rotated. By providing gold surfaces on the first annular ring and/or the contact members, at least in regions where they may come in contact, minimizes the influence from such changes in the surface, resulting in smaller signal variations and thus a better sound quality. Such gold surfaces may be achieved, e.g. by plating a metallic surface with gold. Alternatively, they may be made entirely in gold. Analogously, if the sliding contact comprises more than one annular ring, such additional rings and/or corresponding contact members may also comprise gold surfaces.

[0017] According to an embodiment, the contact members are resiliently biased or spring-loaded towards the first annular ring. Thus, the contact members may yield as the joint is rotated which minimizes wear of the annular ring and the contact members. In case the sliding contact comprises more annular rings than the first annular ring, the corresponding contact members may also be made resiliently biased or spring-loaded towards the additional annular rings.

[0018] According to a further embodiment, the contact members are arranged on a contact wheel, which is mechanically engaged with either the pickup unit or the housing. In this way, the assembly of the headset is simplified, since the electrical connection from the microphone or the electronic circuit may simply be soldered to the contact members. After soldering, the contact wheel may be fixed to the pickup unit or the housing. As a further advantage of this embodiment of the invention, multiple models of headsets may be adapted to accept one shape of contact wheel, leading to a rationalization of production. If the sliding contact is arranged with more than one annular ring, the additional contact members that are to correspond with such additional rings may also be arranged on the contact wheel.
In one embodiment, the contact wheel is formed in a polymer material. Polymer materials may easily be formed and are thus well suited for inexpensive production of parts in large volume, leading to a lower overall cost of manufacturing.

In a particular embodiment, the contact wheel may be unitarily formed.

In an additional embodiment, the contact members are moulded into the contact wheel. Preassembly of the contact wheel and the contact members makes for a particularly efficient assembly of the headset, since fewer parts are needed for this assembly step. The moulding of the contact members into the contact wheel is a task suitable for a large degree of automation, thus lowering production cost.

In another embodiment, the first annular ring is provided on a printed circuit board (PCB). By forming the first annular ring directly on a PCB, a particularly compact sliding contact is realized. Furthermore, assembly of the headset is simplified, since fewer parts need to be mounted.

In a particular embodiment of the invention, the first annular ring is provided on a printed circuit board which also carries a substantial part of the components that make up the electronic circuit for processing signals from the first microphone. According to this embodiment, the sliding contact may be integrated directly with the electronic circuit, thus further reducing the number of parts that need to be mounted during assembly. Naturally, any additional annular rings comprised in the sliding contact may also be provided on a PCB.

In a further embodiment, the pickup unit comprises at least a second microphone, and wherein the housing side or the microphone side of the sliding contact comprises at least one additional annular ring, and wherein the other of the microphone side or the housing side of the sliding contact comprises a number of additional contact members so as to provide an
electrical connection between the additional annular ring and the addi-
tional contact members. In this way, an additional microphone in the
pickup unit, e.g. as part of a system for providing a directionally sensitive
microphone system may be achieved, while maintaining full rotational
freedom between the pickup unit and the housing. Naturally, even more
microphones or other components requiring electrical connection may be
added to the pickup unit and be electrically connected to an electronic cir-
cuit in the housing by additional connections in the sliding contact.

[0025] In another embodiment, the annular ring is formed in segments and com-
prises a number of isolated segments, the isolated segments being electri-
cally isolated from a remainder of the segmented annular ring, the number
of isolated segments corresponding to the number of contact members,
wherein the isolated segments are arranged to communicate with the con-
tact members when the sliding contact is in a special position. In this way,
the sliding contact is adapted to enable a special function, such as a mut-
ing function, when the contact is in the special position. For contacts com-
prising a second or any additional annular rings, such annular rings may of
course also be formed in segments and comprise isolated segments. Ad-
vantageously, the sliding contact should be adapted to disconnect both
connections to the microphone, in order to prevent noise from being
picked up by the circuit.

[0026] In another embodiment, the isolated segments are electrically connected
to a special circuit adapted for providing a special function. In this way, the
sliding contact acts as a switch between the electronic circuit for normal
operation, and the special circuit for the special function. For example, the
special function may be to turn the headset off, to set a flag, e.g. "away" or
"do-not-disturb", in a softphone client to which the headset is connected, to
change the state of a phone to which the headset is connected to off-hook,
etc. Note that the special circuit may be a sub-circuit of the electronic cir-
cuit of the headset housing, or may otherwise be connected thereto. Here,
the isolated segments are merely isolated from a remainder of the corre-
sponding annular ring in the sense that they are not directly connected via
the annular ring, but may, e.g. be connected via a the special circuit. Natu¬
rally, any isolated segments corresponding to annular rings besides the
first annular ring may also be connected to the special circuit or to addi¬
tional special circuits.

