The present invention is concerned with novel spiro-piperidine derivatives as V1 receptor antagonists, their manufacture, pharmaceutical compositions containing them and their use as medicaments. The active compounds of the present invention are useful in the prevention and/or treatment of anxiety and depressive disorders and other diseases. The compounds of present invention are described with the general formula (I), wherein

\[
R^1 \to R^2, \ R^3 \to R^4, \ R^\prime \to R^\prime\prime, \ R^\prime \to R^\prime\prime, \ X \text{ and } Y \text{ as defined in the specification.}
\]
SPIRO-PIPERIDINE DERIVATIVES

The present invention is concerned with novel spiro-piperidine derivatives as Via receptor antagonists, their manufacture, pharmaceutical compositions containing them and their use as medicaments. The active compounds of the present invention are useful in the prevention and/or treatment of anxiety and depressive disorders and other diseases.

In particular, the present invention is concerned with compounds of the general formula (I)

\[
\begin{align*}
\text{wherein} \\
X & \text{ is } O \text{ and } Y \text{ is } C=O, \\
X & \text{ is } O \text{ and } Y \text{ is } CH_2, \\
X & \text{ is } C=O \text{ and } Y \text{ is } NR^6, \\
X & \text{ is } CH_2 \text{ and } Y \text{ is } O, \text{ or} \\
X-Y & \text{ is } CH=CH, \text{ or} \\
X-Y & \text{ is } CH_2-CH_2, \text{ or} \\
X & \text{ is } C=O \text{ and } Y \text{ is } O, \text{ or} \\
X & \text{ is } CH_2 \text{ and } Y \text{ is } NR^6; \\
R^1, R^2, R^3 \text{ and } R^4 & \text{ are each independently hydrogen,} \\
& \text{ or} \\
R^1, R^2, R^3 \text{ and } R^4 & \text{ are each independently halo.}
\end{align*}
\]

MWA/27.09.2007
Ci-6-alkyl, optionally substituted by OH,
halo-Ci-6-alkyl,
Ci-6-alkoxy, optionally substituted by OH, or
halo-Ci-6-alkoxy;

R^5 and R^6 are each independently hydrogen or methyl;

R^6 is hydrogen or Ci-6-alkyl;

R^7, R^7 R^8, R^8, and R^9 are each independently selected from
hydrogen, halo,
halo-Ci-6-alkyl, Ci-6-alkyl, Ci-6-alkoxy, halo-Ci-6-alkoxy, nitro, or
cyano,
or R^7 and R^8, R^7 and R^8, R^8 and R^9, or R^8 and R^9 are bound together to form a ring
with the phenyl moiety, wherein

-R^7- R^8- or -R^7- R^8- is
-N(R^{10})-N=CH-, or -CH=N-N(R^{10})-,

wherein R^{10} is hydrogen, or Ci-6-alkyl,
-N(R^{11})-CH=CH-, or -CH=CH-N(R^{11})-,

wherein R^{11} is hydrogen, or Ci-6-alkyl,
-C(R^{12})=C(R^{13})=C(R^{14})=C(R^{15})-,

wherein R^{12}, R^{13}, R^{14}, and R^{15} are each independently selected from
hydrogen, halo, halo-Ci-6-alkyl, Ci-6-alkyl, Ci-6-alkoxy,

halo-Ci-6-alkoxy, nitro, or cyano,
-O-(CR^{16}R^{16'})_n-O-,

wherein n is 1 or 2, and R^{16} and R^{16'} are each independently hydrogen, halo or Ci-6-alkyl,

-N(R^{17})-CH=N-, or -N=CH-N(R^{17})-,

wherein R^{17} is hydrogen, or Ci-6-alkyl, or
-N(R^{18})=C=CH_2-, or -CH_2=C(O)-N(R^{18})-, or
wherein R^{18} is hydrogen or Ci-6-alkyl,
or a pharmaceutically acceptable salt thereof.

The compounds of formula (I) can be manufactured by the methods given below, by the methods given in the examples or by analogous methods. Appropriate reaction conditions for the individual reaction steps are known to a person skilled in the art.

Starting materials are either commercially available or can be prepared by methods analogous to the methods given below, by methods described in references cited in the text or in the examples, or by methods known in the art.

The compounds of formula (I) possess pharmaceutical activity, in particular they are modulators of Via receptor activity. More particular, the compounds are antagonists of the Via receptor.

Vasopressin is a 9 amino acid peptide mainly produced by the paraventricular nucleus of the hypothalamus. Three vasopressin receptors, all belonging to the class I G-protein coupled receptors, are known. The Via receptor is expressed in the brain, liver, vascular smooth muscle, lung, uterus and testis, the VIb or V3 receptor is expressed in the brain and pituitary gland, the V2 receptor is expressed in the kidney where it regulates water excretion and mediates the antidiuretic effects of vasopressin.

The Via receptor is also mediating the cardiovascular effects of vasopressin in the brain by centrally regulating blood pressure and heart rate in the solitary tract nucleus.

It is therefore an object of the present invention to provide compounds which act as Via receptor modulators, and in particular as Via receptor antagonists. Such antagonists are useful as therapeutics in the conditions of dysmenorrhea, hypertension, chronic heart failure, inappropriate secretion of vasopressin, liver cirrhosis, nephrotic syndrome, obsessive compulsive disorder, anxiety and depressive disorders. The preferred indications with regard to the present invention are the treatment of anxiety and depressive disorders.

In the present description, the term "alkyl", alone or in combination with other groups, refers to a branched or straight-chain monovalent saturated hydrocarbon radical. The term "Ci-6-alkyl" denotes a saturated straight- or branched-chain hydrocarbon group containing from 1 to 6 carbon atoms, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, the isomeric pentyls and the like. A preferred sub-group of Ci-6-alkyl is Ci-4-alkyl, i.e. with 1-4 carbon atoms.

In the present invention, the term "alkylene" refers to a linear or branched saturated divalent hydrocarbon radical. In particular, "Ci-6-alkylene" means a linear saturated divalent hydrocarbon radical of one to six carbon atoms or a branched saturated divalent hydrocarbon radical of three to six carbon atoms, e.g. methylene, ethylene, 2,2-dimethylethylene, n-propylene, 2-methylpropylene, and the like.

In the present description, the term "alkoxy" and "Ci-6-alkoxy" refers to the group R'-O-, wherein R' is alkyl or Ci-6-alkyl as defined above. Examples of alkoxy groups are methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, tert-butoxy, sec-butoxy and the like. A preferred sub-group of Ci-6-alkoxy, and still more preferred alkoxy groups are methoxy and/or ethoxy.
In the present description, the term "thioalkyl" and "Ci-6-thioalkyl" refers to the group R'-S-, wherein R' is alkyl or Ci-6-alkyl as defined above.

The term "Ci-6-hydroxyalkyl" or "Ci-6-alkyl substituted by OH" denotes a Ci-6-alkyl group as defined above wherein at least one of the hydrogen atoms of the alkyl group is replaced by a hydroxy group.

The term "Ci-6-cyanoalkyl" or "Ci-6-alkyl substituted by CN" denotes a Ci-6-alkyl group as defined above wherein at least one of the hydrogen atoms of the alkyl group is replaced by a CN group.

The term "halo" or "halogen" refers to fluorine (F), chlorine (Cl), bromine (Br) and iodine (I) with fluorine, chlorine and bromine being preferred.

The term "halo-Ci-6-alkyl" is synonymous with "Ci-6-haloalkyl" or "Ci-6-alkyl substituted by halo" and means a Ci-6-alkyl group as defined above wherein at least one of the hydrogen atoms of the alkyl group is replaced by a halogen atom, preferably fluoro or chloro, most preferably fluoro. Examples of halo-Ci-6-alkyl include but are not limited to methyl, ethyl, propyl, isopropyl, isobutyl, sec-butyl, tert-butyl, pentyl or n-hexyl substituted by one or more Cl, F, Br or I atom(s) as well as those groups specifically illustrated by the examples herein below. Among the preferred halo-Ci-6-alkyl groups are difluoro- or trifluoro-methyl or -ethyl.

The term "halo-Ci-6-alkoxy" is synonymous with "Ci-6-haloalkoxy" or "Ci-6-alkoxy substituted by halo" and means a Ci-6-alkoxy group as defined above wherein at least one of the hydrogen atoms of the alkyl group is replaced by a halogen atom, preferably fluoro or chloro, most preferably fluoro. Among the preferred halogenated alkoxy groups are difluoro- or trifluoro-methoxy or -ethoxy.

The term "C2-i2-alkenyl", alone or in combination, denotes a straight-chain or branched hydrocarbon residue of 2 to 12 carbon atoms comprising at least one double bond. A preferred sub-group of C2-i2-alkenyl is C2-6-alkenyl. Examples of the preferred alkenyl groups are ethenyl, propen-1-yl, propen-2-yl (allyl), buten-1-yl, buten-2-yl, buten-3-yl, penten-1-yl, penten-2-yl, penten-3-yl, penten-4-yl, hexen-1-yl, hexen-2-yl, hexen-3-yl, hexen-4-yl and hexen-5-yl, as well as those specifically illustrated by the examples herein below.

The term "one or more" substituents preferably means one, two or three optional substituents per ring.
The term "pharmaceutically acceptable acid addition salts" embraces salts with inorganic and organic acids, such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, citric acid, formic acid, fumaric acid, maleic acid, acetic acid, succinic acid, tartaric acid, methane-sulfonic acid, p-toluenesulfonic acid and the like.

The term "bound together to form a ring with the phenyl moiety" means that the residues of the phenyl ring, which are located in ortho-position to each other, may form an anellated ring to the phenyl moiety.

The invention further comprises individual optical isomers of the compounds herein as well as racemic and non-racemic mixtures thereof.

