The invention relates to the field of pharmacology. More specific, the invention relates to a controlled release composition comprising a cross-linked gelatin and at least one therapeutic protein. The therapeutic protein is smaller than 2, preferably smaller than 1.5.
Title: A controlled release composition

Field of invention

The invention relates to the field of pharmacology. More specific, the invention relates to a controlled release composition, a pharmaceutical composition comprising the controlled release composition, a pharmaceutical article comprising the controlled release composition, and to a method for preparing the controlled release composition as well as to the use of a recombinant gelatin for producing the controlled release composition.

Prior art

Maintaining pharmacologically active concentrations of parenterally administered therapeutic proteins over a prolonged period of time can be achieved by structural alteration of the proteins to increase their circulation time and by the use of controlled release formulations. For some proteins, e.g. tissue plasminogen activator, erythropoietin, and interferon, alteration of the protein native structure was a successful approach. In many situations however, the development of a slow release formulation is the more feasible approach. At present, slow release formulations are frequently prepared by encapsulating the protein in a polymeric matrix, from which it is released within several days, weeks, or months, either by diffusion or degradation of the matrix. The preservation of native structure and functionality of the encapsulated protein is a major issue in the development of slow release formulations. Furthermore, the formulations should be well tolerated and with regard to parenteral administration, it is often preferable that they be entirely biodegradable to avoid surgical removal of empty matrices.

Hydrogels are specific types of matrix systems that are attractive for the controlled release of therapeutic proteins. They are formed by physical or chemical cross-linking of hydrophilic polymers, and contain large amounts of water. It is possible to develop hydrogels as implantable or injectable, in-situ gelling systems. The hydrophilicity of hydrogels has been shown to be
favorable for preserving the native structure and functionality of the incorporated protein. The high water content and soft consistency of hydrogels minimizes mechanical irritation upon administration. Furthermore, it has been shown that hydrogels are well tolerated and biocompatible in vivo.

Depending on the type of polymer and the type of cross-link, they are also biodegradable.

Polymers for the preparation of hydrogels are commonly classified as natural derived or synthetic. Natural derived polymers like dextrans and gelatins have been used for the development of hydrogels for protein delivery, because these polymers are biocompatible and biodegradable. However, adaptation of natural derived polymers to specific requirements is limited to the chemical derivatization of functional groups in the polymer backbone. In contrast, the backbone of synthetic polymers can be freely defined, which renders greater control of the physicochemical and biological properties of these molecules.

One of the main problems of currently used gelatin based controlled release compositions is that the release of enclosed pharmaceutical is typically preceded by a burst release of said pharmaceutical.

The goal of the present invention is to at least partly decrease, but preferably completely abolish, said initial burst of enclosed pharmaceutical.

Summary of the invention

The present invention provide a solution for the initial burst of an enclosed pharmaceutical in a controlled release composition, by providing a controlled release composition comprising a cross-linked gelatin and at least one therapeutic protein wherein the ratio of the average mesh size (ξ) of the gelatin matrix and the average hydrodynamic radius (RH) of said therapeutic protein is smaller than 2, preferably smaller than 1.5.

The cross-linking process by which the crosslinked gelatine is prepared is essentially chemical. The term chemical crosslinking as used
herein refers to the fact that the crosslinking is achieved by the addition of cross-linking agents or the modification of the gelatin with cross-linkable groups. It must be expressly noted that the term crosslinking as used herein does not refer to the crosslinking between lysine residues in hydroxylated gelatin. In natural collagens (e.g. from bone or hide) from which natural gelatins are derived a certain amount of the proline and lysine residues are hydroxylated by hydroxylases. The resulting hydroxylated lysyl residues present within and between individual collagen molecules can be biosynthetically crosslinked in vivo thereby crosslinking the collagens into fibrillar structures. While the derived natural gelatin lost the fibrillar structure of collagen, parts of the biosynthetic crosslinks will remain. This type of crosslinking is not desirable, as it cannot be controlled. Moreover, this type of crosslinking is inherently present in natural gelatins, that is, from the moment of its production, and to varying degrees. In the present invention, the crosslinking should only occur when the gelatin is mixed with the pharmaceutical active. Hence, it is desirable that the commencement of crosslinking can be controlled, as well as the level thereof. Hence, a gelatin used in aspects of the present invention preferably is a recombinant gelatin more preferably produced in an expression system that lacks the biosynthetic enzymes for hydroxylation and biosynthetic crosslinking of lysine residues and therefore comprises essentially no hydroxylysine crosslinks (is essentially free of hydroxylysine crosslinks). Also the gelatin used in aspects of the present invention is essentially free of hydroxyproline residues.

The invention is furthermore directed to a pharmaceutical composition and a pharmaceutical article using the inventive controlled release composition. The invention is furthermore directed to a method for the preparation of the inventive controlled release compositions and to a method of treating a subject with an effective amount of the inventive controlled release composition.
Detailed description

In a first embodiment, the invention provides a controlled release composition comprising a cross-linked gelatin and at least one therapeutic protein wherein the ratio of the average mesh size (ξ) of the gelatin matrix and the average hydrodynamic radius (RH) of said therapeutic protein is smaller than 2, preferably smaller than 1.5.

A controlled release composition (or system) or a hydrogel (the terms are used interchangeably herein) typically refers to a three-dimensional network of polymer chains comprising a substantial amount of water. Depending on the application, i.e. desired release profile of the included pharmaceutical and mechanical stress to which the hydrogel is subjected, several types of hydrogels can be used. For example hydrogels that are very stiff and inelastic containing 40%-60% of water, hydrogels that are elastic but still rigid containing 60-85% of water, and hydrogels that are soft and very elastic containing 85-99% of water. Hydrogels can be prepared from natural or synthetic polymers. Hydrogel-forming polymers are polymers that are capable of absorbing a substantial amount of water to form an elastic or inelastic gel. Examples of synthetic polymers are polyethylene oxide, poly(2-acrylamido-2-methyl-1-propanesulfonic acid), polyvinylpyrrolidone, polyacrylamides, polyvinyl alcohol, sodium polyacrylate, acrylate polymers and copolymers with an abundance of hydrophilic groups. Examples of natural polymers and their derivatives are polysaccharides such as dextrin, dextran, chitin, chitosan, carrageenan and agar, cellulose and its derivatives, alginate, natural gums such as xanthan gum, locust bean gum, and collagen and its derivatives such as gelatin.

During the method of preparation of a controlled release composition as described above, at least one therapeutic protein is present before and during the cross-linking process and will therefore be enclosed in the three-dimensional network formed by the chemically cross-linked gelatin. Examples of proteins which can be incorporated into the drug delivery device
of the present invention include, but are not limited to, hemoglobin, vasoressin, oxytocin, adrenocorticocotrophic hormone, epidermal growth factor, prolactin, luliberin or luteinising hormone releasing factor, human growth factor, basic fibroblast growth, hepatocyte growth factor, angiogenesis growth factor, vascular endothelial growth factor, bone morphogenetic growth factor, nerve growth factor, and the like; interleukines, enzymes such as adenosine deaminase, superoxide dismutase, xanthine oxidase, and the like; enzyme systems; blood clotting factors; clot inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator; antigens for immunization; hormones.

The gelatin used in a controlled release composition of the invention can be selected from a vast array of gelatins, and are made with recombinant techniques. The gelatins used in aspects of the present invention preferably essentially completely consist of gelatine molecules having a molecular weight above 2.5 kD.

In principle every gelatin can be modified to fit the used therapeutic protein, for example by introducing certain charges in the gelatin to strengthen the binding of the used therapeutic protein to the controlled release composition. An example of a modified gelatin having quaternary ammonium groups is "Croquat™" gelatin produced by Croda Colloids Ltd. Gelatins that may be used as the starting point for modified gelatin may include any known gelatin, whether lime-processed or acid processed and can for instance be selected from the group of lime treated bone or hide gelatin of pig, cattle or fish, recombinant gelatin, or combinations thereof. For every therapeutic protein a suitable environment can thus be created. The use of a recombinant gelatin based controlled release composition together with a therapeutic protein as a pharmaceutical is the preferred embodiment of the present invention. Recombinant gelatins are particularly attractive as polymers for the development of protein delivery systems for several reasons.

The biotechnological production eliminates the risk of prion contaminations,
which are possibly present in animal source gelatins. Recombinant gelatins have well defined molecular weights, determined by the gelatin gene that is expressed. Furthermore, recombinant DNA technology opens the possibility to manipulate the amino acid sequence of gelatins. This is potentially useful for defining the number and the positions of amino acids involved in cross-linking, or for steering the biodegradability of gelatins by introducing amino acid sequences that are substrates (cleavage sites) for proteases.

For most pharmaceuticals a slow and gradual release is preferred wherein the release is at a more or less constant rate for a period of time, preferably ranging from several days to several weeks or even months. One of the main problems of currently used gelatin based controlled release compositions is that the release of enclosed pharmaceutical is typically preceded by a burst release of said pharmaceutical. This phenomenon is to a large extent governed by two parameters. One is the method of incorporation of the pharmaceutical into a controlled release matrix. The methods in the prior art describe that a controlled release matrix is first established by cross-linking. After cross-linking pharmaceutical is added and allowed to diffuse into the controlled release matrix. Further treatment (e.g. changing the liquid content of the controlled release matrix), may entrap most of the pharmaceutical in the matrix. However, a fraction of said pharmaceutical will not be entrapped during preparation. Furthermore, during use of the controlled release composition the liquid content can change, freeing even more entrapped pharmaceutical. Therefore a fraction of said pharmaceutical will be able to rapidly diffuse into it surroundings resulting in a burst release.

