Title: FUSION PROTEINS OF COLLAGEN-BINDING DOMAIN AND PARATHYROID HORMONE

Abstract: Fusion proteins containing active agonist or antagonist fragments of parathyroid hormone (PTH) and parathyroid hormone related peptide (PTHrP) coupled to a collagen-binding domain are presented. The fusion proteins can be used to promote bone growth, to promote hair growth, to prevent cancer metastasis to bone, to promote immune reconstitution with a bone marrow stem cell transplant, to promote mobilization of bone marrow stem cells for collection for autologous stem cell transplant, and to treat renal osteodystrophy. Pharmaceutical agents comprising a collagen-binding polypeptide segment linked to a non-peptidyl PTH/PTHrP receptor agonist or antagonist are also presented.
Published: without international search report and to be republished upon receipt of that report.
FUSION PROTEIN OF COLLAGEN-BINDING DOMAIN AND PARATHYROID HORMONE

Background

Osteoporosis is a bone disease characterized by thinning of bone tissue and loss of bone density over time. It is widely prevalent in the elderly. The National Osteoporosis Foundation estimates that by 2020 nearly 14 million Americans will suffer from osteoporosis. An additional 18 million may have low bone mass, or osteopenia. Osteoporosis can occur either because the body fails to make enough new bone or reabsorbs too much old bone, or both.

Osteoporosis often progresses painlessly until a bone breaks. Any bone can be affected, but one of principal concern is the hip. A hip fracture impairs a person's ability to walk and causes prolonged and sometimes permanent disability.

Osteoporosis can be treated with anabolic therapies or antiresorptive therapies.

Anabolic therapies build new bone. But antiresorptive therapies do not. Instead they slow the resorption of existing bone. A major factor in the control of bone remodeling is parathyroid hormone (PTH). PTH and its analogs are the only class of anabolic therapeutics with proven clinical efficacy. Teriparatide is an approved therapeutic that is a shortened version of PTH. It consists of the N-terminal 34 amino acid residues of mature PTH (PTH(1-34)). Teriparatide is administered by once daily subcutaneous injection.

PTH is an 84-amino acid peptide. It is involved in mineral ion homeostasis. Increased PTH mobilizes calcium from bone in response to calcium deficient diets or vitamin D insufficiency. PTH also affects osteoblasts and stromal cells. Although hyperparathyroidism is associated with bone loss, PTH administration causes bone gain.

PTH binds to receptors on osteoblasts, specialized bone cells that synthesize bone, and this appears to prolong osteoblast life and increase osteoblast activity, causing bone gain.

PTH-related peptide (PTHrP) is a 141-amino acid protein that is homologous to PTH over its first 13 amino acids but diverges thereafter (1-3). PTH and PTHrP act through a common PTH/PTHrP receptor.

New treatments for osteoporosis are needed. Improved methods to deliver PTH, teriparatide, or other PTH/PTHrP receptor agonist agents are needed.
Summary

One embodiment disclosed herein involves compositions or bioactive agents comprising a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor agonist. The inventors have constructed fusion proteins containing residues 1-33 of PTH, an active agonist fragment of PTH, fused to a collagen-binding domain (CBD) of ColH, a collagenase from Clostridium histolyticum. The inventors have found that the fusion protein is more active than PTH(1-34) in promoting bone growth in vivo in mice, even when administered systemically. With local administration to, for instance, a fracture site, the difference in efficacy is expected to be even greater. Peptides that are antagonists of the PTH/PTHrP receptor can also be coupled to a CBD for targeted and enhanced bioactivity.

Compositions or bioactive agents containing a collagen-binding polypeptide segment coupled to a non-peptidyl agonist or antagonist of the PTH/PTHrP receptor are also presented.

Collagen is the most abundant protein in mammals. It is the major protein component of bone and cartilage. A CBD-bioactive agent fusion protein thus targets the bioactive agent to collagen, and generally to bone and cartilage. The CBD-PTH fusion proteins have longer half-lives than PTH because of their stable binding to collagen, which tends to remove them from circulation. They can be administered locally, for instance, at a fracture site, and will tend to remain at the site of administration through binding to collagen at or near the site of administration. In support of this longer half-life, a fusion protein containing epidermal growth factor (EGF) with a CBD was shown to have much longer half life than EGF alone (8). Data is also presented in Examples 4 and 5 herein showing that a PTH-CBD fusion protein administered weekly or monthly is as effective or more effective than PTH(1-34) administered daily.

One embodiment provides a composition comprising: a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor agonist; wherein the collagen-binding polypeptide segment is a bacterial collagen-binding polypeptide segment.

One embodiment provides a composition comprising: a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor agonist; wherein the collagen-binding polypeptide segment is a segment of a collagenase.

One embodiment provides a composition comprising: a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor agonist; wherein, over an 8-week
period, the increase in bone mineral density of the composition injected with a vehicle intraperitoneally weekly in a mouse relative to the vehicle alone is at least 50% larger than the increase in bone mineral density of an equimolar amount of a composition consisting of the PTH/PTHrP agonist relative to the vehicle alone.

That is, the bioactive agent (composition) causes an increase in bone mineral density in mice when administered at an appropriate dose in a vehicle, such as an aqueous buffer solution. A control treatment with the vehicle alone may also result in some change in bone mineral density, for example because the mice are juveniles that are still growing or elderly mice whose bone mineral density is otherwise declining. The appropriate way to measure the effect of the bioactive agent is to measure increase in bone mineral density in experimental mice treated with the agent minus increase (or decrease) in bone mineral density in control mice treated with vehicle alone. This increase in bone mineral density with administration of the agent after correction for change in bone mineral density in control mice receiving vehicle alone is at least 50% larger than the increase in bone mineral density in mice treated with an agent containing only the PTH/PTHrP receptor agonist (not coupled to a collagen-binding polypeptide segment), again after correcting for any changes in bone mineral density in control mice treated with vehicle alone. For instance, in FIG. 3 herein, described in Example 4, the vehicle control mice have an increase in bone mineral density during an 8-week treatment period of 5%, mice treated with PTH(1-34) (a PTH/PTHrP agonist) have an increase in BMD of about 7.5%, and mice treated with a PTH-CBD fusion protein containing PTH(I-33) coupled to a collagen-binding domain have an increase in BMD of over 15%. The mice treated with the PTH-CBD fusion protein thus have an increase in BMD after correcting for the change with vehicle alone of over 10% (over 15% minus 5%), and the mice treated with PTH(I-34) have an increase in BMD after correcting for the change with vehicle alone of about 2.5% (about 7.5% minus 5%). Thus, intraperitoneal weekly injection of the fusion protein causes over 300% more (over 4-times as much, over 10% versus about 2.5%) increase in BMD as injection of the PTH(I-34).

Another embodiment provides a fusion protein comprising: a bacterial collagen-binding polypeptide segment; linked to a PTH/PTHrP receptor agonist polypeptide segment.

Another embodiment provides a fusion protein comprising: a collagen-binding polypeptide segment of a collagenase; linked to a PTH/PTHrP receptor agonist polypeptide segment.
Another embodiment provides a fusion protein comprising: a collagen-binding polypeptide segment; linked to a PTH/PTHrP receptor antagonist polypeptide segment.

Another embodiment provides a composition comprising: a collagen-binding polypeptide segment; linked to a non-peptidyl PTH/PTHrP receptor agonist.

Another embodiment provides a composition comprising: a collagen-binding polypeptide segment; linked to a non-peptidyl PTH/PTHrP receptor antagonist.

Another embodiment provides a composition comprising: a collagen-binding polypeptide segment; linked to a PTH/PTHrP receptor antagonist.

Another embodiment provides a method of promoting bone growth in a mammal comprising: administering to the mammal a composition comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist.

Another embodiment provides a method of promoting bone growth in a mammal comprising: administering to the mammal a composition comprising (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist.

Another embodiment provides a method of promoting hair growth in a mammal comprising: administering to the mammal a composition comprising: (i) a collagen-binding polypeptide segment; linked to (ii) a PTH/PTHrP receptor agonist polypeptide segment.

Another embodiment provides a method of promoting hair growth in a mammal comprising: administering to the mammal a composition comprising: (i) a collagen-binding polypeptide segment; linked to (ii) a PTH/PTHrP receptor antagonist.

Another embodiment provides a method of promoting tissue growth around an implant in a mammal comprising: administering to the mammal a composition comprising (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist; wherein before, during, or after the step of administering the composition, the mammal receives an implant placed in contact with tissue in the mammal; and wherein the step of administering the composition is effective to promote tissue growth around the implant.

Another embodiment provides a method of promoting immune reconstitution in a mammal comprising: administering to the mammal a composition comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist; wherein before, during, or after the step of administering the composition, the mammal receives an administration of bone marrow stem cells. The composition enhances immune reconstitution by enhancing grafting, multiplication, and/or differentiation of the bone marrow stem cells.
Another embodiment provides a method of promoting bone marrow stem cell mobilization in a mammal comprising: administering to the mammal a composition comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist; wherein administering the composition increases the number of stem cells in circulating blood of the mammal (e.g., 7, 14, or 30 days after administering the fusion protein).

Another embodiment provides a method of treating or preventing renal osteodystrophy in a mammal comprising: administering to the mammal a composition comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor antagonist; wherein the mammal is afflicted with renal osteodystrophy or renal disease and the composition is effective to reduce bone loss in the mammal.

Another embodiment provides a method of treating or preventing (i.e., reducing incidence of) bone metastasis of cancer in a mammal comprising: administering to the mammal a composition comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor antagonist; wherein the composition is administered at a dosage effective to reduce incidence of bone metastasis of cancer or slow the growth of metastatic cancer in bone.

Brief Description of the Drawings

FIG. 1 is an SDS-PAGE gel showing the results of an experiment showing that two PTH-CBD fusion proteins bind to collagen.

