Title: EXTENDING SURVIVAL OF CANCER PATIENTS WITH ELEVATED LEVELS OF EGF OR TGF-ALPHA

Abstract: The present application describes extending survival in a cancer patient, where the patient is producing an elevated level of EGF or TGF-alpha, by treating the patient with a HER dimerization inhibitor, such as pertuzumab.
EXTENDING SURVIVAL OF CANCER PATIENTS
WITH ELEVATED LEVELS OF EGF OR TGF-ALPHA

Field of the Invention
The present invention concerns extending survival of a cancer patient, where the patient is
producing an elevated level of EGF or TGF-alpha, by treating the patient with a HER
dimerization inhibitor, such as pertuzumab.

Background of the Invention
HER Receptors and Antibodies Thereagainst
The HER family of receptor tyrosine kinases are important mediators of cell growth,
differentiation and survival. The receptor family includes four distinct members including
epidermal growth factor receptor (EGFR, ErbB1, or HER1), HER2 (ErbB2 or p185\(^{neu}\)), HER3
(ErbB3) and HER4 (ErbB4 or tyro2).

EGFR, encoded by the \(erbB1\) gene, has been causally implicated in human malignancy.
In particular, increased expression of EGFR has been observed in breast, bladder, lung, head, neck
and stomach cancer as well as glioblastomas. Increased EGFR receptor expression is often
associated with increased production of the EGFR ligand, transforming growth factor alpha
(TGF-\(\alpha\)), by the same tumor cells resulting in receptor activation by an autocrine stimulatory
directed against the EGFR or its ligands, TGF-\(\alpha\) and EGF, have been evaluated as therapeutic
agents in the treatment of such malignancies. See, e.g., Baselga and Mendelsohn., supra; Masui

The second member of the HER family, \(p185^{neu}\), was originally identified as the product
of the transforming gene from neuroblastomas of chemically treated rats. The activated form of
the \(neu\) proto-oncogene results from a point mutation (valine to glutamic acid) in the
transmembrane region of the encoded protein. Amplification of the human homolog of \(neu\) is
4,968,603). To date, no point mutation analogous to that in the \(neu\) proto-oncogene has been
reported for human tumors. Overexpression of HER2 (frequently but not uniformly due to gene
amplification) has also been observed in other carcinomas including carcinomas of the stomach,
endometrium, salivary gland, lung, kidney, colon, thyroid, pancreas and bladder. See, among
ai, Oncogene, 4:81-88 (1989); Yonemurae\(^{\sim}\), Cancer Res., 51:1034 (1991); Borst et al.,
Antibodies directed against the rat pl85neu and human HER2 protein products have been described.

A recombinant humanized version of the murine HER2 antibody 4D5 (huMAb4D5-8, rhuMAb HER2, trastuzumab or HERCEPTIN ®, U.S. Patent No. 5,821,337) is clinically active in patients with HER2-overexpressing metastatic breast cancers that have received extensive prior anti-cancer therapy (Base l ga et al., J. Clin. Oncol. 14:737-744 (1996)). Trastuzumab received
marketing approval from the Food and Drug Administration September 25, 1998 for the treatment of patients with metastatic breast cancer whose tumors overexpress the HER2 protein.

The HER receptors are generally found in various combinations in cells and heterodimerization is thought to increase the diversity of cellular responses to a variety of HER ligands (Earp \textit{et al.} \textit{Breast Cancer Research and Treatment} 35: 115-132 (1995)). EGFR is bound by six different ligands; epidermal growth factor (EGF), transforming growth factor alpha (TGF-\alpha), amphiregulin, heparin binding epidermal growth factor (HB-EGF), betacellulin and epiroylins (Groenen \textit{et al.} \textit{Growth Factors} 11:235-257 (1994)). A family of heregulin proteins resulting from alternative splicing of a single gene are ligands for HER3 and HER4. The hergulin family includes alpha, beta and gamma hergulins (Holmes \textit{et al.}, \textit{Science}, 256:1205-1210 (1992); U.S. Patent No. 5,641,869; and Schaefer \textit{et al.} \textit{Oncogene} 15:1385-1394 (1997)); neu differentiation factors (NDFs), gial growth factors (GGFs); acetylcholine receptor inducing activity (ARIA); and sensory and motor neuron derived factor (SMDF). For a review, see Groenen \textit{et al.} \textit{Growth Factors} 11:235-257 (1994); Lemke, G. \textit{Molec. & Cell. Neurosci.} 7:247-262 (1996) and Lee \textit{et al.} \textit{Pharm. Rev.} 47:51-85 (1995). Recently three additional HER ligands were identified; neuregulin-2 (NRG-2) which is reported to bind either HER3 or HER4 (Chang \textit{et al.} \textit{Nature} 387 509-512 (1997); and Carraway \textit{et al.} \textit{Nature} 387:512-516 (1997)); neuregulin-3 which binds HER4 (Zhang \textit{et al.} \textit{PNAS(USA)} 94(18):9562-7 (1997)); and neuregulin-4 which binds HER4 (Harari \textit{et al.} \textit{Oncogene} 18:2681-89 (1999)) HB-EGF, betacellulin and epiregulin also bind to HER4.

While EGF and TGF\alpha do not bind HER2, EGF stimulates EGFR and HER2 to form a heterodimer, which activates EGFR and results in transphosphorylation of HER2 in the heterodimer. Dimerization and/or transphosphorylation appears to activate the HER2 tyrosine
kinase. See Earp et al., supra. Likewise, when HER3 is co-expressed with HER2, an active signaling complex is formed and antibodies directed against HER2 are capable of disrupting this complex (Sliwkowski et al., J. Biol. Chem., 269(20): 14661-14665 (1994)). Additionally, the affinity of HER3 for heregulin (HRG) is increased to a higher affinity state when co-expressed with HER2. See also, Levi et al., Journal of Neuroscience 15: 1329-1340 (1995); Morrisey et al., Proc. Natl. Acad. Sci. USA 92: 1431-1435 (1995); and Lewis et al., Cancer Res., 56:1457-1465 (1996) with respect to the HER2-HER3 protein complex. HER4, like HER3, forms an active signaling complex with HER2 (Carraway and Cantley, Cell 78:5-8 (1994)).

Diagnostics

Patients treated with the HER2 antibody trastuzumab are selected for therapy based on HER2 overexpression/amplification. See, for example, WO99/3 1140 (Paton et al), US2003/0170234A1 (Hellmann, S.), and US2003/0147884 (Paton et al); as well as WO01/89566, US2002/0064785, and US2003/0134344 (Mass et al). See, also, US Patent No. 6,573,043, US Patent No. 6,905,830, and US2003/01 52987, Cohen et al, concerning immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) for detecting HER2 overexpression and amplification.

describes gene profiling by gene oligonucleotide microarray using isolated RNA from tumor-tissue sections taken from archived primary biopsies.

Pertuzumab (also known as recombinant human monoclonal antibody 2C4; OMNIT ARG™, Genentech, Inc, South San Francisco) represents the first in a new class of agents known as HER dimerization inhibitors (HDI) and functions to inhibit the ability of HER2 to form active heterodimers with other HER receptors (such as EGFR/HER1, HER3 and HER4) and is active irrespective of HER2 expression levels. See, for example, Harari and Yarden Oncogene 19:6102-14 (2000); Yarden and Sliwkowski. Nat Rev Mol Cell Biol 2:127-37 (2001); Sliwkowski Nat Struct Biol 10:158-9 (2003); Cho et al. Nature 421:756-60 (2003); and Malik et al. Pro Am Soc Cancer Res 44:176-7 (2003).

Pertuzumab blockade of the formation of HER2-HER3 heterodimers in tumor cells has been demonstrated to inhibit critical cell signaling, which results in reduced tumor proliferation and survival (Agus et al. Cancer Cell 2:127-37 (2002)).

Pertuzumab has undergone testing as a single agent in the clinic with a phase Ia trial in patients with advanced cancers and phase II trials in patients with ovarian cancer and breast cancer as well as lung and prostate cancer. In a Phase I study, patients with incurable, locally advanced, recurrent or metastatic solid tumors that had progressed during or after standard therapy were treated with pertuzumab given intravenously every 3 weeks. Pertuzumab was generally well tolerated. Tumor regression was achieved in 3 of 20 patients evaluable for response. Two patients had confirmed partial responses. Stable disease lasting for more than 2.5 months was observed in 6 of 21 patients (Agus et al. Pro Am Soc Clin Oncol 22:192 (2003)). At doses of 2.0-15 mg/kg, the pharmacokinetics of pertuzumab was linear, and mean clearance ranged from 2.69 to 3.74 mL/day/kg and the mean terminal elimination half-life ranged from 15.3 to 27.6 days. Antibodies to pertuzumab were not detected (Allison et al. Pro Am Soc Clin Oncol 22:197 (2003)).

Summary of the Invention

The present invention provides the clinical data from human cancer patients treated with a HER dimerization inhibitor, pertuzumab. Patients were evaluated for expression levels of various serum biomarkers and the correlation between such expression levels and clinical benefit in response to treatment with trastuzumab was assessed. The clinical data indicated that patients with ovarian cancer who produce elevated levels of epidermal growth factor (EGF) or transforming growth factor alpha (TGF-alpha) showed survival benefits relative to patients with normal EGF or TGF-alpha levels, in response to pertuzumab treatment. Similar benefits are expected in another ongoing clinical trial, including patients with platinum-resistant ovarian cancer, primary peritoneal and fallopian tube cancer.
Accordingly, in one aspect the invention concerns a method for extending survival of a cancer patient comprising administering a HER dimerization inhibitor to the patient in an amount which extends survival of the patient, wherein the patient is determined to produce an elevated level of epidermal growth factor (EGF) or transforming growth factor alpha (TGF-alpha), and the cancer is selected from the group consisting of ovarian cancer, peritoneal cancer and fallopian tube cancer.

In another aspect, the invention concerns a method for extending survival of a patient with ovarian, peritoneal, or fallopian tube cancer comprising administering pertuzumab to the patient in an amount which extends survival of the patient, wherein the patient is determined to produce an elevated level of epidermal growth factor (EGF) or transforming growth factor alpha (TGF-alpha).

In a further aspect, the invention concerns a method for extending progression free survival (PFS) of a patient with ovarian, peritoneal, or fallopian tube cancer comprising administering pertuzumab to the patient in an amount which extends PFS in the patient, wherein the patient's serum is determined to have an elevated level of epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha) therein.

In a still further aspect, the invention concerns a method for extending progression free survival (PFS) of a patient with ovarian, peritoneal, or fallopian tube cancer comprising administering pertuzumab to the patient in an amount which extends PFS in the patient, wherein the patient's serum is determined to have an elevated level of epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha) therein.

In an additional aspect, the invention concerns a method of selecting a patient for treatment with a HER dimerization inhibitor, comprising treating the patient with the HER dimerization inhibitor if the patient is determined to produce an elevated level of epidermal growth factor (EGF) or transforming growth factor alpha (TGF-alpha).

For all aspects, in a particular embodiment, the patient is found to have an elevated level of EGF in the serum of the patient.

In another embodiment, the patient is found to have an elevated level of TGF-alpha in serum of the patient.

In another embodiment, the HER dimerization inhibitor is a HER2 dimerization inhibitor.

In yet another embodiment, the HER dimerization inhibitor inhibits HER heterodimerization.

In a further embodiment, the HER dimerization inhibitor is a HER antibody, which may, for example, bind to a HER receptor selected from the group consisting of EGFR, HER2, and HER3.
In a particular embodiment, the antibody binds to HER2, such as to Domain II of HER2 extracellular domain, or to a junction between domains I, II and III of HER2 extracellular domain.

In a specific embodiment, the HER dimerization inhibitor is pertuzumab. The cancer can, for example, be advanced, refractory or recurrent ovarian cancer, platinum resistant ovarian cancer, primary peritoneal or fallopian tube cancer.

The HER dimerization inhibitor may be administered as a single anti-tumor agent, or in combination with a second therapeutic agent to the patient.

The second therapeutic agent may, for example, be a chemotherapeutic agent, a HER antibody, antibody directed against a tumor associated antigen, an anti-hormonal compound, a cardioprotectant, a cytokine, an EGFR-targeted drug, an anti-angiogenic agent, a tyrosine kinase inhibitor, a COX inhibitor, a non-steroidal anti-inflammatory drug, a farnesyl transferase inhibitor, an antibody that binds oncofetal protein CA 125, HER2 vaccine, a HER targeting therapy, a Raf or ras inhibitor, a liposomal doxorubicin, a topotecan, a taxane, a dual tyrosine kinase inhibitor, TLK286, EMD-7200, a medicament that treats nausea, a medicament that prevents or treats skin rash or standard acne therapy, a medicament that treats or prevents diarrhea, a body temperature-reducing medicament, or a hematopoietic growth factor.

In a particular embodiment, the second therapeutic agent is a chemotherapeutic agent, such as an antimetabolite chemotherapeutic agent, e.g. gemcitabine, trastuzumab, erlotinib, or bevacizumab.

The clinical benefit is preferably measured in terms of survival, including overall survival (OS) and progression free survival (PFS), preferably PFS.

In another aspect, the invention concerns a kit comprising a HER dimerization inhibitor and a package insert or label indicating a clinical benefit for the HER dimerization inhibitor if the patient to be treated produces an elevated level of epidermal growth factor (EGF) or transforming growth factor alpha (TGF-alpha), wherein the clinical benefit preferably is extended survival, in particular extended PFS.

In a further aspect, the invention concerns a method of promoting a HER dimerization inhibitor to treat patients producing an elevated level of epidermal growth factor (EGF) or transforming growth factor alpha (TGF-alpha), where the promotion can take any forms, including the form of a written material, such a package insert.

Brief Description of the Drawings

Figure 1 provides a schematic of the HER2 protein structure, and amino acid sequences for Domains I-IV (SEQ ID Nos. 19-22, respectively) of the extracellular domain thereof.

Figures 2A and 2B depict alignments of the amino acid sequences of the variable light (V_L) (Fig. 2A) and variable heavy (V_H) (Fig. 2B) domains of murine monoclonal antibody 2C4
(SEQ ID Nos. 1 and 2, respectively); \(V_L\) and \(V_H\) domains of variant 574/pertuzumab (SEQ ID Nos. 3 and 4, respectively), and human \(V_L\) and \(V_H\) consensus frameworks (hum k\(l\), light kappa subgroup I; hum\(_\)l\(l\), heavy subgroup III) (SEQ ID Nos. 5 and 6, respectively). Asterisks identify differences between variable domains of pertuzumab and murine monoclonal antibody 2C4 or between variable domains of pertuzumab and the human framework. Complementarity Determining Regions (CDRs) are in brackets.

Figures 3A and 3B show the amino acid sequences of pertuzumab light chain (Fig. 3A; SEQ ID NO. 13) and heavy chain (Fig. 3B; SEQ ID No. 14). CDRs are shown in bold. Calculated molecular mass of the light chain and heavy chain are 23,526.22 Da and 49,216.56 Da (cysteines in reduced form). The carbohydrate moiety is attached to Asn 299 of the heavy chain.

Figure 4 depicts, schematically, binding of 2C4 at the heterodimeric binding site of HER2, thereby preventing heterodimerization with activated EGFR or HER3.

Figure 5 depicts coupling of HER2/HER3 to the MAPK and Akt pathways.

Figure 6 compares various activities of trastuzumab and pertuzumab.

Figures 7A and 7B show the amino acid sequences of trastuzumab light chain (Fig. 7A; SEQ ID No. 15) and heavy chain (Fig. 7B; SEQ ID No. 16), respectively.

Figures 8A and 8B depict a variant pertuzumab light chain sequence (Fig. 8A; SEQ ID No. 17) and a variant pertuzumab heavy chain sequence (Fig. 8B; SEQ ID No. 18), respectively.

Figure 9 depicts Spearman correlation between biomarkers HER2, TGF-alpha, amphiregulin, and EGF.

Figure 10 represents mean/correlation of markers with clinical covariates.

Figure 11 shows cutoff determination using progression free survival (PFS) for HER2, TGF-alpha, amphiregulin, and EGF.

Figure 12 shows cutoff determination using overall survival (OS) for HER2, TGF-alpha, amphiregulin, and EGF.

Figure 13 reflects distribution of patients according to cutoffs.

Figure 14 depicts KapLan Meir PFS and OS curves separated by 3 marker cutoff determined in the univariate analysis for the HER2 marker.

Figure 15 depicts KapLan Meir PFS and OS curves separated by 3 marker cutoff determined in the univariate analysis for the TGF-alpha marker.

Figure 16 depicts KapLan Meir PFS and OS curves separated by 3 marker cutoff determined in the univariate analysis for the EGF marker.

Detailed Description of the Preferred Embodiments

I. Definitions
"Survival" refers to the patient remaining alive, and includes overall survival as well as progression free survival.

"Overall survival" refers to the patient remaining alive for a defined period of time, such as 1 year, 5 years, etc from the time of diagnosis or treatment.

"Progression free survival" refers to the patient remaining alive, without the cancer progressing or getting worse.

By "extending survival" is meant increasing overall or progression free survival in a treated patient relative to an untreated patient (i.e. relative to a patient not treated with a HER dimerization inhibitor, such as pertuzumab), or relative to a patient who does not display HER activation, and/or relative to a patient treated with an approved anti-tumor agent (such as topotecan or liposomal doxorubicin, where the cancer is ovarian cancer).

Herein "time to disease progression" or "TTP" refer to the time, generally measured in weeks or months, from the time of initial treatment (e.g. with a HER dimerization inhibitor, such as pertuzumab), until the cancer progresses or worsens. Such progression can be evaluated by the skilled clinician. In the case of ovarian cancer, for instance, progression can be evaluated by RECIST (see, for example, Therasse et al, J. Nat. Cancer Inst. 92(3): 205-216 (2000)).

By "extending TTP" is meant increasing the time to disease progression in a treated patient relative to an untreated patient (i.e. relative to a patient not treated with a HER dimerization inhibitor, such as pertuzumab), or relative to a patient who does not display HER activation, and/or relative to a patient treated with an approved anti-tumor agent (such as topotecan or liposomal doxorubicin, where the cancer is ovarian cancer).

An "objective response" refers to a measurable response, including complete response (CR) or partial response (PR).

By "complete response" or "CR" is intended the disappearance of all signs of cancer in response to treatment. This does not always mean the cancer has been cured.

"Partial response" or "PR" refers to a decrease in the size of one or more tumors or lesions, or in the extent of cancer in the body, in response to treatment.

A "HER receptor" is a receptor protein tyrosine kinase which belongs to the HER receptor family and includes EGFR, HER2, HER3 and HER4 receptors. The HER receptor will generally comprise an extracellular domain, which may bind an HER ligand and/or dimerize with another HER receptor molecule; a lipophilic transmembrane domain; a conserved intracellular tyrosine kinase domain; and a carboxyl-terminal signaling domain harboring several tyrosine residues which can be phosphorylated. The HER receptor may be a "native sequence" HER receptor or an "amino acid sequence variant" thereof. Preferably the HER receptor is native sequence human HER receptor.
The terms "ErbB1," "HER1," "epidermal growth factor receptor" and "EGFR" are used interchangeably herein and refer to EGFR as disclosed, for example, in Carpenter et al. Ann. Rev. Biochem. 56:881-914 (1987), including naturally occurring mutant forms thereof (e.g. a deletion mutant EGFR as in Humphrey et al. PNAS (USA) 87:4207-4211 (1990)). Er&Bl refers to the gene encoding the EGFR protein product.

The expressions "ErbB2" and "HER2" are used interchangeably herein and refer to human HER2 protein described, for example, in Semba et al., PNAS (USA) 82:6497-6501 (1985) and Yamamoto et al. Nature 319:230-234 (1986) (Genebank accession number X03363). The term "erbB2" refers to the gene encoding human ErbB2 and "neu" refers to the gene encoding rat p185Neu. Preferred HER2 is native sequence human HER2.

