The invention relates to annelated pyrrolidin sulfonamides with oxadiazolone headgroup, processes for their preparation and their use as pharmaceuticals.

Abstract

The invention relates to annelated pyrrolidin sulfonamides with oxadiazolone headgroup and to their physiologically acceptable salts and physiologically functional derivatives showing PPARdelta or PPARdelta and PPARalpha agonist activity. What is described are compounds of the formula (I), in which the radicals are as defined, and their physiologically acceptable salts and processes for their preparations. The compounds are suitable for the treatment and/or prevention of disorders of fatty acid metabolism and glucose utilization disorders as well as of disorders in which insulin resistance is involved and demyelinating and other neurodegenerative disorders of the central and peripheral nervous system.
Description

Annelated pyrrolidin sulfonamides with oxadiazolone headgroup, processes for their preparation and their use as pharmaceuticals

The invention relates to annelated pyrrolidin sulfonamides with oxadiazolone headgroup and to their physiologically acceptable salts and physiologically functional derivatives showing PPARdelta or PPARdelta and PPARalpha agonist activity.

The invention was based on the object of providing compounds which permit therapeutically utilizable modulation of lipid and/or carbohydrate metabolism and are thus suitable for the prevention and/or treatment of diseases such as type 2 diabetes and atherosclerosis and the diverse sequelae thereof. Another purpose of the invention is to treat demyelinating and other neurodegenerative disorders of the central and peripheral nervous systems.

A series of compounds which modulate the activity of PPA receptors has been found. The compounds are suitable in particular for activating PPARdelta or PPARdelta and PPARalpha, however it is possible that the relative activation varies depending on the specific compounds.

Compounds of the present invention are described by formula I:

![Formula I](image)
wherein

R\textsubscript{1} is H, halogen, (C1-C8) alkyl, (C0-C4) alkyne -(C3-C7) cycloalkyl, (C0-C4)
alkylene -(C5-C10) heteroaryl, (C0-C4) alkyne -O-(C0-C8) alkyl, (C0-C4)
alkylene -(C6-C10) aryl, wherein alkyl and alkyne are unsubstituted or 1- to
3-fold substituted by F;

R\textsubscript{2} is H, (C1-C8) alkyl, halogen, (C0-C4) alkyne -O-(C0-C8) alkyl, wherein
alkyl and alkyne are unsubstituted or 1- to 3-fold substituted by F;

R\textsubscript{3}, R\textsubscript{4} are independently H, (C1-C8) alkyl, halogen, (C0-C4) alkyne -O-(C0-C\textsubscript{6})
alkyl, wherein alkyl and alkyne are unsubstituted or 1- to 3-fold substituted
by F;

R\textsubscript{5}, R\textsubscript{6} are independently H, (C1-C8) alkyl, (C0-C4) alkyne -(C3-C7) cycloalkyl,
(C0-C4) alkyne -(C5-C10) heteroaryl, (C0-C4) alkyne -O-(C0-C8) alkyl,
(C0-C4) alkyne -(C6-C10) aryl, wherein alkyl and alkyne are
unsubstituted or 1- to 3-fold substituted by F;

R\textsubscript{5} and R\textsubscript{6} together with the carbon atom carrying them form a (C3-C7) cycloalkylring,
wherein one carbon atom can be replaced by one heteroatom selected from
the group consisting of O, S or N;

R\textsubscript{7} is H, halogen, (C1-C8) alkyl, (C0-C4) alkyne-O-(C0-C4) alkyne-H,
wherein alkyl and alkyne are unsubstituted or 1- to 3-fold substituted by F;

R\textsubscript{8} is H, halogen, (C1-C8) alkyl, (C0-C4) alkyne-O-(C0-C4) alkyne-H,
wherein alkyl and alkyne are unsubstituted or 1- to 3-fold substituted by F,
whereby R\textsubscript{8} is only attached to carbon;
R9 is H, halogen, (C1-C8) alkyl, (C0-C4) alkyne -O-(C3-C7) cycloalkyl, (C0-C4) alkyne -O-(C0-C8) alkyl, (C0-C4) alkyne -(C6-C10) aryl, (C0-C4) alkyne -(C5-C10) heteroaryl, wherein alkyl and alkyne are unsubstituted or 1- to 3-fold substituted by F;

at least one of X1, X2, X3, X4, X5 is N, the others are CH;

in all its stereoisomeric forms and mixtures in any ratio, and its physiologically acceptable salts and tautomeric forms.

Another embodiment according to the invention are compounds of the formula I, wherein

R1 is H, halogen, (C0-C4) alkyne -O-(C0-C8) alkyl, wherein alkyl and alkyne are unsubstituted or 1- to 3-fold substituted by F;

R2 is H or halogen;

R3, R4 are independently H, (C1-C8) alkyl;

R5, R6 are independently H, (C1-C8) alkyl;

R5 and R6 together with the carbon atom carrying them form a (C3-C6) cycloalkylring;

R7 is H or halogen;

R8 is H, halogen, or (C0-C4) alkyne-O-(C0-C4) alkyne-H;

R9 is H, (C1-C8) alkyl, (C0-C4) alkyne -O-(C0-C8) alkyl, wherein alkyl and alkyne are unsubstituted or 1- to 3-fold substituted by F;
at least one of X_1, X_2, X_3 is N and the other are CH and X_4 and X_5 are CH, or at least one of X_1, X_2, X_3 is CH and at least one of X_4 and X_5 is N and the other is CH;

in all its stereoisomeric forms and mixtures in any ratio, and its physiologically acceptable salts and tautomeric forms.

Another embodiment according to the invention are compounds of the formula I, wherein

10 R_1 is Cl, F or O-(C1-C4)-alkyl, preferably Cl.

Another embodiment according to the invention are compounds of the formula I, wherein

15 R_2 is in the para position to R_1.

Another embodiment according to the invention are compounds of the formula I, wherein

20 R_2 is H or F.

Another embodiment according to the invention are compounds of the formula I, wherein

25 R_3, R_4 are H or (C1-C4)-alkyl, preferably H.

Another embodiment according to the invention are compounds of the formula I, wherein

30 R_5, R_6 are H or (C1-C4)-alkyl, preferably methyl.
Another embodiment according to the invention are compounds of the formula I, wherein

R7 is F or Cl.

Another embodiment according to the invention are compounds of the formula I, wherein

R8 is H, F, or O-(C1-C4)-alkyl.

Another embodiment according to the invention are compounds of the formula I, wherein

R9 is (C1-C4)-alkyl or O-(C1-C4)-alkyl.

Another embodiment according to the invention are compounds of the formula I, wherein

One X1, X2, X3, X4, X5 is N, the others are CH.

Another embodiment according to the invention are compounds of the formula I, wherein

X1, X2, X3 is CH and X4 or X5 is N and the other of X4 and X5 is CH, preferably X1, X2, X3, X4 is CH and X5 is N.

Another embodiment according to the invention are compounds of the formula I, wherein

R1 is H or Cl;
R2 is H;
R3 is H;
R4 is H;
R5 is H or methyl;
R6 is H or methyl;
R7 is H;
R8 is H or methoxy;
R9 is H, methyl, methoxy or CF3;

one or two of X1,X2,X3,X4,X5 is N, the others are CH.

Further embodiments according to the invention are the following compounds:

3-{4-[5-{S-Trifluoromethyl-pyridin-3-yl}]2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

3-{4-[6-Methoxy-pyridin-3-yl]-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

3-{4-[5-(2-Methoxy-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

3-{4-[5-(2,6-Dimethoxy-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

3-{4-[5-(2-Methoxy-6-methyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

3-{4-[5-(2-Methoxy-pyrimidin-5-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

3-{4-[5-(5-Methyl-pyridin-2-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

3-{4-[5-(5-Methoxy-pyridin-2-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one
3-{4-[5-(5-Trifluoromethyl-pyridin-2-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

3-{4-(5-(6-Trifluoromethyl-pyridazin-3-yl)-2,3-dihydro-indole-i-sulfonyll-phenyl}-4H-[1,2,4]oxadiazol-5-one

3-{2-Chloro-4-[5-(6-trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

3-{2-Chloro-4-[3,3-dimethyl-5-(6-trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

3-{4-[5-(4-Trifluoromethyl-phenyl)-2,3-dihydro-pyrrolo[2,3-b]pyridine-1-sulfonyl]-phenyl]-4H-[1,2,4]oxadiazol-5-one

3-{2-Chloro-4-[5-(4-trifluoromethyl-phenyl)-2,3-dihydro-pyrrolo[2,3-b]pyridine-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

3-{2-Chloro-4-[3,3-dimethyl-5-(4-trifluoromethyl-phenyl)-2,3-dihydro-pyrrolo[2,3-b]pyridine-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

3-{2-Chloro-4-[3,3-dimethyl-5-(4-trifluoromethyl-phenyl)-2,3-dihydro-pyrrolo[3,2-b]pyridine-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

This invention also encompasses all combinations of preferred aspects of the invention described herein.

As used herein, the term alkyl is to be understood in the broadest sense to mean saturated hydrocarbon residues which can be linear, i.e. straight-chain, or branched. If not otherwise defined alkyl has 1 to 8 carbon atoms. Examples of "-(C1-C8)-alkyl" are alkyl residues containing 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl, the n-isomers of all these residues, isopropyl,
isobutyl, 1-methylbutyl, isopentyl, neopentyl, 2,2-dimethylbutyl, 2-methylpentyl, 3-
methylpentyl, isoheptyl, sec-butyl, tert-butyl or tert-pentyl. The term ,-(C0-C8)-alkyl" is
a hydrocarbon residue containing 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms, in which the
term ,,CO-alkyl" is a covalent bond. All these statements apply also to the term
alkylene.

As used herein, the term alkenyl is to be understood in the broadest sense to mean
hydrocarbon residues which has 1 to 4 double bonds and can be linear, i. e. straight-
chain, or branched. If not otherwise defined alkenyl has 2 to 8 carbon atoms.
Examples of ,-(C2-C8)-alkenyl" are alkenyl residues containing 2, 3, 4, 5, 6, 7 or 8
carbon atoms are, for example vinyl, 1-propenyl, 2-propenyl (= allyl), 2-butenyl, 3-
butenyl, 2-methyl-2-but enyl, 3-methyl-2-but enyl, 5-hexenyl or 1,3-pentadienyl. All these
statements apply also to the term alkenylene.

As used herein, the term alkynyl is to be understood in the broadest sense to mean
hydrocarbon residues, which has 1 to 4 triple bonds and can be linear, i. e. straight-
chain, or branched. If not otherwise defined alkynyl has 2 to 8 carbon atoms. Examples
of ,-(C2-C8)-alkynyl" are alkynyl residues containing 2, 3, 4, 5, 6, 7 or 8 carbon atoms
are, for example ethynyl, 1-propynyl, 2-propynyl (= propargyl) or 2-butynyl. All these
statements apply also to the term alkylidene.

All these statements also apply if an alkyl group occurs as a substituent on another
residue, for example in an alklyoxy residue, an alklyoxycarbonyl residue or an arylalkyl
residue.

If not otherwise defined, alkyl, and alkyne, are unsubstituted or mono, di- or
trisubstituted independently of one another by suitable groups such as, for example: F,
Cl, Br, I, CF3, NO2, CN, COOH, CO-O-(C0-C4) alkylene-(C6-C10) aryl, CO-O-(C1-C4)
alkyl, CO-O-(C0-C4) alkylene-(C3-C1 3)cycloalkyl, CO-O-(C0-C4) alkylene-(C3-
C15)heterocycle, CO-N((C0-C4) alkylene-H)-(C0-C4) alkylene- (C6-C1 0) aryl, CO-
N((C0-C4) alkylene-H)-(C0-C4) alkylene-H, CO-N((C0-C4) alkylene-H)-(C0-C4)
alkylene- (C3-C13)cycloalkyl, CO-N((C0-C4) alkylene-H)-(C0-C4) alkylene- (C3-C15)
heterocycle, (C0-C4) alkylene-(C3-C6)cycloalkyl, (C0-C4) alkylene-(C6-C10)aryl, (C0-C4) alkylene-(C3-C15)heterocycle, (C2-C6)-alkenyl, (C2-C6)-alkynyl, O-(C0-C6)-alkyl, O-(C0-C4) alkylene-(C6-C10)aryl, O-(C0-C4) alkylene-(C3-C12)cycloalkyl, O-(C0-C4) alkylene-(C3-C15)heterocycle, O-CO-O-(C0-C4) alkylene-(C6-C10)aryl, O-CO-O-(C1-C4)aryl, O-CO-O-(C0-C4) alkylene-(C3-C13)cycloalkyl, O-CO-O-(C0-C4) alkylene-(C6-C10)aryl, O-(C0-C4) alkylene-(C6-C10)aryl, S-(C0-C4)alkylene-(C6-C10)aryl, S-(C0-C4) alkylene-(C3-C13)cycloalkyl, S-(C0-C4) alkylene-(C3-C15)heterocycle, S-(Cl-C4)alkyl, S-(C0-C4) alkylene-(C3-C13)cycloalkyl, S-(C0-C4) alkylene-(C6-C10)aryl, S-(C0-C4) alkylene-(C3-C15)heterocycle, SO2-(C1-C4)alkyl, SO2-(C0-C4) alkylene-(C6-C10)aryl, SO2-(C0-C4) alkylene-(C3-C15)heterocycle, SO2-N((C0-C4)alkylene-H)-(C0-C4)alkylene-(C6-C10)aryl, SO2-N((C0-C4)alkylene-H)-(C0-C4)alkyl, SO2-N((C0-C4)alkylene-H)-(C0-C4)alkylene-(C3-C13)cycloalkyl, SO2-N((C0-C4)alkylene-H)-(C0-C4)alkylene-(C3-C15)heterocycle, where the aryl ring or heterocyclic ring is unsubstituted or mono- or disubstituted by F, Cl, Br, OH, CF3, NO2, CN, OCF3, O-(C1-C6)-alkyl, (C1-C6)-alkyl, N((C0-C4)-alkylene-H)-(C0-C4)-alkylene-H;

N((C0-C4)-alkylene-H)-(C0-C4)-alkylene-H, N((C0-C4) alkylene-H)-(C0-C4)alkylene-H)-(Cl-C6)cycloalkyl, N((C0-C4)alkylene-H)-(C0-C4)alkylene-(C6-C12)-aryl, N((C0-C4)alkylene-H)-(C0-C4)alkylene-(C3-C15)heterocycle, N((C0-C4) alkylene-H)-(C0-C4)alkylene-(C3-C15)heterocycle, where the aryl ring or heterocyclic ring is unsubstituted or mono- or disubstituted by F, Cl, Br, OH, CF3, NO2, CN, OCF3, O-(C1-C6)-alkyl, (C1-C6)-alkyl, N((C0-C4)-alkylene-H)-(C0-C4)-alkylene-H, SO2-CH3, COOH, COO-(C1-C6)-alkyl, SF5, CONH2.
If not otherwise specified, the term cycloalkyl is to be understood to mean saturated hydrocarbon cycle containing from 3 to 13 carbon atoms in a mono- or bicyclic, fused, bridged or spirocyclic ring. Examples of (C3-C13)-cycloalkyl cyclic alkyl residues are cycloalkyl residues containing 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 ring carbon atoms like cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl or cyclododecyl. The term cycloalkyl also includes bicyclic groups in which any of the above cycloalkyl ring is fused to a benzene ring, for example indane and 1,2,3,4-tetrahydronaphthalene.