Brief Description of Drawings
[0027] The invention is explained in detail below with reference to the drawing, in
which

Fig. 1 shows an overview of a headset according to the invention,

Fig. 2 shows an enlarged exploded view of a joint of a headset according
to the invention,

Fig. 3 shows an embodiment of a sliding contact according to the inven¬
tion,

Fig. 4 shows an embodiment of a contact wheel according to the invention,

Fig. 5 shows an embodiment of one side of a sliding contact according to
the invention, comprising two annular rings,

Fig. 6 shows a contact wheel engaged with two annular rings according to
the invention, and

Fig. 7 shows a contact wheel engaged with two annular rings according to
another embodiment of the invention.

Best mode for carrying out the invention
[0028] A headset 1 for voice communication is illustrated in Fig. 1. The headset 1
comprises an earphone housing 2 and, optionally, a second earphone
housing 3, which are interconnected and held in place on the head of a
user by a head band 4. A microphone 5 is mounted on a pickup unit in
form of a microphone boom 6, which is rotatably connected to the ear-
phone housing 2 via joint 7.

[0029] An exploded view of the housing 2 comprising a rotatable joint 7 is illus-
trated in Fig. 2. As can be seen, the rotatable joint comprises a sliding con-
tact 20. The sliding contact 20 comprises a contact wheel 21 on a micro-
phone side and a printed circuit board 22 (PCB) on a housing side of the
sliding contact between the two housing covers 24, 25. The microphone
boom 6 and the housing are mutually rotatable about a rotational axis 26
indicated with a dashed line in the figure. In one embodiment, the PCB 22
further comprises most of the components of the electronic circuit con-
tained in the headset 1, or, in other words, the PCB 22 is the main board
of the headset 1. Alternatively, one or more additional printed circuit
boards may be comprised in the headset 1.

[0030] Fig. 3 depicts a schematic and exploded view of the sliding contact, show-
ing the contact wheel 21 and PCB 22 in detail. The contact wheel 21 is
here illustrated with two contact members 30 arranged in different radial
distances from the rotational axis 26 corresponding to two different annular
rings 31 on the PCB 22. However, more than one contact member 30 may
be arranged to correspond with the same annular ring 31, to provide multi-
ple, parallel electrical connections. Likewise, any number of annular rings
31 may be arranged on the PCB 22, such as one, two, three, four, or even
more annular rings depending on the number of electrical connections re-
quired through the joint 7. To complete the electronic connection between
the contact members 30 and the microphone 5, the contact wheel 21 fur-
ther comprises a number of connection flanges 32, which are connected
electrically to the contact members 30. The microphone 5 is then con-
nected by wire or other means to the connection flanges 32, e.g. by a sol-
dered, welded or force-fitted connection. In the embodiment shown in Fig.
2, the contact wheel 21, which comprises the contact members 30, is fix-
ated to the microphone boom 6 on the microphone side of the sliding con-
tact. The PCB 22, which comprises one or more annular rings 31, is fix-
ated within the housing 2 on the housing side of the sliding contact. However, the opposite configuration with contact members fixated to the housing and an arrangement of annular rings fixated to the microphone boom may also be envisioned.

[0031] Fig. 4 shows an embodiment of a contact wheel 21 comprising two groups of contact members 30, each mounted on a spoke 40 of the wheel. According to this embodiment, each group comprises two contact members 30, extending in opposite directions from the spoke 40 along the direction of rotation. In this way, one contact member of each group is always pulled along the annular ring and one is always pushed, regardless of the rotation direction. A contact member 30 being pushed may skip over the surface of the annular ring 50, thus breaking the electrical connection. Therefore, it is advantageous to ensure that one contact member 30 is always pulled, to improve the quality of the electrical connection between the two sides of the sliding contact 7. Preferably, the connection flange 32 is unitarily formed with its one or more corresponding contact members 30, e.g. by punching, stamping, or cut-out of a plate of suitable material. The contact members 30 may be made to be resilient in the direction along the rotational axis 26. Alternatively, contact members 30 may be mounted to the contact wheel 21 by spring-loaded mounting means to allow for some travel of the contact member tip in the axial direction. The contact wheel 21 may e.g. be unitarily formed in a polymer material by common processes, such as casting or moulding. Furthermore, contact members 30 and connection flanges 32 may be cast into the contact wheel 21 during production, thus yielding a particularly simple assembly of the part.