The method for preparing the controlled release composition of the invention, however, cross-links the matrix in presence of the pharmaceutical causing genuine entrapment during crosslinking diminishing the unwanted burst release. Another parameter that governs the release characteristics of the controlled release matrix is the mesh size of the matrix. The average mesh size (ξ) of the gelatin matrix is the average 'pore size' of the entangled/cross-
linked gelatin network at physiological conditions (pH 7.4, 37°C, 300 mOsm/L). If a release is diffusion controlled the rate of release is relatively fast, usually in a timescale of hours. In case a slow release is desired the matrix of the hydrogel preferably should be more restrictive in respect to the pharmaceutical component. Most preferred is the condition that the release is mainly governed by degradation of the matrix.

The terms "entrap" or "entrapped" as used herein refer to the fact that the pharmaceutical is held captured (in a space defined) by individually crosslinked gelatin molecules. This term is different from the term "encapsulated", wherein the pharmaceutical is contained in a location that is surrounded, enclosed or enveloped by the encapsulating material.

The rate at which the pharmaceutical is released from the controlled release composition of the present invention (i.e. the release rate) is such that preferably less than 50%, more preferably less than 40%, even more preferably less than 30%, 20%, 10%, 5%, 4%, 3%, 2% or 1% of the fraction of the pharmaceutical entrapped in the controlled release composition is released in a period of 24 hours when the controlled release composition is placed in aqueous solution (for instance as described in the Examples). Such slow release rates are indicative of degradation-governed release, rather than diffusion-governed release.

In the release of a pharmaceutical such as a protein from the matrix the phenomenon known as diffusion plays an important role. For a particle which can be a single molecule, a polymer, a complex, an aggregate or any other form of pharmaceutical, from the diffusion coefficient the hydrodynamic radius can be calculated via the Stokes-Einstein equation in which the radius by strict definition is that of a hypothetical hard sphere that diffuses with the same speed as the particle under consideration. It is more correct to say that this radius is indicative of the apparent size of the dynamic hydrate d/solvated particle which in this invention is a pharmaceutical.
A suitable method for determining the hydrodynamic radius is dynamic light scattering (DLS). For instance for a protein as lysozyme a value of 1.90 nm has been measured. In the current invention the hydrodynamic radius is preferably measured at physiological conditions.

In a preferred embodiment, the invention provides a controlled release composition comprising a cross-linked gelatin and at least one therapeutic protein wherein the ratio of the average mesh size (\(\xi \)) of the gelatin matrix and the average hydrodynamic radius (RH) of said therapeutic protein is smaller than 2, preferably smaller than 1.5, most preferably smaller than 1.

The preferred mesh size thus depends on the hydrodynamic radius of the therapeutic protein. Without being bound by theory it is imagined by the inventor that for ratios of average mesh size and average hydrodynamic radius smaller than 2 diffusion gradually becomes less influential and for ratios smaller than 1 biodegradation is expected to be the main mechanism of release. Very small mesh sizes corresponding to high cross-linking densities are thought not to be required for achieving a slow release but on the other hand form most likely no functional disadvantage assuming that the therapeutic protein is incorporated in the hydrogel structure simultaneously with the cross-linking reaction. There is no functional lower limit for the ratio of average mesh size and average hydrodynamic radius. Practically the mesh size obtainable is limited by the number of cross-linkable places in the gelatin molecule and also depends on the conditions of measurement. Preferably the relevant parameters are determined at physiological conditions.

The average mesh size is determined by the elasticity of the matrix which may be determined by for instance dynamic mechanical analysis (DMA). Dynamic mechanical analysis (DMA) of hydrogels in the equilibrium swollen state is, for example, performed with a DMA 2980 dynamic mechanical analyzer (TA Instruments, New Castle, DE), equipped with a liquid filled
sample holder for preventing water evaporation from hydrogels, and operating at 37°C.

Without being bound by theory it is thought that in normal, conventionally isolated gelatins always a certain fraction of low molecular weight peptides (more specifically below 2.5 kD) is present. It is very difficult to control the cross-linking of these peptides into the gelatin matrix. As a result hydrogels of natural derived gelatins lack homogeneity with respect to the spaces in the gelatin network. Parts will be densely cross-linked while other parts with a high concentration of peptides will be less cross-linked. In these networks loosely cross-linked regions will be present for which the mesh size (ξ) of the hydrogel is substantially greater than the hydrodynamic radius (RH) of the therapeutic protein contained in the gel (both defined under physiological pH- and salt-conditions). In these regions the motion and release of the therapeutic protein is governed by diffusion. As the release by diffusion is much faster (time scale hours) than the release by biodegradation (time scale weeks) the peptide rich inhomogeneous networks result in unintentional and unwanted premature release of at least part of the therapeutic protein, i.e. there is an unintentional and unwanted initial burst of enclosed pharmaceutical.

Recently, protein polymers like gelatin and collagen that were originally natural derived are also produced biotechnologically by the use of recombinant DNA technology. In one embodiment recombinant gelatins are produced using a yeast as an expression system. Yeast cells can be selected from Hansenula, Trichoderma, Aspergillus, Penicillium, Saccharomyces, Kluyveromyces, Neurospora, Arxula or Pichia. Methylo trophic yeast hosts are most preferred. Examples of methylo trophic yeasts include strains belonging to Hansenula or Pichia species. Preferred species include Hansenula polymorpha and Pichia pastoris. The recombinant gelatins used in aspects of the invention are preferably non-hydroxylated. In conventional gelatine proline and lysine residues may be hydroxylated. Hydroxylated gelatine are
known to form secondary and triple-helix structures, this may have detrimental effects on homogeneity of hydrogels prepared from them. The recombinant gelatines of invention are therefore preferably non-hydroxylated. The recombinant gelatine of the invention is preferably non-glycosylated. Glycosylation of protein is known to have a detrimental affect on their immunogenicity, which is unwanted for a composition for medical use. As a consequence of the numerous possible differences between non-recombinant and recombinant gelatins, the latter should be regarded as a new class of biopolymers.

Recombinant gelatin (also referred to as recombinant collagen or recombinant collagen-like peptides) typically refers to one or more gelatin or gelatin-like polypeptides produced by recombinant methods, such as by expression of a nucleotide encoding the peptide in a micro-organism, insect, plant or animal host. Such peptides are characterized by comprising Gly-Xaa-Yaa triplets wherein Gly is the amino acid glycine and Xaa and Yaa can be the same or different and can be any known amino acid. At least 40% of the amino acids are preferably present in the form of consecutive Gly-Xaa-Yaa triplets. More preferably at least 60%, even more preferably at least 80% or even more than 90% of the amino acids are present in the form of Gly-Xaa-Yaa triplets. Preferably, the peptides have a molecular weight of about 2.5 kD or more. More preferred are molecular weights of between about 2.5 to about 100 kD or between about 5 to about 90 kD. Molecular weights of less than 2.5 kD are not preferred because such molecules do generally not contain enough cross-linkable groups sufficient for obtaining a hydrogel with a desired structure. Also preferred are molecular weights of recombinant gelatin of about 60 kD or less, preferably between about 5 and about 50 kD, more preferably between about 7 and about 40 kD. Recombinant gelatin can be produced as described in EP-A-0926543 and EP-A-1014176 or as described in US 6,150,081.
Recombinant gelatins can for example be derived from any type of collagen, such as collagen type I, II, III, or IV. In a preferred embodiment the recombinant gelatins are derived or designed from mammalian (preferably human) collagens to avoid potential adverse immunogenic responses. In other examples the recombinant gelatin might be designed to meet specific application needs with respect to interaction with the tissue in which the hydrogel is placed. For example recombinant gelatins might be enriched in RGD motifs (i.e. arginine-glycine-aspartic acid sequence). RGD motives in proteins are well known to affect and enhance cell-binding properties.

There are different ways in which a solution of a (recombinant) gelatin and a pharmaceutical can be prepared. For example, one can first prepare a solution of a (recombinant) gelatin by dissolving a recombinant gelatin in a suitable solvent and subsequently adding or dissolving a pharmaceutical to or in the prepared recombinant gelatin solution. Aqueous solutions are most preferred. Mixtures with water miscible organic solvents such as tetrahydrofuran, acetone or ethanol can also be used. Other solvents that may be applied are glycol, tetrafluorethane, dimethylsulfoxide, N,N-dimethylformamide, and N-Methyl-Pyrolidinone (NMP). All solvents can be used alone or as mixture with other solvents. In some cases a specific pH is required, for example to steer the electrostatic interaction between the gelatin matrix and the pharmaceutical. The pH can be adjusted using any acid or base. Furthermore solutions can be buffered using all commonly known organic or inorganic buffers. It is clear that if the (recombinant) gelatin is already present as a solution the first part of this example can be skipped or replaced by diluting said recombinant gelatin in a suitable diluent. In another example one first prepares a solution of a pharmaceutical by adding or dissolving said pharmaceutical to or in a suitable diluent or solvent and subsequently adding or dissolving a recombinant gelatin to or in the solution comprising said pharmaceutical. In yet another example, one adds and/or
dissolves a (recombinant) gelatin and a pharmaceutical at the same time to or in a suitable diluent or solvent.