If not otherwise defined cycloalkyl are unsubstituted or mono, di- or trisubstituted independently of one another by suitable groups such as, for example: F, Cl, Br, I, CF3, NO2, CN, COOH, CO-O-(C0-C4) alkylen-(C6-C10) aryl, CO-O-(Cl -C4) alkyl, CO-O-(C0-C4) alkylen-(C3-C13)cycloalkyl, CO-O-(C0-C4) alkylen-(C3-

C15)heterocycle,, CO-N((C0-C4) alkylen-H)-(C1-C6)alkylene-H, CO-N((C0-C4) alkylen-H)-(C1-C6) cycloalkyl, CON((C0-C4) alkylen-H)-(C0-C4)alkylene-(C6-C12)-aryl, (C0-C4) alkylen-(C3-C6)cycloalkyl, (C0-C4) alkylen-(C6-C10)aryl, (C0-C4) alkylen-(C3-C15)heterocycle, O-(C0-C6)-alkyl, (C0-C4) alkylen-(C0-C4)alkyl, (C0-C4) alkylen-(C0-C4)alkylene-(C3-C15)cycloalkyl, (C0-C4) alkylen-(C0-C4) alkylen-(C3-C15)heterocycle, O-(C0-C6)-alkyl, (C0-C4) alkylen-(C0-C4)alkyl, (C0-C4) alkylen-(C0-C4)alkylene-(C3-C15)heterocycle, O-(C0-

C4)alkylene-(C3-C15)heterocycle, O-CO-O-(C0-C4) alkylen-(C6-C10)aryl, 0-CO-O-(C1-C4)alkyl, O-CO-O-(C0-C4) alkylen-(C3-C13)cycloalkyl, O-CO-O-(C0-C4) alkylen-(C3-C13)heterocycle, O-CO-N((C0-C4) alkylen-H)-(C0-C4) alkylen-(C6-C10)aryl, O-CO-N((C0-C4) alkylen-H)-(C0-C4) alkylen-H, O-CO-

N((C0-C4) alkylen-H)-(C0-C4) alkylen-(C3-C13)cycloalkyl, O-CO-N((C0-C4) alkylen-H)-(C0-C4) alkylen-(C3-C13)heterocycle, S-(C0-C4) alkylen-(C3-C15)heterocycle, SO-(C0-C4) alkylen-(C3-C15)heterocycle, SO-(C0-C4) alkylen-(C3-C15)heterocycle, SO2-(C0-C4) alkylen-(C3-C13)cycloalkyl, SO2-(C0-C4) alkylen-(C3-C13)heterocycle, SO2-(C0-C4) alkylen-(C6-C10)aryl, SO2-(C0-C4) alkylen-(C6-C10)aryl, SO2-(C0-C4) alkylen-(C0-C4)alkylen-H, SO2-(C0-C4) alkylen-H, SO2-(C0-C4) alkylen-H, SO2-(C0-C4) alkylen-H, SO2-(C0-C4) alkylen-H.
C4)alkylene-(C3-C15)heterocycle, where the aryl ring or heterocyclic ring is unsubstituted or mono- or disubstituted by F, Cl, Br, OH, CF3, NO2, CN, OCF3, O-(C1-C6)-alkyl, (C1-C6)-alkyl, N((C0-C4)-alkylene-H)-(C0-C4)-alkylene-H; N((C0-C4)-alkylene-H)-(C0-C4)-alkylene-H, N((C0-C4) alkylene-H)-(C0-C4)alkylene-H)-(Cl-C6)cycloalkyl, N((C0-C4)alkylene-H)-(C0-C4)alkylene-(C6-C12)-aryl, N((C0-C4)alkylene-H)-(C0-C4)alkylene-(C3-C13)cycloalkyl, N((C0-C4)alkylene-H)-(C0-C4)alkylene-(C3-C15)heterocycle, where the aryl or heterocyclic ring is unsubstituted or mono- or disubstituted by F, Cl, Br, OH, CF3, NO2, CN, OCF3, O-(C1-C6)-alkyl, (C1-C6)-alkyl, N((C0-C4)-alkylene-H)-(C0-C4)-alkylene-H,SO2-CH3, COOH, COO-(C1-C6)-alkyl, SF5, CONH2. The term "aryl" is understood to mean aromatic hydrocarbon ring containing from 6 to 14 carbon atoms in a mono- or bicyclic ring. Examples of (C6-C14)-aryl rings are phenyl, naphthyl, for example 1-naphthyl and 2-naphthyl, biphenylyl, for example 2-biphenylyl, 3-biphenylyl and 4-biphenylyl, anthryl or fluorenyl. Biphenylyl rings, naphthyl rings and, in particular, phenyl rings are further embodiments of aryl rings.

The terms heterocycle is understood to mean saturated (heterocycloalkyl), partly unsaturated (heterocycloalkenyl) or unsaturated (heteroaryl) hydrocarbon rings containing from 3 to 15 carbon atoms in a mono- or bicyclic, fused, bridged or spirocyclic ring in which 1 to 5 carbon atoms of the 3 to 15 ring carbon atoms are replaced by heteroatoms such as nitrogen, oxygen or sulfur in which further the heteroatoms can be oxidized, for example N=O, S=O, SO2. Examples of heterocycles
are acridinyl, azaindole (1H-pyrrolopyridinyl), azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, dihydrobenzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 4,5-dihydrooxazoliny, dioxazolyl, dioxazinyl, 1,3-dioxolanly, 1,3-dioxolenyl, 3,3-dioxo[1,3,4]oxathiazinyl, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]-tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2-oxa-thiepanyl, 1,2-oxathioli, 1,4-oxazepanly, 1,4-oxazepinyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, oxetanyl, oxocanyl, phenanthridinyl, phenanthroliny, phenazinyl, phenothiazinyl, phenoxathiiny, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranly, pyrazinyl, pyrazolidinyl, pyrazolyl, pyridazinyl, pyrdoxazolyl, pyridoximidazolyl, pyrido-imidazolyl, pyridthiazolyl, pyridinyl, pyridinyl, pyrrolidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrrol, pyrrolly, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxaliny, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, tetrahydrofuranyl, tetrahydropranyl, tetrahydroprydinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietany, thienothiazolyl, thienooxazolyl, thienimidazolyl, thiomorpholinyl, thiophenolyl, thiophenyl, thiopyranyly, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5-triazinyl, 1,2,3-triazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl.

The heterocyclic rings are unsubstituted or mono-, di- or trisubstituted by suitable groups such as, for example: F, Cl, Br, i, CF3, NO2, CN, COOH, CO-O-(C0-C4) alkylene-(C6-C10) aryl, CO-O-(Cl -C4) alkyl, CO-O-(C0-C4) alkylene-(C3-C13)cycloalkyl, CO-O-(C0-C4) alkylene-(C3-C15)heterocycle, CO-N((C0-C4) alkylene-
(Cl-C6)alkylene-H, CO-N((C0-C4)alkylene-H)-(C1-C6)cycloalkyl, CON((C0-C4)alkylene-H)-(C0-C4)alkylene-(C6-C12)-aryl, (C0-C4)alkylene-(C3-C6)cycloalkyl, (C3-C6)alkyl, (C2-C6)-alkenyl, (C2-C6)-alkyl, (C0-C4)alkylene-(C6-C10)aryl, (C0-C4)alkylene-(C3-C15)heterocycle, O-(C0-C6)-alkyl, (C0-C4)alkylene-O-(C0-C4)alkyl, (C0-C4)alkylene-O-(C0-C4)alkylene-(C3-C13)cycloalkyl, (C0-C4)alkylene-O-(C0-C4)alkylene-(C6-C10)aryl, O-CO-O-(C1-C4)alkyl, O-CO-(C0-C4)alkyl, O-CO-O-(C0-C4)alkylene-(C3-C13)cycloalkyl, O-CO-O-(C0-C4)alkylene-(C3-C15)heterocycle, O-CO-N((C0-C4)-alkylene-H)-(C0-C4)alkylene-(C3-C15)heterocycle, O-CO-N((C0-C4)-alkylene-H)-(C0-C4)alkylene-(C6-C10)aryl, O-CO-N((C0-C4)alkylene-H)-(C0-C4)alkylene-(C3-C15)heterocycle,
C4)alkyl, N((C0-C4)alkylene-H)-CO-N((C0-C4)-alkylene-H)-(C0-C4)alkylene-(C3-C13)cycloalkyl, N((C0-C4)alkylene-H)-CO-N((C0-C4)-alkylene-H)-(C0-C4)alkylene-(C3-C15)heterocycle, where the aryl or heterocyclic ring is unsubstituted or mono- or disubstituted by F, Cl, Br, I, OH, CF3, NO2, CN, OCF3, O-(C1-C6)-alkyl, (C1-C6)-alkyl, N((C0-C4)-alkylene-H)-(C0-C4)-alkylene-H, SO2-CH3, COOH, COO-(C1-C6)-alkyl, SF5, CONH2.

Halogen is fluorine, chlorine, bromine or iodine.

Optically active carbon atoms present in the compounds of the formula I can independently of each other have R configuration or S configuration. The compounds of the formula I can be present in the form of pure enantiomers or pure diastereomers or in the form of mixtures of enantiomers and/or diastereomers, for example in the form of racemates. The present invention relates to pure enantiomers and mixtures of enantiomers as well as to pure diastereomers and mixtures of diastereomers. The invention comprises mixtures of two or of more than two stereoisomers of the formula I and it comprises all ratios of the stereoisomers in the mixtures. In case the compounds of the formula I can be present as E isomers or Z isomers (or cis isomers or trans isomers) the invention relates both to pure E isomers and pure Z isomers and to E/Z mixtures in all ratios. The invention also comprises all tautomeric forms of the compounds of the formula I.

Diastereomers, including E/Z isomers, can be separated into the individual isomers, for example, by chromatography. Racemates can be separated into the two enantiomers by customary methods, for example by chromatography on chiral phases or by resolution, for example by crystallization of diastereomeric salts obtained with optically active acids or bases. Stereochemically uniform compounds of the formula I can also be obtained by employing stereochemically uniform starting materials or by using stereoselective reactions.

The compounds of the formula I may exist in the form of their racemates, racemic mixtures, pure enantiomers, diastereomers and mixtures of diastereomers as well in
their tautomeric forms. The present invention encompasses all these isomeric and
tautomeric forms of the compounds of the formula I. These isomeric forms can be
obtained by known methods even if not specifically described in some cases.

Pharmaceutically acceptable salts are, because their solubility in water is greater than
that of the initial or basic compounds, particularly suitable for medical applications.
These salts must have a pharmaceutically acceptable anion or cation. Suitable
pharmaceutically acceptable acid addition salts of the compounds of the invention are
salts of inorganic acids such as hydrochloric acid, hydrobromic, phosphoric,
metaphosphoric, nitric and sulfuric acid, and of organic acids such as, for example,
acetic acid, benzenesulfonic, benzoic, citric, ethanesulfonic, fumaric, gluconic, glycolic,
isethionic, lactic, lactobionic, maleic, malic, methanesulfonic, succinic,
p-toluenesulfonic and tartaric acid. Suitable pharmaceutically acceptable basic salts
are ammonium salts, alkali metal salts (such as sodium and potassium salts), alkaline
earth metal salts (such as magnesium and calcium salts), and salts of trometamol
(2-amino-2-hydroxymethyl-1,3-propanediol), diethanolamine, lysine or
ethylenediamine.

Salts with a pharmaceutically unacceptable anion such as, for example,
trifluoroacetate likewise belong within the framework of the invention as useful
intermediates for the preparation or purification of pharmaceutically acceptable salts
and/or for use in nontherapeutic, for example in vitro, applications.

The term "physiologically functional derivative" used herein refers to any
physiologically tolerated derivative of a compound of the formula I of the invention, for
example an ester, which on administration to a mammal such as, for example, a
human is able to form (directly or indirectly) a compound of the formula I or an active
metabolite thereof.

Physiologically functional derivatives also include prodrugs of the compounds of the
invention, as described, for example, in H. Okada et al., Chem. Pharm. Bull. 1994, 42,
57-61. Such prodrugs can be metabolized in vivo to a compound of the invention.
These prodrugs may themselves be active or not. The compounds of the invention may also exist in various polymorphous forms, for example as amorphous and crystalline polymorphous forms. All polymorphous forms of the compounds of the invention belong within the framework of the invention and are a further aspect of the invention.

All references to "compound(s) of formula I" hereinafter refer to compound(s) of the formula I as described above, and their salts, solvates and physiologically functional derivatives as described herein.

Use

This invention relates further to the use of compounds of the formula I and their pharmaceutical compositions as PPAR ligands. The PPAR ligands of the invention are suitable as modulators of PPAR activity.

Peroxisome proliferator-activated receptors (PPAR) are transcription factors which can be activated by ligands and belong to the class of nuclear hormone receptors. There are three PPAR isoforms, PPARalpha, PPARgamma and PPARdelta (identical to PPARbeta), which are encoded by different genes (Peroxisome proliferator-activated receptor (PPAR): structure, mechanisms of activation and diverse functions: Motojima K., Cell Struct. Funct., 1993, 18(5), 267-77).

In humans, PPARgamma exists in three variants, PPARgamma1, gamma2, and gamma3, which are the result of alternative use of promoters and differential mRNA splicing. Different PPARs have different tissue distribution and modulate different physiological functions. The PPARs play a key role in various aspects of the regulation of a large number of genes, the products of which genes are directly or indirectly crucially involved in lipid and carbohydrate metabolism. Thus, for example, the PPARalpha receptor plays an important part in the regulation of fatty acid catabolism or lipoprotein metabolism in the liver, while PPARgamma is crucially involved for example in regulating adipose cell differentiation. In addition, however, PPARs are also

30 PPARdelta is known to play a role in embryonic development, implantation and bone formation (Lim, H. and Dey, S.K., Trends Endocrinol Metab., 2000, 11(4),137-42; Ding,

PPARdelta appears to be significantly expressed in the CNS; however much of its function there still remains undiscovered. Of singular interest however, is the discovery that PPARdelta was expressed in rodent oligodendrocytes, the major lipid producing cells of the CNS (J. Granneman, et al., J. Neurosci. Res., 1998, 51, 563-573). Moreover, it was also found that a PPARdelta selective agonist was found to significantly increase oligodendroglial myelin gene expression and myelin sheath diameter in mouse cultures (I. Saluja et al., GNa, 2001, 33, 194-204). Thus, PPARdelta activators may be of use for the treatment of demyelinating and dysmyelinating diseases. The use of peroxisome proliferator activated receptor delta agonists for the treatment of MS and other demyelinating diseases can be shown as described in WO2005/097098.