Herein, "HER2 extracellular domain" or "HER2 ECD" refers to a domain of HER2 that is outside of a cell, either anchored to a cell membrane, or in circulation, including fragments thereof. In one embodiment, the extracellular domain of HER2 may comprise four domains: "Domain I" (amino acid residues from about 1-195; SEQ ID NO:19), "Domain II" (amino acid residues from about 196-319; SEQ ID NO:20), "Domain III" (amino acid residues from about 320-488; SEQ ID NO:21), and "Domain IV" (amino acid residues from about 489-630; SEQ ID NO:22) (residue numbering without signal peptide). See Garrett et al. Mol. Cell. 11:495-505 (2003), Cho et al. Nature 421:756-760 (2003), Franklin et al. Cancer Cell 5:317-328 (2004), and Plowman et al. Proc. Natl. Acad. Sci. 90:1746-1750 (1993), as well as Fig. 1 herein.

"ErbB3" and "HER3" refer to the receptor polypeptide as disclosed, for example, in US Pat. Nos. 5,183,884 and 5,480,968 as well as Kraus et al. PNAS (USA) 86:9193-9197 (1989).

A "HER dimer" herein is a noncovalently associated dimer comprising at least two HER receptors. Such complexes may form when a cell expressing two or more HER receptors is exposed to an HER ligand and can be isolated by immunoprecipitation and analyzed by SDS-PAGE as described in Sliwkowski et al., *J. Biol. Chem.*, 269(20):14661-14665 (1994), for example. Other proteins, such as a cytokine receptor subunit (e.g. gpl30) may be associated with the dimer. Preferably, the HER dimer comprises HER2.

A "HER heterodimer" herein is a noncovalently associated heterodimer comprising at least two different HER receptors, such as EGFR-HER2, HER2-HER3 or HER2-HER4 heterodimers.

A "HER inhibitor" is an agent which interferes with HER activation or function. Examples of HER inhibitors include HER antibodies (e.g. EGFR, HER2, HER3, or HER4 antibodies); EGFR-targeted drugs; small molecule HER antagonists; HER tyrosine kinase inhibitors; HER2 and EGFR dual tyrosine kinase inhibitors such as lapatinib/GW572016; antisense molecules (see, for example, WO2004/87207); and/or agents that bind to, or interfere with function of, downstream signaling molecules, such as MAPK or Akt (see Fig. 5). Preferably, the HER inhibitor is an antibody or small molecule which binds to a HER receptor.

A "HER dimerization inhibitor" is an agent which inhibits formation of a HER dimer or HER heterodimer. Preferably, the HER dimerization inhibitor is an antibody, for example an antibody which binds to HER2 at the heterodimeric binding site thereof. The most preferred HER dimerization inhibitor herein is pertuzumab or MAb 2C4. Binding of 2C4 to the heterodimeric binding site of HER2 is illustrated in Fig. 4. Other examples of HER dimerization inhibitors
include antibodies which bind to EGFR and inhibit dimerization thereof with one or more other
HER receptors (for example EGFR monoclonal antibody 806, MAb 806, which binds to activated
or "untethered" EGFR; see Johns et al., J. Biol. Chem. 279(29):30375-30384 (2004)); antibodies
which bind to HER3 and inhibit dimerization thereof with one or more other HER receptors;
antibodies which bind to HER4 and inhibit dimerization thereof with one or more other HER
receptors; peptide dimerization inhibitors (US Patent No. 6,417,168); antisense dimerization
inhibitors; etc.

A "HER2 dimerization inhibitor" is an agent that inhibits formation of adimer or
er heterodimer comprising HER2.

A "HER antibody" is an antibody that binds to a HER receptor. Optionally, the HER
antibody further interferes with HER activation or function. Preferably, the HER antibody binds
to the HER2 receptor. A HER2 antibody of particular interest herein is pertuzumab. Another
example of a HER2 antibody is trastuzumab. Examples of EGFR antibodies include cetuximab
and ABX0303.

"HER activation" refers to activation, or phosphorylation, of any one or more HER
receptors. Generally, HER activation results in signal transduction (e.g. that caused by an
intracellular kinase domain of a HER receptor phosphorylating tyrosine residues in the HER
receptor or a substrate polypeptide). HER activation may be mediated by HER ligand binding to
a HER dimer comprising the HER receptor of interest. HER ligand binding to a HER dimer may
activate a kinase domain of one or more of the HER receptors in the dimer and thereby results in
phosphorylation of tyrosine residues in one or more of the HER receptors and/or phosphorylation
of tyrosine residues in additional substrate polypeptides(s), such as Akt or MAPK intracellular
kinases, see, Fig. 5, for example.

"Phosphorylation" refers to the addition of one or more phosphate group(s) to a protein,
such as a HER receptor, or substrate thereof.

An antibody which "inhibits HER dimerization" is an antibody which inhibits, or
interferes with, formation of a HER dimer. Preferably, such an antibody binds to HER2 at the
heterodimeric binding site thereof. The most preferred dimerization inhibiting antibody herein is
pertuzumab or MAb 2C4. Binding of 2C4 to the heterodimeric binding site of HER2 is illustrated
in Fig. 4. Other examples of antibodies which inhibit HER dimerization include antibodies which
bind to EGFR and inhibit dimerization thereof with one or more other HER receptors (for
example EGFR monoclonal antibody 806, MAb 806, which binds to activated or Auntethered®
EGFR; see Johns et al., J. Biol. Chem. 279(29):30375-30384 (2004)); antibodies which bind to
HER3 and inhibit dimerization thereof with one or more other HER receptors; and antibodies
which bind to HER4 and inhibit dimerization thereof with one or more other HER receptors.
An antibody which "blocks ligand activation of a HER receptor more effectively than trastuzumab" is one which reduces or eliminates HER ligand activation of HER receptor(s) or HER dimer(s) more effectively (for example at least about 2-fold more effectively) than trastuzumab. Preferably, such an antibody blocks HER ligand activation of a HER receptor at least about as effectively as murine monoclonal antibody 2C4 or a Fab fragment thereof, or as pertuzumab or a Fab fragment thereof. One can evaluate the ability of an antibody to block ligand activation of a HER receptor by studying HER dimers directly, or by evaluating HER activation, or downstream signaling, which results from HER dimerization, and/or by evaluating the antibody-HER2 binding site, etc. Assays for screening for antibodies with the ability to inhibit ligand activation of a HER receptor more effectively than trastuzumab are described in Agus et al. Cancer Cell 2: 127-137 (2002) and US Patent No. 6,949,245 (Adams et al.). By way of example only, one may assay for: inhibition of HER dimer formation (see, e.g., Fig. IA-B of Agus et al. Cancer Cell 2: 127-137 (2002); and US Patent No. 6,949,245); reduction in HER ligand activation of cells which express HER dimers (US Patent No. 6,949,245 and Fig. 2A-B of Agus et al. Cancer Cell 2: 127-137 (2002), for example); blocking of HER ligand binding to cells which express HER dimers (US Patent No. 6,949,245, and Fig. 2E of Agus et al. Cancer Cell 2: 127-137 (2002), for example); cell growth inhibition of cancer cells (e.g. MCF7, MDA-MD-134, ZR-75-1, MD-MB-175, T-47D cells) which express HER dimers in the presence (or absence) of HER ligand (US Patent No. 6,949,245 and Figs. 3A-D of Agus et al. Cancer Cell 2: 127-137 (2002), for instance); inhibition of downstream signaling (for instance, inhibition of HRG-dependent AKT phosphorylation or inhibition of HRG- or TGFα-dependent MAPK phosphorylation) (see, US Patent No. 6,949,245, and Fig. 2C-D of Agus et al. Cancer Cell 2: 127-137 (2002), for example). One may also assess whether the antibody inhibits HER dimerization by studying the antibody-HER2 binding site, for instance, by evaluating a structure or model, such as a crystal structure, of the antibody bound to HER2 (See, for example, Franklin et al. Cancer Cell 5:317-328 (2004)).

A "heterodimeric binding site" on HER2, refers to a region in the extracellular domain of HER2 that contacts, or interfaces with, a region in the extracellular domain of EGFR, HER3 or HER4 upon formation of a dimer therewith. The region is found in Domain II of HER2. Franklin et al. Cancer Cell 5:317-328 (2004).

The HER2 antibody may "inhibit HRG-dependent AKT phosphorylation" and/or inhibit "HRG- or TGFα-dependent MAPK phosphorylation" more effectively (for instance at least 2-fold more effectively) than trastuzumab (see Agus et al. Cancer Cell 2: 127-137 (2002) and US Patent No. 6,949,245, by way of example).
The HER2 antibody may be one which, like pertuzumab, does "not inhibit HER2 ectodomain cleavage" (Molina et al. Cancer Res. 61:4744-4749(2001)). Trastuzumab, on the other hand, can inhibit HER2 ectodomain cleavage.

A HER2 antibody that "binds to a heterodimeric binding site" of HER2, binds to residues in domain II (and optionally also binds to residues in other of the domains of the HER2 extracellular domain, such as domains I and III), and can sterically hinder, at least to some extent, formation of a HER2-EGFR, HER2-HER3, or HER2-HER4 heterodimer. Franklin et al. Cancer Cell 5:317-328 (2004) characterize the HER2-pertuzumab crystal structure, deposited with the RCSB Protein Data Bank (ID Code IS78), illustrating an exemplary antibody that binds to the heterodimeric binding site of HER2.

An antibody that "binds to domain II" of HER2 binds to residues in domain II and optionally residues in other domain(s) of HER2, such as domains I and III. Preferably the antibody that binds to domain II binds to the junction between domains I, II and III of HER2.

Protein "expression" refers to conversion of the information encoded in a gene into messenger RNA (mRNA) and then to the protein.

Herein, a sample or cell that "expresses" a protein of interest (such as a HER receptor or HER ligand) is one in which mRNA encoding the protein, or the protein, including fragments thereof, is determined to be present in the sample or cell.

The technique of "polymerase chain reaction" or "PCR" as used herein generally refers to a procedure wherein minute amounts of a specific piece of nucleic acid, RNA and/or DNA, are amplified as described in U.S. Pat. No. 4,683,195 issued 28 July 1987. Generally, sequence information from the ends of the region of interest or beyond needs to be available, such that oligonucleotide primers can be designed; these primers will be identical or similar in sequence to opposite strands of the template to be amplified. The 5' terminal nucleotides of the two primers may coincide with the ends of the amplified material. PCR can be used to amplify specific RNA sequences, specific DNA sequences from total genomic DNA, and cDNA transcribed from total cellular RNA, bacteriophage or plasmid sequences, etc. See generally Mullis et al., Cold Spring Harbor Symp. Quant. Biol, 51: 263 (1987); Erlich, ed., PCR Technology, (Stockton Press, NY, 1989). As used herein, PCR is considered to be one, but not the only, example of a nucleic acid polymerase reaction method for amplifying a nucleic acid test sample, comprising the use of a known nucleic acid (DNA or RNA) as a primer and utilizes a nucleic acid polymerase to amplify or generate a specific piece of nucleic acid or to amplify or generate a specific piece of nucleic acid which is complementary to a particular nucleic acid.

"Quantitative real time polymerase chain reaction" or "qRT-PCR" refers to a form of PCR wherein the amount of PCR product is measured at each step in a PCR reaction. This
technique has been described in various publications including Cronin et al., Am. J. Pathol. 164(1):35-42 (2004); and Ma et al., Cancer Cell 5:607-616 (2004).

The term "microarray" refers to an ordered arrangement of hybridizable array elements, preferably polynucleotide probes, on a substrate.

The term "polynucleotide," when used in singular or plural, generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for instance, polynucleotides as defined herein include, without limitation, single- and double-stranded DNA, DNA including single- and double-stranded regions, single- and double-stranded RNA, and RNA including single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or include single- and double-stranded regions. In addition, the term "polynucleotide" as used herein refers to triple- stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. The term "polynucleotide" specifically includes cDNAs. The term includes DNAs (including cDNAs) and RNAs that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotides" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritiated bases, are included within the term "polynucleotides" as defined herein. In general, the term "polynucleotide" embraces all chemically, enzymatically and/or metabolically modified forms of unmodified polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells.

The term "oligonucleotide" refers to a relatively short polynucleotide, including, without limitation, single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNA:DNA hybrids and double- stranded DNAs. Oligonucleotides, such as single- stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.

The phrase "gene amplification" refers to a process by which multiple copies of a gene or gene fragment are formed in a particular cell or cell line. The duplicated region (a stretch of amplified DNA) is often referred to as "amplicon." Usually, the amount of the messenger RNA (mRNA) produced also increases in the proportion of the number of copies made of the particular gene expressed.
"Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).

"Stringent conditions" or "high stringency conditions", as defined herein, typically: (1) employ low ionic strength and high temperature for washing, for example 0.01 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C; or (3) employ 50% formamide, 5×SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5× Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C, in 0.2×SSC (sodium chloride/sodium citrate) and 50% formamide at 55°C, followed by a high-stringency wash consisting of 0.1×SSC containing EDTA at 55°C.

"Moderately stringent conditions" may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent than those described above. An example of moderately stringent conditions is overnight incubation at 37°C. in a solution comprising: 20% formamide, 5×SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5× Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1xSSC at about 37-50°C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc., as necessary to accommodate factors such as probe length and the like.

A "native sequence" polypeptide is one which has the same amino acid sequence as a polypeptide (e.g., HER receptor or HER ligand) derived from nature, including naturally occurring or allelic variants. Such native sequence polypeptides can be isolated from nature or can be produced by recombinant or synthetic means. Thus, a native sequence polypeptide can...
have the amino acid sequence of naturally occurring human polypeptide, murine polypeptide, or polypeptide from any other mammalian species.

The term "antibody" herein is used in the broadest sense and specifically covers monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g. bispecific antibodies), and antibody fragments, so long as they exhibit the desired biological activity.

The term "monoclonal antibody" as used herein refers to an antibody from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical and/or bind the same epitope(s), except for possible variants that may arise during production of the monoclonal antibody, such variants generally being present in minor amounts. Such monoclonal antibody typically includes an antibody comprising a polypeptide sequence that binds a target, wherein the target-binding polypeptide sequence was obtained by a process that includes the selection of a single target binding polypeptide sequence from a plurality of polypeptide sequences. For example, the selection process can be the selection of a unique clone from a plurality of clones, such as a pool of hybridoma clones, phage clones or recombinant DNA clones. It should be understood that the selected target binding sequence can be further altered, for example, to improve affinity for the target, to humanize the target binding sequence, to improve its production in cell culture, to reduce its immunogenicity in vivo, to create a multispecific antibody, etc., and that an antibody comprising the altered target binding sequence is also a monoclonal antibody of this invention. In contrast to polyclonal antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody of a monoclonal antibody preparation is directed against a single determinant on an antigen. In addition to their specificity, the monoclonal antibody preparations are advantageous in that they are typically uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by a variety of techniques, including, for example, the hybridoma method (e.g., Kohler et al, Nature, 256:495 (1975); Harlow et al, Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling et al, in: Monoclonal Antibodies and T-Cell Hybridomas 563-681, (Elsevier, N.Y., 1981)), recombinant DNA methods (see, e.g., U.S. Patent No. 4,816,567), phage display technologies (see, e.g., Clackson et al, Nature, 352:624-628 (1991); Marks et al, J. Mol. Biol, 222:581-597 (1991); Sidhu et al, J. Mol. Biol. 338(2):299-310 (2004); Lee et al, J.MolBiol.340(5):1073-1093 (2004); Fellouse, Proc. Nat. Acad. ScL USA 101(34):12467-12472 (2004); and Lee et al. J. Immunol. Methods 284(1-2): 119-132 (2004), and technologies for producing human or human-like antibodies in animals that have parts or all of the human

The monoclonal antibodies herein specifically include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Patent No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)). Chimeric antibodies of interest herein include Aprimatized® antibodies comprising variable domain antigen-binding sequences derived from a non-human primate (e.g. Old World Monkey, Ape etc) and human constant region sequences, as well as "humanized" antibodies.

"Humanized" forms of non-human (e.g., rodent) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse; rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity. In some instances, framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.

Humanized HER2 antibodies include huMAb4D5-1, huMAb4D5-2, huMAb4D5-3, huMAb4D5-4, huMAb4D5-5, huMAb4D5-6, huMAb4D5-7 and huMAb4D5-8 or trastuzumab (HERCEPTIN®) as described in Table 3 of U.S. Patent 5,821,337 expressly incorporated herein by reference; humanized 520C9 (WO93/21319); and humanized 2C4 antibodies such as pertuzumab as described herein.

For the purposes herein, "trastuzumab," "HERCEPTIN®," and "huMAb4D5-8" refer to an antibody comprising the light and heavy chain amino acid sequences in SEQ ID NOS. 15 and 16, respectively.

Herein, "pertuzumab" and "OMNITARG™" refer to an antibody comprising the light and heavy chain amino acid sequences in SEQ ID NOS. 13 and 14, respectively.

Differences between trastuzumab and pertuzumab functions are illustrated in Fig. 6.

An "intact antibody" herein is one which comprises two antigen binding regions, and an Fc region. Preferably, the intact antibody has a functional Fc region.

"Antibody fragments" comprise a portion of an intact antibody, preferably comprising the antigen binding region thereof. Examples of antibody fragments include Fab, Fab', F(ab')2, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragment(s).

"Native antibodies" are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains. Each light chain has a variable domain at one end (VL) and a constant domain at its other end. The constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light-chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable domains.

The term "variable" refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called hypervariable regions both in the light chain and the heavy chain variable domains. The more highly conserved portions of variable domains are called the framework regions (FRs). The variable domains of native heavy and light chains each comprise four FRs, largely adopting a β-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β-sheet structure. The hypervariable regions in each chain are
held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al, *Sequences of Proteins of Immunological Interest*, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).

The term "hypervariable region" when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region generally comprises amino acid residues from a "complementarity determining region" or "CDR" (e.g. residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the light chain variable domain and 31-35 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain; Kabat et al, *Sequences of Proteins of Immunological Interest*, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)) and/or those residues from a "hypervariable loop" (e.g. residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the light chain variable domain and 26-32 (H1) 53-55 (H2) and 96-101 (H3) in the heavy chain variable domain; Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)). "Framework Region" or "FR" residues are those variable domain residues other than the hypervariable region residues as herein defined.

Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, each with a single antigen-binding site, and a residual "Fc" fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an F(ab')₂ fragment that has two antigen-binding sites and is still capable of cross-linking antigen.

"Fv" is the minimum antibody fragment which contains a complete antigen-recognition and antigen-binding site. This region consists of a dimer of one heavy chain and one light chain variable domain in tight, non-covalent association. It is in this configuration that the three hypervariable regions of each variable domain interact to define an antigen-binding site on the surface of the V₄H-V₄L dimer. Collectively, the six hypervariable regions confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three hypervariable regions specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.

The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab= fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear at least one free thiol group. F(ab')₂ antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
The "light chains" of antibodies from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (\(\kappa\)) and lambda (\(\lambda\)), based on the amino acid sequences of their constant domains.

The term "Fc region" herein is used to define a C-terminal region of an immunoglobulin heavy chain, including native sequence Fc regions and variant Fc regions. Although the boundaries of the Fc region of an immunoglobulin heavy chain might vary, the human IgG heavy chain Fc region is usually defined to stretch from an amino acid residue at position Cys226, or from Pro230, to the carboxyl-terminus thereof. The C-terminal lysine (residue 447 according to the EU numbering system) of the Fc region may be removed, for example, during purification of the antibody, or by recombinantly engineering the nucleic acid encoding a heavy chain of the antibody. Accordingly, a composition of intact antibodies may comprise antibody populations with all K447 residues removed, antibody populations with no K.447 residues removed, and antibody populations having a mixture of antibodies with and without the K447 residue.

Unless indicated otherwise, herein the numbering of the residues in an immunoglobulin heavy chain is that of the EU index as in Kabat et al., **Sequences of Proteins of Immunological Interest**, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991), expressly incorporated herein by reference. The "EU index as in Kabat" refers to the residue numbering of the human IgG1 EU antibody.

A "functional Fc region" possesses an "effector function" of a native sequence Fc region. Exemplary "effector functions" include Clq binding; complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor; BCR), etc. Such effector functions generally require the Fc region to be combined with a binding domain (e.g. an antibody variable domain) and can be assessed using various assays as herein disclosed, for example.

