International Application Published Under the Patent Cooperation Treaty (PCT)

World Intellectual Property Organization
International Bureau

International Publication Date

International Publication Number
WO 2008/088563 A2

International Patent Classification:
C07F 17/00 (2006.01)

International Application Number:
PCT/US2007/063831

International Filing Date:
12 March 2007 (12.03.2007)

Filing Language:
English

Publication Language:
English

Priority Data:
60/885,404 17 January 2007 (17.01.2007) US

Applicant (for all designated States except US):
ADVANCED TECHNOLOGY MATERIALS, INC.; 7 Commerce Drive, Danbury, CT 06810-4169 (US).

Inventors; and

Inventors/Applicants (for US only):

Title: PRECURSOR COMPOSITIONS FOR ALD/CVD OF GROUP II RUTHENATE THIN FILMS

Abstract:
Precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of strontium ruthenium oxide (SrRuO_x) thin films, e.g., in the manufacture of microelectronic devices, as well as processes of making and using such precursors, and precursor supply systems containing such precursor compositions in packaged form. Cyclopentadienyl compounds of varied type are described, including cyclopentadienyl as well as cyclooctatetraenyl ligands coordinated to ruthenium, strontium or barium central atoms. The precursors of the invention are useful for forming contacts for microelectronic memory device structures, and in a specific aspect for selectively coating copper metallization without deposition on associated dielectric, under deposition conditions in a forming gas ambient.

[Continued on next page]
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). Published: — without international search report and to be republished upon receipt of that report.
PRECURSOR COMPOSITIONS FOR ALD/CVD OF GROUP II RUTHENATE THIN FILMS

FIELD OF THE INVENTION

[0001] The present invention relates to Group II ruthenate precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of ruthenium and ruthenium-containing thin films, e.g., strontium ruthenium oxide (SrRuO$_3$) thin films. Such Group II ruthenates are useful in the manufacture of microelectronic devices. The invention also relates to processes of making and using such precursors, to products formed using such precursor compositions, and to precursor supply systems comprising such precursor compositions in packaged form.

DESCRIPTION OF THE RELATED ART

[0002] Among the Group II ruthenates, strontium ruthenium oxide (SrRuO$_3$, or SRO) thin films are potentially attractive as conductive electrode materials for memory applications. Related materials that are candidates for construction of electrodes include other Group II ruthenates, e.g., such as CaRuO$_3$ (CRO).

[0003] Uniform conformal coating involving greater than 90% step coverage on high aspect ratio structures is required for such ruthenates in memory device applications, e.g., in non-volatile ferroelectronic memories and DRAMs.

[0004] Atomic layer deposition (ALD) is currently being explored as a technique for achieving such coverage. It is difficult, however, to achieve satisfactory uniform coating of strontium ruthenium oxide thin films using the precursors that have been developed to date. Similar deficiencies are encountered when chemical vapor deposition (CVD) is used as a deposition technique to form such ruthenate films.

[0005] In addition to the foregoing problem of lack of conformality of the thin-film deposited on the substrate, deposition of conformal Ru materials using ALD/CVD techniques requires monomeric metal precursors that are transportable (volatile) at temperatures specific to the specific ALD/CVD process. It also has been difficult when using prior art precursors to achieve uniform distribution of ruthenium within the deposited ruthenate film.

[0006] Additional difficulties involving use of ruthenium precursors relate to process condition requirements. Ruthenium may deposit efficiently on a certain surfaces but not others.
depending on the gas environment of the deposition process, and in some gas environments, ruthenium deposition rate is negligible on all surfaces. The ambient gas environment of the deposition operation therefore has a highly significant role in determining the viability of a specific precursor for effective use.

In consequence, the art continues to seek new precursors and process conditions for deposition of Group II ruthenate thin films, e.g., films of strontium ruthenium oxide, calcium ruthenium oxide and barium ruthenium oxide.

SUMMARY OF THE INVENTION

The present invention relates to precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of Group II ruthenates, such as strontium ruthenium oxide (SrRuO$_3$, or SRO), calcium ruthenium oxide (CRO) and barium ruthenium oxide (BRO) thin films. The invention also contemplates methods of making and using such precursors, and microelectronic devices including Group II ruthenate films as deposited from such precursors, and packages containing such precursor compositions for supply to a deposition installation.

In one aspect, the invention relates to a ruthenium precursor useful for atomic layer deposition and/or chemical vapor deposition, comprising a ruthenium central atom to which is coordinated at least one cyclopentadienyl ligand, wherein the cyclopentadienyl moiety has the formula

$$\text{R}_1 \text{R}_2 \text{NRR}_3,$$

wherein each of $\text{R}_1, \text{R}_2, \text{R}_3, \text{R}_4$ and R_5 can be the same as or different from the others, and each is independently selected from among hydrogen, C_1C_2 alkyl, C_1C_2 alkylamino (including monoalkylamino as well as dialkylamino substituent species in such term), C_3C_8 cycloalkyl, C_6C_12 aryl, C_5C_12 heteroaryl, C_1C_{12} alkoxy, C_3C_6 alkylsilyl, C_2C_{12} alkenyl, $\text{R}_1\text{R}_2\text{NNR}_3$, wherein R_1, R_2 and R_3 may be the same as or different from one another and each is independently
selected from hydrogen and \(\text{Ci-C}_6 \) alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, aryloxyalkyl, imidoalkyl, and acetylalkyl, having the following formulae:

\[
\begin{align*}
R_1 & \quad \text{n} \quad (\text{C})_m \quad R_3 \\
R_2 & \quad \text{N} \quad \text{R}_5 \\
\text{C}_n \quad \text{R}_4 \\
\end{align*}
\]

aminoalkyls

wherein: the methylene (-CH\(_2\)) moiety could alternatively be another divalent hydrocarbyl moiety; each of \(\text{R}_i-\text{R}_j \) is the same as or different from one another, with each being independently selected from among hydrogen, \(\text{Ci-C}_6 \) alkyl and \(\text{C}_6-\text{C}_0 \) aryl; each of \(\text{R}_5 \) and \(\text{R}_6 \) is the same as or different from the other, with each being independently selected from among hydrogen, \(\text{Ci-C}_6 \) alkyl; \(n \) and \(m \) are each selected independently as having a value of from 0 to 4, with the proviso that \(m \) and \(n \) cannot be 0 at the same time, and \(x \) is selected from 1 to 5;

\[
\begin{align*}
R_1 & \quad \text{n} \quad (\text{C})_m \quad R_3 \\
R_2 & \quad \text{O} \quad \text{R}_5 \\
\text{C}_n \quad \text{R}_4 \\
\end{align*}
\]

alkoxyalkyls and aryloxyalkyls

wherein each of \(\text{R}_i-\text{R}_j \) is the same as or different from one another, with each being independently selected from among hydrogen, \(\text{Ci-C}_6 \) alkyl, and \(\text{C}_6-\text{C}_0 \) aryl; \(R_5 \) is selected from among hydrogen, \(\text{Ci-C}_6 \) alkyl, and \(\text{C}_6-\text{C}_0 \) aryl; and \(n \) and \(m \) are selected independently as having a value of from 0 to 4, with the proviso that \(m \) and \(n \) cannot be 0 at the same time;
imidoalkyl

wherein each of R_1, R_2, R_3, R_4, R_5 is the same as or different from one another, with each being independently selected from among hydrogen, Ci-C_6 alkyl, and C_6-Ci aryl; each of R_1', R_2' is the same as or different from one another, with each being independently selected from hydrogen, Ci-C_6 alkyl, and C_6-Ci aryl; and n and m are selected independently from 0 to 4, with the proviso that m and n cannot be 0 at the same time;

acetylalkyls

wherein each of R_i-R_4 is the same as or different from one another, with each being independently selected from among hydrogen, Ci-C_6 alkyl, and C_6-Ci aryl; R_5 is selected from among hydrogen, hydroxyl, acetoxy, Ci-C_6 alkyl, Ci-Ci_2 alkylamino, C_6-Ci aryl, and C_1-C_5
alkoxy; and n and m are selected independently from 0 to 4, with the proviso that m and n cannot be 0 at the same time.

[0010] Another aspect of the invention relates to a ruthenium compound containing at least one cyclopentadienyl ligand, and at least one further ligand selected from among amidinate, guanidinate, beta-diketonate, beta-diketoiminate, isoureate, and beta-diketiminate ligands.

[0011] In a further aspect, the invention relates to a mixed ligand monomeric Cp complex of ruthenium (II) in which the non-Cp ligand is selected from among amidinate, guanidinate, beta-diketiminate, and related nitrogen-based ligands.

[0012] Yet another aspect of the invention relates to a method of making a mixed ligand monomeric Cp complex of ruthenium (II) according to the invention, such method comprising reacting a cyclopentadienyl ruthenium halide or alkoxide with a lithium salt of a corresponding amidinates, guanidinates, beta-diketiminates, or related nitrogen-based ligand.

[0013] The invention in another aspect relates to a mixed ligand monomeric Cp complex of ruthenium, strontium, calcium or barium, selected from among:

(A) ruthenium compounds selected from among the following compounds (1)-(5):

(1) ruthenium beta-diketiminate compounds of the formula

![Chemical structure](image)

wherein each of R₁, R₂, R₃, R₄ and R₅ is as described in paragraph [0009] hereof, and each of R₆, R₇, and R₈ can be the same as or different from the others, and is independently selected from hydrogen, Ci-C₆ alkyl, C₆-Ci₀ aryl, Ci-C₆ alkylamine, silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., Ci-C₆ alkyl, such as trimethylsilyl;
(2) ruthenium beta-diketoiminate compounds of the formula

![Diagram of ruthenium beta-diketoiminate compound]

wherein each of Ri, R2, R3, R4, and R5 is as described in paragraph [0009] hereof, and each of R6, R7, and R8 can be the same as or different from the others, and is independently selected from hydrogen, Ci-C6 alkyl, C6-Ci0 aryl, Ci-C6 alkylamine, silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., Ci-C6 alkyl, such as trimethylsilyl;

(3) ruthenium acetylacetonate compounds of the formula

![Diagram of ruthenium acetylacetonate compound]
wherein each of \(R_1, R_2, R_3, R_4 \) and \(R_5 \) is as described in paragraph [0009] hereof, and each of \(R_6, R_7 \) can be the same as or different from the other, and is independently selected from hydrogen, \(\text{Ci-C}_6 \) alkyl, \(\text{C}_6\text{-Cl}_0 \) aryl, \(\text{Ci-C}_6 \) alkylamine, silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., \(\text{Ci-C}_6 \) alkyl, such as trimethylsilyl;

(4) ruthenium amidinate compounds of the formula:

![Diagram](image)

wherein each of \(R_1, R_2, R_3, R_4 \) and \(R_5 \) is as described in paragraph [0009] hereof, and each of \(R_6, R_7, R_8 \) can be the same as or different from the others, and is independently selected from hydrogen, \(\text{Ci-C}_5 \) alkyl, \(\text{C}_6\text{-Cl}_0 \) aryl, \(\text{C}_3-\text{C}_9 \) cycloalkyl, silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., \(\text{Ci-C}_6 \) alkyl, such as trimethylsilyl;

(5) ruthenium guanidinate compounds of the formula:

![Diagram](image)
wherein each of \(R_1, R_2, R_3, R_4 \) and \(R_5 \) is as described in paragraph [0009] hereof, and each of \(R_6, R_7, R_8 \) and \(R_9 \) can be the same as or different from the others, and is independently selected from hydrogen, \(C_1-C_5 \) alkyl, \(C_6-C_{10} \) aryl, \(C_3-C_9 \) cycloalkyl silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., \(C_1-C_6 \) alkyl, such as trimethylsilyl;

6) ruthenium isoureate compounds of the formula

![Formula Image]

wherein each of \(R_1, R_2, R_3, R_4 \) and \(R_5 \) is as described in paragraph [0009] hereof, and each of \(R_6, R_7 \) and \(R_8 \) can be the same as or different from the others, and is independently selected from hydrogen, \(C_1-C_5 \) alkyl, \(C_6-C_{10} \) aryl, \(C_3-C_9 \) cycloalkyl silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., \(C_1-C_6 \) alkyl, such as trimethylsilyl;

(B) strontium compounds selected from among compounds having the same formulae as ruthenium compounds (A)(I)-(6), having strontium as a central atom in place of ruthenium;

(C) calcium compounds selected from among compounds having the same formulae as ruthenium compounds (A)(I)-(6), having calcium as a central atom in place of ruthenium; and

(D) barium compounds selected from among compounds having the same formulae as ruthenium compounds (A)(I)-(6), having barium as a central atom in place of ruthenium.