[0032] Fig. 5 shows two annular rings 50, 51 arranged on a PCB 22. Each of the two annular rings 50, 51 are connected to the electronic circuit in the headset housing 2. In one embodiment, the connection between an annular ring and the circuit is formed directly as a PCB track, possibly on the opposite side of a dual-side PCB. Alternatively, a connection may be formed by a wire. In the embodiment shown in Fig. 5, the annular rings 50,
describe a full circle around the rotational axis 26. In an alternative embodiment as described further below, one or more annular rings are arranged to have regions that allow the electrical connection across the sliding contact to be either short-circuited or broken when the pickup unit is oriented in specific directions. In this way, e.g. a mechanical muting function may be built into the headset.

Fig. 6 shows the sliding contact 20 as seen in the axial direction. The contact comprises a contact wheel 21 engaged with two annular rings 50. To achieve a noise-free transmission of the audio signal through the contact, both the contact members 30 and the annular rings 50 are preferably made with gold surfaces, at least where they become engaged. For example, the contact members and/or annular rings may be made, e.g., of copper which is subsequently gold-plated. Alternatively, the contact members and/or annular rings may be made in solid gold. The contact members 30 are fixed to the spokes 40 of the contact wheel 21.

Fig. 7 shows an alternative sliding contact 70, corresponding to the embodiment shown in Fig. 6. Therefore, only differences between the two embodiments are discussed here. The sliding contact 70 is adapted to provide a special function when oriented in a special position. The annular ring 72 and second annular ring 74 are formed in segments, each ring 72, 74 further having a number of isolated segments 76. Here, the rings are shown to each have two isolated segments, corresponding to the number of contact members 30 in a group. The two major segments of the segmented annular ring 72 are preferably connected (not shown) to ensure a parallel connection between the two sides of the sliding contact, except when in the special position. The same applies to the second segmented annular ring 74. Furthermore, the isolated segments 76 are aligned so that all contact members 30 of the sliding contact 70 may simultaneously touch their corresponding isolated segment 76, whereby neither of the annular rings 72, 74 are in contact with the contact members 30. Note that the isolated segments 76 are merely isolated from their corresponding annular
ring 72, 76, but may otherwise be connected to an electronic circuit. In this way, the sliding contact 70 may provide special functions when the sliding contact 70 is aligned to the isolated segments 76. For example, a special function may be to mute the microphone, to power off the headset, to set e.g. a "do not disturb" or "away" flag in a softphone client to which the headset is connected, etc. It is evident to the person skilled in the art that a multitude of special positions may be provided, to enable one or more special functions in said positions.

[0035] The invention has been described with reference to preferred embodiments. Many modifications are conceivable without thereby deviating from the scope of the invention. Modifications and variation obvious to those skilled in the art are considered to fall within the scope of the present invention. For example, the contact members do not need to be arranged on a separate contact wheel, but may instead be arranged directly on the housing. Likewise, the annular rings do not need to be arranged on a printed circuit board, but may be arranged on any other suitable carrying structure, such as an integrated part of the housing. In addition, the headset may take many forms, e.g. by having only one earphone, having a neckband or any other suitable means of fastening the device to the user, besides the headband described here. Also, the microphone side of the sliding connection may comprise one annular ring and a set of contact members, which engage with contact members and an annular ring, respectively, on the housing side of the sliding connection.

Reference numeral list:

[0036] 1 headset
2 earphone housing
3 second earphone housing
4 head band
5 microphone
6 microphone boom
7 rotatable joint
8 pickup unit
20 sliding contact
21 contact wheel
22 printed circuit board (PCB)
24 first housing cover
25 second housing cover
26 rotational axis
30 contact member
31 annular ring
32 connection flange
40 spoke
50 first annular ring
51 second annular ring
70 sliding contact
72 segmented annular ring
74 second segmented annular ring
76 isolated segment
Claims

1. A headset (1) for voice communication comprising a housing (2) and a pickup unit (8) rotatably connected to the housing via a joint (7),
 - the pickup unit (8) comprising at least a first microphone (5),
 - the first microphone (5) being electrically connected via at least a first electrical connection to an electronic circuit for processing signals from the first microphone (5), the electronic circuit being arranged in the housing (2), wherein
 - the first electrical connection comprises a first sliding contact (20, 70) comprising a housing side and a microphone side, which are mutually rotatable about a rotational axis (26), and wherein
 - the housing side or the microphone side of the sliding contact (20, 70) comprises a first annular ring (50) arranged so that the ring (50) is positioned around the rotational axis (26), and wherein the other of the housing side or the microphone side comprises a number of contact members (30) arranged in a radial distance from the rotational axis (26) so as to provide an electrical connection between the first annular ring (50) and the contact members (30).

2. Headset (1) according to claim 1, wherein the annular ring (50) is arranged in a first plane, and the contact members (30) are arranged in a second plane adjacent to or in a distance from the first plane.

3. Headset (1) according to claim 2, wherein both the first plane and the second plane are arranged substantially normal to the rotational axis (26).

4. Headset (1) according to claim 2 or 3, wherein the contact members (30) are adapted to extend from the second plane in direction towards the first plane.