In detail, the present invention relates to compounds of the general formula (I)

\[
\begin{align*}
\text{wherein} & \\
X & = \text{O and } Y = \text{C=O}, \\
X & = \text{O and } Y = \text{CH}_2, \\
X & = \text{C=O and } Y = \text{NR}^6, \\
X & = \text{C=O and } Y = \text{C=O}, \\
X & = \text{C=O and } Y = \text{NR}^6; \\
R^1, R^2, R^3 \text{ and } R^4 & \text{ are each independently hydrogen,}
\end{align*}
\]
halo,
Ci-6-alkyl, optionally substituted by OH,
halo-Ci-6-alkyl,
Ci-6-alkoxy, optionally substituted by OH, or
halo-Ci-6-alkoxy;

R^5 and R^6 are each independently hydrogen or methyl;

R^6 is hydrogen or Ci-6-alkyl;

R^7, R^7', R^8, R^8', and R^9 are each independently selected from
hydrogen,
halo,
halo-Ci-6-alkyl,
Ci-e-alkyl,
Ci-6-alkoxy,
halo-Ci-6-alkoxy,
nitro, or
cyano,
or R^7 and R^8, R^7' and R^8', R^8 and R^9, or R^8' and R^9 are bound together to form a ring
with the phenyl moiety, wherein

-N(R^10)-N=CH-, or -CH=NNR^10-, wherein R^10 is hydrogen, or Ci-6-alkyl,
-N(R^11)-CH=CH-, or -CH=CH-NR^11-, wherein R^11 is hydrogen, or Ci-6-alkyl,
-C(R^12)=C(R^13)-C(R^14)=C(R^15)-,

wherein R^12, R^13, R^14, and R^15 are each independently selected from
hydrogen, halo, halo-Ci-6-alkyl, Ci-6-alkyl, Ci-6-alkoxy,
halo-Ci-6-alkoxy, nitro, or cyano,

-O-(CR^16,R^16')_n-O-, wherein n is 1 or 2, and R^16 and R^16' are each independently hydrogin, halo or Ci-6-alkyl,

-N(R^17)-CH=N-, or -N=CH-NR^17-, wherein R^17 is hydrogen, or Ci-6-alkyl,

-N(R^18)-C(O)-CH_2-, or -CH_2-C(O)-NR^18-, wherein R^18 is hydrogen or Ci-6-alkyl,
or a pharmaceutically acceptable salt thereof.

In certain embodiments of the invention, \(R^1, R^2, R^3 \) and \(R^4 \) are each independently hydrogen, halo, Ci-6-alkyl or Ci-6-alkoxy, optionally substituted by OH.

In certain embodiments of the invention, \(R^1 \) is hydrogen or halo, preferably hydrogen or fluoro.

In certain embodiments of the invention, \(R^2 \) is hydrogen, halo or Ci-6-alkoxy; preferably hydrogen, fluoro, bromo or methoxy.

In certain embodiments of the invention, \(R^3 \) is hydrogen, halo, or Ci-6-alkoxy, optionally substituted by OH; preferably hydrogen, chloro, bromo, methoxy or -O(CH\(_2\))\(_2\)OH.

In certain embodiments of the invention, \(R^4 \) is hydrogen or Ci-6-alkyl; preferably hydrogen or methyl.

In certain embodiments all \(R^1 \) to \(R^4 \) are hydrogen.

In certain embodiments, one residue of \(R^1 \) to \(R^4 \) is halo and the others are hydrogen.

In certain embodiments, one residue of \(R^1 \) to \(R^4 \) is Ci-6-alkyl, preferably methyl, and the others are hydrogen.

In certain embodiments, one residue of \(R^1 \) to \(R^4 \) is Ci-6-alkoxy, optionally substituted by OH, preferably methoxy or -O(CH\(_2\))\(_2\)OH, and the others are hydrogen.

In certain embodiments of the invention, \(R^5 \) and \(R^6 \) are both hydrogen, in other embodiments of the invention, \(R^5 \) and \(R^6 \) are both methyl, in other embodiments of the invention, \(R^5 \) is hydrogen and \(R^6 \) is methyl.

In certain embodiments of the invention, \(R^5 \) is hydrogen, \(R^{5'} \) is methyl, \(X \) is O and \(Y \) is C=O.

In certain embodiments of the invention, \(R^6 \) is hydrogen or Ci-6-alkyl, preferably hydrogen.

In certain embodiments of the invention, both \(R^7 \) and \(R^{7'} \) are hydrogen.

In certain embodiments of the invention, one of \(R^7 \) and \(R^{7'} \) is hydrogen and the other is halo, halo-Ci-6-alkyl, Ci-6-alkyl, Ci-6-alkoxy, halo-Ci-6-alkoxy, nitro, or cyano.
In certain embodiments of the invention, R^7 and R^8 are each independently hydrogen, or halo.

In certain embodiments of the invention, one of R^7 and R^8 is hydrogen and the other is halo, preferably chloro.

In certain embodiments of the invention, each of R and R' are independently hydrogen, halo, halo-Ci-6-alkyl, Ci-6-alkyl, Ci-6-alkoxy, halo-Ci-6-alkoxy, nitro, or cyano.

In certain embodiments of the invention, R^8 and R^9 are each independently hydrogen, halo, or Ci-6-alkoxy, preferably hydrogen, chloro, ethoxy or methoxy.

In certain embodiments of the invention, R^7 and R^8 or R^7 and R^8 are bound together to form a ring with the phenyl moiety, wherein

-R^7- R^8- or -R^7- R' - is
-N(R^10)-N=CH- , or -CH=N-N(R^10)-,
 wherein R^10 is hydrogen, or Ci-6-alkyl,
-N(R^10)-CH=CH-, or -CH=CH-N(R^12)-,
 wherein R^11 is hydrogen, or Ci-6-alkyl,
-C(R^12)=C(R^13)-C(R^14)=C(R^15)-,
 wherein R^12, R^13, R^14, and R^15 are each independently selected from hydrogen, halo, halo-Ci-6-alkyl, Ci-6-alkyl, Ci-6-alkoxy, halo-Ci-6-alkoxy, nitro, or cyano,
-O-(CR^16-R^16')_n-O-,
 wherein n is 1 or 2, and R^16 and R^16' are each independently hydrogen, halo or Ci-6-alkyl, or
-N(R^17)-CH=N-, or -N=CH-N(R^17)-,
 wherein R^17 is hydrogen, or Ci-6-alkyl.

In certain embodiments of the invention, R^7 and R^8 are bound together to form a ring with the phenyl moiety as described above, and

R^8, R^9 and R^7 are hydrogen, or
R^9 and R^7 are hydrogen, and R^8' is halo, preferably chloro, or
R^9 and R^7 are hydrogen, and R^8' is Ci-6-alkoxy, preferably ethoxy or methoxy.

In certain embodiments of the invention, R^7 and R^8' are bound together to form a ring with the phenyl moiety as described above, and
R⁹, R⁸ and R⁷ are hydrogen, or
R⁹ and R⁷ are hydrogen, and R⁸ is halo, preferably chloro, or
R⁹ and R⁷ are hydrogen, and R⁸ is Ci₆-alkoxy, preferably ethoxy or methoxy.

In certain embodiments of the invention, R⁷ and R⁸ are halo, preferably chloro, and
R⁹, R′ and R′ are hydrogen.

In certain embodiments of the invention, R⁹ is hydrogen, halo, halo-Ci₆-alkyl, C₁₃₀-alkyl, Ci₆-alkoxy, halo-Ci₆-alkoxy, nitro, or cyano.

In certain embodiments of the invention, R⁹ is hydrogen, halo, or Ci₆-alkyl, preferably hydrogen, chloro or tert-butyl.

In certain embodiments of the invention, R⁸ and R⁹ or R⁸ and R⁹ are bound together to form a ring with the phenyl moiety, wherein
-R⁸-R⁹- or -R⁸-R⁹- is
-C(R₁₂)-C(R₁₃)-C(R₁₄)=C(R₁₅)-,
wherein R₁₂, R₁₃, R₁₄, and R₁₅ are each independently selected from hydrogen, halo, halo-Ci₆-alkyl, Ci₆-alkyl, Ci₆-alkoxy,
halo-Ci₆-alkoxy, nitro, or cyano,
-N(R₁₈)-C(O)-CH₂-, or -CH₂-C(O)-N(R₁₈)-,
wherein R₁₈ is hydrogen or Ci₆-alkyl.

In certain embodiments of the invention, R⁸ and R⁹ are bound together to form a ring with the phenyl moiety as described above, and
R⁷, R⁸ and R⁷ are hydrogen.

In certain embodiments of the invention, R⁸ and R⁹ are bound together to form a ring with the phenyl moiety as described above, and
R⁷, R⁸ and R⁷ are hydrogen.

In certain embodiments of the invention, R⁸ and R⁹ are halo, preferably chloro, and
R⁷, R⁷ and R⁸ are hydrogen.

In certain embodiments of the invention, R⁸ and R⁹ are halo, preferably chloro, and
R⁷, R⁷ and R⁸ are hydrogen.
In certain embodiments of the invention, R^9 is C1-6-alkyl or halo, preferably tert-butyl or chloro, and R^7, R^7, R^8, and R^8 are hydrogen.

Preferred compounds of the invention are those of formula (I) wherein R^8 and R^9 are halo, or wherein

R^8 and R^9 are bound together to form a ring with the phenyl moiety, wherein

-\textbf{R^8}, R^9- is

\[-\text{C}(\text{R}_{12})=\text{C}(\text{R}_{13})=\text{C}(\text{R}_{14})=\text{C}(\text{R}_{15})- , \]

wherein R_{12}, R_{13}, R_{14}, and R_{15} are each independently selected from hydrogen, halo, halo-C1-6-alkyl, Ci-6-alkyl, Ci-6-alkoxy, halo-Ci-6-alkoxy, nitro, or cyano,

and R^7, R^7 and R^8 are hydrogen.