[0014] Another aspect of the invention relates to a method of making a ruthenium beta-diketiminate, comprising a salt elimination reaction conducted according to the following reaction scheme, wherein \(\text{Cp}^* \) denotes the pentamethylenecyclopentadienyl ligand, \(C_5 \text{Me}_5 \):
wherein each of R_1, R_2, R_3, R_4, R_5, Re, R_7, and R_8 can be the same as or different from the others, and is independently selected from hydrogen, C_6-alkyl, C_6-C_{10} aryl, C_6-alkylamine, silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., C_6-alkyl, such as trimethylsilyl.

[0015] A further aspect of the invention relates to a method of making a ruthenium beta-diketiminate, comprising an amine elimination reaction conducted according to the following reaction scheme:
wherein each of \(R_1, R_2, R_3, R_4, R_5, R_6, \) and \(R_8 \) can be the same as or different from the others, and is independently selected from hydrogen, \(\text{Ci-C}_6 \) alkyl, \(\text{Ce-C}_{10} \) aryl, \(\text{Ci-C}_6 \) alkylamine, silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., \(\text{Ci-C}_6 \) alkyl, such as trimethylsilyl.

[0016] Still another aspect of the invention relates to a method of making a ruthenium-diketoiminate (corresponding barium-, strontium- and calcium-diketoiminates can be formed in similar manner), comprising a reaction conducted according to the following reaction scheme:

\[
\frac{1}{4} [\text{Cp}^\# \text{RuCl}]_4 + \quad \text{THF}
\]

wherein each of \(R_1, R_2, R_3, R_4, R_5, R_6, \) and \(R_8 \) can be the same as or different from the others, and is independently selected from hydrogen, \(\text{Q-C}_6 \) alkyl, \(\text{Q-C}_{10} \) aryl, \(\text{Q-C}_6 \) alkylamine, silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., \(\text{CrC}_6 \) alkyl, such as trimethylsilyl.

[0017] In another aspect, the invention relates to a method of making a ruthenium-acetylacetonate, comprising a reaction conducted according to the following reaction scheme:
wherein each of R₁, R₂, R₃, R₄, R₅, R₆, and R₇ can be the same as or different from the others, and is independently selected from hydrogen, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₁-C₆ alkylamine, silyl and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., C₁-C₆ alkyl, such as trimethylsilyl.

[0018] Another aspect of the invention relates to a precursor composition useful in conformal ALD or CVD deposition of ruthenium-containing films, e.g., a strontium ruthenium oxide film, in which the precursor composition includes at least one compound selected from among:

A) Ru(Cp)₂ and Sr(Cp)₂, wherein Cp is cyclopentadienyl of the formula

![Chemical structure](image)

wherein each of R₁, R₂, R₃, R₄ and R₅ can be the same as or different from the others, and each is independently selected from among hydrogen, C₁ to C₆ alkyl, C₃-C₈ cycloalkyl, C₆-C₁₂ aryl, C₁ to C₆ alkoxy, silyl, C₁ to C₆ alkylsilyl, and pendant ligands with additional functional group(s) that provides further coordination to the metal center;
B) Ru(beta-diketonate)$_x$L$_y$ and Sr(beta-diketonate)$_2$L$_z$ wherein the beta-diketonate moiety has the formula

wherein:

- x has a value of 2 or 3, y is an integer having a value of from 0 to 2, and z is an integer having a value of from 0 to 4;
- R_1 and R_2 can be the same as or different from one another, and each is independently selected from among C_1 to C_6 alkyl, C_6 to C_{10} aryl, C_6 to C_6 alkoxy, C_6 to C_6 alkylsilyl, and pendant ligands with additional functional group(s) that provide further coordination to the metal center; and
- L is selected from among neutral Lewis bases, such as alkenes, alkynes, amines, polyamines, polyethers, and preferably from among tertiary phosphines, azoles, imidazoles, pyridines, and bipyridines;

C) Ru(beta-diketoiminate)$_x$L$_y$ and Sr(beta-diketoiminate)$_2$L$_z$ wherein beta-diketoiminate has the formula

wherein:

- x has a value of 2 or 3, y is an integer having a value of from 0 to 2, and z is an integer having a value of from 0 to 4;
- each of R_1, R_2, and R_3 can be the same as or different from one another, and each is independently selected from among C_1 to C_6 alkyl, C_6 to C_{10} aryl, C_6 to C_6 alkoxy, C_6 to C_6 alkylsilyl, and pendant ligands with additional functional group(s) that provide further coordination to the metal center; and
L is selected from among neutral Lewis bases such as alkenes, alkynes, polyamines, polyethers, etc.; and

D) Ru(beta-diketiminate)\(x\)-L\(y\) and Sr(beta-diketiminate)\(2\)-L\(z\), wherein beta-diketiminate has the formula

![Chemical Structure](image)

wherein:

- \(x\) has a value of 2 or 3,
- \(y\) is an integer having a value of from 0 to 2,
- \(z\) is an integer having a value of from 0 to 4;
- each of \(R_1\), \(R_2\), \(R_3\) and \(R_4\) can be the same as or different from one another, and each is independently selected from among \(\text{Ci to C}_6\) alkyl, \(\text{C}_6\) to \(\text{Ci}_0\) aryl, \(\text{Ci to C}_6\) alkoxy, \(\text{Ci to C}_6\) alkylsilyl, and pendant ligands with additional functional group(s) that provide further coordination to the metal center; and
- \(L\) is selected from among neutral Lewis bases, such as, alkenes, alkynes, polyamines, polyethers, etc.

[0019] In the cyclopentadienyl rings in compounds of the present invention, the substituents on the ring carbon atoms can include any suitable substituent species, each of which may be the same as or different from the others, with each being independently selected from among hydrogen, \(\text{Ci-Ci}_2\) alkyl, \(\text{Ci-Ci}_2\) alkylamino, \(\text{C}_6\)-\(\text{C}_{10}\) aryl, \(\text{Ci-Ci}_2\) alkoxy, \(\text{C}_2\)-\(\text{C}_6\) alkylsilyl, \(\text{C}_2\)-\(\text{C}_6\) alkenyl, \(\text{R}^1\text{R}^2\text{NNR}^3\), wherein \(\text{R}^1\), \(\text{R}^2\) and \(\text{R}^3\) may be the same as or different from one another and each is independently selected from \(\text{Ci-C}_6\) alkyl, and pendant ligands including functional group(s) providing further coordination to the central atom, and selected from among aminoalkyl, alkoxyalkyl, aryloxyalkyl, imidoalkyl, and acetylalkyl, having the following formulae:
aminoalkyls

wherein: the methylene (-CH$_2$-) moiety could alternatively be another divalent hydrocarbyl moiety; each of Ri-R$_4$ is the same as or different from one another, with each being independently selected from among hydrogen, C$_i$-C$_6$ alkyl and C$_6$-C$_{10}$ aryl; each of R$_5$ and R$_6$ is the same as or different from the other, with each being independently selected from among C$_i$-C$_6$ alkyl; n and m are each selected independently as having a value of from 0 to 4, with the proviso that m and n cannot be 0 at the same time, and x is selected from 1 to 5;

alkoxyalkyls and aryloxyalkyls

wherein each of Ri-R$_4$ is the same as or different from one another, with each being independently selected from among hydrogen, C$_i$-C$_6$ alkyl, and C$_6$-C$_{10}$ aryl; R$_5$ is selected from among C$_i$-C$_6$ alkyl, and C$_6$-C$_{10}$ aryl; and n and m are selected independently as having a value of from 0 to 4, with the proviso that m and n cannot be 0 at the same time;
and

\[
\begin{array}{c}
\text{imidoalkyl} \\
\text{wherein each of } R_1, R_2, R_3, R_4, R_5 \text{ is the same as or different from one another, with each being independently selected from among hydrogen, } \text{Ci-C}_6 \text{ alkyl, and } \text{C}_6-\text{Ci}_0 \text{ aryl; each of } R_1', R_2' \text{ is the same as or different from one another, with each being independently selected from } \text{Ci-C}_6 \text{ alkyl, and } \text{C}_6-\text{Ci}_0 \text{ aryl; and } n \text{ and } m \text{ are selected independently from 0 to 4, with the proviso that } m \text{ and } n \text{ cannot be 0 at the same time;}
\end{array}
\]

\[
\begin{array}{c}
\text{acetylalkyls} \\
\text{wherein each of } R_1-R_4 \text{ is the same as or different from one another, with each being independently selected from among hydrogen, } \text{Ci-C}_6 \text{ alkyl, and } \text{C}_6-\text{Ci}_0 \text{ aryl; } R_5 \text{ is selected from among } \text{Ci-C}_6 \text{ alkyl, } \text{C}_6-\text{Ci}_0 \text{ aryl, and } \text{C}_1-\text{C}_5 \text{ alkoxy; and } n \text{ and } m \text{ are selected independently from 0 to 4, with the proviso that } m \text{ and } n \text{ cannot be 0 at the same time.}
\end{array}
\]

[0020] In another aspect, the invention relates to a solid delivery process for atomic layer deposition or chemical vapor deposition of a metal film a substrate, comprising volatilizing a solid precursor composition of the present invention to form a precursor vapor, and contacting said precursor vapor with the substrate to deposit said metal film thereon, wherein said precursor composition comprises a mixed ligand cyclopentadienyl metal compound including a
cyclopentadienyl ligand and at least one non-cyclopentadienyl ligand, wherein the metal is selected from the group consisting of ruthenium, strontium, calcium, and barium.

[0021] A further aspect of the invention relates to a solid delivery process for atomic layer deposition or chemical vapor deposition of a metal film on a substrate, comprising volatilizing a solid precursor composition of the present invention to form a precursor vapor, and contacting said precursor vapor with the substrate to deposit said metal film thereon, wherein said precursor composition comprises a dicyclopentadienyl metal compound, wherein the metal is selected from the group consisting of ruthenium, strontium, calcium, and barium.

[0022] In a still further aspect, the invention relates to a method of fabricating a microelectronic device including metallization material and dielectric material in proximity to said metallization material, comprising depositing ruthenium on said metallization material from a precursor vapor of a ruthenium precursor under deposition conditions including a forming gas ambient vapor environment, wherein the ruthenium precursor comprises a cyclopentadienyl ruthenium precursor that under said deposition conditions deposits ruthenium from said precursor vapor on the metallization material but does not deposit ruthenium on said dielectric material.

[0023] The invention relates in another aspect to a precursor dispensing package, comprising a precursor storage and dispensing vessel, and a ruthenium, strontium, calcium, or barium precursor of the invention contained in such precursor storage and dispensing vessel.

[0024] A further aspect of the invention relates to a selective deposition process for forming a ruthenium-containing film on a substrate including metal and non-metal portions, such process comprising depositing the ruthenium-containing film on the substrate from a precursor vapor of a ruthenium precursor in an ambient gas environment limiting the deposition of the ruthenium-containing film on the non-metal portions of the substrate from the precursor.

[0025] In yet another aspect, the invention relates to a ruthenium selective deposition process, comprising conducting ruthenium deposition in a gaseous environment that is effective to enhance selectivity of ruthenium deposition on a surface of interest on a substrate, as compared to corresponding selectivity in an inert gas environment.

[0026] Another aspect of the invention relates to a method of depositing a Group II metal ruthenate film on a substrate by a vapor deposition process, such method comprising conducting the vapor deposition process with precursors including a ruthenium precursor and a Group II metal precursor including strontium, calcium or barium, wherein the ruthenium precursor and the Group II metal precursor have at least one common ligand in relation to each other.