Demyelinating conditions are manifested in loss of myelin - the multiple dense layers of lipids and protein which cover many nerve fibers. These layers are provided by oligodendroglia in the central nervous system (CNS), and Schwann cells in the peripheral nervous system (PNS). In patients with demyelinating conditions, demyelination may be irreversible; it is usually accompanied or followed by axonal degeneration, and often by cellular degeneration. Demyelination can occur as a result of neuronal damage or damage to the myelin itself - whether due to aberrant immune responses, local injury, ischemia, metabolic disorders, toxic agents, or viral infections (Prineas and McDonald, Demyelinating Diseases. In Greenfield's Neuropathology, 6.sup.th ed. (Edward Arnold: New York, 1997) 813-811, Beers and Berkow, eds., The Merck Manual of Diagnosis and Therapy, 17.sup.th ed. (Whitehouse Station, NJ.: Merck Research Laboratories, 1999) 1299, 1437, 1473-76, 1483).
Central demyelination (demyelination of the CNS) occurs in several conditions, often of uncertain etiology, that have come to be known as the primary demyelinating diseases. Of these, multiple sclerosis (MS) is the most prevalent. Other primary demyelinating diseases include adrenoleukodystrophy (ALD), adrenomyeloneuropathy, AIDS-vacuolar myelopathy, HTLV-associated myelopathy, Leber's hereditary optic atrophy, progressive multifocal leukoencephalopathy (PML), subacute sclerosing panencephalitis, Guillain-Barre syndrome and tropical spastic paraparesis. In addition, there are acute conditions in which demyelination can occur in the CNS, e.g., acute disseminated encephalomyelitis (ADEM) and acute viral encephalitis. Furthermore, acute transverse myelitis, a syndrome in which an acute spinal cord transection of unknown cause affects both gray and white matter in one or more adjacent thoracic segments, can also result in demyelination. Also, disorders in which myelin forming glial cells are damaged including spinal cord injuries, neuropathies and nerve injury.

Compounds of this type are particularly suitable for the treatment and/or prevention of:

1. - Disorders of fatty acid metabolism and glucose utilization disorders.
 - Disorders in which insulin resistance is involved

2. Diabetes mellitus, especially type 2 diabetes, including the prevention of the sequelae associated therewith.

 Particular aspects in this connection are
 - hyperglycemia,
- improvement in insulin resistance,
- improvement in glucose tolerance,
- protection of the pancreatic \(\beta \) cells
- prevention of macro- and microvascular disorders

3. Dyslipidemias and their sequelae such as, for example, atherosclerosis, coronary heart disease, cerebrovascular disorders etc, especially those (but not restricted thereto) which are characterized by one or more of the following factors:
 - high plasma triglyceride concentrations, high postprandial plasma triglyceride concentrations,
 - low HDL cholesterol concentrations
 - low ApoA lipoprotein concentrations
 - high LDL cholesterol concentrations
 - small dense LDL cholesterol particles
 - high ApoB lipoprotein concentrations

4. Various other conditions which may be associated with the metabolic syndrome, such as:
 - obesity (excess weight), including central obesity
 - thromboses, hypercoagulable and prothrombotic states (arterial and venous)
 - high blood pressure
 - heart failure such as, for example (but not restricted thereto), following myocardial infarction, hypertensive heart disease or cardiomyopathy

5. Disorders or conditions in which inflammatory reactions are involved:
 - atherosclerosis such as, for example (but not restricted thereto), coronary sclerosis including angina pectoris or myocardial infarction, stroke
 - vascular restenosis or reocclusion
 - chronic inflammatory bowel diseases such as, for example, Crohn's disease and ulcerative colitis
 - asthma
 - lupus erythematosus (LE) or inflammatory rheumatic disorders such as, for
example, rheumatoid arthritis
- NASH (non alcoholic steatohepatitis)
- other inflammatory states

6. Disorders of cell cycle or cell differentiation processes:
- adipose cell tumors
- lipomatous carcinomas such as, for example, liposarcomas
- solid tumors and neoplasms such as, for example (but not restricted thereto),
carcinomas of the gastrointestinal tract, of the liver, of the biliary tract and of the
pancreas, endocrine tumors, carcinomas of the lungs, of the kidneys and the
urinary tract, of the genital tract, prostate carcinomas etc
- acute and chronic myeloproliferative disorders and lymphomas
- angiogenesis

7. Demyelinating and other neurodegenerative disorders of the central and peripheral
nervous systems including:
- Alzheimer's disease
- multiple sclerosis
- Parkinson's disease
- adrenoleukodystrophy (ALD)
- adrenomyeloneuropathy
- AIDS-vacuolar myelopathy
- HTLV-associated myelopathy
- Leber's hereditary optic atrophy
- progressive multifocal leukoencephalopathy (PML)
- subacute sclerosing panencephalitis
- Guillian-Barre syndrome
- tropical spastic paraparesis
- acute disseminated encephalomyelitis (ADEM)
- acute viral encephalitis
- acute transverse myelitis
- spinal cord and brain trauma
- Charcot-Marie-Tooth disease

8. Skin disorders and/or disorders of wound healing processes:
 - erythemato-squamous dermatoses such as, for example, psoriasis
 - acne vulgaris
 - other skin disorders and dermatological conditions which are modulated by PPAR
 - eczemas and neurodermitis
 - dermatitis such as, for example, seborrheic dermatitis or photodermatitis
 - keratitis and keratoses such as, for example, seborrheic keratoses, senile keratoses, actinic keratosis, photo-induced keratoses or keratosis follicularis
 - keloids and keloid prophylaxis
 - warts, including condylomata or condylomata acuminata
 - human papilloma viral (HPV) infections such as, for example, venereal papillomata, viral warts such as, for example, molluscum contagiosum, leukoplakia
 - papular dermatoses such as, for example, Lichen planus
 - skin cancer such as, for example, basal-cell carcinomas, melanomas or cutaneous T-cell lymphomas
 - localized benign epidermal tumors such as, for example, keratoderma, epidermal naevi
 - chilblains
 - wound healing

9. Other disorders
 - high blood pressure
 - pancreatitis
 - syndrome X
 - polycystic ovary syndrome (PCOS)
 - asthma
 - osteoarthritis
 - lupus erythematosus (LE) or inflammatory rheumatic disorders such as, for
example, rheumatoid arthritis
- vasculitis
- wasting (cachexia)
- gout
- ischemia/reperfusion syndrome
- acute respiratory distress syndrome (ARDS)

Formulations

The amount of a compound of formula I necessary to achieve the desired biological effect depends on a number of factors, for example the specific compound chosen, the intended use, the mode of administration and the clinical condition of the patient. The daily dose is generally in the range from 0.001 mg to 100 mg (typically from 0.01 mg to 50 mg) per day and per kilogram of bodyweight, for example 0.1-10 mg/kg/day. An intravenous dose may be, for example, in the range from 0.001 mg to 1.0 mg/kg, which can suitably be administered as infusion of 10 ng to 100 ng per kilogram and per minute. Suitable infusion solutions for these purposes may contain, for example, from 0.1 ng to 10 mg, typically from 1 ng to 10 mg, per milliliter. Single doses may contain, for example, from 1 mg to 10 g of the active ingredient. Thus, ampules for injections may contain, for example, from 1 mg to 100 mg, and single-dose formulations which can be administered orally, such as, for example, capsules or tablets, may contain, for example, from 0.05 to 1000 mg, typically from 0.5 to 600 mg. For the therapy of the abovementioned conditions, the compounds of formula I may be used as the compound itself, but they are preferably in the form of a pharmaceutical composition with an acceptable carrier. The carrier must, of course, be acceptable in the sense that it is compatible with the other ingredients of the composition and is not harmful for the patient's health. The carrier may be a solid or a liquid or both and is preferably formulated with the compound as a single dose, for example as a tablet, which may contain from 0.05% to 95% by weight of the active ingredient. Other pharmaceutically active substances may likewise be present, including other compounds of formula I. The pharmaceutical compositions of the invention can be produced by one of the
known pharmaceutical methods, which essentially consist of mixing the ingredients with pharmacologically acceptable carriers and/or excipients.

Pharmaceutical compositions of the invention are those suitable for oral, rectal, topical, peroral (for example sublingual) and parenteral (for example subcutaneous, intramuscular, intradermal or intravenous) administration, although the most suitable mode of administration depends in each individual case on the nature and severity of the condition to be treated and on the nature of the compound of formula I used in each case. Coated formulations and coated slow-release formulations also belong within the framework of the invention. Preference is given to acid- and gastric juice-resistant formulations. Suitable coatings resistant to gastric juice comprise cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropylmethylcellulose phthalate and anionic polymers of methacrylic acid and methyl methacrylate.

Suitable pharmaceutical preparations for oral administration may be in the form of separate units such as, for example, capsules, cachets, suckable tablets or tablets, each of which contain a defined amount of the compound of formula I; as powders or granules, as solution or suspension in an aqueous or nonaqueous liquid; or as an oil-in-water or water-in-oil emulsion. These compositions may, as already mentioned, be prepared by any suitable pharmaceutical method which includes a step in which the active ingredient and the carrier (which may consist of one or more additional ingredients) are brought into contact. The compositions are generally produced by uniform and homogeneous mixing of the active ingredient with a liquid and/or finely divided solid carrier, after which the product is shaped if necessary. Thus, for example, a tablet can be produced by compressing or molding a powder or granules of the compound, where appropriate with one or more additional ingredients. Compressed tablets can be produced by tableting the compound in free-flowing form such as, for example, a powder or granules, where appropriate mixed with a binder, glidant, inert diluent and/or one (or more) surface-active/dispersing agent(s) in a suitable machine. Molded tablets can be produced by molding the compound, which is in powder form and is moistened with an inert liquid diluent, in a suitable machine.
Pharmaceutical compositions which are suitable for peroral (sublingual) administration comprise suckable tablets which contain a compound of formula I with a flavoring, normally sucrose and gum arabic or tragacanth, and pastilles which comprise the compound in an inert base such as gelatin and glycerol or sucrose and gum arabic.

Pharmaceutical compositions suitable for parenteral administration comprise preferably sterile aqueous preparations of a compound of formula I which are preferably isotonic with the blood of the intended recipient. These preparations are preferably administered intravenously, although administration may also take place by subcutaneous, intramuscular or intradermal injection. These preparations can preferably be produced by mixing the compound with water and making the resulting solution sterile and isotonic with blood. Injectable compositions of the invention generally contain from 0.1 to 5% by weight of the active compound.

Pharmaceutical compositions suitable for rectal administration are preferably in the form of single-dose suppositories. These can be produced by mixing a compound of the formula I with one or more conventional solid carriers, for example cocoa butter, and shaping the resulting mixture.

Pharmaceutical compositions suitable for topical use on the skin are preferably in the form of ointment, cream, lotion, paste, spray, aerosol or oil. Carriers which can be used are petrolatum, lanolin, polyethylene glycols, alcohols and combinations of two or more of these substances. The active ingredient is generally present in a concentration of from 0.1 to 15% by weight of the composition, for example from 0.5 to 2%.

Transdermal administration is also possible. Pharmaceutical compositions suitable for transdermal uses can be in the form of single plasters which are suitable for long-term close contact with the patient's epidermis. Such plasters suitably contain the active ingredient in an aqueous solution which is buffered where appropriate, dissolved and/or dispersed in an adhesive or dispersed in a polymer. A suitable active ingredient concentration is about 1% to 35%, preferably about 3% to 15%. A particular possibility
is for the active ingredient to be released by electrotransport or iontophoresis as described, for example, in Pharmaceutical Research, 2(6): 318 (1986).

The compounds of the formula I are distinguished by favorable effects on metabolic disorders. They beneficially influence lipid and sugar metabolism, in particular they lower the triglyceride level and are suitable for the prevention and treatment of type II diabetes and atherosclerosis and the diverse sequelae thereof.

Combinations with other medicaments

The compounds of the invention can be administered alone or in combination with one or more further pharmacologically active substances. In particular, the compounds of the invention can be administered in combination with active ingredients having a similar pharmacological action. For example, they can be administered in combination with active ingredients which have favorable effects on metabolic disturbances or disorders frequently associated therewith. Examples of such medicaments are

1. medicaments which lower blood glucose, antidiabetics,
2. active ingredients for the treatment of dyslipidemias,
3. antiatherosclerotic medicaments,
4. antiobesity agents,
5. antiinflammatory active ingredients
6. active ingredients for the treatment of malignant tumors
7. antithrombotic active ingredients
8. active ingredients for the treatment of high blood pressure
9. active ingredients for the treatment of heart failure and
10. active ingredients for the treatment and/or prevention of complications caused by diabetes or associated with diabetes.
11. active ingredients for the treatment of neurodegenerative diseases
12. active ingredients for the treatment of disorders of the central nervous system
13. active ingredients for the treatment of drug, nicotine and alcohol addiction
14. analgesics
They can be combined with the compounds of the invention of the formula I in particular for a synergistic enhancement of activity. Administration of the active ingredient combination can take place either by separate administration of the active ingredients to the patient or in the form of combination products in which a plurality of active ingredients are present in one pharmaceutical preparation.

Further active ingredients suitable for combination products are:

All antidiabetics which are mentioned in the Rote Liste 2005, chapter 12; all weight-reducing agents/appetite suppressants which are mentioned in the Rote Liste 2005, chapter 1; all lipid-lowering agents which are mentioned in the Rote Liste 2005, chapter 58. They may be combined with the compound of the invention of the formula I in particular for a synergistic improvement in the effect. The active ingredient combination can be administered either by separate administration of the active ingredients to the patient or in the form of combination products in which a plurality of active ingredients is present in a pharmaceutical preparation. Most of the active ingredients mentioned hereinafter are disclosed in the USP Dictionary of USAN and International Drug Names, US Pharmacopeia, Rockville 2001.

Antidiabetics include insulin and insulin derivatives such as, for example, Lantus® (see www.lantus.com) or HMR 1964 or Levemir® (insulin detemir) or those described in WO2005005477 (Novo Nordisk), fast-acting insulins (see US 6,221,633), inhalable insulins such as, for example, Exubera® or oral insulins such as, for example, IN-105 (Nobex) or Oral-lyn™ (Generex Biotechnology), GLP-1 derivatives and GLP-1 agonists such as, for example, exenatide, liraglutide or those which have been disclosed in WO98/08871, WO2005027978, WO2006037811 or WO2006037810 of Novo Nordisk A/S, in WO01/04156 of Zealand or in WO00/34331 of Beaufour-lpsen, pramlintide acetate (Symlin; Amylin Pharmaceuticals), BIM-51077, PC-DAC-exendin-4 (an exendin-4 analog covalently bonded to recombinant human albumin), agonists like those described for example in D. Chen et al., Proc. Natl. Acad. Sci. USA 104 (2007) 943, those as are described in WO2006124529, and orally effective hypoglycemic active ingredients.

Antidiabetics also include agonists of the glucose-dependent insulinotropic polypeptide
(GIP) receptor as are described for example in WO2006121860.