Preferred compounds of the invention are those of formula (I) wherein R^8 and R^9 are halo, or wherein

R^8 and R^9 are bound together to form a ring with the phenyl moiety, wherein

\[-\textbf{R^8}, R^9- \]

\[-\text{C}(\text{R}_{12})=\text{C}(\text{R}_{13})=\text{C}(\text{R}_{14})=\text{C}(\text{R}_{15})- , \]

wherein R_{12}, R_{13}, R_{14}, and R_{15} are each independently selected from hydrogen, halo, halo-Ci-6-alkyl, Ci-6-alkyl, Ci-6-alkoxy, halo-Ci-6-alkoxy, nitro, or cyano,

and R^7, R^7 and R^8 are hydrogen.

Preferably, R^7, R^7, R^8, R^8 and R^9 are not simultaneously hydrogen.

A certain embodiment of the invention relates to a compound of the general formula (D)
wherein

\[X \text{ is } O \text{ and } Y \text{ is } C=O, \]
\[X \text{ is } O \text{ and } Y \text{ is } CH_2, \]
\[X \text{ is } C=O \text{ and } Y \text{ is } NR_6, \]
\[X \text{ is } CH_2 \text{ and } Y \text{ is } O; \text{ or} \]
\[X-Y \text{ is } CH=CH, \text{ or} \]
\[X-Y \text{ is } CH_2-CH_2, \text{ or} \]
\[X \text{ is } C=O \text{ and } Y \text{ is } O, \text{ or} \]
\[X \text{ is } CH_2 \text{ and } Y \text{ is } NR_6; \]

\(R^1, R^2, R^3 \text{ and } R^4 \) are each independently hydrogen, halo, \(CI_6 \)-alkyl, optionally substituted by OH, \(halo-CI_6 \)-alkyl, \(CI_6 \)-alkoxy, optionally substituted by OH, or \(halo-CI_6 \) alkoxy;

\(R^5 \) and \(R^6 \) are each independently hydrogen or methyl;

\(R^6 \) is hydrogen or \(CI_6 \)-alkyl;

\(R^7 \) and \(R^7 \) are each independently selected from hydrogen, halo, \(halo-CI_6 \)-alkyl, \(CI_6 \)-alkyl, \(CI_6 \)-alkoxy,
halo-C$_6$-alkoxy,
nitro, or
cyano;
R$_8$ and R$_8'$ are each independently selected from
hydrogen,
halo,
Ci$_6$-alkoxy,
halo-Ci$_6$-alkyl,
Ci$_6$-alkyl,
halo-Ci$_6$-alkoxy,
nitro, or
cyano;
R$_7$ and R$_8$ or R$_7'$ and R$_8'$ are bound together to form a ring with the phenyl moiety, wherein
-R$_7$- R$_8$- or -R$_7'$- R$_8'$- is
-N(R$_{10}$)-N=CH-, or -CH=N-N(R$_{10}$)-,
wherein R$_{10}$ is hydrogen, or Ci$_6$-alkyl,
-N(R$_{11}$)-CH=CH-, or -CH=CH-N(R$_{11}$)-,
wherein R$_{11}$ is hydrogen, or Ci$_6$-alkyl,
-C(R$_{12}$)=C(R$_{13}$)-C(R$_{14}$)=C(R$_{15}$)-,
wherein R$_{12}$, R$_{13}$, R$_{14}$, and R$_{15}$ are each independently selected from
hydrogen, halo, halo-Ci$_6$-alkyl, Ci$_6$-alkyl, Ci$_6$-alkoxy,
halo-Ci$_6$-alkoxy, nitro, or cyano,
-O-(CR$_{16}$R$_{16}'$)$_n$-O-,
wherein n is 1 or 2, and R$_{16}$ and R$_{16}'$ are each independently
hydrogen, halo or Ci$_6$-alkyl,
-N(R$_{17}$)-CH=N-, or -N=CH-N(R$_{17}$)-,
wherein R$_{17}$ is hydrogen, or Ci$_6$-alkyl,
R$_9$ is hydrogen,
halo,
Ci$_6$-alkyl,
halo-Ci$_6$-alkyl,
Ci$_6$-alkoxy,
halo-Ci$_6$-alkoxy,
nitro, or
cyano;
R^8 and R^9 or R^8 and R^9 are bound together to form a ring with the phenyl moiety, wherein

- R «_R . or - R^8 - R^9 is

-C(R^{12})=C(R^{13})-C(R^{14})=C(R^{15})-,

wherein R^{12}, R^{13}, R^{14}, and R^{15} are each independently selected from hydrogen, halo, halo-Ci-6-alkyl, Ci-6-alkyl, Ci-6-alkoxy, halo-Ci-6-alkoxy, nitro, or cyano,

-N(R^{18})-C(O)-CH^2-, or -CH^2-C(O)-N(R^{18})-,

wherein R^{18} is hydrogen or Ci-6-alkyl, or a pharmaceutically acceptable salt thereof.

A certain embodiment of the invention relates to compounds of formula (I)

\[
\begin{align*}
\text{X is O and Y is C=O,} \\
\text{X is O and Y is CH}_2, \\
\text{X is C=O and Y is NR}_6, \\
\text{X is CH}_2 and Y is O, or} \\
\text{X-Y is CH=CH, or} \\
\text{X-Y is CH}_2-CH_2, or} \\
\text{X is C=O and Y is O, or} \\
\text{X is CH}_2 and Y is NR}_6; \\
\end{align*}
\]

R^1, R^2, R^3 and R^4 are each independently hydrogen,
halo, or
Ci-6-alkoxy, optionally substituted by OH,

R^5 and R^5 are each independently hydrogen or methyl;

R^6 is hydrogen or Ci-6-alkyl;

R^7 and R^7 are each independently hydrogen, or halo;

R^8 and R^8 are each independently hydrogen, halo, or Ci-6-alkoxy;

R^7 and R^8 or R^7 and R^8 are bound together to form a ring with the phenyl moiety, wherein

\[-R^7- R^8- \quad \text{or} \quad -R^7- R^9-\]

is

\[-N(R^{10})-N=CH^- , \text{or} -CH=N-N(R^{10})^-, \]

wherein R^{10} is hydrogen, or Ci-6-alkyl,

\[-N(R^{11})-CH=CH-, \text{or} -CH=CH-N(R^{11})^-, \]

wherein R^{11} is hydrogen, or Ci-6-alkyl,

\[-C(R^{12})=C(R^{13})=C(R^{14})=C(R^{15})^- , \]

wherein R^{12}, R^{13}, R^{14}, and R^{15} are each independently selected from hydrogen, halo, halo-Ci-6-alkyl, Ci-6-alkyl, Ci-6-alkoxy, halo-Ci-6-alkoxy, nitro, or cyano,

\[-O-(CR^{16}R^{16})_n-O-, \]

wherein n is 1 or 2, and R^{16} and R^{16} are each independently hydrogen, halo or Ci-6-alkyl,

\[-N(R^{17})-CH=N-, \text{or} -N=CH-N(R^{17})^-, \]

wherein R^{17} is hydrogen, or Ci-6-alkyl,

R^9 is hydrogen, halo, or Ci-6-alkyl;

R^8 and R^9 or R^8 and R^9 are bound together to form a ring with the phenyl moiety, wherein

\[-R^8-R^9- \quad \text{or} \quad -R^8-R^9^-\]

is

\[-C(R^{12})=C(R^{13})=C(R^{14})=C(R^{15})^- , \]

wherein R^{12}, R^{13}, R^{14}, and R^{15} are each independently selected from hydrogen, halo, halo-Ci-6-alkyl, Ci-6-alkyl, Ci-6-alkoxy, halo-Ci-6-alkoxy, nitro, or cyano,

\[-N(R^{18})-C(O)-CH_2^-, \text{or} -CH_2^2-C(O)-N(R^{18})^- , \]

wherein R^{18} is hydrogen or Ci-6-alkyl,

or a pharmaceutically acceptable salt thereof.
An embodiment of the invention relates to compounds of formula (I-a)

![Chemical structure (I-a)](image)

wherein R^1 to R^s and R^7 to R^9 are as defined in any combination as described above.

An embodiment of the invention relates to compounds of formula (I-b)

![Chemical structure (I-b)](image)

wherein R^1 to R^s and R^7 to R^9 are as defined in any combination as described above.

An embodiment of the invention relates to compounds of formula (I-c)
wherein R^1 to R^9 are as defined in any combination as described above.

An embodiment of the invention relates to compounds of formula (I-d)

wherein R^1 to R^3 and R^7 to R^9 are as defined in any combination as described above.

An embodiment of the invention relates to compounds of formula (I-e)
wherein R^1 to R^9 and R^7 to R^9 are as defined in any combination as described above.

An embodiment of the invention relates to compounds of formula (I-f)

wherein R^1 to R^9 and R^7 to R^9 are as defined in any combination as described above.

An embodiment of the invention relates to compounds of formula (I-g)
wherein R_1 to R_5 and R_7 to R_9 are as defined in any combination as described above.

An embodiment of the invention relates to compounds of formula (I-h)

wherein R_1 to R_9 are as defined in any combination as described above.

Any compound of formula (I-a) to (I-h) may be combined with any residue or combination of residues R_1 to R_9 as defined above.

Preferred compounds are those of formula (I-a) to (I-f).

Preferred compounds of the invention are those of the examples. More preferred are the following compounds:
The invention also encompasses the compounds of formula (I), (I-a), (I-b), (I-c), (I-d), (I-e), (I-f), (I-g) or (I-h) for a use in the prevention or treatment of dysmenorrhea, hypertension, chronic heart failure, inappropriate secretion of vasopressin, liver cirrhosis, nephrotic syndrome, obsessive compulsive disorder, anxiety and depressive disorders.