FIG. 2 is a graph showing in vitro cAMP accumulation in cells stimulated with PTH(I-34) or PTH-CBD fusion proteins.

FIG. 3 is a bar graph showing increase in spinal bone mineral density in mice treated with weekly intraperitoneal injection for 8 weeks of buffer (vehicle), PTH(I-34), PTH-PKD-CBD fusion protein, or PTH-CBD fusion protein.

FIG. 4 is a bar graph showing absolute spinal bone mineral density of excised spine segments from mice sacrificed after treatment for 8 weeks with weekly intraperitoneal injection of buffer (vehicle), PTH(I-34), PTH-PKD-CBD fusion protein, or PTH-CBD fusion protein.

FIG. 5 is a bar graph showing serum calcium levels of mice after 8 weeks of weekly injections of buffer (vehicle), PTH(I-34), PTH-PKD-CBD fusion protein, or PTH-CBD fusion protein.
FIG. 6 is a bar graph showing serum alkaline phosphatase concentration of mice after 8 weeks of weekly injections of buffer (vehicle), PTH(I-34), PTH-PKD-CBD fusion protein, or PTH-CBD fusion protein.

FIG. 7 is a micrograph of sections of tibia bone from a vehicle-treated control mouse and a mouse receiving 8 weeks of weekly injection of PTH-CBD fusion protein. The sections were stained with hematoxylin and eosin stain. The micrograph shows increased cortical and trabecular bone mass in the bone of the mouse treated with PTH-CBD.

FIG. 8 is line graph of bone mineral density over time for mice treated monthly with PTH-CBD, PTH(I-34), or vehicle control for 6 months. At 6 months, the group receiving PTH(I-34) was treated daily for two weeks (indicated by the arrow on the X axis). Then all groups were untreated for the rest of the study.

FIG. 9 is a line graph of bone mineral density over time for mice treated with PTH(I-34) daily for 14 days (PTH), with the PTH-CBD fusion protein once at the initiation of the study (CBD-PTH-6), with PTH-CBD fusion protein at time 0 and a second time at 3 months (CBD-PTH-3), and with vehicle control.

FIG. 10 is a bar graph showing serum alkaline phosphatase concentration of mice after 8 weeks of weekly injections of buffer (vehicle), PTH(I-34), PTH-PKD-CBD fusion protein, or PTH-CBD fusion protein.

FIG. 11 is a bar graph of bone mineral density in mice receiving a single dose of a range of dosage amounts of PTH-CBD by subcutaneous injection. Bone mineral density was followed for 32 weeks. Each dosage was given to two mice.

FIG. 12 shows photographs of mice described in Example 8 having chemotherapy-induce alopecia and a shaved spot on their backs, treated with the PTH-CBD fusion protein by subcutaneous injection at the hairless spot, or untreated controls. There are 3 mice in each group, and photos are taken at 0 days, 14 days, and 21 days after the injection of PTH-CBD. The photos show greater hair growth in the subjects treated with the PTH-CBD fusion protein.

Detailed Description

This disclosure involves compositions, including bioactive agents and fusion proteins, comprising a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor agonist or antagonist. In a preferred embodiment, the compositions are fusion proteins where the PTH/PTHrP agonist or antagonist is a polypeptide segment, where the
collagen-binding polypeptide segment and PTH/PTHrP polypeptide segment are linked
together in a fusion protein. But the PTH/PTHrP agonist or antagonist portion can also be
a non-peptidyl agonist or antagonist.

The terms "fusion protein" and "fusion polypeptide" may be used to refer to a
single polypeptide comprising two functional segments, e.g., a collagen-binding
polypeptide segment and a PTH/PTHrP receptor agonist polypeptide segment. The fusion
proteins may be any size, and the single polypeptide of the fusion protein may exist in a
multimeric form in its functional state, e.g., by cysteine disulfide connection of two
monomers of the single polypeptide. A polypeptide segment may be a synthetic
polypeptide or a naturally occurring polypeptide. Such polypeptides may be a portion of a
polypeptide or may comprise a mutation.

The collagen-binding polypeptide segment is a polypeptide that binds collagen and
may be part of a larger fusion protein, bioactive agent, or pharmaceutical agent.
Determination of whether a composition, polypeptide segment, fusion protein, or
pharmaceutical or bioactive agent binds collagen can be made as described in Example 2
below. Briefly, it is incubated with collagen in binding buffer, and the mixture is then
filtered through a filter that would otherwise allow it to pass through but that blocks the
collagen and therefore holds back materials that bind to the collagen. The filtrate is then
assayed for the presence of the composition, polypeptide segment, fusion protein, or
pharmaceutical or bioactive agent. Preferably, at least 90%, more preferably at least 99%
of the collagen-binding composition, polypeptide segment, fusion protein, or
pharmaceutical or bioactive agent is retained by the filter in this assay, as compared to
when the filtration is performed without collagen.

One embodiment disclosed herein involves fusion proteins comprising a collagen-
binding polypeptide segment linked to a PTH/PTHrP receptor agonist polypeptide
segment.

The PTH/PTHrP receptor agonist polypeptide segment may be a synthetic
polypeptide or a naturally occurring polypeptide. Such polypeptides may be a portion of a
polypeptide or may comprise a mutation. Agonist activity with the PTH/PTHrP receptor
can be assayed as described in Example 3 below by a cAMP stimulation assay. An agonist
will stimulate cAMP synthesis. Preferably, an agonist can activate receptor activity at least
10% as much as PTH(1-34).

In a specific embodiment when injected intraperitoneally weekly in mice the
agonist fusion protein causes at least 50% more increase in bone mineral density (as
compared to vehicle control) than an equimolar amount of a polypeptide consisting of the PTH/PTHrP receptor agonist polypeptide segment when injected intraperitoneally weekly (as compared to vehicle control) over an 8-week period (as in Example 4 below). Likewise, in other specific embodiments, the fusion protein causes a statistically significantly (p<0.05) greater increase in BMD, or at least twice as much increase in BMD, than an equimolar amount of a polypeptide consisting of the PTH/PTHrP receptor agonist polypeptide segment or than PTH(1-34).

In some embodiments of the fusion proteins, the collagen-binding polypeptide segment is a bacterial collagen-binding polypeptide segment. In a more specific embodiment, it is a Clostridium collagen-binding polypeptide segment.

In some embodiments of the fusion proteins, the collagen-binding polypeptide segment is a segment of a collagenase, or a bacterial collagenase, or a Clostridium collagenase. Preferably the segment is only a portion of the collagenase and the collagen-binding polypeptide segment does not have collagenase activity.

In some embodiments, the collagenase is CoIH, SEQ ID NO:6.

In some embodiments, the collagen-binding polypeptide segment is or includes residues 901-1021 of SEQ ID NO:6 (residues 38-158 of SEQ ID NO:1), or a fragment of residues 38-158 of SEQ ID NO:1 at least 8 amino acid residues in length.

In some embodiments, the collagen-binding polypeptide segment is at least 90%, at least 95%, at least 96%, at least 98%, or at least 99% identical to residues 38-158 of SEQ ID NO:1.

In some embodiments, the collagen-binding polypeptide segment is or includes residues 807-1021 of SEQ ID NO:6 (residues 37-251 of SEQ ID NO:2).

In specific embodiments, the collagen-binding polypeptide segment is or comprises a fragment of residues 901-1021 of SEQ ID NO:6, e.g., a fragment of at least 8, at least 10, at least 20, at least 30 at least 40, or at least 50 consecutive amino acid residues of residues 901-1021 of SEQ ID NO:6.

Among other proteins the collagen-binding segment can be derived from are CoIG (5), a class I collagenase from Clostridium histolyticum. CoIH is a class II collagenase (6).

The collagen-binding polypeptide segment may also be a polypeptide segment from bone sialoprotein, fibronectin, or von Willebrand factor, as described in references (30-33), or may be polyglutamic acid (34).
In specific embodiments, the PTH/PTHrP receptor agonist polypeptide segment is a PTH or PTHrP polypeptide segment. One human isoform of PTH is SEQ ID NO: 7. One human isoform of PTHrP is SEQ ID NO: 8.

In specific embodiments, the PTH/PTHrP receptor agonist polypeptide segment is or includes residues 1-33 of SEQ ID NO: 1 (residues 1-33 of PTH (SEQ ID NO: 7)).

In specific embodiments, the PTH/PTHrP receptor agonist polypeptide segment is or includes residues 1-34 of PTH (SEQ ID NO: 7). In other embodiments, it is a fragment of residues 1-34 of PTH (SEQ ID NO: 7).

In specific embodiments, the PTH/PTHrP receptor agonist polypeptide segment is or includes residues 1-84 of PTH (SEQ ID NO: 7).

In specific embodiments, the PTH/PTHrP receptor agonist polypeptide segment is or includes residues 1-14 of PTH (SEQ ID NO: 7).

In specific embodiments, the PTH/PTHrP receptor agonist is a PTH or PTHrP polypeptide segment.

In one embodiment, the PTH/PTHrP receptor agonist polypeptide segment is N terminal to the collagen-binding polypeptide segment in the fusion protein. That is, the two polypeptide segments each have an N-terminal and a C-terminal, and the N-terminal of the collagen-binding polypeptide segment is linked directly or through a linker polypeptide segment to the C-terminal of the PTH/PTHrP agonist polypeptide segment.

The two polypeptide segments of the fusion proteins can be linked directly or indirectly. For instance, the two segments may be linked directly through, e.g., a peptide bond or chemical cross-linking, or indirectly, through, e.g., a linker segment or linker polypeptide.

This disclosure also provides a fusion protein comprising a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor antagonist polypeptide segment.

The PTH/PTHrP receptor antagonist polypeptide segment may be a synthetic polypeptide or a naturally occurring polypeptide. Such polypeptides may be a portion of a polypeptide or may comprise a mutation. Antagonist activity with the PTH/PTHrP receptor can be assayed as described in Example 3 below by a cAMP stimulation assay.