[0027] The invention in a further aspect relates to a method of depositing a Group II metal ruthenate film a substrate by an ALD or digital CVD vapor deposition process, such method
comprising conducting the vapor deposition process with precursors including a ruthenium precursor and a Group II precursor including strontium, calcium or barium, wherein the ruthenium precursor and the Group II metal precursor lack any common ligand, and conducting a purge pulse between ruthenium precursor contacting of the substrate and Group II metal precursor contacting of the substrate.

[0028] As used herein, the identification of a carbon number range, e.g., in Ci-Ci alkyl or C6-Ci aryl, is intended to include each of the component carbon number moieties within such range. Accordingly, Ci-Ci alkyl is intended to include methyl, ethyl, propyl, butyl, pentyl and hexyl, including a straight chain as well as branched groups of such types. It therefore is to be appreciated that identification of a carbon number range, e.g., Ci-Ci, as broadly applicable to a substituent moiety, enables, in specific embodiments of the invention, the carbon number range to be further restricted, as a sub-group of moieties having a carbon number range within the broader specification of the substituent moiety. By way of example, the carbon number range e.g., Ci-Ci alkyl, maybe more restrictively specified, in particular embodiments of the invention, to encompass sub-ranges such as Ci-Ci alkyl, C2-Ci alkyl, C2-C4 alkyl, C3-C5 alkyl, or any other sub-range within the broad carbon number range.

[0029] Other aspects, features and embodiments of the invention will be more fully apparent from the ensuing disclosure and appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] FIG. 1 is a shows the deposition of Ru determined by x-ray diffraction (XRD) and x-ray fluorescence (XRF) techniques, in which the respective axes represent oxygen concentration (O2), process pressure (P in Torr), and temperature (T in °C), for a silicon oxide surface having a ruthenium film thereon, in a CVD aspect of the invention utilizing Ru(EtCp)2 as the Ru precursor.

[0031] FIG. 2 is a schematic representation of a material storage and dispensing package containing a ruthenium precursor, according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION, AND PREFERRED EMBODIMENTS THEREOF

[0032] The present invention relates to precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of Group II ruthenates, e.g., strontium
ruthenium oxide (SrRuO$_3$, or SRO) thin films, calcium ruthenium oxide films, and barium ruthenium oxide films. The invention also relates to methods of making and using such precursors, to microelectronic devices including corresponding deposited metal films, and to packages containing such precursor compositions. The CVD process can be of any suitable type, including, for example, low-pressure CVD applications, assisted CVD processes, digital CVD processes (i.e., rapid vapor deposition, RVD), etc.

[0033] The invention as described hereinafter includes various ruthenium, calcium, barium, and strontium precursors containing cyclopentadienyl moieties coordinated to the metal central atom. The cyclopentadienyl rings in such cyclopentadienyl moieties

\[
\begin{array}{c}
\text{R}_1 \\
\text{R}_2 \\
\text{R}_3 \\
\text{R}_4 \\
\text{R}_5
\end{array}
\]

may be variously substituted, by substituents R$_1$, R$_2$, R$_3$, R$_4$ and R$_5$ that are independently selected from among hydrogen, Ci-C$_2$ alkyl, Ci-C$_2$ alkylamino, C$_3$-C$_8$ cycloalkyl, C$_6$-Ci$_2$ aryl, C$_5$-Ci$_2$ heteroaryl (i.e., aryl including heteroatoms, such as N, S, O, etc., in the aryl ring, e.g., pyridinyl), Ci-C$_2$ alkoxy, C$_3$-C$_6$ alkylsilyl, C$_2$-Ci$_2$ alkenyl (such term being intended to be broadly construed to include substituents containing linear, branched, and/or cyclic moieties containing ethylenic unsaturation, e.g., vinyl, allyl, cyclic -ene species, etc., and substituents containing various types of such moieties therein, e.g., tetramethylpentadienyl vinyl), R1R2NNR3, wherein R1, R2 and R3 may be the same as or different from one another and each is independently selected from hydrogen and Ci-C$_6$ alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center, such as, for example, alkoxyalkyl, aryloxyalkyl, imidoalkyl, and acetylalkyl, wherein suitable groups in these classes include those of the following formulae:
aminoalkyls
wherein: the methylene (-CH₂-) moiety could alternatively be another divalent hydrocarbyl moiety; each of Ri-R₄ is the same as or different from one another, with each being independently selected from among hydrogen, Ci-C₆ alkyl and C₆-Ci₀ ary; each of R₅ and R₆ is the same as or different from the other, with each being independently selected from among Ci-C₆ alkyl; n and m are each selected independently as having a value of from 0 to 4, with the proviso that m and n cannot be 0 at the same time, and x is selected as having a value of from 1 to 5:

alkoxyalkyls and aryloxyalkyls
wherein each of R₁-R₄ is the same as or different from one another, with each being independently selected from among hydrogen, Ci-C₆ alkyl, and C₆-Ci₀ ary; R₅ is selected from among Ci-C₆ alkyl and C₆-Ci₀ ary; and n and m are selected independently from 0 to 4, with the proviso that m and n cannot be 0 at the same time;
and

![Diagram](image)

imidoalkyl

wherein each of R_1, R_2, R_3, R_4 and R_5 is the same as or different from one another, with each being independently selected from among hydrogen, Ci-C_6 alkyl, and $\text{C}_6\text{-Ci}_0$ aryl; each of R_i', R_2' is the same as or different from one another, with each being independently selected from among Ci-C_6 alkyl, and $\text{C}_6\text{-Ci}_0$ aryl; and n and m are selected independently as having a value of from 0 to 4, with the proviso that m and n cannot be 0 at the same time;

![Diagram](image)

acetylalkyls

wherein each of R_1-R_4 is the same as or different from one another, with each being independently selected from among hydrogen, Ci-C_6 alkyl, and $\text{C}_6\text{-Ci}_0$ aryl; R_5 is selected from among Ci-C_6 alkyl, $\text{C}_6\text{-Ci}_0$ aryl, and Ci-C_5 alkoxy; and n and m are selected independently as having value of from 0 to 4, with the proviso that m and n cannot be 0 at the same time.

[0034] The invention in one specific aspect relates to monomeric cyclopentadienyl ruthenium compounds with co-ligands, as useful for deposition applications.

[0035] Such co-ligands may for example include amidinate, guanidinate and/or beta-diketiminate ligands. The co-ligands may in specific embodiments of the invention be constituted
to include amidinate, guanidinate, isoureate, beta-diketonate, beta-diketoiminate and/or beta-diketiminate ligands. In other embodiments of the invention, the co-ligands may be constituted to exclude as a substitutent species any of the various co-ligands specifically discussed hereinafter, in constituting a selection group of co-ligand species from which the co-ligands are selected in a given application of the ruthenium precursors of the present invention.

[0036] The use of amidinate, guanidinate, beta-diketimimates and related ligands in addition to the cyclopentadienyl (Cp) ligand provides sterically advantageous conformations of monomeric ruthenium precursors suitable for deposition processes. Such precursors enable highly uniform ruthenium distribution to be achieved in product films. In some applications of the invention, the precursor may comprise a cyclopentadienyl ruthenium complex that is dimeric in the solid state but in equilibrium with corresponding monomer in solution.

[0037] The invention thus contemplates the provision of mixed ligand monomeric Cp complexes of ruthenium (II) in which the non-Cp ligand can be a nitrogen-based amidinate, guanidinate, beta-diketoiminate, beta-diketiminate, or related ligand.

[0038] Such mixed ligand Cp ruthenium precursors can be readily synthesized by suitable techniques, such as the reaction of compounds such as [Cp*RuCl]₄ and [Cp*RuOCH₃]₂ with lithium salts of corresponding amidinates, guanidinates, beta-diketoimimates, or related ligands.

[0039] Various substituted cyclopentadiene ligands can also be used in such synthesis, to yield the desired monomeric precursor via a salt elimination pathway. The specific nitrogen ligands selected for such synthesis are chosen to provide enough steric bulk to yield monomeric precursor species with sufficient volatility for transport and the deposition of the ruthenium metal.

[0040] The cyclopentadiene ligands may be appropriately substituted to achieve such suitable volatile monomeric character. By way of specific example, in the case of acetylacetonate ligands, relatively large substituents as tert-butyl may be employed to prevent dimerization.

[0041] In one aspect, the invention relates to mixed ligand monomeric Cp complexes of ruthenium (Ru) selected from among:

(1) ruthenium beta-diketiminate compounds of the formula
wherein each of \(R_1, R_2, R_3, R_4, R_5, R_6, \) and \(R_8 \) can be the same as or different from the others, and is independently selected from hydrogen, \(\text{C}_6 \text{H}_5 \text{alkyl}, \text{C}_6 \text{H}_5 \text{aryl}, \text{C}_6 \text{H}_5 \text{alkylamine}, \text{silyl}, \) and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., \(\text{C}_6 \text{H}_5 \text{alkyl}, \text{such as trimethylsilyl}; \)

(2) ruthenium beta-diketoiminate compounds of the formula

wherein each of \(R_1, R_2, R_3, R_4, R_5, R_6, \) and \(R_8 \) can be the same as or different from the others, and is independently selected from hydrogen, \(\text{C}_6 \text{H}_5 \text{alkyl}, \text{C}_6 \text{H}_5 \text{aryl}, \text{C}_6 \text{H}_5 \text{alkylamine}, \text{silyl}, \)
and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., Q-C₆ alkyl, such as trimethylsilyl;

(3) ruthenium acetylacetonate compounds of the formula

\[
\begin{align*}
R_1 & \quad R_2 \\
R_3 & \quad R_4 \\
R_5 & \quad R_6 \\
R_7 & \quad R_8
\end{align*}
\]

wherein each of \(R_1, R_2, R_3, R_4, R_5, \) and \(R_7 \) can be the same as or different from the others, and is independently selected from hydrogen, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ alkylamine, silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., C₁-C₆ alkyl, such as trimethylsilyl;

(4) ruthenium amidinate compounds of the formula:

\[
\begin{align*}
R_1 & \quad R_2 \\
R_3 & \quad R_4 \\
R_5 & \quad R_6 \\
R_7 & \quad R_8
\end{align*}
\]
wherein each of R_1, R_2, R_3, R_4, R_5, R_e, R_7, and R_8 can be the same as or different from the others, and is independently selected from hydrogen, C_1-C_5 alkyl, C_6-C_{10} aryl, C_3-C_9 cycloalkyl, silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., C_1-C_6 alkyl, such as trimethylsilyl;

(5) ruthenium guanidinate compounds of the formula:

![Diagram of ruthenium guanidinate compound](image)

wherein each of R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8 and R_9 can be the same as or different from the others, and is independently selected from hydrogen, C_1-C_5 alkyl, C_6-C_{10} aryl, C_3-C_9 cycloalkyl, silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., C_1-C_6 alkyl, such as trimethylsilyl;

6) ruthenium isoureate compounds and formula

![Diagram of ruthenium isoureate compound](image)
wherein each of \(R_1, R_2, R_3, R_4, R_5, R_7 \) and \(R_8 \) can be the same as or different from the others, and is independently selected from hydrogen, \(C_1-C_5 \) alkyl, \(C_6-C_{10} \) aryl, \(C_3-C_9 \) cycloalkyl, silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., \(C_1-C_6 \) alkyl, such as trimethylsilyl.

[0042] The synthesis of the ruthenium beta-diketimimates can be carried out in a specific implementation by a salt elimination reaction as set out below:

\[
\begin{align*}
\frac{1}{4} [Cp^*RuCl]_4 + & \quad \text{LiCl} \quad \text{THF} \\
\rightarrow & \quad \text{Ru} \quad \text{N} \\
& \quad \text{N} \quad \text{Li} \\
& \quad \text{R}_1 \quad \text{R}_2 \quad \text{R}_3 \quad \text{R}_4 \quad \text{R}_5 \\
& \quad \text{R}_6 \quad \text{R}_7 \quad \text{R}_8 \quad \text{R}_9
\end{align*}
\]

wherein each of \(R_1, R_2, R_3, R_4, R_5, R_7 \) and \(R_8 \) can be the same as or different from the others, and is independently selected from hydrogen, \(C_1-C_6 \) alkyl, \(C_6-C_{10} \) aryl, \(C_6-C_9 \) alkylamine, silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., \(C_1-C_6 \) alkyl, such as trimethylsilyl.