The invention also encompasses a pharmaceutical composition comprising a compound of formula (I), (I-a), (I-b), (I-c), (I-d), (I-e), (I-f), (I-g) or (I-h) which pharmaceutical composition is useful against dysmenorrhea, hypertension, chronic heart failure, inappropriate secretion of vasopressin, liver cirrhosis, nephrotic syndrome, obsessive compulsive disorder, anxiety and depressive disorders. The pharmaceutical composition may further comprise at least one pharmaceutically acceptable excipient.

The invention further encompasses the use of a compound of formula (I), (I-a), (I-b), (I-c), (I-d), (I-e), (I-f), (I-g) or (I-h) for the preparation of a medicament which is useful against dysmenorrhea, hypertension, chronic heart failure, inappropriate secretion of vasopressin, liver cirrhosis, nephrotic syndrome, obsessive compulsive disorder, anxiety and depressive disorders.

In a certain embodiment, the compound of the invention can be manufactured according to a process comprising the step of reacting a compound of formula (II):
with an acid chloride of formula (III-b)

\[
\text{III-b}
\]

to obtain the compound according to formula (I) wherein \(R_1\) to \(R_{10}\) and \(X\) and \(Y\) are as defined above.

In a certain embodiment, the compound of the invention can be manufactured according to a process comprising the step of reacting a compound of formula (II):

\[
\text{II}
\]

with an acid of formula (III-a)
to obtain the compound of formula (I) wherein R^1 to R^{10} and X and Y are as defined above.

The synthesis of compounds of general formula (I) will be described in more detail below and in the examples.

The compounds of the present invention exhibit Via activity, which may be detected as described below:

Via activity

Material & Method:

The human Via receptor was cloned by RT-PCR from total human liver RNA. The coding sequence was subcloned in an expression vector after sequencing to confirm the identity of the amplified sequence. To demonstrate the affinity of the compounds from the present invention to the human Via receptor binding studies were performed. Cell membranes were prepared from HEK293 cells transiently transfected with the expression vector and grown in 20 liter fermenters with the following protocol.

50g of cells are resuspended in 30ml freshly prepared ice cold Lysis buffer (50mM HEPES, 1mM EDTA, 10mM MgCl2 adjusted to pH= 7.4 + complete cocktail of protease inhibitor (Roche Diagnostics)). Homogenized with Polytron for 1min and sonicated on ice for 2x 2 minutes at 80% intensity (Vibracell sonicator). The preparation is centrifuged 20 min at 500 g at 4°C, the pellet is discarded and the supernatant centrifuged 1 hour at 43’000g at 4°C (19'000rpm). The pellet is resuspended in 12.5 ml Lysis buffer+12.5ml Sucrose 20% and homogenized using a Polytron for 1-2 min. The protein concentration is determined by the Bradford method and aliquots are stored at -80°C until use. For binding studies 60mg Yttrium silicate SPA beads (Amersham) are mixed with an aliquot of membrane in binding buffer (50 mM Tris, 120mM NaCl, 5 mM KCl, 2 mM CaCl2, 10 mM MgCl2) for 15 minutes with mixing. 50ul of bead/membrane mixture is then added to each well of a 96
well plate, followed by 50ul of 4 nM 3H-Vasopressin (American Radiolabeled Chemicals). For total binding measurement 100ul of binding buffer are added to the respective wells, for non-specific binding 100ul of 8.4mM cold vasopressin and for compound testing 100ul of a serial dilution of each compound in 2% DMSO. The plate is incubated 1h at room temperature, centrifuged 1 min at 1000g and counted on a Packard Top-Count. Non-specific binding counts are subtracted from each well and data is normalized to the maximum specific binding set at 100%. To calculate an IC 50 the curve is fitted using a non-linear regression model (XLfit) and the Ki is calculated using the Cheng-Prussoff equation.

<table>
<thead>
<tr>
<th>Ex</th>
<th>pKi hV1a</th>
<th>Ex</th>
<th>pKi hV1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.08</td>
<td>25</td>
<td>7.2</td>
</tr>
<tr>
<td>6</td>
<td>7.72</td>
<td>27</td>
<td>7.3</td>
</tr>
<tr>
<td>7</td>
<td>7.54</td>
<td>33</td>
<td>6.96</td>
</tr>
<tr>
<td>9</td>
<td>7.32</td>
<td>36</td>
<td>7.05</td>
</tr>
<tr>
<td>11</td>
<td>7.53</td>
<td>42</td>
<td>6.95</td>
</tr>
<tr>
<td>12</td>
<td>7.66</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The compounds of formula (I), and (Ia) to (If) as well as their pharmaceutically usable acid addition salts can be used as medicaments, e.g. in the form of pharmaceutical preparations. The pharmaceutical preparations can be administered orally, e.g. in the form of tablets, coated tablets, dragees, hard and soft gelatine capsules, solutions, emulsions or suspensions. The administration can, however, also be effected rectally, e.g. in the form of suppositories, or parenterally, e.g. in the form of injection solutions.

The compounds of formula (I), (Ia) to (Ig) and their pharmaceutically usable acid addition salts can be processed with pharmaceutically inert, inorganic or organic excipients for the production of tablets, coated tablets, dragees and hard gelatine capsules. Lactose, corn starch or derivatives thereof, talc, stearic acid or its salts etc can be used as such excipients e.g. for tablets, dragees and hard gelatine capsules.

Suitable excipients for soft gelatine capsules are e.g. vegetable oils, waxes, fats, semi-solid and liquid polyols etc.

Suitable excipients for the manufacture of solutions and syrups are e.g. water, polyols, saccharose, invert sugar, glucose etc.
Suitable excipients for injection solutions are e.g. water, alcohols, polyols, glycerol, vegetable oils etc.

Suitable excipients for suppositories are e.g. natural or hardened oils, waxes, fats, semi-liquid or liquid polyols etc.

Moreover, the pharmaceutical preparations can contain preservatives, solubilizers, stabilizers, wetting agents, emulsifiers, sweeteners, colorants, flavorants, salts for varying the osmotic pressure, buffers, masking agents or antioxidants. They can also contain still other therapeutically valuable substances.

The dosage can vary within wide limits and will, of course, be fitted to the individual requirements in each particular case. In general, in the case of oral administration a daily dosage of about 10 to 1000 mg per person of a compound of general formula (I) should be appropriate, although the above upper limit can also be exceeded when necessary.

The following Examples illustrate the present invention without limiting it. All temperatures are given in degrees Celsius.

Example A

Tablets of the following composition are manufactured in the usual manner:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>mg/tablet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active substance</td>
<td>5</td>
</tr>
<tr>
<td>Lactose</td>
<td>45</td>
</tr>
<tr>
<td>Corn starch</td>
<td>15</td>
</tr>
<tr>
<td>Macrocristalline cellulose</td>
<td>34</td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td>1</td>
</tr>
</tbody>
</table>

Tablet weight 100

Example B

Capsules of the following composition are manufactured:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>mg/capsule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active substance</td>
<td></td>
</tr>
<tr>
<td>Lactose</td>
<td></td>
</tr>
<tr>
<td>Corn starch</td>
<td></td>
</tr>
<tr>
<td>Macrocristalline cellulose</td>
<td></td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td></td>
</tr>
</tbody>
</table>

| Tablet weight | 100 |
The active substance, lactose and corn starch are firstly mixed in a mixer and then in a comminuting machine. The mixture is returned to the mixer, the talc is added thereto and mixed thoroughly. The mixture is filled by machine into hard gelatine capsules.

Example C

Suppositories of the following composition are manufactured:

<table>
<thead>
<tr>
<th>mg/supp.</th>
<th>Active substance</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suppository mass</td>
<td>1285</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1300</td>
</tr>
</tbody>
</table>

The suppository mass is melted in a glass or steel vessel, mixed thoroughly and cooled to 45°C. Thereupon, the finely powdered active substance is added thereto and stirred until it has dispersed completely. The mixture is poured into suppository moulds of suitable size, left to cool; the suppositories are then removed from the moulds and packed individually in wax paper or metal foil.

In the following, the synthesis of compounds of formula (I) is further exemplified:

The following general scheme A is an example of the preparation of the compounds of the invention according to general procedure 1:

General Scheme A
General Procedure I - amide coupling with acid chlorides:

A solution of the amine (1 eq), the acid chloride (1 eq) and DIPEA (1.5 eq) in DMF is stirred at RT for 14h. The mixture is concentrated and purified by preparative HPLC to yield the desired product.

The following general scheme B is an example of the preparation of the compounds of the invention according to general procedure 2:

General scheme B:
General Procedure 2 - amide coupling with carboxylic acids:
A solution of the acid (1 eq) and HATU (leq) in DMF is shaken for 30 min at RT and then a solution of the amine (1 eq) and DIPEA (2 eq) in DMF is added and the mixture shaken at RT for 2h. The mixture is concentrated and purified by preparative HPLC to yield the desired product.

Examples

Example 1
6-Methoxy-r-(2-naphthoyl)-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one:

Amide coupling according to general procedure 1:
- Amine: 6-methoxy-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described in EP 722941)
- Acid chloride: Naphthalene-2-carbonyl chloride
ES-MS m/e (%): 388.4 (M+H^+).

Example 2
r-(4-tert-Butylbenzoyl)-6-chloro-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one

Amide coupling according to general procedure 1:
- Amine: 6-chloro-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described in EP 722941)
- Acid chloride: 4-tert-Butyl-benzoyl chloride
ES-MS m/e (%): 398.4 (M+H^+).

Example 3
Rac-(IR,3’S)-r-(4-tert-butylbenzoyl)-3’-methyl-3H-spiro[2-benzofuran-1,4’-piperidin]-
3-one

Amide coupling according to general procedure 1:
- Amine: rac-(IR,3’S)-3’-methyl-3H-spiro[2-benzofuran-1,4’-piperidin]-3-one (described
in WO 9929696)
- Acid chloride: 4-tert-Butyl-benzoyl chloride
ES-MS m/e (%): 378.5 (M+H+).

