VARIANTS DERIVED FROM ACTRIIB AND USES THEREFOR

Human ActRiIB soluble (extracellular) polypeptide sequence designated as SEQ ID NO: 1 (116 aa).

SGRGEAETRECIYYNAWELEERTNQSGLERCEGEQDKRLHCYASWRNSSGTIELVKK GC
WLDDFNCYDRQECVATEENPQVYCCGECGNCNERFTHLPEAGGPEVTYEPPTAPT

Fig.1

Abstract: In certain aspects, the present invention provides compositions and methods for modulating (promoting or inhibiting) growth of a tissue, such as bone, cartilage, muscle, fat, and/or neuronal tissue. The present invention also provides methods of screening compounds that modulate activity of an ActRiIB protein and/or an ActRiIB ligand. The compositions and methods provided herein are useful in treating diseases associated with abnormal activity of an ActRiIB protein and/or an ActRiIB ligand.
VARIANTS DERIVED FROM ACTRIIB AND USES THEREFOR

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Serial Nos. 60/899,304, filed February 2, 2007; 60/927,088 filed May 1, 2007; and 60/931,880, filed May 25, 2007. All the teachings of the above-referenced applications are incorporated herein by reference.

BACKGROUND OF THE INVENTION

The transforming growth factor-beta (TGF-beta) superfamily contains a variety of growth factors that share common sequence elements and structural motifs. These proteins are known to exert biological effects on a large variety of cell types in both vertebrates and invertebrates. Members of the superfamily perform important functions during embryonic development in pattern formation and tissue specification and can influence a variety of differentiation processes, including adipogenesis, myogenesis, chondrogenesis, cardiogenesis, hematopoiesis, neurogenesis, and epithelial cell differentiation. The family is divided into two general branches: the BMP/GDF and the TGF-beta/Activin/BMP branches, whose members have diverse, often complementary effects. By manipulating the activity of a member of the TGF-beta family, it is often possible to cause significant physiological changes in an organism.

For example, the Piedmontese and Belgian Blue cattle breeds carry a loss-of-function mutation in the GDF8 (also called myostatin) gene that causes a marked increase in muscle mass. Grobet et al., Nat Genet. 1997, 17(l):71-4. Furthermore, in humans, inactive alleles of GDF8 are associated with increased muscle mass and, reportedly, exceptional strength. Schuelke et al., N Engl J Med 2004, 350:2682-8.

Changes in muscle, bone, cartilage and other tissues may be achieved by agonizing or antagonizing signaling that is mediated by an appropriate TGF-beta family member. Thus, there is a need for agents that function as potent regulators of TGF-beta signaling.

SUMMARY OF THE INVENTION

In certain aspects, the present disclosure provides ActRHB polypeptides, particularly ActRHB variants, including amino- and carboxy-terminal truncations and sequence alterations.
Such ActRIIB polypeptides may be used for the treatment of a variety of disorders or conditions, in particular, muscle and neuromuscular disorders (e.g., muscular dystrophy, amyotrophic lateral sclerosis (ALS), and muscle atrophy), adipose tissue disorders (e.g., obesity), metabolic disorders (e.g., type 2 diabetes), neurodegenerative disorders, and muscle wasting associated with old age (sarcopenia), prostate cancer therapy, and cancer cachexia. A specific embodiments, ActRIIB polypeptides (e.g., soluble ActRIIB polypeptides) can antagonize an ActRIIB receptor in any process associated with ActRIIB activity. Optionally, ActRIIB polypeptides of the invention may be designed to preferentially antagonize one or more ligands of ActRIIB receptors, such as GDF8 (also called myostatin), GDFII, activin A, activin B, activin AB, Nodal, and BMP7 (also called OP-I), and may therefore be useful in the treatment of additional disorders. Examples of ActRIIB polypeptides include the naturally occurring ActRIIB polypeptides as well as functional variants thereof. The disclosure also provides a set of variants derived from ActRIIB that have greatly diminished affinity for activin while retaining binding to GDFI 1. These variants exhibit desirable effects on muscle while reducing effects on other tissues.

In certain aspects, the disclosure provides pharmaceutical preparations comprising a soluble ActRIIB polypeptide that binds to an ActRUB ligand such as GDF8, GDFI 1, activin, BMP7 or nodal, and a pharmaceutically acceptable carrier. Optionally, the soluble ActRIIB polypeptide binds to an ActRIIB ligand with a Kd less than 10 micromolar or less than 1 micromolar, 100, 10 or 1 nanomolar. Optionally, the soluble ActRIIB polypeptide inhibits ActRIIB signaling, such as intracellular signal transduction events triggered by an ActRIIB ligand. A soluble ActRIIB polypeptide for use in such a preparation may be any of those disclosed herein, such as a polypeptide having an amino acid sequence selected from SEQ ID NOs: 1, 2, 5, 6 and 12, or having an amino acid sequence that is at least 80%, 85%, 90%, 95%, 97% or 99% identical to an amino acid sequence selected from SEQ ID NOs: 1, 2, 5, 6 and 12. A soluble ActRIIB polypeptide may include a functional fragment of a natural ActRIIB polypeptide, such as one comprising at least 10, 20 or 30 amino acids of a sequence selected from SEQ ID NOs: 1, 2, 5, 6 and 12 or a sequence of SEQ ID NO: 1, lacking the C-terminal 1, 2, 3, 4, 5 or 10 to 15 amino acids and lacking 1, 2, 3, 4 or 5 amino acids at the N-terminus. A preferred polypeptide will comprise a truncation relative to SEQ ID NO:1 of between 2 and 5 amino acids at the N-terminus and no more than 3 amino acids at the C-terminus. Another preferred polypeptide is that presented as SEQ ID NO: 12. A soluble ActRIIB polypeptide may include one or more alterations in the amino acid sequence (e.g., in the ligand-binding domain).
relative to a naturally occurring ActRIIB polypeptide. The alteration in the amino acid sequence may, for example, alter glycosylation of the polypeptide when produced in a mammalian, insect or other eukaryotic cell or alter proteolytic cleavage of the polypeptide relative to the naturally occurring ActRIIB polypeptide. A soluble ActRIIB polypeptide may be a fusion protein that has, as one domain, an ActRIIB polypeptide (e.g., a ligand-binding domain of an ActRIIB or a variant thereof) and one or more additional domains that provide a desirable property, such as improved pharmacokinetics, easier purification, targeting to particular tissues, etc. For example, a domain of a fusion protein may enhance one or more of in vivo stability, in vivo half life, uptake/administration, tissue localization or distribution, formation of protein complexes, multimerization of the fusion protein, and/or purification. A soluble ActRIIB fusion protein may include an immunoglobulin Fc domain (wild-type or mutant) or a serum albumin. In certain embodiments, an ActRIIB-Fc fusion comprises a relatively unstructured linker positioned between the Fc domain and the extracellular ActRIIB domain. This unstructured linker may correspond to the roughly 15 amino acid unstructured region at the C-terminal end of the extracellular domain of ActRIIB (the "tail"), or it may be an artificial sequence of between 5 and 15, 20, 30, 50 or more amino acids that are relatively free of secondary structure. A linker may be rich in glycine and proline residues and may, for example, contain repeating sequences of threonine/serine and glycines (e.g., TG₄ or SG₄ repeats). A fusion protein may include a purification subsequence, such as an epitope tag, a FLAG tag, a polyhistidine sequence, and a GST fusion. Optionally, a soluble ActRIIB polypeptide includes one or more modified amino acid residues selected from: a glycosylated amino acid, a PEGylated amino acid, a farnesylated amino acid, an acetylated amino acid, a biotinylated amino acid, an amino acid conjugated to a lipid moiety, and an amino acid conjugated to an organic derivatizing agent. A pharmaceutical preparation may also include one or more additional compounds such as a compound that is used to treat an ActRIIB-associated disorder. Preferably, a pharmaceutical preparation is substantially pyrogen free. In general, it is preferable that an ActRIIB protein be expressed in a mammalian cell line that mediates suitably natural glycosylation of the ActRIIB protein so as to diminish the likelihood of an unfavorable immune response in a patient. Human and CHO cell lines have been used successfully, and it is expected that other common mammalian expression vectors will be useful.

In certain aspects, the disclosure provides packaged pharmaceuticals comprising a pharmaceutical preparation described herein and labeled for use in promoting growth of a tissue
or diminishing or preventing a loss of a tissue in a human. Exemplary tissues include bone, cartilage, muscle, fat, and neuronal tissue.

In certain aspects, the disclosure provides soluble ActRIIB polypeptides comprising an altered ligand-binding (e.g., GDF8-binding) domain. Such altered ligand-binding domains of an ActRIIB receptor comprise one or more mutations at amino acid residues such as E37, E39, R40, K55, R56, Y60, A64, K74, W78, L79, D80, F82 and FlO1 of human ActRIIB. (Numbering is relative to SEQ ID NO:2). Optionally, the altered ligand-binding domain can have increased selectivity for a ligand such as GDF8/GDF1 relative to a wild-type ligand-binding domain of an ActRIIB receptor. To illustrate, these mutations are demonstrated herein to increase the selectivity of the altered ligand-binding domain for GDF1 (and therefore, presumably, GDF8) over activin (presented with respect to ActRIIB): K74Y, K74F, K74I and D80I. The following mutations have the reverse effect, increasing the ratio of activin binding over GDF1: D54A, K55A, L79A and F82A. The overall (GDF1 and activin) binding activity can be increased by inclusion of the "tail" region or, presumably, an unstructured linker region, and also by use of a K74A mutation. Other mutations that caused an overall decrease in ligand binding affinity, include: R40A, E37A, R56A, W78A, D80K, D80R, D80A, D80G, D80F, D80M and D80N. Mutations may be combined to achieve desired effects. For example, many of the mutations that affect the ratio of GDF1: Activin binding have an overall negative effect on ligand binding, and therefore, these may be combined with mutations that generally increase ligand binding to produce an improved binding protein with ligand selectivity.

Optionally, the altered ligand-binding domain has a ratio of \(K_d \) for activin binding to \(K_d \) for GDF8 binding that is at least 2, 5, 10, or even 100 fold greater relative to the ratio for the wild-type ligand-binding domain. Optionally, the altered ligand-binding domain has a ratio of IC\(_{50}\) for inhibiting activin to IC\(_{50}\) for inhibiting GDF8/GDF1 that is at least 2, 5, 10, or even 100 fold greater relative to the wild-type ligand-binding domain. Optionally, the altered ligand-binding domain inhibits GDF8/GDF1 with an IC\(_{50}\) at least 2, 5, 10, or even 100 times less than the IC\(_{50}\) for inhibiting activin. These soluble ActRIIB polypeptides can be fusion proteins that include an immunoglobulin Fc domain (either wild-type or mutant). In certain cases, the subject soluble ActRIIB polypeptides are antagonists (inhibitors) of GDF8/GDF1.

Other variants of ActRIIB are contemplated, such as the following. A variant ActRIIB fusion protein comprising a portion derived from the ActRIIB sequence of SEQ ID NO:2 and a second polypeptide portion, wherein the portion derived from ActRIIB corresponds to a sequence beginning at any of amino acids 21-29 of SEQ ID NO:2 (optionally beginning at 22-25...
of SEQ ID NO:2) and ending at any of amino acids 109-134 of SEQ ID NO:2, and wherein the ActRIIB fusion protein inhibits signaling by activin, myostatin and/or GDF11 in a cell-based assay. The variant ActRIIB fusion protein above, wherein the portion derived from ActRIIB corresponds to a sequence beginning at any of amino acids 20-29 of SEQ ID NO:2 (optionally beginning at 22-25 of SEQ ID NO:2) and ending at any of amino acids 109-133 of SEQ ID NO:2. The variant ActRIIB fusion protein above, wherein the portion derived from ActRIIB corresponds to a sequence beginning at any of amino acids 20-24 of SEQ ID NO:2 (optionally beginning at 22-25 of SEQ ID NO:2) and ending at any of amino acids 109-133 of SEQ ID NO:2. The variant ActRIIB fusion protein above, wherein the portion derived from ActRIIB corresponds to a sequence beginning at any of amino acids 21-24 of SEQ ID NO:2 and ending at any of amino acids 109-134 of SEQ ID NO:2. The variant ActRIIB fusion protein above, wherein the portion derived from ActRIIB corresponds to a sequence beginning at any of amino acids 20-24 of SEQ ID NO:2 and ending at any of amino acids 118-133 of SEQ ID NO:2. The variant ActRIIB fusion protein above, wherein the portion derived from ActRIIB corresponds to a sequence beginning at any of amino acids 21-24 of SEQ ID NO:2 and ending at any of amino acids 118-134 of SEQ ID NO:2. The variant ActRIIB fusion protein above, wherein the portion derived from ActRIIB corresponds to a sequence beginning at any of amino acids 20-24 of SEQ ID NO:2 and ending at any of amino acids 128-133 of SEQ ID NO:2. The variant ActRIIB fusion protein above, wherein the portion derived from ActRIIB corresponds to a sequence beginning at any of amino acids 21-29 of SEQ ID NO:2 and ending at any of amino acids 118-134 of SEQ ID NO:2. The variant ActRIIB fusion protein above, wherein the portion derived from ActRIIB corresponds to a sequence beginning at any of amino acids 20-29 of SEQ ID NO:2 and ending at any of amino acids 118-133 of SEQ ID NO:4. The variant ActRIIB fusion protein above, wherein the portion derived from ActRIIB corresponds to a sequence beginning at any of amino acids 21-29 of SEQ ID NO:2 and ending at any of amino acids 128-134 of SEQ ID NO:2. The variant ActRIIB fusion protein above, wherein the portion derived from ActRIIB corresponds to a sequence beginning at any of amino acids 20-29 of SEQ ID NO:2 and ending at any of amino acids 128-133 of SEQ ID NO:2.

Surprisingly, constructs beginning at 22-25 of SEQ ID NO:2 have activity levels greater than proteins having the full extracellular domain of human ActRIIB. Any of the above variant ActRTIB fusion protein may be produced as a homodimer. Any of the above ActRIIB fusion
proteins may have a heterologous portion that comprises a constant region from an IgG heavy chain, such as an Fc domain.

Other variant ActRIIB proteins are contemplated, such as the following. A variant ActRIIB protein comprising an amino acid sequence that is at least 80% identical to the sequence of amino acids 29-109 of SEQ ID NO: 2, wherein the position corresponding to 64 of SEQ ID NO:2 is an R or K, and wherein the variant ActRIIB protein inhibits signaling by activin, myostatin and/or GDF11 in a cell-based assay. The variant ActRIIB protein above, wherein at least one alteration with respect to the sequence of SEQ ID NO:2 is positioned outside of the ligand binding pocket. The variant ActRIIB protein above, wherein at least one alteration with respect to the sequence of SEQ ID NO:2 is a conservative alteration positioned within the ligand binding pocket. The variant ActRIIB protein above, wherein at least one alteration with respect to the sequence of SEQ ID NO:2 is an alteration at one or more positions selected from the group consisting of K74, R40, Q53, K55, F82 and L79. The variant ActRIIB protein above, wherein the protein comprises at least one N-X-S/T sequence at a position other than an endogenous N-X-S/T sequence of ActRIIB, and at a position outside of the ligand binding pocket.

Other variant ActRIIB proteins are contemplated, such as the following. An ActRIIB protein comprising an amino acid sequence that is at least 80% identical to the sequence of amino acids 29-109 of SEQ ID NO: 2, and wherein the protein comprises at least one N-X-S/T sequence at a position other than an endogenous N-X-S/T sequence of ActRIIB, and at a position outside of the ligand binding pocket. The variant ActRIIB protein above, wherein the protein comprises an N at the position corresponding to position 24 of SEQ ID NO:2 and an S or T at the position corresponding to position 26 of SEQ ID NO:2, and wherein the variant ActRIIB protein inhibits signaling by activin, myostatin and/or GDF11 in a cell-based assay. The variant ActRIIB protein above, wherein the protein comprises an R or K at the position corresponding to position 64 of SEQ ID NO:2. The variant ActRIIB protein above, wherein at least one alteration with respect to the sequence of SEQ ID NO:2 is a conservative alteration positioned within the ligand binding pocket. The variant ActRUB protein above, wherein at least one alteration with respect to the sequence of SEQ ID NO:2 is an alteration at one or more positions selected from the group consisting of K74, R40, Q53, K55, F82 and L79. The variant ActRIIB protein above, wherein the protein is a fusion protein further comprising a heterologous portion. Any of the above variant ActRIIB fusion protein may be produced as a homodimer.
Any of the above ActRIIB fusion proteins may have a heterologous portion that comprises a constant region from an IgG heavy chain, such as an Fc domain.

In certain aspects, the disclosure provides nucleic acids encoding a soluble ActRIIB polypeptide, which do not encode a complete ActRIIB polypeptide. An isolated polynucleotide may comprise a coding sequence for a soluble ActRIIB polypeptide, such as described above. For example, an isolated nucleic acid may include a sequence coding for an extracellular domain (e.g., ligand-binding domain) of an ActRIIB and a sequence that would code for part or all of the transmembrane domain and/or the cytoplasmic domain of an ActRIIB, but for a stop codon positioned within the transmembrane domain or the cytoplasmic domain, or positioned between the extracellular domain and the transmembrane domain or cytoplasmic domain. For example, an isolated polynucleotide may comprise a full-length ActRIIB polynucleotide sequence such as SEQ ID NO: 4, or a partially truncated version, said isolated polynucleotide further comprising a transcription termination codon at least six hundred nucleotides before the 3'-terminus or otherwise positioned such that translation of the polynucleotide gives rise to an extracellular domain optionally fused to a truncated portion of a full-length ActRIIB. Nucleic acids disclosed herein may be operably linked to a promoter for expression, and the disclosure provides cells transformed with such recombinant polynucleotides. Preferably the cell is a mammalian cell such as a CHO cell.

In certain aspects, the disclosure provides methods for making a soluble ActRIIB polypeptide. Such a method may include expressing any of the nucleic acids (e.g., SEQ ID NO: 3) disclosed herein in a suitable cell, such as a Chinese hamster ovary (CHO) cell. Such a method may comprise: a) culturing a cell under conditions suitable for expression of the soluble ActRIIB polypeptide, wherein said cell is transformed with a soluble ActRIIB expression construct; and b) recovering the soluble ActRIIB polypeptide so expressed. Soluble ActRIIB polypeptides may be recovered as crude, partially purified or highly purified fractions using any of the well known techniques for obtaining protein from cell cultures.

In certain aspects, a soluble ActRIIB polypeptide disclosed herein may be used in a method for treating a subject having a disorder associated with muscle loss or insufficient muscle growth. Such disorders include muscle atrophy, muscular dystrophy, amyotrophic lateral sclerosis (ALS), and a muscle wasting disorder (e.g., cachexia, anorexia, DMD syndrome, BMD syndrome, AIDS wasting syndrome, muscular dystrophies, neuromuscular diseases, motor neuron diseases, diseases of the neuromuscular junction, and inflammatory...
myopathies). A method may comprise administering to a subject in need thereof an effective amount of a soluble ActRUB polypeptide.

In certain aspects, a soluble ActRIIB polypeptide disclosed herein may be used in a method for decreasing the body fat content or reducing the rate of increase in body fat content, and for treating a disorder associated with undesirable body weight gain, such as obesity, non-insulin dependent diabetes mellitus (NIDDM), cardiovascular disease, cancer, hypertension, osteoarthritis, stroke, respiratory problems, and gall bladder disease. These methods may comprise administering to a subject in need thereof an effective amount of a soluble ActRIIB polypeptide.

In certain specific aspects, a soluble ActRIIB polypeptide disclosed herein may be used in a method for treating a disorder associated with abnormal activity of GDF8. Such disorders include metabolic disorders such as type 2 diabetes, impaired glucose tolerance, metabolic syndrome (e.g., syndrome X), and insulin resistance induced by trauma (e.g., burns or nitrogen imbalance); adipose tissue disorders (e.g., obesity); muscular dystrophy (including Duchenne muscular dystrophy); amyotrophic lateral sclerosis (ALS); muscle atrophy; organ atrophy; frailty; carpal tunnel syndrome; congestive obstructive pulmonary disease; sarcopenia, cachexia and other muscle wasting syndromes; osteoporosis; glucocorticoid-induced osteoporosis; osteopenia; osteoarthritis; osteoporosis-related fractures; low bone mass due to chronic glucocorticoid therapy, premature gonadal failure, androgen suppression, vitamin D deficiency, secondary hyperparathyroidism, nutritional deficiencies, and anorexia nervosa. The method may comprise administering to a subject in need thereof an effective amount of a soluble ActRIIB polypeptide.

In certain aspects, the disclosure provides a method for identifying an agent that stimulates growth of a tissue such as bone, cartilage, muscle and fat. The method comprises: a) identifying a test agent that binds to a ligand-binding domain of an ActRIIB polypeptide competitively with a soluble ActRIIB polypeptide; and b) evaluating the effect of the agent on growth of the tissue.

In certain aspects, the disclosure provides methods for antagonizing activity of an ActRIIB polypeptide or an ActRIIB ligand (e.g., GDF8, GDF1 1, activin, BMP7, and Nodal) in a cell. The methods comprise contacting the cell with a soluble ActRIIB polypeptide. Optionally, the activity of the ActRIIB polypeptide or the ActRIIB ligand is monitored by a signaling transduction mediated by the ActRIIB/ActRIIB ligand complex, for example, by monitoring cell
proliferation. The cells of the methods include an osteoblast, a chondrocyte, a myocyte, an adipocyte and a muscle cell.

In certain aspects, the disclosure provides uses of a soluble ActRIIB polypeptide for making a medicament for the treatment of a disorder or condition as described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a human ActRIIB soluble (extracellular) polypeptide sequence (SEQ ID NO: 1). The C-terminal "tail" is underlined.

Figure 2 shows human ActRIIB precursor protein sequence (SEQ ID NO: 2). The signal peptide is underlined; the extracellular domain is in bold (also referred to as SEQ ID NO: 1); and the potential N-linked glycosylation sites are boxed.

Figure 3 shows a nucleic acid sequence encoding a human ActRIIB soluble (extracellular) polypeptide, designed as SEQ ID NO: 3.

Figure 4 shows a nucleic acid sequence encoding human ActRIIB precursor protein, designed as SEQ ID NO: 4.

Figure 5 shows body weight increases for mice treated with vehicle (diamonds), ActRIIB(R64 20-134)-mFc (squares) or the long half-life form, ActRIIB(R64 A24N 20-134)(triangles).

Figure 6 shows weights of dissected muscles at the end of the study. Vehicle: left column (light shading) of each grouping; ActRIIB(R64 20-134)-mFc: middle column (medium shading) of each grouping; ActRIIB(R64 A24N 20-134): right column (dark shading) of each grouping.

Figure 7 shows grip strength measurements for PBS and murine ActRIIB (R64 K74A 20-134)-mFc (or "K74A+15 tail") treated SOD mice (white and black bars, respectively). The figure illustrates the increased strength of the murine ActRIIB (R64 K74A 20-134)-mFc group compared to the PBS group during both the early (day 117) and the later (day 149) stages of disease. *P<0.05, two-tailed Student's t-test.

Figure 8 shows the Kaplan-Meier survival comparison of PBS and ActRIIB (R64 K74A 20-134)-mFc treated SOD mice (white and black lines, respectively). The ActRIIB (R64 K74A
20-134)-mFc -treated cohort has increased the average number of days of survival compared to the PBS group.