[0043] As an alternative, the ruthenium beta-diketimimates can be synthesized by an amine elimination synthesis route as set out below:
The ruthenium-diketoiminates of the invention can be made by a synthesis including the following reaction:

\[
\frac{1}{4} [\text{Cp}^*\text{RuCl}]_4 + \text{LiNR}_2 \to \frac{\text{LiCl}}{\text{THF}} \to \frac{1}{x} [\text{Cp}^*\text{RuNR}_2]^x \to \text{THF}
\]

wherein each of \(R_1, R_2, R_3, R_4, R_5, R_6, R_7, \) and \(R_8 \) can be the same as or different from the others, and is independently selected from hydrogen, \(\text{Ci-C}_6 \) alkyl, \(\text{C}_6\text{-Ci}_0 \) aryl, \(\text{Ci-C}_6 \) alkylamine, silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., \(\text{Ci-C}_6 \) alkyl, such as trimethylsilyl.
wherein each of R_i, R_2, R_3, R_4, R_5, R_e, R_7, and R_8 can be the same as or different from the others, and is independently selected from hydrogen, Q-C_6 alkyl, C_6-C_{10} aryl, Q-C_6 alkylamine, silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., Q-C_6 alkyl, such as trimethylsilyl.

[0045] Ruthenium-acetylacetonates can be synthesized by the following synthesis reaction:

\[
\frac{1}{4}[\text{Cp}^\text{V}RuCl]_4 + \text{Na} \rightarrow \text{THF} \rightarrow \text{Ru}
\]

wherein each of R_1, R_2, R_3, R_4, R_5, R_e, and R_7 can be the same as or different from the others, and is independently selected from hydrogen, Ci-C_6 alkyl, C_6-C_{10} aryl, Ci-C_6 alkylamine, silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., Ci-C_6 alkyl, such as trimethylsilyl.

[0046] The mixed ligand Cp ruthenium compounds of the invention can be supplied in any suitable form for volatilization to produce the precursor vapor for deposition contacting with the substrate, e.g., in a liquid form that is vaporized or as a solid that is dissolved or suspended in a solvent medium for flash vaporization, as a sublimable solid, or as a solid having sufficient vapor pressure to render it suitable for vapor delivery to the deposition chamber, or in any other suitable form.

[0047] When solvents are employed for delivery of the precursors of the invention, any suitable solvent media can be employed in which the precursor can be dissolved or dispersed for delivery. By way of example, the solvent medium may be a single-component solvent or a multicomponent solvent mixture, including solvent species such as C_3-C_{12} alkanes, C_2-C_{12} ethers, C_6-C_{12} aromatics, C_7-C_{16} arylalkanes, C_{10}-C_{25} arylethylalkanes, and further alkyl-substituted forms of aromatic, arylalkane and arylethylalkane species, wherein the further alkyl substituents in the
case of multiple alkyl substituents may be the same as or different from one another and wherein each is independently selected from Ci-C₈ alkyl. Illustrative solvents include amines, ethers, aromatic solvents, glymes, tetracyclanes, alkanes, alkyl-substituted benzene compounds, benzocyclohexane (tetralin), alkyl-substituted benzocyclohexane and ethers, with tetrahydrofuran, xylene, 1,4-tertbutyltoluene, 1,3-diisopropylbenzene, tetralin, dimethyltetralin, octane and decane being potentially useful solvent species in specific applications.

[0048] In instances where liquid delivery is employed in deposition processes of the invention to form deposited metal films, it may be preferable to utilize high boiling point solvents in order to avoid metal precursor deposits in the delivery system, such as in flow circuitry, and in vaporizers that are utilized to volatilize the metal precursor to form a corresponding precursor vapor, where the system is otherwise susceptible to solids deposition and clogging.

[0049] Accordingly, in various embodiments of the invention, it may be desirable to utilize high boiling aromatic solvents, e.g., aromatic solvents having a boiling point at 1 atmosphere pressure in a range of from about 140°C to about 250°C. For example, in liquid delivery ruthenium precursor applications for atomic layer deposition processes, suitable solvents may include xylene, 1,4-tertbutyltoluene, 1,3-diisopropylbenzene, tetralin, dimethyltetralin and other alkyl-substituted aromatic solvents. The solvent medium may also comprise a stabilizing solvent, e.g., a Lewis-base ligand.

[0050] In general, the precursor compositions of the invention may alternatively comprise, consist, or consist essentially of any of the components and functional moieties disclosed herein, in specific embodiments of the invention.

[0051] The invention in another aspect relates to mixed ligand Cp compounds of the foregoing formulae (l)-(5), wherein the metal center instead of ruthenium is strontium, calcium, or barium. Strontium, calcium, and barium compounds of such type have utility as ALD and CVD precursors for depositing corresponding metal films.

[0052] The invention in another aspect relates to precursors useful for conformal deposition, via ALD and CVD techniques, of ruthenium-containing films, e.g., a strontium ruthenium oxide (SRO) thin film, in which the precursors are selected from among:

A) Ru(Cp)₂ and Sr(Cp)₂, wherein Cp is cyclopentadienyl of the formula
wherein each of R_i, R_2, R_3, R_4 and R_5 to R_5 can be the same as or different from the others, and each is independently selected from among hydrogen, C_i to C_6 alkyl, C_6 to C_{10} aryl, C_i to C_6 alkoxy, C_i to C_6 alkysilyl, and pendant ligands with additional functional group(s) that can provide further coordination to the metal center, such as $-(CH_2)_n-NR_2$, and $-(CH_2)_n-O$R, wherein n is an integer having a value in a range of from 1 to 4, and each R is independently selected from among hydrogen, C_i to C_6 alkyl, C_6 to C_{10} aryl, C_i to C_6 alkoxy, and C_i to C_6 alkysilyl, as well as pendant ligands previously described;

B) Ru(beta-diketonate)$_x$-L_y and Sr(beta-diketonate)$_z$-L_z wherein the beta-diketonate moiety has the formula

wherein:

x has a value of 2 or 3, y is an integer having a value of from 0 to 2, and z is an integer having a value of from 0 to 4;

R_1 and R_2 can be the same as or different from one another, and each is independently selected from among C_i to C_6 alkyl, C_6 to C_{10} aryl, C_i to C_6 alkoxy, C_i to C_6 alkysilyl, and pendant ligands with additional functional group(s) that can provide further coordination to the metal center, such as $-(CH_2)_n-NR_2$, and $-(CH_2)_n-O$R, wherein n is an integer having a value in a range of from 1 to 4; and
L is selected from among neutral Lewis bases, such as amines (e.g., PMDETA), C$_2$ to C$_i$ ethers (e.g., THF), tetraglymes, C$_2$ to C$_i$ alkenes (e.g., cyclooctane-1,5-diene (COD), and C$_2$ to C$_i$ alkynes;

C) Ru(beta-diketoiminate)$_x$-L$_y$ and Sr(beta-diketoiminate)$_2$-L$_z$ wherein beta-diketoiminate has the formula

![Chemical Structure]

wherein:

- x has a value of 2 or 3, y is an integer having a value from 0 to 2, and z is an integer having a value from 0 to 4;
- each of R$_i$, R$_2$, and R$_3$ can be the same as or different from one another, and each is independently selected from among C$_i$ to C$_6$ alkyl, C$_6$ to C$_i$0 aryl, C$_i$ to C$_6$ alkoxy, C$_i$ to C$_6$ alkylsilyl, and pendant ligands with additional functional group(s) that can provide further coordination to the metal center, such as -(CH$_2$)$_n$-NR$_2$, and -(CH$_2$)$_n$-OR, wherein n is an integer having a value in a range of from 1 to 4; and
- L is selected from among neutral Lewis bases, such as amines (e.g., PMDETA), C$_2$ to C$_i$ ethers (e.g., THF), tetraglymes, C$_2$ to C$_i$ alkenes (e.g., cyclooctane-1,5-diene (COD), and C$_2$ to C$_i$ alkynes; and

D) Ru(beta-diketiminate)$_x$-L$_y$ and Sr(beta-diketiminate)$_2$-L$_z$, wherein beta-diketiminate has the formula

![Chemical Structure]

wherein:
x has a value of 2 or 3, y is an integer having a value of from 0 to 2, and z is an integer having a value of from 0 to 4;

Ri, R2, R3, and R4 can be the same as or different from one another, and each is independently selected from among C1 to Ce alkyl, Ce to Ci0 aryl, Ci to Ce alkoxy, Ci to Ce alkylsilyl, and pendant ligands with additional functional group(s) that can provide further coordination to the metal center, such as -(CH2)n-NR2, and -(CH2)n-0R, wherein n is an integer having a value in a range of from 1 to 4; and

L is selected from among neutral Lewis bases, such as amines (e.g., PMDETA), C2 to C2 ethers (e.g., THF), tetraglymes, C2 to C2 alkenes (e.g., cyclooctane-1,5-diene (COD), and C2 to C2 alkynes.

In specific embodiments of the invention, the precursors A) - D) may be constituted as a selection group in which Sr(CpMe3)2, EtCp2Ru, Sr(thd)2-PMDETA are excluded by appropriate restriction of selection criteria.

Precursor species within each of the above-described precursor classes A) - D) are chemically compatible, and can be utilized in combinations, in which two or more of such precursors of a given class are mixed with one another, e.g., in a solution as a precursor cocktail composition for liquid delivery, as a simple and efficient approach to the deposition of strontium and/or ruthenium films.

Alternatively, the precursor species may be individually dissolved in solvent(s) and delivered into vaporizers for volatilization of the precursor solution to form a precursor vapor that then is transported to the deposition chamber of the deposition system to deposit strontium and/or ruthenium on a wafer or other microelectronic device substrate.

Thus, the precursors may be supplied in liquid delivery systems as individual precursors or mixtures of precursors, in solvent media that may be comprised of a single component solvent, or alternatively may be constituted by a solvent mixture, as appropriate in a given application. The solvents that may be employed for such purpose can be of any suitable type in which the specific precursor(s) can be dissolved or suspended, and subsequently volatilized to form the precursor vapor for contacting with the substrate on which the metal is to be deposited. Illustrative of solvents that may usefully be employed in specific applications are hydrocarbon solvents, such as amine solvents, neutral amines such as DMAPA, octane or other aliphatic solvents, aromatic solvents such as toluene, ethers such as tetrahydrofuran (THF), and tetraglymes.

As a still further alternative, the precursors A) - D) can be delivered by solid delivery techniques, in which the solid is volatilized to form the precursor vapor that then is transported to
the deposition chamber, and with the solid precursor in the first instance being supplied in a packaged form for use, e.g., in a ProE-Vap package (ATMI, Inc., Danbury, CT, USA).

[0058] The precursors A) - D) of the present invention are usefully employed for forming SRO thin films of high conformality and uniformity characteristics, by ALD and CVD processes. The process conditions for the deposition process in a specific application may be readily determined empirically by variation of specific conditions (temperature, pressure, flow rate, concentration, etc.) and characterization of the resulting film deposit.

[0059] In the formation of SRO films, any suitable co-reactant or carrier species may be employed, e.g., oxidants, producing agents, inert gases, etc. In a specific embodiment in which an oxidant is used, the oxidant employed in the deposition may be of any suitable type, e.g., nitrous oxide, oxygen, ozone, water, alcohols, or other suitable oxidant. The co-reactants may be supplied simultaneously, e.g., with the precursors entering the deposition chamber concurrently, in a chemical vapor deposition mode, or separately from the precursors, in an atomic layer deposition or digital CVD mode. The precursors can be employed in an ALD mode, in which a purge pulse separates them from the co-reactants, and matched or unmatched precursors may be used. In a pulsed method, the Sr and Ru can be introduced in separate pulses or be delivered in the same pulse.