An antagonist will inhibit stimulation of cAMP synthesis by PTH(1-34). Preferably, when mixed with PTH(1-34), the antagonist can inhibit activation of the receptor by PTH(1-34) by at least 50%. In contrast, when not mixed with PTH, the antagonist activates the receptor by less than 5% of the receptor's maximal activation by PTH(1-34).
In the fusion proteins containing a PTH/PTHrP receptor antagonist, the collagen-binding polypeptide segment can be the same segments as found in the fusions containing a PTH/PTHrP receptor agonist.

In some embodiments, the PTH/PTHrP receptor antagonist is a PTH or PTHrP polypeptide segment.

The PTH/PTHrP receptor antagonist can include in one embodiment PTH(7-34), i.e., residues 7-34 of PTH (SEQ ID NO:7). In another embodiment, it is or includes residues 7-33 of PTH (SEQ ID NO:7). In other embodiments, it is a fragment of residues 7-34 of SEQ IDNO:8.

In another embodiment, the PTH/PTHrP receptor antagonist includes PTH(7-14), i.e., residues 7-14 of PTH (SEQ ID NO:7).

In another embodiment, the PTH/PTHrP receptor antagonists include residues 1-14 of PTH with an N-terminal extension. Adding an N-terminal extension to PTH or active N-terminal fragments of PTH converts the PTH peptides to antagonists. The N-terminal extension can be 1, 2, 3, 4, 5, or more amino acids in length. The identity of the amino acids in the N-terminal extension is typically not important. In one embodiment, the PTH/PTHrP receptor antagonist includes residues 1-33 of PTH with a Gly-Ser extension at the N-terminus (SEQ ID NO: 11).

In another embodiment, the PTH/PTHrP receptor antagonist includes PTHrP(7-34), i.e., residues 7-34 of SEQ ID NO:8, or a fragment of residues 7-34 of SEQ ID NO:8.

In another embodiment, the PTH/PTHrP receptor antagonist includes mouse TIP(7-39) (reference 18). Other PTH/PTHrP receptor antagonists that may be used in the fusion proteins are also disclosed in reference (18).

In one embodiment, the PTH/PTHrP receptor antagonist polypeptide segment is N terminal to the collagen-binding polypeptide segment in the antagonist fusion protein. That is, the two polypeptide segments each have an N-terminal and a C-terminal, and the N-terminal of the collagen-binding polypeptide segment is linked directly or through a linker polypeptide segment to the C-terminal of the PTH/PTHrP antagonist polypeptide segment.

As with the agonist, the two polypeptide segments of the antagonist fusion proteins can be linked directly or indirectly.

This disclosure also provides a method of promoting bone growth in a mammal involving administering to the mammal a fusion protein comprising a collagen-binding polypeptide segment linked to a PTH/PTHrP agonist polypeptide segment.
In particular embodiments, administering the fusion protein to the mammal increases trabecular bone mineral volume and/or trabecular bone mineral density or slows loss of trabecular bone mineral volume and/or trabecular bone mineral density.

In particular embodiments, administering the fusion protein to the mammal increases cortical bone mineral volume and/or cortical bone mineral density or slows loss of cortical bone mineral volume and/or cortical bone mineral density.

Bone mineral volume is visible from histologic staining of slides. The term "bone mineral volume" as used herein refers to the volume occupied by mineralized bone. "Bone mineral density" as used herein refers to areal bone density, i.e., the amount of bone mineral per unit 2-dimensional area of bone. It can be measured by x-rays, or DEXA (Example 4 below).

The inventors have found that the PTH-CBD fusion protein increases both the bone mineral volume and density of both trabecular and cortical bone. The effect on cortical bone is surprising, because PTH(l-34) has been shown to have little effect on cortical bone mineral density or even decrease cortical bone mineral density, even as it increases trabecular bone mineral density (25-27).

The fusion protein can be administered systemically, e.g., by intravenous injection. The inventors have found that when administering the fusion protein subcutaneously it binds locally at the site of injection if the fusion protein is dissolved in neutral pH buffer.

But if the fusion protein is dissolved in pH 4.5 or below buffer, the collagen-binding domain does not bind collagen, and the fusion protein has time to disperse systemically before it binds collagen elsewhere in the body at neutral pH. Thus, in one embodiment, systemic administration of the fusion proteins involves administering the fusion protein dissolved in buffer or aqueous solution at a pH lower than about 5.0 or at pH 4.5 or below.

In another embodiment, systemic administration of the fusion proteins involves administering the fusion proteins dissolved in aqueous solution at pH lower than about 6.0.

In particular embodiments, the fusion protein is administered by injection, e.g., intravenous or subcutaneous or intraperitoneal injection. Administration by injection may be systemic administration or local administration.

In particular embodiments, the fusion protein is administered in an orthopedic implant. Examples of orthopedic implants in which the fusion protein may be administered include an orthopedic bone void filler, an adjunct to bone fracture stabilization, an intramedullary fixation device, a joint augmentation/replacement device, a bone fixation plate, a screw, a tack, a clip, a staple, a nail, a pin, a rod, an anchor, a screw
augmentation device, or a cranial reconstruction device. Another example of an orthopedic implant is a dental implant. Examples of dental implants include an artificial tooth root replacement, implant-supported bridges and dentures. Other examples will be known to those of skill in the art.

To be administered in an implant, as used herein, means that the fusion protein may be associated with the implant, by for instance, adhesion, covalent or non-covalent bonding to the surface of the implant, entrapment in pores of a polymer coating of an implant, or mixing with a component of the implant, such as ceramic particles. If the ceramic particles are porous, the fusion protein can be entrapped in the pores. By "entrapmed in the pores" it is meant that diffusion of the fusion protein out of the material is slowed due to the pore structure, not necessarily that the fusion protein cannot diffuse out of the material until the material breaks down.

For instance, the fusion protein can be entrapped in a biodegradable polymer as described in U.S. Patent No. 7,060,299. It may be formed into particles with a polysaccharide gum, and then the particles entrapped in a matrix of a polymer as described in U.S. Patent No. 7,060,299. The polymer can be formed as a coating on the surface of an implant.

The fusion protein can also be bonded to a surface such as gold on an implant through sulphhydryls of the protein, as described in U.S. Patent No. 6,428,579.

The fusion protein can be mixed with a ceramic or with ceramic particles, including for example hydroxyapatite or tricalcium phosphate, both of which are often used as fillers for bone remodeling (U.S. Published Patent Application No. 20030091609).

A porous polymer can be formed by forming the polymer in an organic solvent with particles of a material that is not soluble in the organic solvent, such as salt or sugar crystals. After the polymer is cured, the particles can be removed to expose the open pores by washing the polymer matrix in an aqueous solution that solubilizes the salt or sugar particles. Incubating the polymer matrix with a solution of the fusion protein can allow the fusion protein to diffuse into the pores of the polymer and become entrapped therein (U.S. Published Patent Application No. 20030091609).

Other methods of adhering proteins to a surface of a material are disclosed in U.S. Patent No. 6,617,142. Still other methods are available to those of skill in the art.

The fusion protein can be mixed with demineralized bone matrix (DBM). Demineralized bone matrices are prepared by acid extraction of allograft bone, resulting in loss of most of the mineralized component but retention of collagen and noncollagenous
proteins, including growth factors. DBM is used as a bone-graft substitute or extender. Since DBM contains extensive amounts of collagen, the fusion proteins will bind to the collagen of DBM if mixed with DBM in binding buffer.

In specific embodiments, the orthopedic implant includes hydroxyapatite, tricalcium phosphate, or demineralized bone matrix. In other embodiments, the orthopedic implant includes a polymer. Many natural and synthetic polymers may be included in an orthopedic implant (e.g., as a coating). Examples of natural porous polymers include gelatin, fibrin, collagen, elastin, hyaluronic acid, chondroitin sulfate, dermatan sulfate, heparin sulfate, heparin, cellulose, chitin, chitosan, mixtures or copolymers thereof, or a wide variety of others typically disclosed as being useful in implantable medical devices. Examples of synthetic porous polymers include silicone, polyurethane, polysulfone, polyethylene, polypropylene, polyamide, polyester, polycarboxylic acids, polyvinylpyrrolidone (PVP), maleic anhydride polymers, polyamides, polyvinyl alcohols (PVA), polyethylene oxides, polyacrylic acid polymers, polytetrafluoroethylene, polyhydroxyethylmethacrylic acid (pHEMA), polyaminopropylmethacrylamide (pAPMA), polyacrylamido-2-methylpropanesulfonic acid (pAMPS), polyacrylamide, polyacrylic acid, mixtures or copolymers thereof, or a wide variety of others typically disclosed as being useful in implantable medical devices. Additional examples of synthetic porous polymers include biodegradable synthetic porous polymers, such as polyglycolic acid, polylactic acid, polydioxonone, poly(ε-caprolactone), polyanhydrides, poly(3-hydroxybutyrate), poly(ortho esters), poly(amine acids), polyiminocarbonates, and mixtures or copolymers thereof.

Thus, another embodiment provides a method of promoting tissue growth around an implant in a mammal comprising: administering to the mammal a fusion protein comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist polypeptide segment. Before, during, or after the step of administering the fusion protein, the mammal receives an implant placed in contact with tissue in the mammal; and the step of administering the fusion protein is effective to promote tissue growth around the implant. The tissue growth promoted around the implant may be bone, cartilage, or other tissue. In one embodiment, it may be skin.

In a particular embodiment, the step of administering the fusion protein comprises placing an implant in contact with tissue in the mammal, wherein the implant comprises the fusion protein.

In a particular embodiment, the implant is a dental implant.
In another embodiment, the implant is a bone graft.

In other embodiments, the implant is an orthopedic bone void filler, an adjunct to bone fracture stabilization, an intramedullary fixation device, a joint augmentation/replacement device, a bone fixation plate, a screw, a tack, a clip, a staple, a nail, a pin, a rod, an anchor, a screw augmentation device, or a cranial reconstruction device.