The orally effective hypoglycemic active ingredients include preferably sulfonylureas, biguanidines, meglitinides, oxadiazolidinediones, thiazolidinediones, glucosidase inhibitors, inhibitors of glycogen phosphorylase, glucagon antagonists, glucokinase activators, inhibitors of fructose-1,6-bisphosphatase, modulators of glucose transporter 4 (GLUT4), inhibitors of glutamine-fructose-6-phosphate amidotransferase (GFAT), GLP-1 agonists, potassium channel openers such as, for example, pinacidil, cromakalim, diazoxide or those described in R.D. Carr et al., Diabetes 52, 2003, 251 3.2518, in J. B. Hansen et al., Current Medicinal Chemistry 11, 2004, 1595-1615, in T.M. Tagmose et al., J. Med. Chem. 47, 2004, 3202-321 1 or in M. J. Coghlan et al., J. Med. Chem. 44, 2001, 1627-1653, or those which have been disclosed in WO 97/26265 and WO 99/03861 of Novo Nordisk A/S, inhibitors of dipeptidylpeptidase IV (DPP-IV), insulin sensitizers, inhibitors of liver enzymes involved in stimulating gluconeogenesis and/or glycogenesis, modulators of glucose uptake, of glucose transport and of glucose reabsorption, inhibitors of 11β-HSD1, inhibitors of protein tyrosine phosphatase 1B (PTP1 B), modulators of the sodium-dependent glucose transporter 1 or 2 (SGLT1, SGLT2), compounds which alter lipid metabolism such as antihyperlipidemic active ingredients and antilipidemic active ingredients,
compounds which reduce food intake,
compounds which increase thermogenesis,
PPAR and RXR modulators and
active ingredients which act on the ATP-dependent potassium channel of the beta cells.

In one embodiment of the invention, the compounds of the formula I is administered in combination with an HMGCoA reductase inhibitor such as simvastatin, fluvastatin, pravastatin, lovastatin, atorvastatin, cerivastatin, rosuvastatin or L-659699.

In one embodiment of the invention, the compound of the formula I is administered in combination with a cholesterol absorption inhibitor such as, for example, ezetimibe, tiqueside, pamaqueside, FM-VP4 (sitostanol/campesterol ascorbyl phosphate; Forbes Medi-Tech, WO2005042692, WO2005005453), MD-0727 (Microbia Inc., WO2005021497, WO2005021495) or with compounds as described in

In one embodiment of the invention, the compound of the formula I is administered in combination with Vytorin™, a fixed combination of ezetimibe and simvastatin.

In one embodiment of the invention, the compound of the formula I is administered in combination with a fixed combination of ezetimibe with atorvastatin.
In one embodiment of the invention, the compound of the formula I is administered in combination with a fixed combination of ezetimibe with fenofibrate.

In a further embodiment of the invention, the compound of the formula I is administered in combination with a fixed combination of fenofibrate and rosvastatin.

In one embodiment of the invention, the compound of the formula I is administered in combination with Synordia®, a fixed combination of fenofibrate with metformin.

In one embodiment of the invention, the compound of the formula I is administered in combination with ISIS-301012, an antisense oligonucleotide able to regulate the apolipoprotein B gene.

In one embodiment of the invention, the compound of the formula I is administered in combination with a PPAR gamma agonist such as, for example, rosiglitazone, pioglitazone, JTT-501, GI 262570, R-483, CS-011 (rivoglitazone).

In one embodiment of the invention, the compound of the formula I is administered in combination with Competact™, a fixed combination of pioglitazone hydrochloride with metformin hydrochloride.

In one embodiment of the invention, the compound of the formula I is administered in combination with Tandemact™, a fixed combination of pioglitazone with glimepiride.

In one embodiment of the invention, the compound of the formula I is administered in combination with a fixed combination of pioglitazone hydrochloride with an angiotensin II agonist such as, for example, TAK-536.

In one embodiment of the invention, the compound of the formula I is administered in combination with a PPAR alpha agonist such as, for example, GW9578, GW-590735, K-11, LY-674, KRP-101, DRF-10945, LY-518674 or those as are described in WO2001/040207, WO2002096894, WO2005097076.
In one embodiment of the invention, the compound of the formula I is administered in combination with a mixed PPAR alpha/gamma agonist such as, for example, naveglitazar, LY-510929, ONO-5129, E-3030, AVE 8042, AVE 8134, AVE 0847, CKD-501 (lobeglitazone sulfate) or as described in WO 00/64888, WO 00/64876, WO03/020269 or in J.P. Berger et al., TRENDS in Pharmacological Sciences 28(5), 244-251, 2005.

In one embodiment of the invention, the compound of the formula I is administered in combination with a mixed PPAR delta agonist such as, for example, GW-501516 or as described in WO2006059744, WO2006084176, WO2006029699, WO2007039172-WO2007039178.

In one embodiment, the compound of the formula I is administered in combination with metaglidasen or with MBX-2044 or other partial PPAR gamma agonists/antagonists.

In one embodiment of the invention, the compound of the formula I is administered in combination with a fibrate such as, for example, fenofibrate, clofibrate or bezafibrate.

In one embodiment of the invention, the compound of the formula I is administered in combination with an MTP inhibitor such as, for example, implitapide, BMS-201038, R-1 03757, AS-1552133 or those described in WO2005085226, WO2005121091, WO2006010423.

In one embodiment of the invention, the compound of the formula I is administered in combination with a CETP inhibitor such as, for example, torcetrapib or JTT-705 or those described in WO2006002342, WO2006010422, WO2006012093, WO2006073973, WO2006072362, WO2006097169, WO2007041494.

In one embodiment of the invention, the compound of the formula I is administered in combination with a bile acid absorption inhibitor (see, for example, US 6,245,744, US 6,221,897 or WO00/61568), such as, for example, HMR 1741 or those as described in DE 10 2005 033099.1 and DE 10 2005 033100.9, WO2007009655-56.
In one embodiment of the invention, the compound of the formula I is administered in combination with a polymeric bile acid adsorbent such as, for example, cholestyramine or colesevelam.

In one embodiment of the invention, the compound of the formula I is administered in combination with an LDL receptor inducer (see US 6,342,512), such as, for example, HMR1 171, HMR1 586 or those as described in WO2005097738.

In one embodiment of the invention, the compound of the formula I is administered in combination with an ABCA1 expression enhancer as described for example in WO2006072393.

In a further embodiment of the invention, the compound of the formula I is administered in combination with an RNAi therapeutic directed against PCSK9 (proprotein convertase subtilisin/kexin type 9).

In one embodiment, the compound of the formula I is administered in combination with Omacor® (omega-3 fatty acids; highly concentrated ethyl esters of eicosapentaenoic acid and of docosahexaenoic acid).

In one embodiment of the invention, the compound of the formula I is administered in combination with an ACAT inhibitor such as, for example, avasimibe or SMP-797.

In one embodiment of the invention, the compound of the formula I is administered in combination with an antioxidant such as, for example, OPC-141 17, probucol, tocopherol, ascorbic acid, β-carotene or selenium.

In one embodiment of the invention, the compound of the formula I is administered in combination with a vitamin such as, for example, vitamin B6 or vitamin B12.

In one embodiment of the invention, the compound of the formula I is administered in combination with a lipoprotein lipase modulator such as, for example, ibrolipim (NO-1886).
In one embodiment of the invention, the compound of the formula I is administered in combination with an ATP citrate lyase inhibitor such as, for example, SB-204990.

In one embodiment of the invention, the compound of the formula I is administered in combination with a squalene synthetase inhibitor such as, for example, BMS-188494, TAK-475 or as described in WO2005077907, JP2007022943.

In one embodiment of the invention, the compound of the formula I is administered in combination with a lipoprotein(a) antagonist such as, for example, gemcabene (CI-1027).

In one embodiment of the invention, the compound of the formula I is administered in combination with an agonist of GPR109A (HM74A receptor agonist; NAR agonist (nicotinic acid receptor agonist) such as, for example, nicotinic acid or extended release niacin in conjunction with MK-0524A or those compounds described in WO2006045565, WO2006045564, WO2006069242, WO2006124490, WO2006113150, WO2007017261, WO2007017262, WO2007017265, WO2007015744, WO2007027532.

In another embodiment of the invention, the compound of the formula I is administered in combination with an agonist of GPR116 as are described for example in WO2006067531, WO2006067532.

In one embodiment of the invention, the compound of the formula I is administered in combination with a lipase inhibitor such as, for example, orlistat or cetilistat (ATL-962).

In one embodiment of the invention, the compound of the formula I is administered in combination with insulin.

In one embodiment, the compound of the formula I is administered in combination with a sulfonylurea such as, for example, tolbutamide, glibenclamide, glipizide, gliclazide or glimepiride.
In one embodiment, the compound of the formula I is administered in combination with a substance which enhances insulin secretion, such as, for example, KCP-265 (WO2003097064) or those described in WO2007026761.

In one embodiment, the compound of the formula I is administered in combination with agonists of the glucose-dependent insulinotropic receptor (GDIR) such as, for example, APD-668.

In one embodiment, the compound of the formula I is administered in combination with a biguanide such as, for example, metformin.

In yet another embodiment, the compound of the formula I is administered in combination with a meglitinide such as, for example, repaglinide, nateglinide or mitiglinide.

In a further embodiment, the compound of the formula I is administered with a combination of mitiglinide with a glitazone, e.g. pioglitazone hydrochloride.

In a further embodiment, the compound of the formula I is administered with a combination of mitiglinide with an alpha-glucosidase inhibitor.

In one embodiment, the compound of the formula I is administered in combination with a thiazolidinedione such as, for example, troglitazone, cigitazone, pioglitazone, rosiglitazone or the compounds disclosed in WO 97/41097 of Dr. Reddy's Research Foundation, in particular 5-[[3,4-dihydro-3-methyl-4-oxo-2-quinazolinylmethoxy]-phenyl]methyl]-2,4-thiazolidinedione.

In one embodiment, the compound of the formula I is administered in combination with an α-glucosidase inhibitor such as, for example, miglitol or acarbose.

In one embodiment, the compound of the formula I is administered in combination with an active ingredient which acts on the ATP-dependent potassium channel of the beta cells, such as, for example, tolbutamide, glibenclamide, glipizide, glimepiride or
repaglinide.

In one embodiment, the compound of the formula I is administered in combination with more than one of the aforementioned compounds, e.g. in combination with a sulfonylurea and metformin, a sulfonylurea and acarbose, repaglinide and metformin, insulin and a sulfonylurea, insulin and metformin, insulin and troglitazone, insulin and lovastatin, etc.

In one embodiment, the compound of the formula I is administered in combination with an inhibitor of glycogen phosphorylase, such as, for example, PSN-357 or FR-258900 or those as described in WO2003084922, WO2004007455, WO2005073229-31 or WO2005067932.

In one embodiment, the compound of the formula I is administered in combination with glucagon receptor antagonists such as, for example, A-770077, NNC-25-2504 or as described in WO2004100875 or WO2005065680.

In one embodiment, the compound of the formula I is administered in combination with an inhibitor of gluconeogenesis, such as, for example, FR-225654.

In one embodiment, the compound of the formula I is administered in combination with inhibitors of fructose-1,6-bisphosphatase (FBPase), such as, for example, CS-917
In one embodiment, the compound of the formula I is administered in combination with modulators of glucose transporter 4 (GLUT4), such as, for example, KST-48 (D.-O. Lee et al.: Arzneim.-Forsch. Drug Res. 54 (12), 835 (2004)).

In one embodiment, the compound of the formula I is administered in combination with inhibitors of glutamine-fructose-6-phosphate amidotransferase (GFAT), as are described for example in WO2004101528.

In one embodiment, the compound of the formula I is administered in combination with Janumet™, a fixed combination of sitagliptin phosphate with metformin hydrochloride.

In one embodiment, the compound of the formula I is administered in combination with inhibitors of 11-beta-hydroxysteroid dehydrogenase 1 (11β-HSD1), such as, for example, BVT-2733, JNJ-25918646, INCB-13739 or those as are described for example in WO2000190090-94, WO200343999, WO2004112782, WO200344000, WO200344009, WO2004112779, WO2004113310, WO2004103980, WO2004112784,
In one embodiment, the compound of the formula I is administered in combination with inhibitors of protein tyrosine phosphatase 1B (PTP1B), as are described for example in \(\text{WO2001 19830-31, WO2001 17516, WO2004506446, WO2005012295, WO20051 16003, WO20051 16003, WO200607959, DE 10 2004 060542.4, WO200700991 1, WO2007028145, WO2007081755.} \)

In one embodiment, the compound of the formula I is administered in combination with modulators of the sodium-dependent glucose transporter 1 or 2 (SGLT1, SGLT2), such as, for example, KGA-2727, T-1095, SGL-0010, AVE 2268, SAR 7226 and sergliflozin or as described for example in \(\text{WO2004007517, WO200452903, WO200452902, PCT/EP2005/005959, WO2005085237, JP2004359630, WO2005121 161, WO200601 8150, WO2006035796, WO2006062224, WO2006058597, WO2006073197, WO2006080577, WO2006087997, WO20061 08842, WO2007000445, WO2007014985, WO2007080170 or by A. L. Handlon in Expert Opin. Ther. Patents (2005) 15(1 1), 1531-1540.} \)

In one embodiment, the compound of the formula I is administered in combination with modulators of GPR40 as are described for example in \(\text{WO20070 13689, WO2007033002.} \)
In one embodiment, the compound of the formula I is administered in combination with modulators of GPR1 19b as are described for example in WO2004041274.

In one embodiment, the compound of the formula I is administered in combination with modulators of GPR1 19 as are described for example in WO2005061489 (PSN-632408), WO2004065380, WO2007003960-62 and WO2007003964.

In a further embodiment, the compound of the formula I is administered in combination with modulators of GPR120.

In one embodiment, the compound of the formula I is administered in combination with inhibitors of hormone-sensitive lipase (HSL) and/or phospholipases as described for example in WO2005073199, WO2006074957, WO2006087309, WO200611321, WO20070422178.

In one embodiment, the compound of the formula I is administered in combination with inhibitors of acetyl-CoA carboxylase (ACC), such as, for example, those as described in WO199946262, WO200372197, WO2003072197, WO2005044814, WO2005108370, JP2006131559, WO2007011809, WO2007011811, WO2007013691.

In a further embodiment, the compound of the formula I is administered in combination with modulators of xanthine oxidoreductase (XOR).

In one embodiment, the compound of the formula I is administered in combination with an inhibitor of phosphoenolpyruvate carboxykinase (PEPCK), such as, for example, those as described in WO2004074288.

In one embodiment, the compound of the formula I is administered in combination with an inhibitor of glycogen synthase kinase 3 beta (GSK-3 beta), as described for example in US2005222220, WO2005085230, WO2005111018, WO2003078403, WO2004022544, WO2003106410, WO2005058908, US2005038023,
In one embodiment, the compound of the formula I is administered in combination with an inhibitor of the serum/glucocorticoid-regulated kinase (SGK) as described for example in WO2006072354.

In one embodiment, the compound of the formula I is administered in combination with an agonist of the RUP3 receptor as described for example in WO2007035355.

In one embodiment, the compound of the formula I is administered in combination with an inhibitor of protein kinase C beta (PKC beta), such as, for example, ruboxistaurin.

In another embodiment, the compound of the formula I is administered in combination with an activator of the gene which codes for the ataxia telangiectasia mutated (ATM) protein kinase, such as, for example, chloroquine.

In one embodiment, the compound of the formula I is administered in combination with an endothelin A receptor antagonist such as, for example, avosentan (SPP-301).

In one embodiment, the compound of the formula I is administered in combination with inhibitors of "I-kappaB kinase" (IKK inhibitors), as are described for example in WO2001000610, WO2001030774, WO2004022553 or WO2005097129.