The pharmaceutical does not always need to be dissolved. In case the solubility of the pharmaceutical in the solvent system used is limited it is also possible to use particle suspensions of the pharmaceutical. These particle suspensions can be already preformed and added to the gelatin solution or vice versa, or be formed, i.e. precipitated, in the gelatin solution.

An important feature of controlled release compositions is, that the polymer used in the hydrogel formation should be biodegradable and as such does not require invasive surgical methods to be removed after complete release of pharmaceuticals. Moreover biodegradability could be required to release the pharmaceutical used in the composition. A priori it is not obvious whether recombinant gelatins will be broken down by the same mechanisms causing degradation of natural gelatins. It is known that natural gelatins and collagens are degraded in the human body by proteases and more specifically matrix-metalloproteinases (MMP). Matrix metalloproteinases (MMP's) are zinc-dependent endopeptidases. The MMP's belong to a larger family of proteases known as the metzincin superfamily. Collectively they are capable of degrading all kinds of extracellular matrix proteins, but also can process a number of bioactive molecules. An important group of MMP's are the collagenases. These MMP's are capable of degrading triple-helical fibrillar collagens into distinctive 3/4 and 1/4 fragments. These collagens are the major components of bone and cartilage, and MMP's are the only known mammalian enzymes capable of degrading them. Traditionally, the collagenases are: MMP-1 (Interstitial collagenase), MMP-8 (Neutrophil collagenase), MMP-13 (Collagenase 3) and MMP-18 (Collagenase 4). Another important group of MMP's is formed by the gelatinases. The main substrates of these MMP's are type IV collagen and gelatin, and these enzymes are distinguished by the presence of an additional domain inserted into the catalytic domain. This gelatin-binding region is positioned immediately before the zinc binding motif,
and forms a separate folding unit which does not disrupt the structure of the catalytic domain. The two members of this sub-group are: MMP-2 (72 kDa gelatinase, gelatinase-A) and MMP-9 (92 kDa gelatinase, gelatinase-B).

In a preferred embodiment, the invention provides a controlled release composition comprising a cross-linked gelatin and at least one therapeutic protein wherein the ratio of the average mesh size (ξ) of the gelatin matrix and the average hydrodynamic radius (RH) of said therapeutic protein is smaller than 2, preferably smaller than 1.5, in which said gelatin is recombinant gelatin.

In an especially preferred embodiment, the invention provides a controlled release composition comprising a cross-linked recombinant gelatin and at least one therapeutic protein wherein the ratio of the average mesh size (ξ) of the gelatin matrix and the average hydrodynamic radius of said therapeutic protein is smaller than 2, preferably smaller than 1.5, in which said recombinant gelatin is human or human-like. Human-like gelatin is defined as being for at least 60%, more preferable for at least 80%, most preferably for at least 90% identical to amino acid sequence of gelatin in human collagen. A starting point for preparing a recombinant human or human-like gelatin is for example the human CoIIAl sequence. However, it is also possible to use other human collagen sequences to start with.

Recombinant human gelatin is defined herein as gelating having a human amino acid sequence, a level of glycosylation equal to human gelatin as well as a level of hydroxylation equal to the human gelatin. Human-like gelatin refers to recombinant gelatin having one or more mutations in the amino acid sequence of the protein, an altered level of glycosylation relative to endogenous human levels (preferably lowered in order to reduce immunoigenicity of the recombinant gelatin), and/or altered level of hydroxylation of lysine and/or proline residues relative to endogenous human levels. Mammalian-like is the corresponding term for mammalian-derived gelatins.
The recombinant gelatin used in a method of the invention can be selected from a vast array of recombinant gelatins, for example a recombinant gelatin based on human collagen type I, II, III, or IV. As described above, a recombinant gelatin can be produced in any suitable (over)expression system, for example expression in yeast, bacteria, fungi or plants. It is clear to the skilled person that the use of a certain expression system might impose specific properties on the produced recombinant gelatin, for example a different glycosylation pattern (if compared to a natural variant) or no glycosylation at all.

An important advantage of the use of a recombinant gelatin is that well-defined controlled release compositions can be prepared. Also the constant quality (for example the purity and well-defined molecular weight) of the recombinant gelatins compared to animal derived gelatins contributes to the preservation of the quality of the pharmaceutical in the controlled release composition.

Another important advantage of a recombinant gelatin is that the amino acid sequence can be manipulated to create certain characteristics. Examples of characteristics that can now be manipulated are (i) the amount of cross-linkable amino acids (for example the amount of (hydroxy)lysines), (ii) the glycosylation pattern (for example the absence of threonine and/or serine amino acids in certain triplets results in the absence of glycosylation), (iii) the size of the recombinant gelatin, (iv) the charge density of the recombinant gelatin can be amended (for example charged amino acids, such as asparagine (Asn), aspartic acid (Asd), glutamine (Gln), glutamic acid (Glu) or lysine (Lys) can be introduced or left out) and as such the loading and release of a pharmaceutical (especially a therapeutic protein) can be influenced or (v) the biodegradability can be amended by the presence or absence of cleavage sites for metalloproteases.

As mentioned above one important characteristic of a recombinant gelatin is the amount of cross-linkable amino acids, such as the amount of
(hydroxy)-lysine groups and the amount of carboxylic acid groups derived from aspartic and glutamic acid.

In a preferred embodiment, the invention provides a controlled release composition comprising a cross-linked (recombinant) gelatin and at least one therapeutic protein wherein the ratio of the average mesh size (ξ) of the gelatin matrix and the average hydrodynamic radius of said therapeutic protein is smaller than 2, preferably smaller than 1.5, wherein said (recombinant) gelatin comprises at least 0.05 mmol/g (hydroxy)lysine groups. Preferably said recombinant gelatin comprises at least 0.10 mmol/g lysine or hydroxylysine groups, more preferably at least 0.20 mmol/g to obtain a suitable structure after cross-linking. Also higher lysine or hydroxylysine contents of around 0.40 or up to 0.60 or 0.80 mmol/g may be applied depending on the desired three dimensional network structure.

It is clear that the amount of cross-linkable group has an effect on the degree of cross-linking. If more cross-linkable groups are available, the amount of cross links can in principle be higher if compared to a situation in which less linkable groups are present. The lower limit of cross-linkable groups is that amount that still can result in the formation of a gel. The amount of cross-linkable groups in principle also determines the mesh size which is a measure of the average "pore size" of the entangled/cross-linked gelatin network at physiological conditions (pH 7.4, 37°C and 300 mOsm/L). Finally, the amount of cross-linked groups determines the biodegradability of the formed controlled release composition. By using a recombinant gelatin, the amount of cross-linkable groups can be influenced and thus the gel mesh size and biodegradability can be manipulated.

Depending on the application the controlled release composition can be obtained as a gel or elastic semi-solid in various shapes by pouring it in molds and subsequent (chemical) cross-linking. Furthermore controlled release particles may be obtained by emulsifying the controlled release composition.
and isolating the formed emulsion droplets after cross-linking as more or less solid particles. Another way to obtain controlled release particles is by spray drying. Particle size may range from 0.1 micrometer to 1000 micrometer, but depending on the application and the desired release profile, more specific ranges could be selected. In case injectable formulations are used the particle size preferably should not exceed 200 micrometer. Furthermore the controlled release compositions may be cast into films or sheets. Examples of suitable casting techniques include spin coating, gravure coating, flow coating, spray coating, coating with a brush or roller, screen printing, knife coating, curtain coating, slide curtain coating, extrusion, squeegee coating, and the like. Film or sheet thickness may range from 1 micrometer up to 1 centimeter. For example in case of wound dressings thicknesses of 1 millimeter to 1 centimeter are preferred, while for coatings of medical devices such as stents or vascular grafts or other implants coating thicknesses up to 1 mm are preferable. Drying of the compositions may be performed by common techniques such as air drying, vacuum drying, freeze drying, or spray drying.

Depending on for example the stability of the used pharmaceutical during the process of cross-linking it may also be possible to first prepare the cross-linked hydrogel and optionally dry it in the absence of the pharmaceutical and then include the pharmaceutical. Upon cross-linking of the matrix the therapeutic protein (TP) can be co-cross-linked resulting in activity loss and in worst-case toxic effects. Hence it has advantages to incorporate the TP after preparing the hydrogel. Several techniques may be applied to incorporate the pharmaceutical in the (dried) hydrogel such as submersing the (dried) hydrogel in solution of a pharmaceutical or by dripping solution of the pharmaceutical on top.

In case of chemical cross-linking, the recombinant gelatin is for example provided with a (chemical) linker and subsequently subjected to a linking reaction. The invention therefore provides a controlled release
composition comprising a chemically cross-linked gelatin and at least one therapeutic protein wherein the ratio of the average mesh size (ξ) of the gelatin matrix and the average hydrodynamic radius of said therapeutic protein is smaller than 2, preferably smaller than 1.5, wherein said gelatin is chemically modified with a cross-linkable group.