In specific embodiments, the implant comprises intact bone. Here, in one embodiment, the implant is incubated with the fusion protein for a time sufficient to allow the fusion protein to bind to collagen in the intact bone before implanting the implant in the mammal.

In specific embodiments, the implant comprises bone cement, hydroxyapatite, or demineralized bone.

In specific embodiments, the implant comprises osteoblasts.

In specific embodiments, the implant is predominantly plastic, metal, or ceramic (i.e., the majority of its mass is plastic, metal, or ceramic material).

Another embodiment provides a method of promoting hair growth in a mammal comprising: administering to the mammal a fusion protein comprising: a collagen-binding polypeptide segment; linked to a PTH/PTHrP receptor agonist polypeptide segment.

We have found that fusion proteins containing the receptor agonists were more effective than those containing receptor antagonists in promoting hair growth in mice treated with cyclophosphamide to induce chemotherapy-induced alopecia (Example 8 below). A fusion protein containing a PTH/PTHrP receptor antagonist was also tested and also induced some hair growth, but the hair that grew appeared less thick (data not shown). Thus, fusion proteins containing either a PTH/PTHrP receptor agonist or antagonist can be used to promote hair growth, but fusion proteins containing a receptor agonist are preferred for chemotherapy-induced alopecia.

To promote hair growth, the fusion proteins may be administered locally at a desired site of hair growth, e.g., by subcutaneous or intradermal injection. The fusion proteins will bind to collagen in the skin near the site of subcutaneous or intradermal injection and remain bound at the site for long-lasting effect. The fusion proteins can also be administered systemically to promote hair growth. This is preferred to treat chemotherapy-induced alopecia.

In one embodiment of the method of promoting hair growth, the mammal is afflicted with chemotherapy-induced alopecia.
Another embodiment provides a method of promoting immune reconstitution in a mammal comprising: administering to the mammal a fusion protein comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist polypeptide segment; wherein before, during, or after administering the fusion protein, the mammal receives an administration of bone marrow stem cells. As used here, the term "bone marrow stem cells" may refer to any stem cells that can implant in bone marrow and differentiate into a variety of types of lymphocytes. Thus, the stem cells may be obtained, for instance, from umbilical cord blood, embryos, the mammal's own blood or bone marrow, or another mammal's blood or bone marrow. Administration of the fusion protein is expected to show an increase in survival following bone marrow ablation and a stem cell transplant in mice. It is also expected to increase the rate of neutrophil number increase - i.e., neutrophil numbers are greater at specific time points (e.g., 7, 14, 21, or 30 days) after transplant in patients or experimental animals receiving the fusion protein in conjunction with the stem cell transplant than in a comparison group not receiving the fusion protein.

In one embodiment, the stem cells will be umbilical cord blood stem cells. Umbilical cord blood is an especially useful alternative for patients in need of a stem cell transplant who do not have an MHC-matched related or unrelated donor. But the number of stem cells in a single unit of umbilical cord blood is often insufficient for successful engraftment after a bone marrow stem cell transplant (10). Administration of the fusion protein disclosed herein containing a PTH/PTHrP receptor agonist is expected to improve grafting of the stem cells and increase the odds of a successful graft with one or two units of umbilical cord blood.

In another embodiment, the stem cells will be autologous blood stem cells. Often too few stem cells are mobilized from a patient to support autologous stem cell transplant. Administering the fusion protein is expected to enhance the chance of successful engraftment when the number of stem cells transplanted is less than optimal. It also is expected to enhance the chance of successful engraftment when the number of stem cells transplanted is considered adequate.

Preferably the fusion protein would be administered before or together with administration of the stem cells to promote engraftment of stem cells in the bone marrow. But it may also be administered after administration of the stem cells.

Another embodiment provides a method of promoting bone marrow stem cell mobilization in a mammal comprising: administering to the mammal a fusion protein
comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist polypeptide segment. Administering the fusion protein is expected to increase the number of stem cells in circulating blood of the mammal (e.g., 7, 14, or 30 days after administering the fusion protein). In a specific embodiment, this method further comprises collecting stem cells from blood of the mammal after the step of administering the fusion protein to the mammal.

Autologous stem cell transplantation cures lymphomas in many patients and improves survival in multiple myeloma. But approximately 20% of patients do not mobilize sufficient stem cells to safely support autologous stem cell transplantation (11).

The fusion protein described herein containing a PTH/PTHrP receptor agonist is expected to promote stem cell mobilization.

Another embodiment is expected to provide a method of treating myocardial infarction in a mammal comprising: administering to a mammal after the mammal suffers a myocardial infarction a fusion protein comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist polypeptide segment.

Another embodiment provides a method of treating or preventing renal osteodystrophy in a mammal comprising: administering to the mammal a fusion protein comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor antagonist polypeptide segment; wherein the mammal is afflicted with renal osteodystrophy or renal disease. In this embodiment, the fusion protein is expected to be effective to reduce bone loss in the mammal.

One embodiment is expected to provide a method of treating or reducing incidence of bone metastasis of cancer in a mammal comprising: administering to the mammal a fusion protein comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor antagonist polypeptide segment.

PTHrP is positively associated with bone metastasis (15, 16, 17). Breast carcinoma metastatic to bone expresses PTHrP in more than 90% of cases, compared with 17% in metastases to nonbone sites (15). In a mouse model, human tumor cells transfected with a cDNA to overexpress human PTHrP had increased metastasis to bone (15). Conversely, administration of an anti-PTHrP antibody decreased bone metastases (15, 17).

Binding of PTHrP to its receptor alters the microenvironment of bone favorably to promote metastasis. A fusion protein containing a CBD segment and a PTH/PTHrP
receptor antagonist will likely occupy the receptor in bone and thus decrease the occurrence of metastasis. It is expected to slow the growth of metastatic tumors in bone.

In all the embodiments described herein, fusion proteins comprising (a) a collagen-binding polypeptide segment linked to (b) a PTH/PTHrP receptor agonist polypeptide segment can be replaced by pharmaceutical agents comprising (a) a collagen-binding polypeptide segment linked to (b) a PTH/PTHrP receptor agonist or a non-peptidyl PTH/PTHrP receptor agonist. An example of a non-peptidyl PTH/PTHrP receptor agonist is compound AH3960 (19).

![AH3960](image)

AH3960 contains two amino groups. These can be used to cross-link the compound to amino groups on the collagen-binding polypeptide segment through a cross-linker such as DSG (disuccinimidyl glutarate) or through the combination of SANH (succinimidyl-M-hydrazinonicotinate acetone hydrazone) and SFB (succinimidyl-4-formyl benzoate). AH3960 can be cross-linked through its amino group to a carboxyl group of the collagen-binding polypeptide segment by EDC (l-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride). These products are available from Pierce (piercenet.com, Thermo Fisher Scientific Inc., Rockford, IL). Protocols and reaction conditions are also available in the product literature from Pierce (piercenet.com).

Likewise, in the embodiments described herein involving receptor antagonist fusion proteins, fusion proteins comprising (a) a collagen-binding polypeptide segment linked to (b) a PTH/PTHrP receptor antagonist polypeptide segment can be replaced by pharmaceutical agents comprising (a) a collagen-binding polypeptide segment linked to (b) a PTH/PTHrP receptor antagonist or a non-peptidyl PTH/PTHrP receptor antagonist.

Thus, another embodiment provides a pharmaceutical agent comprising: (a) a collagen-binding polypeptide segment linked to (b) a PTH/PTHrP receptor antagonist, where the antagonist may be non-peptidyl. Non-peptidyl antagonists of the PTH/PTHrP receptor include compounds disclosed in (20), including compound 2 below:
Compound 2 can be coupled through its amino group to amino or carboxyl groups of the collagen-binding polypeptide segment as described above for compound AH3960. In compound 3 of reference (20), the amino group of compound 2 is replaced with a carboxyl group. This can be coupled to amino groups of the collagen-binding polypeptide segment with EDC.

In another embodiment of the pharmaceutical agents comprising (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist polypeptide segment or antagonist polypeptide segment, segment (a) and segment (b) are separate polypeptides, and the two polypeptides are linked by chemical cross-linking. The two polypeptides can be cross-linked through amino groups by reagents including DSG (disuccinimidyl glutarate) or glutaraldehyde. They can also be cross-linked through amino groups by derivatizing one polypeptide with SANH (succinimidyl^-hydrazinonicotinate acetone hydrazone) and the other with SFB (succinimidyl-4-formyl benzoate), and then mixing the two derivatized polypeptides to cross-link. The two polypeptides can be cross-linked between an amino group of one polypeptide and a carboxyl of the other by reaction with EDC (l-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride). The polypeptides can also be cross-linked (e.g., covalently coupled) by any other suitable method known to a person of ordinary skill in the art. These cross-linking reagents are available from Pierce (piercenet.com, Thermo Fisher Scientific Inc., Rockford, IL). Protocols and reaction conditions are also available in the product literature from Pierce (piercenet.com). These and other applicable cross-linking methods are described in U.S. published patent applications 20060258569 and 20070224119.

Based on the data herein, the individual doses of pharmaceutical agents comprising a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor agonist...
polypeptide segment can be approximately the same on a molar basis as doses used for PTH(l-34). But the pharmaceutical agents comprising a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor agonist polypeptide segment can be administered less frequently, because linking the agonist to the collagen-binding polypeptide segment gives it much more prolonged activity in vivo.

The following examples are presented to illustrate various aspects of the disclosure without limiting the scope thereof.