Figure 9 shows the percentage of body composition change in PBS and ActRIIB(R64 20-134)-mFc HFD-fed mice (white and black bars, respectively). Treatment with murine ActRIIB(R64 20-134)-Fc protein significantly reduces fat mass and increases lean tissue.

Figure 10 shows muscle cross-sections of femoris muscle (4x magnification) from old mice (A) or old mice treated with ActRIIB(R64 20-134)-mFc (B).

Figure 11 shows the mean bodyweights for mice in a cancer cachexia experiment using CT26 colon cancer cells. Diamonds: untumoured, saline treated animals; squares: untumoured, ActRIIB(R64 20-134)-mFc treated mice; triangles: rumored, saline treated animals; "x": rumored, ActRIIB(R64 20-134)-mFc treated mice (10mg/kg); "*":tumored, ActRIIB(R64 20-134)-mFc treated mice (30mg/kg); circle: rumored, ActRIIB(R64 20-134)-mFc treated mice (10mg/kg), treatment initiated at the time of tumor implant for a preventative modality.

Figure 12 shows an alignment of human ActRIIA and ActRIIB with the residues that are deduced herein, based on composite analysis of multiple ActRIIB and ActRIIA crystal structures to directly contact ligand (the ligand binding pocket) indicated with boxes.

Figure 13 shows a multiple sequence alignment of various vertebrate ActRIIB proteins and human ActRIIA.

DETAILED DESCRIPTION

1. Overview

In certain aspects, the present invention relates to ActRIIB polypeptides. As used herein, the term "ActRIIB" refers to a family of activin receptor type IIB (ActRIIB) proteins and ActRIIB-related proteins, derived from any species. Members of the ActRIIB family are generally all transmembrane proteins, composed of a ligand-binding extracellular domain with cysteine-rich region, a transmembrane domain, and a cytoplasmic domain with predicted serine/threonine kinase specificity. Amino acid sequences of human ActRIIA precursor protein (provided for comparison) and ActRIIB precursor protein are illustrated in Figure 1 (SEQ ID NO: 1) and Figure 2 (SEQ ID NO: 2), respectively.

The term "ActRIIB polypeptide" is used to refer to polypeptides comprising any naturally occurring polypeptide of an ActRIIB family member as well as any variants thereof.
(including mutants, fragments, fusions, and peptidomimetic forms) that retain a useful activity. For example, ActRIIB polypeptides include polypeptides derived from the sequence of any known ActRIIB having a sequence at least about 80% identical to the sequence of an ActRIIB polypeptide, and preferably at least 85%, 90%, 95%, 97%, 99% or greater identity.

In a specific embodiment, the invention relates to soluble ActRIIB polypeptides. As described herein, the term "soluble ActRIIB polypeptide" generally refers to polypeptides comprising an extracellular domain of an ActRIIB protein. The term "soluble ActRIIB polypeptide," as used herein, includes any naturally occurring extracellular domain of an ActRIIB protein as well as any variants thereof (including mutants, fragments and peptidomimetic forms) that retain a useful activity. For example, the extracellular domain of an ActRIIB protein binds to a ligand and is generally soluble. Examples of soluble ActRIIB polypeptides include ActRIIB soluble polypeptides illustrated in Figure 1 (SEQ ED NO: 1). Other examples of soluble ActRIIB polypeptides comprise a signal sequence in addition to the extracellular domain of an ActRIIB protein, see Example 1. The signal sequence can be a native signal sequence of an ActRIIB, or a signal sequence from another protein, such as a tissue plasminogen activator (TPA) signal sequence or a honey bee melatin (HBM) signal sequence.

TGF-β signals are mediated by heteromeric complexes of type I and type II serine/threonine kinase receptors, which phosphorylate and activate downstream Smad proteins upon ligand stimulation (Massague, 2000, Nat. Rev. Mol. Cell Biol. 1:169-178). These type I and type II receptors are all transmembrane proteins, composed of a ligand-binding extracellular domain with cysteine-rich region, a transmembrane domain, and a cytoplasmic domain with predicted serine/threonine specificity. Type I receptors are essential for signaling; and type II receptors are required for binding ligands and for expression of type I receptors. Type I and II activin receptors form a stable complex after ligand binding, resulting in phosphorylation of type I receptors by type II receptors.

substantially different effects in vivo, with ActRIIA-Fc having primary effects on bone and ActRIIB-Fc having primary effects on skeletal muscle.

In certain embodiments, the present invention relates to antagonizing a ligand of ActRIIB receptors (also referred to as an ActRIIB ligand) with a subject ActRIIB polypeptide (e.g., a soluble ActRIIB polypeptide). Thus, compositions and methods of the present invention are useful for treating disorders associated with abnormal activity of one or more ligands of ActRIIB receptors. Exemplary ligands of ActRIIB receptors include some TGF-/β family members, such as activin, Nodal, GDF8, GDF11, and BMP7.

Activins are dimeric polypeptide growth factors and belong to the TGF-beta superfamily. There are three activins (A, B, and AB) that are homo/heterodimers of two closely related β subunits (βA, ββ, and βB). These TGF-beta superfamily, activins are unique and multifunctional factors that can stimulate hormone production in ovarian and placental cells, support neuronal cell survival, influence cell-cycle progress positively or negatively depending on cell type, and induce mesodermal differentiation at least in amphibian embryos (DePaolo et al., 1991, Proc SocEp Biol Med. 198:500-512; Dyson et al., 1997, Curr Biol. 7:81-84; Woodruff, 1998, Biochem Pharmacol. 55:953-963). Moreover, erythroid differentiation factor (EDF) isolated from the stimulated human monocytic leukemic cells was found to be identical to activin A (Murata et al., 1988, PNAS, 85:2434). It was suggested that activin A acts as a natural regulator of erythropoiesis in the bone marrow. In several tissues, activin signaling is antagonized by its related heterodimer, inhibin. For example, during the release of follicle-stimulating hormone (FSH) from the pituitary, activin promotes FSH secretion and synthesis, while inhibin prevents FSH secretion and synthesis. Other proteins that may regulate activin bioactivity and/or bind to activin include follistatin (FS), follistatin-related protein (FSRP), α2-macroglobulin, Cerberus, and endoglin, which are described below.

Nodal proteins have functions in mesoderm and endoderm induction and formation, as well as subsequent organization of axial structures such as heart and stomach in early embryogenesis. It has been demonstrated that dorsal tissue in a developing vertebrate embryo contributes predominantly to the axial structures of the notochord and pre-chordal plate while it recruits surrounding cells to form non-axial embryonic structures. Nodal appears to signal through both type I and type II receptors and intracellular effectors known as Smad proteins. Recent studies support the idea that ActRHA and ActRIIB serve as type II receptors for Nodal (Sakuma et al., Genes Cells. 2002, 7:401-12). It is suggested that Nodal ligands interact with their co-factors (e.g., cryptic) to activate activin type I and type II receptors, which phosphorylate
Smad2. Nodal proteins are implicated in many events critical to the early vertebrate embryo, including mesoderm formation, anterior patterning, and left-right axis specification. Experimental evidence has demonstrated that Nodal signaling activates pAR3-Lux, a luciferase reporter previously shown to respond specifically to activin and TGF-beta. However, Nodal is unable to induce pTlx2-Lux, a reporter specifically responsive to bone morphogenetic proteins. Recent results provide direct biochemical evidence that Nodal signaling is mediated by both activin-TGF-beta pathway Smads, Smad2 and Smad3. Further evidence has shown that the extracellular cripto protein is required for Nodal signaling, making it distinct from activin or TGF-beta signaling.

Growth and Differentiation Factor-8 (GDF8) is also known as myostatin. GDF8 is a negative regulator of skeletal muscle mass. GDF8 is highly expressed in the developing and adult skeletal muscle. The GDF8 null mutation in transgenic mice is characterized by a marked hypertrophy and hyperplasia of the skeletal muscle (McPherron et al., Nature, 1997, 387:83-90). Similar increases in skeletal muscle mass are evident in naturally occurring mutations of GDF8 in cattle (Ashmore et al., 1974, Growth, 38:501-507; Swatland and Kieffer, J. Anim. ScL, 1994, 38:752-757; McPherron and Lee, Proc. Natl. Acad. Sci. USA, 1997, 94:12457-12461; and Kambadur et al., Genome Res., 1997, 7:910-915) and, strikingly, in humans (Schuelke et al., N Engl J Med 2004;350:2682-8). Studies have also shown that muscle wasting associated with HIV-infection in humans is accompanied by increases in GDF8 protein expression (Gonzalez-Cadavid et al., PNAS, 1998, 95:14938-43). In addition, GDF8 can modulate the production of muscle-specific enzymes (e.g., creatine kinase) and modulate myoblast cell proliferation (WO 00/43781). The GDF8 propeptide can noncovalently bind to the mature GDF8 domain dimer, inactivating its biological activity (Miyazono et al. (1988) J. Biol. Chem., 263: 6407-6415; Wakefield et al. (1988) J. Biol. Chem., 263; 7646-7654; and Brown et al. (1990) Growth Factors, 3: 35-43). Other proteins which bind to GDF8 or structurally related proteins and inhibit their biological activity include follistatin, and potentially, follistatin-related proteins (Gamer et al. (1999) Dev. Biol., 208: 222-232).

(Gamer et al., 2001, Dev Biol. 229:407-20). The expression of GDF11 in muscle also suggests its role in regulating muscle growth in a similar way to GDF8. In addition, the expression of GDF11 in brain suggests that GDF11 may also possess activities that relate to the function of the nervous system. Interestingly, GDF11 was found to inhibit neurogenesis in the olfactory epithelium (Wu et al., 2003, Neuron. 37:197-207). Hence, GDF11 may have in vitro and in vivo applications in the treatment of diseases such as muscle diseases and neurodegenerative diseases (e.g., amyotrophic lateral sclerosis).

Bone morpho genetic protein (BMP7), also called osteogenic protein-1 (OP-I), is well known to induce cartilage and bone formation. In addition, BMP7 regulates a wide array of physiological processes. For example, BMP7 may be the osteoinductive factor responsible for the phenomenon of epithelial osteogenesis. It is also found that BMP7 plays a role in calcium regulation and bone homeostasis. Like activin, BMP7 binds to type II receptors, ActRIIA and ActRIIB. However, BMP7 and activin recruit distinct type I receptors into heteromeric receptor complexes. The major BMP7 type I receptor observed was ALK2, while activin bound exclusively to ALK4 (ActRHB). BMP7 and activin elicited distinct biological responses and activated different Smad pathways (Macias-Silva et al., 1998, J Biol Chem. 273:25628-36).

Despite certain aspects, the present invention relates to the use of certain ActRIIB polypeptides (e.g., soluble ActRIIB polypeptides) to antagonize the signaling of ActRIIB ligands generally, in any process associated with ActRIIB activity. Optionally, ActRIIB polypeptides of the invention may antagonize one or more ligands of ActRIIB receptors, such as activin, Nodal, GDF8, GDF11, and BMP7, and may therefore be useful in the treatment of additional disorders.

Therefore, the present invention contemplates using ActRIIB polypeptides in treating or preventing diseases or conditions that are associated with abnormal activity of an ActRIIB or an ActRIIB ligand. ActRIIB or ActRIIB ligands are involved in the regulation of many critical biological processes. Due to their key functions in these processes, they may be desirable targets for therapeutic intervention. For example, ActRIIB polypeptides (e.g., soluble ActRIIB polypeptides) may be used to treat human or animal disorders or conditions. Example of such disorders or conditions include, but are not limited to, metabolic disorders such as type 2 diabetes, impaired glucose tolerance, metabolic syndrome (e.g., syndrome X), and insulin resistance induced by trauma (e.g., burns or nitrogen imbalance); adipose tissue disorders (e.g., obesity); muscle and neuromuscular disorders such as muscular dystrophy (including Duchenne muscular dystrophy); amyotrophic lateral sclerosis (ALS); muscle atrophy; organ atrophy;
frailty; carpal tunnel syndrome; congestive obstructive pulmonary disease; and sarcopenia, cachexia and other muscle wasting syndromes. Other examples include osteoporosis, especially in the elderly and/or postmenopausal women; glucocorticoid-induced osteoporosis; osteopenia; osteoarthritis; and osteoporosis-related fractures. Yet further examples include low bone mass due to chronic glucocorticoid therapy, premature gonadal failure, androgen suppression, vitamin D deficiency, secondary hyperparathyroidism, nutritional deficiencies, and anorexia nervosa. These disorders and conditions are discussed below under "Exemplary Therapeutic Uses."

The terms used in this specification generally have their ordinary meanings in the art, within the context of this invention and in the specific context where each term is used. Certain terms are discussed below or elsewhere in the specification, to provide additional guidance to the practitioner in describing the compositions and methods of the invention and how to make and use them. The scope or meaning of any use of a term will be apparent from the specific context in which the term is used.

"About" and "approximately" shall generally mean an acceptable degree of error for the quantity measured given the nature or precision of the measurements. Typically, exemplary degrees of error are within 20 percent (%), preferably within 10%, and more preferably within 5% of a given value or range of values.

Alternatively, and particularly in biological systems, the terms "about" and "approximately" may mean values that are within an order of magnitude, preferably within 5-fold and more preferably within 2-fold of a given value. Numerical quantities given herein are approximate unless stated otherwise, meaning that the term "about" or "approximately" can be inferred when not expressly stated.

The methods of the invention may include steps of comparing sequences to each other, including wild-type sequence to one or more mutants (sequence variants). Such comparisons typically comprise alignments of polymer sequences, e.g., using sequence alignment programs and/or algorithms that are well known in the art (for example, BLAST, FASTA and MEGALIGN, to name a few). The skilled artisan can readily appreciate that, in such alignments, where a mutation contains a residue insertion or deletion, the sequence alignment will introduce a "gap" (typically represented by a dash, or "A") in the polymer sequence not containing the inserted or deleted residue.

"Homologous," in all its grammatical forms and spelling variations, refers to the relationship between two proteins that possess a "common evolutionary origin," including
proteins from superfamilies in the same species of organism, as well as homologous proteins from different species of organism. Such proteins (and their encoding nucleic acids) have sequence homology, as reflected by their sequence similarity, whether in terms of percent identity or by the presence of specific residues or motifs and conserved positions.

The term "sequence similarity," in all its grammatical forms, refers to the degree of identity or correspondence between nucleic acid or amino acid sequences that may or may not share a common evolutionary origin.

However, in common usage and in the instant application, the term "homologous," when modified with an adverb such as "highly," may refer to sequence similarity and may or may not relate to a common evolutionary origin.

2. ActRIIB Polypeptides

In certain aspects, the invention relates to ActRIIB variant polypeptides (e.g., soluble ActRIIB polypeptides). Optionally, the fragments, functional variants, and modified forms have similar or the same biological activities of their corresponding wild-type ActRIIB polypeptides. For example, an ActRIIB variant of the invention may bind to and inhibit function of an ActRIIB ligand (e.g., activin A, activin AB, activin B, Nodal, GDF8, GDFI 1 or BMP7). Optionally, an ActRIIB polypeptide modulates growth of tissues such as bone, cartilage, muscle or fat. Examples of ActRIIB polypeptides include human ActRIIB precursor polypeptide (SEQ ID NO: 2), and soluble human ActRIIB polypeptides (e.g., SEQ ID NOs: 1, 5, 6 and 12).

The disclosure identifies functionally active portions and variants of ActRIIB. Applicants have ascertained that an Fc fusion protein having the sequence disclosed by Hilden et al. (Blood. 1994 Apr 15;83(8):2163-70), which has an Alanine at the position corresponding to amino acid 64 of SEQ ID NO: 2 (A64), has a relatively low affinity for activin and GDF-11. By contrast, the same Fc fusion protein with an Arginine at position 64 (R64) has an affinity for activin and GDF-11 in the low nanomolar to high picomolar range. Therefore, a sequence with an R64 is used as the wild-type reference sequence for human ActRIIB in this disclosure.

Attisano et al. (Cell. 1992 Jan 10;68(1):97-108) showed that a deletion of the proline knot at the C-terminus of the extracellular domain of ActRIIB reduced the affinity of the receptor for activin. Data presented here shows that an ActRHB-Fc fusion protein containing amino acids 20-19 of SEQ ID NO:2, "ActRHB(20-19)-Fc" has reduced binding to GDF-11 and activin relative to an ActRHB(20-134)-Fc, which includes the proline knot region and the
complete juxtamembrane domain. However, an ActRIIB(20-129)-Fc protein retains similar but somewhat reduced activity relative to the wild type, even though the proline knot region is disrupted. Thus, ActRIIB extracellular domains that stop at amino acid 134, 133, 132, 131, 130 and 129 are all expected to be active, but constructs stopping at 134 or 133 may be most active.

Similarly, mutations at any of residues 129-134 are not expected to alter ligand binding affinity by large margins. In support of this, mutations of P129 and P130 do not substantially decrease ligand binding. Therefore, an ActRRTB-Fc fusion protein may end as early as amino acid 109 (the final cysteine), however, forms ending at or between 109 and 119 are expected to have reduced ligand binding. Amino acid 119 is poorly conserved and so is readily altered or truncated. Forms ending at 128 or later retain ligand binding activity. Forms ending at or between 119 and 127 will have an intermediate binding ability. Any of these forms may be desirable to use, depending on the clinical or experimental setting.

At the N-terminus of ActRRTB, it is expected that a protein beginning at amino acid 29 or before will retain ligand binding activity. Amino acid 29 represents the initial cysteine. An alanine to asparagine mutation at position 24 introduces an N-linked glycosylation sequence without substantially affecting ligand binding. This confirms that mutations in the region between the signal cleavage peptide and the cysteine cross-linked region, corresponding to amino acids 20-29 are well tolerated. In particular, constructs beginning at position 20, 21, 22, 23 and 24 will retain activity, and constructs beginning at positions 25, 26, 27, 28 and 29 are also expected to retain activity. Data shown in the Examples demonstrates that, surprisingly, a construct beginning at 22, 23, 24 or 25 will have the most activity.

Taken together, an active portion of ActRIIB comprises amino acids 29-109 of SEQ ID NO:2, and constructs may, for example, begin at a residue corresponding to amino acids 20-29 and end at a position corresponding to amino acids 109-134. Other examples include constructs that begin at a position from 20-29 or 21-29 and end at a position from 119-134, 119-133 or 129-134, 129-133. Other examples include constructs that begin at a position from 20-24 (or 21-24, or 22-25) and end at a position from 109-134 (or 109-133), 119-134 (or 119-133) or 129-134 (or 129-133). Variants within these ranges are also contemplated, particularly those having at least 80%, 85%, 90%, 95% or 99% identity to the corresponding portion of SEQ ID NO:4.

The disclosure includes the results of an analysis of composite ActRIIB structures, shown in Figure 22, demonstrating that the ligand binding pocket is defined by residues Y31, N33, N35, L38 through T41, E47, E50, Q53 through K55, L57, H58, Y60, S62, K74, W78 through N83, Y85, R87, A92, and E94 through F101. At these positions, it is expected that
conservative mutations will be tolerated, although a K74A mutation is well-tolerated, as are R40A, K55A, F82A and mutations at position L79. R40 is a K in Xenopus, indicating that basic amino acids at this position will be tolerated. Q53 is R in bovine ActRHB and K in Xenopus ActRIIB, and therefore amino acids including R, K, Q, N and H will be tolerated at this position.

Thus, a general formula for an active ActRIIB variant protein is one that comprises amino acids 29-109, but optionally beginning at a position ranging from 20-24 or 22-25 and ending at a position ranging from 129-134, and comprising no more than 1, 2, 5, 10 or 15 conservative amino acid changes in the ligand binding pocket, and zero, one or more non-conservative alterations at positions 40, 53, 55, 74, 79 and/or 82 in the ligand binding pocket. Such a protein may retain greater than 80%, 90%, 95% or 99% sequence identity to the sequence of amino acids 29-109 of SEQ ID NO:4. Sites outside the binding pocket, at which variability may be particularly well tolerated, include the amino and carboxy termini of the extracellular domain (as noted above), and positions 42-46 and 65-73. An asparagine to alanine alteration at position 65 (N65A) actually improves ligand binding in the A64 background, and is thus expected to have no detrimental effect on ligand binding in the R64 background. This change probably eliminates glycosylation at N65 in the A64 background, thus demonstrating that a significant change in this region is likely to be tolerated. While an R64A change is poorly tolerated, R64K is well-tolerated, and thus another basic residue, such as H may be tolerated at position 64.

ActRIIB is well-conserved across nearly all vertebrates, with large stretches of the extracellular domain conserved completely. Many of the ligands that bind to ActRIIB are also highly conserved. Accordingly, comparisons of ActRIIB sequences from various vertebrate organisms provide insights into residues that may be altered. Therefore, an active, human ActRIIB variant may include one or more amino acids at corresponding positions from the sequence of another vertebrate ActRIIB, or may include a residue that is similar to that in the human or other vertebrate sequence. The following examples illustrate this approach to defining an active ActRIIB variant. L46 is a valine in Xenopus ActRIIB, and so this position may be altered, and optionally may be altered to another hydrophobic residue, such as V, I or F, or a non-polar residue such as A. E52 is a K in Xenopus, indicating that this site may be tolerant of a wide variety of changes, including polar residues, such as E, D, K, R, H, S, T, P, G, Y and probably A. T93 is a K in Xenopus, indicating that a wide structural variation is tolerated at this position, with polar residues favored, such as S, K, R, E, D, H, G, P, G and Y. F108 is a Y in Xenopus, and therefore Y or other hydrophobic group, such as I, V or L should be tolerated. E111 is K in Xenopus, indicating that charged residues will be tolerated at this position,
including D, R, K and H, as well as Q and N. R112 is K in Xenopus, indicating that basic residues are tolerated at this position, including R and H. A at position 119 is relatively poorly conserved, and appears as P in rodents and V in Xenopus, thus essentially any amino acid should be tolerated at this position.

The disclosure demonstrates that the addition of a further N-linked glycosylation site (N-X-S/T) increases the serum half-life of an ActRIIB-Fc fusion protein, relative to the ActRIIB(R64)-Fc form. By introducing an asparagine at position 24 (A24N construct), an NXT sequence is created that confers a longer half-life. Other NX(T/S) sequences are found at 42-44 (NQS) and 65-67 (NSS), although the latter may not be efficiently glycosylated with the R at position 64. N-X-S/T sequences may be generally introduced at positions outside the ligand binding pocket defined in Figure 12. Particularly suitable sites for the introduction of non-endogenous N-X-S/T sequences include amino acids 20-29, 20-24, 22-25, 109-134, 120-134 or 129-134. N-X-S/T sequences may also be introduced into the linker between the ActRIEB sequence and the Fc or other fusion component. Such a site may be introduced with minimal effort by introducing an N in the correct position with respect to a pre-existing S or T, or by introducing an S or T at a position corresponding to a pre-existing N. Thus, desirable alterations that would create an N-linked glycosylation site are: A24N, R64N, S67N (possibly combined with an N65A alteration), E106N, R112N, G120N, E123N, P129N, A132N, R112S and R112T. Any S that is predicted to be glycosylated may be altered to a T without creating an immunogenic site, because of the protection afforded by the glycosylation. Likewise, any T that is predicted to be glycosylated may be altered to an S. Thus the alterations S67T and S44T are contemplated. Likewise, in an A24N variant, an S26T alteration may be used. Accordingly, an ActRIIB variant may include one or more additional, non-endogenous N-linked glycosylation consensus sequences.