In one embodiment, the compound of the formula I is administered in combination with modulators of the glucocorticoid receptor (GR), as are described for example in WO2005090336, WO2006071609, WO2006135826.

In a further embodiment, the compound of the formula I is administered in combination with CART modulators (see "Cocaine-amphetamine-regulated transcript influences energy metabolism, anxiety and gastric emptying in mice" Asakawa, A. et al.: Hormone and Metabolic Research (2001), 33(9), 554-558);
NPY antagonists such as, for example, naphthalene-1-sulfonic acid {4-[(4-aminquinazolin-2-ylamino)methyl]cyclohexylmethyl}amide hydrochloride (CGP 71683A);

NPY-5 receptor antagonists such as L-152804, or as are described for example in WO2006001318;

NPY-4 receptor antagonists as are for example described in WO2007038942;

NPY-2 receptor antagonists as are for example described in WO2007038943;

Peptide YY 3-36 (PYY3-36) or analogous compounds, such as, for example, CJC-1682 (PYY3-36 conjugated with human serum albumin via Cys34), CJC-1643 (derivative of PYY3-36 which conjugates in vivo to serum albumin) or those as are described in WO2005080424, WO2006095166;

derivatives of the peptide obestatin as are described in WO2006096847;

cannabinoid receptor 1/cannabinoid receptor 2 (CB1/CB2) modulating compounds as described for example in WO2007001939, WO2007044215, WO2007047737; MC4 agonists (e.g. 1-amino-1,2,3,4-tetrahydronaphthalene^-carboxylic acid [2-(3a-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydropyrazolo[4,3-c]pyridin-5-yl]-1-(4-chlorophenyl)-2-oxoethyl]amide; (WO 01/91752)) or LB53280, LB53279, LB53278 or THIQ, MB243, RY764, CHIR-785, PT-141 or those that are described in WO2005060985, WO2005009950, WO2004087159, WO2004078717, WO2004078716, WO2004024720, US20050124652, WO2005051391, WO200412793, WO/US20050222014, US20050176728, US20050164914, US20050124636, US20050130988, US20040167201, WO2004005324, WO2004037797, WO2005042516, WO2005040109, WO2005030797, US20040224901, WO2005019215, WO200509184, WO2004085403, WO2005075458 or WO2006067224); orexin receptor antagonists (e.g. 1-(2-methylbenzoxazol-6-yl)-3-[1,5]naphthyridin-4-ylurea hydrochloride (SB-334867-A) or those as are described for example in WO200196302, WO200185693, WO2004085403, WO2005075458 or WO2006067224); histamine H3 receptor agonists (e.g. 3-cyclohexyl-1-(4,4-dimethyl-1,4,6,7-tetrahydroimidazo[4,5-c]pyridin-5-yl)propan-1-one oxalic acid salt (WO 00/63208) or those as are described in WO200064884, WO2005082893, WO2006107661, WO2007003804, WO2007016496, WO2007020213); histamine H1/histamine H3 modulators such as for example betahistine and its dihydrochloride; CRF antagonists (e.g. [2-methyl-9-(2,4,6-trimethylphenyl)-9H-1,3,9-triazaflouren-4-yl]dipropylamine (WO 00/66585)); CRF BP antagonists (e.g. urocortin); urocortin agonists;
agonists of the beta-3 adrenoceptor such as, for example, 1-(4-chloro-3-methanesulfonylmethylphenyl)-2-[2-(2,3-dimethyl-1H-indol-6-yloxy)ethyliamino]ethanol hydrochloride (WO 01/83451); or Solabegron (GW-427353) or N-5984 (KRP-204) or those described in JP2006111553, WO2002038543, WO2007048840-843;

MSH (melanocyte-stimulating hormone) agonists;

CCK-A agonists (such as, for example, [2-[4-(4-chloro-2,5-dimethoxyphenyl)-5-(2-cyclohexylethyl)thiazol-2-ylcarbamoyl]-5,7-dimethylindol-1-yl]acetic acid trifluoroacetic acid salt (WO 99/15525), SR-146131 (WO 0244150) or SSR-125180 or those as are described in WO200516034);
serotonin reuptake inhibitors (e.g. dexamfetamine);
mixed serotonin/dopamine reuptake inhibitors (e.g. bupropion) or fixed combinations of bupropion with naltrexone;
mixed serotoninergic and noradrenergic compounds (e.g. WO 00/71549);
5-HT receptor agonists, e.g. 1-(3-ethylbenzofuran-7-yl)piperazine oxalic acid salt (WO 01/09111);
mixed dopamine/norepinephrine/acetylcholine reuptake inhibitors (e.g. tesofensine);
5-HT2C receptor agonists (such as, for example, lorcaserin hydrochloride (APD-356), BVT-933 or those as are described in WO20077010, WO20077001-02,
5-HT6 receptor antagonists such as for example E-6837 or BVT-74316 or those as are described for example in WO2005058858, WO2007054257; bombesin receptor agonists (BRS-3 agonists); galanin receptor antagonists; growth hormone (e.g. human growth hormone or AOD-9604); growth hormone-releasing compounds (tertiary butyl 6-benzyloxy-1-(2-diisopropylaminoethylcarbamoyl)-3,4-dihydro-1 H-isoquinoline-2-carboxylate (WO 01/85695)); growth hormone secretagogue receptor antagonists (ghrelin antagonists) such as, for example, A-7781 93 or those as are described in WO2005030734; TRH agonists (see, for example, EP 0 462 884); uncoupling protein 2 or 3 modulators; leptin agonists (see, for example, Lee, Daniel W.; Leinung, Matthew C; Rozhavskaya-Arena, Marina; Grasso, Patricia. Leptin agonists as a potential approach to the treatment of obesity. Drugs of the Future (2001), 26(9), 873-881); DA agonists (bromocriptine or Doprexin); lipase/amylase inhibitors (for example WO 00/40569); inhibitors of diacylglycerol O-acyltransferases (DGATs) such as, for example, BAY-74-4113 or as described for example in US2004/0224997, WO200409461 8, WO200058491 , WO2005044250, WO2005072740, JP2005206492, WO2005013907, WO2006004200, WO2006019020, WO2006064189, WO2006082952, WO2006120125, WO200613919, WO2006134317, WO2007016538; inhibitors of fatty acid synthase (FAS) such as, for example, C75 or those as described in WO2004005277; inhibitors of stearoyl-CoA delta9 desaturase (SCD1) as described for example in WO2007009236, WO2007044085, WO2007046867, WO2007046868, WO20070501 124; oxyntomodulin; oleoyl-estrone or thyroid hormone receptor agonists or partial agonists such as, for example: KB-21 15 or those as described in WO20058279, WO200172692, WO200194293,
In one embodiment, the further active ingredient is varenicline tartrate, a partial agonist of the alpha 4-beta 2 nicotinic acetylcholine receptor.

In one embodiment, the further active ingredient is trodusquemine.

In one embodiment, the further active ingredient is a modulator of the SIRT1 enzyme.

In one embodiment of the invention, the further active ingredient is leptin; see, for example, "Perspectives in the therapeutic use of leptin", Salvador, Javier; Gomez-Ambrosi, Javier; Fruhbeck, Gema, Expert Opinion on Pharmacotherapy (2001), 2(10), 1615-1622.

In one embodiment, the further active ingredient is dexamphetamine or amphetamine.

In one embodiment, the further active ingredient is fenfluramine or dexfenfluramine.

In another embodiment, the further active ingredient is sibutramine.

In one embodiment, the further active ingredient is mazindole or phentermine.

In one embodiment, the compound of the formula I is administered in combination with bulking agents, preferably insoluble bulking agents (see, for example, Carob/Caromax® (Zunft H J; et al., Carob pulp preparation for treatment of hypercholesterolemia, ADVANCES IN THERAPY (2001 Sep-Oct), 18(5), 230-6). Caromax is a carob-containing product from Nutrinova, Nutrition Specialties & Food Ingredients GmbH, Industriepark Höchst, 65926 Frankfurt/Main). Combination with Caromax® is possible in one preparation or by separate administration of compounds of the formula I and Caromax®. Caromax® can in this connection also be
administered in the form of food products such as, for example, in bakery products or muesli bars.

It will be understood that every suitable combination of the compounds of the invention with one or more of the aforementioned compounds and optionally one or more further pharmacologically active substances will be regarded as falling within the protection conferred by the present invention.
The activity of the compounds was tested as follows:

5 Determination of EC50 values of PPAR agonists in the cellular PPARalpha assay

Principle

The potency of substances which bind to human PPARalpha and activate it in an agonistic manner is analyzed using a stably transfected HEK cell line (HEK= human embryo kidney) which is referred to here as PPARalpha reporter cell line. It contains two genetic elements, a luciferase reporter element (pdeltaM-GAL4-Luc-Zeo) and a PPARalpha fusion protein (GR-GAL4-humanPPARalpha-LBD) which mediates expression of the luciferase reporter element depending on a PPARalpha ligand. The stably and constitutively expressed fusion protein GR-GAL4-humanPPARalpha-LBD binds in the cell nucleus of the PPARalpha reporter cell line via the GAL4 protein
portion to the GAL4 DNA binding motifs 5' -upstream of the luciferase reporter element which is stably integrated in the genome of the cell line. There is only weak expression of the luciferase reporter gene in the absence of a PPARalpha ligand if fatty acid-depleted fetal calf serum (cs-FCS) is used in the assay. PPARalpha ligands bind and activate the PPARalpha fusion protein and thereby stimulate the expression of the luciferase reporter gene. The luciferase which is formed can be detected by means of chemiluminescence via an appropriate substrate.

Construction of the PPARalpha reporter cell line

The PPARalpha reporter cell line was prepared in two stages. Firstly, the luciferase reporter element was constructed and stably transfected into HEK cells. For this purpose, five binding sites of the yeast transcription factor GAL4 (Accession # AF264724) were cloned in 5'-upstream of a 68 bp-long minimal MMTV promoter (Accession # V01 175). The minimal MMTV promoter section contains a CCAAT box and a TATA element in order to enable efficient transcription by RNA polymerase II. The cloning and sequencing of the GAL4-MMTV construct took place in analogy to the description of Sambrook J. et. al. (Molecular cloning, Cold Spring Harbor Laboratory Press, 1989). Then the complete Photinus pyralis gene (Accession # M15077) was cloned in 3'-downstream of the GAL4-MMTV element. After sequencing, the luciferase reporter element consisting of five GAL4 binding sites, MMTV promoter and luciferase gene was recloned into a plasmid which confers zeocin resistance in order to obtain the plasmid pdeltaM-GAL4-Luc-Zeo. This vector was transfected into HEK cells in accordance with the statements in Ausubel, F.M. et al. (Current protocols in molecular biology, Vol. 1-3, John Wiley & Sons, Inc., 1995). Then zeocin-containing medium (0.5 mg/ml) was used to select a suitable stable cell clone which showed very low basal expression of the luciferase gene.

In a second step, the PPARalpha fusion protein (GR-GAL4-humanPPARalpha-LBQ was introduced into the stable cell clone described. For this purpose, initially the cDNA coding for the N-terminal 76 amino acids of the glucocorticoid receptor (Accession # P04150) was linked to the cDNA section coding for amino acids 1-147 of the yeast transcription factor GAL4 (Accession # P04386). The cDNA of the ligand-binding
domain of the human PPARalpha receptor (amino acids S167-Y468; Accession # S74349) was cloned in at the 3'-end of this GR-GAL4 construct. The fusion construct prepared in this way (GR-GAL4-humanPPARalpha-LBD) was recloned into the plasmid pcDNA3 (Invitrogen) in order to enable constitutive expression therein by the cytomegalovirus promoter. This plasmid was linearized with a restriction endonuclease and stably transfected into the previously described cell clone containing the luciferase reporter element. The finished PPARalpha reporter cell line which contains a luciferase reporter element and constitutively expresses the PPARalpha fusion protein (GR-GAL4-human PPARalpha-LBD) was isolated by selection with zeocin (0.5 mg/ml) and G418 (0.5 mg/ml).

Assay procedure

The activity of PPARalpha agonists is determined in a 3-day assay which is described below:

Day 1
The PPARalpha reporter cell line is cultivated to 80% confluence in DMEM (# 41965-039, Invitrogen) which is mixed with the following additions: 10% cs-FCS (fetal calf serum; #SH-30068.03, Hyclone), 0.5 mg/ml zeocin (#R250-01, Invitrogen), 0.5 mg/ml G418 (#10131-027, Invitrogen), 1% penicillin-streptomycin solution (#15140-122, Invitrogen) and 2 mM L-glutamine (#25300-024, Invitrogen). The cultivation takes place in standard cell culture bottles (# 3531 12, Becton Dickinson) in a cell culture incubator at 37°C in the presence of 5% CO₂. The 80%-confluent cells are washed once with 15 ml of PBS (#14190-094, Invitrogen), treated with 3 ml of trypsin solution (#25300-054, Invitrogen) at 37°C for 2 min, taken up in 5 ml of the DMEM described and counted in a cell counter. After dilution to 500,000 cells/ml, 35,000 cells are seeded in each well of a 96 well microtiter plate with a clear plastic base (#3610, Corning Costar). The plates are incubated in the cell culture incubator at 37°C and 5% CO₂ for 24 h.

Day 2
PPARalpha agonists to be tested are dissolved in DMSO in a concentration of 10 mM.
This stock solution is diluted in DMEM (#41965-039, Invitrogen) which is mixed with 5% cs-FCS (#SH-30068.03, Hyclone), 2 mM L-glutamine (#25030-024, Invitrogen) and the previously described antibiotics (zeocin, G418, penicillin and streptomycin). Test substances are tested in 11 different concentrations in the range from 10 µM to 100 pM. More potent compounds are tested in concentration ranges from 1 µM to 10 pM or between 100 nM and 1 pM.

The medium of the PPARalpha reporter cell line seeded on day 1 is completely removed by aspiration, and the test substances diluted in medium are immediately added to the cells. The dilution and addition of the substances is carried out by a robot (Beckman FX). The final volume of the test substances diluted in medium is 100 µl per well of a 96 well microtiter plate. The DMSO concentration in the assay is less than 0.1 % v/v in order to avoid cytotoxic effects of the solvent.

Each plate was charged with a standard PPARalpha agonist, which was likewise diluted in 11 different concentrations, in order to demonstrate the functioning of the assay in each individual plate. The assay plates are incubated in an incubator at 37°C and 5% CO₂ for 24 h.

Day 3
The PPARalpha reporter cells treated with the test substances are removed from the incubator, and the medium is aspirated off. The cells are lysed by pipetting 50 µl of Bright Glo reagent (from Promega) into each well of a 96 well microtiter plate. After incubation at room temperature in the dark for 10 minutes, the microtiter plates are measured in the luminometer (Trilux from Wallac). The measuring time for each well of a microtiter plate is 1 sec.

Evaluation

The raw data from the luminometer are transferred into a Microsoft Excel file. Dose-effect plots and EC50 values of PPAR agonists are calculated using the XL.Fit program as specified by the manufacturer (IDBS).

The PPARalpha EC50 values for the compounds of Examples 1 to 16 in this assay are in the range from 0,5 µM to 10 µM. Compounds of the invention of the formula I
activate the PPARalpha receptor.