[0060] The cyclopentadienyl precursors of the invention are particularly useful in atomic layer deposition (ALD) processes. In an illustrative ALD process for forming an SRO layer, a substrate having suitable pre-existing structural layers thereon is subjected to contact with ruthenium precursor under deposition conditions resulting in the surface, e.g., of another metal, being functionalized with ruthenium moieties. The thus-functionalized structure then is subjected to contact with oxidant [O] such as oxygen, ozone, etc., or water. A wide variety of oxidants can be used for such purpose. The surface then reacts with the oxidant to form a hydroxylated surface.

[0061] The hydroxylated surface of the device structure next is contacted with the strontium reagent to yield the strontiated (strontium-functionalized) surface. The strontiated surface then is contacted with oxidant or water to form the hydroxylated surface, and the hydroxylated surface thereafter is processed by contact with the ruthenium precursor, with repetition of the above-described steps, has carried out any suitable number of times to build up a layer of strontium ruthenium oxide, SrRuO$_3$.

[0062] In this repetitive manner, a film of strontium ruthenium oxide is built up over in the device structure, with the deposition process being conducted through multiple steps of ruthenium
functionalization, hydroxylation, strontiation and hydroxylation, to build up the strontium ruthenium oxide film to a desired thickness.

[0063] Analogous processes can be carried out utilizing alternating layers of other metal species, to form other metal film compositions containing ruthenium and strontium, calcium or barium.

[0064] In one embodiment of the above-described process, the oxidant is selected from among oxygen, ozone and oxygen plasma. The use of such oxidant may eliminate the need for a final annealing step, such as rapid thermal annealing.

[0065] In general, the thicknesses of the ruthenium, strontium and SRO layers in the practice of the present invention can be of any suitable value. In a specific embodiment of the invention, the thickness of the SRO layer can be in a range of from 5 nm to 500 nm or more. As used herein, the term "thin-film" refers to a layer of material having a thickness less than 1 µm.

[0066] Set out in Table 1 below are x-ray diffraction/x-ray fluorescence data that were generated for a ruthenium layer that was deposited from Ru(EtCp)_2 under varied conditions of temperature and oxygen concentration in an 8 Torr deposition ambient environment, both under conditions where either forming gas (4% H₂) or inert gas (Inert) were used to make-up the non-oxygen part of the deposition ambient.

[0067] Table 1

<table>
<thead>
<tr>
<th>Temperature</th>
<th>2% O₂</th>
<th>15% O₂</th>
<th>8% O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H₂</td>
<td>Inert</td>
<td>H₂</td>
</tr>
<tr>
<td>345°C</td>
<td>45/M</td>
<td>53/M</td>
<td>448/M</td>
</tr>
<tr>
<td>300°C</td>
<td>4</td>
<td>0</td>
<td>68</td>
</tr>
<tr>
<td>260°C</td>
<td>4</td>
<td>0</td>
<td>68</td>
</tr>
</tbody>
</table>

[0068] FIG. 1 is a corresponding measure of the ruthenium deposition from Ru(EtCp)_2 under a broader range of conditions determined by such x-ray diffraction (XRD) and x-ray fluorescence (XRF) techniques, and based on the data in Table 1, in which the respective axes represent...
oxygen concentration (O\textsubscript{2}), pressure (P), and temperature (T). Taken together, the data in Table 1 and Figure 1 show that Ru does not deposit from Ru(EtCp)\textsubscript{2} under inert or forming gas conditions. This is in contrast to the fast deposition reported in the literature for metallic surfaces.

The invention in another aspect relates to formation of Group II metal ruthenate films, wherein the Group II metal includes one or more of strontium, calcium and barium, and the Group II ruthenate film is formed by deposition using a precursor composition including a ruthenium precursor and Group II precursor(s). The Group II precursor(s) include at least one of a strontium precursor, a calcium precursor and a barium precursor.

In a specific embodiment of the invention, such ruthenium precursor and the Group II precursor(s) have compatible ligands, the term "compatible" in such context referring to the fact that there is at least one common ligand between the ruthenium precursor and the Group II precursor(s).

By way of specific example, the ruthenium precursor in one such compatible composition may have a cyclopentadienyl ligand, and each of the one or more Group II precursors used with the ruthenium reagent also has a cyclopentadienyl ligand. In another specific example, the ruthenium precursor as a beta-diketonate ligand, and each of the one or more Group II precursors used with the ruthenium reagent likewise has a beta-diketonate ligand.

Beta-diketonate ligands that may be utilized in such compatible groupings may be of any suitable type, including for example, 2,2,6,6-tetramethyl-3,5-heptanedionate; 1,1,5,5,5-hexafluoro-2,4-pentanedionate; and 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedionate.

Additional compatible groupings include those in which each of the ruthenium precursor and the associated one or more Group II precursors includes di-cyclopentadienyl moieties, and those in which each of the ruthenium precursor and the associated one or more Group II precursors includes a 2,2,6,6-tetramethyl-3,5-heptanedionate ligand, also referred to as "thd," with the ruthenium precursor being of the formula Ru(thd)\textsubscript{3} and the Group II precursor being a strontium precursor of the formula Sr(thd)\textsubscript{2}(pmdeta), in which pmdeta represents pentamethyldiethylenetriamine.

The invention therefore contemplates the use for deposition of a ruthenate film of a ruthenium precursor and one or more corresponding strontium, calcium and/or barium precursors containing a common ligand in each of the precursors. In one specific embodiment, the invention contemplates a precursor vapor comprising vapor of constituent precursors including a ruthenium precursor and at least one strontium/calcium/barium precursor, in which each of such precursor species has a common ligand.
The invention also contemplates the provision in ALD or digital CVD applications of respective ruthenium and Group II precursor(s) lacking any common ligand, in which the ruthenium precursor exposure to the substrate is separated from the Group II precursor exposure to the substrate by a purge pulse therebetween. An illustrative example of such "disparate ligand" precursor groupings is the contacting of the substrate with a Group II strontium, calcium or barium precursor having a dicyclopentadienyl ligand, with such contacting separated by a purge pulse from the contacting of the substrate with a ruthenium precursor of the formula Ru(thd)₃.

FIG. 2 is a schematic representation of a material storage and dispensing package 100 containing a ruthenium precursor, according to one embodiment of the present invention.

The material storage and dispensing package 100 includes a vessel 102 that may for example be of generally cylindrical shape as illustrated, defining an interior volume 104 therein. In this specific embodiment, the ruthenium precursor is a solid at ambient temperature conditions, and such precursor may be supported on surfaces of the trays 106 disposed in the interior volume 104 of the vessel, with the trays having flow passage conduits 108 associated therewith, for flow of vapor upwardly in the vessel to the valve head assembly, for dispensing in use of the vessel.

The solid precursor can be coated on interior surfaces in the interior volume of the vessel, e.g., on the surfaces of the trays 106 and conduits 108. Such coating may be effected by introduction of the precursor into the vessel in a vapor form from which the solid precursor is condensed in a film on the surfaces in the vessel. Alternatively, the precursor solid may be dissolved or suspended in a solvent medium and deposited on surfaces in the interior volume of the vessel by solvent evaporation. In yet another method the precursor may be melted and poured onto the surfaces in the interior volume of the vessel. For such purpose, the vessel may contain substrate articles or elements that provide additional surface area in the vessel for support of the precursor film thereon.

As a still further alternative, the solid precursor may be provided in granular or finely divided form, which is poured into the vessel to be retained on the top supporting surfaces of the respective trays 106 therein.

The vessel 102 has a neck portion 109 to which is joined the valve head assembly 110. The valve head assembly is equipped with a hand wheel 112 in the embodiment shown. The valve head assembly 110 includes a dispensing port 114, which may be configured for coupling to a fitting or connection element to join flow circuitry to the vessel. Such flow circuitry is schematically represented by arrow A in Figure 4, and the flow circuitry may be coupled to a downstream ALD or chemical vapor deposition chamber (not shown in Figure 4).
In use, the vessel 102 is heated, such input of heat being schematically shown by the reference arrow Q, so that solid precursor in the vessel is at least partially volatilized to provide precursor vapor. The precursor vapor is discharged from the vessel through the valve passages in the valve head assembly 110 when the hand wheel 112 is translated to an open valve position, whereupon vapor deriving from the precursor is dispersed into the flow circuitry schematically indicated by arrow A.

In lieu of solid delivery of the precursor, the precursor may be provided in a solvent medium, forming a solution or suspension. Such precursor-containing solvent composition then may be delivered by liquid delivery and flash vaporized to produce a precursor vapor. The precursor vapor is contacted with a substrate under deposition conditions, to deposit the metal on the substrate as a film thereon.

In one embodiment, the precursor is dissolved in an ionic liquid medium, from which precursor vapor is withdrawn from the ionic liquid solution under dispensing conditions.

As a still further alternative, the precursor may be stored in an adsorbed state on a suitable solid-phase physical adsorbent storage medium in the interior volume of the vessel. In use, the precursor vapor is dispensed from the vessel under dispensing conditions involving desorption of the adsorbed precursor from the solid-phase physical adsorbent storage medium.

Supply vessels for precursor delivery may be of widely varying type, and may employ vessels such as those commercially available from ATMI, Inc. (Danbury, Connecticut) under the trademarks SDS, SAGE, VAC, VACsorb, and ProE-Vap, as may be appropriate in a given storage and dispensing application for a particular precursor of the invention.

The precursors of the invention thus may be employed to form precursor vapor for contacting with a substrate to deposit a thin film of ruthenium thereon, in connection with concurrent or sequential deposition of strontium from a suitable strontium source reagent, to produce ruthenium films, strontium films, or ruthenium/strontium films. Other Group II source reagents can be employed to form CaRuO or BaRuO films.

In a preferred aspect, the invention utilizes the ruthenium precursors to conduct atomic layer deposition in connection with the use of a suitable strontium source reagent, yielding ALD films of superior conformality that are uniformly coated on the substrate with high step coverage even on high aspect ratio structures.

Accordingly, the ruthenium precursors of the present invention enable a wide variety of microelectronic devices, e.g., semiconductor products, flat panel displays, etc., to be fabricated with ruthenium-containing films of superior quality.
While the invention has been described herein in reference to specific aspects, features and illustrative embodiments of the invention, it will be appreciated that the utility of the invention is not thus limited, but rather extends to and encompasses numerous other variations, modifications and alternative embodiments, as will suggest themselves to those of ordinary skill in the field of the present invention, based on the disclosure herein. Correspondingly, the invention as hereinafter claimed is intended to be broadly construed and interpreted, as including all such variations, modifications and alternative embodiments, within its spirit and scope.
THE CLAIMS

What is claimed is:

1. A ruthenium precursor useful for atomic layer deposition and/or chemical vapor deposition, comprising a ruthenium central atom to which is coordinated at least one cyclopentadienyl ligand, wherein the cyclopentadienyl moiety has the formula

![cyclopentadienyl ligand](image)

wherein each of R_1, R_2, R_3, R_4 and R_5 can be the same as or different from the others, and each is independently selected from among hydrogen, C_1-C_2 alkyl, C_1-C_2 alkylamino, C_3-C_6 cycloalkyl, C_6-C_{12} aryl, C_5-C_{12} heteroaryl, C_5-C_{12} alkoxy, C_3-C_6 alkyloxy, C_2-C_{12} alkenyl, $R_1R_2NNR_3$, wherein R_1, R_2 and R_3 may be the same as or different from each other and each is independently selected from hydrogen and C_1-C_6 alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, aryloxyalkyl, imidoalkyl, and acetyllalkyl, having the following formulae:
aminoalkyls
wherein: the methylene (-CH₂-) moiety can alternatively be another divalent hydrocarbyl moiety; each of Ri-R₄ is the same as or different from one another, with each being independently selected from among hydrogen and C₁⁻C₆ alkyl and C₆⁻C₁₀ aryl; each of R₅ and R₆ is the same as or different from the other, with each being independently selected from among C₁⁻C₆ alkyl; n and m are each selected independently as having a value of from 0 to 4, with the proviso that m and n cannot both be 0 at the same time, and x is selected to have a value of from 1 to 5;

alkoxyalkyls and aryloxyalkyls
wherein each of Ri-R₄ is the same as or different from one another, with each being independently selected from among hydrogen, C₁⁻C₆ alkyl, and C₆⁻C₁₀ aryl; R₅ is selected from among C₁⁻C₆ alkyl and C₆⁻C₁₀ aryl; and n and m are selected independently from 0 to 4, with the proviso that m and n cannot both be 0 at the same time;
and

\[
\begin{align*}
\text{imidoalkyl} & \quad \text{wherein each of } R_1, R_2, R_3, R_4, R_5 \text{ is the same as or different from one another, with each being independently selected from among hydrogen, } \text{Ci-C}_6\text{ alkyl, and } \text{C}_6\text{-Ci}_0\text{ aryl; each of } R_i', R_5' \text{ is the same as or different from one another, with each being independently selected from } \text{Ci-C}_6\text{ alkyl, and } \text{C}_6\text{-Ci}_0\text{ aryl; and } n \text{ and } m \text{ are selected independently from 0 to 4, with the proviso that } m \text{ and } n \text{ cannot be 0 at the same time;} \\
\end{align*}
\]

\[
\begin{align*}
\text{acetylalkyls} & \quad \text{wherein each of } R_1-R_4 \text{ is the same as or different from one another, with each being independently selected from among hydrogen, } \text{Ci-C}_6\text{ alkyl, and } \text{C}_6\text{-Ci}_0\text{ aryl; } R_5 \text{ is selected from among } \text{Ci-C}_6\text{ alkyl, } \text{C}_6\text{-Ci}_0\text{ aryl, and } \text{C}_1\text{-C}_5\text{ alkoxy; and } n \text{ and } m \text{ are selected independently from 0 to 4, with the proviso that } m \text{ and } n \text{ cannot be 0 at the same time.}
\end{align*}
\]