Position L79 may be altered to confer altered activin - myostatin (GDF-11) binding properties. L79A or L79P reduces GDF-11 binding to a greater extent than activin binding. L79E or L79D retains GDF-11 binding. Remarkably, the L79E and L79D variants have greatly reduced activin binding. In vivo experiments indicate that these non-activin receptors retain significant ability to increase muscle mass but show decreased effects on other tissues. These data demonstrate the desirability and feasibility for obtaining polypeptides with reduced effects on activin.

The variations described may be combined in various ways. Additionally, the results of mutagenesis program described herein indicate that there are amino acid positions in ActRDb
that are often beneficial to conserve. These include position 64 (basic amino acid), position 80 (acidic or hydrophobic amino acid), position 78 (hydrophobic, and particularly tryptophan), position 37 (acidic, and particularly aspartic or glutamic acid), position 56 (basic amino acid), position 60 (hydrophobic amino acid, particularly phenylalanine or tyrosine). Thus, in each of the variants disclosed herein, the disclosure provides a framework of amino acids that may be conserved. Other positions that may be desirable to conserve are as follows: position 52 (acidic amino acid), position 55 (basic amino acid), position 81 (acidic), 98 (polar or charged, particularly E, D, R or K).

hi certain embodiments, isolated fragments of the ActRIIB polypeptides can be obtained by screening polypeptides recombinantly produced from the corresponding fragment of the nucleic acid encoding an ActRIIB polypeptide (e.g., SEQ ID NOs: 3 and 4). hi addition, fragments can be chemically synthesized using techniques known in the art such as conventional Merrifield solid phase f-Moc or t-Boc chemistry. The fragments can be produced (recombinantly or by chemical synthesis) and tested to identify those peptidyl fragments that can function, for example, as antagonists (inhibitors) or agonists (activators) of an ActRIIB protein or an ActRIIB ligand.

hi certain embodiments, a functional variant of the ActRIIB polypeptides has an amino acid sequence that is at least 75% identical to an amino acid sequence selected from SEQ ID NOs: 3, 4 and 10. In certain cases, the functional variant has an amino acid sequence at least 80%, 85%, 90%, 95%, 97%, 98%, 99% or 100% identical to an amino acid sequence selected from SEQ ID NOs: 3, 4 and 10.

In certain embodiments, the present invention contemplates making functional variants by modifying the structure of an ActRIIB polypeptide for such purposes as enhancing therapeutic efficacy, or stability (e.g., ex vivo shelf life and resistance to proteolytic degradation in vivo). Modified ActRIIB polypeptides can also be produced, for instance, by amino acid substitution, deletion, or addition. For instance, it is reasonable to expect that an isolated replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar replacement of an amino acid with a structurally related amino acid (e.g., conservative mutations) will not have a major effect on the biological activity of the resulting molecule. Conservative replacements are those that take place within a family of amino acids that are related in their side chains. Whether a change in the amino acid sequence of an ActRIIB polypeptide results in a functional homolog can be readily determined by assessing the ability of the variant ActRIIB polypeptide to produce a response in cells in a
fashion similar to the wild-type ActRIIB polypeptide, or to bind to one or more ligands, such as activin, GDF-11 or myostatin in a fashion similar to wild type.

In certain specific embodiments, the present invention contemplates making mutations in the extracellular domain (also referred to as ligand-binding domain) of an ActRIIB polypeptide such that the variant (or mutant) ActRIIB polypeptide has altered ligand-binding activities (e.g., binding affinity or binding specificity). In certain cases, such variant ActRIIB polypeptides have altered (elevated or reduced) binding affinity for a specific ligand. In other cases, the variant ActRIIB polypeptides have altered binding specificity for their ligands.

For example, the disclosure provides variant ActRIIB polypeptides that preferentially bind to GDF8/GDF11 relative to activins. The disclosure further establishes the desirability of such polypeptides for reducing off-target effects, although such selective variants may be less desirable for the treatment of severe diseases where very large gains in muscle mass may be needed for therapeutic effect and where some level of off-target effect is acceptable. For example, amino acid residues of the ActRIIB protein, such as E39, K55, Y60, K74, W78, D80, and F101, are in the ligand-binding pocket and mediate binding to its ligands such as activin and GDF8. Thus, the present invention provides an altered ligand-binding domain (e.g., GDF8-binding domain) of an ActRIIB receptor, which comprises one or more mutations at those amino acid residues. Optionally, the altered ligand-binding domain can have increased selectivity for a ligand such as GDF8 relative to a wild-type ligand-binding domain of an ActRIIB receptor. To illustrate, these mutations increase the selectivity of the altered ligand-binding domain for GDF8 over activin. Optionally, the altered ligand-binding domain has a ratio of K_d for activin binding to K_d for GDF8 binding that is at least 2, 5, 10, or even 100 fold greater relative to the ratio for the wild-type ligand-binding domain. Optionally, the altered ligand-binding domain has a ratio IC_{50} for inhibiting activin to IC_{50} for inhibiting GDF8 that is at least 2, 5, 10, or even 100 fold greater relative to the wild-type ligand-binding domain. Optionally, the altered ligand-binding domain inhibits GDF8 with an IC_{50} at least 2, 5, 10, or even 100 times less than the IC_{50} for inhibiting activin.

As a specific example, the positively-charged amino acid residue Asp (D80) of the ligand-binding domain of ActRIIB can be mutated to a different amino acid residue such that the variant ActRHB polypeptide preferentially binds to GDF8, but not activin. Preferably, the D80 residue is changed to an amino acid residue selected from the group consisting of: an uncharged amino acid residue, a negative amino acid residue, and a hydrophobic amino acid residue. As a further specific example, the hydrophobic residue, L79, can be altered to the acidic amino acids
aspartic acid or glutamic acid to greatly reduce activin binding while retaining GDF1 1 binding. As will be recognized by one of skill in the art, most of the described mutations, variants or modifications may be made at the nucleic acid level or, in some cases, by post translational modification or chemical synthesis. Such techniques are well known in the art.

In certain embodiments, the present invention contemplates specific mutations of the ActRIEB polypeptides so as to alter the glycosylation of the polypeptide. Exemplary glycosylation sites in ActRHB polypeptides are illustrated in Figure 2. Such mutations may be selected so as to introduce or eliminate one or more glycosylation sites, such as O-linked or N-linked glycosylation sites. Asparagine-linked glycosylation recognition sites generally comprise a tripeptide sequence, asparagine-X-threonine (where "X" is any amino acid) which is specifically recognized by appropriate cellular glycosylation enzymes. The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the wild-type ActRIIB polypeptide (for O-linked glycosylation sites). A variety of amino acid substitutions or deletions at one or both of the first or third amino acid positions of a glycosylation recognition site (and/or amino acid deletion at the second position) results in non-glycosylation at the modified tripeptide sequence. Another means of increasing the number of carbohydrate moieties on an ActRIEB polypeptide is by chemical or enzymatic coupling of glycosides to the ActRIIB polypeptide. Depending on the coupling mode used, the sugar(s) may be attached to (a) arginine and histidine; (b) free carboxyl groups; (c) free sulfhydryl groups such as those of cysteine; (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline; (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan; or (f) the amide group of glutamine. These methods are described in WO 87/05330 published Sep. 11, 1987, and in ApHn and Wriston (1981) CRC Crit. Rev. Biochem., pp. 259-306, incorporated by reference herein. Removal of one or more carbohydrate moieties present on an ActRIIB polypeptide may be accomplished chemically and/or enzymatically. Chemical deglycosylation may involve, for example, exposure of the ActRIIB polypeptide to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the amino acid sequence intact. Chemical deglycosylation is further described by Hakimuddin et al. (1987) Arch. Biochem. Biophys. 259:52 and by Edge et al. (1981) Anal. Biochem. 118:131. Enzymatic cleavage of carbohydrate moieties on ActRIIB polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al. (1987) Meth. Enzymol. 138:350. The sequence of an ActRIIB
polypeptide may be adjusted, as appropriate, depending on the type of expression system used, as mammalian, yeast, insect and plant cells may all introduce differing glycosylation patterns that can be affected by the amino acid sequence of the peptide. In general, ActRIIB proteins for use in humans will be expressed in a mammalian cell line that provides proper glycosylation, such as HEK293 or CHO cell lines, although other mammalian expression cell lines are expected to be useful as well.

This disclosure further contemplates a method of generating variants, particularly sets of combinatorial variants of an ActRIIB polypeptide, including, optionally, truncation variants; pools of combinatorial mutants are especially useful for identifying functional variant sequences. The purpose of screening such combinatorial libraries may be to generate, for example, ActRIIB polypeptide variants which have altered properties, such as altered pharmacokinetics, or altered ligand binding. A variety of screening assays are provided below, and such assays may be used to evaluate variants. For example, an ActRIIB polypeptide variant may be screened for ability to bind to an ActRIIB polypeptide, to prevent binding of an ActRIIB ligand to an ActRIIB polypeptide.

The activity of an ActRIIB polypeptide or its variants may also be tested in a cell-based or in vivo assay. For example, the effect of an ActRIIB polypeptide variant on the expression of genes involved in bone production in an osteoblast or precursor may be assessed. This may, as needed, be performed in the presence of one or more recombinant ActRIIB ligand protein (e.g., BMP7), and cells may be transfected so as to produce an ActRIIB polypeptide and/or variants thereof, and optionally, an ActRIIB ligand. Likewise, an ActRIIB polypeptide may be administered to a mouse or other animal, and one or more bone properties, such as density or volume may be assessed. The healing rate for bone fractures may also be evaluated. Similarly, the activity of an ActRIIB polypeptide or its variants may be tested in muscle cells, adipocytes, and neuronal cells for any effect on growth of these cells, for example, by the assays as described below. Such assays are well known and routine in the art. A SMAD-responsive reporter gene may be used in such cell lines to monitor effects on downstream signaling.

Combinatorially-derived variants can be generated which have a selective potency relative to a naturally occurring ActRIIB polypeptide. Such variant proteins, when expressed from recombinant DNA constructs, can be used in gene therapy protocols. Likewise, mutagenesis can give rise to variants which have intracellular half-lives dramatically different than the corresponding a wild-type ActRIIB polypeptide. For example, the altered protein can be rendered either more stable or less stable to proteolytic degradation or other processes which
result in destruction of, or otherwise inactivation of a native ActRIIB polypeptide. Such variants, and the genes which encode them, can be utilized to alter ActRIIB polypeptide levels by modulating the half-life of the ActRIIB polypeptides. For instance, a short half-life can give rise to more transient biological effects and, when part of an inducible expression system, can allow tighter control of recombinant ActRIIB polypeptide levels within the cell.

In certain embodiments, the ActRIIB polypeptides of the invention may further comprise post-translational modifications in addition to any that are naturally present in the ActRIIB polypeptides. Such modifications include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. As a result, the modified ActRIIB polypeptides may contain non-amino acid elements, such as polyethylene glycols, lipids, poly- or mono-saccharide, and phosphates. Effects of such non-amino acid elements on the functionality of a ActRIIB polypeptide may be tested as described herein for other ActRIIB polypeptide variants. When an ActRIIB polypeptide is produced in cells by cleaving a nascent form of the ActRIIB polypeptide, post-translational processing may also be important for correct folding and/or function of the protein. Different cells (such as CHO, HeLa, MDCK, 293, WI38, NIH-3T3 or HEK293) have specific cellular machinery and characteristic mechanisms for such post-translational activities and may be chosen to ensure the correct modification and processing of the ActRIIB polypeptides.

In certain aspects, functional variants or modified forms of the ActRIIB polypeptides include fusion proteins having at least a portion of the ActRIIB polypeptides and one or more fusion domains. Well known examples of such fusion domains include, but are not limited to, polyhistidine, Glu-Glu, glutathione S transferase (GST), thioredoxin, protein A, protein G, an immunoglobulin heavy chain constant region (e.g., an Fc), maltose binding protein (MBP), or human serum albumin. A fusion domain may be selected so as to confer a desired property. For example, some fusion domains are particularly useful for isolation of the fusion proteins by affinity chromatography. For the purpose of affinity purification, relevant matrices for affinity chromatography, such as glutathione-, amylase-, and nickel- or cobalt- conjugated resins are used. Many of such matrices are available in "kit" form, such as the Pharmacia GST purification system and the QIAexpress™ system (Qiagen) useful with (HIS₆) fusion partners. As another example, a fusion domain may be selected so as to facilitate detection of the ActRIIB polypeptides. Examples of such detection domains include the various fluorescent proteins (e.g., GFP) as well as "epitope tags," which are usually short peptide sequences for which a specific antibody is available. Well known epitope tags for which specific monoclonal
antibodies are readily available include FLAG, influenza virus hemagglutinin (HA), and c-myc tags. In some cases, the fusion domains have a protease cleavage site, such as for Factor Xa or Thrombin, which allows the relevant protease to partially digest the fusion proteins and thereby liberate the recombinant proteins therefrom. The liberated proteins can then be isolated from the fusion domain by subsequent chromatographic separation. In certain preferred embodiments, an ActRIIB polypeptide is fused with a domain that stabilizes the ActRHB polypeptide in vivo (a "stabilizer" domain). By "stabilizing" is meant anything that increases serum half life, regardless of whether this is because of decreased destruction, decreased clearance by the kidney, or other pharmacokinetic effect. Fusions with the Fc portion of an immunoglobulin are known to confer desirable pharmacokinetic properties on a wide range of proteins. Likewise, fusions to human serum albumin can confer desirable properties. Other types of fusion domains that may be selected include multimerizing (e.g., dimerizing, tetramerizing) domains and functional domains (that confer an additional biological function, such as further stimulation of muscle growth).

As a specific example, the present invention provides a fusion protein as a GDF8 antagonist which comprises an extracellular (e.g., GDF8-binding) domain fused to an Fc domain (e.g., SEQ ID NO: 13).

THTCPPCPAPELGGPSVFLPSPKPTVTLKMDVEPLIEDVTCVWDA (A) VSHEDPEVKFNWYVDGVE VHNAKTKPREEQYNSTYRWSVLTVLHQDLNGKEYKCK (A) VSNKALPVPVEKTISAKGQPR

EPQVYTLPPSREEMTKQNSLTLVKGFPYPSDIAVEWESNGQPENNYKTTPVLDSGPFFLYS KLTVDKSRWQQGNVFCFSVMHEALHN (A) HYTQKSLSLSPGK*

Preferably, the Fc domain has one or more mutations at residues such as Asp-265, lysine 322, and Asn-434. In certain cases, the mutant Fc domain having one or more of these mutations (e.g., Asp-265 mutation) has reduced ability of binding to the Fcγ receptor relative to a wildtype Fc domain. In other cases, the mutant Fc domain having one or more of these mutations (e.g., Asn-434 mutation) has increased ability of binding to the MHC class I-related Fc-receptor (FcRN) relative to a wildtype Fc domain.

It is understood that different elements of the fusion proteins may be arranged in any manner that is consistent with the desired functionality. For example, an ActRIIB polypeptide may be placed C-terminal to a heterologous domain, or, alternatively, a heterologous domain may be placed C-terminal to an ActRIIB polypeptide. The ActRIIB polypeptide domain and the heterologous domain need not be adjacent in a fusion protein, and additional domains or amino acid sequences may be included C- or N-terminal to either domain or between the domains.
In certain embodiments, the ActRIIB polypeptides of the present invention contain one or more modifications that are capable of stabilizing the ActRIIB polypeptides. For example, such modifications enhance the in vitro half life of the ActRIIB polypeptides, enhance circulatory half life of the ActRIIB polypeptides or reducing proteolytic degradation of the ActRIIB polypeptides. Such stabilizing modifications include, but are not limited to, fusion proteins (including, for example, fusion proteins comprising an ActRIIB polypeptide and a stabilizer domain), modifications of a glycosylation site (including, for example, addition of a glycosylation site to an ActRIIB polypeptide), and modifications of carbohydrate moiety (including, for example, removal of carbohydrate moieties from an ActRIIB polypeptide). In the case of fusion proteins, an ActRIIB polypeptide is fused to a stabilizer domain such as an IgG molecule (e.g., an Fc domain). As used herein, the term "stabilizer domain" not only refers to a fusion domain (e.g., Fc) as in the case of fusion proteins, but also includes nonproteinaceous modifications such as a carbohydrate moiety, or nonproteinaceous polymer, such as polyethylene glycol.

In certain embodiments, the present invention makes available isolated and/or purified forms of the ActRIIB polypeptides, which are isolated from, or otherwise substantially free of, other proteins.

In certain embodiments, ActRIIB polypeptides (unmodified or modified) of the invention can be produced by a variety of art-known techniques. For example, such ActRIIB polypeptides can be synthesized using standard protein chemistry techniques such as those described in Bodansky, M. Principles of Peptide Synthesis, Springer Verlag, Berlin (1993) and Grant G. A. (ed.), Synthetic Peptides: A User’s Guide, W. H. Freeman and Company, New York (1992). In addition, automated peptide synthesizers are commercially available (e.g., Advanced ChemTech Model 396; Milligen/Biosearch 9600). Alternatively, the ActRIIB polypeptides, fragments or variants thereof may be recombinantly produced using various expression systems (e.g., E. coli, Chinese Hamster Ovary cells, COS cells, baculovirus) as is well known in the art (also see below). hi a further embodiment, the modified or unmodified ActRIIB polypeptides may be produced by digestion of naturally occurring or recombinantly produced full-length ActRIIB polypeptides by using, for example, a protease, e.g., trypsin, thermolysin, chymotrypsin, pepsin, or paired basic amino acid converting enzyme (PACE). Computer analysis (using a commercially available software, e.g., MacVector, Omega, PCGene, Molecular Simulation, Inc.) can be used to identify proteolytic cleavage sites. Alternatively, such ActRIIB polypeptides may be produced from naturally occurring or recombinantly produced full-length ActRIIB
polypeptides such as standard techniques known in the art, such as by chemical cleavage (e.g.,
cyanogen bromide, hydroxylamine).

3. Nucleic Acids Encoding ActRIIB Polypeptides

In certain aspects, the invention provides isolated and/or recombinant nucleic acids
encoding any of the ActRIIB polypeptides (e.g., soluble ActRIIB polypeptides), including any
of the variants disclosed herein. For example, SEQ ID NO: 4 encodes a naturally occurring
ActRIIB precursor polypeptide, while SEQ ID NO: 3 encodes a soluble ActRIIB polypeptide.
The subject nucleic acids may be single-stranded or double stranded. Such nucleic acids may be
DNA or RNA molecules. These nucleic acids are may be used, for example, in methods for
making ActRIIB polypeptides or as direct therapeutic agents (e.g., in a gene therapy approach).

In certain aspects, the subject nucleic acids encoding ActRIIB polypeptides are further
understood to include nucleic acids that are variants of SEQ ID NO: 3. Variant nucleotide
sequences include sequences that differ by one or more nucleotide substitutions, additions or
deletions, such as allelic variants; and will, therefore, include coding sequences that differ from
the nucleotide sequence of the coding sequence designated in SEQ ID NO: 4.

In certain embodiments, the invention provides isolated or recombinant nucleic acid
sequences that are at least 80%, 85%, 90%, 95%, 97%, 98%, 99% or 100% identical to SEQ ID
NO: 3. One of ordinary skill in the art will appreciate that nucleic acid sequences
complementary to SEQ ID NO: 3, and variants of SEQ ID NO: 3 are also within the scope of
this invention. In further embodiments, the nucleic acid sequences of the invention can be
isolated, recombinant, and/or fused with a heterologous nucleotide sequence, or in a DNA
library.

In other embodiments, nucleic acids of the invention also include nucleotide sequences
that hybridize under highly stringent conditions to the nucleotide sequence designated in SEQ
ID NO: 3, complement sequence of SEQ ID NO: 3, or fragments thereof. As discussed above,
one of ordinary skill in the art will understand readily that appropriate stringency conditions
which promote DNA hybridization can be varied. One of ordinary skill in the art will
understand readily that appropriate stringency conditions which promote DNA hybridization can
be varied. For example, one could perform the hybridization at 6.0 x sodium chloride/sodium
citrate (SSC) at about 45 °C, followed by a wash of 2.0 x SSC at 50 °C. For example, the salt
concentration in the wash step can be selected from a low stringency of about 2.0 x SSC at 50
°C to a high stringency of about 0.2 x SSC at 50 °C. In addition, the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22 °C, to high stringency conditions at about 65 °C. Both temperature and salt may be varied, or temperature or salt concentration may be held constant while the other variable is changed. In one embodiment, the invention provides nucleic acids which hybridize under low stringency conditions of 6 x SSC at room temperature followed by a wash at 2 x SSC at room temperature.

Isolated nucleic acids which differ from the nucleic acids as set forth in SEQ ID NO: 3 due to degeneracy in the genetic code are also within the scope of the invention. For example, a number of amino acids are designated by more than one triplet. Codons that specify the same amino acid, or synonyms (for example, CAU and CAC are synonyms for histidine) may result in "silent" mutations which do not affect the amino acid sequence of the protein. However, it is expected that DNA sequence polymorphisms that do lead to changes in the amino acid sequences of the subject proteins will exist among mammalian cells. One skilled in the art will appreciate that these variations in one or more nucleotides (up to about 3-5% of the nucleotides) of the nucleic acids encoding a particular protein may exist among individuals of a given species due to natural allelic variation. Any and all such nucleotide variations and resulting amino acid polymorphisms are within the scope of this invention.

In certain embodiments, the recombinant nucleic acids of the invention may be operably linked to one or more regulatory nucleotide sequences in an expression construct. Regulatory nucleotide sequences will generally be appropriate to the host cell used for expression. Numerous types of appropriate expression vectors and suitable regulatory sequences are known in the art for a variety of host cells. Typically, said one or more regulatory nucleotide sequences may include, but are not limited to, promoter sequences, leader or signal sequences, ribosomal binding sites, transcriptional start and termination sequences, translational start and termination sequences, and enhancer or activator sequences. Constitutive or inducible promoters as known in the art are contemplated by the invention. The promoters may be either naturally occurring promoters, or hybrid promoters that combine elements of more than one promoter. An expression construct may be present in a cell on an episome, such as a plasmid, or the expression construct may be inserted in a chromosome. In a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selectable marker genes are well known in the art and will vary with the host cell used.
In certain aspects of the invention, the subject nucleic acid is provided in an expression vector comprising a nucleotide sequence encoding an ActRIIB polypeptide and operably linked to at least one regulatory sequence. Regulatory sequences are art-recognized and are selected to direct expression of the ActRIIB polypeptide. Accordingly, the term regulatory sequence includes promoters, enhancers, and other expression control elements. Exemplary regulatory sequences are described in Goeddel; *Gene Expression Technology: Methods in Enzymology*, Academic Press, San Diego, CA (1990). For instance, any of a wide variety of expression control sequences that control the expression of a DNA sequence when operatively linked to it may be used in these vectors to express DNA sequences encoding an ActRIIB polypeptide.

Such useful expression control sequences, include, for example, the early and late promoters of SV40, tet promoter, adenovirus or cytomegalovirus immediate early promoter, RSV promoters, the lac system, the trp system, the TAC or TRC system, T7 promoter whose expression is directed by T7 RNA polymerase, the major operator and promoter regions of phage lambda, the control regions for fd coat protein, the promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase, e.g., Pho5, the promoters of the yeast α-mating factors, the polyhedron promoter of the baculovirus system and other sequences known to control the expression of genes of prokaryotic or eukaryotic cells or their viruses, and various combinations thereof. It should be understood that the design of the expression vector may depend on such factors as the choice of the host cell to be transformed and/or the type of protein desired to be expressed. Moreover, the vector's copy number, the ability to control that copy number and the expression of any other protein encoded by the vector, such as antibiotic markers, should also be considered.