Determination of EC50 values of PPAR agonists in the cellular PPARdelta assay

5 Principle

The potency of substances which bind to human PPARdelta and activate it in an agonistic manner is analyzed using a stably transfected HEK cell line (HEK= human embryo kidney) which is referred to here as PPARdelta reporter cell line. In analogy to the assay described for PPARalpha, the PPARdelta reporter cell line also contains two genetic elements, a luciferase reporter element (pdeltaM-GAL4-Luc-Zeo) and a PPARdelta fusion protein (GR-GAL4-humanPPARdelta-LBD) which mediates expression of the luciferase reporter element depending on a PPARdelta ligand. The stably and constitutively expressed fusion protein GR-GAL4-humanPPARdelta-LBD binds in the cell nucleus of the PPARdelta reporter cell line via the GAL4 protein portion to the GAL4 DNA binding motifs 5'-upstream of the luciferase reporter element which is stably integrated in the genome of the cell line. There is only little expression of the luciferase reporter gene in the absence of a PPARdelta ligand if fatty acid-depleted fetal calf serum (cs-FCS) is used in the assay. PPARdelta ligands bind and activate the PPARdelta fusion protein and thereby stimulate expression of the luciferase reporter gene. The luciferase which is formed can be detected by means of chemiluminescence via an appropriate substrate.

Construction of the PPARdelta reporter cell line

The production of the stable PPARdelta reporter cell line is based on a stable HEK-cell clone which was stably transfected with a luciferase reporter element. This step was already described above in the section "construction of the PPARalpha reporter cell line". In a second step, the PPARdelta fusion protein (GR-GAL4-humanPPARdelta-LBD) was stably introduced into this cell clone. For this purpose, the cDNA coding for the N-terminal 76 amino acids of the glucocorticoid receptor (Accession # P04150) was linked to the cDNA section coding for amino acids 1-147 of the yeast transcription
factor GAL4 (Accession # P04386). The cDNA of the ligand-binding domain of the human PPARdelta receptor (amino acids S139-Y441; Accession # L07592) was cloned in at the 3'-end of this GR-GAL4 construct. The fusion construct prepared in this way (GR-GAL4-humanPPARdelta-LBD) was recloned into the plasmid pcDNA3 (Invitrogen) in order to enable constitutive expression by the cytomegalovirus promoter. This plasmid was linearized with a restriction endonuclease and stably transfected into the previously described cell clone containing the luciferase reporter element. The resulting PPARdelta reporter cell line which contains a luciferase reporter element and constitutively expresses the PPARdelta fusion protein (GR-GAL4-human PPARdelta-LBD) was isolated by selection with zeocin (0.5 mg/ml) and G418 (0.5 mg/ml).

Assay procedure and evaluation

The activity of PPARdelta agonists is determined in a 3-day assay in exact analogy to the procedure already described for the PPARalpha reporter cell line except that the PPARdelta reporter cell line and a specific PPARdelta agonist was used as a standard to control test efficacy.

PPARdelta EC50 values in the range from 1 nM to 10 µM were measured for the PPAR agonists of Examples 1 to 16 described in this application. Compounds of the invention of the formula I activate the PPARdelta receptor.
The examples given in Table I serve to illustrate the invention, but without limiting it.

Table I

<table>
<thead>
<tr>
<th>Example</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CF3</td>
<td>N</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-OCH3</td>
<td>N</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>2-OCH3</td>
<td>H</td>
<td>N</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>2-OCH3</td>
<td>-OCH3</td>
<td>N</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>2-OCH3</td>
<td>-CH3</td>
<td>N</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-OCH3</td>
<td>N</td>
<td>N</td>
<td>CH</td>
<td>CH</td>
<td>CH</td>
</tr>
</tbody>
</table>
The potency of some of the described examples are indicated in the following table:

<table>
<thead>
<tr>
<th>Example</th>
<th>PPARdelta EC50 (µM)</th>
<th>PPARalpha EC50 (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3.55</td>
<td>n.a.</td>
</tr>
<tr>
<td>8</td>
<td>1.30</td>
<td>n.a.</td>
</tr>
<tr>
<td>14</td>
<td>0.034</td>
<td>1.89</td>
</tr>
<tr>
<td>16</td>
<td>0.0025</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Processes

5

The compounds of the general formula I according to the invention can be obtained as outlined to the reaction schemes below:

Process A

10
A compound of the general formula A-1 where R3, R4, R5, R6, R7, X4 and X5 are as defined and Hal means a halogen as chlorine, bromine or iodine is reacted with a sulfonyl chloride of general formula A-2 where R1 and R2 are as defined in the presence of a base as triethylamine or pyridine in a solvent as dichloromethane to give a compound of the general formula A-3. The compound of general formula A-3 is either converted to the boronic acid or boronic ester of general formula A-4 where M1
and M2 can be independently hydrogen or alkyl (in the case of alkyl, M1 and M2 can form a ring system) by treatment with a borolanyl as 4,4,5,5,4',4',5,5,5-Octarmethyl-[2,2']bi[1,3,2]dioxaborolanyl, in presence of potassium acetate and using a catalytic amount of a transition metal as for example palladium and a ligand as Bis(diphenylphosphino)ferrocene and is then reacted with an arylhalide of general formula A-6, where R8, R9, X1, X2 and X3 are as defined and Hal means a halogen as chlorine, bromine or iodine under suzuki-type reaction conditions using a catalytic amount of a transition metal as for example palladium and a ligand as for example triphenylphosphine in the presence of a base as for example Cs2CO3 in a solvent as for example DMF/water, to obtain a compound of general formula A-7. Or the compound of general formula A-3 is directly reacted with a boronic acid or a boronic ester of general formula A-5, where M1 and M2 can be independently hydrogen or alkyl (in the case of alkyl, M1 and M2 can form a ring system) and R8, R9, X1, X2 and X3 are as defined under the above mentioned suzuki-type reaction conditions to give the compound of general formula A-7. The compound of the general formula A-7 is reacted with hydroxylamine hydrochloride in the presence of a base as triethylamine in a solvent as tetrahydrofuran and methanol to obtain a compound of the general formula A-8. This reaction can be facilitated by heating the reaction mixture under microwave irradiation. This compound of general formula A-8 is converted to the product of general formula A-9 by reaction with phenylchloroformate in the presence of a base as pyridine or diisopropylethylamine followed by heating the reaction mixture with microwave irradiation to allow cyclization or alternatively isolating the resulting intermediate and treating it with a base as 1,8-diazabicyclo[5.4.0]undec-7-ene in a solvent as acetonitrile.

Examples 1 - 12 were obtained according to process A.

Other compounds can be obtained accordingly or by known processes.

Process B
A compound of the general formula B-1 where R3, R4, R5, R6, R7, X4 and X5 are as defined and Hal means a halogen as chlorine, bromine or iodine is either converted to the boronic acid or boronic ester of general formula B-2 where M1 and M2 can be independently hydrogen or alkyl (in the case of alkyl, M1 and M2 can form a ring system) by treatment with a borolanyl as 4,4',5,5',4',5',5'-Octamethyl-[2,2']bi[[1,3,2]dioxaborolanyl], in presence of potassium acetate and using a catalytic amount of a transition metal as for example palladium and a ligand as Bis(diphenylphosphino)ferrocene and is then reacted with an arylhalide of general formula B-4, where R8.R9, X1.X2 and X3 are as defined and Hal means a halogen as chlorine, bromine or iodine under suzuki-type reaction conditions using a catalytic amount of a transition metal as for example palladium and a ligand as for example triphenylphosphate in the presence of a base as for example Cs2CO3 in a solvent as for example DMF/water, to obtain a compound of general formula B-5. Or the compound of general formula B-1 is directly reacted with a boronic acid or a boronic ester of general formula B-3, where M1 and M2 can be independently hydrogen or alkyl (in the case of alkyl, M1 and M2 can form a ring system) and R8, R9, X1.X2 and X3 are as defined under the above mentioned suzuki-type reaction conditions to give the compound of general formula B-5. The compound of general formula B-5 is reacted with a sulfonylchloride of general formula B-6 where R1 and R2 are as defined in the presence of a base as triethylamine or pyridine in a solvent as dichloromethane to give a compound of the general formula B-7. The compound of the general formula B-7 is reacted with hydroxylamine hydrochloride in the presence of a base as triethylamine in a solvent as tetrahydrofuran and methanol to obtain a compound of the general formula B-8. This reaction can be facilitated by heating the reaction mixture under microwave irradiation. This compound of general formula B-18 is converted to the product of general formula B-9 by reaction with phenylchloroformate in the presence of a base as pyridine or diisopropylethylamine followed by heating the reaction mixture with microwave irradiation to allow cyclization or alternatively isolating the resulting intermediate and treating it with a base as 1,8-diazabicyclo[5.4.0]undec-7-ene in a solvent as acetonitrile.

Examples 13 - 16 were obtained according to process B.
Other compounds can be obtained accordingly or by known processes.

Process C:

This process was used to synthesize the compound of general formula B-5 in process B, wherein R3 and R4 are H.

A compound of the general formula C-1 where R7, X4 and X5 are as defined and Hal means a halogen as chlorine, bromine or iodine is reacted with a boronic acid or a boronic ester of general formula C-2, where M1 and M2 can be independently hydrogen or alkyl (in the case of alkyl, M1 and M2 can form a ring system) and R8, R9, X1, X2 and X3 are as defined under suzuki-type reaction conditions using a catalytic amount of a transition metal as for example palladium and a ligand as for example triphenylphosphine in the presence of a base as for example Cs2CO3 in a solvent as for example DMF/water, to obtain a compound of general formula C-3. The compound of general formula C-3 is deprotonated by a base as for example lithium diisopropylamide in a solvent as tetrahydrofuran and treated with alkylating reagents R5-LG and/or R6-LG, wherein LG means a leaving group as for example a iodide, bromide, mesylate or tosylate to obtain a compound of general formula C-4. The compound of general formula C-4 is reduced by a reducing agent as for example lithium aluminiumhydride in a solvent as tetrahydrofuran to obtain a compound of general formula C-5. The compound of general formula C-5 corresponds the compound of general formula B-5 in process B, wherein R3 and R4 are H.
Other compounds can be obtained accordingly or by known processes.

List of abbreviation:

<table>
<thead>
<tr>
<th>Ac</th>
<th>acetyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIBN</td>
<td>2,2'-Azobis(2-methylpropionitrile)</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>iBu</td>
<td>isobutyl</td>
</tr>
<tr>
<td>tBu</td>
<td>tert-Butyl</td>
</tr>
<tr>
<td>BuLi</td>
<td>n-butyllithium</td>
</tr>
<tr>
<td>Bz</td>
<td>benzoyl</td>
</tr>
<tr>
<td>Cy</td>
<td>cyclohexyl</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-Diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DCI</td>
<td>Direct chemical ionization (MS)</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DMAP</td>
<td>N,N-dimethylanilinopyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>dba</td>
<td>dibenzylideneacetone</td>
</tr>
<tr>
<td>dpff</td>
<td>1,1'-Bis(diphenylphosphino)ferrocene</td>
</tr>
<tr>
<td>EE</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>eq</td>
<td>equivalents</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray-ionisation (MS)</td>
</tr>
<tr>
<td>Hal</td>
<td>halogen</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>LG</td>
<td>Leaving group</td>
</tr>
<tr>
<td>LC-MS</td>
<td>liquid chromatography coupled with mass-spectroscopy</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MS</td>
<td>mass-spectroscopy</td>
</tr>
<tr>
<td>MsCl</td>
<td>Methansulfonylchloride</td>
</tr>
<tr>
<td>NBS</td>
<td>N-Bromosuccinimide</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
</tbody>
</table>
Further compounds of the formula I can be prepared correspondingly or by known processes.

The experimental procedures for preparing the examples mentioned above are described below:

The following intermediates were prepared according to process C:

Intermediate 1

3,3-Dimethyl-5-(4-trifluoromethyl-phenyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine

![Chemical reaction diagram]

5-(4-Trifluoromethyl-phenyl)-1,3-dihydro-pyrrolo[2,3-b]pyridin-2-one
8.13 g 4-(Trifluormethyl)phenyl-boronic acid, 7.6 g 5-Bromo-1,3-dihydro-pyrrolo[2,3-b]pyridin-2-one and 34.9 cesium carbonate were dissolved in a mixture of 14 ml water and 42 ml dimethylformamide. The reaction mixture was degassed with argon and then 2.0 g tetrakis(triphenylphosphine)palladium(0) were added and the mixture heated to 100°C for two hours. Then 1.0 g 4-(Trifluormethyl)phenyl-boronic acid were added and the mixture stirred for an additional hour. Then 1.0 g 4-(Trifluormethyl)phenyl-boronic acid were added and the mixture stirred for additional three hours at 100°C. The cooled reaction mixture was diluted with 500 ml ethyl acetate and washed with 300 ml water and brine. The organic layer was dried over MgSO₄ and the solvent removed in vacuo. The resulting crude material was purified by chromatography on silica gel to obtain 1.2 g 5-(4-Trifluormethyl-phenyl)-1,3-dihydro-pyrrolo[2,3-b]pyridin-2-one.

C₁₄H₉F₃N₂O (278.24), MS(ESI⁺): 279.1 (M+H⁺), Rf(ethyl acetate) = 0.38.

3,3-Dimethyl-5-(4-trifluoromethyl-phenyl)-1,3-dihydro-pyrrolo[2,3-b]pyridin-2-one

1.2 g 5-(4-Trifluormethyl-phenyl)-1,3-dihydro-pyrrolo[2,3-b]pyridin-2-one were dissolved in 60 ml tetrahydrofuran and cooled in an ice bath to 0°C. Then 7.12 ml of a 2M solution of lithium diisopropylamide in tetrahydrofuran were added dropwise within five minutes. The mixture was cooled to -78°C and 1.77 ml N,N,N’,N’-Tetramethyl-ethane-1,2-diamine were added followed by the addition of 0.88 ml iodomethane. The cooling bath was removed and the reaction mixture warmed to room temperature within four hours. Then the mixture was stirred at room temperature overnight. Then the mixture was cooled in an ice bath to 0°C. Then 7.12 ml of a 2M solution of lithium diisopropylamide in tetrahydrofuran were added dropwise within five minutes. The mixture was stirred for one hour and then cooled to -78°C. 1.77 ml N,N,N’,N’-
Tetramethyl-ethane-1,2-diamine were added followed by the addition of 0.88 ml iodomethane. The mixture was stirred at -78°C for one hour. The cooling bath was removed and the reaction mixture allowed to warm to room temperature. Then the mixture was stirred at room temperature for three hours. 300 ml ethyl acetate were added and the mixture washed with 200 ml water. The organic layer was dried over MgSO₄ and the solvent removed in vacuo. The resulting crude material was purified by chromatography on silica gel to obtain 1.33 g 3,3-Dimethyl-5-(4-trifluoromethyl-phenyl)-1,3-dihydro-pyrrolo[2,3-b]pyridin-2-one.

C₁₆H₁₃F₃N₂O (306.29), MS(ESI⁺): 307.1 (M+H⁺), Rf(ethyl acetate: n-heptane = 1:1) = 0.22.