Said cross-linkable group may be selected from, but is not limited to epoxy compounds, oxetane derivatives, lactone derivatives, oxazoline derivatives, cyclic siloxanes, or ethenically unsaturated compounds such as acrylates, methacrylates, polyene-polythiols, vinyl ethers, vinylamides, vinylamines, allyl ethers, allylesters, allylamines, maleic acid derivatives, itaconic acid derivatives, polybutadienes and styrenes. Preferably as the cross-linkable group (meth)acrylates are used, such as alkyl-(meth)acrylates, polyester-(meth)acrylates, urethane-(meth)acrylates, polyether-(meth)acrylates, epoxy-(meth)acrylates, polybutadiene-(meth)acrylates, silicone-(meth)acrylates, melamine-(meth)acrylates, phosphazene-(meth)acrylates, (meth)acrylamides and combinations thereof because of their high reactivity. Even more preferably said cross-linkable group is a methacrylate and hence the invention also provides methacrylated (recombinant) gelatin. Such a methacrylated (recombinant) gelatin is very useful in the preparation of a controlled release composition. Generally, the linking groups (for example methacrylate) are coupled to the (recombinant) gelatin and cross-linking is obtained by redox polymerisation (for example by subjection to a chemical initiator such as the combination potassium peroxodisulfate (KPS)/N,N,N',N' tetramethylethylenediamine (TEMED)) or by radical polymerisation in the presence of an initiator for instance by thermal reaction of by radiation such as UV-light).

Photo-initiators may be used in accordance with the present invention and can be mixed into the solution of the recombinant gelatin. Photo-initiators are usually required when the mixture is cured by UV or visible light
radiation. Suitable photo-initiators are those known in the art such as radical type, cation type or anion type photo-initiators.

Examples of radical type I photo-initiators are α-hydroxyalkylketones, such as 2-hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methyl-1-propanone (Irgacure™ 2959: Ciba), 1-hydroxy-cyclohexyl-phenylketone (Irgacure™ 184: Ciba), 2-hydroxy-2-methyl-l-phenyl-l-propanone (Sarcure™ SR1173: Sartomer), oligo[2-hydroxy-2-methyl-l-{4-(1-methylvinyl)phenyl}propanone] (Sarcure™ SR1 130: Sartomer), 2-hydroxy-2-methyl-l-(4-tert-butyl)-phenylpropan-l-one, 2-hydroxy-[4′-(2-hydroxypropoxy)phenyl]-2-methylpropan-1-one, 1-(4-Isopropylphenyl)-2-hydroxy-2-methyl-propanone (Darcure™ 1116: Ciba); α-aminoalkylphenones such as 2-benzyl-2-(dimethylamino)-4′-morpholinobutyrophenone (Irgacure™ 369: Ciba), 2-methyl-4′-(methylthio)-2-morpholinopropiophenone (Irgacure™ 907: Ciba); α,α-dialkoxyacetophenones such as α,α-dimethoxy-α-phenylacetophenone (Irgacure™ 651: Ciba), 2,2-diethoxy-1,2-diphenylethanone (Uvatone™ 8302: Upjohn), α,α-diethoxyacetophenone (DEAP: Rahn), α,α-di-(n-butoxy)acetophenone (Uvatone™ 8301: Upjohn); phenylglyoxolates such as methylbenzoylformate (Darocure™ MBF: Ciba); benzoin derivatives such as benzoin (Esacure™ BO: Lamberti), benzoin alkyl ethers (ethyl, isopropyl, n-butyl, iso-butyl, etc.), benzylbenzoin benzyl ethers, Anisoin; mono- and bis-Acylphosphine oxides, such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Lucirin™ TPO: BASF), ethyl-2,4,6-trimethylbenzoylphenolphosphinate (Lucirin™ TPO-L: BASF), bis(2,4,6-trimethylbenzoyl)-phenolphosphine oxide (Irgacure™ 819: Ciba), bis(2,6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphineoxide (Irgacure 1800 or 1870). Other commercially available photo-initiators are 1-[(4-(phenylthio))2-(O-benzoyloxime)]-1,2-octanедione (Irgacure OXEOl), 1-[(9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]1-(O-acetyloxime)ethanone (Irgacure OXE02), 2-hydroxy-l-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl}]-2-methyl-prop an-1-one (Irgacure 127), oxy-phenyl-acetic acid 2-[2 oxo-2-phenyl-
acetoxy-ethoxy]-ethyl ester (Irgacure754), oxy-phenyl-acetic-2-[2-hydroxy-ethoxy]-ethyl ester (Irgacure754), 2-(dimethylamino)-2-(4-methylbenzyl)-l-[4-(4-morpholiny1) phenyl] -1-butane (Irgacure 379), l-[4-[4-benzoylphenyl]thio]phenyl]-2-methyl-2-[(4-methylphenyl)sulfonyl]l-propanone (Esacure 1001M from Lamberti), 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-bisimidazole (Omnirad BCIM from IGM).

Examples of type II photo-initiators are benzophenone derivatives such as benzophenone (Additol™ BP: UCB), 4-hydroxybenzophenone, 3-hydroxybenzophenone, 4,4'-dihydroxybenzophenone, 2,4,6-trimethylbenzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2,5-dimethylbenzophenone, 3,4-dimethylbenzophenone, 4-(dimethylamino)benzophenone, [4-(4-methylphenylthio)phenyl]phenylmethanone, 3,3'-dimethyl-4-methoxy benzophenone, methyl-2-benzoylbenzote, 4-phenylbenzophenone, 4,4-bis(dimethylamino)benzophenone, 4,4-bis(diethylamino)benzophenone, 4,4-bis(ethylmethylamino)benzophenone, 5-benzoyl-N,N,N-trimethylbenzenemethanaminium chloride, 2-hydroxy-3-(4-benzoylphenoxy)-N,N,N-trimethyl-1-propanamium chloride, 4-(13-Acryloyl-1,4,7,10,13-pentaoxatridecyl)benzophenone (Uvecryl™ P36: UCB), 4-benzoyl-N,N,N-dimethyl-N-[2-[(I-oxo-2-propenyl)oxy]ethylbenzene-methanaminium chloride, 4-benzoyl-4'-methylidiphenyl sulphide, anthraquinone, ethylanthraquinone, anthraquinone-2-sulfonic acid sodium salt, dibenzosuberenone; acetophenone derivatives such as acetophenone, 4'-phenoxyacetophenone, 4'-hydroxyacetophenone, 3'-hydroxyacetophenone, 3'-ethoxyacetophenone; thioxanthenone derivatives such as thioxanthenone, 2-chlorothioxanthenone, 4-chlorothioxanthenone, 2-isopropylthioxanthenone, 4-isopropylthioxanthenone, 2,4-dimethylthioxanthenone, 2,4-diethylthioxanthenone, 2-hydroxy-3-(3,4-dimethyl-9-oxo-9H-thioxanthon-2- yloxy)-N,N,N-trimethyl-l-propanaminium chloride (Kayacure™ QTX: Nippon Kayaku); diones such as benzyl, camphorquinone, 4,4'-dimethylbenzyl,
methylidyne-tris(N,N-dimethylaniline) (Omnirad™ LCV from IGM); imidazole derivatives such as 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-bisimidazole; titanocenes such as bisCeta-5^^-cyclopentadiene-l-y^-bis-. β-difluoro-3-lH-pyrrl-l-yl]phenyl]titanium (Irgacure™784: Ciba); iodonium salt such as iodonium, (4-methylphenyl)-[4-(2-methylpropyl-phenyl)-hexafluorophosphate (1-). If desired combinations of photo-initiators may also be used.

For acrylates, diacrylates, triacrylates or multifunctional acrylates, type I photo-initiators are preferred. Especially alpha-hydroxyalkylphenones, such as 2-hydroxy-2-methyl-l-phenyl propan-1-one, 2-hydroxy-2-methyl-l-(4-tert-butyl-) phenylpropan-1-one, 2-hydroxy-[4'-(2-hydroxypropoxy)phenyl]-2-methylpropan-1-one, 2-hydroxy-l-[4-(2-hydroxyethoxy)phenyl]-2-methyl propan-1-one, 1-hydroxycyclohexylphenylketone and oligo[2-hydroxy-2-methyl-l-{4-(l-methylvinyl)phenyl}propanone], alpha-aminoalkylphenones, alpha-sulfonylalkylphenones and acylphosphine oxides such as 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, ethyl-2,4,6-trimethylbenzoyl-phenylphosphinate and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, are preferred.

Cross-linking by infrared radiation is also known as thermal curing. Thus cross-linking may be effectuated by combining the ethylenically unsaturated groups with a free radical initiator and optionally a catalyst and heating the mixture. Exemplary free radical initiators are organic peroxides such as ethyl peroxide and benzyl peroxide; hydperoxides such as methyl hydroperoxide, acyloins such as benzoin; certain azo compounds such as α,α'-azobisisobutyronitrile and γ,γ'-azobis(γ-cyanovaleric acid); persulfates; peroxosulfates; peracetates such as methyl peracetate and tert-butyl peracetate; peroxalates such as dimethyl peroxalate and di(tert-butyl) peroxalate; disulfides such as dimethyl thiuram disulfide and ketone peroxides such as methyl ethyl ketone peroxide. Temperatures in the range of from about
23 °C to about 150 °C are generally employed. More often, temperatures in the range of from about 37 °C to about 110 °C are used.

When selecting a cross-linking method it is of high importance to verify that the therapeutic protein is not 'damaged' by the reaction and maintains its therapeutic activity.

The use of methacrylated gelatin is especially preferred in combination with a therapeutic protein, because cross-linking of methacrylated gelatin can be performed in the presence of a therapeutic protein without co-cross-linking the therapeutic protein.