A recombinant nucleic acid of the invention can be produced by ligating the cloned gene, or a portion thereof, into a vector suitable for expression in either prokaryotic cells, eukaryotic cells (yeast, avian, insect or mammalian), or both. Expression vehicles for production of a recombinant ActRIIB polypeptide include plasmids and other vectors. For instance, suitable vectors include plasmids of the types: pBR322-derived plasmids, pEMBL-derived plasmids, pEX-derived plasmids, pBTac-derived plasmids and pUC-derived plasmids for expression in prokaryotic cells, such as *E. coli*.

Some mammalian expression vectors contain both prokaryotic sequences to facilitate the propagation of the vector in bacteria, and one or more eukaryotic transcription units that are expressed in eukaryotic cells. The pcDNAI/amp, pcDNAI/neo, pRC/CMV, pSV2gpt, pSV2neo, pSV2-dhfr, pTk2, pRSVneo, pMSG, pSVT7, pko-neo and pHyg derived vectors are examples of
mammalian expression vectors suitable for transfection of eukaryotic cells. Some of these vectors are modified with sequences from bacterial plasmids, such as pBR322, to facilitate replication and drug resistance selection in both prokaryotic and eukaryotic cells. Alternatively, derivatives of viruses such as the bovine papilloma virus (BPV-I), or Epstein-Barr virus (pHEBo, pREP-derived and p205) can be used for transient expression of proteins in eukaryotic cells. Examples of other viral (including retroviral) expression systems can be found below in the description of gene therapy delivery systems. The various methods employed in the preparation of the plasmids and in transformation of host organisms are well known in the art. For other suitable expression systems for both prokaryotic and eukaryotic cells, as well as general recombinant procedures, see Molecular Cloning: A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press, 1989) Chapters 16 and 17. In some instances, it may be desirable to express the recombinant polypeptides by the use of a baculovirus expression system. Examples of such baculovirus expression systems include pVL-derived vectors (such as pVL1 392, pVL1 393 and pVL941), pAcUW-derived vectors (such as pAcUW1), and pBlueBac-derived vectors (such as the β-gal containing pBlueBac III).

In a preferred embodiment, a vector will be designed for production of the subject ActRIIB polypeptides in CHO cells, such as a Pcmv-Script vector (Stratagene, La Jolla, Calif), pcDNA4 vectors (Invitrogen, Carlsbad, Calif.) and pCI-neo vectors (Promega, Madison, Wise). As will be apparent, the subject gene constructs can be used to cause expression of the subject ActRIIB polypeptides in cells propagated in culture, e.g., to produce proteins, including fusion proteins or variant proteins, for purification.

This invention also pertains to a host cell transfected with a recombinant gene including a coding sequence (e.g., SEQ ID NO: 4) for one or more of the subject ActRIIB polypeptide. The host cell may be any prokaryotic or eukaryotic cell. For example, an ActRIIB polypeptide of the invention may be expressed in bacterial cells such as E. coli, insect cells (e.g., using a baculovirus expression system), yeast, or mammalian cells. Other suitable host cells are known to those skilled in the art.

Accordingly, the present invention further pertains to methods of producing the subject ActRIIB polypeptides. For example, a host cell transfected with an expression vector encoding an ActRIIB polypeptide can be cultured under appropriate conditions to allow expression of the ActRIIB polypeptide to occur. The ActRIIB polypeptide may be secreted and isolated from a mixture of cells and medium containing the ActRIIB polypeptide. Alternatively, the ActRIIB polypeptide may be retained cytoplasmically or in a membrane fraction and the cells harvested,
lysed and the protein isolated. A cell culture includes host cells, media and other byproducts. Suitable media for cell culture are well known in the art. The subject ActRIIB polypeptides can be isolated from cell culture medium, host cells, or both, using techniques known in the art for purifying proteins, including ion-exchange chromatography, gel filtration chromatography, ultrafiltration, electrophoresis, and immunoaffinity purification with antibodies specific for particular epitopes of the ActRIIB polypeptides. In a preferred embodiment, the ActRIIB polypeptide is a fusion protein containing a domain which facilitates its purification.

In another embodiment, a fusion gene coding for a purification leader sequence, such as a poly-(His)/enterokinase cleavage site sequence at the N-terminus of the desired portion of the recombinant ActRIIB polypeptide, can allow purification of the expressed fusion protein by affinity chromatography using a Ni²⁺ metal resin. The purification leader sequence can then be subsequently removed by treatment with enterokinase to provide the purified ActRIIB polypeptide (e.g., see Hochuli et al., (1987) J. Chromatography 411:177; and Janknecht et al., PNAS USA 88:8972).

Techniques for making fusion genes are well known. Essentially, the joining of various DNA fragments coding for different polypeptide sequences is performed in accordance with conventional techniques, employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed to generate a chimeric gene sequence (see, for example, Current Protocols in Molecular Biology, eds. Ausubel et al., John Wiley & Sons: 1992).

4. Antibodies

Another aspect of the invention pertains to antibodies. An antibody that is specifically reactive with an ActRIIB polypeptide (e.g., a soluble ActRIIB polypeptide) and which binds competitively with the ActRIIB polypeptide may be used as an antagonist of ActRIIB polypeptide activities. For example, by using immunogens derived from an ActRIIB polypeptide, anti-protein/anti-peptide antisera or monoclonal antibodies can be made by
standard protocols (see, for example, Antibodies: A Laboratory Manual ed. by Harlow and Lane (Cold Spring Harbor Press: 1988)). A mammal, such as a mouse, a hamster or rabbit can be immunized with an immunogenic form of the ActRIIB polypeptide, an antigenic fragment which is capable of eliciting an antibody response, or a fusion protein. Techniques for conferring immunogenicity on a protein or peptide include conjugation to carriers or other techniques well known in the art. An immunogenic portion of an ActRIEB polypeptide can be administered in the presence of adjuvant. The progress of immunization can be monitored by detection of antibody titers in plasma or serum. Standard ELISA or other immunoassays can be used with the immunogen as antigen to assess the levels of antibodies.

Following immunization of an animal with an antigenic preparation of an ActRIIB polypeptide, antisera can be obtained and, if desired, polyclonal antibodies can be isolated from the serum. To produce monoclonal antibodies, antibody-producing cells (lymphocytes) can be harvested from an immunized animal and fused by standard somatic cell fusion procedures with immortalizing cells such as myeloma cells to yield hybridoma cells. Such techniques are well known in the art, and include, for example, the hybridoma technique (originally developed by Kohler and Milstein, (1975) Nature, 256: 495-497), the human B cell hybridoma technique (Kozbar et al., (1983) Immunology Today, 4: 72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., (1985) Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. pp. 77-96). Hybridoma cells can be screened immunochemically for production of antibodies specifically reactive with an ActRIIB polypeptide and monoclonal antibodies isolated from a culture comprising such hybridoma cells.

The term "antibody" as used herein is intended to include fragments thereof which are also specifically reactive with a subject ActRIIB polypeptide. Antibodies can be fragmented using conventional techniques and the fragments screened for utility in the same manner as described above for whole antibodies. For example, F(ab)2 fragments can be generated by treating antibody with pepsin. The resulting F(ab)2 fragment can be treated to reduce disulfide bridges to produce Fab fragments. The antibody of the present invention is further intended to include bispecific, single-chain, and chimeric and humanized molecules having affinity for an ActRIIB polypeptide conferred by at least one CDR region of the antibody. In preferred embodiments, the antibody further comprises a label attached thereto and able to be detected (e.g., the label can be a radioisotope, fluorescent compound, enzyme or enzyme co-factor).
In certain preferred embodiments, an antibody of the invention is a monoclonal antibody, and in certain embodiments, the invention makes available methods for generating novel antibodies. For example, a method for generating a monoclonal antibody that binds specifically to an ActRIIB polypeptide may comprise administering to a mouse an amount of an immunogenic composition comprising the ActRIIB polypeptide effective to stimulate a detectable immune response, obtaining antibody-producing cells (e.g., cells from the spleen) from the mouse and fusing the antibody-producing cells with myeloma cells to obtain antibody-producing hybridomas, and testing the antibody-producing hybridomas to identify a hybridoma that produces a monoclonal antibody that binds specifically to the ActRIIB polypeptide. Once obtained, a hybridoma can be propagated in a cell culture, optionally in culture conditions where the hybridoma-derived cells produce the monoclonal antibody that binds specifically to the ActRIIB polypeptide. The monoclonal antibody may be purified from the cell culture.

The adjective "specifically reactive with" as used in reference to an antibody is intended to mean, as is generally understood in the art, that the antibody is sufficiently selective between the antigen of interest (e.g., an ActRIIB polypeptide) and other antigens that are not of interest that the antibody is useful for, at minimum, detecting the presence of the antigen of interest in a particular type of biological sample. In certain methods employing the antibody, such as therapeutic applications, a higher degree of specificity in binding may be desirable. Monoclonal antibodies generally have a greater tendency (as compared to polyclonal antibodies) to discriminate effectively between the desired antigens and cross-reacting polypeptides. One characteristic that influences the specificity of an antibody:antigen interaction is the affinity of the antibody for the antigen. Although the desired specificity may be reached with a range of different affinities, generally preferred antibodies will have an affinity (a dissociation constant) of about $10^{-6}, 10^{-7}, 10^{-8}, 10^{-9}$ or less.

In addition, the techniques used to screen antibodies in order to identify a desirable antibody may influence the properties of the antibody obtained. For example, if an antibody is to be used for binding an antigen in solution, it may be desirable to test solution binding. A variety of different techniques are available for testing interaction between antibodies and antigens to identify particularly desirable antibodies. Such techniques include ELISAs, surface plasmon resonance binding assays (e.g., the Biacore binding assay, Bia-core AB, Uppsala, Sweden), sandwich assays (e.g., the paramagnetic bead system of IGEN International, Inc., Gaithersburg, Maryland), western blots, immunoprecipitation assays, and immunohistochemistry.
In certain aspects, the disclosure provides antibodies that bind to a soluble ActRIIB polypeptide. Such antibodies may be generated much as described above, using a soluble ActRIIB polypeptide or fragment thereof as an antigen. Antibodies of this type can be used, e.g., to detect ActRIIB polypeptides in biological samples and/or to monitor soluble ActRIIB polypeptide levels in an individual. In certain cases, an antibody that specifically binds to a soluble ActRIIB polypeptide can be used to modulate activity of an ActRIIB polypeptide and/or an ActRIIB ligand, thereby regulating (promoting or inhibiting) growth of tissues, such as bone, cartilage, muscle, fat, and neurons.

5. Screening Assays

In certain aspects, the present invention relates to the use of the subject ActRIIB polypeptides (e.g., soluble ActRIIB polypeptides) to identify compounds (agents) which are agonist or antagonists of the ActRIIB polypeptides. Compounds identified through this screening can be tested in tissues such as bone, cartilage, muscle, fat, and/or neurons, to assess their ability to modulate tissue growth in vitro. Optionally, these compounds can further be tested in animal models to assess their ability to modulate tissue growth in vivo.

There are numerous approaches to screening for therapeutic agents for modulating tissue growth by targeting the ActRIIB polypeptides. In certain embodiments, high-throughput screening of compounds can be carried out to identify agents that perturb ActRHB-mediated effects on growth of bone, cartilage, muscle, fat, and/or neurons. In certain embodiments, the assay is carried out to screen and identify compounds that specifically inhibit or reduce binding of an ActRIIB polypeptide to its binding partner, such as an ActRIIB ligand (e.g., activin, Nodal, GDF8, GDF11 or BMP7). Alternatively, the assay can be used to identify compounds that enhance binding of an ActRIIB polypeptide to its binding protein such as an ActRIIB ligand. In a further embodiment, the compounds can be identified by their ability to interact with an ActRIIB polypeptide.

A variety of assay formats will suffice and, in light of the present disclosure, those not expressly described herein will nevertheless be comprehended by one of ordinary skill in the art. As described herein, the test compounds (agents) of the invention may be created by any combinatorial chemical method. Alternatively, the subject compounds may be naturally occurring biomolecules synthesized in vivo or in vitro. Compounds (agents) to be tested for their ability to act as modulators of tissue growth can be produced, for example, by bacteria,
yeast, plants or other organisms (e.g., natural products), produced chemically (e.g., small molecules, including peptidomimetics), or produced recombinantly. Test compounds contemplated by the present invention include non-peptidyl organic molecules, peptides, polypeptides, peptidomimetics, sugars, hormones, and nucleic acid molecules. In a specific embodiment, the test agent is a small organic molecule having a molecular weight of less than about 2,000 daltons.

The test compounds of the invention can be provided as single, discrete entities, or provided in libraries of greater complexity, such as made by combinatorial chemistry. These libraries can comprise, for example, alcohols, alkyl halides, amines, amides, esters, aldehydes, ethers and other classes of organic compounds. Presentation of test compounds to the test system can be in either an isolated form or as mixtures of compounds, especially in initial screening steps. Optionally, the compounds may be optionally derivatized with other compounds and have derivatizing groups that facilitate isolation of the compounds. Non-limiting examples of derivatizing groups include biotin, fluorescein, digoxygenin, green fluorescent protein, isotopes, polyhistidine, magnetic beads, glutathione S transferase (GST), photoactivatable crosslinkers or any combinations thereof.

In many drug screening programs which test libraries of compounds and natural extracts, high throughput assays are desirable in order to maximize the number of compounds surveyed in a given period of time. Assays which are performed in cell-free systems, such as may be derived with purified or semi-purified proteins, are often preferred as "primary" screens in that they can be generated to permit rapid development and relatively easy detection of an alteration in a molecular target which is mediated by a test compound. Moreover, the effects of cellular toxicity or bioavailability of the test compound can be generally ignored in the in vitro system, the assay instead being focused primarily on the effect of the drug on the molecular target as may be manifest in an alteration of binding affinity between an ActRHB polypeptide and its binding protein (e.g., an ActRIIB ligand).

Merely to illustrate, in an exemplary screening assay of the present invention, the compound of interest is contacted with an isolated and purified ActRIIB polypeptide which is ordinarily capable of binding to an ActRIIB ligand, as appropriate for the intention of the assay. To the mixture of the compound and ActRIIB polypeptide is then added a composition containing an ActRIIB ligand. Detection and quantification of ActRHB/ActRIIB ligand complexes provides a means for determining the compound’s efficacy at inhibiting (or potentiating) complex formation between the ActRUB polypeptide and its binding protein. The
efficacy of the compound can be assessed by generating dose response curves from data obtained using various concentrations of the test compound. Moreover, a control assay can also be performed to provide a baseline for comparison. For example, in a control assay, isolated and purified ActRIIB ligand is added to a composition containing the ActRIIB polypeptide, and the formation of ActRHB/ActRHB ligand complex is quantitated in the absence of the test compound. It will be understood that, in general, the order in which the reactants may be admixed can be varied, and can be admixed simultaneously. Moreover, in place of purified proteins, cellular extracts and lysates may be used to render a suitable cell-free assay system.

Complex formation between the ActRIIB polypeptide and its binding protein may be detected by a variety of techniques. For instance, modulation of the formation of complexes can be quantitated using, for example, detectably labeled proteins such as radiolabeled (e.g., 32P, 35S, 14C or 3H), fluorescently labeled (e.g., FITC), or enzymatically labeled ActRIIB polypeptide or its binding protein, by immunoassay, or by chromatographic detection.

In certain embodiments, the present invention contemplates the use of fluorescence polarization assays and fluorescence resonance energy transfer (FRET) assays in measuring, either directly or indirectly, the degree of interaction between an ActRIIB polypeptide and its binding protein. Further, other modes of detection, such as those based on optical waveguides (PCT Publication WO 96/26432 and U.S. Pat. No. 5,677,196), surface plasmon resonance (SPR), surface charge sensors, and surface force sensors, are compatible with many embodiments of the invention.

Moreover, the present invention contemplates the use of an interaction trap assay, also known as the "two hybrid assay," for identifying agents that disrupt or potentiate interaction between an ActRIIB polypeptide and its binding protein. See for example, U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J Biol Chem 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; and Iwabuchi et al. (1993) Oncogene 8:1693-1696). In a specific embodiment, the present invention contemplates the use of reverse two hybrid systems to identify compounds (e.g., small molecules or peptides) that dissociate interactions between an ActRIIB polypeptide and its binding protein. See for example, Vidal and Legrain, (1999) Nucleic Acids Res 27:919-29; Vidal and Legrain, (1999) Trends Biotechnol 17:374-81; and U.S. Pat. Nos. 5,525,490; 5,955,280; and 5,965,368.

In certain embodiments, the subject compounds are identified by their ability to interact with an ActRIIB polypeptide of the invention. The interaction between the compound and the
ActRIIB polypeptide may be covalent or non-covalent. For example, such interaction can be identified at the protein level using in vitro biochemical methods, including photo-crosslinking, radiolabeled ligand binding, and affinity chromatography (Jakoby WB et al., 1974, Methods in Enzymology 46: 1). In certain cases, the compounds may be screened in a mechanism based assay, such as an assay to detect compounds which bind to an ActRIIB polypeptide. This may include a solid phase or fluid phase binding event. Alternatively, the gene encoding an ActRIIB polypeptide can be transfected with a reporter system (e.g., β-galactosidase, luciferase, or green fluorescent protein) into a cell and screened against the library preferably by a high throughput screening or with individual members of the library. Other mechanism based binding assays may be used, for example, binding assays which detect changes in free energy. Binding assays can be performed with the target fixed to a well, bead or chip or captured by an immobilized antibody or resolved by capillary electrophoresis. The bound compounds may be detected usually using colorimetric or fluorescence or surface plasmon resonance.

In certain aspects, the present invention provides methods and agents for stimulating muscle growth and increasing muscle mass, for example, by antagonizing functions of an ActRIIB polypeptide and/or an ActRIIB ligand. Therefore, any compound identified can be tested in whole cells or tissues, in vitro or in vivo, to confirm their ability to modulate muscle growth. Various methods known in the art can be utilized for this purpose. For example, methods of the invention are performed such that the signal transduction through an ActRIIB protein activated by binding to an ActRIIB ligand (e.g., GDF8) has been reduced or inhibited. It will be recognized that the growth of muscle tissue in the organism would result in an increased muscle mass in the organism as compared to the muscle mass of a corresponding organism (or population of organisms) in which the signal transduction through an ActRIIB protein had not been so effected.

For example, the effect of the ActRIIB polypeptides or test compounds on muscle cell growth/proliferation can be determined by measuring gene expression of Pax-3 and Myf-5 which are associated with proliferation of myogenic cells, and gene expression of MyoD which is associated with muscle differentiation (e.g., Amthor et al., Dev Biol. 2002, 251:241-57). It is known that GDF8 down-regulates gene expression of Pax-3 and Myf-5, and prevents gene expression of MyoD. The ActRIIB polypeptides or test compounds are expected to antagonize this activity of GDF8. Another example of cell-based assays includes measuring the proliferation of myoblasts such as C(2)C(12) myoblasts in the presence of the ActRIIB polypeptides or test compounds (e.g., Thomas et al., J Biol Chem. 2000, 275:40235-43).
The present invention also contemplates in vivo assays to measure muscle mass and strength. For example, Whittemore et al. (Biochem Biophys Res Commun. 2003, 300:965-71) discloses a method of measuring increased skeletal muscle mass and increased grip strength in mice. Optionally, this method can be used to determine therapeutic effects of test compounds (e.g., ActRIIB polypeptides) on muscle diseases or conditions, for example those diseases for which muscle mass is limiting.

In certain aspects, the present invention provides methods and agents for modulating (stimulating or inhibiting) bone formation and increasing bone mass. Therefore, any compound identified can be tested in whole cells or tissues, in vitro or in vivo, to confirm their ability to modulate bone or cartilage growth. Various methods known in the art can be utilized for this purpose.

For example, the effect of the ActRIIB polypeptides or test compounds on bone or cartilage growth can be determined by measuring induction of Msx2 or differentiation of osteoprogenitor cells into osteoblasts in cell based assays (see, e.g., Daluiski et al., Nat Genet. 2001, 27(1):84-8; Hino et al., Front Biosci. 2004, 9:1520-9). Another example of cell-based assays includes analyzing the osteogenic activity of the subject ActRIIB polypeptides and test compounds in mesenchymal progenitor and osteoblastic cells. To illustrate, recombinant adenoviruses expressing an ActRIIB polypeptide were constructed to infect pluripotent mesenchymal progenitor C3H10T1/2 cells, preosteoblastic C2C12 cells, and osteoblastic TE-85 cells. Osteogenic activity is then determined by measuring the induction of alkaline phosphatase, osteocalcin, and matrix mineralization (see, e.g., Cheng et al., J bone Joint Surg Am. 2003, 85-A(8): 1544-52).

The present invention also contemplates in vivo assays to measure bone or cartilage growth. For example, Namkung-Matthai et al., Bone, 28:80-86 (2001) discloses a rat osteoporotic model in which bone repair during the early period after fracture is studied. Kubo et al., Steroid Biochemistry & Molecular Biology, 68:197-202 (1999) also discloses a rat osteoporotic model in which bone repair during the late period after fracture is studied. These references are incorporated by reference herein in their entirety for their disclosure of rat model for study on osteoporotic bone fracture. In certain aspects, the present invention makes use of fracture healing assays that are known in the art. These assays include fracture technique, histological analysis, and biomechanical analysis, which are described in, for example, U.S. Pat. No. 6,521,750, which is incorporated by reference in its entirety for its disclosure of
experimental protocols for causing as well as measuring the extent of fractures, and the repair process.

In certain aspects, the present invention provides methods and agents for controlling weight gain and obesity. At the cellular level, adipocyte proliferation and differentiation is critical in the development of obesity, which leads to the generation of additional fat cells (adipocytes). Therefore, any compound identified can be tested in whole cells or tissues, in vitro or in vivo, to confirm their ability to modulate adipogenesis by measuring adipocyte proliferation or differentiation. Various methods known in the art can be utilized for this purpose. For example, the effect of an ActRIIB polypeptide (e.g., a soluble ActRIIB polypeptide) or test compounds on adipogenesis can be determined by measuring differentiation of 3T3-L1 preadipocytes to mature adipocytes in cell based assays, such as, by observing the accumulation of triacylglycerol in Oil Red O staining vesicles and by the appearance of certain adipocyte markers such as FABP (aP2/422) and PPAR-γ2. See, for example, Reusch et al., 2000, Mol Cell Biol. 20:1008-20; Deng et al., 2000, Endocrinology. 141:2370-6; Bell et al., 2000, Obes Res. 8:249-54. Another example of cell-based assays includes analyzing the role of ActRIIB polypeptides and test compounds in proliferation of adipocytes or adipocyte precursor cells (e.g., 3T3-L1 cells), such as, by monitoring bromodeoxyuridine (BrdU)-positive cells. See, for example, Pico et al., 1998, Mol Cell Biochem. 189:1-7; Masuno et al., 2003, Toxicol Sci. 75:314-20.

It is understood that the screening assays of the present invention apply to not only the subject ActRIIB polypeptides and variants of the ActRIIB polypeptides, but also any test compounds including agonists and antagonist of the ActRIIB polypeptides. Further, these screening assays are useful for drug target verification and quality control purposes.

6. Exemplary Therapeutic Uses

In certain embodiments, compositions (e.g., ActRIIB polypeptides) of the present invention can be used for treating or preventing a disease or condition that is associated with abnormal activity of an ActRIIB polypeptide and/or an ActRIIB ligand (e.g., GDF8). These diseases, disorders or conditions are generally referred to herein as "ActRIIB-associated conditions." In certain embodiments, the present invention provides methods of treating or preventing an individual in need thereof through administering to the individual a therapeutically effective amount of an ActRIIB polypeptide as described above. These methods
are particularly aimed at therapeutic and prophylactic treatments of animals, and more particularly, humans.