Examples

Example 1

Expression of PTH-collagen-binding domain fusion proteins

A plasmid expressing a PTH-CBD fusion protein was constructed by inserting the PTH-CBD coding sequence into pGEX-5X-1 (GE Lifesciences). The sequence of the resulting plasmid is SEQ ID NO:3. Nucleotides 258 to 1409 of SEQ ID NO:3 encode a fusion protein containing glutathione-S-transferase (GST) fused at its C terminus to a PTH-CBD fusion protein. SEQ ID NO:4 is the full encoded GST-PTH-CBD fusion protein. Residues 222-225 are IEGR (SEQ ID NO:5), a factor Xa protease recognition site. Residues 226-383 of SEQ ID NO:4 correspond to SEQ ID NO:1 and are the PTH-CBD fusion protein. Factor Xa cleaves after the Arg that is amino acid residue 225 of SEQ ID NO:4 to release SEQ ID NO:1, the PTH-CBD fusion protein. Residues 1-33 of SEQ ID NO:1 are the N-terminal 33 residues of PTH. Residues 38-158 are a collagen-binding domain (CBD) of the CoIH collagenase of Clostridium histolyticum. The CBD of the fusion protein corresponds to residues 901-1021 of CoIH (SEQ ID NO:6). Residues 34-37 of SEQ ID NO:1 are a linker segment.

A second PTH-CBD fusion protein, PTH-PKD-CBD (SEQ ID NO:2), was expressed from the a plasmid otherwise identical to SEQ ID NO:3 with a longer insert segment from the coIH gene to express. Like SEQ ID NO:1, it was expressed as part of a GST fusion protein and cleaved from GST by Factor Xa. Residues 1-33 of SEQ ID NO:2 are the N-terminal 33 residues of PTH. Residues 34-36 are a linker segment. And residues 37-251 are residues 807-1021 of CoIH. This fusion protein includes a polycystic kidney disease (PKD) domain of CoIH (residues 807-900 of CoIH), in addition to the collagen binding domain of residues 901-1021 of CoIH found in both SEQ ID NO:1 and SEQ ID NO:2. It was thought that including the PKD domain might minimize domain-
domain interferences or other steric hindrances between the PTH domain and CBD domain.

Purification of CBD fusion proteins - E. coli BL21 was transformed with the recombinant plasmids. Each clone was grown in one liter of 2YT-G medium to an optical density at 600 nm of 0.7. Isopropyl-1-thio-beta-D-galactopyranoside was added to a final concentration of 0.1 mM, and cells were grown for a further 2 hours. In order to prevent proteolysis during the purification procedures, phenylmethylsulfonylfluoride was added to the culture to a final concentration of 1 mM. Cells were harvested by centrifugation, and disrupted in a French pressure cell. Cell debris was removed by centrifugation, and the cleared lysate was used for the purification of the fusion protein by a batch method using glutathione-SEPHAROSE 4B beads (volume, 4-ml; GE Lifesciences) as described by the manufacturer. The GST-tag of each fusion protein was cleaved by incubation with Factor Xa (New England Biolabs, 0.2 µg/mg of fusion protein) for 20 h at room temperature. The cleaved protein fractions were dialyzed three times against 1 liter of 50 mM Tris-HCl (pH7.5), 100 mM NaCl at 4°C to remove glutathione. The N-terminal GST fragment was removed by applying the fraction to a glutathione-SEPHAROSE 4B column (bed volume, 2 ml). Ten amino acid residues from the N terminus were confirmed for each fragment on an automatic protein sequencer (Model 492, Perkin-Elmer). The molecular mass of the purified C-terminal fragment was confirmed by matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS).

Example 2

Demonstration of Collagen Binding by the PTH-CBD Fusion Proteins

Five mg insoluble collagen type I, (C-9879; Sigma) was added to an ULTRA 25 FREE micro centrifugal device, 0.22 micrometer low-binding DURAPORE membrane (Millipore, Bedford, MA) and placed in a micro centrifuge tube (Catalogue NoiUFCSOGVOO-Millipore). All steps were carried at room temperature unless otherwise specified. Collagen binding buffer (200 microliters) (50 mM Tris-HCl, pH 7.5, 5 mM CaCl₂) was added to swell the collagen fibers. After incubation for 30 minutes, the tube was centrifuged at 15,000 g for 15 minutes. Centrifugation was repeated after changing the direction of the tube in the rotor. The collagen precipitate was resuspended in 60 µl of collagen binding buffer containing 100 pmoles of fusion protein and incubated for 30 minutes. The mixture was then centrifuged through the device at 15,000 x g for 15 minutes. Proteins bound to the collagen would be retained by the filter along with the
collagen. Proteins that do not bind to collagen would pass through in the filtrate. The filtrate was analyzed by SDS-PAGE.

FIG. 1 shows a photograph of the SDS-PAGE gel. Lane 1 on the left is molecular weight markers. Lane 2 is the filtrate of a mixture containing PTH-PKD-CBD fusion protein filtered without collagen. Lane 3 shows the filtrate of a mixture of PTH-PKD-CBD fusion protein with collagen. Lanes 4 and 5 show the filtrate of the PTH-CBD fusion protein incubated without and with collagen, respectively. The result shows that both fusion proteins failed to pass through the filter when incubated with collagen, but did pass through when incubated without collagen. This shows both fusion proteins bound to collagen.

Example 3

In vitro Biological Activity of PTH-CBD Fusion Proteins

HKrK-B7 cells, which are LLCPK cells stably transfected with the human PTHIR, were kindly provided by Tom Gardella, Endocrine Unit, Massachusetts General Hospital. The cells are described in reference (7). HKrK-B7 cells were grown in 24 well plates to 90 percent confluence, which was typically achieved 2-3 days after initial seeding. The culture media was DMEM (with L-glutamine) + 10% fetal bovine serum (FBS).

When the cells reached 90% confluence, the cells were rinsed once with 0.5 ml binding buffer (50 mM Tris-HCl, pH 7.8, 100 mM NaCl, 2 mM CaCl$_2$, 5 mM KCl, 0.25% horse serum, 0.0025% fetal bovine serum). The plate was placed on ice, and 200 microliters IBMX buffer (DMEM without antibiotic and FBS, 35 mM HEPES, pH 7.4, 3-isobutyl-1-methylxanthine (IBMX), 1 mg/ml bovine serum albumin) was added per well. IBMX is a phosphodiesterase inhibitor. Peptide or PTH was added at the indicated concentrations in 100 microliters binding buffer. The cells were then incubated with the peptide, PTH, or no addition (control) for 1 hour at room temperature. The media was then removed and the plates were placed on dry ice to freeze the cells for 3 minutes. 500 microliters 50 mM HCl was next added to each well. The plates were kept frozen until the immunoassay.

cAMP concentration was measured by immunoassay (Biomedical Technologies, Inc., Stoughton, MA, USA; cAMP EIA kit, #BT-730).

The results of the cAMP concentration from the lysed cells in the wells is shown in FIG. 2 for cells incubated with from 1 x 10$^{-12}$ M to 1 x 10$^{-7}$ M fusion peptide or PTH(I-
34). PTH(l-34), PTH-CBD (SEQ ID NO: 1), and PTH-PKD-CBD (SEQ ID NO:2) all stimulated cAMP synthesis to a similar extent.

Example 4

In vivo activity of PTH-CBD Fusion Proteins

Healthy female C57BL/6J mice, 5-8 weeks age and 13-18 grams, were purchased from the Jackson laboratory (Bar Harbor, ME, USA) and they were housed in cages at the Animal facility in Ochsner Clinic Foundation under standard conditions. Animals were maintained for a 2-week acclimation period prior to experiments.

Baseline whole body DEXA (dual emission x-ray absorptiometry) measurements were obtained in duplicate for each animal using a Hologic QDR -1000plus instrument adapted for application in the mouse as follows. An ultrahigh resolution mode (line spacing 0.03950 cm and resolution 0.03749 cm) was used. The animals were anesthetized with pentobarbital and positioned in the prone position for DEXA scanning. Bone mineral density (BMD) was determined within an 8 x 16 pixel box covering the region of the lumbar spine. BMD for each single pixel vertical stripe was measured, and the peak values were determined. Validity for this technique was ascertained by comparing the duplicate measurements in each mouse.

Animals were injected intraperitoneally weekly for eight weeks with either vehicle alone (collagen binding buffer, pH 7.5, 50 mM Tris HCl, 5 mM CaCb) or vehicle containing PTH analogs as follows:

Group A (8 animals): vehicle
Group B (6 animals): 80 µg/kg/dose of human PTH(l-34)
Group C (6 animals): 546 µg/kg/dose of PTH-PKD-CBD (SEQ ID NO:2)
Group D (6 animals): 344 µg/kg/dose of PTH-CBD (SEQ ID NO: 1)

The doses of the three PTH compounds were adjusted based on their molecular weights, such that each was given at the same molar equivalent (0.02 micromoles/kg/dose).

One week after the 8th injection, animals were sacrificed with a lethal dose of pentobarbital. Duplicate BMD measurements were obtained for each mouse by the technique described above. Percent increase in BMD for each mouse was calculated, and the results (average +/- standard error) are shown in FIG. 3. Statistical significance was determined using a one-tailed paired T test. Statistically significant differences from vehicle control are shown by * (p<0.05) and ** (p<0.01) in FIGS. 3 and 4.
At the conclusion of the study, lumbar spine segments of the mice were also excised from the soft tissue and BMD measurements of the excised spine segments were taken. The BMD results of the excised spine segments are the average for the entire bone segment, not peak BMD measurements like those that were obtained from the whole animal scans.

The statistical comparisons used were ANOVA across groups (p<0.05), and Bonferroni comparisons of each group vs. control.

The PTH-CBD fusion protein (SEQ ID NO:1) produced an average 17% increase in BMD over the 8-week treatment period. Both PTH(I-34) and the PTH-PKD-CBD fusion protein (SEQ ID NO:2) produced approximately a 7.5% increase in bone mineral density. The mice in the vehicle control group had a 5% increase in BMD over the 8-week treatment period. (FIG. 3.) Both PTH-CBD (p<0.01) and PTH-PKD-CBD (p<0.05) fusion proteins produced BMD increases that were statistically significantly greater than vehicle controls, while PTH(I-34) did not. But the PTH-CBD fusion gave approximately twice the BMD increase of both PTH(I-34) and the PTH-PKD-CBD fusion protein. (FIG. 3)

The BMD of excised lumbar spine segments of the four groups of mice at the conclusion of the 8-week treatment period are shown in FIG. 4. Again, the PTH-CBD group was statistically significantly different from the vehicle control (p<0.05).