5. Headset (1) according to any of the preceding claims, wherein the pickup unit (8) comprises or consists of a microphone boom (6).

6. Headset (1) according to any of the preceding claims, wherein the microphone side or the housing side of the sliding contact (20, 70) further comprises at least a second annular ring (51), and the other of the housing side or the mi-
crophone side comprises a number of second contact members (30) arranged in a second radial distance from the rotational axis (26) so as to provide a second electrical connection between the second annular ring (51) and the second contact members (30).

7. Headset (1) according to claim 6, wherein the first annular ring (50) and the second annular ring (51) are arranged concentrically around the rotational axis (26).

8. Headset (1) according to any of the preceding claims, wherein two or more contact members (30) are electrically connected in parallel for providing parallel electrical connections between the first annular ring (50) and contact members (30).

9. Headset (1) according to claims 4 and 8, wherein under rotation of the sliding contact, at least a first and a second contact member (30) connected in parallel are arranged to extend from the second plane towards the first plane at oblique angles, such that the first contact member (30) extends in the direction of rotation, and that the second contact member (30) extends opposite to the direction of rotation.

10. Headset (1) according to any of the preceding claims, wherein either one or more of the first annular ring (50) or the contact members (30) comprise gold surfaces, at least in a region where the first annular ring (50) and the contact members (30) come in contact.

11. Headset (1) according to any of the preceding claims, wherein the contact members (30) are resiliently biased or spring-loaded towards the first annular ring (50).

12. Headset (1) according to any of the preceding claims, wherein the contact members (30) are arranged on a contact wheel (21), which is mechanically
engaged with either the pickup unit (8) or the housing (2).

13. Headset (1) according to claim 12, wherein the contact wheel (21) is formed in a polymer material.

14. Headset (1) according to claim 12 or 13, wherein the contact members (30) are moulded into the contact wheel (21).

15. Headset (1) according to any of the preceding claims, wherein the first annular ring (50) is provided on a printed circuit board (PCB) (22).

16. Headset (1) according to any of the preceding claims, wherein the pickup unit (8) comprises at least a second microphone, and wherein the housing side or the microphone side of the sliding contact (20, 70) comprises at least one additional annular ring (50), and wherein the other of the microphone side or the housing side of the sliding contact (20, 70) comprises a number of additional contact members (30) so as to provide an electrical connection between the additional annular ring (50) and the additional contact members (30).

17. Headset (1) according to any of the preceding claims, wherein the annular ring (72) is formed in segments and comprises a number of isolated segments (76), the isolated segments (76) being electrically isolated from a remainder of the segmented annular ring (72), the number of isolated segments (76) corresponding to the number of contact members (30), wherein the isolated segments (76) are arranged to communicate with the contact members (30) when the sliding contact (70) is in a special position.

18. Headset (1) according to claim 17, wherein the isolated segments (76) are electrically connected to a special circuit adapted for providing a special function.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. H04M1/05 H04R1/10
ADD. H01R13/03 H01R13/24 H01R13/405 H01R35/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. RELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H04M H04R

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and where practical, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No

Y US 3 445 597 A (WALTERS WARREN ROGER)
20 May 1969 (1969-05-20)
column 1, line 16 column 3, line 64;
figures 1-4

Y WO 00/07176 A (RUPPERT JONATHAN P [US];
HINTZ THOMAS M [US]; HINTZ KATHLEEN M
[US]) 10 February 2000 (2000-02-10)
page 3, line 3 page 15, line 10; figures
1,2

Y US 2007/004236 A1 (SUENAGA KATSUYUKI [JP])
4 January 2007 (2007-01-04)
page 3, paragraph 38 paragraph 43;
figures 1-6

See patent family annex

Date of the actual completion of the international search
18 November 2009

Date of mailing of the international search report
02/12/2009

Name and mailing address of the ISA/Authorized officer
European Patent Office P B 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040,
Fax (+31-70) 340-3016

Duffner, Orla
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
</table>
| Y | US 5 690 498 A (SOBANI MOHI [US])
column 1, line 23 - column 4, line 7;
figures 1-5 | 7,11 |
2 September 2004 (2004-09-02)
page 2, paragraph 27 - paragraph 32 | 13,14 |
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 3445597</td>
<td>A 20-05-1969</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6236969 B1</td>
<td>22-05-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2888053 A1</td>
<td>05-01-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007012521 A</td>
<td>18-01-2007</td>
</tr>
<tr>
<td>US 5690498</td>
<td>A 25-11-1997</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2004171303</td>
<td>A 02-09-2004</td>
<td>DE 10308612 B3</td>
<td>18-11-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2851851 A1</td>
<td>03-09-2004</td>
</tr>
</tbody>
</table>