As used herein, a therapeutic that "prevents" a disorder or condition refers to a compound that, in a statistical sample, reduces the occurrence of the disorder or condition in the treated sample relative to an untreated control sample, or delays the onset or reduces the severity of one or more symptoms of the disorder or condition relative to the untreated control sample. The term "treating" as used herein includes prophylaxis of the named condition or amelioration or elimination of the condition once it has been established.

ActRIIB/ActRIIB ligand complexes play essential roles in tissue growth as well as early developmental processes such as the correct formation of various structures or in one or more post-developmental capacities including sexual development, pituitary hormone production, and creation of bone and cartilage. Thus, ActRIIB-associated conditions include abnormal tissue growth and developmental defects. In addition, ActRIIB-associated conditions include, but are not limited to, disorders of cell growth and differentiation such as inflammation, allergy, autoimmune diseases, infectious diseases, and tumors.

Exemplary ActRIIB-associated conditions include neuromuscular disorders (e.g., muscular dystrophy and muscle atrophy), congestive obstructive pulmonary disease (and muscle wasting associated with COPD), muscle wasting syndrome, sarcopenia, cachexia, adipose tissue disorders (e.g., obesity), type 2 diabetes, and bone degenerative disease (e.g., osteoporosis). Other exemplary ActRIIB-associated conditions include musculodenerative and neuromuscular disorders, tissue repair (e.g., wound healing), neurodegenerative diseases (e.g., amyotrophic lateral sclerosis), immunologic disorders (e.g., disorders related to abnormal proliferation or function of lymphocytes), and obesity or disorders related to abnormal proliferation of adipocytes.

In certain embodiments, compositions (e.g., soluble ActRIEB polypeptides) of the invention are used as part of a treatment for a muscular dystrophy. The term "muscular dystrophy" refers to a group of degenerative muscle diseases characterized by gradual weakening and deterioration of skeletal muscles and sometimes the heart and respiratory muscles. Muscular dystrophies are genetic disorders characterized by progressive muscle wasting and weakness that begin with microscopic changes in the muscle. As muscles degenerate over time, the person's muscle strength declines. Exemplary muscular dystrophies that can be treated with a regimen including the subject ActRHB polypeptides include:
Duchenne Muscular Dystrophy (DMD), Becker Muscular Dystrophy (BMD), Emery-Dreifuss Muscular Dystrophy (EDMD), Limb-Girdle Muscular Dystrophy (LGMD), Facioscapulohumeral Muscular Dystrophy (FSH or FSHD) (also known as Landouzy-Dejerine), Myotonic Dystrophy (MMD) (also known as Steinert's Disease), Oculopharyngeal Muscular Dystrophy (OPMD), Distal Muscular Dystrophy (DD), Congenital Muscular Dystrophy (CMD).

Duchenne Muscular Dystrophy (DMD) was first described by the French neurologist Guillaume Benjamin Amand Duchenne in the 1860s. Becker Muscular Dystrophy (BMD) is named after the German doctor Peter Emil Becker, who first described this variant of DMD in the 1950s. DMD is one of the most frequent inherited diseases in males, affecting one in 3,500 boys. DMD occurs when the dystrophin gene, located on the short arm of the X chromosome, is broken. Since males only carry one copy of the X chromosome, they only have one copy of the dystrophin gene. Without the dystrophin protein, muscle is easily damaged during cycles of contraction and relaxation. While early in the disease muscle compensates by regeneration, later on muscle progenitor cells cannot keep up with the ongoing damage and healthy muscle is replaced by non-functional fibro-fatty tissue.

BMD results from different mutations in the dystrophin gene. BMD patients have some dystrophin, but it is either insufficient in quantity or poor in quality. Having some dystrophin protects the muscles of those with BMD from degenerating as badly or as quickly as those of people with DMD.

For example, recent researches demonstrate that blocking or eliminating function of GDF8 (an ActRIIB ligand) in vivo can effectively treat at least certain symptoms in DMD and BMD patients. Thus, the subject ActRIIB polypeptides may act as GDF8 inhibitors (antagonists), and constitute an alternative means of blocking the functions of GDF8 and/or ActRIIB in vivo in DMD and BMD patients. This approach is confirmed and supported by the data shown herein, whereby an ActRIIB-Fc protein was shown to increase muscle mass in a mouse model of muscular dystrophy.

Similarly, the subject ActRIIB polypeptides provide an effective means to increase muscle mass in other disease conditions that are in need of muscle growth. For example, ALS, also called Lou Gehrig's disease (motor neuron disease) is a chronic, incurable, and unstoppable CNS disorder that attacks the motor neurons, components of the CNS that connect the brain to the skeletal muscles. In ALS, the motor neurons deteriorate and eventually die, and though a person's brain normally remains fully functioning and alert, the command to move never reaches
the muscles. Most people who get ALS are between 40 and 70 years old. The first motor neurons that weaken are those leading to the arms or legs. Those with ALS may have trouble walking, they may drop things, fall, slur their speech, and laugh or cry uncontrollably. Eventually the muscles in the limbs begin to atrophy from disuse. This muscle weakness will become debilitating and a person will need a wheelchair or become unable to function out of bed. Most ALS patients die from respiratory failure or from complications of ventilator assistance like pneumonia, 3-5 years from disease onset. This approach is confirmed and supported by the data shown herein, whereby an ActRIIB-Fc protein was shown to improve the appearance, muscle mass and lifespan of a mouse model of ALS.

ActRIIB polypeptide-induced increased muscle mass might also benefit those suffering from muscle wasting diseases. Gonzalez-Cadavid et al. (supra) reported that that GDF8 expression correlates inversely with fat-free mass in humans and that increased expression of the GDF8 gene is associated with weight loss in men with ADDS wasting syndrome. By inhibiting the function of GDF8 in ADDS patients, at least certain symptoms of AIDS may be alleviated, if not completely eliminated, thus significantly improving quality of life in AIDS patients.

Since loss of GDF8 (an ActRIIB ligand) function is also associated with fat loss without diminution of nutrient intake (Zimmers et al., supra; McPherron and Lee, supra), the subject ActRIIB polypeptides may further be used as a therapeutic agent for slowing or preventing the development of obesity and type II diabetes. This approach is confirmed and supported by the data shown herein, whereby an ActRIIB-Fc protein was shown to improve metabolic status in obese mice.

The cancer anorexia-cachexia syndrome is among the most debilitating and life-threatening aspects of cancer. Progressive weight loss in cancer anorexia-cachexia syndrome is a common feature of many types of cancer and is responsible not only for a poor quality of life and poor response to chemotherapy, but also a shorter survival time than is found in patients with comparable tumors without weight loss. Associated with anorexia, fat and muscle tissue wasting, psychological distress, and a lower quality of life, cachexia arises from a complex interaction between the cancer and the host. It is one of the most common causes of death among cancer patients and is present in 80% at death. It is a complex example of metabolic chaos effecting protein, carbohydrate, and fat metabolism. Tumors produce both direct and indirect abnormalities, resulting in anorexia and weight loss. Currently, there is no treatment to control or reverse the process. Cancer anorexia-cachexia syndrome affects cytokine production, release of lipid-mobilizing and proteolysis-inducing factors, and alterations in intermediary
metabolism. Although anorexia is common, a decreased food intake alone is unable to account for the changes in body composition seen in cancer patients, and increasing nutrient intake is unable to reverse the wasting syndrome. Cachexia should be suspected in patients with cancer if an involuntary weight loss of greater than five percent of premorbid weight occurs within a six-month period.

Since systemic overexpression of GDF8 in adult mice was found to induce profound muscle and fat loss analogous to that seen in human cachexia syndromes (Zimmers et al., supra), the subject ActRIIB polypeptides as pharmaceutical compositions can be beneficially used to prevent, treat, or alleviate the symptoms of the cachexia syndrome, where muscle growth is desired.

In other embodiments, the present invention provides methods of inducing bone and/or cartilage formation, preventing bone loss, increasing bone mineralization or preventing the demineralization of bone. For example, the subject ActRIIB polypeptides and compounds identified in the present invention have application in treating osteoporosis and the healing of bone fractures and cartilage defects in humans and other animals. ActRIIB polypeptides may be useful in patients that are diagnosed with subclinical low bone density, as a protective measure against the development of osteoporosis.

In one specific embodiment, methods and compositions of the present invention may find medical utility in the healing of bone fractures and cartilage defects in humans and other animals. The subject methods and compositions may also have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma-induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery. Further, methods and compositions of the invention may be used in the treatment of periodontal disease, and in other tooth repair processes. In certain cases, the subject ActRIIB polypeptides may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. ActRIIB polypeptides of the invention may also be useful in the treatment of osteoporosis. Further, ActRIIB polypeptides may be used in cartilage defect repair and prevention/reversal of osteoarthritis.

In another specific embodiment, the invention provides a therapeutic method and composition for repairing fractures and other conditions related to cartilage and/or bone defects.
or periodontal diseases. The invention further provides therapeutic methods and compositions for wound healing and tissue repair. The types of wounds include, but are not limited to, burns, incisions and ulcers. See e.g., PCT Publication No. WO84/01 106. Such compositions comprise a therapeutically effective amount of at least one of the ActRIIB polypeptides of the invention in admixture with a pharmaceutically acceptable vehicle, carrier or matrix.

In another specific embodiment, methods and compositions of the invention can be applied to conditions causing bone loss such as osteoporosis, hyperparathyroidism, Cushing’s disease, thyrotoxicosis, chronic diarrheal state or malabsorption, renal tubular acidosis, or anorexia nervosa. Many people know that being female, having a low body weight, and leading a sedentary lifestyle are risk factors for osteoporosis (loss of bone mineral density, leading to fracture risk). However, osteoporosis can also result from the long-term use of certain medications. Osteoporosis resulting from drugs or another medical condition is known as secondary osteoporosis. In a condition known as Cushing's disease, the excess amount of Cortisol produced by the body results in osteoporosis and fractures. The most common medications associated with secondary osteoporosis are the corticosteroids, a class of drugs that act like Cortisol, a hormone produced naturally by the adrenal glands. Although adequate levels of thyroid hormones (which are produced by the thyroid gland) are needed for the development of the skeleton, excess thyroid hormone can decrease bone mass over time. Antacids that contain aluminum can lead to bone loss when taken in high doses by people with kidney problems, particularly those undergoing dialysis. Other medications that can cause secondary osteoporosis include phenytoin (Dilantin) and barbiturates that are used to prevent seizures; methotrexate (Rheumatrex, Immunex, Folex PFS), a drug for some forms of arthritis, cancer, and immune disorders; cyclosporine (Sandimmune, Neoral), a drug used to treat some autoimmune diseases and to suppress the immune system in organ transplant patients; luteinizing hormone-releasing hormone agonists (Lupron, Zoladex), used to treat prostate cancer and endometriosis; heparin (Calciparine, Liquaemrin), an anticlotting medication; and cholestyramine (Questran) and colestipol (Colestid), used to treat high cholesterol. Gum disease causes bone loss because these harmful bacteria in our mouths force our bodies to defend against them. The bacteria produce toxins and enzymes under the gum-line, causing a chronic infection.

In a further embodiment, the present invention provides methods and therapeutic agents for treating diseases or disorders associated with abnormal or unwanted bone growth. For example, patients having the disease known as Fibrodysplasia Ossificans Progressiva (FOP) grow an abnormal "second skeleton" that prevents any movement. Additionally, abnormal bone
growth can occur after hip replacement surgery and thus ruin the surgical outcome. This is a more common example of pathological bone growth and a situation in which the subject methods and compositions may be therapeutically useful. The same methods and compositions may also be useful for treating other forms of abnormal bone growth (e.g., pathological growth of bone following trauma, burns or spinal cord injury), and for treating or preventing the undesirable conditions associated with the abnormal bone growth seen in connection with metastatic prostate cancer or osteosarcoma. Examples of these therapeutic agents include, but are not limited to, ActRIIB polypeptides that antagonize function of an ActRIIB ligand (e.g., BMP7), compounds that disrupt interaction between an ActRIIB and its ligand (e.g., BMP7), and antibodies that specifically bind to an ActRIIB receptor such that an ActRIIB ligand (e.g., BMP7) cannot bind to the ActRIIB receptor.

In other embodiments, the present invention provides compositions and methods for regulating body fat content in an animal and for treating or preventing conditions related thereto, and particularly, health-compromising conditions related thereto. According to the present invention, to regulate (control) body weight can refer to reducing or increasing body weight, reducing or increasing the rate of weight gain, or increasing or reducing the rate of weight loss, and also includes actively maintaining, or not significantly changing body weight (e.g., against external or internal influences which may otherwise increase or decrease body weight). One embodiment of the present invention relates to regulating body weight by administering to an animal (e.g., a human) in need thereof an ActRIIB polypeptide.

In one specific embodiment, the present invention relates to methods and compounds for reducing body weight and/or reducing weight gain in an animal, and more particularly, for treating or ameliorating obesity in patients at risk for or suffering from obesity. In another specific embodiment, the present invention is directed to methods and compounds for treating an animal that is unable to gain or retain weight (e.g., an animal with a wasting syndrome). Such methods are effective to increase body weight and/or mass, or to reduce weight and/or mass loss, or to improve conditions associated with or caused by undesirably low (e.g., unhealthy) body weight and/or mass.

Other disorders, including high cholesterol, that may be treated with ActRIIB proteins are described in the Examples.

7. Pharmaceutical Compositions
In certain embodiments, compounds (e.g., ActRIIB polypeptides) of the present invention are formulated with a pharmaceutically acceptable carrier. For example, an ActRIIB polypeptide can be administered alone or as a component of a pharmaceutical formulation (therapeutic composition). The subject compounds may be formulated for administration in any convenient way for use in human or veterinary medicine.

In certain embodiments, the therapeutic method of the invention includes administering the composition topically, systemically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to a target tissue site (e.g., bone, cartilage, muscle, fat or neurons), for example, a site having a tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than the ActRIIB polypeptides which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the subject compounds (e.g., ActRIIB polypeptides) in the methods of the invention.

In certain embodiments, compositions of the present invention may include a matrix capable of delivering one or more therapeutic compounds (e.g., ActRIIB polypeptides) to a target tissue site, providing a structure for the developing tissue and optimally capable of being resorbed into the body. For example, the matrix may provide slow release of the ActRIIB polypeptides. Such matrices may be formed of materials presently in use for other implanted medical applications.

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the subject compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalciumphosphate, hydroxyapatite, polylactic acid and polyanhydrides. Other potential materials are biodegradable and biologically well defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are non-biodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalciumphosphate. The bioceramics may be altered in
composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability.

In certain embodiments, methods of the invention can be administered for orally, e.g., in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of an agent as an active ingredient. An agent may also be administered as a bolus, electuary or paste.

In solid dosage forms for oral administration (capsules, tablets, pills, dragees, powders, granules, and the like), one or more therapeutic compounds of the present invention may be mixed with one or more pharmaceutically acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose, and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, cetyl alcohol and glycerol monostearate; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such a talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and (10) coloring agents. In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.

Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups, and elixirs. In addition to the active ingredient, the liquid dosage forms may contain inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydronurury alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants...
such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming, and preservative agents.

Suspensions, in addition to the active compounds, may contain suspending agents such as ethoxylated isostearyl alcohols, polyoxyethylene sorbitol, and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.

Certain compositions disclosed herein may be administered topically, either to skin or to mucosal membranes. The topical formulations may further include one or more of the wide variety of agents known to be effective as skin or stratum corneum penetration enhancers. Examples of these are 2-pyrrolidone, N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, propylene glycol, methyl or isopropyl alcohol, dimethyl sulfoxide, and azone. Additional agents may further be included to make the formulation cosmetically acceptable. Examples of these are fats, waxes, oils, dyes, fragrances, preservatives, stabilizers, and surface active agents. Keratolytic agents such as those known in the art may also be included. Examples are salicylic acid and sulfur.

Dosage forms for the topical or transdermal administration include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches, and inhalants. The active compound may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants which may be required. The ointments, pastes, creams and gels may contain, in addition to a subject compound of the invention (e.g., an ActRIIB polypeptide), excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.

Powders and sprays can contain, in addition to a subject compound, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates, and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.

In certain embodiments, pharmaceutical compositions suitable for parenteral administration may comprise one or more ActRIIB polypeptides in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats,
soluties which render the formulation isotonic with the blood of the intended recipient or
suspending or thickening agents. Examples of suitable aqueous and nonaqueous carriers which
may be employed in the pharmaceutical compositions of the invention include water, ethanol,
polysols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable
mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl
oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as
lecithin, by the maintenance of the required particle size in the case of dispersions, and by the
use of surfactants.

The compositions of the invention may also contain adjuvants, such as preservatives,
wetting agents, emulsifying agents and dispersing agents. Prevention of the action of
microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents,
for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to
include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In
addition, prolonged absorption of the injectable pharmaceutical form may be brought about by
the inclusion of agents which delay absorption, such as aluminum monostearate and gelatin.

It is understood that the dosage regimen will be determined by the attending physician
considering various factors which modify the action of the subject compounds of the invention
(e.g., ActRIIB polypeptides). The various factors will depend upon the disease to be treated. In
the case of muscle disorders, factors may include, but are not limited to, amount of muscle mass
desired to be formed, the muscles most affected by disease, the condition of the deteriorated
muscle, the patient's age, sex, and diet, time of administration, and other clinical factors. The
addition of other known growth factors to the final composition, may also affect the dosage.
Progress can be monitored by periodic assessment of muscle growth and/or repair, for example,
by strength testing, MRI assessment of muscle size and analysis of muscle biopsies.

Certain embodiments of the invention, one or more ActRIIB polypeptides can be
administered, together (simultaneously) or at different times (sequentially or overlapping). In
addition, ActRIIB polypeptides can be administered with another type of therapeutic agents, for
example, a cartilage-inducing agent, a bone-inducing agent, a muscle-inducing agent, a fat-
reducing, or a neuron-inducing agent. The two types of compounds may be administered
simultaneously or at different times. It is expected that the ActRIIB polypeptides of the
invention may act in concert with or perhaps synergistically with another therapeutic agent.
In a specific example, a variety of osteogenic, cartilage-inducing and bone-inducing factors have been described, particularly bisphosphonates. See e.g., European Patent Application Nos. 148,155 and 169,016. For example, other factors that can be combined with the subject ActRIIB polypeptides include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF-α and TGF-β), and insulin-like growth factor (IGF).

In certain embodiments, the present invention also provides gene therapy for the in vivo production of ActRIIB polypeptides. Such therapy would achieve its therapeutic effect by introduction of the ActRIIB polynucleotide sequences into cells or tissues having the disorders as listed above. Delivery of ActRIIB polynucleotide sequences can be achieved using a recombinant expression vector such as a chimeric virus or a colloidal dispersion system. Preferred for therapeutic delivery of ActRIIB polynucleotide sequences is the use of targeted liposomes.

Various viral vectors which can be utilized for gene therapy as taught herein include adenovirus, herpes virus, vaccinia, or, preferably, an RNA virus such as a retrovirus. Preferably, the retroviral vector is a derivative of a murine or avian retrovirus. Examples of retroviral vectors in which a single foreign gene can be inserted include, but are not limited to: Moloney murine leukemia virus (MoMuLV), Harvey murine sarcoma virus (HaMuSV), murine mammary tumor virus (MuMTV), and Rous Sarcoma Virus (RSV). A number of additional retroviral vectors can incorporate multiple genes. All of these vectors can transfer or incorporate a gene for a selectable marker so that transduced cells can be identified and generated. Retroviral vectors can be made target-specific by attaching, for example, a sugar, a glycolipid, or a protein. Preferred targeting is accomplished by using an antibody. Those of skill in the art will recognize that specific polynucleotide sequences can be inserted into the retroviral genome or attached to a viral envelope to allow target specific delivery of the retroviral vector containing the ActRIIB polynucleotide. In one preferred embodiment, the vector is targeted to bone, cartilage, muscle or neuron cells/tissues.

Alternatively, tissue culture cells can be directly transfected with plasmids encoding the retroviral structural genes gag, pol and env, by conventional calcium phosphate transfection. These cells are then transfected with the vector plasmid containing the genes of interest. The resulting cells release the retroviral vector into the culture medium.
Another targeted delivery system for ActRIIB polynucleotides is a colloidal dispersion system. Colloidal dispersion systems include macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. The preferred colloidal system of this invention is a liposome.

Liposomes are artificial membrane vesicles which are useful as delivery vehicles in vitro and in vivo. RNA, DNA and intact virions can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (see e.g., Fraley, et al., Trends Biochem. Sci., 6:77, 1981). Methods for efficient gene transfer using a liposome vehicle, are known in the art, see e.g., Mannino, et al., Biotechniques, 6:682, 1988. The composition of the liposome is usually a combination of phospholipids, usually in combination with steroids, especially cholesterol. Other phospholipids or other lipids may also be used. The physical characteristics of liposomes depend on pH, ionic strength, and the presence of divalent cations.

Examples of lipids useful in liposome production include phosphatidyl compounds, such as phosphatidylglycerol, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, sphingolipids, cerebrosides, and gangliosides. Illustrative phospholipids include egg phosphatidylcholine, dipalmitoylphosphatidylcholine, and distearoylphosphatidylcholine. The targeting of liposomes is also possible based on, for example, organ-specificity, cell-specificity, and organelle-specificity and is known in the art.

EXEMPLIFICATION

The invention now being generally described, it will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain embodiments and embodiments of the present invention, and are not intended to limit the invention.

Applicants constructed a soluble ActRIIB fusion protein that has the extracellular domain of human ActRIIB fused to a human or mouse Fc domain with a minimal linker (three glycine amino acids) in between. The constructs are referred to as ActRIIB-hFc and ActRIIB-mFc, respectively.

ActRIIB-hFc is shown below as purified from CHO cell lines (SEQ ID NO: 5)
The ActRIIb-hFc and ActRIIb-mFc proteins were expressed in CHO cell lines. Three different leader sequences were considered:

(i) Honey bee mellitin (HBML): MKFLVNV ALVFMVVYISYIYA (SEQ ID NO: 7)

(ii) Tissue Plasminogen Activator (TPA): MDAMKRGLCCVLLLCGAVFVSP (SEQ ID NO: 8)

(iii) Native: MGAAAKLAFAVFLISCSSGA (SEQ ID NO: 9).