3,3-Dimethyl-5-(4-trifluoromethyl-phenyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine

1.33 g 3,3-Dimethyl-5-(4-trifluoromethyl-phenyl)-1,3-dihydro-pyrrolo[2,3-b]pyridin-2-one were dissolved in 50 ml tetrahydrofuran. 330 mg lithium aluminiumhydride were added and the reaction mixture stirred for one hour at room temperature. Then 330 mg lithium aluminiumhydride were added and the reaction mixture stirred for two hours at room temperature. Then 330 mg lithium aluminiumhydride were added and the reaction mixture stirred for four hours at 50°C. Then 1 ml water was added to the cooled reaction mixture. Then 1 g MgSO₄ were added followed by 3 g isolute. The solvent was removed in vacuo and the residue purified by chromatography on silica gel to obtain 490 mg 3,3-Dimethyl-5-(4-trifluoromethyl-phenyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine.

C₁₆H₁₅F₃N₂ (292.31), MS(ESI⁺): 293.1 (M+H⁺).

Intermediate 2

3,3-Dimethyl-5-(4-trifluoromethyl-phenyl)-2,3-dihydro-1H-pyrrolo[3,2-b]pyridine
According to the method described for 3,3-Dimethyl-5-(4-trifluoromethyl-phenyl)-2,3-dihydro-1 H-pyrrolo[2,3-b]pyridine (Intermediate 1), 3,3-Dimethyl-5-(4-trifluoromethyl-phenyl)-2,3-dihydro-1 H-pyrrolo[3,2-b]pyridine was obtained from commercially available 5-Bromo-1,3-dihydro-pyrrolo[3,2-b]pyridin-2-one.

C16H15F3N2 (292.31), MS(ESI\(^+\)): 293.1 (M+H\(^+\)), Rf(ethyl acetate: n-heptane = 1:1) = 0.40.

The following examples were prepared according to process A:

Example 1

3-{4-[5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

4-(5-Bromo-2,3-dihydro-indole-1-sulfonyl)-benzonithle
5.09 g of commercially available 4-cyano-benzenesulfonyl chloride were dissolved in 125 ml dichloromethane. Then 5.0 g 5-Bromo-2,3-dihydro-1 H-indole were added followed by 12.2 ml triethylamine. The mixture was stirred at room temperature for thirty minutes. Then the solvent was removed in vacuo. The residue was diluted with 100 ml of ethyl acetate and the mixture washed with 100 ml water and 100 ml saturated NaHCO3 solution. The organic layer was then dried over MgSO4. The solvent was removed in vacuo. The resulting crude material was purified by chromatography on silica gel to obtain 5.46 g of 4-(5-Bromo-2,3-dihydro-indole-1-sulfonyl)-benzonitrile.

4-[5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-benzonitrile

236.5 mg 2-(Trifluormethyl)pyridin-5-ylboronic acid, 300.0 mg 4-(5-Bromo-2,3-dihydro-indole-1-sulfonyl)-benzonitrile and 807.4 mg cesium carbonate were dissolved in a mixture of 3 ml water and 10 ml dimethylformamide. The reaction mixture was degassed with argon and then 47.7 mg tetrakis(triphenylphosphine)palladium(0) were added and the mixture heated to 90°C for two hours. The cooled reaction mixture was diluted with 100 ml ethyl acetate and washed with 50 ml water and brine. The organic layer was dried over MgSO4 and the solvent removed in vacuo. The resulting crude material was purified by purified by chromatography on silica gel to obtain 223 mg 4-[5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-benzonitrile.

C21H14F3N3O2S (429.08), MS(ESI+): 430.1 (M+H+).
N-Hydroxy-4-[5-(6-trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-benzamidine

223 mg 4-[5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-benzonitrile were dissolved in a mixture of 8 ml tetrahydrofuran and 8 ml methanol. 902 mg hydroxylamine hydrochloride were added followed by the addition of 1.82 ml triethylamine. The reaction mixture was stirred at 90°C for four hours. The solvents were removed in vacuo and the resulting residue poured into 50 ml water and extracted five times with portions of 50 ml ethylacetate. The combined organic extracts were washed with 100 ml brine, dried over MgSO₄ and the solvent was evaporated in vacuo to obtain 550 mg crude N-Hydroxy-4-[5-(6-trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-benzamidine. This material was used without further purification.

C₂₁H₁₇F₃N₄O₃S (462.45), MS(ESI⁺): 463.1 (M+H⁺).

3-[4-[5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl]-4H-[1,2,4]oxadiazol-5-one

550 mg crude N-Hydroxy-4-[5-(6-trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-benzamidine were dissolved in 20 ml dichloromethane. 0.17 ml pyridine and 0.18 ml phenylchloroformate were added and the mixture stirred at room temperature for ten minutes. The mixture was diluted by the addition of 20 ml acetonitrile and 0.89
ml 1,8-diazabicyclo[5.4.0]undec-7-ene were added. The mixture was stirred at room temperature for 15 minutes. The mixture was evaporated in vacuo and the resulting crude material was purified by reversed phase HPLC to obtain 175 mg 3-{4-[5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}H^+H^-Joxadiazol-5-one.

C_{22}H_{15}F_{3}N_{4}O_{4}S (488.45), MS(ESI^+) : 489.1 (M+H^+), 530.1 (M+MeCN+H^+).

Example 2
3-{4-[5-(6-Methoxy-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

![Chemical structure of 3-{4-[5-(6-Methoxy-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one]

According to the method described for 3-{4-[5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one in example 1, 3-{4-[5-(6-Methoxy-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one was obtained from 4-(5-Bromo-2,3-dihydro-indole-1-sulfonyl)-benzonitrile and commercially available 2-Methoxy-5-pyridineboronic acid.

C_{22}H_{18}N_{4}O_{5}S (450.48), MS(ESI^+) : 451.2 (M+H^+).

Example 3
3-{4-[5-(2-Methoxy-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

![Chemical structure of 3-{4-[5-(2-Methoxy-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one]

According to the method described for 3-{4-[5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one in example 1, 3-{4-[5-(2-
Methoxy-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one was obtained from 4-(5-Bromo-2,3-dihydro-indole-1-sulfonyl)-benzonitrile and commercially available (2-Methoxy-3-pyridinyl)-boronic acid.

Example 4

3-{4-[5-(2,6-Dimethoxy-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

According to the method described for 3-{4-[5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one in example 1, 3-{4-[5-(2,6-Dimethoxy-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one was obtained from 4-(5-Bromo-2,3-dihydro-indole-1-sulfonyl)-benzonitrile and commercially available 2,6-Dimethoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine.

C23H20N4O6S (480.50), MS(ESI⁺): 481.1 (M+H⁺).

Example 5

3-{4-[5-(2-Methoxy-6-methyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

According to the method described for 3-{4-[5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one in example 1, 3-{4-[5-(2-Methoxy-6-methyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one was obtained from 4-(5-Bromo-2,3-dihydro-indole-1-sulfonyl)-benzonitrile and commercially available 2-Methoxy-6-methylpyridin-3-ylboronic acid.

C23H20N4O5S (464.50), MS(ESI⁺): 465.0 (M+H⁺).
Example 6
3-{4-[5-(2-Methoxy-pyrimidin-5-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

According to the method described for 3-{4-[5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one in example 1, 3-{4-[5-(2-Methoxy-pyrimidin-5-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one was obtained from 4-(5-Bromo-2,3-dihydro-indole-1-sulfonyl)-benzonitrile and commercially available 2-Methoxy-5-pyrimidineboronic acid.

C21H17N5O5S (451.46), MS(ESI+): 452.0 (M+H+).

Example 7
3-{4-[5-(5-Methyl-pyridin-2-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

According to the method described for 3-{4-[5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one in example 1, 3-{4-[5-(5-Methyl-pyridin-2-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one was obtained from 4-(5-Bromo-2,3-dihydro-indole-1-sulfonyl)-benzonitrile and commercially available 5-Methylpyridine-2-boronic acid.

C22H18N4O4S (434.48), MS(ESI+): 435.1 (M+H+).
Example 8

3-{4-[5-(5-Methoxy-pyridin-2-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-\[1,2,4\]oxadiazol-5-one

4-(5-Bromo-2,3-dihydro-indole-1-sulfonyl)-benzonitrile, 2.31 g

4,4,5,4',4',5',5'-Octamethyl-[2,2']bi[1,3,2]dioxaborolanyl, 2.43 g Potassium acetate and 202 mg 1,1'-Bis(diphenylphosphino)ferrocene Palladium(II) chloride were dissolved in 45 mL dry
dimethylsulfoxide. The reaction mixture was heated to 80°C for two hours. Then 15 ml brine were added to the cooled reaction mixture and the mixture extracted with 100 ml diethyl ether and 200 ml ethyl acetate. The combined organic extracts were dried over MgSO4 and the solvent removed in vacuo. The residue was purified by chromatography on silica gel to obtain 2.76 g 4-[5-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-2,3-dihydro-indole-1-sulfonyl]-benzonitrile. C21 H23BN2O4S (410.30), MS(ESI^+): 435.1 (M+H^+).

4-(5-Dihydroxyboranyl-2,3-dihydro-indole-1-sulfonyl)-benzonitrile

![Chemical structure](image)

2.76 g 4-[5-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-2,3-dihydro-indole-1-sulfonyl]-benzonitrile and 4.32 g sodium periodate were dissolved in a mixture of 45 ml tetrahydrofuran and 15 ml water. The mixture was stirred at room temperature for two hours. Then 2 ml 4M hydrochloric acid was added and the mixture stirred at room temperature for one hour. 150 ml water were added and the mixture extracted three times with portions of 50 ml ethyl acetate. The combined organic extracts were dried over MgSO4 and the solvent removed in vacuo to obtain 2.94 g of crude 4-(5-Dihydroxyboranyl-2,3-dihydro-indole-1-sulfonyl)-benzonitrile. This material was used without further purification. C15H13BN2O4S (328.16), MS(ESI^+): 329.1 (M+H^+).

4-[5-(5-Methoxy-pyridin-2-yl)-2,3-dihydro-indole-1-sulfonyl]-benzonitrile

![Chemical structure](image)

394 mg 2-ido-5-methoxypyridine, 500 mg 4-(5-Dihydroxyboranyl-2,3-dihydro-indole-1-sulfonyl)-benzonitrile and 1.49 g cesium carbonate were dissolved in a mixture of 5
ml water and 17 ml dimethylformamide. The reaction mixture was degassed with argon and then 88 mg tetrakis(triphenylphosphine)palladium(0) were added and the mixture heated to 90°C for two hours. The cooled reaction mixture was diluted with 100 ml ethyl acetate and washed with 50 ml water and brine. The organic layer was dried over MgSO₄ and the solvent removed in vacuo. The resulting crude material was purified by chromatography on silica gel to obtain 307 mg 4-[5-(5-Methoxy-pyridin-2-yl)-2,3-dihydro-indole-1-sulfonyl]-benzonitrile.

C₂₁H₁₇N₃O₃S (391.45), MS(ESI⁺): 392.2 (M+H⁺).

3-{4-[5-(5-Methoxy-pyridin-2-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl]-4H-[1,2,4]oxadiazol-5-one

According to the method described for 3-{4-[5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl]-4H-[1,2,4]oxadiazol-5-one in example 1, 3-{4-[5-(5-Methoxy-pyridin-2-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl]-4H-[1,2,4]oxadiazol-5-one was obtained from 4-[5-(5-Methoxy-pyridin-2-yl)-2,3-dihydro-indole-1-sulfonyl]-benzonitrile.

C₂₂H₁₈N₄O₅S (450.48), MS(ESI⁺): 451.0 (M+H⁺).

Example 9

3-{4-[5-(5-Trifluoromethyl-pyridin-2-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl]-4H-[1,2,4]oxadiazol-5-one

According to the method described for 3-{4-[5-(5-Methoxy-pyridin-2-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl]-4H-[1,2,4]oxadiazol-5-one in example 8, 3-{4-[5-(5-Trifluoromethyl-pyridin-2-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl]-4H-[1,2,4]oxadiazol-5-one was obtained from 4-[5-(5-Trifluoromethyl-pyridin-2-yl)-2,3-dihydro-indole-1-sulfonyl]-benzonitrile.

C₂₁H₁₇N₃O₃S (391.45), MS(ESI⁺): 392.2 (M+H⁺).
5-one was obtained from 4-(5-Dihydroxyboranyl-2,3-dihydro-indole-1-sulfonyl)-benzonitrile and 2-lodo-5-trifluormethyl-pyridine. C22H15F3N4O4S (488.45), MS(ESI+): 489.1 (M+H+).

Example 10

\[
\text{3-\{4-[5-(6-Trifluoromethyl-pyridazin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl\}-4H-}[1,2,4]\text{oxadiazol-5-one}
\]

\[
\begin{align*}
&\text{Cs2CO3, Pd(dba)3} \\
&\text{NH2-OH, NEt3} \\
&\text{1. Phenylchloroformate, Pyridine} \\
&\text{2. DBU, MeCN}
\end{align*}
\]

10 4-[5-(6-Trifluoromethyl-pyridazin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-benzonitrile

\[
\begin{align*}
&\text{Cs2CO3, Pd(dba)3} \\
&394 \text{ mg 2-lodo-5-methoxypyridine, 144 mg 3-Chloro-6-trifluormethyl-pyridazine, 323 mg 4-[5-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-2,3-dihydro-indole-1-sulfonyl]-}
\end{align*}
\]
benzonitrile, 2.56 g cesium carbonate and 23 mg fluoroboric acid tri-tert-
butylphosphine adduct were dissolved in 65 ml tetrahydrofuran. The reaction mixture
was degassed with argon and then 88 mg Tris(dibenzylideneacetone)palladium(0)
chloroform adduct were were added and the mixture heated to 80°C for two hours. The
cooled reaction mixture was diluted with 100 ml ethyl acetate and washed with 50 ml
water and brine. The organic layer was dried over MgSO₄ and the solvent removed in
vacuo. The resulting crude material was purified by chromatography on
silica gel to obtain 160 mg 4-[5-(6-Trifluoromethyl-pyridazin-3-yl)-2,3-dihydro-indole-1-
sulfonyl]-benzonitrile.

C₂₀H₁₃F₃N₄O₂S (430.41), MS(ESI⁺) : 431.1 (M+H⁺).

3-{4-[5-(6-Trifluoromethyl-pyridazin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-
[1,2,4]oxadiazol-5-one

According to the method described for 3-{4-[5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-
dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one in example 1, 3-{4-[5-(6-
Trifluoromethyl-pyridazin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-
[1,2,4]oxadiazol-5-one was obtained from 4-[5-(6-Trifluoromethyl-pyridazin-3-yl)-2,3-
dihydro-indole-1-sulfonyl]-benzonitrile.

C₂₁H₁₄F₃N₅O₄S (489.44), MS(ESI⁺) : 490.2 (M+H⁺).

The following examples were prepared according to process B:

Example 11
3-{2-Chloro-4-[5-(6-trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-
4H-[1,2,4]oxadiazol-5-one
5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-1H-indole

1.6 g 2-(Trifluormethyl)pyridin-5-ylboronic acid, 1.66 g commercially available 5-Bromo-2,3-dihydro-1 H-indole and 8.19 g cesium carbonate were dissolved in a mixture of 7 ml water and 21 ml dimethylformamide. The reaction mixture was degassed with argon and then 484 mg tetrakis(triphenylphosphine)palladium(0) were added and the mixture heated to 100°C for two hours. The cooled reaction mixture was diluted with 200 ml ethyl acetate and washed with 100 ml water and brine. The organic layer was dried over MgSO₄ and the solvent removed in vacuo. The resulting crude material was purified by purified by chromatography on silica gel to obtain 885 mg 5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-1 H-indole.