A "native sequence Fc region" comprises an amino acid sequence identical to the amino acid sequence of an Fc region found in nature. Native sequence human Fc regions include a native sequence human IgG1 Fc region (non-A and A allotypes); native sequence human IgG2 Fc region; native sequence human IgG3 Fc region; and native sequence human IgG4 Fc region as well as naturally occurring variants thereof.

A "variant Fc region" comprises an amino acid sequence which differs from that of a native sequence Fc region by virtue of at least one amino acid modification, preferably one or more amino acid substitution(s). Preferably, the variant Fc region has at least one amino acid substitution compared to a native sequence Fc region or to the Fc region of a parent polypeptide, e.g. from about one to about ten amino acid substitutions, and preferably from about one to about five amino acid substitutions in a native sequence Fc region or in the Fc region of the parent.
polypeptide. The variant Fc region herein will preferably possess at least about 80% homology with a native sequence Fc region and/or with an Fc region of a parent polypeptide, and most preferably at least about 90% homology therewith, more preferably at least about 95% homology therewith. Depending on the amino acid sequence of the constant domain of their heavy chains, intact antibodies can be assigned to different Aclclasses®. There are five major classes of intact antibodies: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into Asubclasses® (isotypes), e.g., IgGl, IgG2, IgG3, IgG4, IgA, and IgA2. The heavy-chain constant domains that correspond to the different classes of antibodies are called α, δ, ε, γ, and μ, respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.

"Antibody-dependent cell-mediated cytotoxicity" and "ADCC" refer to a cell-mediated reaction in which nonspecific cytotoxic cells that express Fc receptors (FcRs) (e.g. Natural Killer (NK) cells, neutrophils, and macrophages) recognize bound antibody on a target cell and subsequently cause lysis of the target cell. The primary cells for mediating ADCC, NK cells, express FcγRIII only, whereas monocytes express FcγRI, FcγRII and FcγRIII. FcR expression on hematopoietic cells in summarized is Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991). To assess ADCC activity of a molecule of interest, an in vitro ADCC assay, such as that described in US Patent No. 5,500,362 or 5,821,337 may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al. PNAS (USA) 95:652-656 (1998).

"Human effector cells" are leukocytes which express one or more FcRs and perform effector functions. Preferably, the cells express at least FcγRIII and perform ADCC effector function. Examples of human leukocytes which mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred. The effector cells may be isolated from a native source thereof, e.g. from blood or PBMCs as described herein.

The terms "Fc receptor" or "FcR" are used to describe a receptor that binds to the Fc region of an antibody. The preferred FcR is a native sequence human FcR. Moreover, a preferred FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the FcγRI, FcγRII, and FcγRIII subclasses, including allelic variants and alternatively spliced forms of these receptors. FcγRII receptors include FcγRIIA (an "activating receptor") and FcγRIIB (an "inhibiting receptor"), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof. Activating receptor FcγRIIA contains an immunoreceptor tyrosine-

"Complement dependent cytotoxicity" or "CDC" refers to the ability of a molecule to lyse a target in the presence of complement. The complement activation pathway is initiated by the binding of the first component of the complement system (Clq) to a molecule (e.g. an antibody) complexed with a cognate antigen. To assess complement activation, a CDC assay, e.g. as described in Gazzano-Santoro et al, *J. Immunol. Methods* 202:163 (1996), may be performed.

"Single-chain Fv" or "scFv" antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain. Preferably, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen binding. For a review of scFv see Pluckthun in *The Pharmacology of Monoclonal Antibodies*, vol. 113, Rosenberg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994). HER2 antibody scFv fragments are described in WO93/16185; U.S. Patent No. 5,571,894; and U.S. Patent No. 5,587,458.

The term "diabodies" refers to small antibody fragments with two antigen-binding sites, which fragments comprise a variable heavy domain (VH) connected to a variable light domain (VL) in the same polypeptide chain (VH-VL). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93/1161; and Hollinger et al, *Proc. Natl. Acad. Sci. USA*, 90:6444-6448 (1993).

A "naked antibody" is an antibody that is not conjugated to a heterologous molecule, such as a cytotoxic moiety or radiolabel.

An "isolated" antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by
weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.

The term "main species antibody" herein refers to the antibody structure in a composition which is the quantitatively predominant antibody molecule in the composition. In one embodiment, the main species antibody is a HER2 antibody, such as an antibody that binds to Domain II of HER2, antibody that inhibits HER dimerization more effectively than trastuzumab, and/or an antibody which binds to a heterodimeric binding site of HER2. The preferred embodiment herein of the main species antibody is one comprising the variable light and variable heavy amino acid sequences in SEQ ID Nos. 3 and 4, and most preferably comprising the light chain and heavy chain amino acid sequences in SEQ ID Nos. 13 and 14 (pertuzumab).

An "amino acid sequence variant" antibody herein is an antibody with an amino acid sequence which differs from a main species antibody. Ordinarily, amino acid sequence variants will possess at least about 70% homology with the main species antibody, and preferably, they will be at least about 80%, more preferably at least about 90% homologous with the main species antibody. The amino acid sequence variants possess substitutions, deletions, and/or additions at certain positions within or adjacent to the amino acid sequence of the main species antibody. Examples of amino acid sequence variants herein include an acidic variant (e.g. deamidated antibody variant), a basic variant, an antibody with an amino-terminal leader extension (e.g. VHS-) on one or two light chains thereof, an antibody with a C-terminal lysine residue on one or two heavy chains thereof, etc, and includes combinations of variations to the amino acid sequences of heavy and/or light chains. The antibody variant of particular interest herein is the antibody comprising an amino-terminal leader extension on one or two light chains thereof, optionally
further comprising other amino acid sequence and/or glycosylation differences relative to the
main species antibody.

A "glycosylation variant" antibody herein is an antibody with one or more carbohydrate
moieties attached thereto which differ from one or more carbohydrate moieties attached to a main
species antibody. Examples of glycosylation variants herein include antibody with a G1 or G2
oligosaccharide structure, instead a G0oligosaccharide structure, attached to an Fc region thereof,
antibody with one or two carbohydrate moieties attached to one or two light chains thereof,
antibody with no carbohydrate attached to one or two heavy chains of the antibody, etc, and
combinations of glycosylation alterations.

Where the antibody has an Fc region, an oligosaccharide structure may be attached to one
or two heavy chains of the antibody, e.g. at residue 299 (298, Eu numbering of residues). For
pertuzumab, GO was the predominant oligosaccharide structure, with other oligosaccharide
structures such as GO-F, G-I, ManS, Mand, Gl-I, Gl(1-6), G1(1-3) and G2 being found in lesser
amounts in the pertuzumab composition.

Unless indicated otherwise, a AGl oligosaccharide structure® herein includes G-I, Gl-I,
Gl(1-6) and Gl(1-3) structures.

An "amino-terminal leader extension" herein refers to one or more amino acid residues of
the amino-terminal leader sequence that are present at the amino-terminus of any one or more
heavy or light chains of an antibody. An exemplary amino-terminal leader extension comprises
or consists of three amino acid residues, VHS, present on one or both light chains of an antibody
variant.

A "deamidated" antibody is one in which one or more asparagine residues thereof has
been derivitized, e.g. to an aspartic acid, a succinimidé, or an iso-aspartic acid.

The terms "cancer" and "cancerous" refer to or describe the physiological condition in
mammals that is typically characterized by unregulated cell growth. Examples of cancer include,
but are not limited to, carcinoma, lymphoma, blastoma (including medulloblastoma and
retinoblastoma), sarcoma (including liposarcoma and synovial cell sarcoma), neuroendocrine
tumors (including carcinoid tumors, gastrinoma, and islet cell cancer), mesothelioma,
chwannoma (including acoustic neuroma), meningioma, adenocarcinoma, melanoma, and
leukemia or lymphoid malignancies. More particular examples of such cancers include squamous
cell cancer (e.g. epithelial squamous cell cancer), lung cancer including small-cell lung cancer
(SCLC), non-small cell lung cancer (NSCLC), adenocarcinoma of the lung and squamous
carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer
including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer,
liver cancer, bladder cancer, hepatoma, breast cancer (including metastatic breast cancer), colon
cancer, rectal cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland

26
carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic
carcinoma, anal carcinoma, penile carcinoma, testicular cancer, esophageal cancer, tumors of the
biliary tract, as well as head and neck cancer.

An "advanced" cancer is one which has spread outside the site or organ of origin, either
by local invasion or metastasis.

A "refractory" cancer is one which progresses even though an anti-tumor agent, such as a
chemotherapeutic agent, is being administered to the cancer patient. An example of a refractory
cancer is one which is platinum refractory.

A "recurrent" cancer is one which has regrown, either at the initial site or at a distant site,
after a response to initial therapy.

Herein, a "patient" is a human patient. The patient may be a cancer patient, i.e. one
who is suffering or at risk for suffering from one or more symptoms of cancer.

A "tumor sample" herein is a sample derived from, or comprising tumor cells from, a
patient=s tumor. Examples of tumor samples herein include, but are not limited to, tumor
biopsies, circulating tumor cells, circulating plasma proteins, ascitic fluid, primary cell cultures or
cell lines derived from tumors or exhibiting tumor-like properties, as well as preserved tumor
samples, such as formalin-fixed, paraffin-embedded tumor samples or frozen tumor samples.

A "fixed" tumor sample is one which has been histologically preserved using a fixative.

A "formalin-fixed" tumor sample is one which has been preserved using formaldehyde as
the fixative.

An "embedded" tumor sample is one surrounded by a firm and generally hard medium
such as paraffin, wax, celloidin, or a resin. Embedding makes possible the cutting of thin sections
for microscopic examination or for generation of tissue microarrays (TMAs).

A "paraffin-embedded" tumor sample is one surrounded by a purified mixture of solid
hydrocarbons derived from petroleum.

Herein, a "frozen" tumor sample refers to a tumor sample which is, or has been, frozen.

A cancer or biological sample which "displays HER expression, amplification, or
activation" is one which, in a diagnostic test, expresses (including overexpresses) a HER receptor,
has amplified HER gene, and/or otherwise demonstrates activation or phosphorylation of a HER
receptor.

A cancer or biological sample which "displays HER activation" is one which, in a
diagnostic test, demonstrates activation or phosphorylation of a HER receptor. Such activation
can be determined directly (e.g. by measuring HER phosphorylation by ELISA) or indirectly (e.g.
by gene expression profiling or by detecting HER heterodimers, as described herein).

Herein, "gene expression profiling" refers to an evaluation of expression of one or more
genes as a surrogate for determining HER phosphorylation directly.
A "phospho-ELISA assay" herein is an assay in which phosphorylation of one or more HER receptors, especially HER2, is evaluated in an enzyme-linked immunosorbent assay (ELISA) using a reagent, usually an antibody, to detect phosphorylated HER receptor, substrate, or downstream signaling molecule. Preferably, an antibody which detects phosphorylated HER2 is used. The assay may be performed on cell lysates, preferably from fresh or frozen biological samples.

A cancer cell with "HER receptor overexpression or amplification" is one which has significantly higher levels of a HER receptor protein or gene compared to a noncancerous cell of the same tissue type. Such overexpression may be caused by gene amplification or by increased transcription or translation. HER receptor overexpression or amplification may be determined in a diagnostic or prognostic assay by evaluating increased levels of the HER protein present on the surface of a cell (e.g. via an immunohistochemistry assay; IHC). Alternatively, or additionally, one may measure levels of HER-encoding nucleic acid in the cell, e.g. via fluorescent in situ hybridization (FISH; see WO98/45479 published October, 1998), southern blotting, or polymerase chain reaction (PCR) techniques, such as quantitative real time PCR (qRT-PCR). One may also study HER receptor overexpression or amplification by measuring shed antigen (e.g., HER extracellular domain) in a biological fluid such as serum (see, e.g., U.S. Patent No. 4,933,294 issued June 12, 1990; WO91/05264 published April 18, 1991; U.S. Patent 5,401,638 issued March 28, 1995; and Sias et al. J. Immunol. Methods 132: 73-80 (1990)). Aside from the above assays, various in vivo assays are available to the skilled practitioner. For example, one may expose cells within the body of the patient to an antibody which is optionally labeled with a detectable label, e.g. a radioactive isotope, and binding of the antibody to cells in the patient can be evaluated, e.g. by external scanning for radioactivity or by analyzing a biopsy taken from a patient previously exposed to the antibody.

Conversely, a cancer which "does not overexpress or amplify HER receptor" is one which does not have higher than normal levels of HER receptor protein or gene compared to a noncancerous cell of the same tissue type. Antibodies that inhibit HER dimerization, such as pertuzumab, may be used to treat cancer which does not overexpress or amplify HER2 receptor.

Herein, an "anti-tumor agent" refers to a drug used to treat cancer. Non-limiting examples of anti-tumor agents herein include chemotherapeutic agents, HER dimerization inhibitors, HER antibodies, antibodies directed against tumor associated antigens, anti-hormonal compounds, cytokines, EGFR-targeted drugs, anti-angiogenic agents, tyrosine kinase inhibitors, growth inhibitory agents and antibodies, cytotoxic agents, antibodies that induce apoptosis, COX inhibitors, farnesyl transferase inhibitors, antibodies that binds oncofetal protein CA 125, HER2 vaccines, Raf or ras inhibitors, liposomal doxorubicin, topotecan, taxane, dual tyrosine kinase inhibitors, TLK286, EMD-7200, pertuzumab, trastuzumab, erlotinib, and bevacizumab.
An "approved anti-tumor agent" is a drug used to treat cancer which has been accorded marketing approval by a regulatory authority such as the Food and Drug Administration (FDA) or foreign equivalent thereof.

Where a HER dimerization inhibitor is administered as a "single anti-tumor agent" it is the only anti-tumor agent administered to treat the cancer, i.e. it is not administered in combination with another anti-tumor agent, such as chemotherapy.

By "standard of care" herein is intended the anti-tumor agent or agents that are routinely used to treat a particular form of cancer. For example, for platinum-resistant ovarian cancer, the standard of care is topotecan or liposomal doxorubicin.

A "growth inhibitory agent" when used herein refers to a compound or composition which inhibits growth of a cell, especially a HER expressing cancer cell either in vitro or in vivo. Thus, the growth inhibitory agent may be one which significantly reduces the percentage of HER expressing cells in S phase. Examples of growth inhibitory agents include agents that block cell cycle progression (at a place other than S phase), such as agents that induce G1 arrest and M-phase arrest. Classical M-phase blockers include the vincas (vincristine and vinblastine), taxanes, and topo II inhibitors such as doxorubicin, epirubicin, daunorubicin, etoposide, and bleomycin. Those agents that arrest G1 also spill over into S-phase arrest, for example, DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5-fluorouracil, and ara-C. Further information can be found in The Molecular Basis of Cancer, Mendelsohn and Israel, eds., Chapter 1, entitled "Cell cycle regulation, oncogenes, and antineoplastic drugs" by Murakami et al. (WB Saunders: Philadelphia, 1995), especially p. 13.

Examples of "growth inhibitory" antibodies are those which bind to HER2 and inhibit the growth of cancer cells overexpressing HER2. Preferred growth inhibitory HER2 antibodies inhibit growth of SK-BR-3 breast tumor cells in cell culture by greater than 20%, and preferably greater than 50% (e.g. from about 50% to about 100%) at an antibody concentration of about 0.5 to 30 μg/ml, where the growth inhibition is determined six days after exposure of the SK-BR-3 cells to the antibody (see U.S. Patent No. 5,677,171 issued October 14, 1997). The SK-BR-3 cell growth inhibition assay is described in more detail in that patent and hereinbelow. The preferred growth inhibitory antibody is a humanized variant of murine monoclonal antibody 4D5, e.g., trastuzumab.

An antibody which "induces apoptosis" is one which induces programmed cell death as determined by binding of annexin V, fragmentation of DNA, cell shrinkage, dilation of endoplasmic reticulum, cell fragmentation, and/or formation of membrane vesicles (called apoptotic bodies). The cell is usually one which overexpresses the HER2 receptor. Preferably the cell is a tumor cell, e.g. a breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, thyroid, pancreatic or bladder cell. In vitro, the cell may be a SK-BR-3, BT474, Calu 3
cell, MDA-MB-453, MDA-MB-361 or SKOV3 cell. Various methods are available for evaluating the cellular events associated with apoptosis. For example, phosphatidyl serine (PS) translocation can be measured by annexin binding; DNA fragmentation can be evaluated through DNA laddering; and nuclear/chromatin condensation along with DNA fragmentation can be evaluated by any increase in hypodiploid cells. Preferably, the antibody which induces apoptosis is one which results in about 2 to 50 fold, preferably about 5 to 50 fold, and most preferably about 10 to 50 fold, induction of annexin binding relative to untreated cell in an annexin binding assay using BT474 cells (see below). Examples of HER2 antibodies that induce apoptosis are 7C2 and 7F3.

The "epitope 2C4" is the region in the extracellular domain of HER2 to which the antibody 2C4 binds. In order to screen for antibodies which bind to the 2C4 epitope, a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. Preferably the antibody blocks 2C4's binding to HER2 by about 50% or more. Alternatively, epitope mapping can be performed to assess whether the antibody binds to the 2C4 epitope of HER2. Epitope 2C4 comprises residues from Domain II in the extracellular domain of HER2. 2C4 and pertuzumab binds to the extracellular domain of HER2 at the junction of domains I, II and III. Franklin et al. Cancer Cell 5:3 17-328 (2004).

The "epitope 4D5" is the region in the extracellular domain of HER2 to which the antibody 4D5 (ATCC CRL 10463) and trastuzumab bind. This epitope is close to the transmembrane domain of HER2, and within Domain IV of HER2. To screen for antibodies which bind to the 4D5 epitope, a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. Alternatively, epitope mapping can be performed to assess whether the antibody binds to the 4D5 epitope of HER2 (e.g. any one or more residues in the region from about residue 529 to about residue 625, inclusive of the HER2 ECD, residue numbering including signal peptide).

The "epitope 7C2/7F3" is the region at the N terminus, within Domain I, of the extracellular domain of HER2 to which the 7C2 and/or 7F3 antibodies (each deposited with the ATCC, see below) bind. To screen for antibodies which bind to the 7C2/7F3 epitope, a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. Alternatively, epitope mapping can be performed to establish whether the antibody binds to the 7C2/7F3 epitope on HER2 (e.g. any one or more of residues in the region from about residue 22 to about residue 53 of the HER2 ECD, residue numbering including signal peptide).
"Treatment" refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with cancer as well as those in which cancer is to be prevented. Hence, the patient to be treated herein may have been diagnosed as having cancer or may be predisposed or susceptible to cancer.

The term "effective amount" refers to an amount of a drug effective to treat cancer in the patient. The effective amount of the drug may reduce the number of cancer cells; reduce the tumor size; inhibit (i.e., slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit (i.e., slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer. To the extent the drug may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic. The effective amount may extend progression free survival (e.g. as measured by Response Evaluation Criteria for Solid Tumors, RECIST, or CA-125 changes), result in an objective response (including a partial response, PR, or complete response, CR), increase overall survival time, and/or improve one or more symptoms of cancer (e.g. as assessed by FOSI).

The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g. At²¹¹, I¹³¹, I¹²⁵, Y⁹⁰, Re¹⁸⁶, Re¹⁸⁸, Sm¹⁵³, Bi²¹², P⁹¹ and radioactive isotopes of Lu), chemotherapeutic agents, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof.