Differences between other groups with vehicle control and with each other did not reach statistical significance.

Serum calcium levels were also measured in the mice before, during, and after the study. PTH with daily injection is known to carry a risk of hypercalcemia. There was no difference in serum calcium levels between any of the groups, indicating that the PTH-CBD fusion proteins did not cause hypercalcemia (FIG. 5).

Serum alkaline phosphatase levels were also measured. Serum alkaline phosphatase was increased in the PTH(I-34), PTH-PKD-CBD, and PTH-CBD groups (FIG. 6). Elevated alkaline phosphatase is correlated with hyperparathyroidism and periods of bone growth. Thus, this is evidence of increased bone turnover with all three agents.

Staining of tibial sections with hematoxylin and eosin showed increased trabecular and cortical bone in mice treated with 8 weeks of PTH-CBD versus vehicle control (FIG. 7).
No evidence of bone tumors in mice in any of the groups was found by DEXA or post-mortem examination.

We conclude that the PTH-CBD fusion protein is more active than PTH(I -34) in promoting bone mineral density increase in vivo.

Example 5

Monthly Administration of PTH-CBD in Vivo

With the encouraging results showing efficacy of PTH-CBD to increase bone mineral density after weekly administration, we next tested the efficacy of this fusion protein with monthly administration. Mice received intraperitoneal injection of PTH-CBD (344 µg/kg/dose), PTH (80 µg/kg/dose), or vehicle alone monthly in buffer as described in Example 4. There were 10 mice in each group. Bone mineral density (BMD) was measured by DEXA as described in Example 4 every 2 months. DEXA measurements were correlated to absolute bone mineral density by correlation between DEXA measurements and measurements from excised tissue in the weekly study of Example 4.

Serial measurements of BMD every 2 months showed that monthly administration of PTH-CBD resulted in significant increases in BMD after 4 months of therapy, which were sustained for 6 months of therapy (FIG. 8) (p<0.01, shown by ** in FIG. 8). Not surprisingly, monthly administration of PTH(I -34) had no effect on bone mineral density. After 6 months (as indicated by the arrow in FIG. 8), we discontinued administration of PTH-CBD, and subjected the animals in the PTH(I -34) group to 2 weeks of daily therapy. Measurement of BMD 2 months later showed that the gains in bone mineral density after PTH-CBD administration were sustained (despite the decline in BMD in the vehicle control group, expected for age), and that the daily administration of PTH(I -34) resulted in increases in BMD which approached but did not reach those of the PTH-CBD group.

The mice were then followed for another 6 months, and the data showed that the BMD of the PTH(I-34) and PTH-CBD groups declined in parallel and remained higher than the untreated vehicle control mice.

Serum concentration of alkaline phosphatase was also measured in these groups of mice at the 48-week time point. The results are shown in FIG. 10. Even at 48 weeks, 22 weeks after the last administration of the PTH-CBD fusion protein, alkaline phosphatase concentration was elevated in the group receiving the PTH-CBD fusion protein compared to the vehicle control mice and mice that received PTH(I -34).
Conclusion:
Together with the data in Example 4, these data indicate that monthly administration of PTH-CBD showed at least equal efficacy to daily injection of PTH in promoting an increase in bone mineral density. Importantly, the dose of PTH-CBD given in each injection is the molar equivalent of the daily dose of PTH(I-34); thus, the total administered dose is actually 1/30 of the dose with PTH(I-34). The data suggests that even longer dosing intervals than monthly may be effective, and that the effects on BMD are sustained for a longer time after cessation of therapy with PTH-CBD than with PTH(I-34).

Example 6
3- and 6-Monthly Administration of PTH-CBD in Vivo

With the encouraging results showing efficacy of PTH-CBD to increase bone mineral density after monthly administration, we next tested the efficacy of this fusion protein with administration every 3 or every 6 months. Mice received intraperitoneal injection of PTH-CBD (344 µg/kg/dose x 1) (CBD-PTH-6 of FIG. 9), PTH-CBD (344 µg/kg/dose at 0 and 3 months) (CBD-PTH-6 of FIG. 9), PTH(I-34) (80 µg/kg/dose daily for 2 weeks), or vehicle alone (x1) in buffer as described in Example 4. There were eleven mice in each group. Bone mineral density (BMD) was measured by DEXA at 3 month and monthly thereafter. The study is ongoing, and data are available up to the 5 month time point.

Serial measurements of BMD showed that a single dose of PTH-CBD resulted in significant increases in BMD after 4 months of therapy (FIG. 9). Administration of the second dose of PTH-CBD at the 3 month time point did not cause further increases in BMD at the 4 and 5 month time points. Daily administration of PTH(I-34) for 2 weeks caused the expected increase in BMD at 3 months, but by 5 months the BMD had declined back to control levels. The mice in this study will be followed for an additional 7 months.

Conclusion:
Together with the data in Examples 4 and 5, these data suggest that a single dose of PTH-CBD is sufficient to promote sustained increases in bone mineral density. Importantly, the dose of PTH-CBD given in each injection is the molar equivalent of the daily dose of PTH(I-34); thus, the total administered dose is actually 1/14 of the dose of PTH(I -34) over the 5 month interval for which we have data at this time. We will
continue to collect data on this study for another 7 months. The data also indicate that the
effects on BMD are sustained for a longer time after cessation of therapy with PTH-CBD
than with PTH(I-34).

Example 7

Preliminary Dose and Time Response Study
To determine roughly the optimal dose of PTH-CBD, a single dose of the fusion
protein was given by subcutaneous administration to mice at a range of doses from 2 to
8,000 micrograms/kg and the BMD of the mice was tested by DEXA every 4 weeks for 20
weeks. At the highest dose, the BMD decreased between 4 weeks and 12 weeks and then
increased. It thus appeared to have a transient catabolic effect and then a possible anabolic
effect. Intermediate doses of 40-400 micrograms/kg, which spans the dose of 344
micrograms/kg used in Example 4 and 5, appeared to have the greatest anabolic effect
over the first 8 weeks. The lowest dose tested, 2 micrograms/kg appeared to have less
anabolic effect over the first 16 weeks. (FIG. 11)

Example 8

Use of PHT-CBD to Promote Hair Growth
There are reports that PTH agonists and antagonists can modulate hair growth in
animal models of genetic hair loss and after administration of chemotherapy (8,9). We
tested whether PTH-CBD could, after subcutaneous administration, alter the pattern of
hair growth after chemotherapy-induced hair loss with cyclophosphamide.

Materials and Methods:

Healthy female C57BL/6J mice (as in Example 4) were treated with 150 mg/kg
cyclophosphamide every month for 3 months. The chemotherapeutic agent caused hair
thinning and color change from black to white. We additionally shaved a spot on the
back. At the spot of hair removal, we injected PTH-CBD subcutaneously at a dose of 320
mg/kg. We also tested injection of a CBD fusion protein containing a PTH/PTHrP
receptor antagonist (SEQ ID NO:9). This fusion protein was made by inserting a thrombin
cleavage sequence (Leu-Val-Pro-Arg-Gly-Ser, SEQ ID NO:12) between the GST and
PTH(I-33) segments of the fusion protein of SEQ ID NO:1. The resultant GST-PTH-
CBD fusion protein is cleaved by thrombin between the Arg and Gly residues of the
thrombin cleavage sequence to release the Gly-Ser-PTH-CBD fusion protein of SEQ ID
NO:9.
Results:
The PTH-CBD treated animals showed more rapid regrowth of hair at the spot of removal, and the chemotherapy-induced thinning and color change of the hair were both reversed, even at sites distant from the PTH-CBD injection site (FIG. 12). A CBD fusion protein containing a PTH/PTHrP receptor antagonist was also tested in pilot studies. But the antagonist fusion protein produced only peach fuzz hair at the site of injection and did not work as well as the PTH-CBD agonist fusion protein (results not shown). The antagonist fusion protein produced more hair than vehicle control treatment (results not shown).

Conclusion: PTH-CBD can reverse chemotherapy-induced alopecia, and the effects are not restricted to the site of injection.

Example 9
Use of PHT-CBD to Promote Immune Reconstitution
Female C57BL/6 mice are irradiated with 10 Gy of radiation (137Cs source). 24 hours later, mice are injected with 2 x 105 bone marrow mononuclear cells (BMMNC) from a donor B6.SJL mouse. Immediately before receiving the BMMNC, the recipient mice are also injected with saline (vehicle control), 344 \textgrain{s} PTH-CBD (SEQ ID NO: 1), or 80 \textgrain{s} PTH(l-34).

A portion or all of the mice receiving BMMNC alone are expected to die. A greater percentage of mice receiving PTH(l-34) are expected to survive. A still greater percentage of mice receiving PTH-CBD are expected to survive.

It is also expected that neutrophil count will increase faster in mice receiving the PTH-CBD fusion than in mice receiving an equimolar amount of PTH or receiving vehicle control.

Example 10
Use of PTH-CBD to Promote Bone Marrow Stem Cell Mobilization
Six- to 8-week old male C57BL/6 mice are injected subcutaneously with a single dose of 80 mcg/kg PTH(l-34) or 344 mcg/kg PTH-CBD (SEQ ID NO: 1) or saline (vehicle control). Fourteen days later, peripheral blood is collected from the mice, and c-KIT/Sca-1 cells are determined by fluorescence activated cell sorting (FACS) (21). It is determined
that PTH-CBD causes a greater increase in c-KIT/Sca-1 double positive cells than a single
dose of PTH(l-34).