The selected form employs the TPA leader and has the following unprocessed amino acid sequence:

MDAMKRGLCCVLLLCGAVFVSPGASGRGEAETRECYYNANWELERTNQSGLERCEG
EQDKRLHCYASWRNNSGTIELVKGCWLDFFNYQRQECVATEENPQVYFCCCEGNFCNERFTHLPEAGGPEVTYEPPPTAPTG
GGTHTCPPCP APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYV
DGVEVHNAKTPREEOYNSTYRSVLTVHODWLNGKEYKCKVKSNKLVPPIEKTIS
5 KAKGOPREPQYPYLPSREEMTKNOVSTCLVKGFYPSDIAVEWESNGOPENNYKTPP
VLDSDGSFFLSKLTVDKSROOGNVFSCSVMHEALHNHYTOKSLSLSPGK

The selected form employs the TPA leader and has the following unprocessed amino acid sequence:

A TTGGATGCAAT GAAGAGAGGG CTCTGGCTGTG TGCTGCTGCT GTGTGGAGCA GTCTTCGTTT
25 GGCCTGGGCC CTTCTGGCTGTG GGGAGGGCTG AGACACGGGA GTGCACTCTAC TACAAAGCCA
ACTGGGAGCT GGAGGCCACC AACAGAGGG GCCTGGAGGG CTGCGAGGG GAGGAGGAGA
AGCCGGCTGA CTGCTAGCC TCCCTGGGCA ACAGCCGAG CACCATGAG CGCCAGTGA
AGGCCTCGTG GCTAGATGAC TCTAAGCTC ACGATAAGCA GAAGTGTTGG GAGTCCAGG
AGAACCCCAA GTGCTACTTC TGCTGCTGTG AAGGCAACTT CTGCAACAGG CGCCCTACTC
ATTTGCCAGA GGGTGGGGCC GGGAGAAGTCA GTACAGCGAC ACCGGAGACG GCCGGACCG
20 GTGGTGGAAC ACTACAGTGC CCAGCTGTCG CACCAGCTG CTTGAGGTCA ATGACGCAGG
ACTGGGAGCT GGAGGCCACC AACAGAGGG GCCTGGAGGG CTGCGAGGG GAGGAGGAGA
AGACGGCTGA CTGCTAGCC TCCCTGGGCA ACAGCCGAG CACCATGAG CGCCAGTGA
AGGCCTCGTG GCTAGATGAC TCTAAGCTC ACGATAAGCA GAAGTGTTGG GAGTCCAGG
AGAACCCCAA GTGCTACTTC TGCTGCTGTG AAGGCAACTT CTGCAACAGG CGCCCTACTC
ATTTGCCAGA GGGTGGGGCC GGGAGAAGTCA GTACAGCGAC ACCGGAGACG GCCGGACCG
25 GTGGTGGAAC ACTACAGTGC CCAGCTGTCG CACCAGCTG CTTGAGGTCA ATGACGCAGG
ACTGGGAGCT GGAGGCCACC AACAGAGGG GCCTGGAGGG CTGCGAGGG GAGGAGGAGA
AGACGGCTGA CTGCTAGCC TCCCTGGGCA ACAGCCGAG CACCATGAG CGCCAGTGA
AGGCCTCGTG GCTAGATGAC TCTAAGCTC ACGATAAGCA GAAGTGTTGG GAGTCCAGG
AGAACCCCAA GTGCTACTTC TGCTGCTGTG AAGGCAACTT CTGCAACAGG CGCCCTACTC
ATTTGCCAGA GGGTGGGGCC GGGAGAAGTCA GTACAGCGAC ACCGGAGACG GCCGGACCG
30 GTGGTGGAAC ACTACAGTGC CCAGCTGTCG CACCAGCTG CTTGAGGTCA ATGACGCAGG
ACTGGGAGCT GGAGGCCACC AACAGAGGG GCCTGGAGGG CTGCGAGGG GAGGAGGAGA
AGACGGCTGA CTGCTAGCC TCCCTGGGCA ACAGCCGAG CACCATGAG CGCCAGTGA
AGGCCTCGTG GCTAGATGAC TCTAAGCTC ACGATAAGCA GAAGTGTTGG GAGTCCAGG
AGAACCCCAA GTGCTACTTC TGCTGCTGTG AAGGCAACTT CTGCAACAGG CGCCCTACTC
ATTTGCCAGA GGGTGGGGCC GGGAGAAGTCA GTACAGCGAC ACCGGAGACG GCCGGACCG
35 AAGGGCAGCC CCGAGGACCAG GAGGAGGACA CAGAGGTCA CCCCAGGGCC ATCGGGGAG GAGGAGGACA
AGAGACAGGG CAGGCTGACC TGCCCTGGCT GCCCTGCTGG AAGGAGGACA

N-terminal sequencing of the CHO-cell produced material revealed a major sequence of
-GRGEAE (SEQ ID NO: 11). Notably, other constructs reported in the literature begin with an
-SGR... sequence.

Purification could be achieved by a series of column chromatography steps, including,
for example, three or more of the following, in any order: protein A chromatography, Q
sepharose chromatography, phenylsepharose chromatography, size exclusion chromatography,
and cation exchange chromatography. The purification could be completed with viral filtration
and buffer exchange.

ActRIIb-Fc fusion proteins were also expressed in HEK293 cells and COS cells. Although material from all cell lines and reasonable culture conditions provided protein with muscle-building activity in vivo, variability in potency was observed perhaps relating to cell line
selection and/or culture conditions.

Example 2: Generation of ActRIIb-Fc Mutants

Applicants generated a series of mutations in the extracellular domain of ActRIIB and produced these mutant proteins as soluble fusion proteins between extracellular ActRIIB and an
Fc domain. The background ActRIIB-Fc fusion has the sequence (Fc portion underlined)(SEQ
ID NO: 12):

SGRGEAETREICYYMNANWELETRNQSGLERCEGEQDKRLHCYAS WRNSSGTIELVKKG CWLDDFNCYDRQECVATEENPQVYFCCCEGNFCNERFTHLPEAGGPEVTYEPPTAPT GGGTHTCPPCPAPELLGGPSVFLFPPKPDLMISRTPEVTCWVDVSHEDEPEVKFNWY

Various mutations, including N- and C-terminal truncations, were introduced into the
background ActRJIB-Fc protein. Based on the data presented in Example 1, it is expected that
these constructs, if expressed with a TPA leader, will lack the N-terminal serine. Mutations
were generated in ActRIIB extracellular domain by PCR mutagenesis. After PCR, fragments
were purified through a Qiagen column, digested with Sfol and Agel and gel purified. These
fragments were ligated into expression vector pAID4 (see WO2006/0 12627) such that upon
ligation it created fusion chimera with human IgGl. Upon transformation into E. coli DH5 alpha, colonies were picked and DNAs were isolated. For murine constructs (mFc), a murine IgG2a was substituted for the human IgGl. AU mutants were sequence verified.

All of the mutants were produced in HEK293T cells by transient transfection. In summary, in a 500ml spinner, HEK293T cells were set up at 6 x 10^5 cells/ml in Freestyle (Invitrogen) media in 250ml volume and grown overnight. Next day, these cells were treated with DNA:PEI (1:1) complex at 0.5 ug/ml final DNA concentration. After 4 hrs, 250 ml media was added and cells were grown for 7 days. Conditioned media was harvested by spinning down the cells and concentrated.

Mutants were purified using a variety of techniques, including, for example, protein A column and eluted with low pH (3.0) glycine buffer. After neutralization, these were dialyzed against PBS.

Mutants were also produced in CHO cells by similar methodology.

Mutants were tested in binding assays and/or bioassays described below. In some instances, assays were performed with conditioned medium rather than purified proteins.

Example 2. Bioassay for GDF-II and Activin-mediated signaling.

An A-204 Reporter Gene Assay was used to evaluate the effects of ActRIIB-Fc proteins on signaling by GDF-11 and Activin A. Cell line: Human Rhabdomyosarcoma (derived from muscle). Reporter vector: pGL3(CAGA)12 (Described in Dennler et al, 1998, EMBO 17: 3091-3100.) See Figure 5. The CAGA12 motif is present in TGF-Beta responsive genes (PAI-I gene), so this vector is of general use for factors signaling through Smad2 and 3.

Day 1: Split A-204 cells into 48-well plate.

Day 2: A-204 cells transfected with 10 ug pGL3(CAGA)12 or pGL3(CAGA) 12(10 ug)+ pRLCMV (1 ug) and Fugene.

Day 3: Add factors (diluted into medium+ 0.1 % BSA). Inhibitors need to be preincubated with Factors for 1 hr before adding to cells. 6 hrs later, cells rinsed with PBS, and lyse cells.
This is followed by a Luciferase assay. In the absence of any inhibitors, Activin A showed 10 fold stimulation of reporter gene expression and an ED50 ~ 2 ng/ml. GDF-11: 16 fold stimulation, ED50: ~ 1.5 ng/ml.

ActRIIB(R64, 20-134) is a potent inhibitor of activin, GDF-8 and GDF-11 activity in this assay. Variants were tested in this assay as well.

Example 3. GDF-II Inhibition of N-terminal and C-terminal Truncations

Truncations at the N-terminus and C-terminus of the ActRIIB portion ActRIIB-Fc (R64, 20-134) were generated and tested for activity as inhibitors of GDF-11 and activin. The activities are shown below (as measured in conditioned media):

C-terminal ActRIIB-hFc Truncations:

<table>
<thead>
<tr>
<th></th>
<th>IC50 (ng/mL)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GDF-11</td>
<td>Activin</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, 20-134)</td>
<td>45</td>
<td>22</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, 20-132)</td>
<td>87</td>
<td>32</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, 20-131)</td>
<td>120</td>
<td>44</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, 20-128)</td>
<td>130</td>
<td>158</td>
</tr>
</tbody>
</table>

As can be seen, truncations of three (ending with ...PPT), six (ending with ...YEP) or more amino acids at the C-terminus causes a threefold or greater decrease in the activity of the molecule. The truncation of the final 15 amino acids of the ActRIIB portion causes a greater loss of activity (see WO2006/012627).

Amino terminal truncations were made in the background of an ActRIIB-hFc (R64 20-131) protein. The activities are shown below (as measured in conditioned media):

N-terminal ActRIIB-hFc Truncations:

<table>
<thead>
<tr>
<th></th>
<th>IC50 (ng/mL)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GDF-11</td>
<td>Activin</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, 20-131)</td>
<td>183</td>
<td>201</td>
</tr>
</tbody>
</table>
Accordingly, truncations of two, three or four amino acids from the N-terminus lead to the production of a more active protein than the versions with a full-length extracellular domain. Additional experiments show that a truncation of five amino acids, ActRIIb-hFc (R64, 25-131) has activity equivalent to the untruncated form, and additional deletions at the N-terminus continue to degrade the activity of the protein. Therefore, optimal constructs will have a C-terminus ending between amino acid 133-134 of SEQ ID NO:4 and an N-terminus beginning at amino acids 22-24 of SEQ ID NO:4. An N-terminus corresponding to amino acids 21 or 25 will give activity that is similar to the ActRIIb-hFc (R64, 20-134) construct.

Example 4. ActRIIb-Fc Variants, Cell-based Activity.

Activity of ActRIIB-Fc proteins was tested in a cell based assay, as described above. Results are summarized in Table 1, below. Some variants were tested in different C-terminal truncation constructs. As discussed above, truncations of five or fifteen amino acids caused reduction in activity. Remarkably, the L79D and L79E variants showed substantial loss of activin binding while retaining almost wild-type inhibition of GDF-11.

Soluble ActRIIB-Fc binding to GDFII and Activin A:

<table>
<thead>
<tr>
<th>ActRIIB-Fc Variations</th>
<th>Portion of ActRIIB (corresponds to amino acids of SEQ ID NO:4)</th>
<th>GDFII Inhibition Activity</th>
<th>Activin Inhibition Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>64R</td>
<td>20-134</td>
<td>+++ (approx. 10^-8 M K_i)</td>
<td>+++ (approx. 10^-8 M K_i)</td>
</tr>
<tr>
<td>64A</td>
<td>20-134</td>
<td>+ (approx. 10^-6 M K_i)</td>
<td>+ (approx. 10^-6 M K_i)</td>
</tr>
<tr>
<td>64R</td>
<td>20-129</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>64R K74A</td>
<td>20-134</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Variant</td>
<td>Activity</td>
<td>Activity</td>
<td>Activity</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>64R A24N</td>
<td>20-134</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>64R A24N</td>
<td>20-119</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>64R A24N K74A</td>
<td>20-119</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>R64 L79P</td>
<td>20-134</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>R64 L79P K74A</td>
<td>20-134</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>R64 L79D</td>
<td>20-134</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>R64 L79E</td>
<td>20-134</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>R64K</td>
<td>20-134</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>R64K</td>
<td>20-129</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>R64 P129S P130A</td>
<td>20-134</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>R64N</td>
<td>20-134</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+ Poor activity (roughly 1x10^6 Ki)
++ Moderate activity (roughly 1x10^7 Ki)
+++ Good (wild-type) activity (roughly 1x10^8 Ki)
++++ Greater than wild-type activity

Several variants have been assessed for serum half-life in rats. ActRIIB(64R 20-134)-Fc has a serum half-life of approximately 70 hours. ActRIIB(64 R24N 20-134)-Fc has a serum half-life of approximately 100-150 hours. The A24N variant has activity in the cell-based assay (above) and in vivo assays (below) that are equivalent to the wild-type molecule. Coupled with the longer half-life, this means that over time an A24N variant will give greater effect per unit of protein than the wild-type molecule.

Remarkably, the introduction of acidic amino acids (aspartic or glutamic acid) at position 79 selectively decreased activin binding while retaining GDF1/GDF8 binding. As discussed below, wild-type ActRIIB-Fc proteins appear to have effects on tissues other than the muscle, some of which may be undesirable. As disclosed herein, these effects are expected to relate to the various different ligands that are bound and inhibited by ActRIIB-Fc, including, perhaps, activin. Initial data indicate that, in mice, the L79E and L79D variants have reduced effects on tissues other than muscle while retaining their effects on muscle. Although variations of this type may be viewed as variants of ActRHB, it should be noted that these proteins no longer truly function as activin receptors, and thus the moniker "ActRIIB" is appropriate only as an indicator of the derivation of these polypeptides. Although acidic residues at position 79 decrease activin binding while retaining GDF1 binding, other alterations at this position do not have this effect.

An L79A change increases activin binding relative to GDF1 binding. An L79P change decreases both activin and GDF1 binding.

Example 5. GDF-II and Activin A Binding.
Binding of certain ActRIIB-Fc proteins to ligands was tested in a BiaCore™ assay.

The ActRIIB-Fc variants or wild-type protein were captured onto the system using an anti-hFc antibody. Ligands were injected and flowed over the captured receptor proteins. Results are summarized in tables, below.

Ligand binding specificity HB variants.

<table>
<thead>
<tr>
<th>Protein</th>
<th>GDF11</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kon (1/Ms)</td>
<td>Koff (1/s)</td>
<td>KD (M)</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64 20-134)</td>
<td>1.34e-6</td>
<td>1.13e-4</td>
<td>8.42e-11</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, A24N 20-134)</td>
<td>1.21e-6</td>
<td>6.35e-5</td>
<td>5.19e-11</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, L79D 20-134)</td>
<td>6.7e-5</td>
<td>4.39e-4</td>
<td>6.55e-10</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, L79E 20-134)</td>
<td>3.8e-5</td>
<td>2.74e-4</td>
<td>7.16e-10</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64K 20-134)</td>
<td>6.77e-5</td>
<td>2.41e-5</td>
<td>3.56e-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protein</th>
<th>GDF8</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kon (1/Ms)</td>
<td>Koff (1/s)</td>
<td>KD (M)</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64 20-134)</td>
<td>3.69e-5</td>
<td>3.45e-5</td>
<td>9.35e-11</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, A24N 20-134)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, L79D 20-134)</td>
<td>3.85e-5</td>
<td>8.3e-4</td>
<td>2.15e-9</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, L79E 20-134)</td>
<td>3.74e-5</td>
<td>9e-4</td>
<td>2.41e-9</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64K 20-134)</td>
<td>2.25e-5</td>
<td>4.71e-5</td>
<td>2.1e-10</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64K 20-129)</td>
<td>9.74e-4</td>
<td>2.09e-4</td>
<td>2.15e-9</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, P129S, P130R 20-134)</td>
<td>1.08e-5</td>
<td>1.8e-4</td>
<td>1.67e-9</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, K74A 20-134)</td>
<td>2.8e-5</td>
<td>2.03e-5</td>
<td>7.18e-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protein</th>
<th>ActivinA</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kon (1/Ms)</td>
<td>Koff (1/s)</td>
<td>KD (M)</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64 20-134)</td>
<td>5.94e6</td>
<td>1.59e-4</td>
<td>2.68e-11</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, A24N 20-134)</td>
<td>3.34e6</td>
<td>3.46e-4</td>
<td>1.04e-10</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, L79D 20-134)</td>
<td></td>
<td></td>
<td>Low binding</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, L79E 20-134)</td>
<td></td>
<td></td>
<td>Low binding</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64K 20-134)</td>
<td>6.82e6</td>
<td>3.25e-4</td>
<td>4.76e-11</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64K 20-129)</td>
<td>7.46e6</td>
<td>6.28e-4</td>
<td>8.41e-11</td>
</tr>
<tr>
<td>ActRIIB-hFc (R64, P129S, P130R 20-134)</td>
<td>5.02e6</td>
<td>4.17e-4</td>
<td>8.31e-11</td>
</tr>
</tbody>
</table>
These data confirm the cell based assay data, demonstrating that the A24N variant retains ligand-binding activity that is similar to that of the ActRIIb-hFc (R64 20-134) molecule, and that the L79D or L79E molecule retains myostatin and GDFI1 binding but shows markedly decreased (non-quantifiable) binding to Activin A.

Other variants have been generated and tested, as reported in WO2006/012627, using ligands coupled to the device and flowing receptor over the coupled ligands. A table of data with respect to these variants is reproduced below:

Soluble ActRIIB-Fc variants binding to GDFII and Activin A (BiaCore assay)

<table>
<thead>
<tr>
<th>ActRIIB</th>
<th>ActA</th>
<th>GDFI1</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT (64A)</td>
<td>KD=1.8e-7M (+)</td>
<td>KD= 2.6e-7M (+)</td>
</tr>
<tr>
<td>WT (64R)</td>
<td>na</td>
<td>KD= 8.6e-8M (+++)</td>
</tr>
<tr>
<td>+15tail</td>
<td>KD ~2.6 e-8M (+++)</td>
<td>KD= 1.9e-8M (++++)</td>
</tr>
<tr>
<td>E37A</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>R40A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D54A</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td>K55A</td>
<td>++</td>
<td>*</td>
</tr>
<tr>
<td>R56A</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>K74A</td>
<td>KD=4.35e-9 M ++++</td>
<td>KD=5.3e-9M ++++</td>
</tr>
<tr>
<td>K74Y</td>
<td>*</td>
<td>--</td>
</tr>
<tr>
<td>K74F</td>
<td>*</td>
<td>--</td>
</tr>
<tr>
<td>K74I</td>
<td>*</td>
<td>--</td>
</tr>
<tr>
<td>W78A</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>L79A</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>D80K</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>D80R</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>D80A</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>D80F</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>D80G</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>D80M</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>D80N</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>D80I</td>
<td>*</td>
<td>--</td>
</tr>
<tr>
<td>F82A</td>
<td>++</td>
<td>-</td>
</tr>
</tbody>
</table>

* No observed binding
~ < 1/5 WT binding
- ~ 1/2 WT binding
+ WT
Example 6: The Effect of ActRIIB-Fc Proteins on Muscle Mass in Wild-Type Mice.

Applicants determined the ability of the ActRIIB-Fc protein to increase muscle mass in wild-type mice.

C57B110 mice were dosed (10mg/kg; intraperitoneal (i.p.)) twice/week with either the human ActRIIB (R64 20-134) protein or the human ActRIIB (K74A 20-134). Mice were NMR scanned at day 0 and day 28 to determine the percent change of whole body lean tissue mass. Human ActRIIB (R64 20-134)-Fc treated mice exhibited a significant 31.1% increase in lean tissue when compared to the vehicle control group. Mice treated with the human ActRIIB (K74A 20-134)-Fc protein exhibited a significant increase in lean tissue mass increase compared to the control cohort, albeit to a lesser extent than the human ActRIIB (R64 20-134)-treated group. In a similar study, mice were treated twice/week for with PBS, 1 mg/kg, 3 mg/kg, or 10 mg/kg murine ActRIIB (WT, 20-134)-Fc, intraperitoneally. At the end of the study, femoris, gastrocnemius, pectoralis and diaphragm muscles were dissected and weighed. The results are summarized in Table 3, below.

Table 3: Tissue weights from vehicle- and murine ActRIIB (WT, 20-134)-Fc-treated wild-type mice
As shown in Table 3, the murine ActRIIB (WT, 20-134)-Fc fusion protein significantly increases muscle mass in wild-type mice. In the murine ActRIIB (WT, 20-134)-Fc treated mice, gastrocnemius muscles were increased 26.5%, femoris muscles increased 28.9%, pectoralis muscles were increased 40.0%. We also observed changes in the diaphragm muscle which was increased by 63% compared to the vehicle-treated control mice. The diminution of the diaphragm muscle is a common complication in variety of muscular dystrophies. Therefore the increase in diaphragm weight seen after murine ActRIIB (WT, 20-134)-Fc treatment could be of clinical importance.

Applicants determined the ability of the long half-life variant of ActRIIB-mFc (R64, A24N 20-134) protein to increase muscle mass in wild-type mice.

C57B110 mice were dosed (10mg/kg; intraperitoneal (i.p.)) twice/week with either the human ActRIIB-mFc (R64 20-134) protein or the human ActRIIB-mFc (R64, A24N 20-134). Mice were NMR scanned at various points up to day 25 to determine the percent change of whole body lean tissue mass. Both molecules caused equivalent increases in total body weight and muscle masses, with the effects on the gastrocnemius, femoris and pectoral muscles ranging from a 40-70% increase. See Figures 5 and 6.

These data demonstrate that the increased half-life form of the molecule promotes muscle growth in a short term study with an equivalent potency to the wild-type molecule.

Example 8: The Effect of ActRIIB-Fc Proteins with Reduced Activin Binding on Muscle Mass in Wild-Type Mice.

Applicants determined the ability of the long half-life variant of ActRIIB-mFc (R64, L79D 20-134) protein to increase muscle mass in wild-type mice.

C57B110 mice were dosed (10mg/kg; intraperitoneal (i.p.)) twice/week with either the human ActRIIB-mFc (R64 20-134) protein or the human ActRIIB-mFc (R64, L79D 20-134). Mice were NMR scanned at various points up to day 24 to determine the percent change of whole body lean tissue mass. Data are shown in the table below.
These data demonstrate that the L79D variant (reduced Activin A binding) of ActRIIB is active in vivo for promoting muscle growth, however, the amount of muscle growth is less than that for wild type ActRIIB. This decreased effect may be caused in part by the slight reduction in myostatin binding or by loss of binding to an additional, as yet unknown negative regulator of muscle growth. The ability to stimulate muscle growth without affecting Activin A signaling is highly desirable because activin is a widely expressed regulatory molecule known to have effects on the reproductive system, bone, liver and many other tissues. In mice, ActRIIB-mFc (R64 20-134) causes substantial effects on the reproductive system and, in some instances, causes an increase in spleen size. The ActRIIB-mFc (R64, L79D 20-134) molecule had greatly attenuated effects on both reproductive tissues and the spleen, indicating that this molecule will be particularly suitable for promoting muscle growth in patients that are reproductively active or have the desire to minimize effects on the reproductive system.

Example 9: The Effect of ActRIIB-Fc Protein on Muscle Mass and Strength in Mdx Mice.

In order to determine the ability of the murine ActRIIB (WT, 20-134)-Fc protein to increase muscle mass in a disease condition, applicants determined the ability of the ActRIIB-Fc protein to increase muscle mass in the mdx mouse model of muscular dystrophy.