A "chemotherapeutic agent" is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN® cyclophosphamide; alkyl sulfonates such as busulfan, inprosulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamidines including altretamine, triethylenemelamine, trietylenephosphoramide, triethyleneethiophosphoramide and trimethylolomelamine; TLK 286 (TELCYTA™); acetogenins (especially bullatacin and bullatacinone); delta-9-tetrahydrocannabinol (dronabinol, MARINOL®); beta-lapachone; Iapachol; colchicines; betulinic acid; a camptothecin (including the synthetic analogue topotecan (HYCAMTIN®), CPT-11 (irinotecan, CAMPTOSAR®), acetylcamptothecin, scopolectin, and 9-aminocamptothecin); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); podophyllotoxin; podophyllinic acid; teniposide; cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CBI-TMI); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlorarnphazine, chlorophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine
oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as Carmustine, chlorozotocin, fotemustine, lomustine, nimustine, and ranimustine; bisphosphonates, such as clodronate; antibiotics such as the enediyne antibiotics (e. g., calicheamicin, especially calicheamicin gammall and calicheamicin omegall (see, e. g., Agnew, Chem Int. Ed. Engl., 33: 183-1 86 (1994)) and anthracyclines such as annamycin, AD 32, alcarubcin, daunorubicin, dexrazoxane, DX-52-1, epirubicin, GPX-100, idarubicin, KRN5500, menogaril, dynemicin, including dynemicin A₅ an esperamicin, neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromophores, aclarinomysins, actinomycins, authramycin, azaserine, bleomycins, cactinomycins, carabinc, carminomycins, carzinophilin.

chromomycins, dactinomycin, detorubicin, 6-diao-5-oxo-L-norleucine, ADRIAMYCIN® doxorubicin (including morpholino-doxorubicin, cyano morpholino-doxorubicin, 2-pyrrolido

doxorubicin, liposomal doxorubicin, and deoxydoxorubicin), esorubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, and zorubicin; folic acid analogues such as denopterin, ptero
apterin, and trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, and thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dieoxyuridine, doxisulfiram, enocitabine, and fioxuridine; androgenes such as calusterone, dromostanolone propionate, epitiotanol, mepi tio stane, and testolactone; anti-adrenals such as a minogluthethimide, mitotane, and tri stolane; folic acid reple
isher such as folinic acid (leucovorin); aceglatone; anti-folate anri-neoplastic agents such as ALIMTA®, LY231514 pemetrexed, dihydrofolate reductase inhibitors such as methotrexate, anti-metabolites such as 5-fluorouracil (5-FU) and its prodrugs such as UFT, S-I and capectabine, and thymidy late synthase inhibitors and glucyanide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX®), TDX); inhibitors of dihydro pyrimidine dehydrogenase such as eniluracil; aldophosphamide glycocide; aminolevulinic acid; amsacrine; bestrabucil; bisantrene; edatraxate; defoamine; demecolcine; diaziquone; elfornithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidainine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidamol; nitra erine; pentostatin; phenamet; pirarubicin; losoxantrone; 2-ethylhydrazide; procarbazine; PSK7 polysaccharide complex (JHS Natural Products, Eugene, OR); razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2,2',2'-trichlorothiethylamylane; trichothecenes (especially T-2 toxin, verrucarin A, roridin A and anguidine); urethan; vindesine (ELDISINE®, FILDESIN®); dacarbaz in: mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); cyclophosphamide; thiopeta; taxoids and taxanes, e. g., TAXOL® paclitaxel (Bristol-Myers
Squibb Oncology, Princeton, N.J.), ABRAXANETM Cremophor-free, albumin-engineered nanoparticle formulation of paclitaxel (American Pharmaceutical Partners, Schaumberg, Illinois), and TAXOTRE® doctaxel (Rhône-Poulenc Rorer, Antony, France); chlorambucil; gemcitabine (GEMZAR®); 6-thioguanine; mercaptopurine; platinum; platinum analogs or platinum-based analogs such as cisplatin, oxaliplatin and carboplatin; vinblastine (VELBAN®); etoposide (VP-16); ifosfamide; mitoxantrone; vincristine (ONCOVIN®); vinca alkaloid; vinorelbine (NAVELBINE®); novantrone; edatrexate; daunomycin; aminopterin; xeloda; ibandronate; topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoids such as retinoic acid; pharmaceutically acceptable salts, acids or derivatives of any of the above; as well as combinations of two or more of the above such as CHOP, an abbreviation for a combined therapy of cyclophosphamide, doxorubicin, vincristine, and prednisolone, and FOLFOX, an abbreviation for a treatment regimen with oxaliplatin (ELOXATINTM) combined with 5-FU and leucovorin.

Also included in this definition are anti-hormonal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens and selective estrogen receptor modulators (SERMs), including, for example, tamoxifen (including NOLVADEX® tamoxifen), raloxifene, droloxifene, 4-hydroxytamoxifen, trioxifene, keoxifene, LY 170188, onapristone, and FARESTON toremifene; aromatase inhibitors that inhibit the enzyme aromatase, which regulates estrogen production in the adrenal glands, such as, for example, 4(5)-imidazoles, aminoglutethimide, MEGASE® megestrol acetate, AROMASIN® exemestane, fadrozole, RIVISOR® vorozole, FEMARA® letrozole, and ARIMIDEX® anastrozole; and anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; as well as troxacinabine (a 1,3-dioxolane nucleoside cytosine analog); antisense oligonucleotides, particularly those that inhibit expression of genes in signaling pathways implicated in abberant cell proliferation, such as, for example, PKC-alpha, Raf, H-Ras, and epidermal growth factor receptor (EGF-R); vaccines such as gene therapy vaccines, for example, ALLOVECTIN® vaccine, LEUVECTIN® vaccine, and VAXID® vaccine; PROLEUKIN® rIL-2; LURTOTECAN® topoisomerase I inhibitor; ABARELIX® rmRH; and pharmaceutically acceptable salts, acids or derivatives of any of the above.

An "antimetabolite chemotherapeutic agent" is an agent which is structurally similar to a metabolite, but can not be used by the body in a productive manner. Many antimetabolite chemotherapeutic agents interfere with the production of the nucleic acids, RNA and DNA. Examples of antimetabolite chemotherapeutic agents include gemcitabine (GEMZAR®), 5-fluorouracil (5-FU), capecitabine (XELODA™), 6-mercaptopurine, methotrexate, 6-thioguanine, pemetrexed, raltitrexed, arabinosylcytosine ARA-C cytarabine (CYTOSAR-U®), dacarbazine

33
(DTIC-DOME®), azocytosine, deoxycytosine, pyridmidene, fludarabine (FLUDARA®), cladrabine, 2-deoxy-D-glucose etc. The preferred antimetabolite chemotherapeutic agent is gemcitabine.

"Gemcitabine" or A"2'-deoxy-2', 2'-difluorocytidine monohydrochloride (b-isomer)" is a nucleoside analogue that exhibits antitumor activity. The empirical formula for gemcitabine HCl is C9H11F2N3O4 HCl. Gemcitabine HCl is sold by Eli Lilly under the trademark GEMZAR®.

A "platinum-based chemotherapeutic agent" comprises an organic compound which contains platinum as an integral part of the molecule. Examples of platinum-based chemotherapeutic agents include carboplatin, cisplatin, and oxaliplatinum.

By "platinum-based chemotherapy" is intended therapy with one or more platinum-based chemotherapeutic agents, optionally in combination with one or more other chemotherapeutic agents.

By "chemotherapy-resistant" cancer is meant that the cancer patient has progressed while receiving a chemotherapy regimen (i.e. the patient is "chemotherapy refractory"), or the patient has progressed within 12 months (for instance, within 6 months) after completing a chemotherapy regimen.

By "platinum-resistant" cancer is meant that the cancer patient has progressed while receiving platinum-based chemotherapy (i.e. the patient is "platinum refractory"), or the patient has progressed within 12 months (for instance, within 6 months) after completing a platinum-based chemotherapy regimen.

An "anti-angiogenic agent" refers to a compound which blocks, or interferes with to some degree, the development of blood vessels. The anti-angiogenic factor may, for instance, be a small molecule or antibody that binds to a growth factor or growth factor receptor involved in promoting angiogenesis. The preferred anti-angiogenic factor herein is an antibody that binds to vascular endothelial growth factor (VEGF), such as bevacizumab (AVASTIN®).

The term "cytokine" is a generic term for proteins released by one cell population which act on another cell as intercellular mediators. Examples of such cytokines are lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormone such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH); hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor-α and -β; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin;
thrombopoietin (TPO); nerve growth factors such as NGF-β; platelet-growth factor; transforming growth factors (TGFs) such as TGF-α and TGF-β; insulin-like growth factor-I and -II; erythropoietin (EPO); osteoinductive factors; interferons such as interferon-α, -β, and -γ; colony stimulating factors (CSFs) such as macrophage-CSF (M-CSF); granulocyte-macrophage-CSF (GM-CSF); and granulocyte-CSF (G-CSF); interleukins (ILs) such as IL-1, IL-1α, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12; a tumor necrosis factor such as TNF-α or TNF-β; and other polypeptide factors including LIF and kit ligand (KL). As used herein, the term cytokine includes proteins from natural sources or from recombinant cell culture and biologically active equivalents of the natural sequence cytokines.

As used herein, the term "EGFR-targeted drug" refers to a therapeutic agent that binds to EGFR and, optionally, inhibits EGFR activation. Examples of such agents include antibodies and small molecules that bind to EGFR. Examples of antibodies which bind to EGFR include MAb 579 (ATCC CRL HB 8506), MAb 455 (ATCC CRL HB8507), MAb 225 (ATCC CRL 8508), MAb 528 (ATCC CRL 8509) (see, US Patent No. 4,943,533, Mendelsohn et al.) and variants thereof, such as chimerized 225 (C225 or Cetuximab; ERBUTIX®) and reshaped human 225 (H225) (see, WO 96/40210, Imclone Systems Inc.); IMC-1 I8, a fully human, EGFR-targeted antibody (Imclone); antibodies that bind type II mutant EGFR (US Patent No. 5,212,290); humanized and chimeric antibodies that bind EGFR as described in US Patent No. 5,891,996; and human antibodies that bind EGFR, such as ABX-EGF (see WO98/50433, Abgenix); EMD 55900 (Stragliotto et al. Eur. J. Cancer 32A:636-640 (1996)); EMD7200 (matuzumab) a humanized EGFR antibody directed against EGFR that competes with both EGF and TGF-alpha for EGFR binding; and MAb 806 or humanized MAb 806 (Johns et al., J. Biol. Chem. 279(29):30375-30384 (2004)). The anti-EGFR antibody may be conjugated with a cytotoxic agent, thus generating an immunoconjugate (see, e.g., EP659,439A2, Merck Patent GmbH). Examples of small molecules that bind to EGFR include ZD 839 or Gefitinib (IRESSA; AstraZeneca); CP-358774 or Erlotinib (TARCEVA™; Genentech/OSI); and AG1478, AG1571 (SU 5271; Sugen); EMD-7200.

A "tyrosine kinase inhibitor" is a molecule which inhibits tyrosine kinase activity of a tyrosine kinase such as a HER receptor. Examples of such inhibitors include the EGFR-targeted drugs noted in the preceding paragraph; small molecule HER2 tyrosine kinase inhibitor such as TAKI 65 available from Takeda; CP-724,714, an oral selective inhibitor of the ErbB2 receptor tyrosine kinase (Pfizer and OSI); dual-HER inhibitors such as EKB-569 (available from Wyeth) which preferentially binds EGFR but inhibits both HER2 and EGFR-overexpressing cells; GW572016 (available from Glaxo) an oral HER2 and EGFR tyrosine kinase inhibitor; PKI-1 66 (available from Novartis); pan-HER inhibitors such as canertinib (CI-1 033; Pharmacia); Raf-1 inhibitors such as antisense agent ISIS-5132 available from ISIS Pharmaceuticals which inhibits Raf-1 signaling; non-HER targeted TK inhibitors such as Imatinib mesylate (Gleevec™) available
from Glaxo; MAPK extracellular regulated kinase I inhibitor CI-1040 (available from Pharmacia); quinazolines, such as PD 153035,4-(3-chloroanilino) quinazoline; pyridopyrimidines; pyrimidopyrimidines; pyrrolopyrimidines, such as CGP 59326, CGP 60261 and CGP 62706; pyrazolopyrimidines, 4-(phenylamino)-7H-pyrrolo[2,3-d] pyrimidines; curcumin (diferuloyl methane, 4,5-bis (4-fluoroanilino)phthalimide); tyrphostines containing nitrothiophene moieties; PD-Ol 83805 (Warner-Lamber); antisense molecules (e.g. those that bind to HER-encoding nucleic acid); quinoxalines (US Patent No. 5,804,396); tyrphostins (US Patent No. 5,804,396); ZD6474 (Astra Zeneca); PTK-787 (Novartis/Schering AG); pan-HER inhibitors such as CI-1033 (Pfizer); Affinitac (ISIS 3521; Isis/Lilly); Imatinib mesylate (Gleevec; Novartis); PKI 166 (Novartis); GW2016 (Glaxo SmithKline); Cl-1033 (Pfizer); EKB-569 (Wyeth); Semaxinib (Sugen); ZD6474 (AstraZeneca); PTK-787 (Novartis/Schering AG); INC-ICI 1 (Imclone); or as described in any of the following patent publications: US Patent No. 5,804,396; WO99/09016 (American Cyanimid); WO98/43960 (American Cyanimid); WO97/38983 (Warner Lambert); WO99/06378 (Warner Lambert); WO99/06396 (Warner Lambert); WO96/30347 (Pfizer, Inc); WO96/33978 (Zeneca); WO96/3397 (Zeneca); and WO96/33980 (Zeneca).

A "fixed " or "flat" dose of a therapeutic agent herein refers to a dose that is administered to a human patient without regard for the weight (WT) or body surface area (BSA) of the patient. The fixed or flat dose is therefore not provided as a mg/kg dose or a mg/m² dose, but rather as an absolute amount of the therapeutic agent.

A "loading" dose herein generally comprises an initial dose of a therapeutic agent administered to a patient, and is followed by one or more maintenance dose(s) thereof. Generally, a single loading dose is administered, but multiple loading doses are contemplated herein. Usually, the amount of loading dose(s) administered exceeds the amount of the maintenance dose(s) administered and/or the loading dose(s) are administered more frequently than the maintenance dose(s), so as to achieve the desired steady-state concentration of the therapeutic agent earlier than can be achieved with the maintenance dose(s).

A "maintenance" dose herein refers to one or more doses of a therapeutic agent administered to the patient over a treatment period. Usually, the maintenance doses are administered at spaced treatment intervals, such as approximately every week, approximately every 2 weeks, approximately every 3 weeks, or approximately every 4 weeks.

II. Production of Antibodies

Since, in the preferred embodiment, the HER dimerization inhibitor is an antibody, a description follows as to exemplary techniques for the production of HER antibodies used in accordance with the present invention. The HER antigen to be used for production of antibodies may be, e.g., a soluble form of the extracellular domain of a HER receptor or a portion thereof, containing the desired epitope. Alternatively, cells expressing HER at their cell surface (e.g.
NIH-3T3 cells transformed to overexpress HER2; or a carcinoma cell line such as SK-BR-3 cells, see Stancovski et al. PNAS (USA) 88:8691-8695 (1991) can be used to generate antibodies. Other forms of HER receptor useful for generating antibodies will be apparent to those skilled in the art.

(i) Polyclonal antibodies

Polyclonal antibodies are preferably raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl₂, or RN=N=CR, where R and R¹ are different alkyl groups.

Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining, e.g., 100 μg or 5 μg of the protein or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund’s complete adjuvant and injecting the solution intradermally at multiple sites. One month later the animals are boosted with 1/5 to 1/10 the original amount of peptide or conjugate in Freund’s complete adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus. Preferably, the animal is boosted with the conjugate of the same antigen, but conjugated to a different protein and/or through a different cross-linking reagent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response.

(ii) Monoclonal antibodies

Various methods for making monoclonal antibodies herein are available in the art. For example, the monoclonal antibodies may be made using the hybridoma method first described by Kohler et al, Nature, 256:495 (1975), by recombinant DNA methods (U.S. Patent No. 4,816,567).

In the hybridoma method, a mouse or other appropriate host animal, such as a hamster, is immunized as hereinabove described to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)).
The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.

Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these, preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, California USA, and SP-2 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Maryland USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); and Brodeur et al, *Monoclonal Antibody Production Techniques and Applications*, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)).

Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an *in vitro* binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA).

The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson et al, *Anal. Biochem.*, 107:220 (1980).

After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, *Monoclonal Antibodies: Principles and Practice*, pp.59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown *in vivo* as ascites tumors in an animal.

The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional antibody purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (*e.g.*, by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma
cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into
expression vectors, which are then transfected into host cells such as E. coli cells, simian COS
cells, Chinese Hamster Ovary (CHO) cells, or myeloma cells that do not otherwise produce
antibody protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.

Review articles on recombinant expression in bacteria of DNA encoding the antibody include

In a further embodiment, monoclonal antibodies or antibody fragments can be isolated
from antibody phage libraries generated using the techniques described in McCafferty et al,
MoL Biol, 222:581-597 (1991) describe the isolation of murine and human antibodies,
respectively, using phage libraries. Subsequent publications describe the production of high
affinity (nM range) human antibodies by chain shuffling (Marks et al, Bio/Technology, 10:779-
783 (1992)), as well as combinatorial infection and in vivo recombination as a strategy for
(1993)). Thus, these techniques are viable alternatives to traditional monoclonal antibody
hybridoma techniques for isolation of monoclonal antibodies.

The DNA also may be modified, for example, by substituting the coding sequence for
human heavy chain and light chain constant domains in place of the homologous murine
(1984)), or by covalently joining to the immunoglobulin coding sequence all or part of the coding
sequence for a non-immunoglobulin polypeptide.

Typically such non-immunoglobulin polypeptides are substituted for the constant
domains of an antibody, or they are substituted for the variable domains of one antigen-combining
site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site
having specificity for an antigen and another antigen-combining site having specificity for a
different antigen.

(iii) Humanized antibodies

Methods for humanizing non-human antibodies have been described in the art.

Preferably, a humanized antibody has one or more amino acid residues introduced into it from a
source which is non-human. These non-human amino acid residues are often referred to as
"import" residues, which are typically taken from an "import" variable domain. Humanization
can be essentially performed following the method of Winter and co-workers (Jones et al,
Science, 239:1 534-1 536 (1988)), by substituting hypervariable region sequences for the
 corresponing sequences of a human antibody. Accordingly, such "humanized" antibodies are
chimeric antibodies (U.S. Patent No. 4,816,567) wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some hypervariable region residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity. According to the so-called "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences. The human sequence which is closest to that of the rodent is then accepted as the human framework region (FR) for the humanized antibody (Sims et al., J. Immunol., 151:2296 (1993); Chothia et al., J. Mol. Biol., 196:90.1 (1987)). Another method uses a particular framework region derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., J. Immunol., 151:2623 (1993)).

It is further important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the hypervariable region residues are directly and most substantially involved in influencing antigen binding.

US Patent No. 6,949,245 describes production of exemplary humanized HER2 antibodies which bind HER2 and block ligand activation of a HER receptor. The humanized antibody of particular interest herein blocks EGF, TGF-α, and/or HRG mediated activation of MAPK essentially as effectively as murine monoclonal antibody 2C4 (or a Fab fragment thereof) and/or binds HER2 essentially as effectively as murine monoclonal antibody 2C4 (or a Fab fragment thereof). The humanized antibody herein may, for example, comprise nonhuman hypervariable region residues incorporated into a human variable heavy domain and may further comprise a framework region (FR)
substitution at a position selected from the group consisting of 69H, 71H and 73H utilizing the variable domain numbering system set forth in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991). In one embodiment, the humanized antibody comprises FR substitutions at two or all of positions 69H, 71H and 73H.

An exemplary humanized antibody of interest herein comprises variable heavy domain complementarity determining residues GFTFTDYTMX, where X is preferrably D or S (SEQ ID NO:7); DVVPNNGSIYNQRFKG (SEQ ID NO:8); and/or NLGPSFYFDY (SEQ ID NO:9), optionally comprising amino acid modifications of those CDR residues, e.g. where the modifications essentially maintain or improve affinity of the antibody. For example, the antibody variant of interest may have from about one to about seven or about five amino acid substitutions in the above variable heavy CDR sequences. Such antibody variants may be prepared by affinity maturation, e.g., as described below. The most preferred humanized antibody comprises the variable heavy domain amino acid sequence in SEQ ID NO:4.

The humanized antibody may comprise variable light domain complementarity determining residues KASQDVSIGVA (SEQ ID NO:10); SASYX’X2X3, where X’ is preferably R or L, X2 is preferably Y or E, and X3 is preferably T or S (SEQ ID NO:11); and/or QQYYIYPYT (SEQ ID NO:12), e.g. in addition to those variable heavy domain CDR residues in the preceding paragraph. Such humanized antibodies optionally comprise amino acid modifications of the above CDR residues, e.g. where the modifications essentially maintain or improve affinity of the antibody. For example, the antibody variant of interest may have from about one to about seven or about five amino acid substitutions in the above variable light CDR sequences. Such antibody variants may be prepared by affinity maturation, e.g., as described below. The most preferred humanized antibody comprises the variable light domain amino acid sequence in SEQ ID NO:3.