To test the ability of stem cells mobilized with PTH-CBD to repopulate, blood is
collected 14 days after treatment with PTH, PTH-CBD, or vehicle control as described
above. Red cells are lysed as described in (22). Total collected cells from 900 mcl of
blood is transfused into a mouse that was subjected to a lethal dose of radiation (900 cGy)
24 hours before. A larger percentage of recipient mice are expected to survive when given
blood cells from a donor mouse treated with PTH-CBD than from a mouse treated with
PTH(l-34) or vehicle control. Further, it is expected that administering the fusion protein
will increase the number of stem cells in circulating blood of the mammal (e.g., 7, 14, or
30 days after administering the fusion protein)

Example 11

Use of a CBD-PTH/PTHrP Receptor Antagonist Fusion Protein for the Prevention
and Treatment of Bone Metastasis of Breast Cancer

When administered as a daily injection, PTH(l-34) stimulates bone growth in
various species and in osteoporotic women. However, continuous administration of PTH
as an infusion (i.e. parathyroid adenoma) results in bone loss.

Breast cancer metastasizes to bone by producing a factor, PTH-related peptide
(PTHrP), which activates the PTH/PTHrP receptor, increasing bone turnover in the local
region. The removal of bone tissues which results from this cascade creates a void in the
bone where cancer cells can grow and causes release of growth factors from the remodeled
collagen matrix which promote tumor growth. In this study, we show that a PTH-CBD
antagonist peptide has the ability to treat or prevent (reduce incidence of) bone metastasis
of breast cancer. The model used is the immunodeficient nude mouse.

Animals receive a single injection of MCF-7 human breast cancer cells tagged with
a phosphorescent probe. Animals are imaged weekly using a whole body imager to assess
for bone metastastic lesions. Once 2 or more lesion are present in each animal, the animals
receive a single injection of PTH(7-33)-CBD or vehicle control. Weekly imaging is
continued for an additional 2 months to monitor growth of existing metastases and
appearance of new metastases.
Experimental Methods:

22 Nude mice, aged 3-5 weeks and 13-18 grams are obtained. Initial weight of the animals is recorded along with their general health condition. Animals are maintained for a 2 week acclimation period prior to experiments. (final age 5-8 weeks).

Baseline images are obtained from each animal using the Bioluminescent/Fluorescent Imager (Xenogen Biosciences, Cranbury, NJ) whole body imager after isoflurane anesthesia. Animals then receive a single injection of MCF-7 cells stably transfected with a plasmid expressing firefly luciferase (23, 24). Animals are re-imaged following the injection and on a weekly basis thereafter to monitor for bone metastasis.

When 2 or more metastatic lesions are presenting the bones of each mouse, the animals will be divided randomly into 2 groups:

Group 1: 11 animals - is administered with vehicle intraperitoneally once.

Group 2: 11 animals - is administered with 344 mcg/kg of PTH(7-33)-CBD (SEQ ID NO: 10) intraperitoneally once.

Animals are sedated with isoflurane and whole body images are obtained on a weekly basis for a 2 month period.

Data Analysis:

During the experimental period, animals are weighed and examined weekly to detect any signs of illness. Whole body images are analyzed to determine the number of metastatic lesions and intensity of the luminescent light emission from each lesion.

At the end of the experimental period the animals will be sacrificed by injecting a lethal dose of pentobarbital (100 mg/kg). Regions of the bone which contain(ed) metastatic lesions at any point during the study are prepared for histological examination.

Results:

Mice injected with PTH(7-33)-CBD are expected to develop fewer metastatic bone lesions and have slower growth of metastatic bone lesions than mice receiving vehicle control.
Example 12
Use of a CBD-PTH/PTHrP Receptor Antagonist Fusion Protein for the Prevention and Treatment of Renal Osteodystrophy

Renal osteodystrophy is a bone disease that occurs when kidneys fail to maintain the proper levels of calcium and phosphorus in the blood. It's a common problem in people with kidney disease and affects 90 percent of dialysis patients. Renal osteodystrophy is a key cause of fractures in patients with chronic kidney disease. In this study, we show that PTH-CBD antagonist peptide has the ability to treat or prevent osteodystrophy. The model used is normal female mice fed with a high phosphorus diet to induce renal osteodystrophy.

Animals then receive a single injection of PTH(7-33)-CBD or vehicle control. Animals are maintained for 6 months after the initial dosing period to assess the duration of the therapeutic effects. Bone mineral density and alkaline phosphatase levels are measured on a monthly basis.

Experimental Plan:
Healthy female normal C57BL/6J mouse, aged 3-5 weeks and 13-18 grams are obtained. Initial weight of the animals is recorded along with their general health condition. Animals are maintained for a 2 week acclimation period prior to experiments (final age 5-8 weeks).

Animals are fed with high phosphorus diet to induce renal osteodystrophy (ROD). The animals are checked periodically for their health status. The blood samples are collected to assess the calcium, phosphorus, PTH and Vitamin D levels. Renal osteodystrophy results from an abnormally elevated serum phosphate (hyperphosphatemia) and low serum calcium (hypocalcemia), both of which are due to decreased excretion of phosphate by the damaged kidney, low vitamin D levels or tertiary hyperparathyroidism (dysfunction of the parathyroid gland due to constant stimulation).

Baseline bone mineral density measurements are also be made.

The animals are divided into the following groups:

Group 1: 11 animals - are administered vehicle intraperitoneally once.

Group 2: 11 animals - are administered with 344 mcg/kg of PTH(7-33)-CBD (SEQ ID NO: 10) intraperitoneally once.

Animals are sedated with pentobarbital and bone mineral density (BMD) is measured at the start of the study and monthly for the duration of the study (6 months).
Blood samples are obtained from tail clipping at the start of the study and every month (under sedation as above).

Data Analysis:
During the experimental period, animals are weighed and examined weekly to detect any signs of illness. Bone mineral density measurements are analyzed by ANOVA at each time point. Alkaline phosphatase and calcium values are measured from each blood sample and analyzed by ANOVA at each time point.

At the end of the experimental period the animals are sacrificed by injecting a lethal dose of pentobarbital (100 mg/kg). Blood samples are collected to perform biochemical assays (intact PTH, calcium, phosphorus, alkaline phosphatase, osteocalcin). Quantitative bone assays include histomorphometry, BMC and BMD of the total body and excised spine, and assessment of biomechanical properties. Data is analyzed by ANOVA.

Results:
The animals injected with PTH(7-33)-CBD are expected to respond with increases or slower decreases in all measures of bone mineral density as compared to mice receiving vehicle control. Mice injected with PTH(7-33)-CBD are expected also to show trabecular bone growth or slower loss of trabecular bone than mice receiving vehicle control.

Sequence listing summary
SEQ ID NO:1 PTH-CBD fusion protein
SEQ ID NO:2 PTH-PKD-CBD fusion protein
SEQ ID NO:3 vector expressing PTH-CBD fusion protein precursor.
SEQ ID NO:4 GST-PTH-CBD fusion protein expressed by vector.
SEQ ID NO:5 Factor Xa recognition sequence.
SEQ ID NO:6 CoI1H coUagenase.
SEQ ID NO:7 PTH.
SEQ ID NO:8 PTHrP.
SEQ ID NO:9 CBD fusion protein with PTH receptor antagonist.
SEQ ID NO:10 PTH(7-33)-CBD fusion protein
SEQ ID NO:11 PTH/PTHrP antagonist Gly-Ser-PTH(1-33)
SEQ ID NO:12 Thrombin recognition sequence.
References
34. Crine et al., U.S. published patent application 20060014687.

All patents, patent documents, and other references cited are incorporated by reference.
CLAIMS

We claim:

1. A composition comprising:
 a collagen-binding polypeptide segment linked to
 a PTH/PTHrP receptor agonist;
 wherein the collagen-binding polypeptide segment is a bacterial collagen-
 binding polypeptide segment.

2. A composition comprising:
 a collagen-binding polypeptide segment linked to
 a PTH/PTHrP receptor agonist;
 wherein the collagen-binding polypeptide segment is a segment of a
 collagenase.

3. A composition comprising:
 a collagen-binding polypeptide segment linked to
 a PTH/PTHrP receptor agonist;
 wherein, over an 8-week period, the increase in bone mineral density of the
 composition injected with a vehicle intraperitoneaUy weekly in a mouse relative to the
 vehicle alone is at least 50% larger than the increase in bone mineral density of an
 equimolar amount of a composition consisting of the PTH/PTHrP agonist relative to the
 vehicle alone.

4. The composition of any one of claims 1-3 wherein the PTH/PTHrP receptor
 agonist is a polypeptide segment.

5. The composition of claim 4 wherein the collagen-binding polypeptide segment and
 the PTH/PTHrP receptor agonist polypeptide segment are chemically cross-linked to each
 other.

6. The composition of claim 4 wherein the collagen-binding polypeptide segment and
 the PTH/PTHrP receptor agonist polypeptide segment are portions of a polypeptide in a
 fusion protein.
7. The composition of any one of claims 1-3 and 5 wherein the PTH/PTHrP receptor agonist is non-peptidyl.

8. The composition of any one of claims 1-7 wherein, over an 8-week period, the increase in bone mineral density of the composition injected with a vehicle intraperitoneally weekly in a mouse relative to the vehicle alone is at least 50% larger than the increase in bone mineral density of an equimolar amount of a composition consisting of PTH(1-34) relative to the vehicle alone.

9. The composition of any one of claims 1-8 wherein the collagen-binding polypeptide segment is a segment of a Clostridium collagenase.

10. The composition of any one of claims 1-9 wherein the collagen-binding polypeptide segment comprises residues 38-158 of SEQ ID NO:1 or a fragment of residues 38-158 of SEQ ID NO:1 of at least 8 consecutive amino acid residues.