Example 4
r-(4-tert-Butylbenzoyl)-3H-spiro[2-benzofuran-1,4’-piperidin]-3-one

Amide coupling according to general procedure 1:
- Amine: 3H-spiro[2-benzofuran-1,4’-piperidin]-3-one (described in Journal of Organic
Chemistry (1976), 41(15), 2628-33)
- Acid chloride: 4-tert-Butyl-benzoyl chloride
ES-MS m/e (%): 364.5 (M+H+).

Example 5
5-Methoxy-r-(2-naphthoyl)-3H-spiro[2-benzofuran-1,4’-piperidin]-3-one
Amide coupling according to general procedure 1:
- Amine: 5-methoxy-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described in EP 722941)
- Acid chloride: Naphthalene-2-carbonyl chloride
ES-MS m/e (%): 388.5 (M+H+).

Example 6
r-(3,4-Dichlorobenzoyl)-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one

Amide coupling according to general procedure 2:
- Amine: 3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described in Journal of Organic Chemistry (1976), 41(15), 2628-33)
- Acid: 3,4-Dichloro-benzoic acid
ES-MS m/e (%): 376.4 (M+H+).

Example 7
r-(3,4-Dichlorobenzoyl)-6-methoxy-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one

Amide coupling according to general procedure 2:
- Amine: 6-methoxy-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described in EP 722941)
- Acid: 3,4-Dichloro-benzoic acid
ES-MS m/e (%): 406.4 (M+H +).

Example 8

6-Chloro-r-(3,4-dichlorobenzoyl)-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one

Amide coupling according to general procedure 2:
- Amine: 6-chloro-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described in EP 722941)
- Acid: 3,4-Dichloro-benzoic acid
ES-MS m/e (%): 410.3 (M+H +).

Example 9

r-(3,4-Dichlorobenzoyl)-5-methoxy-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one

Amide coupling according to general procedure 2:
- Amine: 5-methoxy-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described in EP 722941)
- Acid: 3,4-Dichloro-benzoic acid
ES-MS m/e (%): 406.4 (M+H+).

Example 10
5-Bromo-\(\text{r}-(3,4\text{-dichlorobenzoyl})\)-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one

Amide coupling according to general procedure 2:
- Amine: 5-bromo-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described herein)
- Acid: 3,4-Dichloro-benzoic acid
ES-MS m/e (%): 456.3 (M+H+).

The synthesis of 5-bromo-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one is described below (3):

Preparation of 1: \(\text{l}'\)-methyl-(5-bromo-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one):
Butyllithium (97.2 ml of 1.47 M solution in hexane, 143 mmol) was added dropwise to a solution of 2,5-Dibromo-benzoic acid (20 g, 72 mmol) in dry THF (300 ml) at -78°C over a period of 3.5 h under a nitrogen atmosphere. The reaction mixture was stirred at -78°C for 2 h. A solution of N-methyl piperidone (11.31 g, 99 mmol) in hexane (40 mL) was added dropwise during 30 min to the reaction mixture at 78°C. The reaction mixture was allowed to come to room temperature and stirring was continued for overnight. The reaction mixture was added to a mixture of water (500 ml) and ether (300 mL). The aqueous layer was extracted with ether (5 X 150 mL) and acidified with concentrated HCl (to pH 2-3) and extracted with ether (2 X 150 ml). The acidic solution was boiled for 1 h and then cooled to 0-5°C and made alkaline (to pH 9-10) with aqueous NaOH. The cold
solution was rapidly extracted with chloroform (5 X 300 mL). The combined chloroform extracts were washed with water (150 ml), dried over sodium sulfate and evaporated under reduced pressure. The residue was purified was purified by silica gel (100-200) column chromatography eluting with methanol in dichloromethane (0.5% to 2.5%) to afford 1 (4.2 g, 20%). IH-NMR (400MHz, CDC13): δ 1.71 (d, J = 14.2 Hz, 2H), 2.15-2.24 (m, 2H), 2.37 (s, 3H), 2.45-2.52 (m, 2H), 2.83-2.87 (m, 2H), 7.26 (d, J = 8.25 Hz, IH), 7.75 (dd, J = 7.8, 1.7 Hz, IH). 13C-NMR (100MHz, CDC13): δ 35.95, 46.05, 51.42, 84.00, 122.54, 122.97, 127.52, 128.64, 137.06, 152.24, 167.77.

Preparation of 2: l'-cyano-(5-bromo-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one): A solution of 1 (3.0 g, 10 mmol) in chloroform (50 ml) was added dropwise to a stirred boiling solution of cyanogens bromide (12.16 g, 120 mmol) in chloroform (100 ml) under a nitrogen atmosphere and the resulting solution was refluxed for overnight. The reaction mixture was cooled and washed with 25 mL of 5% HCl and then with 20 ml of water. The organic layer was dried over sodium sulfate and evaporated under reduced pressure. The residue was purified by silica gel column chromatography (100-200) eluting with methanol in dichloromethane (0.5% to 1.0%) to get the pure product (1.6 g, 51%). IH-NMR (400MHz, CDC13): δ 1.72 (d, J = 14.2Hz, 2H), 2.24-2.32 (m, 2H), 3.37-3.59 (m, 4H), 7.32 (d, J = 8.2 Hz, IH), 7.83 (dd, J = 8.0, 1.7Hz, IH), 8.03 (d, J = 1.7Hz, IH).

Preparation of 3: (5-bromo-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one): A mixture of 2 (1.0 g, 3.2 mmol) and 20%HCl (12 ml) was heated under reflux under a nitrogen atmosphere for 6 h. The reaction mixture was cooled to 0-5°C and pH was adjusted to 9-10 with aqueous NaOH solution and rapidly extracted with chloroform (3 X 50 ml). The combined extracts were washed with water, the organic layer was dried over sodium sulfate and evaporated under reduced pressure. The residue was washed with distilled hexane and dried under high vacuum to get the pure product (0.64 g, 70%). IR (KBr) 3333.84, 290.53, 283525, 2811.07, 2749.38, 1756.04, 1470.28, 1415.14, 1271.03, 1196.28, 1083.84, 929.07, 831.50, 792.35, 734.78, 691.24, 548.46, 534.50 cm⁻¹. IH-NMR (400MHz, CDC13): δ 1.66-1.72 (m, 2H), 2.02-2.09 (m, 2H), 3.07-3.18 (m, 4H), 7.29 (d, J = 7.8 Hz, IH), 7.77 (dd, J = 7.8, 1.7 Hz, IH), 7.99 (d, J = 1.7Hz, IH). 13C-NMR (100MHz, CDC13): δ 6.33, 42.49, 85.23, 122.61, 122.93, 127.39, 128.64, 137.07, 152.44, 167.91. FIA-MS: 282.1 and 284.1; C12 H1279BrNO2 [MH+] requires 282.1. mp: 162-163 °C.
Example 12

\[r-(3,4\text{-Dichlorobenzoyl})-6-(2\text{-hydroxyethoxy})-3\text{H-spiro}[2\text{-benzofuran}-1,4'-\text{piperidin}]-3\text{-one} \]

Amide coupling according to general procedure 2:
- Amine: 6-(2-hydroxyethoxy)-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described in WO 2001014376)
- Acid: 3,4-Dichloro-benzoic acid
ES-MS m/e (%): 436.4 (M+H\(^+\)).
Preparation of (6-(2-hydroxyethoxy)-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one):

\[
\text{F} \quad \begin{array}{c} \text{Br} \end{array} \text{CO}_2\text{H} + \quad \text{O} \quad \begin{array}{c} \text{N} \end{array} \quad \begin{array}{c} \text{CN} \end{array} \quad \begin{array}{c} \text{OH} \end{array} \quad \begin{array}{c} \text{N} \end{array} \quad \begin{array}{c} \text{CN} \end{array} \quad \begin{array}{c} \text{OH} \end{array} \quad \begin{array}{c} \text{N} \end{array} \quad \begin{array}{c} \text{CN} \end{array} \quad \begin{array}{c} \text{OH} \end{array} \\
\text{3H-spiro[2-benzofuran-1,4'-piperidin]-3-one:} \quad \begin{array}{c} \text{4} \end{array} \quad \begin{array}{c} \text{5} \end{array} \quad \begin{array}{c} \text{6} \end{array}
\]

Preparation of 4: r-methyl-6-(2-fluoro-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one:

To a solution of the substituted 2-bromo-4-fluoro-benzoic acid (10.9 g, 50 mmol) in dry THF (200 ml) at -78°C n-butyllithium (1.6 M in hexanes) (100 mmol) was added drop wise (3 h) and the resulting solution was stirred for an additional 2 h at the same temperature. Freshly distilled N-methyl 4-piperidone 6 (7.91 g, 70 mmol) in dry hexane (25 ml) was added over 30 min at the same temperature. The mixture was then allowed to stir at rt and was finally added to ether (200 ml) and water (300 ml). The basic (aqueous) layer was extracted with ether (5 X 100 ml) and the aqeous layer was acidified with concentrated hydrochloric acid (pH 2-3) and extracted with ether. The aqueous solution was boiled for 1 h and was then cooled to 0-5°C and made alkaline (pH 9-10) with cold aqueous sodium hydroxide. The cold solution was rapidly extracted with chloroform (5 X 200 ml). The combined chloroform extracts were washed with water, dried, concentrated to give light yellow solid which was purified over neutral alumina eluting with a gradient of 30-50% ethyl acetate-hexane to obtain 1.75 g (15%) of 9 as white solid. IH-NMR (CDCl₃, 400 MHz): δ 1.68-1.75 (m, 2H), 2.18-2.19 (m, IH), 2.38 (s, 3H), 2.44-2.52 (m, 2H), 2.68-2.84 (m, 2H), 2.84-2.85 (m, IH), 7.02-7.05 (m, IH), 7.19-7.22 (m, IH), 7.84-7.87 (m, IH); FIA-MS: 236 (M + 1).