The present application also contemplates affinity matured antibodies which bind HER2 and block ligand activation of a HER receptor. The parent antibody may be a human antibody or a humanized antibody, e.g., one comprising the variable light and/or variable heavy sequences of SEQ ID Nos. 3 and 4, respectively (i.e. comprising the VL and/or VH of pertuzumab). The affinity matured antibody preferably binds to HER2 receptor with an affinity superior to that of murine 2C4 or pertuzumab (e.g. from about two or about four fold, to about 100 fold or about 1000 fold improved affinity, e.g. as assessed using a HER2-extracellular domain (ECD) ELISA). Exemplary variable heavy CDR residues for substitution include H28, H30, H34, H35, H64, H96, H99, or combinations of two or more (e.g. two, three, four, five, six, or seven of these residues). Examples of variable light CDR residues for alteration include L28, L50, L53, L56, L91, L92, L93, L94, L96, L97 or combinations of two or more (e.g. two to three, four, five or up to about ten of these residues).
Various forms of the humanized antibody or affinity matured antibody are contemplated. For example, the humanized antibody or affinity matured antibody may be an antibody fragment, such as a Fab, which is optionally conjugated with one or more cytotoxic agent(s) in order to generate an immunoconjugate. Alternatively, the humanized antibody or affinity matured antibody may be an intact antibody, such as an intact IgGl antibody. The preferred intact IgGl antibody comprises the light chain sequence in SEQ ID NO: 13 and the heavy chain sequence in SEQ ID NO: 14.

(iv) Human antibodies

As an alternative to humanization, human antibodies can be generated. For example, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al, Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al, Nature, 362:255-258 (1993); Bruggermann et al, Year in Immunol., 7:33 (1993); and U.S. Patent Nos. 5,591,669, 5,589,369 and 5,545,807. Alternatively, phage display technology (McCafferty et al, Nature 348:552-553 (1990)) can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors. According to this technique, antibody V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties. Thus, the phage mimics some of the properties of the B-cell. Phage display can be performed in a variety of formats; for their review see, e.g., Johnson, Kevin S. and Chiswell, David J., Current Opinion in Structural Biology 3:564-571 (1993). Several sources of V-gene segments can be used for phage display. Clackson et al, Nature, 352:624-628 (1991) isolated a diverse array of anti-oxazolone antibodies from a small random combinatorial library of V genes derived from the spleens of immunized mice. A repertoire of V genes from unimmunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by Marks et al, J. Mol. Biol. 222:581-597 (1991), or Griffith et al, EMBOJ. 12:725-734 (1993). See, also, U.S. Patent Nos. 5,565,332 and 5,573,905.

As discussed above, human antibodies may also be generated by in vitro activated B cells (see U.S. Patents 5,567,610 and 5,229,275).

(v) Antibody fragments

Various techniques have been developed for the production of antibody fragments comprising one or more antigen binding regions. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117 (1992); and Brennan et al., Science, 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. For example, the antibody fragments can be isolated from the antibody phage libraries discussed above. Alternatively, Fab'-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab')2 fragments (Carter et al, Bio/Technology 10:163-167 (1992)). According to another approach, F(ab')2 fragments can be isolated directly from recombinant host cell culture. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner. In other embodiments, the antibody of choice is a single chain Fv fragment (scFv). See WO 93/16185; U.S. Patent No. 5,571,894; and U.S. Patent No. 5,587,458. The antibody fragment may also be a linear antibody®, e.g., as described in U.S. Patent 5,641,870 for example. Such linear antibody fragments may be monospecific or bispecific.

(vi) Bispecific antibodies

Bispecific antibodies are antibodies that have binding specificities for at least two different epitopes. Exemplary bispecific antibodies may bind to two different epitopes of the HER2 protein. Other such antibodies may combine a HER2 binding site with binding site(s) for EGFR, HER3 and/or HER4. Alternatively, a HER2 arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2 or CD3), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the HER2-expressing cell. Bispecific antibodies may also be used to localize cytoxic agents to cells which express HER2. These antibodies possess a HER2-binding arm and an arm which binds the cytoxic agent (e.g. saporin, anti-interferon-α, vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten). Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')2 bispecific antibodies).

Methods for making bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the coexpression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al., Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these
hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traumecker et al., EMBO J., 10:3655-3659 (1991).

According to a different approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CHI) containing the site necessary for light chain binding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of no particular significance.

In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690. For further details of generating bispecific antibodies see, for example, Suresh et al, Methods in Enzymology, 121:210 (1986).

According to another approach described in U.S. Patent No. 5,731,168, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the C-H3 domain of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies include cross-linked or "heteroconjugate" antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies
have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Patent No. 4,676,980, along with a number of cross-linking techniques.

Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science, 229: 81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Recent progress has facilitated the direct recovery of Fab'-SH fragments from E. coli, which can be chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med., 175: 217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the HER2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol., 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci USA, 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V₇) connected to a light-chain variable domain (V₄) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V₇ and V₄ domains of one fragment are forced to pair with the complementary V₄ and V₇ domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of
single-chain Fv (sFv) dimers has also been reported. See Gruber et al., *J. Immunol.*, 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., *J. Immunol.*, 147: 60 (1991).

(vii) Other amino acid sequence modifications

Amino acid sequence modification(s) of the antibodies described herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. Amino acid sequence variants of the antibody are prepared by introducing appropriate nucleotide changes into the antibody nucleic acid, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the antibody. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of the antibody, such as changing the number or position of glycosylation sites.

A useful method for identification of certain residues or regions of the antibody that are preferred locations for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells *Science*, 244:1081-1085 (1989). Here, a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with antigen. Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to analyze the performance of a mutation at a given site, ala scanning or random mutagenesis is conducted at the target codon or region and the expressed antibody variants are screened for the desired activity.

Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include antibody with an N-terminal methionyl residue or the antibody fused to a cytotoxic polypeptide. Other insertional variants of the antibody molecule include the fusion to the N- or C-terminus of the antibody to an enzyme (e.g. for ADEPT) or a polypeptide which increases the serum half-life of the antibody.

Another type of variant is an amino acid substitution variant. These variants have at least one amino acid residue in the antibody molecule replaced by a different residue. The sites of greatest interest for substitutional mutagenesis include the hypervariable regions, but FR alterations are also contemplated. Conservative substitutions are shown in Table 1 under the heading of "preferred
substitutions". If such substitutions result in a change in biological activity, then more substantial changes, denominated "exemplary substitutions" in Table 1, or as further described below in reference to amino acid classes, may be introduced and the products screened.

Table 1

<table>
<thead>
<tr>
<th>Original Residue</th>
<th>Exemplary Substitutions</th>
<th>Preferred Substitutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala (A)</td>
<td>Val; Leu; Ile</td>
<td>Val</td>
</tr>
<tr>
<td>Arg (R)</td>
<td>Lys; Gln; Asn</td>
<td>Lys</td>
</tr>
<tr>
<td>Asn (N)</td>
<td>Gln; His; Asp, Lys, Arg</td>
<td>Gln</td>
</tr>
<tr>
<td>Asp (D)</td>
<td>Glu; Asn</td>
<td>Glu</td>
</tr>
<tr>
<td>Cys (C)</td>
<td>Ser; Ala</td>
<td>Ser</td>
</tr>
<tr>
<td>Gln (Q)</td>
<td>Asn; Glu</td>
<td>Asn</td>
</tr>
<tr>
<td>Glu (E)</td>
<td>Asp; Gln</td>
<td>Asp</td>
</tr>
<tr>
<td>Gly (G)</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>His (H)</td>
<td>Asn; Gln; Lys; Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>Ile (I)</td>
<td>Leu; Val; Met; Ala; Phe; Norleucine</td>
<td>Leu</td>
</tr>
<tr>
<td>Leu (L)</td>
<td>Norleucine; Ile; Val; Met; Ala; Phe</td>
<td>Ile</td>
</tr>
<tr>
<td>Lys (K)</td>
<td>Arg; Gln; Asn</td>
<td>Arg</td>
</tr>
<tr>
<td>Met (M)</td>
<td>Leu; Phe; Ile</td>
<td>Leu</td>
</tr>
<tr>
<td>Phe (F)</td>
<td>Trp; Leu; Val; Ile; Ala; Tyr</td>
<td>Tyr</td>
</tr>
<tr>
<td>Pro (P)</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>Ser (S)</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td>Thr (T)</td>
<td>Val; Ser</td>
<td>Ser</td>
</tr>
<tr>
<td>Trp (W)</td>
<td>Tyr; Phe</td>
<td>Tyr</td>
</tr>
<tr>
<td>Tyr (Y)</td>
<td>Trp; Phe; Thr; Ser</td>
<td>Phe</td>
</tr>
<tr>
<td>Val (V)</td>
<td>Ile; Leu; Met; Phe; Ala; Norleucine</td>
<td>Leu</td>
</tr>
</tbody>
</table>

Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Amino acids may be grouped according to similarities in the properties of their side chains (in A. L. Lehninger, in *Biochemistry*, second ed., pp. 73-75, Worth Publishers, New York (1975)).
(1) non-polar: Ala (A), Val (V), Leu (L), He (I), Pro (P), Phe (F), TIP (W), Met (M)
(2) uncharged polar: GIy (G), Ser (S), Thr (T), Cys (C), Tyr (Y), Asn (N), Gln (Q)
(3) acidic: Asp (D), Glu (E)
(4) basic: Lys (K), Arg (R), His (H)

Alternatively, naturally occurring residues may be divided into groups based on common
side-chain properties:

(1) hydrophobic: Norleucine, Met, Ala, Val, Leu, He;
(2) neutral hydrophilic: Cys, Ser, Thr, Asn, GlIn;
(3) acidic: Asp, Glu;
(4) basic: His, Lys, Arg;
(5) residues that influence chain orientation: GIy, Pro;
(6) aromatic: Trp, Tyr, Phe.

Non-conservative substitutions will entail exchanging a member of one of these classes for
another class.

Any cysteine residue not involved in maintaining the proper conformation of the antibody
also may be substituted, generally with serine, to improve the oxidative stability of the molecule and
prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the antibody to improve
its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).

A particularly preferred type of substitutional variant involves substituting one or more
hypervariable region residues of a parent antibody (e.g. a humanized or human antibody). Generally,
the resulting variant(s) selected for further development will have improved biological properties
relative to the parent antibody from which they are generated. A convenient way for generating such
substitutional variants involves affinity maturation using phage display. Briefly, several
hypervariable region sites (e.g. 6-7 sites) are mutated to generate all possible amino substitutions at
each site. The antibody variants thus generated are displayed in a monovalent fashion from
filamentous phage particles as fusions to the gene Nl product of M13 packaged within each particle.
The phage-displayed variants are then screened for their biological activity (e.g. binding affinity) as
herein disclosed. In order to identify candidate hypervariable region sites for modification, alanine
scanning mutagenesis can be performed to identify hypervariable region residues contributing
significantly to antigen binding. Alternatively, or additionally, it may be beneficial to analyze a
crystal structure of the antigen-antibody complex to identify contact points between the antibody and
human HER2. Such contact residues and neighboring residues are candidates for substitution
according to the techniques elaborated herein. Once such variants are generated, the panel of variants
is subjected to screening as described herein and antibodies with superior properties in one or more
relevant assays may be selected for further development.
Another type of amino acid variant of the antibody alters the original glycosylation pattern of the antibody. By altering is meant deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody.

Glycosylation of antibodies is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-acetylglucosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.

Addition of glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original antibody (for O-linked glycosylation sites).

Where the antibody comprises an Fc region, the carbohydrate attached thereto may be altered. For example, antibodies with a mature carbohydrate structure that lacks fucose attached to an Fc region of the antibody are described in US Pat Appl No US 2003/01 57108 Al, Presta, L. See also US 2004/0093621 Al (Kyowa Hakko Kogyo Co., Ltd). Antibodies with a bisecting N-acetylgalactosamine (GlcNAc) in the carbohydrate attached to an Fc region of the antibody are referenced in WO03/011878, Jean-Mairet et al. and US Patent No. 6,602,684, Umana et al. Antibodies with at least one galactose residue in the oligosaccharide attached to an Fc region of the antibody are reported in WO97/30087, Patel et al. See, also, WO98/58964 (Raju, S.) and WO99/22764 (Raju, S.) concerning antibodies with altered carbohydrate attached to the Fc region thereof.

It may be desirable to modify the antibody of the invention with respect to effector function, e.g. so as to enhance antigen-dependent cell-mediated cytotoxicity (ADCC) and/or complement dependent cytotoxicity (CDC) of the antibody. This may be achieved by introducing one or more amino acid substitutions in an Fc region of the antibody. Alternatively or additionally, cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med. 176:1 191-1 195 (1992) and Shopes, B. J. Immunol. 148:2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity may also be prepared using heterobifunctional cross-linkers as

WO00/42072 (Presta, L.) describes antibodies with improved ADCC function in the presence of human effector cells, where the antibodies comprise amino acid substitutions in the Fc region thereof. Preferably, the antibody with improved ADCC comprises substitutions at positions 298, 333, and/or 334 of the Fc region (Eu numbering of residues). Preferably the altered Fc region is a human IgGl Fc region comprising or consisting of substitutions at one, two or three of these positions. Such substitutions are optionally combined with substitution(s) which increase Clq binding and/or CDC.

Antibodies with altered Clq binding and/or complement dependent cytotoxicity (CDC) are described in WO99/51642, US Patent No. 6,194,551Bl, US Patent No. 6,242,195Bl, US Patent No. 6,528,624Bl and US Patent No. 6,538,124 (Idusogie et al.). The antibodies comprise an amino acid substitution at one or more of amino acid positions 270, 322, 326, 327, 329, 313, 333 and/or 334 of the Fc region thereof (Eu numbering of residues).

To increase the serum half life of the antibody, one may incorporate a salvage receptor binding epitope into the antibody (especially an antibody fragment) as described in US Patent 5,739,277, for example. As used herein, the term "salvage receptor binding epitope" refers to an epitope of the Fc region of an IgG molecule (e.g., IgGi, IgG2, IgG3, or IgG4) that is responsible for increasing the in vivo serum half-life of the IgG molecule.

Antibodies with improved binding to the neonatal Fc receptor (FcRn), and increased half-lives, are described in WO00/42072 (Presta, L.) and US2005/0014934A1 (Hinton et al.). These antibodies comprise an Fc region with one or more substitutions therein which improve binding of the Fc region to FcRn. For example, the Fc region may have substitutions at one or more of positions 238, 250, 256, 265, 272, 286, 303, 305, 307, 311, 312, 314, 317, 340, 356, 360, 362, 376, 378, 380, 382, 413, 424, 428 or 434 (Eu numbering of residues). The preferred Fc region-comprising antibody variant with improved FcRn binding comprises amino acid substitutions at one, two or three of positions 307, 380 and 434 of the Fc region thereof (Eu numbering of residues).

Engineered antibodies with three or more (preferably four) functional antigen binding sites are also contemplated (US Appln No. US2002/000455S7 A1, Miller et al).

Nucleic acid molecules encoding amino acid sequence variants of the antibody are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the antibody.
Screening for antibodies with the desired properties

Techniques for generating antibodies have been described above. One may further select antibodies with certain biological characteristics, as desired.

To identify an antibody which blocks ligand activation of a HER receptor, the ability of the antibody to block HER ligand binding to cells expressing the HER receptor (e.g. in conjugation with another HER receptor with which the HER receptor of interest forms a HER hetero-oligomer) may be determined. For example, cells naturally expressing, or transfected to express, HER receptors of the HER hetero-oligomer may be incubated with the antibody and then exposed to labeled HER ligand. The ability of the antibody to block ligand binding to the HER receptor in the HER hetero-oligomer may then be evaluated.

For example, inhibition of HRG binding to MCF7 breast tumor cell lines by HER2 antibodies may be performed using monolayer MCF7 cultures on ice in a 24-well-plate format essentially as described in US Patent No. 6,949,245. HER2 monoclonal antibodies may be added to each well and incubated for 30 minutes. 1251-labeled rHRG β1 177-224 (25 pm) may then be added, and the incubation may be continued for 4 to 16 hours. Dose response curves may be prepared and an IC50 value may be calculated for the antibody of interest. In one embodiment, the antibody which blocks ligand activation of a HER receptor will have an IC50 for inhibiting HRG binding to MCF7 cells in this assay of about 50nM or less, more preferably 10nM or less. Where the antibody is an antibody fragment such as a Fab fragment, the IC50 for inhibiting HRG binding to MCF7 cells in this assay may, for example, be about 100nM or less, more preferably 50nM or less.

Alternatively, or additionally, the ability of an antibody to block HER ligand-stimulated tyrosine phosphorylation of a HER receptor present in a HER hetero-oligomer may be assessed. For example, cells endogenously expressing the HER receptors or transfected to expressed them may be incubated with the antibody and then assayed for HER ligand-dependent tyrosine phosphorylation activity using an anti-phosphotyrosine monoclonal (which is optionally conjugated with a detectable label). The kinase receptor activation assay described in U.S. Patent No. 5,766,863 is also available for determining HER receptor activation and blocking of that activity by an antibody.

In one embodiment, one may screen for an antibody which inhibits HRG stimulation of p180 tyrosine phosphorylation in MCF7 cells essentially as described in US Patent No. 6,949,245. For example, the MCF7 cells may be plated in 24-well plates and monoclonal antibodies to HER2 may be added to each well and incubated for 30 minutes at room temperature; then rHRG β1 177-244 may be added to each well to a final concentration of 0.2 nM, and the incubation may be continued for 8 minutes. Media may be aspirated from each well, and reactions may be stopped by the addition of 100 µl of SDS sample buffer (5% SDS, 25 mM DTT, and 25 mM Tris-
HCl, pH 6.8). Each sample (25 µl) may be electrophoresed on a 4-12% gradient gel (Novex) and then electrophoretically transferred to polyvinylidene difluoride membrane. Antiphosphotyrosine (at 1 µg/ml) immunobots may be developed, and the intensity of the predominant reactive band at M_r 180,000 may be quantified by reflectance densitometry. The antibody selected will preferably significantly inhibit HRG stimulation of p_i 80 tyrosine phosphorylation to about 0-35% of control in this assay. A dose-response curve for inhibition of HRG stimulation of p_i 80 tyrosine phosphorylation as determined by reflectance densitometry may be prepared and an IC₅₀ for the antibody of interest may be calculated. In one embodiment, the antibody which blocks ligand activation of a HER receptor will have an IC₅₀ for inhibiting HRG stimulation of p_i 80 tyrosine phosphorylation in this assay of about 50nM or less, more preferably 10nM or less. Where the antibody is an antibody fragment such as a Fab fragment, the IC₅₀ for inhibiting HRG stimulation of p_i 80 tyrosine phosphorylation in this assay may, for example, be about 1.0nM or less, more preferably 50nM or less.

One may also assess the growth inhibitory effects of the antibody on MDA-MB-175 cells, e.g., essentially as described in Schaefer et al. Oncogene 15:1385-1394 (1997). According to this assay, MDA-MB-1 75 cells may be treated with a HER2 monoclonal antibody (10µg/mL) for 4 days and stained with crystal violet. Incubation with a HER2 antibody may show a growth inhibitory effect on this cell line similar to that displayed by monoclonal antibody 2C4. In a further embodiment, exogenous HRG will not significantly reverse this inhibition. Preferably, the antibody will be able to inhibit cell proliferation of MDA-MB-1 75 cells to a greater extent than monoclonal antibody 4D5 (and optionally to a greater extent than monoclonal antibody 7F3), both in the presence and absence of exogenous HRG.

In one embodiment, the HER2 antibody of interest may block heregulin dependent association of HER2 with HER3 in both MCF7 and SK-BR-3 cells as determined in a co-immunoprecipitation experiment such as that described in US Patent No. 6,949,245 substantially more effectively than monoclonal antibody 4D5, and preferably substantially more effectively than monoclonal antibody 7F3.