As a result of cross-linking, a controlled release composition comprising a pharmaceutical is obtained. The mesh size or pore size of the obtained product is dependent on the used (recombinant) gelatin and the cross-linking density. The mesh size is defined as the average distance between two neighbouring cross-links in the hydrogels polymer network. If a therapeutic protein is used as a pharmaceutical, the mesh size can be both larger and smaller than the hydrodynamic radius of the therapeutic protein. The hydrodynamic radius \(R_H \) is the apparent radius of a protein in the gelatin matrix taken into account all environmental effects. As such the hydrodynamic radius is derived from the diffusion coefficient \(D \) via the relation \(D= \frac{kT}{6\pi \eta R_H} \), in which \(k \) is Boltzmann's constant, \(T \) is the temperature in Kelvin, \(\pi \) is 3.14, and \(\eta \) is the viscosity of the solution in mPa.s. In the current invention the hydrodynamic radius is preferably measured at physiological conditions. The speed of degradation of the obtained product depends on the amount of cross-links: the more cross-links the slower the degradation. In a preferred embodiment, the speed of degradation is within one year. As release profiles of pharmaceuticals usually extend to a couple of weeks or maximally a few months it is preferable that the matrix consisting of (recombinant) gelatin degrades in a similar time window. The final charge density of the obtained product depends both on the used amino acid sequence of the recombinant gelatin as well as on the degree of cross-linking. The obtained product can
have different appearances, for example dense/homogenous or macroporous. The release profile of the used pharmaceutical can be from several hours (diffusion controlled) to weeks or months (controlled by degradation speed). A combination of both mechanisms can also occur. For most applications a slow release is preferred and hence biodegradation as main mechanism.

As described, the cross-linking can be obtained by cross-linking (meth)acrylate residues introduced in the pre-modification of the recombinant gelatin. However, it is also possible to use a chemical cross-linker that does not need a separate coupling to the used recombinant gelatin. In another embodiment, the invention provides a method for preparing a controlled release composition comprising the steps of:

- providing a solution of a recombinant gelatin and a pharmaceutical
- cross-linking said recombinant gelatin to obtain a three dimensional structure, wherein said cross-linking is obtained by using a chemical cross-linker selected from water soluble carbodiimide, non-soluble carbodiimide, di-aldehyde di-isocyanate, aldehyde compounds such as formaldehyde and glutar aldehyde, ketone compounds such as diacetyl and chloropentanedion, bis (2-chloroethylurea), 2-hydroxy-4,6-dichloro-1, 3,5-triazine, reactive halogen-containing compounds disclosed in US-A-3288 775, carbamoyl pyridinium compounds in which the pyridine ring carries a sulphate or an alkyl sulphate group disclosed in US-A-4 063 952 and US-A-5 529 892, divinylsulfones, and the like. S-triazine derivatives such as 2-hydroxy-4,6-dichloro-s-triazine are well known cross-linking compounds.

Basically the cross-linking occurs between two reactive groups on different gelatin molecules. Particularly preferred is the use of water soluble carbodiimide 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride.

Depending on the type of gelatin (the number of cross-linkable groups) and the method of cross-linking selected a certain cross-link density can be obtained which is strongly related to the average mesh size that can be achieved. When a cross-linking group is coupled to the gelatin in a separate
Step and for the hydrogel a dense structure is desired. It is preferred that at least 50% of the cross-linkable groups in the gelatin are activated, more preferably at least 75%. Most preferably the degree of substitution is close to 100%.

All kinds of pharmaceuticals can be incorporated in the controlled release composition. The term "pharmaceutical" refers to chemical or biological molecules providing a therapeutic, diagnostic, or prophylactic effect preferably in vivo. The term pharmaceutical is also meant to indicate prodrug forms thereof. A "prodrug form" of a pharmaceutical means a structurally related compound or derivative of the pharmaceutical which, when administered to a host is converted into the desired pharmaceutical. A prodrug form may have little or none of the desired pharmacological activity exhibited by the pharmaceutical to which it is converted.

Examples of proteins which can be incorporated into the drug delivery device of the present invention include, but are not limited to, hemoglobin, vasopressin, oxytocin, adrenocorticotropic hormone, epidermal growth factor, prolactin, luliberin or luteinising hormone releasing factor, human growth factor, basic fibroblast growth, hepatocyte growth factor, angiogenesis growth factor, vascular endothelial growth factor, bone morphogenetic growth factor, nerve growth factor, and the like; interleukins; enzymes such as adenosine deaminase, superoxide dismutase, xanthine oxidase, and the like; enzyme systems; blood clotting factors; clot inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator; antigens for immunization; hormones.

The controlled release composition may comprise at least one kind/type of (recombinant) gelatin but can also be performed by using at least two kinds/types of (recombinant) gelatin (preferably with different characteristics). Moreover, combinations of a gelatin with at least one water-soluble polymer (preferably biodegradable, potentially cross-linking and not being a gelatin) are also possible. Without limiting the scope of the above
invention these biodegradable polymers can be natural or synthetic or made by
recombinant techniques. Examples are dextrans, hyaluronic acid, poly-lactic
acid, poly-glycolic acid, or copolymers of those, chitin, chitosan, alginate,
polyesters, etc. Further suitable polymers are disclosed in US 2004/0235161 on
pg 2. Also the amount of cross-linkers can be varied from at least one or at
least two to more than two (for example three or four).

It is an aspect of the present invention that the controlled release
compounds are essentially homogeneous with respect to cross-linking, and do
not exhibit burst release characteristics, which are diffusion-governed and
which coincide with release rates wherein over 50% of the pharmaceutical is
released from the cross-linked gelatine matrix within 24 hours when tested
under the conditions as described in the experimental part.

Furthermore addition of adjuvants like buffers, salts, surfactants,
humectants and co-solvents in the preparation process can also be used.

Also the amount and kinds of used pharmaceuticals can be varied,
for example the use of at least two therapeutic proteins or the use of a
therapeutic protein in combination with an antibiotic.

In yet another embodiment, the invention provides a method for
preparing a controlled release composition as described herein, comprising
- selecting a therapeutic protein and optionally determining the hydrodynamic
radius (RH) of said protein
- selecting a (recombinant) gelatin which upon cross-linking under
predetermined cross-linking conditions comprises mesh sizes smaller than 2
times the hydrodynamic radius (RH) of said therapeutic protein;
- contacting said therapeutic protein with said (recombinant) gelatin;
- cross-linking said (recombinant) gelatin under said under predetermined
cross-linking conditions;
- optionally purifying the obtained controlled release composition.
Preferred predetermined cross-linking conditions are in principle experimentally determined by cross-linking the bare gelatin matrix and measuring the mesh size, and comparing it to the hydrodynamic radius of the therapeutic protein. However as a rule of thumb one can say that for gelatin concentrations of at least 20% in combination with at least a cross-linker amount of 0.3 mmol/g gelatin the diffusional release is reduced and release by biodegradation prevails. Preferably a gelatin concentration of 30% or more is used in combination with a cross-linker amount of at least 0.3 mmol/g gelatin, preferably at least 0.4 mmol/g gelatin.

The hydrogel can also be loaded after cross-linking and therefore the invention also provides a method for preparing a controlled release composition as described herein, comprising

- selecting a therapeutic protein and optionally determining the hydrodynamic radius (RH) of said protein;
- selecting a (recombinant) gelatin which upon cross-linking under predetermined cross-linking conditions comprises mesh sizes smaller than 2 times the hydrodynamic radius (RH) of said therapeutic protein;
- cross-linking said (recombinant) gelatin under said predetermined cross-linking conditions to obtain a controlled release composition;
- contacting said therapeutic protein with said obtained controlled release composition structure under conditions that allows entry of said therapeutic protein into said controlled release composition;
- optionally purifying the obtained controlled release composition.

The controlled release composition described herein can subsequently be used in the preparation of a pharmaceutical composition. In yet another embodiment, the invention thus provides a pharmaceutical composition comprising a controlled release composition, wherein said
controlled release composition comprises at least a cross-linked (recombinant) gelatin and a therapeutic protein. Such a pharmaceutical composition can further comprise an adjuvant or diluent. Examples of suitable pharmaceutical compositions are an injectable formulation, a subdermal delivery depot, a dressing, or an implant (gel or moulded gel). An example of an injectable formulation is a formulation comprising (matrix) particles of 1-500 µm as described in EP 1 801 122.

The herein described controlled release composition can also be used in the preparation of a pharmaceutical article and the invention thus also provides a pharmaceutical article comprising a controlled release composition, wherein said controlled release composition comprises at least a cross-linked (recombinant) gelatin and a therapeutic protein. Examples of suitable articles are implants such as a stent or an artificial vascular graft, a bone implant or an insoluble drug particle, wound dressings, skin grafts.

A pharmaceutical composition according to the invention can be administered via any route, i.e. via injection (for example subcutaneous, intravenous or intramuscular) or via surgical implantation, orally, via inhalation or via an external wound dressing or even transdermal.

The invention further provides a method for treating a subject in need thereof, comprising providing said subject with an effective amount of a controlled release composition, i.e. a controlled release composition comprising at least a cross-linked (recombinant) gelatin and a therapeutic protein. Treatments that could be more effective using controlled release systems are for example: pain treatment, cancer therapy, cardiovascular diseases, myocardial repair, angiogenesis, bone repair and regeneration, wound treatment, neural stimulation/therapy, diabetics, and the like. The controlled release composition can be administered by injection (subcutaneous, intravenous or intramuscular) or orally or via inhalation. However, the used controlled release composition can also be implanted via surgery. Yet another
suitable route of administering is via an external wound dressing or even transdermally.

The invention further provides use of a controlled release composition as described herein for the preparation of a medicament for the treatment of pain, cancer therapy, cardiovascular diseases, myocardial repair, angiogenesis, bone repair and regeneration, wound treatment, neural stimulation/therapy or diabetics.