Preparation of 5: r-cyano-6-(2-fluoro-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one:

To a solution of the N-methylated lactone 9 (1.17 g, 5 mmol) in dry chloroform (10 ml) was added cyanogenbromide (60 mmol) and the resulting solution was refluxed for 36 h. The reaction mixture was extracted with 5% HCl (5 ml) and then with water (2.5 ml). The chloroform solution was dried (anhydrous MgSO₄) and concentrated to give a pale yellow solid which was chromatographed over SiO2 eluting with 1% MeOH-CH₂Cl₂ to give 858 mg (70%) 5 as white solid. IH-NMR (CDCl₃, 400 MHz): δ 1.72-1.76 (m, 2H), 2.22-2.30 (m, IH), 3.48-3.60 (m, 4H), 7.09-7.11 (m, IH), 7.11-7.28 (m, IH), 7.89-7.92 (m, IH); IR (KBr): 3492, 3043, 2216, 1760, 1602, 1478 cm⁻¹.
Preparation of 6: 6-(2-hydroxyethoxy)-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one: N-cyano lactone 5 (1.23 g, 5 mmol) was heated with ethylene glycol (5 ml) and sodium hydroxide (0.82 g, 20.5 mmol) for 15-20 min at 130°C. Most of the ethylene glycol was removed by distillation under high vacuum. The residual reaction mixture was diluted with water and extracted repeatedly with chloroform. The combined organics was dried and concentrated to give a semi solid material which was purified over Al2O3 column upon elution with 5-7% MeOH/CH2Cl2 containing NH3 (aqueous) to yield 789 mg (60%) of CRI 1072 as pale yellow solid. IH-NMR (d6-DMSO, 400 MHz): δ 1.47-1.50 (m, 2H), 2.03-2.10 (m, 2H), 2.79-2.85 (m, 2H), 2.95-2.97 (m, 2H), 3.73-3.76 (m, 2H), 4.12-4.14 (m, 2H), 7.09 (d, J = 8.4 Hz, IH), 7.20 (s, IH), 7.69 (d, J = 8.4 Hz, IH); 13C-NMR (d6-DMSO, 100 MHz): δ 35.9, 42.3, 59.3, 70.4, 84.6, 106.4, 116.6, 117.0, 126.8, 156.9, 163.9, 168.5; FIA-MS: 264.3 (M + 1).

Example 13
r-(2,3-Dichlorobenzoyl)-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one:

Amide coupling according to general procedure 2:
- Amine: 3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described in Journal of Organic Chemistry (1976), 41(15), 2628-33)
- Acid: 2,3-Dichloro-benzoic acid
ES-MS m/e (%): 376.4 (M+H +).

Example 14
r-(2,3-Dichlorobenzoyl)-6-methoxy-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one

Amide coupling according to general procedure 2:
- Amine: 6-methoxy-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described in EP 722941)
- Acid: 2,3-Dichloro-benzoic acid
ES-MS m/e (%): 406.4 (M+H+).

Example 15
6-Chloro-r-(2,3-dichlorobenzoyl)-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one

Amide coupling according to general procedure 2:
- Amine: 6-chloro-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described in EP 722941)
- Acid: 2,3-Dichloro-benzoic acid
ES-MS m/e (%): 410.2 (M+H+).

Example 16
r-(2,3-Dichlorobenzoyl)-5-methoxy-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one

Amide coupling according to general procedure 2:
- Amine: 5-methoxy-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described in EP 722941)
- Acid: 2,3-Dichloro-benzoic acid
ES-MS m/e (%): 406.4 (M+H+).

Example 17
r-(2,3-Dichlorobenzoyl)-5-fluoro-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one
Amide coupling according to general procedure 2:
- Amine: 5-fluoro-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described in WO 2001014376)
- Acid: 2,3-Dichloro-benzoic acid
ES-MS m/e (%): 394.3 (M+H+).

Example 18
r-(2,3-Dichlorobenzoyl)-6-(2-hydroxyethoxy)-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one

Amide coupling according to general procedure 2:
- Amine: 6-(2-hydroxyethoxy)-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described herein)
- Acid: 2,3-Dichloro-benzoic acid
ES-MS m/e (%): 436.4 (M+H+).

Example 19
1'-(5-Chloro-1H-indazol-7-yl)carbonyl]-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one
Amine: 3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described in Journal of Organic Chemistry (1976), 41(15), 2628-33)
- Acid: S-Chloro-lH-indazole-Z-carboxylic acid (described in WO 2006013048)
ES-MS m/e (%): 382.4 (M+H +).

Example 20
r-[(5-Chloro-lH-indazol-7-yI)carbonyl]-6-methoxy-3H-spiro[2-benzofuran-1,4'-
piperidin]-3-one

Amide coupling according to general procedure 2:
- Amine: 6-methoxy-3H-spiro[2-benzofuran-1,4'-piperidin]-3-one (described in EP 722941)
- Acid: 5-Chloro-lH-indazole-7-carboxylic acid (described in WO 2006013048)
ES-MS m/e (%): 412.4 (M+H +).

Example 21
r-(l-Naphthoyl)-3H-spiro[2-benzofuran-1,4'-piperidine]

Amide coupling according to general procedure 2:
- Amine: 3H-spiro[2-benzofuran-1,4'-piperidine] (CAS 38309-60-3)
- Acid: Naphthalene- 1-carboxylic acid
ES-MS m/e (%): 344.4 (M+H +).
Example 22

4-Fluoro-r-(l-naphthoyl)-3H-spiro[2-benzofuran-l,4'-piperidine]

Amide coupling according to general procedure 2:

- Amine: 4-fluoro-3H-spiro[2-benzofuran-l,4'-piperidine]
 (prepared according to Journal of Medicinal Chemistry (1995), 38(11), 2009-17)
- Acid: Naphthalene-1-carboxylic acid
 ES-MS m/e (%): 362.3 (M+H+).

Example 23

r-(2-Ethoxy-l-naphthoyl)-4-fluoro-3H-spiro[2-benzofuran-l,4'-piperidine]

Amide coupling according to general procedure 2:

- Amine: 4-fluoro-3H-spiro[2-benzofuran-l,4'-piperidine]
 (prepared according to Journal of Medicinal Chemistry (1995), 38(11), 2009-17)
- Acid: 2-Ethoxynaphthalene-1-carboxylic acid (CAS 2224-00-2)
 ES-MS m/e (%): 406.5 (M+H+).

Example 24

r-(2-Ethoxy-l-naphthoyl)-3H-spiro[2-benzofuran-l,4'-piperidine]
Amide coupling according to general procedure 2:
- Amine: 3H-spiro[2-benzofuran-l,4'-piperidine] (CAS 38309-60-3)
- Acid: 2-Ethoxynaphthalene-l-carboxylic acid (CA 2224-00-2)

ES-MS m/e (%): 388.3 (M+H+).

Example 25
r-(4-tert-Butylbenzoyl)-3H-spiro[2-benzofuran-l,4'-piperidine]

Amide coupling according to general procedure 1:
- Amine: 3H-spiro[2-benzofuran-l,4'-piperidine] (CAS 38309-60-3)
- Acid: 4-tert-Butyl-benzoyl chloride

ES-MS m/e (%): 350.5 (M+H+).

Example 26
r-[(2,2-Difluoro-l,3-benzoxol-4-yl)carbonyl]-3H-spiro[2-benzofuran-l,4'-piperidine]
Amide coupling according to general procedure 1:
- Amine: 3H-spiro[2-benzofuran-1,4'-piperidine] (CAS 38309-60-3)
- Acid: 2,2-Difluoro-benzo[1,3]dioxole-4-carbonyl chloride (CAS 143096-86-0)
ES-MS m/e (%): 374.4 (M+H+).

Example 27
r-[(5-Methoxy-1H-indol-7-yl)carbonyl]-3H-spiro[2-benzofuran-1,4'-piperidine]

Amide coupling according to general procedure 2:
- Amine: 3H-spiro[2-benzofuran-1,4'-piperidine] (CAS 38309-60-3)
- Acid: 5-Methoxy-1H-indole-7-carboxylic acid (prepared herein)
ES-MS m/e (%): 363.5 (M+H+).

Preparation of 5-Methoxy-1H-indole-7-carboxylic acid:
A solution of 7-Bromo-5-methoxy-lH-indole (described in WO 2002028861) in THF was treated with 2eq. of a solution of n-BuLi in n-hexane (1.6M) at 5° and after 30 min at this temperature was cooled to -75°. Dry ice (excess) was added and after 15 mins the mixture was quenched with H$_2$O and washed with EtOAc. After acidification of the aqueous layer and extraction into CH$_2$Cl$_2$, evaporation gave the desired product.

ES-MS m/e (%): 192.1 (M+H$^+$).

Example 28
r-(lH-Benzimidazol-7-ylcarbonyl)-3H-spiro[2-benzofuran-1,4'-piperidine]

Amide coupling according to general procedure 2:
- Amine: 3H-spiro[2-benzofuran-1,4'-piperidine] (CAS 38309-60-3)
- Acid: 3H-Benzimidazole-4-carboxylic acid (CAS 46006-36-4)
ES-MS m/e (%): 334.4 (M+H$^+$).

Example 29
r-(lH-Indol-7-ylcarbonyl)-3H-spiro[2-benzofuran-1,4'-piperidine]

Amide coupling according to general procedure 2:
- Amine: 3H-spiro[2-benzofuran-1,4'-piperidine] (CAS 38309-60-3)
- Acid: lH-Indole-7-carboxylic acid (CAS 1670-83-3)
ES-MS m/e (%): 333.5 (M+H +).

Example 30

r-(1,3-Benzodioxol-4-ylcarbonyl)-3H-spiro[2-benzofuran-1,4'-piperidine]

Amide coupling according to general procedure 2:
- Amine: 3H-spiro[2-benzofuran-1,4'-piperidine] (CAS 38309-60-3)
- Acid: Benzo[l,3]dioxole-4-carboxylic acid (CAS 5768-39-8)

ES-MS m/e (%): 338.4 (M+H +).