To identify growth inhibitory HER2 antibodies, one may screen for antibodies which inhibit the growth of cancer cells which overexpress HER2. In one embodiment, the growth inhibitory antibody of choice is able to inhibit growth of SK-BR-3 cells in cell culture by about 20-100% and preferably by about 50-100% at an antibody concentration of about 0.5 to 30 µg/ml. To identify such antibodies, the SK-BR-3 assay described in U.S. Patent No. 5,677,171 can be performed. According to this assay, SK-BR-3 cells are grown in a 1:1 mixture of F12 and DMEM medium supplemented with 10% fetal bovine serum, glutamine and penicillin streptomycin. The SK-BR-3 cells are plated at 20,000 cells in a 35mm cell culture dish (2mls/35mm dish). 0.5 to 30 µg/ml of the HER2 antibody is added per dish. After six days, the
number of cells, compared to untreated cells are counted using an electronic COULTER™ cell counter. Those antibodies which inhibit growth of the SK-BR-3 cells by about 20-100% or about 50-100% may be selected as growth inhibitory antibodies. See US Pat No. 5,677,171 for assays for screening for growth inhibitory antibodies, such as 4D5 and 3E8.

In order to select for antibodies which induce apoptosis, an annexin binding assay using BT474 cells is available. The BT474 cells are cultured and seeded in dishes as discussed in the preceding paragraph. The medium is then removed and replaced with fresh medium alone or medium containing 10µg/ml of the monoclonal antibody. Following a three day incubation period, monolayers are washed with PBS and detached by trypsinization. Cells are then centrifuged, resuspended in Ca\(^{2+}\) binding buffer and aliquoted into tubes as discussed above for the cell death assay. Tubes then receive labeled annexin (e.g. annexin V-FTIC) (1µg/ml). Samples may be analyzed using a FACSCAN™ flow cytometer and FACSCONVERT™ CellQuest software (Becton Dickinson). Those antibodies which induce statistically significant levels of annexin binding relative to control are selected as apoptosis-inducing antibodies. In addition to the annexin binding assay, a DNA staining assay using BT474 cells is available. In order to perform this assay, BT474 cells which have been treated with the antibody of interest as described in the preceding two paragraphs are incubated with 9µg/ml HOECHST 33342™ for 2 hr at 37°C, then analyzed on an EPICS ELITE™ flow cytometer (Coulter Corporation) using MODFIT LT™ software (Verity Software House). Antibodies which induce a change in the percentage of apoptotic cells which is 2 fold or greater (and preferably 3 fold or greater) than untreated cells (up to 100% apoptotic cells) may be selected as pro-apoptotic antibodies using this assay. See WO98/17797 for assays for screening for antibodies which induce apoptosis, such as 7C2 and 7F3.

To screen for antibodies which bind to an epitope on HER2 bound by an antibody of interest, a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed to assess whether the antibody cross-blocks binding of an antibody, such as 2C4 or pertuzumab, to HER2. Alternatively, or additionally, epitope mapping can be performed by methods known in the art and/or one can study the antibody-HER2 structure (Franklin et al. Cancer Cell 5:3 17-328 (2004)) to see what domain(s) of HER2 is/are bound by the antibody.

(ix) Pertuzumab compositions

In one embodiment of a HER2 antibody composition, the composition comprises a mixture of a main species pertuzumab antibody and one or more variants thereof. The preferred embodiment herein of a pertuzumab main species antibody is one comprising the variable light and variable heavy amino acid sequences in SEQ ID Nos. 3 and 4, and most preferably
comprising a light chain amino acid sequence selected from SEQ ID No. 13 and 17, and a heavy chain amino acid sequence selected from SEQ ID No. 14 and 18 (including deamidated and/or oxidized variants of those sequences). In one embodiment, the composition comprises a mixture of the main species pertuzumab antibody and an amino acid sequence variant thereof comprising an amino-terminal leader extension. Preferably, the amino-terminal leader extension is on a light chain of the antibody variant (e.g. on one or two light chains of the antibody variant). The main species HER2 antibody or the antibody variant may be an full length antibody or antibody fragment (e.g. Fab of F(ab)=2 fragments), but preferably both are full length antibodies. The antibody variant herein may comprise an amino-terminal leader extension on any one or more of the heavy or light chains thereof. Preferably, the amino-terminal leader extension is on one or two light chains of the antibody. The amino-terminal leader extension preferably comprises or consists of VHS-. Presence of the amino-terminal leader extension in the composition can be detected by various analytical techniques including, but not limited to, N-terminal sequence analysis, assay for charge heterogeneity (for instance, cation exchange chromatography or capillary zone electrophoresis), mass spectrometry, etc. The amount of the antibody variant in the composition generally ranges from an amount that constitutes the detection limit of any assay (preferably N-terminal sequence analysis) used to detect the variant to an amount less than the amount of the main species antibody. Generally, about 20% or less (e.g. from about 1% to about 15%, for instance from 5% to about 15%) of the antibody molecules in the composition comprise an amino-terminal leader extension. Such percentage amounts are preferably determined using quantitative N-terminal sequence analysis or cation exchange analysis (preferably using a high-resolution, weak cation-exchange column, such as a PROPAC WCX-1™ cation exchange column). Aside from the amino-terminal leader extension variant, further amino acid sequence alterations of the main species antibody and/or variant are contemplated, including but not limited to an antibody comprising a C-terminal lysine residue on one or both heavy chains thereof, a deamidated antibody variant, etc.

Moreover, the main species antibody or variant may further comprise glycosylation variations, non-limiting examples of which include antibody comprising a G1 or G2 oligosaccharide structure attached to the Fc region thereof, antibody comprising a carbohydrate moiety attached to a light chain thereof (e.g. one or two carbohydrate moieties, such as glucose or galactose, attached to one or two light chains of the antibody, for instance attached to one or more lysine residues), antibody comprising one or two non-glycosylated heavy chains, or antibody comprising a sialidated oligosaccharide attached to one or two heavy chains thereof etc.

The composition may be recovered from a genetically engineered cell line, e.g. a Chinese Hamster Ovary (CHO) cell line expressing the HER2 antibody, or may be prepared by peptide synthesis.
(x) Immunoconjugates

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g. a small molecule toxin or an enzymatically active toxin of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Conjugates of an antibody and one or more small molecule toxins, such as a calicheamicin, a maytansine (U.S. Patent No. 5,208,020), a trichothenes, and CC1065 are also contemplated herein.

In one preferred embodiment of the invention, the antibody is conjugated to one or more maytansine molecules (e.g. about 1 to about 10 maytansine molecules per antibody molecule). Maytansine may, for example, be converted to May-SS-Me which may be reduced to May-SH3 and reacted with modified antibody (Chari et al. Cancer Research 52: 127-131 (1992)) to generate a maytansinoid-antibody immunoconjugate.

Another immunoconjugate of interest comprises an antibody conjugated to one or more calicheamicin molecules. The calicheamicin family of antibiotics are capable of producing double-stranded DNA breaks at sub-picomolar concentrations. Structural analogues of calicheamicin which may be used include, but are not limited to, γ₁, α₂, a₁, N-acetyl-γ₁, PSAG and θ₁ (Hinman et al. Cancer Research 53: 3336-3342 (1993) and Lode et al. Cancer Research 58: 2925-2928 (1998)). See, also, US Patent Nos. 5,714,586; 5,712,374; 5,264,586; and 5,773,001 expressly incorporated herein by reference.

Enzymatically active toxins and fragments thereof which can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolacca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the tricothecenes. See, for example, WO 93/21232 published October 28, 1993.

The present invention further contemplates an immunoconjugate formed between an antibody and a compound with nucleolytic activity (e.g. a ribonuclease or a DNA endonuclease such as a deoxyribonuclease; DNase).

A variety of radioactive isotopes are available for the production of radioconjugated HER2 antibodies. Examples include At²¹¹, I¹³¹, I¹²⁵, Y⁹⁰, Re⁶⁸⁰, Re⁸⁸⁸, Sm¹⁵³, Bi²¹², P³² and radioactive isotopes of Lu.

Conjugates of the antibody and cytotoxic agent may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyl)propionato
(SPDP), succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimide HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al. Science 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatoenzyl-3-methyl diethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

The linker may be a Acleavable linker® facilitating release of the cytotoxic drug in the cell. For example, an acid-labile linker, peptidase-sensitive linker, dimethyl linker or disulfide-containing linker (Chari et al. Cancer Research 52: 127-131 (1992)) may be used.

Alternatively, a fusion protein comprising the antibody and cytotoxic agent may be made, e.g. by recombinant techniques or peptide synthesis.

Other immunoconjugates are contemplated herein. For example, the antibody may be linked to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol. The antibody also may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules), or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., (1980).

The antibodies disclosed herein may also be formulated as immunoliposomes.

Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82:3688 (1985); Hwang et al., Proc. Natl Acad. Sci. USA, 77:4030 (1980); U.S. Pat. Nos. 4,485,045 and 4,544,545; and WO97/38731 published October 23, 1997. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.

Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al. J. Biol. Chem. 257: 286-288 (1982) via a disulfide interchange reaction. A chemotherapeutic agent is optionally contained within the liposome. See Gabizon et al. J. National Cancer Inst. 81(19)1484 (1989).
III. Selecting patients for therapy

The patient herein is subjected to a diagnostic test prior to therapy. Generally, if a
diagnostic test is performed, a sample may be obtained from a patient in need of therapy. Where
the subject has cancer, the sample may be a tumor sample, or other biological sample, such as a
biological fluid, including, without limitation, blood, urine, saliva, ascites fluid, or derivatives
such as blood serum and blood plasma, and the like.

Where the diagnostic assay is performed on a tumor sample, the tumor sample may be
from an ovarian cancer, peritoneal cancer, fallopian tube cancer, metastatic breast cancer (MBC),
non-small cell lung cancer (NSCLC), prostate cancer, or colorectal cancer tumor sample, etc.
The biological sample herein may be a fixed sample, e.g. a formalin fixed, paraffin-embedded
(FFPE) sample, or a frozen sample.

In one embodiment, the level of EGF and/or TGF-alpha in the patient is evaluated,
wherein an elevated level thereof compared to normal levels indicates that the patient is a
candidate for therapy with a HER dimerization inhibitor. Such levels of EGF and/or TGF-alpha
may be assessed in vivo or in various biological samples taken from the patient. Preferably
however, the biological sample tested is a serum or plasma sample.

Various methods for determining expression of mRNA or protein include, but are not
limited to, gene expression profiling, polymerase chain reaction (PCR) including quantitative real
time PCR (qRT-PCR), microarray analysis, serial analysis of gene expression (SAGE),
MassARRAY, Gene Expression Analysis by Massively Parallel Signature Sequencing (MPSS),
proteomics, immunohistochemistry (IHC), etc. Preferably mRNA is quantified. Such mRNA
analysis is preferably performed using the technique of polymerase chain reaction (PCR), or by
microarray analysis. Where PCR is employed, a preferred form of PCR is quantitative real time
PCR (qRT-PCR). In one embodiment, expression of one or more of the above noted genes is
deemed positive expression if it is at the median or above, e.g. compared to other samples of the
same tumor-type. The median expression level can be determined essentially contemporaneously
with measuring gene expression, or may have been determined previously.

The steps of a representative protocol for profiling gene expression using fixed, paraffin-
embedded tissues as the RNA source, including mRNA isolation, purification, primer extension
and amplification are given in various published journal articles (for example: Godfrey et al. J.
Molec. Diagnostics 2: 84-91 (2000); Specht et al., Am. J. Pathol. 158: 419-29 (2001)). Briefly, a
representative process starts with cutting about 10 microgram thick sections of paraffin-embedded
tumor tissue samples. The RNA is then extracted, and protein and DNA are removed. After
analysis of the RNA concentration, RNA repair and/or amplification steps may be included, if
necessary, and RNA is reverse transcribed using gene specific promoters followed by PCR.
Finally, the data are analyzed to identify the best treatment option(s) available to the patient on the basis of the characteristic gene expression pattern identified in the tumor sample examined.

A specific serum ELISA bioassay protocol is provided in Example 1.

EGF and/or TGF-alpha may also be evaluated using an in vivo diagnostic assay, e.g. by administering a molecule (such as an antibody) which binds the molecule to be detected and is tagged with a detectable label (e.g. a radioactive isotope) and externally scanning the patient for localization of the label.

Aside from evaluation of EGF and/or TGF-alpha, one may determine HER expression or amplification in the cancer. Various diagnostic/prognostic assays are available for this. In one embodiment, HER overexpression may be analyzed by IHC, e.g. using the HERCEPTEST® (Dako). Paraffin embedded tissue sections from a tumor biopsy may be subjected to the IHC assay and accorded a HER2 protein staining intensity criteria as follows:

Score 0 no staining is observed or membrane staining is observed in less than 10% of tumor cells.

Score 1+ a faint/barely perceptible membrane staining is detected in more than 10% of the tumor cells. The cells are only stained in part of their membrane.

Score 2+ a weak to moderate complete membrane staining is observed in more than 10% of the tumor cells.

Score 3+ a moderate to strong complete membrane staining is observed in more than 10% of the tumor cells.

Those tumors with 0 or 1+ scores for HER2 overexpression assessment may be characterized as not overexpressing HER2, whereas those tumors with 2+ or 3+ scores may be characterized as overexpressing HER2.

Tumors overexpressing HER2 may be rated by immunohistochemical scores corresponding to the number of copies of HER2 molecules expressed per cell, and can be determined biochemically:

0 = 0-1 0,000 copies/cell,
1+ = at least about 200,000 copies/cell,
2+ = at least about 500,000 copies/cell,
3+ = at least about 2,000,000 copies/cell.

Overexpression of HER2 at the 3+ level, which leads to ligand-independent activation of the tyrosine kinase (Hudziak et al., Proc. Natl. Acad. Sci. USA, 84:71 59-71 63 (1987)), occurs in approximately 30% of breast cancers, and in these patients, relapse-free survival and overall survival are diminished (Slamon et al., Science, 244:707-712 (1989); SJamon etal, Science, 235:177-182 (1987)).
Alternatively, or additionally, FISH assays such as the INFORM™ (sold by Ventana, Arizona) or PATHVISION™ (Vysis, Illinois) may be carried out on formalin-fixed, paraffin-embedded tumor tissue to determine the extent (if any) of HER2 amplification in the tumor.

In one embodiment, the cancer will be one which expresses (and may overexpress) EGFR, such expression may be evaluated as for the methods for evaluating HER2 expression as noted above.

IV. Pharmaceutical Formulations

Therapeutic formulations of the HER dimerization inhibitors used in accordance with the present invention are prepared for storage by mixing an antibody having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (Remington’s Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), generally in the form of lyophilized formulations or aqueous solutions. Antibody crystals are also contemplated (see US Pat Appln 2002/0136719). Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG). Lyophilized antibody formulations are described in WO 97/04801, expressly incorporated herein by reference.

The preferred pertuzumab formulation for therapeutic use comprises 30mg/mL pertuzumab in 20mM histidine acetate, 120mM sucrose, 0.02% polysorbate 20, at pH 6.0. An alternate pertuzumab formulation comprises 25 mg/mL pertuzumab, 10 mM histidine-HCl buffer, 240 mM sucrose, 0.02% polysorbate 20, pH 6.0.

The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Various drugs which can be combined with the HER dimerization inhibitor are described in the Method Section below. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
The active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington’s Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980).

Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g. films, or microcapsules.

Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D(-)-3-hydroxybutyric acid.

The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

V. Treatment with HER dimerization inhibitors

The invention herein provides a method for extending survival in a cancer patient who produces an elevated level of EGF and/or TGF-alpha, comprising administering a HER dimerization inhibitor to the patient in an amount which extends the patient’s survival. Preferably, the HER dimerization inhibitor is a HER2 dimerization inhibitor and/or inhibits HER heterodimerization.

Methods for identify candidate patients for therapy with a HER dimerization inhibitor have been discussed in Section III above.

Examples of various cancers that can be treated with a HER dimerization inhibitor are listed in the definition section above. Preferred cancer indications include ovarian cancer; peritoneal cancer; fallopian tube cancer; breast cancer, including metastatic breast cancer (MBC); lung cancer, including non-small cell lung cancer (NSCLC); prostate cancer; and colorectal cancer. In one embodiment, the cancer which is treated is advanced, refractory, recurrent, chemotherapy-resistant, and/or platinum-resistant cancer.

Therapy with the HER dimerization inhibitor extends TTP and/or survival. In one embodiment, therapy with the HER dimerization inhibitor extends TTP or survival at least about 5%, or at least 10%, or at least 15% or at least 20%, or at least 25% more than TTP or survival achieved by administering an approved anti-tumor agent, or standard of care, for the cancer being treated.
In the preferred embodiment, the invention provides a method for extending time to disease progression (TTP) or survival in a patient with ovarian, peritoneal, or fallopian tube cancer, whose cancer displays HER2 activation, comprising administering pertuzumab to the patient in an amount which extends the patient's TTP or survival. The patient may have advanced, refractory, recurrent, chemotherapy-resistant, and/or platinum-resistant ovarian, peritoneal or fallopian tube cancer. Administration of pertuzumab to the patient may, for example, extend TTP or survival at least about 5%, or at least 10%, or at least 15%, or at least 20%, or at least 25% more than TTP or survival achieved by administering topotecan or liposomal doxorubicin to such a patient.

The HER dimerization inhibitor is administered to a human patient in accord with known methods, such as intravenous administration, e.g., as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerebrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes. Intravenous administration of the antibody is preferred.

For the prevention or treatment of cancer, the dose of HER dimerization inhibitor will depend on the type of cancer to be treated, as defined above, the severity and course of the cancer, whether the antibody is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, and the discretion of the attending physician.

In one embodiment, a fixed dose of HER dimerization inhibitor is administered. The fixed dose may suitably be administered to the patient at one time or over a series of treatments. Where a fixed dose is administered, preferably it is in the range from about 20mg to about 2000 mg of the HER dimerization inhibitor. For example, the fixed dose may be approximately 420mg, approximately 525mg, approximately 840mg, or approximately 1050mg of the HER dimerization inhibitor, such as pertuzumab.

Where a series of doses are administered, these may, for example, be administered approximately every week, approximately every 2 weeks, approximately every 3 weeks, or approximately every 4 weeks, but preferably approximately every 3 weeks. The fixed doses may, for example, continue to be administered until disease progression, adverse event, or other time as determined by the physician. For example, from about two, three, or four, up to about 17 or more fixed doses may be administered.

In one embodiment, one or more loading dose(s) of the antibody are administered, followed by one or more maintenance dose(s) of the antibody. In another embodiment, a plurality of the same dose are administered to the patient.

According to one preferred embodiment of the invention, a fixed dose of HER dimerization inhibitor (e.g. pertuzumab) of approximately 840mg (loading dose) is administered,
followed by one or more doses of approximately 420mg (maintenance dose(s)) of the antibody. The maintenance doses are preferably administered about every 3 weeks, for a total of at least two doses, up to 17 or more doses.

According to another preferred embodiment of the invention, one or more fixed dose(s) of approximately 1050mg of the HER dimerization inhibitor (e.g. pertuzumab) are administered, for example every 3 weeks. According to this embodiment, one, two or more of the fixed doses are administered, e.g. for up to one year (17 cycles), and longer as desired.

In another embodiment, a fixed dose of approximately 1050mg of the HER dimerization inhibitor (e.g. pertuzumab) is administered as a loading dose, followed by one or more maintenance dose(s) of approximately 525mg. About one, two or more maintenance doses may be administered to the patient every 3 weeks according to this embodiment.

While the HER dimerization inhibitor may be administered as a single anti-tumor agent, the patient is optionally treated with a combination of the HER dimerization inhibitor, and one or more chemotherapeutic agent(s). Preferably at least one of the chemotherapeutic agents is an antimetabolite chemotherapeutic agent such as gemcitabine. The combined administration includes coadministration or concurrent administration, using separate formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein preferably there is a time period while both (or all) active agents simultaneously exert their biological activities. Thus, the antimetabolite chemotherapeutic agent may be administered prior to, or following, administration of the HER dimerization inhibitor. In this embodiment, the timing between at least one administration of the antimetabolite chemotherapeutic agent and at least one administration of the HER dimerization inhibitor is preferably approximately 1 month or less, and most preferably approximately 2 weeks or less. Alternatively, the antimetabolite chemotherapeutic agent and the HER dimerization inhibitor are administered concurrently to the patient, in a single formulation or separate formulations. Treatment with the combination of the chemotherapeutic agent (e.g. antimetabolite chemotherapeutic agent such as gemcitabine) and the HER dimerization inhibitor (e.g. pertuzumab) may result in a synergistic, or greater than additive, therapeutic benefit to the patient.