2. The ruthenium precursor according to claim 1, as packaged in a precursor storage and dispensing package.

3. The ruthenium precursor according to claim 1, of monomeric character.

4. The precursor vapor composition comprising vapor of a ruthenium precursor according to claim 1.
5. A ruthenium precursor formulation, comprising a ruthenium precursor according to claim 1, and a solvent medium.

6. The ruthenium precursor formulation of claim 5, wherein the solvent medium comprises at least one solvent species selected from among hydrocarbon solvents, \(C_3-C_{12} \) alkanes; \(C_2-C_{12} \) ethers; \(C_6-C_{12} \) aromatics; \(C_7-C_{16} \) arylalkanes; \(C_{10}-C_{25} \) arylethanoalkanes; and further alkyl-substituted forms of said aromatics, arylalkanes and arylethyloalkanes, wherein the further alkyl substituents in the case of multiple alkyl substituents may be the same as or different from one another and wherein each is independently selected from \(\text{Ci-C}_8 \) alkyl; alkyl-substituted benzene compounds; benzocyclohexene (tetralin); alkyl-substituted benzocyclohexane; tetrahydrofurane; xylene; 1,4-tertbutyltoluene; tetrahydrofuran; 1,3-diisopropylbenzene; dimethyltetralin; amines; DMAPA; toluene; glymes; tetracycles; octane; and decane.

7. A ruthenium compound containing at least one cyclopentadienyl ligand, and at least one further ligand selected from among amidinate, guanidinate, isoureate, beta-diketoiminate, beta-diketonate and beta-diketiminate ligands.

8. The ruthenium compound of claim 7, wherein the at least one further ligand is selected from among guanidinate and beta-diketiminate ligands.

9. The ruthenium compound of claim 7, having a dimeric solid-state form and a monomeric form in solvent solution.

10. A mixed ligand monomeric Cp complex of ruthenium (II) in which the non-Cp ligand is selected from among amidinate, guanidinate, beta-diketoiminate, and related nitrogen-based ligands.

11. The mixed ligand monomeric Cp complex of claim 10, wherein the non-Cp ligand is selected from among amidinate, guanidinate, and beta-diketiminate.

12. A method of making a mixed ligand monomeric Cp complex of ruthenium (II) as claimed in claim 10, said method comprising reacting a cyclopentadienyl ruthenium halide or alkoxide with a lithium salt of a corresponding amidinate, guanidinate, beta-diketiminate, or related nitrogen-based ligand.
13. The method of claim 12, wherein said lithium salt comprises a lithium salt of a corresponding amidinate, guanidinate, or beta-diketiminate.

14. The method of claim 12, wherein said cyclopentadienyl ruthenium halide or alkoxide comprises a compound selected from among \([\text{Cp}^*\text{RuCl}]_4\) and \([\text{Cp}^*\text{RuOCH}_3]_2\).

15. A mixed ligand monomeric Cp complex of ruthenium, calcium, strontium or barium, selected from among:

(A) ruthenium compounds selected from among the following compounds (1)-(5):

(1) ruthenium beta-diketiminate compounds of the formula

\[
\begin{align*}
\text{Ru} &\quad \text{N} \\
&\quad \text{N} \\
&\quad \text{R}_1 \\
&\quad \text{R}_2 \\
&\quad \text{R}_3 \\
&\quad \text{R}_4 \\
&\quad \text{R}_5 \\
&\quad \text{R}_6 \\
&\quad \text{R}_7 \\
&\quad \text{R}_8 \\
&\quad \text{R}_9 \\
&\quad \text{R}_{10} \\
&\quad \text{R}_{11} \\
&\quad \text{R}_{12}
\end{align*}
\]

wherein each of \(R_1, R_2, R_3, R_4\) and \(R_5\) can be the same as or different from the others, and each is independently selected from among hydrogen, \(\text{Ci-Ci}_2\) alkyl, \(\text{Ci-Ci}_2\) alkylamino, \(\text{C}_3\text{-C}_8\) cycloalkyl, \(\text{C}_6\text{-Ci}_2\) aryl, \(\text{C}_5\text{-Ci}_2\) heteroaryl, \(\text{C}_1\text{-Ci}_2\) alkoxy, \(\text{C}_3\text{-C}_6\) alkylsilyl, \(\text{C}_2\text{-Ci}_2\) alkenyl, \(\text{R}^1\text{R}^2\text{NNR}^3\), wherein \(R^1, R^2\) and \(R^3\) may be the same as or different from one another and each is independently selected from hydrogen and \(\text{Ci-C}_6\) alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, aryloxyalkyl, imidoalkyl, and acetylalkyl, and wherein each of \(R_6, R_7,\) and \(R_8\) can be the same as or different from the others, and is independently selected from hydrogen, \(\text{Ci-C}_6\) alkyl, \(\text{C}_6\text{-Ci}_0\) aryl, \(\text{Ci-C}_6\) alkylamine, silyl and substituted silyl;
(2) ruthenium beta-diketoiminate compounds of the formula

wherein each of R₁, R₂, R₃, R₄ and R₅ can be the same as or different from the others, and each is independently selected from among hydrogen, C₁-C₂ alkyl, C₁-C₂ alkylamino, C₃-C₆ cycloalkyl, C₆-C₁₂ aryl, C₅-C₁₂ heteroaryl, C₁-C₁₂ alkoxy, C₃-C₆ alkylsilyl, C₂-C₁₂ alkenyl, R¹R²N=N₃, wherein R¹, R² and R³ may be the same as or different from one another and each is independently selected from hydrogen and C₆-alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, aryloxyalkyl, imidoalkyl, and acetylalkyl, and wherein each of R₆, R₇, and R₈ can be the same as or different from the others, and is independently selected from hydrogen, C₆-alkyl, C₆-C₁₀ aryl, C₆ alkylamine, silyl and substituted silyl;

(3) ruthenium acetylacetonate compounds of the formula
wherein each of R_1, R_2, R_3, R_4 and R_5 can be the same as or different from the others, and each is independently selected from among hydrogen, Cl_2alkyl, $\text{Cl}_2\text{alkylamino}$, $\text{C}_3\text{-C}_8\text{cycloalkyl}$, $\text{C}_6\text{-C}_1\text{aryl}$, $\text{C}_5\text{-C}_1\text{heteroaryl}$, $\text{C}_3\text{-C}_1\text{alkoxy}$, $\text{C}_2\text{-C}_1\text{alkylsilyl}$, $\text{C}_2\text{-C}_1\text{alkenyl}$, $R^1R^2NNR^3$, wherein R^1, R^2 and R^3 may be the same as or different from one another and each is independently selected from hydrogen and C_6alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, aryloxyalkyl, imidoalkyl, and acetylalkyl, and wherein each of R_6 and R_7 can be the same as or different from the other, and is independently selected from hydrogen, $\text{C}_6\text{-C}_1\text{aryl}$, $\text{C}_6\text{-C}_1\text{alkylamine}$, silyl and substituted silyl;

(4) ruthenium amidinate compounds of the formula:
wherein each of R_i, R_2, R_3, R_4 and R_5 can be the same as or different from the others, and each is independently selected from among hydrogen, Ci-C_2 alkyl, Ci-C_2 alkylamino, $\text{C}_3\text{-C}_8$ cycloalkyl, $\text{C}_6\text{-C}_2$ aryl, $\text{C}_5\text{-C}_{12}$ heteroaryl, $\text{C}_8\text{-C}_{12}$ alkoxy, $\text{C}_3\text{-C}_6$ alkylsilyl, $\text{C}_2\text{-C}_{12}$ alkenyl, $\text{R}_1\text{R}_2\text{NNR}_3$, where R_1, R_2 and R_3 may be the same as or different from one another and each is independently selected from hydrogen and C_6 alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, aryloxyalkyl, imidoalkyl, and acetylalkyl, and wherein each of R_6, R_7, and R_8 can be the same as or different from the others, and is independently selected from hydrogen, C_5 alkyl, $\text{C}_6\text{-C}_0$ aryl, $\text{C}_3\text{-C}_9$ cycloalkyl, silyl and substituted silyl;

(5) ruthenium guanidinate compounds of the formula:

![Diagram](image)

wherein each of R_1, R_2, R_3, R_4 and R_5 can be the same as or different from the others, and each is independently selected from among hydrogen, Ci-C_2 alkyl, Ci-C_n alkylamino, $\text{C}_3\text{-C}_8$ cycloalkyl, $\text{C}_6\text{-C}_n$ aryl, $\text{C}_5\text{-C}_n$ heteroaryl, $\text{C}_8\text{-C}_n$ alkoxy, $\text{C}_3\text{-C}_6$ alkylsilyl, $\text{C}_2\text{-C}_n$ alkenyl, $\text{R}_1\text{R}_2\text{NNR}_3$, where R_1, R_2 and R_3 may be the same as or different from one another and each is independently selected from hydrogen and C_6 alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, aryloxyalkyl, imidoalkyl, and acetylalkyl, and wherein each of R_6, R_7, R_8 and R_9 can be the same as or different from the others, and is independently selected from hydrogen, C_5 alkyl, $\text{C}_6\text{-C}_0$ aryl, $\text{C}_3\text{-C}_9$ cycloalkyl, silyl and substituted silyl;

6) ruthenium isoureate compounds of the formula
wherein each of R_1, R_2, R_3, R_4 and R_5 can be the same as or different from the others, and each is independently selected from among hydrogen, Ci-C$_2$ alkyl, Ci-C$_2$ alkylamino, C$_3$-C$_6$ cycloalkyl, C$_6$-Ci$_2$ aryl, C$_5$-C$_{12}$ heteroaryl, Ci-C$_{12}$ alkoxy, C$_3$-C$_6$ alkylsilyl, C$_2$-C$_{12}$ alkenyl, R^1R^2N3, wherein R^1, R^2 and R^3 may be the same as or different from one another and each is independently selected from hydrogen and Ci-C$_6$ alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, aryloxyalkyl, imidoalkyl, and acetylalkyl, and wherein each of R_6, R_7 and R_8 can be the same as or different from the others, and is independently selected from hydrogen, Ci-C$_5$ alkyl, C$_6$-Ci$_{10}$ aryl, C$_3$-C$_9$ cycloalkyl, silyl, and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., Ci-C$_6$ alkyl, such as trimethylsilyl;

(B) strontium compounds selected from among compounds having the same formulae as ruthenium compounds (A)(I)-(6), having strontium as a central atom in place of ruthenium;

(C) calcium compounds selected from among compounds having the same formulae as ruthenium compounds (A)(I)-(6), having calcium as a central atom in place of ruthenium;

(D) barium compounds selected from among compounds having the same formulae as ruthenium compounds (A)(I)-(6), having barium as a central atom in place of ruthenium.