Example 31

3,3-Dimethyl-6- (1'H,3H-spiro [2-benzofuran-1,4'-piperidine]-1'-ylcarbonyl)-1,3-dihydro-2H-indol-2-one

Amide coupling according to general procedure 2:
- Amine: 3H-spiro [2-benzofuran-1,4'-piperidine] (CAS 38309-60-3)
5-Bromo-\((4\text{-}\text{tert-butylbenzoyl})\text{spiro}\{\text{indole-3,4'-piperidin}\}\text{-2(1H)-one}\)

Amide coupling according to general procedure 2:
- Amine: 5-bromo-spiro[indole-3,4'-piperidin]-2(1H)-one (preparation described herein)
- Acid: 4-tert-Butyl-benzoic acid

ES-MS m/e (%): 441.5 (M+H+).
1,5-Dichloro-3-methyl-3-azapentane, hydrochloride 8: Formic acid (10.0 g; 0.2 mol) and 37% formaldehyde (20 ml) were mixed in a 250 ml round-bottom flask equipped with reflux condenser. 1,5-Dichloro-3-azapentane, hydrochloride (17.0 g; 0.1 mol) was added and the solution was heated with magnetic stirring at 100°C. After 3 h the temperature was increased to 120°C for 20 min and finally allowed to cool to room temperature before the solvent was evaporated in vacuo to afford 8 as white solid in quantitative yield. 1HNMR (CD$_3$OD, 400MHz) δ 3.0 (s, 3 H); 3.45 (brs, 2 H); 3.62 (brs, 2 H); 4.07 (brs, 4 H).

r-(Methyl)spiro[indole-3,4'-piperidin]-2(1H)-one 10:

A solution of oxindole 9 (6.25 g, 47 mmol) in THF (500 ml) was cooled to -78°C and to it a solution of sodium hexamethyldisilazide (43 g, 235 mmol) in THF (300 ml) was added drop wise under N$_2$ atmosphere. After stirring at -78°C for 45 min, N-methylbis (2-chloromethyl) amine hydrochloride (9 g, 47 mmol) was added, as a solid. The reaction mixture was stirred at -78°C for 1 h and at room temperature for 24 h. After quenching with H$_2$O (90 ml), the mixture was extracted with ethyl acetate (3 x 100 ml). The organic extracts were washed with brine (25 ml), dried and the solvent removed in vacuo. Silica gel chromatography (5-50% MeOH/CH$_2$Cl$_2$, gradient) gave 6g (57%) of 10 as a solid. 1HNMR (CD$_3$OD, 400MHz) δ 1.84 (m, 2 H); 2.51 (m, 2 H); 2.62 (s, 3H); 3.02 (m, 2 H);
3.37 (m, 2H); 6.82 (d, 1 H, J = 7.68 Hz); 6.94 (t, 1 H, J = 7.58 Hz); 7.12 (t, 1 H, J = 7.7 Hz);
7.26 (d, 1 H, J = 9 Hz); 9.27 (br s, 1H).

5-bromo-r-(methyl)spiro[indole-3,4'-piperidin]-2(IH)-one (11):

A solution of r-(methyl)spiro[indole-3,4'-piperidin]-2(IH)-one (6.3 g, 29.1 mmol)
in CH₂CN (100 ml) and MeOH (5 ml) was cooled to - 5°C and NBS (7.8 g, 44 mmol) was
slowly added with stirring. The reaction mixture was stirred for 3.5 h at 0°C. Solvent was
removed by vacuo. The residue was purified by silica gel chromatography (2 - 20 %
MeOH/CH₂Cl₂) to give 6 g as a solid. The solid compound was dissolved in ethyl acetate
(600 ml) and washed with saturated aqueous NaHCO₃ solution, dried (Na₂SO₄).

Evaporation of the solvent in vacuo gave 4.2 g (47%) of 11. ¹H NMR (CD₂OD, 400MHz) δ
7.51 (d, J = 1.8 Hz, IH), 7.35 (dd, J = 1.9 and 8.2 Hz, IH), 6.81 (d, J = 8.2 Hz, IH), 2.93 (m,
2H), 2.67 (m, 2H), 2.41 (s, 3H), 1.86 (m, 4H).

5-bromo- 1'-(cyano)spiro[indole-3,4'-piperidin]-2(IH)-one (12):

5-bromo-r-(methyl)spiro[indole-3,4'-piperidin]-2(IH)-one (11) (4.6 g, 15.6 mmol)
was dissolved in chloroform (700 ml) and treated with CNBr (22 g, 209.5 mmol) at room
temperature. The mixture was heated to reflux for 24h. The reaction mixture was cooled,
diluted with methylene chloride (300 ml) and washed with 10 % aqueous K₂CO₃ solution
(2 x 100 ml). After the mixture was dried (Na₂SO₄ and concentrated, the residue was
purified by silica gel chromatography (0 - 5% MeOH/CH₂Cl₂) to give 7 as a solid 3.9 g
(82%). ¹H NMR (CDCl₃, 400MHz) δ 7.52 (d, J = 1.8Hz, IH), 7.37 (dd, J = 1.8 and 8.2 Hz,
IH), 6.82 (d, J = 8.2 Hz, IH), 3.83 (m, 2H), 3.41 (m, 2H), 2.00 (m, 2H), 1.86 (m, 2H).

5-bromo-spiro[indole-3,4'-piperidin]-2(IH)-one (13):

5-Bromo-l, 2-dihydro-2-oxospiro[3H-indole-3, 4'-piperidine]-1'-cyano 12 (3.3 g,
10.8 mmol) was suspended in ethylene glycol (10 ml). The mixture was treated in NaOH
(1.8 g, 45 mmol) and heated to 130°C for 15 min. It was diluted with methylene chloride
(500 ml) and washed with 10% aqueous K₂CO₃ (2 x 100 ml). The organic layer was dried
(Na₂SO₄ and concentrated and residue purified by silica gel chromatography (30 %
MeOH/CH₂Cl₂) to give 13 as a light ceramic white solid 1.8 g (60%), mp 256 - 258°C.
¹H NMR (DMSO-d₃, 400MHz) δ 10.6 (br s, IH, NH), 7.57 (d, J = 1.84Hz, IH), 7.36 (d, J =
8.2Hz, IH), 6.79 (d, J = 8.2 Hz, IH), 4.05 (br s, IH, NH), 3.06 (m, 2H), 2.84 (m, 2H),
1.64 (m, 2H), 1.55 (m, 2H), 13C NMR (DMSO-d₆, 100MHz) δ 180.93, 140.64, 137.98,
130.42, 126.75, 113.20, 111.45, 46.24, 40.92, 32.94. Anal.Calcd for C₁₂H₁₃BrN₂O: C, 51.26;
Example 33
5-Bromo-r-(2-naphthoyl)spiro[indole-3,4′-piperidin]-2(IH)-one

Amide coupling according to general procedure 2:
- Amine: 5-bromo-spiro[indole-3,4′-piperidin]-2(IH)-one (preparation described herein)
- Acid: Naphthalene-2-carboxylic acid
ES-MS m/e (%): 435.4 (M+H +).

Example 34
r-(4-Chlorobenzoyl)-4-methylspiro[indole-3,4′-piperidin]-2(IH)-one

Amide coupling according to general procedure 2:
- Amine: 4-methylspiro[indole-3,4′-piperidin]-2(IH)-one (preparation in analogy to 5-bromo-spiro[indole-3,4′-piperidin]-2(IH)-one starting from 1,5-Dichloro-3-methyl-3-azapentane, hydrochloride)
- Acid: 4-Chloro-benzoic acid
ES-MS m/e (%): 355.4 (M+H +).
Example 35

r-(3,4-Dichlorobenzoyl)spiro[l-benzofuran-3,4'-piperidine]

Amide coupling according to general procedure 2:
- Amine: Spiro[l-benzofuran-3,4'-piperidine] (CAS 38309-60-3)
- Acid: 3,4-Dichloro-benzoic acid

 ES-MS m/e (%): 362.4 (M+H+).

Example 36

r-(2-Naphthoyl)spiro[indene-l,4'-piperidine]

Amide coupling according to general procedure 2:
- Amine: Spiro[indene-l,4'-piperidine] (CAS 33042-66-9)
- Acid: Naphthalene-2-carboxylic acid

 ES-MS m/e (%): 340.5 (M+H+).

Example 37

r-(4-tert-Butylbenzoyl)spiro[indene-l,4'-piperidine]
Amide coupling according to general procedure 2:
- Amine: Spiro[indene-l,4'-piperidine] (CAS 33042-66-9)
- Acid: 4-tert-Butyl-benzoic acid
ES-MS m/e (%): 346.5 (M+H+).

Example 38
r-[(2,2-Difluoro-l,3-benzodioxol-4-yl)carbonyl]spiro[indene-l,4'-piperidine]

Amide coupling according to general procedure 2:
- Amine: Spiro[indene-l,4'-piperidine] (CAS 33042-66-9)
- Acid: 2,2-Difluoro-benzo[l,3]dioxole-4-carbonyl chloride (CAS 143096-86-0)
ES-MS m/e (%): 370.4 (M+H+).

Example 39
r-(3,4-Dichlorobenzoyl)spiro[indene-l,4'-piperidine]

Amide coupling according to general procedure 2:
- Amine: Spiro[indene-l,4'-piperidine] (CAS 33042-66-9)
Example 40

r-(2,3-Dichlorobenzoyl)spiro[indene-1,4'-piperidine]

Amide coupling according to general procedure 2:
- Amine: Spiro[indene-1,4'-piperidine] (CAS 33042-66-9)
- Acid: 2,3-Dichloro-benzoic acid
ES-MS m/e (%): 358.4 (M+H+).