Adult Mdx mice were treated twice/week with the murine ActRIIB (WT, 20-134)-Fc protein (1, 3, or 10mg/kg; intraperitoneal) or a PBS vehicle control. The force a mouse exerts when pulling a force transducer is measured to determine forelimb grip strength. The average force of 5 pulling trials was used for the comparison of grip strength between the cohorts. At the end of the study, femoris, gastrocnemius, pectoralis and diaphragm muscles were dissected and weighed. Grip strength measurements showed a significant increase also. The muscle mass results are summarized in the table, below.
Tissue weights from vehicle- and murine ActRIIB (WT, 20-134)-Fc -treated mdx mice

<table>
<thead>
<tr>
<th>Vehicle-treated</th>
<th>Gastrocnemius (L+R)</th>
<th>Femoris (L+R)</th>
<th>Pectoralis (L+R)</th>
<th>Diaphragm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (grams) ± Std. deviation</td>
<td>0.413 ± 0.040</td>
<td>0.296 ± 0.019</td>
<td>0.437 ± 0.060</td>
<td>0.111 ± 0.030</td>
</tr>
<tr>
<td>muActRIIB (WT, 20-134)-Fc (10mg/kg)</td>
<td>Gastrocnemius (L+R)</td>
<td>Femoris (L+R)</td>
<td>Pectoralis (L+R)</td>
<td>Diaphragm</td>
</tr>
<tr>
<td>Average (grams) ± Std. deviation</td>
<td>0.52 ± 0.050</td>
<td>0.39 ± 0.05</td>
<td>0.807 ± 0.21</td>
<td>0.149 ± 0.020</td>
</tr>
<tr>
<td>Test p-value</td>
<td>0.0006</td>
<td>0.0006</td>
<td>0.002</td>
<td>0.05</td>
</tr>
</tbody>
</table>

As illustrated in the table, the murine ActRIIB (WT, 20-134)-Fc -treated groups exhibited increased lean tissue mass in the mdx mice compared to the PBS-treated mice. ActRIIB-Fc treatment increased gastrocnemius size 25.9%, femoris size 31.8%, and pectoralis muscles by 85.4% compared to the vehicle control group. Of possible clinical importance, we also found that the diaphragm weights of the mouse ActRIIB (WT, 20-134)-Fc -treated mice were increased 34.2% compared to the control cohort. These data demonstrate the efficacy of the ActRIIB-Fc protein in a muscular dystrophy disease condition.

Additionally mdx mice treated with the ActRIEB-Fc protein exhibit increased grip strength compared to the vehicle-treated controls. At 16-weeks, the 1, 3 and 10mg/kg ActRIIB groups demonstrated a 31.4%, 32.3% and 64.4% increase in grip strength, respectively, compared to the vehicle control group. The improved grip strength performance of the murine ActRIIB (WT, 20-134)-Fc treated groups supports the idea that the increased muscle found in the treatment groups is physiologically relevant. Mdx mice are susceptible to contractile-induced injury and undergo significantly more cycles of degeneration and regeneration than their wild-type counterparts. Despite these muscle phenotypes, murine ActRIIB (WT, 20-134)-Fc treatment increases grip strength in the mdx mice.

In Duchenne's Muscular Dystrophy, disease onset occurs early in childhood, often as early as age five. Accordingly, the data presented above with respect to adult mice do not necessarily reflect the effects an ActRIIB molecule would have in children with DMD. To address this, a study was conducted with juvenile mdx mice.

ActRIIB-mFc (R64, 20-134) treatment significantly increases body weight in juvenile (four week old) C57BL/10 and mdx mice. Body composition analysis using in vivo NMR spectroscopy revealed increased lean tissue mass accompanied the higher body weights.
ActRIIB-mFc (R64, 20-134) treated C57BL/10 mice gained 35.2% lean tissue mass and the treated mdx group gained 48.3% more lean tissue mass than their respective control cohorts. Further, the effect of ActRHB-mFc (R64, 20-134) treatment on strength was assessed. Vehicle treated mdx mice grip strength scores were 15.7% lower than the vehicle C57BL/10 cohort thereby illustrating the muscle weakness associated with dystrophin deficiency. In contrast, the ActRIIB-mFc (R64, 20-134) treated mdx mice improved their grip strength compared to the mdx vehicle group, and attained grip strength measurements which surpassed C57BL/10 vehicle mice and reached the level of the treated C57BL/10 grip strength scores (vehicle mdx: 0.140 ± 0.01 KgF; treated mdx: 0.199 ± 0.02 KgF; vehicle C57BL/10: 0.166 ± 0.03; 0.205 ± 0.02 KgF).

Remarkably, the treatment restored the juvenile mdx mice back to wild type levels of grip strength. Therefore, the ActRIIB-mFc (R64, 20-134) molecule is likely to have important clinical applications in Duchenne muscular dystrophy, particularly in juvenile patients at an age close to the onset of the disease.

Example 7: The Effect of ActRIIB-Fc Protein on Strength and Survival in SOD1 Mice.

To determine the ability of ActRIIB polypeptides to increase strength and survival in a mouse model of ALS, applicants tested the ActRIIB-Fc protein in the SOD1 mouse.

B6.Cg-Tg(SOD1-G93A)Gur/J, or SOD1, mice carry high copy numbers of the mutant allele of the human superoxide dismutase transgene. High levels of this protein convey a phenotype to the mice that is comparable to the human disease ALS. SOD1 mice develop ascending paralysis and exhibit early signs of the disease by 91 days. The disease results in premature death occurring between 19-23 weeks of age.

SOD1 mice were dosed with a vehicle control or ActRIIB-mFc (K74A 20-134) (i.p., 5mg/kg, twice/week) beginning at 10 weeks of age. The force a mouse exerts when pulling a force transducer is a measure of forelimb grip strength. The average force of 5 pulling trials was used for the comparison of grip strength between the cohorts. Survival was calculated as the number of days between the date the mouse was born and the date the mouse was unable to right themselves within 30 seconds of being placed on its side. Figure 7 shows the grip strength measurements and figure 8 illustrates the survival data.

Mice in the end-stage of disease have difficulty grooming, presumably due to the progression of paralysis, and appear unkempt. Cursory observation of the mice revealed that the murine ActRIIB (K74A 20-134)-Fc treatment group appeared well-groomed even in the end-
stages of disease compared to the PBS group. This observation suggests the treated mice are in better health and maintaining a higher quality of life than the controls.

As is seen in figure 7, SOD1 mice receiving the murine ActRIIB (K74A 20-134)-Fc treatment exhibit a significantly greater grip strength compared to the PBS control cohort. This is seen at day 117, the early stage of the disease, as well as after the disease has progressed at day 149. Figure 8 illustrates that the ActRIIB (K74A 20-134)-Fc treated mice survived significantly longer than the vehicle controls. This study illustrates the utility of the murine ActRIIB (K74A 20-134)-Fc in the mouse model of ALS in improving both strength and survival of the mice.

A similar experiment was performed with SOD1 mice, but treatment was delayed until the beginning of grossly detectable disease onset (day 130), so as to better mimic the treatment of human ALS after onset of significant disease symptoms. At day 130, SOD1 mice were divided into either vehicle (modified TBS) or ActRIIB (R64 20-134)-mFc (10mg/kg) treated groups. Mice were subcutaneously dosed once per week. Mice were NMR scanned at study days -1 and 27 (ages 129 and 157 days, respectively). Grip strength measurements were performed at study days 0 and 20. At the end of the study, the male control group had lost 4.3% of their study day 0 body weight whereas the treated group gained 7.8% of their study day 0 weights. The female control group lost 1.5% and the treated female cohort gained 15% of their study day 0 body weights.

SOD1 Grip Strength Measurement

<table>
<thead>
<tr>
<th></th>
<th>Day 0</th>
<th>Day 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male Control</td>
<td>0.149±0.02</td>
<td>0.097±0.02<sup>a</sup></td>
</tr>
<tr>
<td>Male ActRIIB</td>
<td>0.147±0.02</td>
<td>0.128±0.02<sup>a,b</sup></td>
</tr>
<tr>
<td>(R64 20-134)-mFc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female Control</td>
<td>0.130±0.02</td>
<td>0.091±0.02<sup>a</sup></td>
</tr>
<tr>
<td>Female ActRIIB</td>
<td>0.128±0.01</td>
<td>0.11±0.02<sup>b</sup></td>
</tr>
<tr>
<td>(R64 20-134)-mFc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Days 0 and 20 grip strength measurements in male and female SOD1 mice. Superscript "a" denotes significantly different compared to the respective day 0 measure (p < 0.05). Superscript "b" denotes significant difference between the PBS (Group 1) and ActRIIB (R64 20-134)-mFc (Group 2) day 20 measurements (p < 0.05).

Mice were NMR scanned to determine changes in body composition attributed to treatment. Male control mice lost 6.0% of their lean tissue mass over the course of the study.
Male treated mice gained 9.1% of their study day 0 lean tissue mass (day -1: 19.17 g ± 0.77; day 27: 20.92 g ± 0.74). Female control mice had a 0.83% reduction of lean mass from the start of the study (day -1: 13.18 g ± 0.84; day 27: 13.08 g ± 0.71) and Female treated mice had a 10.7% increase in their study day 0 body weight (day -1: 13.66 g ± 0.83; day 27: 15.12 g ± 1.21). Both the male and female treated groups gained significant amounts of lean tissue compared to their respective PBS control groups (p < 0.001).

SODI Muscle Effects of ActRIIB (R64 20-134)-mFc

<table>
<thead>
<tr>
<th></th>
<th>Gastrocnemius (L+R)</th>
<th>Femoris (L+R)</th>
<th>Pectoralis (L+R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male Control</td>
<td>0.18 ± 0.03</td>
<td>0.12 ± 0.03</td>
<td>0.20 ± 0.04</td>
</tr>
<tr>
<td>Male ActRIIB (R64 20-134)-mFc</td>
<td>0.22 ± 0.04</td>
<td>0.15 ± 0.02</td>
<td>0.30 ± 0.04</td>
</tr>
<tr>
<td>Female Control</td>
<td>0.13 ± 0.02</td>
<td>0.089 ± 0.016</td>
<td>0.11 ± 0.01</td>
</tr>
<tr>
<td>Female ActRIIB (R64 20-134)-mFc</td>
<td>0.17 ± 0.03</td>
<td>0.01 ± 0.02</td>
<td>0.15 ± 0.05</td>
</tr>
</tbody>
</table>

These data indicated that ActRIIB-Fc treatment may be beneficial in the treatment of patients that have active ALS, both to improve muscle function and quality of life.

Example 8: The Effect of an ActRIIB-Fc Protein on the Adiposity and Diabetes in Obese Mice.

Applicants tested the ActRUB-niFc proteins in high fat diet (HFD)-fed mice to determine the ability of ActRIIB-Fc to reduce adiposity in a mouse model of obesity.

Type II diabetes is a major complication of obesity and is characterized by insulin resistance. Elevated fasting insulin levels are indicative of insulin resistance and provide a means for testing whether an animal is in an insulin resistant state. Applicants determined the effect of treatment with murine ActRUB (R64 K74A 20-134)-Fc in normalizing fasting insulin levels in a mouse model of obesity.
HFD-fed C57BL/6 mice were maintained on a diet composed of 35% fat and considered to be obese when their body weight was approximately 50% greater than that of age-matched mice fed a standard chow diet (4.5% fat). Obese mice were dosed twice/week with either a vehicle control or human ActRIIB (R64 K74A 20-134)-Fc (10 mg/kg; i.p.). Obese mice were NMR scanned to determine body composition at the beginning of dosing and after 3 weeks of dosing. The changes in body composition from baseline are summarized in figure 9.

Mice were fed a HFD and considered obese when their body weights were 50% heavier than their standard chow-fed counterparts. HFD-fed mice were dosed with either a vehicle control or murine ActRIIB (R64 K74A 20-134)-Fc (5 mg/kg twice/week; i.p.) for 35 weeks. At the end of the study, mice were overnight fasted. At the end of the fast, blood was collected and processed for serum. Serum was then used to determine fasting insulin levels for both cohorts. The results for the effect of murine ActRIIB (K74A 20-134)-Fc on fasting insulin levels of obese mice are summarized in the table, below.

Fasting insulin levels from vehicle- and murine ActRIIB (K74A 20-134)-Fc -treated mice

<table>
<thead>
<tr>
<th></th>
<th>HFD</th>
<th>HFD Murine ActRIIB (K74A 20-134)-mFc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (ng/ml) ± Std. dev</td>
<td>2.27 ± 1.64</td>
<td>0.78 ± 0.40</td>
</tr>
<tr>
<td>ttest</td>
<td>N/A</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Figure 9 shows the decreased adiposity of the murine ActRIIB (R64 K74A 20-134)-Fc cohort when compared to the vehicle-treated controls. Treated mice were found to have a 25.9% decrease in fat mass compared to their baseline levels. Additionally, the treated group increased their lean mass by 10.1% above their baseline levels. The percent change in both the adipose tissue and lean tissue mass of the ActRIIB (R64 K74A 20-134)-mFc were significantly greater than the percent changes of the PBS-treated group.

In this model, mice were maintained on a high-fat diet until they were > 50% heavier than their chow-fed counterparts. Based on this remarkable increase in body weight and adiposity, it stands to reason that this model could correspond to humans who are characterized as morbidly obese. Therefore, the finding that treatment with human ActRIIB (R64 K74A 20-134)-Fc protein reduces adiposity in obese mice could be clinically relevant to the treatment of morbidly obese humans.
The results summarized in Table 5 suggest that treatment with the murine ActRIIB (K74A 20-134)-Fc protein is able to significantly reduce obesity-associated elevated fasting serum insulin levels. This finding supports the possible clinical relevance of the use of ActRIIB polypeptides in the treatment of Type II diabetes.

Further experiments were conducted with ActRIIB-mFc (R64 20-134) in the HFD model of obesity and diabetes. 30 week old HFD-fed C57BL/6 mice were divided into 2 groups (PBS and 10mg/kg ActRIIB-mFc (R64 20-134)). Mice were weighed and dosed 2X/week intraperitoneally for 12 weeks. Mice were assessed by NMR at study days 0 and 94.

Treated mice lost 1.9% of their study day 0 body weights while the PBS treated mice gained 6.7% of their starting BW during the study. Treated mice also gained significantly more lean tissue than the PBS group (21.1% ± 6.28 versus 3.7% ±4.08) during the study. The Treated mice also lost significant fat tissue (-34% ± 10.95) compared to the PBS group (+10.2 ± 10.18).

Individual muscle weights were also increased in the ActRIIB-mFc (R64 20-134) treated group.

<table>
<thead>
<tr>
<th></th>
<th>Gastroc (L+R)</th>
<th>Femoris (L+R)</th>
<th>Pecs (L+R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>0.33 ±0.05</td>
<td>0.18 ±0.03</td>
<td>0.31 ±0.05</td>
</tr>
<tr>
<td>ActRIIB-mFc (R64 20-134)</td>
<td>0.44 ±0.08*</td>
<td>0.25 ±0.02*</td>
<td>0.44 ±0.13*</td>
</tr>
</tbody>
</table>

* p < 0.05

In addition to the beneficial effects on fat and muscle that are associated with ActRHB-Fc treatment in these mice, positive effects on serum lipids were observed. Both serum cholesterol and triglyceride levels were markedly reduced, suggesting that ActRIIB-Fc fusion proteins may be used to reduce the levels of these lipids in patients.

Example 9: The Effect of ActRIIB-Fc Protein on Muscle Mass in Cachectic Mice.

Applicants tested the ability of ActRIIB (R64 20-134)-mFc to attenuate muscle loss in a mouse model of glucocorticoid-induced muscle wasting.

Mice were subcutaneously dosed daily for 13 days with either PBS or dexamethasone (2mg/kg) to induce muscle wasting. Over the same 13 days, PBS- and dexamethasone-treated groups received vehicle or ActRIIB (R64 20-134)-mFc (10mg/kg; i.p.; twice/week) such that all combinations of treatments were represented. Mice were NMR scanned at days 0 and 13 to determine changes in lean tissue mass across the groups. NMR results are outlined in Table 6, below.

Table 6: Lean tissue mass of vehicle- and murine ActRIIB (R64 20-134)-Fc -treated mice
NMR scanning showed a significant 2.5% decrease in lean tissue mass in the dexamethasone:PBS group compared to the PBSiPBS cohort. In contrast, the dexamethasone:ActRIIB (R64 20-134)-mFc group exhibited a 13.5% increase in lean tissue mass, a significant increase when compared to both the PBSiPBS and the dexamethasoneiPBS groups. Cachexia is an undesirable side effect for a variety of therapeutic treatments, including chronic glucocorticoid therapy. Therefore it could be of clinical importance that treatment with a human ActRIIB (R64 20-134)-mFc protein can attenuate the muscle wasting associated with cachexia.

Example 10: The Effect of ActRIIB-Fc on Muscle Mass and Obesity in Aged or Ovarectomized Mice

Sarcopenia is a form of muscle loss associated with aging in otherwise healthy humans. The disorder is associated with a progressive loss of skeletal muscle mass and impaired strength and mobility. The causes of sarcopenia are poorly understood. In women, menopause accelerates muscle loss, much as it does with respect to bone loss. Accordingly, ActRIIB (R64, 20-134)-mFc was tested in extremely old (two year old) mice and in ovarectomized mice (a model of the post-menopausal state).

8-week old C57BL/6 female mice were either ovariectomized (OVX) or sham operated then aged out to 16 weeks before the start of the study. At the beginning of the study, sham and OVX mice were each divided into treatment and vehicle groups. All groups were weighed and
dosed weekly with either ActRIIB (R64, 20-134)-mFc or buffer control for 11 weeks. All mice had study days 0 and 83 NMR scans to determine body composition.

At the end of the study, sham PBS mice had lost 4.7% of their original lean mass while the sham treated group increased their lean mass by 21% over the course of the study. OVX controls lost 12.1% (significantly more than sham vehicle) of their lean mass while treated OVX mice gained 12.9% by the end of the study.

These data indicate that ActRIIB-Fc fusion proteins can be used to counteract the muscle loss that is common in post-menopausal women.

To evaluate the effects of ActRIIB-Fc in a naturally senescent population, male C57BL/6 mice were aged to 70 weeks before the beginning of treatment. Mice were divided into 2 groups (PBS and 10mg/kg ActRIIB (R64, 20-134)-mFc. Each group was weighed and dosed 2X/week for 10 weeks. Over the course of the study, the treated groups gained significantly more lean tissue mass than the PBS group.

<table>
<thead>
<tr>
<th>% change lean mass</th>
<th>PBS</th>
<th>10mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (% from baseline)</td>
<td>101.76</td>
<td>117.27</td>
</tr>
<tr>
<td>Std dev</td>
<td>3.83</td>
<td>3.91</td>
</tr>
<tr>
<td>P-value to PBS</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

The treated group also had significantly higher individual muscle weights compared to PBS mice.

<table>
<thead>
<tr>
<th>Muscle weights</th>
<th>Gastoc (L+R)</th>
<th>Femoris (L+R)</th>
<th>Pectoralis (L+R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>0.283±0.07</td>
<td>0.156±0.01</td>
<td>0.241±0.07</td>
</tr>
<tr>
<td>ActRIIB (R64, 20-134)-mFc</td>
<td>0.371±0.03*</td>
<td>0.192±0.021*</td>
<td>0.330±0.05*</td>
</tr>
</tbody>
</table>

Muscle integrity in the treated cohort also appeared to be greater than that of the PBS group, as apparently intramuscular fat was reduced and cytoarchitecture improved. (See Figure 10).

These data demonstrate that ActRHB-Fc fusion proteins may be used to treat muscle wasting associated with old age in men and women.

Example 11: The Effect of ActRIIB-Fc on Muscle Loss Associated with Castration

Prostate cancer is commonly treated with anti-androgen therapy. Side effects of treatment include muscle loss and increased obesity. Castrated mice undergo similar changes,
making this a good model for the study of the potential for ActRIIB-Fc to be used in this clinical setting.

8 week old male C57BL/6 mice were castrated or sham operated then allowed to recover for 3 weeks before the beginning of the study. Sham and castrated groups were further subdivided into PBS and ActRIIB (R64, 20-134)-mFc (10 mg/kg) groups. Mice were weighed and subcutaneously dosed once/week for 12 weeks. Mice were NMR scanned at study days 0 and 83.

Over the course of the study, sham PBS mice gained an average of 9.72% ± 3.67 and sham ActRIIB (R64, 20-134)-mFc mice gained 35.79% ± 3.1 of study day 0 lean tissue mass. Castrate PBS treated mice lost 8.1% ± 4.22 of their day 0 lean tissue mass while treated castrate mice gained 17.77% ± 3.86. Additionally, castration leads to increased adiposity, but ActRIIB (R64, 20-134)-mFc treatment helped to reduce the extent of fat mass gain.

Gastroc and pectoralis muscles from castrated vehicle mice were smaller than sham PBS mice (castrate gastroc: 0.275 ± 0.03g, castrate pecs: 0.196±0.06g; sham gastroc: 0.313±0.02g, sham pecs: 0.254±0.03g). ActRIIB (R64, 20-134)-mFc treatment significantly attenuates this castration-induced decrease in muscle weights (castrate gastroc: 0.421 ± 0.03g, castrate pecs: 0.296±0.06g).

Example 12: Effects of ActRIIB-Fc on Cancer Cachexia

Many tumors are associated with loss of appetite and severe muscle loss. Patients exhibiting cachexia have a poorer prognosis than non-cachectic patients. The colon cancer cell line CT26 induces profound cachexia in mice. ActRIIB(R64 20-134) was tested in this model for effects on xenograft-induced cachexia.

Six groups of mice were used in the experiment, as follows:

<table>
<thead>
<tr>
<th>Group</th>
<th>Tumors</th>
<th>Treatment</th>
<th>Dose</th>
<th>Paradigm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>VEH</td>
<td>v/v</td>
<td>Therapeutic</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>ActRIIB-Fc</td>
<td>10 mg/kg</td>
<td>Therapeutic</td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
<td>VEH</td>
<td>v/v</td>
<td>Therapeutic</td>
</tr>
<tr>
<td>4</td>
<td>Y</td>
<td>ActRIIB-Fc</td>
<td>10 mg/kg</td>
<td>Therapeutic</td>
</tr>
<tr>
<td>5</td>
<td>Y</td>
<td>ActRIIB-Fc</td>
<td>30 mg/kg</td>
<td>Therapeutic</td>
</tr>
</tbody>
</table>
Groups 3-6 received \(5 \times 10^6\) tumor cells subcutaneously. Group 6 began treatment immediately with ActRIIB-Fc twice per week. Groups 1-5 began dosing on study day 28 when tumors reached a size of 300-500 mm\(^3\). As shown in Figure 11, ActRIIB-Fc markedly decreased the muscle loss associated with CT26 tumors, both in mice with established tumors and when used in a preventative model prior to tumor introduction.

Example 13: The Effect of ActRIIB-Fc Variants on Muscle Mass in Wild-Type Mice.

This study showed the effects of the following ActRIIB-related Fc constructs on muscle mass and other tissues in 6 week old C57BL/6 male mice. Mice were weighed and injected intraperitoneally, biweekly with either PBS, or an ActRIIB-related Fc constructs (10 mg/kg):

- ActRIIB (R64 20-134)-Fc
- ActRIIB (L79D 20-134)-Fc
- ActRIIB (L79E 20-134)-Fc
- ActRIIB (A24N 20-134)-Fc
- ActRIIB (R64K 20-134)-Fc

The mice were NMR scanned at the beginning, the middle and the end of the study. The femoris, pectoralis and gastrocnemius muscles and the liver, kidneys, and spleen were weighed and saved in formalin.

An initial analysis of the data indicates that ActRIIB (R64 20-134)-Fc causes the greatest increase in muscle mass and lean body mass, while also having the greatest effect on other tissues. The L79D and L79E variants increase muscle mass to a lesser degree, while having little effect on other tissues. The A24N and R64K constructs have an intermediate effect on muscle and other tissues. These data confirm that variants of ActRIIB with diminished activin binding have desirable properties, particularly a selective effect on muscle tissue.