An antimetabolite chemotherapeutic agent, if administered, is usually administered at dosages known therefor, or optionally lowered due to combined action of the drugs or negative side effects attributable to administration of the antimetabolite chemotherapeutic agent. Preparation and dosing schedules for such chemotherapeutic agents may be used according to manufacturers’ instructions or as determined empirically by the skilled practitioner. Where the antimetabolite chemotherapeutic agent is gemcitabine, preferably, it is administered at a dose between about 600mg/m2 to 1250mg/m2 (for example approximately 1000mg/m2), for instance, on days 1 and 8 of a 3-week cycle.
Aside from the HER dimerization inhibitor and antimetabolite chemotherapeutic agent, other therapeutic regimens may be combined therewith. For example, a second (third, fourth, etc) chemotherapeutic agent(s) may be administered, wherein the second chemotherapeutic agent is either another, different antimetabolite chemotherapeutic agent, or a chemotherapeutic agent that is not an antimetabolite. For example, the second chemotherapeutic agent may be a taxane (such as paclitaxel or docetaxel), capcitabine, or platinum-based chemotherapeutic agent (such as carboplatin, cisplatin, or oxaliplatin), anthracycline (such as doxorubicin, including, liposomal doxorubicin), topotecan, pemetrexed, vinca alkaloid (such as vinorelbine), and TLK 286. ACocktails® of different chemotherapeutic agents may be administered.

Other therapeutic agents that may be combined with the HER dimerization inhibitor include any one or more of: a second, different HER dimerization inhibitor (for example, a growth inhibitory HER2 antibody such as trastuzumab, or a HER2 antibody which induces apoptosis of a HER2-overexpressing cell, such as 7C2, 7F3 or humanized variants thereof); an antibody directed against a different tumor associated antigen, such as EGFR, HER3, HER4; anti-hormonal compound, e.g., an anti-estrogen compound such as tamoxifen, or an aromatase inhibitor; a cardioprotectant (to prevent or reduce any myocardial dysfunction associated with the therapy); a cytokine; an EGFR-targeted drug (such as TARCEVA®, IRESSA® or cetuximab); an anti-angiogenic agent (especially bevacizumab sold by Genentech under the trademark AVASTIN™); a tyrosine kinase inhibitor; a COX inhibitor (for instance a COX-1 or COX-2 inhibitor); non-steroidal anti-inflammatory drug, celecoxib (CELEBREX®); farnesyl transferase inhibitor (for example, Tipifarnib/ZARNESTRA™ R115777 available from Johnson and Johnson or Lonafarnib SCH66336 available from Schering-Plough); antibody that binds oncofetal protein CA 125 such as Oregovomab (MoAb B43.13); HER2 vaccine (such as HER2 AutoVac vaccine from Pharmexia, or APC8024 protein vaccine from Dendreon, or HER2 peptide vaccine from GSK/Corixa); another HER targeting therapy (e.g. trastuzumab, cetuximab, ABX-EGF, EMD7200, gefitinib, erlotinib, CP724714, CI1033, GW572016, EviC-1 1F8, TAK165, etc); Raf and/or ras inhibitor (see, for example, WO 2003/86467); doxorubicin HCl liposome injection (DOXIL®); topoisomerase I inhibitor such as topotecan; taxane; HER2 and EGFR dual tyrosine kinase inhibitor such as lapatinib/GW572016; TLK286 (TELCYTA®); EMD-7200; a medicament that treats nausea such as a serotonin antagonist, steroid, or benzodiazepine; a medicament that prevents or treats skin rash or standard acne therapies, including topical or oral antibiotic; a medicament that treats or prevents diarrhea; a body temperature-reducing medicament such as acetaminophen, diphenhydramine, or meperidine; hematopoietic growth factor, etc.
Suitable dosages for any of the above coadministered agents are those presently used and may be lowered due to the combined action (synergy) of the agent and HER dimerization inhibitor.

In addition to the above therapeutic regimes, the patient may be subjected to surgical removal of cancer cells and/or radiation therapy.

Where the inhibitor is an antibody, preferably the administered antibody is a naked antibody. However, the inhibitor administered may be conjugated with a cytotoxic agent. Preferably, the conjugated inhibitor and/or antigen to which it is bound is/are internalized by the cell, resulting in increased therapeutic efficacy of the conjugate in killing the cancer cell to which it binds. In a preferred embodiment, the cytotoxic agent targets or interferes with nucleic acid in the cancer cell. Examples of such cytotoxic agents include maytansinoids, calicheamicins, ribonucleases and DNA endonucleases.

The present application contemplates administration of the HER dimerization inhibitor by gene therapy. See, for example, WO96/07321 published March 14, 1996 concerning the use of gene therapy to generate intracellular antibodies.

There are two major approaches to getting the nucleic acid (optionally contained in a vector) into the patient's cells; in vivo and ex vivo. For in vivo delivery the nucleic acid is injected directly into the patient, usually at the site where the antibody is required. For ex vivo treatment, the patient's cells are removed, the nucleic acid is introduced into these isolated cells and the modified cells are administered to the patient either directly or, for example, encapsulated within porous membranes which are implanted into the patient (see, e.g. U.S. Patent Nos. 4,892,538 and 5,283,187). There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc. A commonly used vector for ex vivo delivery of the gene is a retrovirus.

The currently preferred in vivo nucleic acid transfer techniques include transfection with viral vectors (such as adenovirus, Herpes simplex I virus, or adeno-associated virus) and lipid-based systems (useful lipids for lipid-mediated transfer of the gene are DOTMA, DOPE and DC-Chol, for example). In some situations it is desirable to provide the nucleic acid source with an agent that targets the target cells, such as an antibody specific for a cell surface membrane protein or the target cell, a ligand for a receptor on the target cell, etc. Where liposomes are employed, proteins which bind to a cell surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g. capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, and proteins

VI. Deposit of Materials

The following hybridoma cell lines have been deposited with the American Type Culture Collection, 10801 University Boulevard, Manassas, VA 201 10-2209, USA (ATCC):

<table>
<thead>
<tr>
<th>Antibody Designation</th>
<th>ATCC No.</th>
<th>Deposit Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>7C2</td>
<td>ATCC HB-12215</td>
<td>October 17, 1996</td>
</tr>
<tr>
<td>7F3</td>
<td>ATCC HB-12216</td>
<td>October 17, 1996</td>
</tr>
<tr>
<td>4D5</td>
<td>ATCC CRL 10463</td>
<td>May 24, 1990</td>
</tr>
<tr>
<td>2C4</td>
<td>ATCC HB-12697</td>
<td>April 8, 1999</td>
</tr>
</tbody>
</table>

These deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture of the deposit for 30 years from the date of deposit. The deposits will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures that all restrictions imposed by the depositor on the availability to the public of the deposited material will be irrevocably removed upon the granting of the pertinent U.S. patent, assures permanent and unrestricted availability of the progeny of the culture of the deposit to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 USC § 122 and the Commissioner’s rules pursuant thereto (including 37 CFR § 1.14 with particular reference to 886 OG 638).

Further details of the invention are illustrated by the following non-limiting Examples.

The disclosures of all citations in the specification are expressly incorporated herein by reference.

EXAMPLE 1

CLINICAL SERUM BIOMARKER ANALYSIS IN PATIENTS WITH OVARIAN CANCER TREATED WITH PERTUZUMAB
Study Design

A Phase II, open-label, single-arm, multicenter study was performed to evaluate the effect of tumor-based HER2 activation of the efficacy of rhuMAb 2C4 (pertuzumab) in subjects with advanced, refractory or recurrent ovarian cancer.

In Cohort 1 of the trial, 65 subjects with advanced ovarian cancer that was refractory to, or has recurred following, prior chemotherapy, were enrolled, and were to receive 420 mg per cycle rhuMAb (pertuzumab). Of these, 61 subjects were treated, 4 subjects withdrew from the study and did not receive any treatment with pertuzumab.

Subjects who enrolled in Cohort 1 and fulfilled the eligibility criteria, underwent a biopsy of tumor tissue or aspiration of tumor cells from ascitic fluid. This tissue was analyzed for HER2 phosphorylation by ELISA, quantitatively measuring phosphorylated HER2 and total HER2 in the samples.

Pertuzumab was provided as a single-use formulation containing 25 mg/mL rhuMAb 2C4 formulated in 10 mM L-histidine (pH 6.0), 240 mM sucrose, and 0.02% polysorbate 20. Each 10-cc vial contained about 175 mg of rhuMAb 2C4 (7.0 mL/vial). Upon receipt, vials were refrigerated at 2°C-8°C until use. Because the formulation does not contain a preservative, instruction were give to puncture the vial seal only once. Any remaining solution was discarded. The solution of rhuMAb 2C4 for infusion diluted in PVC polyethylene and non-PVC polyolefin bags containing 0.9% Sodium Chloride Injection, USP, was allowed to be stored at 2°C-8°C for 24 hours prior to use.

Pertuzumab was administered as an IV infusion every 3 weeks for up to one year (17 cycles) for subjects who showed no evidence of progressive disease. Subjects decived a loading dose of 840 m (Cycle 1) followed by 420 mg in Cycle 2 and beyond.

After enrollment in Cohort 1 was completed, enrollment in Cohort 2 commenced.

Subjects in Cohort 2, who fulfill the eligibility criteria, receive 1050 mg pertuzumab, administered as an IV infusion every 3 weeks for up to one year (17 cycles). Subjects in Cohort 2 (which is ongoing) do not undergo a biopsy of tumor tissue or aspiration of tumor cells from ascites fluids.

Response has been assessed after 6 weeks, 3 months, and every 3 months thereafter. An additional response is assessed at 18 weeks (4.5 months) for subjects in Cohort 2 only.

Measurable disease has been assessed using the Response Evaluation Criteria for Solid Tumors (RECIST) (see, for example, Therasse et al, J. Nat. Cancer Inst. 92(3): 205-216 (2000)), by clinical evaluation and CT scan or equivalent. Response for subjects with evaluable but no measurable disease has assessed according to changes in CA-125 and clinical and radiologic evidence of disease.
Primary efficacy endpoint:
Best overall response at any time during the study following initiation of treatment with pertuzumab, as determined by investigator assessment using RECIST or by CA-125 changes, following initiation of treatment with pertuzumab.

Secondary efficacy endpoints:
Time To Disease Progression (TTDP),
Duration of response, survival time (Overall Survival, OS), and percentage of subjects free from disease progression at 3, 6, and 12 months (Disease-Free Survival, DFS).

Disease progression was defined as documented progressive disease or death, whichever occurred first.

Time To Disease Progression (TTDP) was defined as the time from the first day of study drug treatment (Day 1) until the time of documented disease progression or death.

Duration of survival was defined as the time from Day 1 until the time of death.

Duration of response was defined as the time from the initial complete or partial response to the time of disease progression or death.

The 95% exact confidence interval was constructed for percentage of the subjects free from progression after 3, 6, and 12 months in the study.

Median time to disease progression and duration of survival were calculated using Kaplan-Meier survival methods.

Exploratory assessment of biologic markers was incorporated into this trial. The purpose of this assessment was to find one or more pre-treatment biological markers that may predict which subjects will, or will not, respond to pertuzumab treatment, or to identify one or more post-therapeutic biologic markers that might act as a biomarker of pertuzumab activity. In particular, assessment of biological markers allows identification of a patient population that is especially likely to benefit from pertuzumab treatment, as measured by one or more significant end points, such as overall survival (OS), or disease-free survival (DFS).

Thus gene expression profiling has been performed on normal ovarian epithelial tissue and ovarian epithelial tumors. Ovarian tumor samples obtained in this study were subjected to RNA expression profiling in order to explore the relationship between RNA expression and response to pertuzumab.
Measurement of Serum Biomarkers

Blood sera from HER2 expressing metastatic breast cancer patients treated with pertuzumab were assessed for levels of amphiregulin, EGF, TGF-alpha and shedded HER2 (HER2 ECD), as described below.

Kits used for assessment of the serum biomarkers:

<table>
<thead>
<tr>
<th>Marker</th>
<th>Assay</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>HER2-ECD</td>
<td>Bayer HER-2/neu ELISA, Cat.#: EL501</td>
<td>DakoCytomation N.V./S.A., Interleuvenlaan 12B, B-3001 Heverlee</td>
</tr>
<tr>
<td>Amphiregulin</td>
<td>DuoSet ELISA Development System Human Amphiregulin, Cat. #: DY262</td>
<td>R&D Systems Ltd., 19 Barton Lane, Abingdon OX14 3NB, UK</td>
</tr>
<tr>
<td>EGF</td>
<td>Quantikine human EGF ELISA kit, Cat. #: DEG00</td>
<td>R&D Systems Ltd., 19 Barton Lane, Abingdon OX14 3NB, UK</td>
</tr>
<tr>
<td>TGF-alpha</td>
<td>Quantikine® Human TGF-alpha Immunoassay, Cat. #: DTGA00</td>
<td>R&D Systems Ltd., 19 Barton Lane, Abingdon OX14 3NB, UK</td>
</tr>
</tbody>
</table>

Protocols

HER2-ECP

HER2-ECD ELISA was performed according to the recommendations of the manufacturer.

Amphiregulin

Reagents, standard dilutions and samples were prepared following the manufacturer’s instructions. EvenCoat Goat Anti-mouse IgG microplate strips (R&D, Cat. # CP002; not provided with the kit) were attached to the plate to create an ELISA plate. 100 µl diluted capture antibody (provided with the kit; 1.180 in PBS) were added to each well, and the wells were incubated at room temperature for one hour. Each well was aspirated and washed, and the process was repeated three times for a total of four washes. The wells were washed by filling each well with 400 µl Wash Buffer (0.05 % Tween-20 in PBS), using a manifold dispenser, and subsequent aspiration. After the last wash, any remaining Wash Buffer was removed by aspiration. The plate was then inverted and blotted against clean paper towels.

100 µl standard dilution or diluted sample (see below) per well were added. Tip was changed after every pipetting step. The plate was covered with the adhesive strip (provided with the kit) and incubated for 2 hours at room temperature on a rocking platform. Thereafter, the aspiration and wash steps were repeated as described above.

The aspirated samples and wash solutions were treated with laboratory disinfectant. 100 µl Detection Antibody (provided with the kit) was added, diluted 1:180 in Reagent
Diluent (1% BSA, Roth; Albumin Fraction V, Cat. # T844.2, in PBS) per well, and the plate was
incubated for 2 hours at room temperature. Thereafter, the aspiration and wash steps were
repeated as described above.

100 µl working dilution of the Streptavidin-HRP were added to each well (provided with
the kit; 1:200 dilution in Reagent diluent), and the wells were covered with a new adhesive strip
and incubated for 20 minutes at room temperature. The aspiration and wash steps were repeated
as described above.

Add 100 µl Substrate Solution (R&D, Cat. # DY999; not provided with the kit) were added to
each well, and the wells were incubated at room temperature for 20 minutes, under protection from
light.

50 µl Stop Solution (1.5 M H2SO4 (Schwefelsaure reinst, Merck, Cat. # 713)) were
added to each well, followed by careful mixing. The optical density of each well was determined
immediately, using a microplate reader set to 450 nm.

Amphiregulin standard curve:

A 40 ng/ml amphiregulin stock solution was prepared in 1% BSA in PBS, aliquotted and
stored at-80 ºC. Amphiregulin solutions in 20% BSA in PBS were not stable beyond 2 weeks
and were therefore not used. From the aliquotted amphiregulin stock solution, the amphiregulin
standard curve was prepared freshly in 20% BSA in PBS prior to each experiment. The highest
concentration was 1000 pg/ml (1:40 dilution of the amphiregulin stock solution). The standards
provided with the ELISA kit produced a linear standard curve. Excel-based analysis of the curves
allowed the determination of curve equations for every ELISA.

Amphiregulin samples:

When samples were diluted 1:1 in Reagent Diluent, all samples were within the linear
range of the ELISA. Each sample was measured in duplicates. Dependent on the quality of the
data, and on sufficient amounts of serum, determinations were repeated in subsequent
experiments if necessary.

EGF

Reagents, standard dilutions and samples were prepared following the manufacturer's
instructions. Excess antibody-coated microtiter plate strips (provided with the kit) were removed
from the frame to create an ELISA plate. After determining the required number of wells and the
plate layout, 50 µl Assay Diluent RDI (provided with the kit) were added to each well. 200 µl
standard dilution or diluted sample (e.g. 1:20 in Calibrator Diluent RD6H) per well were then
added. The tip was changed after every pipetting step.
The plate was covered with the adhesive strip (provided with the kit), and incubated at room temperature for two hours on a rocking platform.

Each well was aspirated and washed, repeating the process three times for a total of four washes. Washing was performed by filling each well with 400 µl Wash Buffer (provided with the kit), using a manifold dispenser, and subsequent aspiration. After the last wash, any remaining Wash Buffer was removed by aspirating. The plate was then inverted and blotted against clean paper towels.

The aspirated samples and wash solutions were treated with laboratory disinfectant, and 200 µl of Conjugate (provided with the kit) were added to each well. The plate was then covered with a new adhesive strip, and incubated at room temperature for two hours.

The aspiration and wash steps were repeated as described previously.

200 µl Substrate Solution (provided with the kit) were added to each well, followed by incubation for 20 minutes at room temperature, under protection from light. 50 µl Stop Solution (provided with the kit) were added to each well, followed by careful mixing.

The optical density of each well was determined within 30 minutes, using a microplate reader set to 450 nm,

EGF standard curve:
The standards provided with the ELISA kit produced a linear standard curve. Also very small concentrations showed detectable results.

EGF samples:
A total of four assays with the samples were performed. Each sample was measured 2 - 5 times, the number of determinations being dependent on the quality of the results (mean +/- SD) and the availability of sufficient amounts of serum.

When samples were diluted 1:20 in Calibrator Diluent RD6H, all samples were within the linear range of the ELISA.

TGF-αDha
Reagents, standard dilutions and samples were prepared following the manufacturer’s instructions. Excess antibody-coated microtiter plate strips (provided with the kit) were removed from the frame to prepare an ELISA plate. After determining the required number of wells and the plate layout, 100 µl Assay Diluent RD1W (provided with the kit) were added to each well, followed by the addition of 50 µl standard dilution or sample per well. The tip was changed after every pipetting step.
The plate was covered with the adhesive strip provided with the kit, and incubated at room temperature for two hours, on a rocking platform.

Each well was aspirated and washed, repeating the process three times for a total of four washes. In the following wash step, each well was filled with 400 µl Wash Buffer (provided with the kit), using a manifold dispenser, followed by aspiration. After the last wash, any remaining Wash Buffer was removed by aspirating, and the plate was inverted and blotted against clean paper towels.

The aspirated samples and wash solutions were treated with laboratory disinfectant. 200 µl of TGF-alpha Cojugate (provided with the kit) were added to each well, and the plate was covered with a new adhesive strip, and incubated at room temperature for two hours. The aspiration and wash steps were repeated, as describe above. Thereafter, 200 µl Substrate Solution (provided with the kit) were added to each well, and the plate was incubates at room temperature for 30 minutes, under protection from light. 50 µl Stop Solution (provided with the kit) were added to each well with careful mixing. The optical density of each well was determined within 30 minutes, using a microplate reader set to 450 nm.

TGF-alpha standard curve:

The standards provided with the ELISA kit produced a linear standard curve. Also very small concentrations showed detectable results.

TGF-alpha samples:

A total of four assays with the samples was performed. Samples were measured in 2—4 independent assays.

Results

The correlation between the various markers was tested using Spearman's rank-order correlation coefficient test, and the results are shown in Figure 9. According to this test, correlation is ranked between -1 (for best negative correlation) and +1 (for best positive correlation). As shown in Figure 9, the serum levels of HER2, TGF-alpha, amphireguline and EGF showed very little correlation, which confirms that these genes act as independent markers.