The invention will be explained in more detail in the following, non-limiting examples.
Experimental Part

In the present invention, recombinant gelatins and natural gelatins were used for preparing hydrogels for the controlled release of proteins. In one embodiment methacrylate residues were coupled to recombinant gelatin to enable chemical cross-linking. The methacrylated gelatins were analyzed by 1H-NMR to determine the degree of substitution (DS), and by SDS-PAGE to determine purity. Hydrogels of methacrylated gelatins were formed by radical polymerization using potassium peroxodisulfate (KPS) and N,N,N',N'-tetramethylethylenediamine (TEMED) as initiators.

The release rate of the several 'therapeutic' proteins from the (recombinant) gelatin hydrogels as function of the mesh size as determined by the gelatin concentration and amount of crosslinks was studied.

Materials and Methods

Recombinant gelatins HU4 (MW 72.6 kDa), CBE (17.2 kDa), CBE3 (68 kDa) (a trimer of CBE), CBE5 (85 kDa) (a pentamer of CBE, and P4 (36.8 kDa) were used. The preparation of these recombinant gelatins is described elsewhere (EP-A-1398324, EP-A-0926543 and EP-A-1014176). Figures 1 to 4 show the amino acid sequence of these recombinant gelatins. These sequences are primarily based on human type I collagen while CBE and its trimer CBE3 or its pentamer CBE5 contain an increased number of RGD motifs and an increased ratio of lysine amino acids. Furthermore as natural gelatins an acid treated hydrolysed porcine gelatin (average MW 26 kDa, polydispersity D 1.6, DGF Stoess and a hydrolysed alkali-treated bovine gelatin (average MW, 23 kDa, polydispersity D 1.6, Nitta) were used. Molecular weight and polydispersity were determined by GPC using a TSKgel superSW3000 and 2000 column with as eluens 10 mM Na2SO4, 1% SDS, pH 5.3.
Of the recombinant gelatins, CBE (or a multimer thereof), in particular CBE3 or, CBE5, and P4 are preferred. Most preferred are, CBE3 and P4.

Methacrylic anhydride (MA-Anh) was purchased from Sigma-Aldrich (St. Louis, MO). Potassium peroxodisulfate (KPS) was obtained from Merck (Darmstadt, Germany). Stock solutions with 20 mg/ml KPS were prepared with isotonic phosphate buffer of pH 7.4, aliquoted in Eppendorf tubes, and stored at -20°C. N,N,N',N'-tetramethylethlenediamine (TEMED) was obtained from Fluka (Buchs, Switzerland). Stock solutions with 20% (v/v) TEMED were prepared in isotonic phosphate buffer of pH 7.4, aliquoted in Eppendorf tubes, and stored at -20°C. Proteins used were: egg hen lysozyme was obtained from Fluka (Buchs, Switzerland), Bovine Serum Albumin (BSA) from Sigma Aldrich, Netherlands. Stock solutions with 10 mg/ml protein, were prepared in isotonic phosphate buffer of pH 7.4, filtered through 0.2 mm HPLC filters (Alltech, Deerfield, IL), aliquoted in low binding Eppendorf tubes (Eppendorf, Hamburg, Germany), and stored at -20°C. Physiological phosphate buffer was prepared by dissolving 0.76 mg/ml NaH₂P₂O₇·2H₂O, 0.79 mg/ml Na₂HPO₄, and 0.06 mg/ml NaCl, adjusting the pH to 7.4 with NaOH solution, and filtering the buffer solution through 0.2 mm filters (Schleicher und Schuell, Dassel, Germany).

Table I

<table>
<thead>
<tr>
<th>Type</th>
<th>Mw (kDa)</th>
<th>Number AA</th>
<th>Lysine amount</th>
<th>Lysine/1000 aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU4</td>
<td>72</td>
<td>821</td>
<td>32</td>
<td>39</td>
</tr>
<tr>
<td>CBE</td>
<td>17.2</td>
<td>192</td>
<td>11</td>
<td>57</td>
</tr>
<tr>
<td>CBE5</td>
<td>85</td>
<td>900</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>P4</td>
<td>36.8</td>
<td>401</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>Pig skin</td>
<td>26</td>
<td>~260</td>
<td>10</td>
<td>38</td>
</tr>
<tr>
<td>gelatin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Bone gelatin</td>
<td>23</td>
<td>~230</td>
<td>9</td>
<td>40</td>
</tr>
</tbody>
</table>

aa is 'amino acid'
A) Methacrylation of (recombinant) gelatin

Recombinant and natural gelatins were derivatized with methacrylate residues as follows. 2.5 g gelatin was dissolved in 200 ml phosphate buffer of pH 7.4. Solutions under a nitrogen atmosphere were heated to 50°C and methacrylic-anhydride (MA-Anh) was added to achieve different degrees of substitution, the MA-Anh:gelatin ratio was varied. During the methacrylation reaction, the pH of the solution was regularly controlled and, if necessary, kept between 7 and 7.4 by the addition of 1 M NaOH solution. After vigorous stirring at 50°C for one hour, the solutions were extensively dialyzed against water (dialysis tubes with 14 kDa MWCO Medicell International, London, UK). Dried products were obtained by lyophilization and were stored in sealed glass containers at 4°C.

B) Determination of Degree of Substitution (DS)

The actual degree of substitution (DS), i.e. the fraction of methacrylated amino acids with respect to the total number of primary amine groups of the recombinant gelatin, was determined by 1H-NMR. Measurements were performed with a Gemini spectrometer (Varian Associates, Inc. NMR Instruments, Palo Alto, CA) operating at 300 MHz. Samples were prepared by dissolving 40 mg/ml gelatin in deuterium oxide. Forty scans were accumulated using a 62.5° pulse and 2 seconds relaxation delay. Integration of the phenylalanine signal and division of its area by the known number of phenylalanine protons gelatin molecule gave the area of one proton. Dividing the total area of the two methacrylate signals by the area of one proton gave the number of protons that made up the methacrylate signals. This value, divided by two, corresponded to the average number of methacrylate residues per gelatin chain and enabled the calculation of DS.
C) Preparation of hydrogels including therapeutic proteins

Hydrogels with an initial gelatin concentrations of 5, 10, 15, 20, 25, 30 and 40% (w/w) were prepared. Methacrylated gelatin was dissolved in phosphate buffer of pH 7.4 containing 0.05% NaN3, and solutions were centrifuged (5 min, 10000 RPM). Upon centrifugation, 596 mg gelatin solution was filled in an Eppendorf tube, and 75 µl phosphate buffer of pH 7.4 (or protein stock solution for release experiments) were added and gently mixed. KPS 20 mg/ml stock solution (56.5 µl) and TEMED 20% stock solution (22.5 µl) were added and mixed to induce cross-linking of the gelatin methacrylate residues. The solution was filled in 1 ml syringes (Becton-Dickinson, Franklin Lake, NJ). After 1.5 h, the syringes were opened to remove the hydrogels, which were cut into cylinders of 6 mm length and 2.3 mm radius.

D) Mesh size of the hydrogels

Oscillatory shear experiments were performed using an AR 1000-N controlled stress rheometer (TA Instruments, New Castle, DE) equipped with a stainless steel conical plate (40 mm diameter, 1° angle) and a solvent trap to prevent water evaporation from the sample. Hydrogel components were mixed as described above and pipetted on the rheometer. Gel formation at 20°C was followed during 1.5 h by measuring the shear storage modulus (G’) and the loss modulus (G”). G’ and G” were also measured at 37°C after gel formation was complete. The standard settings used for the measurements were a strain of 0.1 % and an angular frequency of 6.283 rad/sec. To ensure that experiments were performed in the linear viscoelastic range, frequency sweep (0.6283 — 62.83 rad/sec) and strain sweep (0.05 - 2 % strain) experiments were performed.

Dynamic mechanical analysis (DMA) of hydrogels in the equilibrium swollen state was performed with a DMA 2980 dynamic mechanical analyzer (TA Instruments, New Castle, DE), equipped with a liquid filled sample holder for preventing water evaporation from hydrogels, and operating at 37°C.
Experiments were conducted in the controlled force mode. The static force imposed on the hydrogels was increased from 0.001 to 0.95 N in 0.05 N steps. The stress in MPa that a hydrogel was subjected to was calculated from the static force and the known top surface area of the gel cylinder. The change of hydrogel height was used to calculate parameter α as a measure of strain:

$$\alpha = \frac{\Delta h}{h_{gel} + 1} \quad (1')$$

where Δh is the change in hydrogel height and h_{gel} is the original hydrogel height. The hydrogel elasticity modulus (E) was determined from the slope of stress against α ($1'$).

E was used to determine the molecular weight between crosslinks (M_0): (2,3)

$$M_c = \frac{(3\rho RT)}{E} \quad (2')$$

where ρ is the gel density, R is the gas constant and T the absolute temperature in 0K.

Knowledge of M_c enabled to estimate the average mesh size (ξ) of the hydrogels in the equilibrium swollen state using an equation that had been applied to non-recombinant gelatin hydrogels: (4)

$$\xi = 2\alpha' \left(\frac{M_c}{M_r} \right)^{\frac{1}{2}} \cdot 2.21 \cdot (Q_m)^{\frac{1}{3}} \quad (3')$$

Here, M_r is the average molecular weight of one amino acid of the gelatin chain, and was estimated to be 100 g/mol. The value of

$$\left(\frac{M_c}{M_r} \right)^{\frac{1}{2}} \cdot 2.21 \quad \text{corresponds to the (theoretical) freely rotating root mean}$$
square end-to-end distance of the gelatin chain between two crosslinks. Multiplication of this value with $2\alpha'$ gives the experimental root mean square end-to-end distance between two crosslinks. The factor α' was assumed to have a value of 2, as reported for non-recombinant gelatins (4,5). Q_m is the equilibrium volume swelling ratio. It is inverse to the polymer volume fraction at equilibrium swelling (ν_2,s).