16. The mixed ligand monomeric Cp complex according to claim 15, selected from among:

ruthenium beta-diketiminate compounds of the formula
wherein each of \(R_1, R_2, R_3, R_4 \) and \(R_5 \) can be the same as or different from the others, and each is independently selected from among hydrogen, \(\text{C}_1\text{-C}_2 \) alkyl, \(\text{C}_1\text{-C}_2 \) alkyamino, \(\text{C}_3\text{-C}_8 \) cycloalkyl, \(\text{C}_6\text{-C}_2 \) aryl, \(\text{C}_5\text{-C}_{12} \) heteroaryl, \(\text{C}_1\text{-C}_2 \) alkoxy, \(\text{C}_3\text{-C}_6 \) alkylsilyl, \(\text{C}_2\text{-C}_{12} \) alkenyl, \(R_1R_2^2NRR_3 \), wherein \(R_1, R_2 \) and \(R_3 \) may be the same as or different from one another and each is independently selected from hydrogen and \(\text{C}_6\text{-C}_8 \) alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, aryloxyalkyl, imidoalkyl, and acetylalkyl, and wherein each of \(R_6, R_7, \) and \(R_8 \) can be the same as or different from the others, and is independently selected from hydrogen, \(\text{C}_1\text{-C}_2 \) alkyl, \(\text{C}_6\text{-C}_{10} \) aryl, \(\text{C}_1\text{-C}_2 \) alkyamine, silyl and substituted silyl.

17. The mixed ligand monomeric \(\text{C}_p \) complex according to claim 15, selected from among:

\[\text{ruthenium beta-diketoiminate compounds of the formula} \]
wherein each of R_1, R_2, R_3, R_4 and R_5 can be the same as or different from the others, and each is independently selected from among hydrogen, C_1C_2 alkyl, C_1C_2 alkenyl, C_5C_8 cycloalkyl, C_6C_2 aryl, C_5C_12 heteroaryl, C_1C_12 alkoxy, C_3C_6 alkylsilyl, C_2C_12 alkenyl, $R_1^1 R_2^2 N R_3^3$, wherein R_1^1, R_2^2 and R_3^3 may be the same as or different from one another and each is independently selected from hydrogen and C_1C_6 alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, aryloxyalkyl, imidoalkyl, and acetyllalkyl, and wherein each of R_6, R_7, and R_8 can be the same as or different from the others, and is independently selected from C_1C_6 alkyl, C_6C_10 aryl, C_1C_6 alkylamine, silyl and substituted silyl.

18. The mixed ligand monomeric Cp complex according to claim 15, selected from among:

ruthenium acetylacetonate compounds of the formula
wherein each of R_1, R_2, R_3, R_4 and R_5 can be the same as or different from the others, and each is independently selected from among hydrogen, Ci-C$_2$ alkyl, Ci-C$_2$ alkylamino, C$_3$-C$_8$ cycloalkyl, C$_6$-Ci$_2$ aryl, C$_5$-C$_{12}$ heteroaryl, Ci-C$_{12}$ alkoxy, C$_3$-C$_6$ alkylsilyl, C$_2$-C$_{12}$ alkenyl, R^1R2NNR3, wherein R^1, R^2 and R^3 may be the same as or different from one another and each is independently selected from hydrogen and Ci-C$_6$ alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, arlyoxyalkyl, imidoalkyl, and acetylalkyl, and wherein each of R_6 and R_7 can be the same as or different from the other, and is independently selected from Ci-C$_6$ alkyl, C$_6$-Ci$_{10}$ aryl, Ci-C$_6$ alkylamine, silyl and substituted silyl.

19. The mixed ligand monomeric Cp complex according to claim 15, selected from among:

ruthenium amidinate compounds of the formula:
wherein each of R₁, R₂, R₃, R₄, and R₅ can be the same as or different from the others, and each is independently selected from among hydrogen, C₃-C₈ cycloalkyl, C₆-C₁₂ aryl, C₅-C₁₂ heteroaryl, C₃-C₆ alkoxy, and C₂-C₁₂ alkenyl, R¹R²NNR³, wherein R¹, R², and R³ may be the same as or different from one another and each is independently selected from hydrogen and C₆ alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, aryloxyalkyl, imidoalkyl, and acetylalkyl, and wherein each of R₆, R₇, and R₈ can be the same as or different from the others, and is independently selected from hydrogen, C₅ alkyl, C₆-C₁₀ aryl, C₃-C₉ cycloalkyl, silyl and substituted silyl.

20. The mixed ligand monomeric Cp complex according to claim 15, selected from among:

ruthenium guanidinate compounds of the formula:

\[
\begin{array}{c}
\text{R}_1 \\
\text{R}_2 \\
\text{R}_3 \\
\text{R}_4 \\
\text{R}_5 \\
\text{R}_6 \\
\text{R}_7 \\
\text{R}_8
\end{array}
\]

wherein each of R₁, R₂, R₃, R₄, and R₅ can be the same as or different from the others, and each is independently selected from among hydrogen, C₃-C₈ cycloalkyl, C₆-C₈ cycloalkyl, C₆-C₈ aryl, C₅-C₈ heteroaryl, C₃-C₆ alkoxy, and C₂-C₈ alkenyl, R¹R²NNR³, wherein R¹, R², and R³ may be the same as or different from one another and each is independently selected from hydrogen and C₆ alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, aryloxyalkyl, imidoalkyl, and acetylalkyl, and wherein each of R₆, R₇,
\(R_8\) and \(R_9\) can be the same as or different from the others, and is independently selected from hydrogen, \(C_1-\)alkyl, \(C_6-C_10\) aryl, \(C_3-C_9\) cycloalkyl, silyl and substituted silyl.

21. The mixed ligand monomeric \(\text{Cp}\) complex according to claim 15, comprising a strontium compound selected from said (B) strontium compounds.

22. The mixed ligand monomeric \(\text{Cp}\) complex according to claim 15, comprising a barium compound selected from said (C) barium compounds.

23. A method of making a ruthenium beta-diketiminate, comprising a salt elimination reaction conducted according to the following reaction scheme:

\[
1/4 \left[\text{Cp}^\delta \text{RuCl}_4 \right] + \rightarrow \text{LiCl} \quad \text{THF}
\]

wherein each of \(R_1, R_2, R_3, R_4\) and \(R_5\) can be the same as or different from the others, and each is independently selected from among hydrogen, \(\text{C}_1\text{-C}_2\) alkyl, \(\text{C}_1\text{-C}_2\) alkylamino, \(\text{C}_3\text{-C}_8\) cycloalkyl, \(\text{C}_6\text{-C}_2\) aryl, \(\text{C}_5\text{-C}_12\) heteroaryl, \(\text{C}_1\text{-C}_12\) alkoxy, \(\text{C}_3\text{-C}_6\) alkylsilyl, \(\text{C}_2\text{-C}_12\) alkenyl, \(R_1^2\text{NNR}_3\), wherein \(R_1^1, R_1^2\) and \(R_1^3\) may be the same as or different from one another and each is independently selected from hydrogen and \(\text{C}_1\text{-C}_6\) alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, arloxyalkyl, imidoalkyl, and acetylalkyl, and wherein each of \(R_6, R_7,\) and \(R_8\) can be the same as or different from the others, and is independently selected from hydrogen, \(\text{C}_1\text{-C}_6\) alkyl, \(\text{C}_6\text{-C}_10\) aryl, \(\text{C}_1\text{-C}_6\) alkyamine, silyl and substituted silyl.

24. A method of making a ruthenium beta-diketiminate, comprising an amine elimination reaction conducted according to the following reaction scheme:
wherein each of R₁, R₂, R₃, R₄ and R₅ can be the same as or different from the others, and each is independently selected from among hydrogen, Ci-C₆ alkyl, Ci-C₆ alkylamino, C₃-C₈ cycloalkyl, C₆-C₁₂ aryl, C₅-C₁₂ heteroaryl, Ci-C₁₂ alkoxy, C₃-C₆ alkylsilyl, C₂-C₁₂ alkenyl, R¹R²NNR³, wherein R¹, R² and R³ may be the same as or different from one another and each is independently selected from hydrogen and Ci-C₆ alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, aryloxyalkyl, imidoalkyl, and acetylalkyl, and wherein each of R₆, R₇, and R₈ can be the same as or different from the others, and is independently selected from hydrogen, Ci-C₆ alkyl, Ci-C₁₀ aryl, Ci-C₆ alkylamine, silyl and substituted silyl.

25. A method of making a ruthenium-diketoiminate, comprising a reaction conducted according to the following reaction scheme:
wherein each of R_1, R_2, R_3, R_4 and R_5 can be the same as or different from the others, and each is independently selected from among hydrogen, C_1-C_2 alkyl, C_1-C_2 alkylamino, C_3-C_8 cycloalkyl, C_6-C_8 aryl, C_5-C_8 heteroaryl, C_1-C_{12} alkoxy, C_1-C_6 alkylsilyl, C_2-C_{12} alkenyl, $R^1R^2NNR^3$, wherein R^1, R^2 and R^3 may be the same as or different from one another and each is independently selected from hydrogen and C_6 alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, aryloxyalkyl, imidoalkyl, and acetylalkyl, and wherein each of R_6, R_7, R_8 can be the same as or different from the others, and is independently selected from hydrogen, C_6 alkyl, C_6-C_{10} aryl, C_6 alkylamine, silyl and substituted silyl wherein the silyl substituents can be any suitable organo substituents, e.g., C_6 alkyl, such as trimethylsilyl.

26. A method of making a ruthenium-acetylacetonate, comprising a reaction conducted according to the following reaction scheme:
wherein each of R_1, R_2, R_3, R_4 and R_5 can be the same as or different from the others, and each is independently selected from among hydrogen, Ci-C_2 alkyl, Ci-C_2 alkylamino, C_3-C_8 cycloalkyl, C_6-Ci_2 aryl, C_5-C_{12} heteroaryl, Ci-C_{12} alkoxy, C_3-C_6 alkylsilyl, C_2-C_{12} alkenyl, $R^1R^2NNR^3$, wherein R^1, R^2 and R^3 may be the same as or different from one another and each is independently selected from hydrogen and Ci-C_6 alkyl, and pendant ligands including functional group(s) providing further coordination to the ruthenium central atom, and selected from among aminoalkyl, alkoxyalkyl, aryloxalkyl, imidoalkyl, and acetylalkyl, and wherein each of R_6 and R_7 can be the same as or different from the others, and is independently selected from hydrogen, Ci-C_6 alkyl, Ci-C_0 aryl, Ci-C_6 alkyamine, silyl and substituted silyl.

27. A precursor vapor comprising vapor of the mixed ligand monomeric Cp complex of calcium according to claim 15.

28. A precursor vapor comprising vapor of the mixed ligand monomeric Cp complex of strontium according to claim 15.

29. A precursor vapor comprising vapor of the mixed ligand monomeric Cp complex of barium according to claim 15.

30. A precursor formulation, comprising a mixed ligand monomeric Cp complex according to claim 15, and a solvent medium therefor.

31. The precursor formulation of claim 30, wherein the solvent medium comprises at least one solvent species selected from among hydrocarbon solvents, C_3-C_n alkanes; C_2-C_n ethers; C_6-C_n aromatics; C_7-Ci_6 arylalkanes; C_{i9}-C_{25} arylethylalkanes; and further alkyl-substituted forms of said aromatics, arylalkanes and arylethylalkanes, wherein the further alkyl substituents in the case of multiple alkyl substituents may be the same as or different from one another and wherein each is independently selected from Ci-C_8 alkyl; alkyl-substituted benzene compounds; benzocyclohexane (tetralin); alkyl-substituted benzocyclohexane; tetrahydrofuran; xylene; 1,4-tertbutyltoluene; tetrahydrofuran; 1,3-diisopropylbenzene; dimethylether; amines; DMAPA; toluene; glymes; tetraglymes; octane; and decane.
32. The precursor formulation of claim 30, wherein the solvent medium comprises at least one solvent selected from among solvents having a boiling point at 1 atmosphere pressure in a range of from about 140°C to about 250°C.