C₁₄H₁₁F₃N₂ (264.25), MS(ESI⁺): 265.1 (M+H⁺), Rf(n-Heptan:ethyl acetate = 1:1) = 0.26.

2-Chloro-4-[5-(6-trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-benzonitrile
1.18 g of commercially available 3-Chloro-4-cyano-benzenesulfonyl chloride were dissolved in 30 ml dichloromethane. Then 880 mg 5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-1 H-indole were added followed by 15 ml pyridine and 407 mg 4-dimethylaminopyridine. The mixture was stirred at 80°C for thirty minutes. The mixture was diluted with 100 ml of dichloromethane and washed with 100 ml water and 100 ml saturated NaHCO3 solution. The organic layer was then separated and dried over MgSO4. The solvent was removed in vacuo to obtain 1.49 g 2-Chloro-4-[5-(6-thflouromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-benzonitrile.

C21 H13CIF3N3O2S (463.87), MS(ESI+): 464.0 (M+H+).

3-{2-Chloro-4-[5-(6-trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

According to the method described for 3-{4-[5-(6-Trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one in example 1, 3-{2-Chloro-4-[5-(6-trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl} was obtained from 2-Chloro-4-[5-(6-trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-benzonitrile.

C22H14CIF3N4O4S (522.89), MS(ESI+): 523.1 (M+H+), 564.1 (M+MeCN+H+).

Example 12
3-{2-Chloro-4-[3,3-dimethyl-5-(6-trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one
According to the method described for 3-{2-Chloro-4-[5-(6-trifluoromethyl-pyridin-3-yl)-
2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one in example 11, 3-{2-Chloro-4-[3,3-dimethyl-5-(6-trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one was obtained from 2-(Trifluormethyl)pyridin-5-y1boronic acid, 5-Bromo-2,3-dihydro-3,3-dimethyl-1 H-indole and 3-Chloro-4-cyano-benzenesulfonyl chloride.

C24H18CIF3N4O4S (550.95), MS(ESI⁺): 551.2 (M+H⁺), 592.3(M+MeCN+H⁺).

Example 13
3-{4-[5-(4-Trifluoromethyl-phenyl)-2,3-dihydro-pyrrolo[2,3-b]pyridine-1-sulfonyl]-
phenyl}-4H-[1,2,4]oxadiazol-5-one

According to the method described for 3-{2-Chloro-4-[5-(6-trifluoromethyl-pyridin-3-yl)-
2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one in example 11, 3-{4-[5-(4-Trifluoromethyl-phenyl)-2,3-dihydro-pyrrolo[2,3-b]pyridine-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one was obtained from 4-(Trifluormethyl)phenylboronic acid, 5-Bromo-2,3-dihydro-1 H-pyrrolo[2,3-b]pyridine and 4-Cyano-benzenesulfonyl chloride.

C22H15F3N4O4S (488.45), MS(ESI⁺): 489.0 (M+H⁺).

Example 14
3-{2-Chloro-4-[δ^-trifluoromethyl-phenyO^.S-dihydro-pyrrolo^.S-blypyridine-i-
sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one
According to the method described for 3-{2-Chloro-4-[5-(6-trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazo-l-5-one in example 11, 3-{2-Chloro-4-[5-(4-thfluoromethyl-phenyl)-2,3-dihydro-pyrrolo[2,3-b]pyridine-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one was obtained from 4-(Trifluormethyl)phenylboronic acid, 5-Bromo-2,3-dihydro-1 H-pyrrolo[2,3-b]pyridine and 3-Chloro-4-cyano-benzenesulfonyl chloride.

C_{22}H_{14}CIF_3N_4O_4S (522.89), MS(ESI^+): 523.0 (M+H^+).

Example 15
3-{2-Chloro-4-[3,3-dimethyl-5-(4-trifluoromethyl-phenyl)-2,3-dihydro-pyrrolo[2,3-b]pyridine-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one

According to the method described for 3-{2-Chloro-4-[5-(6-trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazo-l-5-one in example 11, 3-{2-Chloro-4-[3,3-dimethyl-5-(4-thfluoromethyl-phenyl)-2,3-dihydro-pyrrolo[2,3-b]pyhdine-1-sulfonlyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one was obtained from 3,3-Dimethyl-5-(4-trifluoromethyl-phenyl)-2,3-dihydro-1 H-pyrrolo[2,3-b]pyridine (Intermediate 1) and 3-Chloro-4-cyano-benzenesulfonyl chloride.

C_{24}H_{18}CIF_3N_4O_4S (550.95), MS(ESI^+): 551.0 (M+H^+), Rf(ethyl acetate : methanol = 9:1) = 0.27.

Example 16
3-{2-Chloro-4-[3,3-dimethyl-5-(4-trifluoromethyl-phenyl)-2,3-dihydro-pyrrolo[3,2-b]pyridine-1-sulfonlyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one
According to the method described for 3-(2-Chloro-4-[5-(6-trifluoromethyl-pyridin-3-yl)-2,3-dihydro-indole-1-sulfonyl]-phenyl)-4H-[1,2,4]oxadiazol-5-one in example 11, 3-{2-Chloro-4-[3,3-dimethyl-5-(4-trifluoromethyl-phenyl)-2,3-dihydro-pyrrolo[3,2-b]pyridine-1-sulfonyl]-phenyl}-4H-[1,2,4]oxadiazol-5-one was obtained from 3,3-Dimethyl-5-(4-trifluoromethyl-phenyl)-2,3-dihydro-1H-pyrrolo[3,2-b]pyridine (Intermediate 2) and 3-Chloro-4-cyano-benzenesulfonyl chloride.

C24H18CIF3N4O4S (550.95), MS(ESI\(^{+}\)): 551.0 (M+H\(^{+}\)), Rf(ethyl acetate : methanol = 9:1) = 0.31.
Claims:

1. Compound of the formula I

 \[\text{formula I} \]

 wherein

 \[R_1 \text{ is H, halogen, (C1-C8) alkyl, (C0-C4) alkylene -(C3-C7) cycloalkyl, (C0-C4) alkylene -(C5-C10) heteroaryl, (C0-C4) alkylene -O-(C0-C8) alkyl, (C0-C4) alkylene -(C6-C10) aryl, wherein alkyl and alkylene are unsubstituted or 1- to 3-fold substituted by } F; \]

 \[R_2 \text{ is H, (C1-C8) alkyl, halogen, (C0-C4) alkylene -O-(C0-C8) alkyl, wherein alkyl and alkylene are unsubstituted or 1- to 3-fold substituted by } F; \]

 \[R_3, R_4 \text{ are independently H, (C1-C8) alkyl, halogen, (C0-C4) alkylene -O-(C0-C8) alkyl, wherein alkyl and alkylene are unsubstituted or 1- to 3-fold substituted by } F; \]

 \[R_5, R_6 \text{ are independently H, (C1-C8) alkyl, (C0-C4) alkylene -(C3-C7) cycloalkyl, (C0-C4) alkylene -(C5-C10) heteroaryl, (C0-C4) alkylene -O-(C0-C8) alkyl, (C0-C4) alkylene -(C6-C10) aryl, wherein alkyl and alkylene are unsubstituted or 1- to 3-fold substituted by } F; \]

 \[R_5 \text{ and } R_6 \text{ together with the carbon atom carrying them form a (C3-C7) cycloalkylring, wherein one carbon atom can be replaced by one heteroatom selected from the group consisting of O, S or N;} \]
R7 is H, halogen, (C1-C8) alkyl, (C0-C4) alkylene-O-(C0-C4) alkylene-H,
wherein alkyl and alkylene are unsubstituted or 1- to 3-fold substituted by F;

R8 is H, halogen, (C1-C8) alkyl, (C0-C4) alkylene-O-(C0-C4) alkylene-H,
wherein alkyl and alkylene are unsubstituted or 1- to 3-fold substituted by F,
whereby R8 is only attached to carbon;

R9 is H, halogen, (C1-C8) alkyl, (C0-C4) alkylene -(C3-C7) cycloalkyl, (C0-C4)
alkylene -O-(C0-C8) alkyl, (C0-C4) alkylene -(C6-C10) aryl, (C0-C4) alkylene
-(C5-C10) heteroaryl, wherein alkyl and alkylene are unsubstituted or 1- to 3-fold substituted by F;

at least one of X1,X2,X3,X4,X5 is N, the others are CH;

in all its stereoisomeric forms and mixtures in any ratio, and its physiologically
acceptable salts and tautomeric forms.

2. Compound of the formula I, as claimed in claim 1, wherein

R1 is H, halogen, (C0-C4) alkylene -O-(C0-C8) alkyl, wherein alkyl and alkylene
are unsubstituted or 1- to 3-fold substituted by F;

R2 is H or halogen;

R3,R4 are independently H, (C1-C8) alkyl;

R5,R6 are independently H, (C1-C8) alkyl;

R5 and R6 together with the carbon atom carrying them form a (C3-C6) cycloalkylring;

R7 is H or halogen;
R8 is H, halogen, or (C0-C4) alkylen-O-(C0-C4) alkylen-H;

R9 is H, (C1-C8) alkyl, (C0-C4) alkylen-O-(C0-C8) alkyl, wherein alkyl and alkylen are unsubstituted or 1- to 3-fold substituted by F;

at least one of X1,X2,X3 is N and the other are CH and X4 and X5 are CH, or at least one of X1,X2,X3 is CH and at least one of X4 and X5 is N and the other is CH.

3. Compound of the formula I, as claimed in claim 1 or 2, wherein
R1 is Cl, F or O-(C1-C4)-alkyl.

4. Compound of the formula I, as claimed in claim 1 or 2, wherein
R2 is in the para position to R1.

5. Compound of the formula I, as claimed in claim 1 or 2, wherein
R2 is H or F.

6. Compound of the formula I, as claimed in claim 1 or 2, wherein
R3,R4 are H or (C1-C4)-alkyl.

7. Compound of the formula I, as claimed in claim 1 or 2, wherein
R5,R6 are H or (C1-C4)-alkyl.

8. Compound of the formula I, as claimed in claim 1 or 2, wherein
R7 is F or Cl.

9. Compound of the formula I, as claimed in claim 1 or 2, wherein

R8 is H, F, or O-(C1-C4)-alkyl.

10. Compound of the formula I, as claimed in claim 1 or 2, wherein

R9 is (C1-C4)-alkyl or O-(C1-C4)-alkyl.

11. Compound of the formula I, as claimed in claim 1 or 2, wherein

One X1, X2, X3, X4, X5 is N, the others are CH.

12. Compound of the formula I, as claimed in claim 1 or 2, wherein

X1, X2, X3 is CH and X4 or X5 is N and the other of X4 and X5 is CH.

13. Compound of the formula I, as claimed in claims 1 to 12, wherein

R1 is H or Cl;
R2 is H;
R3 is H;
R4 is H;
R5 is H or methyl;
R6 is H or methyl;
R7 is H;
R8 is H or methoxy;
R9 is H, methyl, methoxy or CF3;

one or two of X1, X2, X3, X4, X5 is N, the others are CH.
14. A pharmaceutical comprising one or more compounds of the formula I as claimed in one or more of claims 1 to 13.

15. A pharmaceutical comprising one or more compounds of the formula I as claimed in one or more of claims 1 to 13 and one or more active substances which have favorable effects on metabolic disturbances or disorders frequently associated therewith.

16. A pharmaceutical comprising one or more compounds of the formula I as claimed in one or more of claims 1 to 13 and one or more antidiabetics.

17. A pharmaceutical comprising one or more compounds of the formula I as claimed in one or more of claims 1 to 13 and one or more lipid modulators.

18. Compounds of the formula I as claimed in one or more of claims 1 to 13 for use in the treatment and/or prevention of disorders of fatty acid metabolism and glucose utilization disorders.

19. Compounds of the formula I as claimed in one or more of claims 1 to 13 for use in the treatment and/or prevention of disorders in which insulin resistance is involved.

20. Compounds of the formula I as claimed in one or more of claims 1 to 13 for use in the treatment and/or prevention of diabetes mellitus including the prevention of the sequelae associated therewith.

21. Compounds of the formula I as claimed in one or more of claims 1 to 13 for use in the treatment and/or prevention of dyslipidemias and their sequelae.

22. Compounds of the formula I as claimed in one or more of claims 1 to 13 for use in the treatment and/or prevention of conditions which may be associated with the metabolic syndrome.
23. Compounds of the formula I as claimed in one or more of claims 1 to 13 for use in the treatment and/or prevention of demyelinating and other neurodegenerative disorders of the central and peripheral nervous system.

24. Compounds as claimed in one or more of claims 1 to 13 in combination with at least one further active compound for use in the treatment of disorders of fatty acid metabolism and glucose utilization disorders.

25. Compounds as claimed in one or more of claims 1 to 13 in combination with at least one further active compound for use in the treatment of disorders in which insulin resistance is involved.

26. A process for preparing a pharmaceutical comprising one or more of the compounds as claimed in one or more of claims 1 to 13, which comprises mixing the active compound with a pharmaceutically suitable carrier and bringing this mixture into a form suitable for administration.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D413/14 C07D471/04 A61K31/404 A61K31/437 A61P3/00
A61P25/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)
EPO-Internal, WPI Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 2005/016335 A (BAYER HEALTHCARE AG [DE]; SIEGEL STEPHAN [DE]; WOLTERING MICHAEL [DE];) 24 February 2005 (2005-02-24) pages 1,23; example 1</td>
<td>1-26</td>
</tr>
</tbody>
</table>

X See patent family annex.

Date of the actual completion of the international search: 28 August 2009
Date of mailing of the international search report: 08/09/2009

Name and mailing address of the ISA/
European Patent Office, P.B. 5816 Patentlaan 2 NL - 2280 HN The Hague
Tel. (+31-70) 940-2040, Fax (+31-70) 940-3016

Authorized officer
Bourghida, E
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2005016335 A</td>
<td>24-02-2005</td>
<td>CA 2534194 A1</td>
<td>24-02-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10335450 A1</td>
<td>17-02-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007501196 T</td>
<td>25-01-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007185183 A1</td>
<td>09-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 435225 T</td>
<td>15-07-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2005231916 A1</td>
<td>20-10-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0509517 A</td>
<td>11-09-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2561627 A1</td>
<td>20-10-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1938300 A</td>
<td>28-03-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC SP066892 A</td>
<td>24-11-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005097786 A1</td>
<td>20-10-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007530612 T</td>
<td>01-11-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20060135857 A</td>
<td>29-12-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PA 8628701 A1</td>
<td>25-11-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SV 2006002071 A</td>
<td>30-01-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008255212 A1</td>
<td>16-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008262052 A1</td>
<td>23-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007179191 A1</td>
<td>02-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UY 28837 A1</td>
<td>31-10-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200606870 A</td>
<td>30-04-2008</td>
</tr>
</tbody>
</table>