11. The composition of any one of claims 1-9 wherein the collagen-binding polypeptide segment is at least 90% identical to residues 38-158 of SEQ ID NO:1.

12. The composition of any one of claims 1-11 wherein the PTH/PTHrP receptor agonist is a parathyroid hormone (PTH) polypeptide segment or parathyroid hormone related peptide (PTHrP) polypeptide segment.

13. The composition of any one of claims 1-12 wherein the PTH/PTHrP receptor agonist comprises residues 1-33 of SEQ ID NO:1.

14. The composition of any one of claims 1-12 wherein the PTH/PTHrP receptor agonist comprises PTH (SEQ ID NO:7).

15. The composition of any one of claims 1-12 wherein the PTH/PTHrP receptor agonist comprises residues 1-14 of SEQ ID NO:1.
16. The composition of any one of claims 1-12 wherein the PTH/PTHrP receptor agonist comprises residues 1-34 of SEQ ID NO:7 or a fragment of residues 1-34 of SEQ ID NO:7 of at least 8 consecutive amino acids.

17. The composition of any one of claims 4-6 and 8-16 wherein the two polypeptide segments each have an N-terminal and a C-terminal, wherein the N-terminal of the collagen-binding polypeptide segment is linked directly or through a linker polypeptide segment to the C-terminal of the PTH/PTHrP agonist polypeptide segment.

18. A composition comprising:
 a collagen-binding polypeptide segment linked to
 a PTH/PTHrP receptor antagonist.

19. The composition of claim 18 wherein the PTH/PTHrP receptor antagonist is a polypeptide segment.

20. The composition of claim 19 wherein the collagen-binding polypeptide segment and the PTH/PTHrP receptor antagonist polypeptide segment are chemically cross-linked to each other.

21. The composition of claim 19 wherein the collagen-binding polypeptide segment and the PTH/PTHrP receptor antagonist polypeptide segment are portions of a polypeptide in a fusion protein.

22. The composition of claim 18 wherein the PTH/PTHrP receptor antagonist is non-peptidyl.

23. The composition of any one of claims 18-22 wherein the collagen-binding polypeptide segment comprises residues 38-158 of SEQ ID NO:1 or a fragment of residues 38-158 of SEQ ID NO:1 of at least 8 consecutive amino acids.

24. The composition of any one of claims 18-22 wherein the collagen-binding polypeptide segment is at least 90% identical to residues 38-158 of SEQ ID NO:1.
25. The composition of any one of claims 18-24 wherein the PTH/PTHrP receptor antagonist comprises a parathyroid hormone (PTH) or parathyroid hormone related peptide (PTHrP) polypeptide segment.

26. The composition of any one of claims 18-25 wherein the PTH/PTHrP receptor antagonist comprises residues 7-34 of SEQ ID NO:7 or is a fragment of residues 7-34 of SEQ ID NO:7 of at least 8 consecutive amino acids.

27. The composition of any one of claims 18-25 wherein the PTH/PTHrP receptor antagonist comprises residues 7-14 of SEQ ID NO:7.

28. A method of promoting bone growth in a mammal comprising:
 administering to the mammal the composition of any one of claims 1-17.

29. The method of claim 28 wherein administering the composition to the mammal increases trabecular bone mineral density or cortical bone mineral density or trabecular bone mineral volume or cortical bone mineral volume.

30. The method of any one of claims 28-29 wherein the composition is administered to the mammal locally at a site of desired bone growth.

31. The method of any one of claims 28-30 wherein the composition is administered with an orthopedic implant.

32. The method of any one of claims 28-31 wherein the composition is administered by injection.

33. The method of claim 32 wherein the composition is administered in aqueous solution at pH below about 5.0.

34. A method of promoting hair growth in a mammal comprising:
 administering to the mammal the composition of any one of claims 1-27.
35. The method of claim 34 wherein the composition is administered to the mammal locally at a site of desired hair growth.

36. The method of claim 34 or 35 wherein the administration is by subcutaneous or intradermal injection.

37. The method of any one of claims 34-36 wherein the mammal is afflicted with chemotherapy-induced alopecia.

38. A method of promoting tissue growth around an implant in a mammal comprising:

 administering to the mammal the composition of any one of claims 1-17,
 wherein before, during, or after the step of administering the composition, the mammal receives an implant placed in contact with tissue in the mammal; and
 wherein the step of administering the composition is effective to promote tissue growth around the implant.

39. The method of claim 38, wherein the step of administering the composition comprises placing an implant in contact with tissue in the mammal, wherein the implant comprises the composition.

40. The method of claim 38 or 39, wherein the implant is a dental implant or is a bone graft.

41. The method of any one of claims 38-40, wherein the implant comprises intact bone, bone cement, hydroxyapatite, or demineralized bone.

42. The method of any one of claims 38-41, wherein the implant comprises osteoblasts.

43. The method of claim 38, wherein the implant is predominantly metal, plastic, or ceramic.

44. The method of claim 38, wherein the tissue is cartilage or bone or skin.
45. A method of promoting immune reconstitution in a mammal comprising:
administering to the mammal the composition of any one of claims 1-17,
wherein before, during, or after the step of administering composition, the mammal
receives an administration of bone marrow stem cells.

46. A method of promoting bone marrow stem cell mobilization in a mammal
comprising: administering to the mammal the composition of any one of claims 1-17,
wherein administering the fusion protein increases the number of stem cells in
circulating blood of the mammal.

47. The method of claim 46 further comprising after the step of administering the
composition:
collecting stem cells from blood of the mammal.

48. A method of treating or preventing renal osteodystrophy in a mammal comprising:
administering to the mammal the composition of any one of claims 18-27;
wherein the mammal is afflicted with renal osteodystrophy or renal disease and the
composition is effective to reduce bone loss in the mammal.

49. A method of treating or reducing incidence of bone metastasis of cancer in a
mammal, the method comprising:
administering to the mammal the composition of any one of claims 18-27;
wherein the composition is administered at a dosage effective to reduce incidence
of bone metastasis of cancer or slow the growth of metastatic cancer in bone.

50. A method of treating myocardial infarction in a mammal comprising:
administering to a mammal after the mammal suffers a myocardial infarction the
composition of any one of claims 1-17.

51. A method of promoting bone growth in a mammal comprising:
administering to the mammal a composition comprising:
a collagen-binding polypeptide segment linked to
a PTH/PTHrP receptor agonist.
52. A method of promoting hair growth in a mammal comprising:
administering to the mammal a composition comprising:
a collagen-binding polypeptide segment linked to
a PTH/PTHrP receptor agonist.

53. A method of promoting tissue growth around an implant in a mammal comprising:
administering to the mammal a composition comprising:
a collagen-binding polypeptide segment linked to
a PTH/PTHrP receptor agonist.

54. A method of promoting immune reconstitution in a mammal comprising:
administering to the mammal a composition comprising:
a collagen-binding polypeptide segment linked to
a PTH/PTHrP receptor agonist.

55. A method of promoting bone marrow stem cell mobilization in a mammal comprising:
administering to the mammal a composition comprising:
a collagen-binding polypeptide segment linked to
a PTH/PTHrP receptor agonist.

56. A use in medical therapy of a composition as described in any one of claims 1-27.

57. A use of the composition of any one of claims 1-17;
to prepare a medicament effective in a mammal to promote: bone growth, hair
growth, tissue growth around an implant, immune reconstitution for said mammal
receiving an administration of bone marrow stem cells, or bone marrow stem cell
mobilization.

58. A use of the composition of any one of claims 1-17 to prepare a medicament
effective in a mammal to treat myocardial infarction.

59. A use of a composition of any one of claims 18-27 to prepare a medicament
effective in a mammal to treat renal osteodystrophy, to reduce incidence of bone
metastases of cancer, to slow the growth of metastatic cancer in bone, or to promote hair growth.

60. A use of the composition comprising:
 a collagen-binding polypeptide segment linked to
 a PTH/PTHrP receptor agonist;
 to prepare a medicament effective in a mammal to promote: bone growth, hair growth, tissue growth around an implant, immune reconstitution for said mammal receiving an administration of bone marrow stem cells, or bone marrow stem cell mobilization.
Lumbar BMD (whole mouse) after Weekly Dosing (8 weeks)

Fig. 3

Lumbar BMD (Excised) after Weekly Dosing (8 weeks)

Fig. 4
Fig. 5

Serum Calcium after Weekly Injection (8 weeks therapy)

<table>
<thead>
<tr>
<th></th>
<th>Calcium (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>10</td>
</tr>
<tr>
<td>PTH(1-34)</td>
<td>10</td>
</tr>
<tr>
<td>PTH-PKD-CBD</td>
<td>10</td>
</tr>
<tr>
<td>PTH-CBD</td>
<td>10</td>
</tr>
</tbody>
</table>

Fig. 6

Serum Alkaline Phosphotase after Weekly Injection (8 weeks therapy)

<table>
<thead>
<tr>
<th></th>
<th>ALP (IU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>10</td>
</tr>
<tr>
<td>PTH</td>
<td>40</td>
</tr>
<tr>
<td>CBD-PKD-PTH</td>
<td>35</td>
</tr>
<tr>
<td>CBD-PTH</td>
<td>20</td>
</tr>
</tbody>
</table>
Proximal Tibia, H&E Staining (8 weeks)

Vehicle PTH-CBD

Fig. 7

Spinal BMD after Monthly Dosing in Mice

Fig. 8
Fig. 9

Spinal BMD after PTH-CBD 3-monthly Dosing in Mice

- **Vehicle**
- **PTH**
- **CBD-PTH-3**
- **CBD-PTH-6**

Fig. 10

Alkaline Phosphatase levels (monthly studies)
Fig. 11

Dose Response

BMD mg/cm²

mcg/Kg body weight

4 Weeks
8 Weeks
20 Weeks
32 Weeks
Chemotherapy-induced Alopecia

Vehicle

PTH-CBD

Day 0

Day 14

Day 21

Fig. 12