33. The precursor formulation of claim 30, wherein the solvent medium comprises at least one solvent selected from among xylene, 1,4-tertbutyltoluene, 1,3-diisopropylbenzene, tetralin, dimethyltetralin and other alkyl-substituted aromatic solvents.

34. A precursor composition useful in conformal ALD or CVD deposition of strontium ruthenium oxide, including at least one compound selected from among:

A) Ru(Cp)$_2$ and Sr(Cp)$_2$, wherein Cp is cyclopentadienyl of the formula

```
  R1
 /       \
 R5 ------- R2
   /       \
 R4 ------- R3
```

wherein each of R$_1$, R$_2$, R$_3$, R$_4$ and R$_5$ can be the same as or different from the others, and each is independently selected from among hydrogen, C$_i$ to C$_6$ alkyl, C$_i$ to C$_{10}$ aryl, C$_i$ to C$_e$ alkoxy, C$_i$ to C$_6$ alkylsilyl, and pendant ligands with additional functional group(s) that provides further coordination to the metal center;

B) Ru(beta-diketonate)$_x$L$_y$ and Sr(beta-diketonate)$_2$L$_z$ wherein the beta-diketonate moiety has the formula

```
O C=O
```

wherein:
x has a value of 2 or 3, y is an integer having a value of from 0 to 2, and z is an integer having a value of from 0 to 4;
R₁ and R₂ can be the same as or different from one another, and each is independently selected from among Cᵢ to C₆ alkyl, C₆ to C₁₀ aryl, Cᵢ to Cₑ alkoxy, Cᵢ to C₆ alkylsilyl, and pendant ligands with additional functional group(s) that provides further coordination to the metal center; and
L is selected from among neutral Lewis bases;

C) Ru(beta-diketoiminate)ₓ-Lₚ and Sr(beta-diketoiminate)₂-Lₚ wherein beta-diketoiminate has the formula

\[
\begin{array}{c}
\text{R₁} \\
\text{O} \\
\text{N} \\
\text{R₂} \\
\end{array}
\]

wherein:
x has a value of 2 or 3, y is an integer having a value of from 0 to 2, and z is an integer having a value of from 0 to 4;
R₁, R₂ and R₃ can be the same as or different from one another, and each is independently selected from among Cᵢ to C₆ alkyl, C₆ to C₁₀ aryl, Cᵢ to Cₑ alkoxy, Cᵢ to C₆ alkylsilyl, and pendant ligands with additional functional group(s) that provide further coordination to the metal center; and
L is selected from among neutral Lewis bases; and

D) Ru(beta-diketiminate)ₓ-Lₚ and Sr(beta-diketiminate)₂-Lₚ, wherein beta-diketiminate has the formula

\[
\begin{array}{c}
\text{R₁} \\
\text{N} \\
\text{N} \\
\text{R₂} \\
\end{array}
\]

\[
\begin{array}{c}
\text{R₄} \\
\end{array}
\]

- 56 -
wherein:

x has a value of 2 or 3, y is an integer having a value of from 0 to 2, and z is an integer having a value of from 0 to 4;

Ri, R2, R3 and R4 can be the same as or different from one another, and each is independently selected from among C1 to C6 alkyl, C6 to C10 aryl, C1 to C6 alkoxy, C1 to C6 alkylsilyl, and pendant ligands with additional functional group(s) that provide further coordination to the metal center; and

L is selected from among neutral Lewis bases.

35. The precursor according to claim 34, wherein L is selected from among amines, PMDETA, C2 to C12 ethers, THF, tetruglymes, C2 to C12 alkenes, cyclooctane-1,5-diene (COD), and C2 to C12 alkynes.

36. The precursor according to claim 34, with the proviso that said at least one compound does not include any of Sr(CpMe5)2, EtCp2Ru, or Sr(thd)2-PMDETA.

37. A precursor composition comprising at least one precursor according to claim 34, and a solvent medium therefor.

38. The precursor composition of claim 37, comprising at least two chemically compatible precursors.

39. A liquid delivery process for deposition of a metal film on a substrate, comprising volatilizing a precursor composition to form a precursor vapor, and contacting said precursor vapor with the substrate to deposit said metal film thereon, wherein said precursor composition comprises a ruthenium precursor according to claim 1.

40. A liquid delivery process for deposition of a metal film on a substrate, comprising volatilizing a precursor composition to form a precursor vapor, and contacting said precursor vapor with the substrate to deposit said metal film thereon, wherein said precursor composition comprises a ruthenium precursor formulation according to claim 5.

41. A liquid delivery process for deposition of a metal film on a substrate, comprising volatilizing a precursor composition to form a precursor vapor, and contacting said precursor
vapor with the substrate to deposit said metal film thereon, wherein said precursor composition comprises a mixed ligand monomeric Cp complex of ruthenium (II) according to claim 10.

42. A liquid delivery process for deposition of a metal film on a substrate, comprising volatilizing a precursor composition to form a precursor vapor, and contacting said precursor vapor with the substrate to deposit said metal film thereon, wherein said precursor composition comprises a mixed ligand monomeric Cp complex of ruthenium, calcium, strontium or barium according to claim 15.

43. A liquid delivery process for deposition of a metal film on a substrate, comprising volatilizing a precursor composition to form a precursor vapor, and contacting said precursor vapor with the substrate to deposit said metal film thereon, wherein said precursor composition comprises a precursor formulation according to claim 30.

44. A liquid delivery process for deposition of a metal film on a substrate, comprising volatilizing a precursor composition to form a precursor vapor, and contacting said precursor vapor with the substrate to deposit said metal film thereon, wherein said precursor composition comprises a precursor composition of claim 34.

45. A liquid delivery process for deposition of a metal film on a substrate, comprising volatilizing a precursor composition to form a precursor vapor, and contacting said precursor vapor with the substrate to deposit said metal film thereon, wherein said precursor composition comprises a precursor composition of claim 37.

46. A solid delivery process for atomic layer deposition or chemical vapor deposition of a metal film a substrate, comprising volatilizing a solid precursor composition to form a precursor vapor, and contacting said precursor vapor with the substrate to deposit said metal film thereon, wherein said precursor composition comprises a mixed ligand cyclopentadienyl metal compound including a cyclopentadienyl ligand and at least one non-cyclopentadienyl ligand, wherein the metal is selected from the group consisting of ruthenium, calcium, strontium and barium.

47. A solid delivery process for atomic layer deposition or chemical vapor deposition of a metal film a substrate, comprising volatilizing a solid precursor composition to form a precursor vapor, and contacting said precursor vapor with the substrate to deposit said metal film thereon, wherein
said precursor composition comprises a dicyclopentadienyl metal compound, wherein the metal is selected from the group consisting of ruthenium, calcium, strontium and barium.

48. A solid delivery process for deposition of a metal film on a substrate, comprising volatilizing a precursor composition to form a precursor vapor, and contacting said precursor vapor with the substrate to deposit said metal film thereon, wherein said precursor composition comprises a ruthenium precursor according to claim 1.

49. A solid delivery process for deposition of a metal film on a substrate, comprising volatilizing a precursor composition to form a precursor vapor, and contacting said precursor vapor with the substrate to deposit said metal film thereon, wherein said precursor composition comprises a mixed ligand monomeric Cp complex of ruthenium (II) according to claim 10.

50. A solid delivery process for deposition of a metal film on a substrate, comprising volatilizing a precursor composition to form a precursor vapor, and contacting said precursor vapor with the substrate to deposit said metal film thereon, wherein said precursor composition comprises a mixed ligand monomeric Cp complex of ruthenium, strontium or barium according to claim 15.

51. A solid delivery process for deposition of a metal film on a substrate, comprising volatilizing a precursor composition to form a precursor vapor, and contacting said precursor vapor with the substrate to deposit said metal film thereon, wherein said precursor composition comprises a precursor composition of claim 34.

52. A method of fabricating a microelectronic device including metallization material and dielectric material in proximity to said metallization material, comprising depositing ruthenium on said metallization material from a precursor vapor of a ruthenium precursor under deposition conditions including a forming gas ambient vapor environment, wherein the ruthenium precursor comprises a cyclopentadienyl ruthenium precursor that under said deposition conditions deposits ruthenium from said precursor vapor on the metallization material but does not deposit ruthenium on said dielectric material.

53. The method of claim 52, wherein the ruthenium precursor comprises a dicyclopentadienyl ruthenium precursor.
54. The method of claim 53, wherein said dicyclopentadienyl ruthenium precursor comprises Ru(EtCp)₂.

55. A precursor dispensing package, comprising a precursor storage and dispensing vessel, and a ruthenium, strontium, calcium or barium precursor contained in said precursor storage and dispensing vessel, wherein said precursor is selected from among:
 - the ruthenium precursor according to claim 1;
 - the ruthenium precursor formulation according to claim 5;
 - the mixed ligand monomeric Cp complex of ruthenium (II) according to claim 10;
 - the mixed ligand monomeric Cp complex of ruthenium, strontium or barium according to claim 15;
 - the precursor formulation according to claim 30;
 - the precursor composition of claim 34; and
 - the precursor composition of claim 37.

56. A method of depositing a Group II ruthenate on a substrate, comprising conducting a deposition process using a precursor composition comprising at least one precursor selected from among:
 (i) mixed ligand cyclopentadienyl metal compounds including a cyclopentadienyl ligand and at least one non-cyclopentadienyl ligand, wherein the metal is selected from the group consisting of ruthenium, strontium, calcium and barium; and
 (ii) a dicyclopentadienyl metal compound, wherein the metal is selected from the group consisting of ruthenium, strontium, calcium and barium.

57. The method of claim 56, comprising atomic layer deposition.

58. A selective deposition process for forming a ruthenium-containing film on a substrate including metal and non-metal portions, said process comprising depositing said ruthenium-containing film on the substrate from a precursor vapor of a ruthenium precursor in an ambient gas environment limiting the deposition of said ruthenium-containing film on said non-metal portions of the substrate from said precursor.

59. The process of claim 58, wherein the ambient gas environment comprises a forming gas environment.
60. A ruthenium selective deposition process, comprising conducting ruthenium deposition in a gaseous environment that is effective to enhance selectivity of ruthenium deposition on a surface of interest on a substrate, as compared to corresponding selectivity in an inert gas environment.

61. The process of claim 60, wherein the gaseous environment comprises forming gas.

62. A method of depositing a Group II metal ruthenate film on a substrate by a vapor deposition process, said method comprising conducting said vapor deposition process with precursors including a ruthenium precursor and a Group II metal precursor including strontium, calcium or barium, wherein the ruthenium precursor and the Group II metal precursor have at least one common ligand in relation to each other.

63. The method of claim 62, wherein the common ligand comprises a ligand selected from the group consisting of cyclopentadienyl ligands, di-cyclopentadienyl ligands, and beta-diketonate ligands.

64. The method of claim 62, wherein the common ligand comprises a beta-diketonate ligand.

65. The method of claim 62, wherein the common ligand comprises a cyclopentadienyl ligand.

66. The method of claim 64, wherein said beta-diketonate ligand is selected from the group consisting of 2,2,6,6-tetramethyl-3,5-heptanedionate; 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; and 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedionate.

67. The method of claim 62, wherein the common ligand comprises 2,2,6,6-tetramethyl-3,5-heptanedionate, the ruthenium precursor has the formula Ru(thd)_3 and the Group II precursor comprises a strontium precursor having the formula Sr(thd)_2(pmdeta), in which pmdeta represents pentamethyldiethlenetriamine.

68. The method of claim 62, wherein said vapor deposition process comprises chemical vapor deposition.
69. A method of depositing a Group II metal ruthenate film on a substrate by an ALD or digital CVD vapor deposition process, said method comprising conducting said vapor deposition process with precursors including a ruthenium precursor and a Group II precursor including strontium, calcium or barium, wherein the ruthenium precursor and the Group II metal precursor lack any common ligand, and conducting a purge pulse between ruthenium precursor contacting of the substrate and Group II metal precursor contacting of the substrate.

70. The method of claim 69, wherein the ruthenium precursor has the formula Ru(thd)$_3$ and the Group II metal precursor comprises a di-cyclopentadienyl ligand.