INCORPORATION BY REFERENCE
All publications and patents mentioned herein are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference.

While specific embodiments of the subject matter have been discussed, the above specification is illustrative and not restrictive. Many variations will become apparent to those skilled in the art upon review of this specification and the claims below. The full scope of the invention should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.
We Claim:

1. A variant ActRIIB protein comprising an amino acid sequence that is at least 80% identical to the sequence of amino acids 29-109 of SEQ ID NO: 2, and wherein the protein comprises at least one N-X-S/T sequence at a position other than an endogenous N-X-S/T sequence of ActRIIB, and at a position outside of the ligand binding pocket.

2. The variant ActRIIB protein of claim 1, wherein the protein comprises an N at the position corresponding to position 24 of SEQ ID NO: 2 and an S or T at the position corresponding to position 26 of SEQ ID NO: 2, and wherein the variant ActRIIB protein inhibits signaling by activin, myostatin and/or GDF11 in a cell-based assay.

3. The variant ActRIIB protein of claim 2, wherein the protein comprises an R or K at the position corresponding to position 64 of SEQ ID NO: 2.

4. The variant ActRIIB protein of claim 2, wherein at least one alteration with respect to the sequence of SEQ ID NO: 2 is a conservative alteration positioned within the ligand binding pocket.

5. The variant ActRIIB protein of claim 2, wherein at least one alteration with respect to the sequence of SEQ ID NO: 2 is an alteration at one or more positions selected from the group consisting of K74, R40, Q53, K55, F82 and L79.

6. The variant ActRIIB protein of claim 2, wherein the protein comprises an amino acid sequence beginning at an amino acid corresponding to any of amino acids 22-24 of SEQ ID NO: 2 at ending at an amino acid corresponding to any of amino acids 133 or 134 of SEQ ID NO: 2.

7. The variant ActRIIB protein of any of claims 1-6, wherein the protein is a fusion protein further comprising a heterologous portion.

8. The variant ActRIIB fusion protein of claim 7, wherein the protein is a homodimer.

9. The variant of ActRIIB fusion protein of claim 7, wherein the heterologous portion comprises a constant region from an IgG heavy chain.

10. A variant ActRIIB protein comprising an amino acid sequence that is at least 80% identical to the sequence of amino acids 29-109 of SEQ ID NO: 2, and wherein the protein comprises an acidic amino acid at the position corresponding to position 79.
of SEQ ID NO:2, and wherein the variant ActRIIB protein inhibits signaling by myostatin and/or GDF11 in a cell-based assay.

11. The variant of claim 10, wherein the protein comprises at least one N-X-S/T sequence at a position other than an endogenous N-X-S/T sequence of ActRIIB, and at a position outside of the ligand binding pocket.

12. The variant ActRIIB protein of claim 11, wherein the protein comprises an N at the position corresponding to position 24 of SEQ ID NO:2 and an S or T at the position corresponding to position 26 of SEQ ID NO:2.

13. The variant ActRIIB protein of claim 10, wherein the protein comprises an R or K at the position corresponding to position 64 of SEQ ID NO:2.

14. The variant ActRIIB protein of claim 10, wherein at least one alteration with respect to the sequence of SEQ ID NO:2 is a conservative alteration positioned within the ligand binding pocket.

15. The variant ActRIIB protein of claim 10, wherein at least one alteration with respect to the sequence of SEQ ID NO:2 is an alteration at one or more positions selected from the group consisting of K74, R40, Q53, K55, F82 and L79.

16. The variant ActRIIB protein of claim 10, wherein the protein comprises an amino acid sequence beginning at an amino acid corresponding to any of amino acids 22-24 of SEQ ID NO:2 at ending at an amino acid corresponding to any of amino 133 or 134 of SEQ ID NO:2.

17. The variant ActRIIB protein of any of claims 10-16, wherein the protein is a fusion protein further comprising a heterologous portion.

18. The variant ActRIIB fusion protein of claim 17, wherein the protein is a homodimer.

19. The variant of ActRIIB fusion protein of claim 17, wherein the heterologous portion comprises a constant region from an IgG heavy chain.

20. A variant ActRIIB protein comprising an amino acid sequence that is at least 80% identical to the sequence of amino acids 29-109 of SEQ ID NO:2, and wherein the protein comprises at least one N-X-S/T sequence at a position other than an endogenous N-X-S/T sequence of ActRIIB, and at a position outside of the ligand binding pocket.
21. The variant ActRIIB protein of claim 20, wherein the protein comprises an N at the position corresponding to position 24 of SEQ ID NO:2 and an S or T at the position corresponding to position 26 of SEQ ID NO:2, and wherein the variant ActRIIB protein inhibits signaling by activin, myostatin and/or GDF1 1 in a cell-based assay.

22. The variant ActRIIB protein of claim 21, wherein the protein comprises an R or K at the position corresponding to position 64 of SEQ ID NO:2.

23. The variant ActRIIB protein of claim 21, wherein at least one alteration with respect to the sequence of SEQ ID NO:2 is a conservative alteration positioned within the ligand binding pocket.

24. The variant ActRIIB protein of claim 21, wherein at least one alteration with respect to the sequence of SEQ ID NO:2 is an alteration at one or more positions selected from the group consisting of K74, R40, Q53, K55, F82 and L79.

25. The variant ActRIIB protein of claim 21, wherein the protein comprises an amino acid sequence beginning at an amino acid corresponding to any of amino acids 22-24 of SEQ ID NO:2 at ending at an amino acid corresponding to any of amino acids 133 or 134 of SEQ ID NO:2.

26. The variant ActRIIB protein of any of claims 20-25, wherein the protein is a fusion protein further comprising a heterologous portion.

27. The variant ActRIIB fusion protein of claim 26, wherein the protein is a homodimer.

28. The variant of ActRIIB fusion protein of claim 27, wherein the heterologous portion comprises a constant region from an IgG heavy chain.

29. An ActRIIB fusion protein comprising a portion derived from the ActRIIB sequence of SEQ ID NO:2 and a second polypeptide portion, wherein the portion derived from SEQ ID NO:2 corresponds to a sequence beginning at any of amino acids 22-24 of SEQ ID NO:2 and ending at any of amino acids 133 or 134 of SEQ ID NO:2, and wherein the ActRIIB fusion protein differs at no more than five additional amino acid positions from the sequence of SEQ ID NO:2, and wherein the ActRIIB protein inhibits signaling by myostatin and/or GDF1 1 in a cell-based assay.

30. The variant of claim 29, wherein the protein comprises at least one N-X-S/T sequence at a position other than an endogenous N-X-S/T sequence of ActRIIB, and at a position outside of the ligand binding pocket.
31. The variant ActRIIB protein of claim 30, wherein the protein comprises an N at the position corresponding to position 24 of SEQ ID NO:2 and an S or T at the position corresponding to position 26 of SEQ ID NO:2.

32. The variant ActRIIB protein of claim 29, wherein the protein comprises an R or K at the position corresponding to position 64 of SEQ ID NO:2.

33. The variant ActRIIB protein of claim 29, wherein at least one alteration with respect to the sequence of SEQ ID NO:2 is a conservative alteration positioned within the ligand binding pocket.

34. The variant ActRIIB protein of claim 29, wherein at least one alteration with respect to the sequence of SEQ ID NO:2 is an alteration at one or more positions selected from the group consisting of K74, R40, Q53, K55, F82 and L79.

35. The variant ActRIIB protein of any of claims 29-34, wherein the protein is a fusion protein further comprising a heterologous portion.

36. The variant ActRIIB fusion protein of claim 35, wherein the protein is a homodimer.

37. The variant of ActRIIB fusion protein of claim 35, wherein the heterologous portion comprises a constant region from an IgG heavy chain.

38. A variant ActRIIB fusion protein comprising a portion derived from the ActRIIB sequence of SEQ ID NO:2 and a second polypeptide portion, wherein the portion derived from SEQ ED NO:2 corresponds to a sequence beginning at any of amino acids 20-29 of SEQ ID NO:2 and ending at any of amino acids 109-134 of SEQ ID NO:2, and wherein the ActRIIB fusion protein has an arginine (R), lysine (K) or histidine (H) at position 64 of SEQ ID NO:2 and inhibits signaling by activin, myostatin and/or GDF11 in a cell-based assay.

39. The variant ActRIIB fusion protein of claim 38, wherein the portion derived from SEQ ID NO:2 corresponds to a sequence beginning at any of amino acids 21-29 of SEQ ID NO:2 and ending at any of amino acids 118-134 of SEQ ID NO:4.

40. The variant ActRIIB fusion protein of claim 38, wherein the portion derived from SEQ ID NO:2 corresponds to a sequence beginning at any of amino acids 21-29 of SEQ ID NO:2 and ending at any of amino acids 128-134 of SEQ ID NO:2.
41. The variant ActRHB fusion protein of claim 38, wherein the portion derived from SEQ ID NO:2 corresponds to a sequence beginning at any of amino acids 21-24 of SEQ ID NO:2 and ending at any of amino acids 109-134 of SEQ ID NO:2.

42. The variant ActRIIB fusion protein of claim 38, wherein the portion derived from SEQ ID NO:2 corresponds to a sequence beginning at any of amino acids 21-24 of SEQ ID NO:2 and ending at any of amino acids 118-134 of SEQ ID NO:2.

43. The variant ActRIIB fusion protein of claim 38, wherein the portion derived from SEQ ID NO:2 corresponds to a sequence beginning at any of amino acids 21-24 of SEQ ID NO:2 and ending at any of amino acids 128-134 of SEQ ID NO:2.

44. The variant ActRIIB fusion protein of claim 38, further comprising one or more modifications relative to the sequence of SEQ ID NO:2 that confer a property selected from the group consisting of: (a) a greater inhibition of GDF1 1 or GDF8 signaling relative to the inhibition of activin signaling; (b) an increased serum half-life; and (c) both (a) and (b).

45. A variant ActRIIB fusion protein comprising a portion derived from the ActRIIB sequence of SEQ ID NO:2 and a second polypeptide portion, wherein the portion derived from SEQ ID NO:2 corresponds to a sequence beginning at any of amino acids 20-29 of SEQ ID NO:2 and ending at any of amino acids 109-133 of SEQ ID NO:2, and wherein the ActRIIB fusion protein has an arginine (R), lysine (K) or histidine (H) at position 64 of SEQ ID NO:2 and inhibits signaling by activin, myostatin and/or GDF1 1 in a cell-based assay.

46. The variant ActRIIB fusion protein of claim 45, wherein the portion derived from SEQ ID NO:2 corresponds to a sequence beginning at any of amino acids 20-29 of SEQ ID NO:2 and ending at any of amino acids 118-133 of SEQ ID NO:2.

47. The variant ActRIIB fusion protein of claim 45, wherein the portion derived from SEQ ID NO:2 corresponds to a sequence beginning at any of amino acids 20-29 of SEQ ID NO:2 and ending at any of amino acids 128-133 of SEQ ID NO:2.

48. The variant ActRIIB fusion protein of claim 45, wherein the portion derived from SEQ ID NO:2 corresponds to a sequence beginning at any of amino acids 20-24 of SEQ ID NO:2 and ending at any of amino acids 109-133 of SEQ ID NO:2.
49. The variant ActRIIB fusion protein of claim 45, wherein the portion derived from SEQ ID NO:2 corresponds to a sequence beginning at any of amino acids 20-24 of SEQ ID NO:2 and ending at any of amino acids 118-133 of SEQ ID NO:2.

50. The variant ActRIIB fusion protein of claim 45, wherein the portion derived from SEQ ID NO:2 corresponds to a sequence beginning at any of amino acids 20-24 of SEQ ID NO:2 and ending at any of amino acids 128-133 of SEQ ID NO:2.

51. The variant ActRIIB fusion protein of claim 45, further comprising one or more modifications relative to the sequence of SEQ ID NO:2 that confer a property selected from the group consisting of: (a) a greater inhibition of GDF11 or GDF8 signaling relative to the inhibition of activin signaling; (b) an increased serum half-life; and (c) both (a) and (b).

52. The variant ActRIIB fusion protein of any of claims 38-51, wherein the protein is a homodimer.

53. The variant of ActRIIB fusion protein of any of claims 38-51, wherein the heterologous portion comprises a constant region from an IgG heavy chain.

54. The variant ActRIIB fusion protein of claim 53 wherein the heterologous portion is an Fc domain.

55. A variant ActRIIB protein comprising an amino acid sequence that is at least 80% identical but not 100% identical to the sequence of amino acids 29-109 of SEQ ID NO: 2, wherein the position corresponding to 64 of SEQ ID NO:4 is a K, and wherein the variant ActRIIB protein inhibits signaling by activin, myostatin and/or GDF11 in a cell-based assay.

56. The variant ActRIIB protein of claim 55, wherein at least one alteration with respect to the sequence of SEQ ID NO:2 is positioned outside of the ligand binding pocket.

57. The variant ActRIIB protein of claim 55, wherein at least one alteration with respect to the sequence of SEQ ID NO:2 is a conservative alteration positioned within the ligand binding pocket.

58. The variant ActRIIB protein of claim 55, wherein at least one alteration with respect to the sequence of SEQ ID NO:2 is an alteration at one or more positions selected from the group consisting of K74, R40, Q53, K55, F82 and L79.
59. The variant ActRIIB protein of claim 55, wherein the protein comprises at least one N-X-S/T sequence at a position other than an endogenous N-X-S/T sequence of SEQ ID NO:2, and at a position outside of the ligand binding pocket.

60. The variant ActRIIB protein of claim 55, wherein the protein comprises one or more modifications relative to the sequence of SEQ ID NO:2 that confer a property selected from the group consisting of: (a) a greater inhibition of GDF11 or GDF8 signaling relative to the inhibition of activin signaling; (b) an increased serum half-life; and (c) both (a) and (b).

61. A pharmaceutical preparation comprising the proteins of any of claims 1-60.

62. A method for treating a subject having a disorder associated with muscle loss or insufficient muscle growth, comprising administering to the subject an effective amount of a pharmaceutical preparation of claim 61.

63. The method of claim 62, wherein the subject has muscle atrophy.

64. The method of claim 62, wherein the subject has a muscular dystrophy.

65. The method of claim 64, wherein the muscular dystrophy is Duchenne Muscular Dystrophy.

66. The method of claim 64, wherein the subject is a juvenile and treatment begins within one to five years of the date of diagnosis with Duchenne Muscular Dystrophy.

67. The method of claim 62, wherein the muscular dystrophy is FSH muscular dystrophy.

68. The method of claim 62, wherein the subject has ALS.

69. The method of claim 68, wherein the subject receives treatment after diagnosis with ALS.

70. The method of claim 62, wherein the disorder is cachexia associated with cancer or cancer therapy.

71. The method of claim 70, wherein the disorder is muscle loss associated with prostate cancer therapy.

72. The method of claim 70, wherein the disorder is muscle loss associated with a tumor.

73. The method of claim 72, wherein the tumor is a colon cancer tumor.
74. A method for treating a subject having a disorder associated with neurodegeneration, comprising administering to the subject an effective amount of a pharmaceutical preparation of claim 61.

75. The method of claim 74, wherein the disorder is Amyotrophic Lateral Sclerosis.

76. A method for decreasing the body fat content or reducing the rate of increase in body fat content in a subject, comprising administering to a subject an effective amount of a pharmaceutical preparation of claim 61.

77. A method for treating a disorder associated with undesirable body weight gain in a subject, comprising administering to a subject an effective amount of a pharmaceutical preparation of claim 61.

78. The method of claim 77, wherein said disorder is selected from the group consisting of obesity, severe or morbid obesity, non-insulin dependent diabetes mellitus (NIDDM), cardiovascular disease, cancer, hypertension, osteoarthritis, stroke, respiratory problems, and gall bladder disease.

79. A method for reducing cholesterol and/or triglycerides, comprising administering to a subject an effective amount of a pharmaceutical preparation of claim 61.

80. A method for treating sarcopenia, comprising administering to a subject an effective amount of a pharmaceutical preparation of claim 61.

81. An ActRIIB-Fc protein comprising the amino acid sequence of SEQ ID NO:5.

82. The ActRIIB-Fc protein of claim 81, wherein the protein has an N at the position corresponding to position 5 of SEQ ID NO:5.

83. The ActRIIB-Fc protein of claim 81, wherein the protein has a D or an E at the position corresponding to position 60 of SEQ ID NO:5.

84. The ActRIIB-Fc protein of claim 82, wherein the protein has a D or an E at the position corresponding to position 60 of SEQ ID NO:5.

85. The ActRIIB-Fc protein of claim 81, wherein the protein is a dimer.

86. The ActRHB-Fc protein of claim 82, wherein the protein is a dimer.

87. The ActRIIB-Fc protein of claim 83, wherein the protein is a dimer.

88. The ActRIIB-Fc protein of claim 84, wherein the protein is a dimer.
89. A pharmaceutical preparation comprising the proteins of any of claims 81-88.

90. A method for treating a subject having a disorder associated with muscle loss or insufficient muscle growth, comprising administering to the subject an effective amount of a pharmaceutical preparation of claim 89.

91. The method of claim 90, wherein the subject has muscle atrophy.

92. The method of claim 90, wherein the subject has a muscular dystrophy.

93. The method of claim 92, wherein the muscular dystrophy is Duchenne Muscular Dystrophy.

94. The method of claim 93, wherein the subject is a juvenile and treatment begins within one to five years of the date of diagnosis with Duchenne Muscular Dystrophy.

95. The method of claim 92, wherein the muscular dystrophy is FSH muscular dystrophy.

96. The method of claim 90, wherein the subject has ALS.

97. The method of claim 96, wherein the subject receives treatment after diagnosis with ALS.

98. The method of claim 90, wherein the disorder is cachexia associated with cancer or cancer therapy.

99. The method of claim 98, wherein the disorder is muscle loss associated with prostate cancer therapy.

100. The method of claim 98, wherein the disorder is muscle loss associated with a tumor.

101. The method of claim 100, wherein the tumor is a colon cancer tumor.

102. A method for treating a subject having a disorder associated with neurodegeneration, comprising administering to the subject an effective amount of a pharmaceutical preparation of claim 89.

103. The method of claim 102, wherein the disorder is Amyotrophic Lateral Sclerosis.

104. A method for decreasing the body fat content or reducing the rate of increase in body fat content in a subject, comprising administering to a subject an effective amount of a pharmaceutical preparation of claim 89.
105. A method for treating a disorder associated with undesirable body weight gain in a subject, comprising administering to a subject an effective amount of a pharmaceutical preparation of claim 104.

106. The method of claim 105, wherein said disorder is selected from the group consisting of obesity, severe or morbid obesity, non-insulin dependent diabetes mellitus (NIDDM), cardiovascular disease, cancer, hypertension, osteoarthritis, stroke, respiratory problems, and gall bladder disease.

107. A method for reducing cholesterol and/or triglycerides, comprising administering to a subject an effective amount of a pharmaceutical preparation of claim 89.

108. A method for treating sarcopenia, comprising administering to a subject an effective amount of a pharmaceutical preparation of claim 107.

109. Use of a pharmaceutical preparation of claim 61 or 89 for the manufacture of a medicament for the treatment of a disorder associated with muscle loss or insufficient muscle growth.

110. A pharmaceutical preparation of claim 61 or 89 for the use in the treatment of a disorder associated with muscle loss or insufficient muscle growth.

111. Use of a pharmaceutical preparation of claim 61 or 89 for the manufacture of a medicament for the treatment of a disorder associated with neurodegeneration.

112. A pharmaceutical preparation of claim 61 or 89 for the use in the treatment of a disorder associated with neurodegeneration.

113. Use of a pharmaceutical preparation of claim 61 or 89 for the manufacture of a medicament for decreasing the body fat content or reducing the rate of increase in body fat content in a subject.

114. A pharmaceutical preparation of claim 61 or 89 for the use in decreasing the body fat content or reducing the rate of increase in body fat content in a subject.

115. Use of a pharmaceutical preparation of claim 61 or 89 for the manufacture of a medicament for the treatment of a disorder associated with undesirable body weight gain in a subject.

117. Use of a pharmaceutical preparation of claim 61 or 89 for the manufacture of a medicament for reducing cholesterol and/or triglycerides.

118. A pharmaceutical preparation of claim 61 or 89 for the use in reducing cholesterol and/or triglycerides.

119. Use of a pharmaceutical preparation of claim 61 or 89 for the manufacture of a medicament for the treatment of sarcopenia.

120. A pharmaceutical preparation of claim 61 or 89 for the use in treating sarcopenia.
Human ActRIIB soluble (extracellular) polypeptide sequence designated as SEQ ID NO: 1 (116 aa).

SGRGEAETRECYYNYANWELEERTNQGLERCEGEQDKRLHCYASWRNSSGTIELVKKGC
WLDDFNCYDRQECVATEENPQVFYCCGCEGNFCNERFTHLPEAGGPEVETYEPPTAPT

Figure 1
Human ActRIIB precursor sequence designated as SEQ ID NO: 2 (NM_001106, 512 aa).

MTAPWVALALLWGLWPGSGRGEAETREC1YYANWELERT[NQSLERCEGEQDKRLHC

YASWRN[SSGTIELVKKGCWLDFFNCYDRCVATEEINPQVYFCCEGNCNERFTHL

PE

AGGPEVTYEPPTAPTLTTVLAYSLLPIGGGLSLIVLLLAFWMYRHRKPPYGHSVHDEDPG

PPPPSLVGLKPLQQLBEIKARGRGFCVWKAQLMNDVAVKIFPLQDKQSWQSEREIFST

PGMKHENLQLQPFAAAEKRGSNLEVELWLITAFHDKGLSTYDYLKGNIIITWNELCHVAETMS

RGLSYLHEDVPWCRGEGHKPSIAHRDFKSKNVLLKSDLTAVLADFGLAVRFEPGKPPGD

THQVGVTRRYMAPEVLEGAINFQRAFLRIDMYAMGLVLWELVSRCKAADGPVDEYM

LP

FEDIGQHPSLEELQEVVVHKKMRPTIKDHWLKHPGLAQLCVTIEECWDHDAEARLSAG

CVEBRVSILRRSVNGTTSDCLVSLVTSVTVNVLPPKESSI

Figure 2
Nucleic acid sequence encoding a human ActRIIB soluble (extracellular) polypeptide, designated as SEQ ID NO: 3 (348 bp).

tctgggcgttgggaggtgagacacgagggagtctactactacaacgccaactgggagctgagcgcaacc
aaccagagcgcctggagcgtgcgaagggagcagagggcaggtgcagtgcagccttcctgggcaac
aacagctctggcaccatcgacgtcggctgaaggggtggtgctgtagatgacttcaactgctacgatagg
ccggagtgtgtgcccactgaggagaacccccaggtgtaacttctctgtctgtgaagggcaacttctgcaac
gagcgcttcactcatttgccagaggcttggggccccggaagtccagtacgcagccacccccggacagcccc
acc

Figure 3
Nucleic acid sequence encoding a human ActRIIB precursor protein, designated as SEQ ID NO: 4 (nucleotides 5-1543 of NM_001106, 1539 bp).

atgacgagccctgggcttggtgcccctgcctctctctggtggtcgtgcgctcgcctgcctctgtgggatcgcctgtgtggccctccttctggttttctggtttttttgtgtggtgtgtttgtggtttttttttgtggtt
Figure 6
Figure 7
Figure 8
Figure 9
Mean Bodyweights CT26 Implanted BALB/c Male Mice

Figure 11
Figure 12
Figure 13