E. Release Experiments

Hydrogel cylinders loaded with protein were placed in glass vials containing 3 ml phosphate buffer of pH 7.4 with 0.05% NaN3. The vials were stored in a shaking water bath at 37°C. At different time-points, 1 ml of the phosphate buffer was sampled, filled in low-binding Eppendorf tubes, and stored at -20°C until analysis. The removed volume was replaced by fresh phosphate buffer solution. Samples were analyzed by HPLC using an Alltima C18 RP-HPLC column (Alltech, Deerfield, IL). The injection volume was 40 microliter. A linear gradient was run that changed the starting mixture of 70% eluent A (10% acetonitrile, 90% water, 0.1% trifluoroacetic acid) and 30% eluent B (90% acetonitrile, 10% water, 0.1% trifluoroacetic acid) to 55% eluent A and 45% eluent B in 15 min. Return to the starting eluent composition occurred in one minute. Detection was by UV absorption at 280 nm, and protein concentration was determined by the area under the curve (AUC) of the HPLC signals using standards prepared from the protein stock solutions.
Results

In the tables below the released fraction of proteins Lysozyme and BSA from the hydrogels prepared at various concentrations is shown after 24 hours. At this time scale the sample was in so-called equilibrium and there was no additional protein released by diffusion. Hence the remaining non-released protein fraction is trapped inside the hydrogel and should be released by enzymatic degradation. It is this enzymatic degradation time scale of weeks or months which is of great importance for drug delivery devices.

Table II: Diffusional release of Lysozyme and BSA from HU-4 hydrogels

<table>
<thead>
<tr>
<th>[HU4] v/v%</th>
<th>DS</th>
<th>ξ (nm)</th>
<th>R_H, Lysozyme (nm)</th>
<th>ξ/R_H</th>
<th>Released fraction</th>
<th>R_H, BSA (nm)</th>
<th>ξ/R_H</th>
<th>Released fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>86</td>
<td>2</td>
<td>21</td>
<td>0.98</td>
<td>6</td>
<td>7</td>
<td>0.96</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>26</td>
<td>2</td>
<td>6.5</td>
<td>0.86</td>
<td>6</td>
<td>2.2</td>
<td>0.80</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>0.83</td>
<td>6</td>
<td>1</td>
<td>0.13</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1.5</td>
<td>0.48</td>
<td>6</td>
<td>0.5</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Table III: Diffusional release of Lysozyme and BSA from CBE hydrogels

<table>
<thead>
<tr>
<th>[CBE] v/v%</th>
<th>DS</th>
<th>ξ (nm)</th>
<th>R_H, Lysozyme (nm)</th>
<th>ξ/R_H</th>
<th>Released fraction</th>
<th>R_H, BSA (nm)</th>
<th>ξ/R_H</th>
<th>Released fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>45</td>
<td>2</td>
<td>22.5</td>
<td>0.99</td>
<td>6</td>
<td>7.5</td>
<td>0.97</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>0.95</td>
<td>6</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2.5</td>
<td>0.83</td>
<td>6</td>
<td>0.9</td>
<td>0.16</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.3</td>
<td>6</td>
<td>0.3</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Table IV: Diffusional release of Lysozyme and BSA from CBE5 hydrogels

<table>
<thead>
<tr>
<th>[CBE5] v/v%</th>
<th>DS</th>
<th>ξ (nm)</th>
<th>R_H, Lysozyme (nm)</th>
<th>ξ/R_H</th>
<th>Released fraction</th>
<th>R_H, BSA (nm)</th>
<th>ξ/R_H</th>
<th>Released fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>28</td>
<td>2</td>
<td>14</td>
<td>0.99</td>
<td>6</td>
<td>4.7</td>
<td>0.97</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>0.95</td>
<td>6</td>
<td>1.7</td>
<td>0.2</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0.7</td>
<td>6</td>
<td>0.7</td>
<td>0.11</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>1.2</td>
<td>2</td>
<td>0.6</td>
<td>0.2</td>
<td>6</td>
<td>0.2</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Table V: Diffusional release of Lysozyme and BSA from P4-hydrogels

<table>
<thead>
<tr>
<th>[P4] v/v%</th>
<th>DS</th>
<th>ξ (nm)</th>
<th>R_H, Lysozyme (nm)</th>
<th>ξ/R_H</th>
<th>Released fraction</th>
<th>R_H, BSA (nm)</th>
<th>ξ/R_H</th>
<th>Released fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>50</td>
<td>2</td>
<td>25</td>
<td>0.99</td>
<td>6</td>
<td>8.3</td>
<td>0.96</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>27</td>
<td>2</td>
<td>13.5</td>
<td>0.98</td>
<td>6</td>
<td>4.5</td>
<td>0.80</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>6</td>
<td>0.84</td>
<td>6</td>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>6</td>
<td>0.7</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Table VI: Diffusional release of Lysozyme and BSA from hydrogels of acid treated hydrolysed porcine gelatin

<table>
<thead>
<tr>
<th>[porc. gelatin] v/v%</th>
<th>DS</th>
<th>ξ (nm)</th>
<th>R_H, Lysozyme (nm)</th>
<th>ξ/R_H</th>
<th>Released fraction</th>
<th>R_H, BSA (nm)</th>
<th>ξ/R_H</th>
<th>Released fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>70</td>
<td>2</td>
<td>35</td>
<td>0.98</td>
<td>6</td>
<td>11.7</td>
<td>0.96</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>22</td>
<td>2</td>
<td>11</td>
<td>0.98</td>
<td>6</td>
<td>3.7</td>
<td>0.80</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>0.90</td>
<td>6</td>
<td>1.7</td>
<td>0.70</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2.5</td>
<td>0.85</td>
<td>6</td>
<td>0.9</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Table VII: Diffusional release of Lysozyme and BSA from hydrogels of hydrolysed alkali-treated bovine gelatin

<table>
<thead>
<tr>
<th>[bov. gelatin] v/v%</th>
<th>DS</th>
<th>ξ (nm)</th>
<th>R_H, Lysozyme (nm)</th>
<th>ξ/R_H</th>
<th>Released fraction</th>
<th>R_H, BSA (nm)</th>
<th>ξ/R_H</th>
<th>Released fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>56</td>
<td>2</td>
<td>28</td>
<td>0.98</td>
<td>6</td>
<td>9.3</td>
<td>0.96</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>6</td>
<td>0.98</td>
<td>6</td>
<td>2</td>
<td>0.72</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>3.5</td>
<td>0.80</td>
<td>6</td>
<td>1.2</td>
<td>0.63</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1.5</td>
<td>0.53</td>
<td>6</td>
<td>0.5</td>
<td>0.30</td>
</tr>
</tbody>
</table>

From the above results it becomes clear that in order to have a reasonable fraction of the protein trapped inside the hydrogel the hydrodynamic radius should be significantly large with respect to the mesh or pore size of the hydrogel network. This mesh size is governed by the concentration of the gelatin used and the degree of substitution, which together determine the crosslink density.

In other words, it is clearly seen that if the ratio ξ/R_H is larger than 2 a significant part of the therapeutic protein is being released by diffusion, causing an undesirable initial burst of therapeutic protein.
Another surprising effect of the above invention is that recombinant gelatins show less diffusional release at a given ratio $\xi_{R,H}$ compared to conventional gelatins. Although more research is required to explain this effect it is speculated that the homogeneous and mono-disperse nature of the recombinant gelatins is contributing to the improved behaviour in contrast to the heterogeneous and poly-disperse nature of natural gelatins causing local inhomogeneities in the hydrogels on a microscopic level. These inhomogeneities may be related to the presence of small fragments of less than e.g. 2.5 kDa. In a less dense region one may envisage that diffusional release might still occur.

Furthermore it also becomes clear that CBE and CBE5 gelatin with their enhanced lysine amount compared to the other gelatins exhibit a decreased mesh size. Apparently this is due to the increased number of cross-links by the increased lysine amount. Hence these specific gelatins may be preferentially used for controlled release applications.
Description of Figures

Figure 1
Amino acid sequence of HU4 gelatin.

Figure 2
Amino acid sequence of CBE.

Figure 3
Amino acid sequence of CBE5.

Figure 4
Amino acid sequence of P4.
References

Claims

1. A controlled release composition comprising a cross-linked recombinant gelatin and at least one therapeutic protein wherein the ratio of the average mesh size (ξ) of the gelatin matrix and the average hydrodynamic radius (RH) of said therapeutic protein is smaller than 2, preferably smaller than 1.5.

2. A controlled release composition according to claim 1, wherein release rate of the therapeutic protein from said controlled release composition is such that less than 50%, of the fraction of the therapeutic protein entrapped in the controlled release composition is released in a period of 24 hours when the controlled release composition is placed in aqueous solution.

3. A controlled release composition according to any one of claims 1 to 2, wherein said gelatin is recombinant gelatin.

4. A controlled release composition according to claim 3, wherein said recombinant gelatin is human or human-like.

5. A controlled release composition according to any one of claims 1 to 4, wherein said gelatin is chemically modified with a cross-linkable group.