Example 41

r-[(5-Chloro-1H-indazol-7-yl)carbonyl]spiro[indene-1,4'-piperidine]

Amide coupling according to general procedure 2:
- Amine: Spiro[indene-1,4'-piperidine] (CAS 33042-66-9)
- Acid: S-Chloro-1H-indazole-y-carboxylic acid (described in WO 2006013048)
ES-MS m/e (%): 364.4 (M+H+).

Example 42

r-(3,4-Dichlorobenzoyl)-2,3-dihydrospiro[indene-1,4'-piperidine]
Amide coupling according to general procedure 2:
- Amine: 2,3-Dihydrospiro[indene-1,4'-piperidine] (CAS 428-38-6)
- Acid: 3,4-Dichloro-benzoic acid
5 ES-MS m/e (%): 360.4 (M+H+).

Example 43
r-(2,3-Dichlorobenzoyl)-2,3-dihydrospiro[indene-1,4'-piperidine]

Amide coupling according to general procedure 2:
10 - Amine: 2,3-Dihydrospiro[indene-1,4'-piperidine] (CAS 428-38-6)
- Acid: 2,3-Dichloro-benzoic acid
ES-MS m/e (%): 360.4 (M+H+).
1. A compound of the general formula (I)

![Chemical Structure](image)

wherein

- X is O and Y is C=O,
- X is O and Y is CH$_2$,
- X is C=O and Y is NR$_6$,
- X is CH$_2$ and Y is O, or
- X-Y is CH=CH, or
- X-Y is CH$_2$-CH$_2$, or
- X is C=O and Y is O, or
- X is CH$_2$ and Y is NR$_6$;

R^1, R^2, R^3 and R^4 are each independently hydrogen, halo, Ci-6-alkyl, optionally substituted by OH, halo-Ci-6-alkyl, Ci-6-alkoxy, optionally substituted by OH, or halo-Ci-6-alkoxy;

R^5 and R^6 are each independently hydrogen or methyl;

R^6 is hydrogen or Ci-6-alkyl;

R^7, R^7', R^8, R^8', and R^9 are each independently selected from
hydrogen,
halo,
halo-6-alkyl,
Ci-6-alkyl,
Ci-6-alkoxy,
halo-Ci-6-alkoxy,
nitro, or
cyano,
or R7 and R8, R7 and R8, or R8 and R9, or R8 and R9 are bound together to form a ring with the phenyl moiety, wherein

-R7- R8- or -R7- R9- is
-N(R10)-N=CH-, or -CH=N-N(R10)-,
wherein R10 is hydrogen, or Ci-6-alkyl,
-N(R11)-CH=CH-, or -CH=CH-N(R12)-,
wherein R11 is hydrogen, or Ci-6-alkyl,
-C(R12)=C(R13)-C(R14)=C(R15)-,
wherein R12, R13, R14, and R15 are each independently selected from hydrogen, halo, halo-Ci-6-alkyl, Ci-6-alkyl, Ci-6-alkoxy, halo-Ci-6-alkoxy, nitro, or cyano,
-O-(CR16 R16')n-O-,
wherein n is 1 or 2, and R16 and R16' are each independently hydrogen, halo or Ci-6-alkyl,
-N(R17)-CH=N-, or -N=CH-N(R17)-,
wherein R17 is hydrogen, or Ci-6-alkyl, or
-N(R18)-C(O)-CH2-, or -CH2-C(O)-N(R18)-,
wherein R18 is hydrogen or Ci-6-alkyl,
or a pharmaceutically acceptable salt thereof.

2. The compound of formula (I) according to claim 1, wherein

R1, R2, R3 and R4 are each independently
hydrogen,
halo,
Ci-6-alkyl, or
Ci-6-alkoxy, optionally substituted by OH.
3. The compound of formula (I) according to claim 1 or 2, wherein
R^7 and R^7 are each independently hydrogen, or halo.

4. The compound of formula (I) according to any one of claims 1 to 3, wherein
R^8 and R^8 are each independently hydrogen, halo, or Ci-6-alkoxy.

5. The compound of formula (I) according to any one of claims 1 to 4, wherein
R^7 and R^8 or R^7 and R^8 are bound together to form a ring with the phenyl moiety, wherein

\[-R^7 \cdot R^8 \cdot \text{ or } -R^7 \cdot R^9 -\]
\[-\text{N}(R^{10})\cdot \text{N}=\text{CH}-, \ \text{or } -\text{CH}=\text{N}(R^{10})-],
wherein R^{10} is hydrogen, or Ci-6-alkyl,
\[-\text{N}(R^{11})\cdot \text{CH}=\text{CH}-, \ \text{or } -\text{CH}=\text{N}(R^{12})-],
wherein R^{11} is hydrogen, or Ci-6-alkyl,
\[-\text{C}(R^{13})\cdot \text{C}(R^{14})\cdot \text{C}(R^{15})-],
wherein R^{12}, R^{13}, R^{14}, and R^{15} are each independently selected from
hydrogen, halo, halo-Ci-6-alkyl, Ci-6-alkyl, Ci-6-alkoxy,
halo-Ci-6-alkoxy, nitro, or cyano,
\[-\text{O}-(R^{16})_n\cdot \text{O}-,\]
wherein n is 1 or 2, and R^{16} and R^{16} are each independently
hydrogen, halo or Ci-6-alkyl, or
\[-\text{N}(R^{17})\cdot \text{CH}=\text{N}-, \ \text{or } -\text{N}=\text{CH}(R^{17})-],
wherein R^{17} is hydrogen, or Ci-6-alkyl.

6. The compound of formula (I) according to any one of claims 1 to 5, wherein
R^9 is hydrogen, halo, or Ci-6-alkyl.

7. The compound of formula (I) according to any one of claims 1 to 6, wherein
R^8 and R^9 or R^8 and R^9 are bound together to form a ring with the phenyl moiety, wherein
\[-R^8 \cdot R^9 \cdot \text{ or } -R^8 \cdot R^9 -\]
\[-\text{C}(R^{12})\cdot \text{C}(R^{13})\cdot \text{C}(R^{14})\cdot \text{C}(R^{15})-],
wherein R^{12}, R^{13}, R^{14}, and R^{15} are each independently selected from
hydrogen, halo, halo-Ci-6-alkyl, Ci-6-alkyl, Ci-6-alkoxy,
halo-Ci-6-alkoxy, nitro, or cyano,
The compound of formula (I), which is selected from
- 6-Methoxy-r-(2-naphthoyl)-3H-spiro[2-benzofuran-l,4'-piperidin]-3-one,
- r-(3,4-Dichlorobenzoyl)-3H-spiro[2-benzofuran-l,4'-piperidin]-3-one,
- r-(3,4-Dichlorobenzoyl)-6-methoxy-3H-spiro[2-benzofuran-l,4'-piperidin]-3-one,
- r-(3,4-Dichlorobenzoyl)-5-methoxy-3H-spiro[2-benzofuran-l,4'-piperidin]-3-one,
- r-(3,4-Dichlorobenzoyl)-5-fluoro-3H-spiro[2-benzofuran-l,4'-piperidin]-3-one,
- r-(3,4-Dichlorobenzoyl)-6-(2-hydroxyethoxy)-3H-spiro[2-benzofuran-l,4'-piperidin]-3-one,
- r-(4-tert-Butylbenzoyl)-3H-spiro[2-benzofuran-l,4'-piperidine],
- r-[(5-Methoxy-1H-indol-7-yl)carbonyl]-3H-spiro[2-benzofuran-l,4'-piperidine],
- 5-Bromo-r-(2-naphthoyl)spiro[indole-3,4'-piperidine]-2(1H)-one,
- r-(2-Naphthoyl)spiro[indene-1,4'-piperidine], or
- r-(3,4-Dichlorobenzoyl)-2,3-dihydrospiro[indene-1,4'-piperidine].

A process for the preparation of compounds of formula (I) according to claim 1, comprising the step of reacting a compound of formula (II):

\[
\begin{align*}
\text{R}^1 & \quad \text{R}^2 & \quad \text{R}^3 \\
\text{R}^4 & \quad \text{R}^5 \\
\text{R}^6 & \quad \text{R}^7 \\
\text{Y} & \\
\text{X} & \\
\text{H} &
\end{align*}
\]

with an acid chloride of formula (III-b)
to obtain the compound of formula (I) wherein \(R_1 \) to \(R_{10} \) and \(X \) and \(Y \) are as defined in claim 1.

10. A process for the preparation of compounds of formula (I) according to claim 1, comprising the step of reacting a compound of formula (II):

\[
\begin{align*}
\text{II} \\
\end{align*}
\]

with an acid of formula (III-a)

\[
\begin{align*}
\text{III-a} \\
\end{align*}
\]

to obtain the compound of formula (I) wherein \(R_1 \) to \(R_{10} \) and \(X \) and \(Y \) are as defined above.

11. A compound formula (I) obtainable by a process according to any one of claims 9 and 10.

12. A compound of formula (I) according to any one of claims 1 to 8 for use in the prevention or treatment of dysmenorrhea, hypertension, chronic heart failure,
inappropriate secretion of vasopressin, liver cirrhosis, nephrotic syndrome, obsessive compulsive disorder, anxiety and depressive disorders.

13. A pharmaceutical composition comprising a compound of formula (I) according to any one of claims 1 to 8.

14. A pharmaceutical composition according to claim 13, wherein it is useful against dysmenorrhea, hypertension, chronic heart failure, inappropriate secretion of vasopressin, liver cirrhosis, nephrotic syndrome, obsessive compulsive disorder, anxiety and depressive disorders.

15. Use of a compound of formula (I), according to any one of claims 1 to 8 for the preparation of a medicament.

16. Use according to claim 15, wherein the medicament is useful against dysmenorrhea, hypertension, chronic heart failure, inappropriate secretion of vasopressin, liver cirrhosis, nephrotic syndrome, obsessive compulsive disorder, anxiety and depressive disorders.

17. The invention as described herein above.