6. A controlled release composition according to claim 5, wherein said cross-linkable group is selected from the group of epoxy compounds, oxetane derivatives, lactone derivatives, oxazoline derivatives, cyclic siloxanes, or ethenically unsaturated compound such as acrylates, methacrylates, polyene-polythiols, vinylethers, vinylamides, vinylamines, allyl ethers, allylesters, allylamines, maleic acid derivatives, itacoic acid derivatives, polybutadienes and styrenes.

7. A controlled release composition according to claim 5 or 6, wherein said cross-linkable group is selected from the group of acrylates and methacrylates.
8. A controlled release composition according to any one of claims 1 to 5, wherein said cross-linked gelatin is obtained by using a chemical cross-linker selected from the group of water soluble carbodiimide, non-soluble carbodiimide, formaldehyde, di-aldehyde and di-isocyanate.

9. A controlled release composition according to any one of claims 1 to 7, wherein said cross-linked gelatin is obtained by redox polymerisation or radical polymerisation initiated by an initiator selected from the group of a type I photo-initiator, a type II photo-initiator, an organic peroxide such as benzoyl peroxide, and mixtures such as a mixture of potassium peroxodisulfate and N,N,N',N' tetramethylethylene diamine.

10. A controlled release composition according to any one of claims 1 to 6, wherein said recombinant gelatin is essentially free of hydroxylysine crosslinks and/or hydroxyproline residues.

11. A pharmaceutical composition comprising a controlled release composition according to any one of claims 1 to 10.

12. A pharmaceutical composition according to claim 11, which is an injectable formulation, a subdermal delivery depot, a dressing, or an implant.

13. A pharmaceutical article comprising a controlled release composition according to any one of claims 1 to 10.

14. A pharmaceutical article according to claim 13 which is an implant, a bone implant, an insoluble drug particle, a wound dressing or a skin graft.

15. A controlled release composition according to any one of claims 1-10 comprising a compound or drug for treatment of pain, cancer therapy, cardiovascular diseases, myocardial repair, angiogenesis, bone repair and regeneration, wound treatment, neural stimulation/therapy or diabetics.

16. A method for preparing a controlled release composition according to any one of claims 1 to 10, comprising
- selecting a therapeutic protein and determining the hydrodynamic radius (RH) of said protein;
- selecting a recombinant gelatin which upon cross-linking under predetermined cross-linking conditions is characterised by an average mesh size wherein the ratio of the average mesh size of the gelatin matrix and the average hydrodynamic radius of said therapeutic protein is smaller than 2;
- preparing a solution comprising said therapeutic protein and said recombinant gelatin;
- cross-linking said recombinant gelatin under said under predetermined cross-linking conditions; and
- optionally purifying the obtained controlled release composition.

17. A method for preparing a controlled release composition according to any one of claims 1 to 10, comprising
- selecting a therapeutic protein and determining the hydrodynamic radius (RH) of said protein
- selecting a recombinant gelatin which upon cross-linking under predetermined cross-linking conditions is characterised by an average mesh size wherein the ratio of the average mesh size of the gelatin matrix and the average hydrodynamic radius of said therapeutic protein is smaller than 2;
- cross-linking said recombinant gelatin under said predetermined cross-linking conditions to obtain a controlled release composition
- contacting said therapeutic protein with said obtained controlled release composition structure under conditions that allows entry of said therapeutic protein into said controlled release composition.
- optionally purifying the obtained controlled release composition.
Fig. 1

91 G Q D G R G P P G P G A R G Q A G V M G F P P G P K G A A
691 G P D G K T G P P G A Q D G R P G P P G P P G A R G Q A
811 G A P G P S G P A G G
Fig. 2

1 GAPGAPGLQGAPGLQGMPGERGAAGLPGPK
31 GERGDAGPKGADGAPGAPGLQGMPGERGAA
61 GLPGPKGERGDAGPKGADGAPGKDGVRLA
91 GPIGPPGERGAAGLPGPKGERGDAGPKGAD
121 GAPGKDGVRGLAGPIGPPGAPGAPGLQ
151 GMPGERGAAGLPGPKGERGDAGPKGADGAP
181 GKDGVRLAGPI
Fig. 3

1 GAPGAPGLQGAPGLQGMPGERGAAGLPGPK
31 GERGDAGPKGADGAPGAPGLQGMPGERGAA
61 GLPGPKGERGDAGPKGADGAPGKDGVRLA
91 GPGPGERGAAGLPKGERGDAGPKGADGAP
121 GAPGKDGVRLAGPIGPPPAPGAPGAPGPLQ
151 GMPGGERGAAGLPKGERGDAGPKGADGAP
181 GKDGVRLAGPIGPPGGERGAAGLPGPKGER
211 GAGLPGPKGERGDAGPKGADGAPGAPGPLQ
241 GMPGGERGAAGLPKGERGDAGPKGADGAP
271 GKDGVRLAGPIGPPGGERGAAGLPGPKGER
301 GDAGPKGADGAPKGDGVRLAGPIGPPGPLA
331 GAPGAPGLQGMPGERGAAGLPKGERGDA
361 GPKGADGAPKGDGVRLAGPIGPPGAPGPLQ
391 GLQGMPGERGAAGLPKGERGDAGPKGAD
421 GAGLPGPGLQGMPGERGAAGLPGPKGERGDA
451 GPKGADGAPKGDGVRLAGPIGPPGGERGA
481 GLPGPKGERGDAGPKGADGAPGKDGVRLA
511 GPPGPAGAPGAPGAPGLQGMPGERGAAGLP
541 GPKGERGDAGPKGADGAPKGDGVRLAGPP
571 GAGLPQAGAPGLQGMPGERGAAGLPGPKGER
601 GDAGPKGADGAPGAPGLQGMPGERGAAGLP
631 GPKGERGDAGPKGADGAPKGDGVRLAGPI
661 GPPGGERGAAGLPKGERGDAGPKGADGAP
691 GKDGVRLAGPIGPPPAPGAPGAPGPLQGMP
721 GERAAGLPKGERGDAGPKGADGAPGPKGDK
751 GVRGLAGPPGAPGLQGAPGLQGMPGERGAA
781 GLPGPKGERGDAGPKGADGAPGAPGPLQGMP
811 GERAAGLPKGERGDAGPKGADGAPGPKGDK
841 GVRGLAGPIGPPGERGAAGLPGPKGERGDA
871 GPKGADGAPKGDGVRLAGPIGPPPAPGAP
901 GAGLPQGMPGERGAAGLPGPKGERGDAGPK
931 GDAGPAKGDGVRLAGPPPG
Fig. 4

1 GPPGEPGNPGSPGNQCQPGNKGSPGNPGQP
31 GNNEGQPGQPGQNGQPGEPGSNGPQGSQGNP
61 GKNQQPSPGSQGSPGNQGSPQPGQNGPQNP
91 GÉQGKPGNQGPAGEPGNPGSPGNQGQPGNK
121 GSPGNPGQPGNEGQPGQPGQINGQPGEPGSN
151 GPQGQSQGNPGKNGQPGSPGSQGSPQGNQGSP
181 GQPGNPGQPGEPQKPGNQGPAGEPGNPGSP
211 GNQGQPGNKGSPGNQPGQPNGNEGQQPGQPGQN
241 GQPGEPGSNPGQGSQGNPGKNQPGSPGSQ
271 GSPGNQGSPQPGQPNGQPGQEPQKPGNQGPA
301 GEPGNPGSPGNQQPGPNKGSPGNFQPGNE
331 GQPGQPGQNGQPGEPGSNPGQGSQQGNPGKN
361 GQPGSNGQGSPQGSQGSPQPNGQPGQPEQ
391 GKPQGNQGPAGG
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>A. CLASSIFICATION OF SUBJECT MATTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>INV.</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

<table>
<thead>
<tr>
<th>B. FIELDS SEARCHED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum documentation searched (classification system followed by classification symbols)</td>
</tr>
<tr>
<td>A61K</td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI.Data, CHEM ABS Data

<table>
<thead>
<tr>
<th>C. DOCUMENTS CONSIDERED TO BE RELEVANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category*</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

D Further documents are listed in the continuation of Box C. X See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on priority claims or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed
 * "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 * "G" document member of the same patent family

Date of the actual completion of the international search: 28 March 2008

Date of mailing of the international search report: 04/04/2008

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-0340, Tx. 31 651 epo nl, Fax; (+31-70) 340-3016

Authorized officer: Scarponi, Ugo
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 1607085 A</td>
<td>21-12-2005</td>
<td>JP 2004277348 A</td>
<td>07-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004082657 A1</td>
<td>30-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006251719 A1</td>
<td>09-11-2006</td>
</tr>
<tr>
<td>WO 9855161 A</td>
<td>10-12-1998</td>
<td>AT 295189 T</td>
<td>15-05-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 736784 B2</td>
<td>02-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8110198 A1</td>
<td>21-12-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2290806 A1</td>
<td>10-12-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69830166 D1</td>
<td>16-06-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69830166 T2</td>
<td>26-01-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2243000 T3</td>
<td>16-11-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1029289 A1</td>
<td>07-04-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3602145 B2</td>
<td>15-12-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002506431 T</td>
<td>26-02-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 986408 T</td>
<td>30-09-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6458386 B1</td>
<td>01-10-2002</td>
</tr>
</tbody>
</table>

Form POT/ISA/210 (patent family annex) (April 2006)