Figure 10 shows the correlation of the markers tested with clinical covariates, including ECOG scores (BECOG = baseline ECOG score), prior chemotherapy (PRITCN), tumor burden, and duration of diagnosis (DIAGDUR, i.e. how long the subject had cancer prior to diagnosis). Lower ECOG scores (0 and 1) indicate that the disease is less severe and the patient is in relatively good condition. Higher ECOG scores (>1) indicate increasing severity from scores 2 to
4. As shown in Figure 10, there was no significant correlation between the serum levels of the tested markers and the severity of the disease. On the other hand, amphiregulin and EGF serum levels were significantly higher in subjects who were subjected to more than 4 prior chemotherapy treatments.

Survival curves were plotted according to the Kaplan-Meier method. These curves were compared among subgroups of patients using the log-rank test, in order to define the cutoffs giving the best discrimination in defining the likelihood of progression-free survival (PFS) and overall survival (OS). The results for PFS and OS are shown in Figures 11 and 12, respectively. As shown in Figure 11, the cutoff point in terms of PFS is particularly clear for EGF levels (clear positive correlation).

The distribution of patients according to the cutoffs, using PFS, is shown in Figure 13. As shown in the Figure, the cutoffs determined works well for the individual markers amphiregulin and EGF, and are particularly useful as a function of these to markers combined.

Survival curves were calculated by Kaplan-Meier survival analysis. The effect of HER2 levels on PFS and OS is illustrated by the Kaplan-Meier plots shown in Figure 14. The effect of TGF-alpha levels on PFS and OS is illustrated by the Kaplan-Meier plots shown in Figure 15. The effect of the EGF levels of PFS and OS is illustrated by the Kaplan-Meier plots shown in Figure 16.

EXAMPLE 2

SERUM BIOMARKER ANALYSIS IN PATIENTS WITH OVARIAN, PRIMARY PERITONEAL, OR FALLOPIAN TUBE CANCER TREATED WITH PERTUZUMAB AND CHEMOTHERAPY

Study Design

A Phase II, randomized, placebo-controlled, double-blind, multicenter clinical trial is performed in order to make a preliminary assessment of the efficacy of pertuzumab (rhuMAb 2C4) in combination with the chemotherapeutic agent, gemcitabine relative to gemcitabine in combination with placebo in subjects with platinum-resistant ovarian, primary peritoneal, or fallopian tube cancer, as measured by progression-free survival (PFS) for all subjects. Another objective of the trial is to evaluate the safety and tolerability of pertuzumab in combination with gemcitabine relative to gemcitabine in combination with placebo in subjects with platinum-resistant ovarian, peritoneal, or fallopian tube cancer.
Subjects who have experienced disease progression at or within 6 months of receiving a platinum-based chemotherapy regimen administered for advanced disease are eligible for this study. No more than one prior regimen for platinum-resistant disease is allowed.

Subjects are randomized in a 1:1 ratio to either treatment Arm 1 (gemcitabine + pertuzumab) or Arm 2 (gemcitabine placebo). Gemcitabine is administered on Days 1 and 8 of a 21-day cycle. Gemcitabine is infused over 30 minutes (± 5 minutes) at a starting dose of 800 mg/m². Blinded study drug (gemcitabine or placebo) is administered on Day 1 of the 21-day cycle, 30 minutes following gemcitabine administration. Pertuzumab is administered at an initial loading dose of 840 mg (Cycle 1), followed by 420 mg for Cycle 2 and beyond. The matched placebo is administered at a volume equivalent to the amount of suspension fluid required to prepare the pertuzumab dose.

Subjects without progressive disease are allowed to receive treatment with gemcitabine plus blinded study drug for up to 17 cycles in this study. Response is assessed every 6 weeks for the first eight cycles and about every 3 months thereafter end of Cycles 2, 4, 6, 8, 12, and 17). Measurable disease is assessed using the Response Evaluation Criteria for Solid Tumors (RECIST) by clinical evaluation and computed tomography scan or equivalent. Response for subjects with evaluable disease is assessed according to changes to CA-125 and clinical radiologic evidence of disease.

Patients who provide additional consent have the option to provide serum and plasma samples for exploratory biologic marker studies. These studies include assessment of potential mutations in the HER receptor gene family, immunohistochemistry for HER family proteins and downstream proteins associated with HER signaling, dimerization assays or proximity assays to assess HER2 activation, and determination of the expression levels of specific genes that are identified to be associated with HER2 signaling, or may serve as markers or predictors of response. The studies include gene expression analysis and proteomics techniques.

Primary outcome measure:
Progression-free survival, as determined by investigator assessment using RECIST or by CA-125 changes (subjects with non-measurable disease only).

Secondary outcome measures:
Objective response rate (partial response or complete response), duration of response, survival time, and freedom from progression at 4 months.

Primary endpoint:
The primary efficacy endpoint is progression-free survival, defined as the time from randomization to documented disease progression or death from any cause on study, whichever occurs earlier. Disease progression is assessed by the investigator according to RECIST or
changes in CA-125 for subjects with measurable and non-measurable disease, respectively. Death on study is defined as death from any cause within 30 days of the last dose of study medication.

Data for subjects without disease progression or death is censored at the time of the last tumor or CA-125 assessment (or, if no tumor or CA-125 assessment are performed after the baseline visit, at the time of randomization plus 1 day).

Kaplan-Meier methods are used to estimate the median progression-free survival for each treatment arm. Cox proportional hazard models, using two models (with and without the randomization stratification factors [Eastern Cooperative Oncology Group (ECOG) status disease measurability and number of prior regimens for platinum-resistant disease], are used to estimate the hazard ratio (i.e., the magnitude of treatment effect at 95% confidence interval). The stratified model produces the primary confidence interval. The log-rank test, stratified by the randomization stratification factors (ECOG status, disease measurability, and number of prior regimens for platinum-resistant disease), is used to perform exploratory hypothesis testing for assessing the difference between treatment arms. The non-stratified long-rank test is also provided. Separate analyses of progression-free survival are also presented for subjects with measurable disease and for subjects with non-measurable disease; because the number of subjects in each group may be small, the exploratory log-rank test may not be performed for both groups. Separate analyses for progression-free survival are also be conducted for subjects who do not have any prior regimen for platinum-resistant disease and for subjects who have one prior regimen for platinum-resistant disease; exploratory log-rank tests are performed for both groups.

Secondary endpoints:

Objective response

Objective response is defined as a complete or partial response determined on two consecutive occasions >4 weeks apart. Subjects without a post-baseline tumor or CA-125 assessment are considered non-responders. An estimate of the objective response rate and 95% confidence intervals (Blyth-Still-Casella) is calculated for each treatment arm. Confidence intervals for the difference in tumor response rate are calculated (Santer and Snell, J. Am. Stat. Assoc. 75:386-94 (1980); Berger and Boos, J. Am. Stat. Assoc. 89:4087-91 (1990)). Fisher's exact test is used to perform exploratory hypothesis testing for exploring the difference between treatment arms.

Duration of objective response

For subjects with an objective response, duration of the objection response is defined as the time from the initial response to disease progression or death from any cause on study.
Methods for handling censoring and for analysis are the same as described for progression-free survival.

Freedom from progression at 4 months

The proportion of subjects free from progression at 4 months for each treatment arm is estimated from the Kaplan-Meier curve for progression-free survival. An estimate of the progression-free rate and 95% confidence intervals (Greenwood, *Rep. Pub. Health. Med. Subjects* 33:1-26 (1926)) is calculated for each treatment arm. A two-sided Z-test is used to perform exploratory hypothesis testing for assessing the difference between treatment arms.

Duration of Survival

Duration of survival is defined as the time from randomization until death from any cause. All deaths are included, whether they occur on study or following treatment discontinuation. For subjects who have not died, duration of survival is censored at the date of last contact. Analysis methods are the same as those described for progression-free-survival.

The study is ongoing, but it is expected that, based on the gene expression analysis of serum or plasma samples, patients producing an elevated level of epidermal growth factor (EGF) and/or transforming growth factor alpha (TGF-alpha) will show an extended survival (especially progression-free survival) in response to pertuzumab and gemcitabine treatment.
WHAT IS CLAIMED IS:

1. A method for extending survival of a cancer patient comprising administering a HER dimerization inhibitor to the patient in an amount which extends survival of the patient, wherein the patient is determined to produce an elevated level of epidermal growth factor (EGF) or transforming growth factor alpha (TGF-alpha), and the cancer is selected from the group consisting of ovarian cancer, peritoneal cancer and fallopian rube cancer.

2. The method of claim 1 wherein the patient is determined to produce an elevated level of EGF.

3. The method of claim 2 wherein the patient is found to have an elevated level of EGF in serum of the patient.

4. The method of claim 1 wherein the patient is determined to produce an elevated level of TGF-alpha.

5. The method of claim 4 wherein the patient is found to have an elevated level of TGF-alpha in serum of the patient.

6. The method of claim 1 wherein the HER dimerization inhibitor is a HER2 dimerization inhibitor.

7. The method of claim 1 wherein the HER dimerization inhibitor inhibits HER heterodimerization.

8. The method of claim 1 wherein the HER dimerization inhibitor is a HER antibody.

9. The method of claim 8 wherein the antibody binds to a HER receptor selected from the group consisting of EGFR, HER2, and HER3.

10. The method of claim 9 wherein the antibody binds to HER2.

11. The method of claim 10 wherein the HER2 antibody binds to Domain II of HER2 extracellular domain.
12. The method of claim 11 wherein the antibody binds to a junction between domains I, II and III of HER2 extracellular domain.

13. The method of claim 12 wherein the HER antibody comprises the variable light and variable heavy amino acid sequences in SEQ ID Nos. 3 and 4, respectively.

14. The method of claim 13 wherein the HER dimerization inhibitor is pertuzumab.

15. The method of claim 8 wherein the HER antibody is a naked antibody.

16. The method of claim 8 wherein the HER antibody is an intact antibody.

17. The method of claim 8 wherein the HER antibody is an antibody fragment comprising an antigen binding region.

18. The method of any one of claims 1-17 wherein the cancer is advanced, refractory or recurrent ovarian cancer.

19. The method of any one of claims 1-17 wherein the cancer is platinum resistant ovarian cancer.

20. The method of any one of claims 1-17 wherein the cancer is primary peritoneal or fallopian tube cancer.

21. The method of any one of claims 1-17 wherein the HER dimerization inhibitor is administered as a single anti-tumor agent.

22. The method of any one of claims 1-17 comprising administering a second therapeutic agent to the patient.

23. The method claim 22 wherein the second therapeutic agent is selected from the group consisting of chemotherapeutic agent, HER antibody, antibody directed against a tumor associated antigen, anti-hormonal compound, cardioprotectant, cytokine, EGFR-targeted drug, anti-angiogenic agent, tyrosine kinase inhibitor, COX inhibitor, non-steroidal anti-inflammatory drug, farnesyl transferase inhibitor, antibody that binds oncofetal protein CA 125, HER2 vaccine, HER targeting therapy, Raf or ras inhibitor, liposomal doxorubicin, topotecan, taxane, dual tyrosine kinase inhibitor, TLK286, EMD-7200, a medicament that treats nausea, a medicament that prevents or treats skin rash or standard acne therapy, a medicament that treats or prevents diarrhea, a body temperature-reducing medicament, and a hematopoietic growth factor.
24. The method of claim 23 wherein the second therapeutic agent is a chemotherapeutic agent.

25. The method of claim 24 wherein the chemotherapeutic agent is an antimetabolite chemotherapeutic agent.

26. The method of claim 25 wherein the antimetabolite chemotherapeutic agent is gemcitabine.

27. The method of claim 22 wherein the second therapeutic agent is trastuzumab, erlotinib, or bevacizumab.

28. The method of claim 1 wherein progression free survival (PFS) is extended.

29. The method of claim 1 wherein overall survival (OS) is extended.

30. A method for extending survival of a patient with ovarian, peritoneal, or fallopian tube cancer comprising administering pertuzumab to the patient in an amount which extends survival of the patient, wherein the patient is determined to produce an elevated level of epidermal growth factor (EGF) or transforming growth factor alpha (TGF-alpha).

31. The method of claim 30 wherein patient has ovarian cancer.

32. The method of claim 30 or claim 31 wherein the patient has advanced, refractory or recurrent ovarian cancer.

33. The method of any one of claims 30-32 further comprising administering a chemotherapeutic agent to the patient.

34. The method of claim 33 wherein the chemotherapeutic agent is an antimetabolite chemotherapeutic agent.

35. The method of claim 34 wherein the antimetabolite chemotherapeutic agent is gemcitabine.

36. A method for extending progression free survival (PFS) of a patient with ovarian, peritoneal, or fallopian tube cancer comprising administering pertuzumab to the patient in an amount which extends PFS in the patient, wherein the patient's serum is determined to have an elevated level of epidermal growth factor (EGF) therein.
37. A method for extending progression free survival (PFS) of a patient with ovarian, peritoneal, or fallopian tube cancer comprising administering pertuzumab to the patient in an amount which extends PFS in the patent, wherein the patient's serum is determined to have an elevated level of epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha) therein.

38. The method of claim 26 or claim 37, wherein the cancer is ovarian cancer.

39. The method of claim 38 wherein the ovarian cancer is advanced, refractory or recurrent ovarian cancer.

40. A method of selecting a patient for treatment with a HER dimerization inhibitor, comprising treating the patient with the HER dimerization inhibitor if the patient is determined to produce an elevated level of epidermal growth factor (EGF) or transforming growth factor alpha (TGF-alpha).

41. The method of claim 40 wherein the survival of the patient is extended relative to the survival of a patient who does not produce an elevated level of EGF or TGF-alpha and receives the same treatment.

42. The method of claim 41 wherein the survival is overall survival (OS).

43. The method of claim 41 wherein the survival is progression free survival (PFS).

44. The method of claim 41 wherein the HER dimerization inhibitor is a HER2 dimerization inhibitor.

45. The method of claim 41 wherein the HER dimerization inhibitor inhibits HER heterodimerization.

46. The method of claim 31 wherein the HER dimerization inhibitor is a HER antibody.

47. The method of claim 46 wherein the antibody binds to a HER receptor selected from the group consisting of EGFR, HER2, and HER3.

48. The method of claim 47 wherein the antibody binds to HER2.
49. The method of claim 48 wherein the HER2 antibody binds to Domain II of HER2 extracellular domain.

50. The method of claim 49 wherein the antibody binds to a junction between domains I, II and III of HER2 extracellular domain.

51. The method of claim 50 wherein the HER antibody comprises the variable light and variable heavy amino acid sequences in SEQ ID Nos. 3 and 4, respectively.

52. The method of claim 51 wherein the HER dimerization inhibitor is pertuzumab.

53. The method of claim 46 wherein the HER antibody is a naked antibody.

54. The method of claim 46 wherein the HER antibody is an intact antibody.

55. The method of claim 46 wherein the HER antibody is an antibody fragment comprising an antigen binding region.

56. The method of any one of claims 40-55, further comprising treating said patient with a chemotherapeutic agent.

57. The method of claim 56 wherein the chemotherapeutic agent is gemcitabine.

58. A kit comprising a HER dimerization inhibitor and a package insert or label indicating a beneficial use for the HER dimerization inhibitor if the patient to be treated produces an elevated level of epidermal growth factor (EGF) or transforming growth factor alpha (TGF-alpha).

59. The method of claim 58 wherein the cancer is ovarian cancer, peritoneal or fallopian tube cancer.

60. The method of claim 38 wherein the beneficial use is extension of survival.

61. The method of claim 60 wherein the survival is progression-free survival.

62. The method of any one of claims 58-61 wherein the HER dimerization inhibitor is an antibody.

63. The method of claim 62 wherein the antibody is a HER2 antibody.

64. The method of claim 63 wherein the antibody is pertuzumab.
65. A method of promoting a HER dimerization inhibitor to treat patients producing an elevated level of epidermal growth factor (EGF) or transforming growth factor alpha (TGF-alpha).

66. The method of claim 65 wherein the promotion is in the form of a written material.

67. The method of claim 66 wherein the promotion is in the form of a package insert.
Domain I (L1)
TQVCTGTDMLRASPLHLDLRLHYGCQVQNVNELETYLPTNASLSFLQDIQEVEQQYV
LHINQVRQVQVLQRLRIVRGTQLFEDNYALAVLDGDPLNNTTFVTGASPGGLRELQRLS
TEILKGGVLIQRNPQLCQYQDTILWKDIFKHNNQLALTLIDNTSRACHPCSMCKGRRWG
SESQCSLRT

Domain II (CR1)
TVCAAGGCARCKGLPTDCHEEQACAGCPTKHDSCCLACLHFNHSGLICELHCAPALVTYN
TDTFESMPNPEGRYTFCGASCVTACPYNYLSTDVGCSTLCPLHNPQEVTAEDGTRQEC
KCSKPCARV

Domain III (L2)
CYGLGMEHLREVRAVTSANIQEFAGCKKIFGSALFLPESFDGDPASNTALQLQQEF
LQVFETLEETGFLYISAWPDLSPLDSFQLQVIRGRLHNAGSLTIQLGLISWGLRLSRL
ELGSGLALIHENVHCVFHTVPWDLFRNHQALLTIANTRPEDECVGEGLA

Domain IV (CR2)
CHQLCARGHCWGPQGTQCVNCQSFRLQGQCEVVECRVLQGLPREYVNYARHCLPCHPEC
QPNGSRTCPQEDQVACAHYKDPFCVARCPGSVKPDLSYMIPKFPDEEGACQCPINCTHSCVD
LDSDKGCPAESQGRASPLT

Transmembrane
Juxtamembrane
Tyrosine Kinase
Regulatory Region
2/18

VARIABLE LIGHT

2C4
DTVMTQSHKIMTSVGDRVSITC [KASQDVSIGVA] WYQQRP
** **** * *

574
DIQMTQPSPLLASSVGDRVTITC [KASQDVSIGVA] WYQQKP
* ** ***

hum kI
DIQMTQPSPLLASSVGDRVTITC [RASQSISNLYA] WYQQKP

2C4
CQSPKLLIY [SASYRT] GVPDRFTGSGSTDFTFTISSVQA
** * * * * * *

574
GKAPKLLIY [SASYRT] GVPQRFSGSSGSTDFTLTISSLQP
* ****

hum kI
GKAPKLLIY [AASSLES] GVPQRFSGSSGSTDFTLTISSLQP

2C4
EDLAVYYC [QQYYIPYTF] FGGGTKLEIK (SEQ ID NO:1)
* * * * * *

574
EDFRATYYC [QQYYIPYTF] FGGQGTKVEIK (SEQ ID NO:3)
*** *

hum kI
EDFRATYYC [QQYNLPTFT] FGGQGTKVEIK (SEQ ID NO:5)

FIG. 2A

VARIABLE HEAVY

2C4
EVQLQQSGPHELVKPSVKISCKAS [GFTFDYTMD] WVKQS
** ** * * * * * *

574
EVQLVESGGLVQPGGLRGLCAAS [GFTFDYTMD] WVRQA
** * *

hum III
EVQLVESGGLVQPGGLRGLCAAS [GFTFSYAMS] WVRQA

2C4
HGKSLEWIG [DVNPNSGSIYNQRFKG] KASLTVDSSRIVYM
* * **

574
PGKGLEWVA [DVNPNSGSIYNQRFKG] RFTLSDRSKNTLYL
***** *** ****

hum III
PGKGLEWVA [VISDGGSTYYADSVKG] RFTISRDNSKNTLYL

abc
90 100ab

2C4
ELRSLTFEVTAVYCAR [NLGPSFYFDY] WGGQTTLTVSS (SEQ ID NO:2)
*** **

574
QMNLRAEDTAVYCAR [NLGPSFYFDY] WGGQTLTVSS (SEQ ID NO:4)

hum III
QMNLRAEDTAVYCAR [GRVGYSLDYF] WGGQTLTVSS (SEQ ID NO:6)

FIG. 2B

SUBSTITUTE SHEET (RULE 26)
FIG. 3A

Amino Acid Sequence for Pertuzumab Light Chain

```
1  10  20  30  40  50  60
DIQMTQSPSLASVGSERITCKASQDSVSTIGAVAVVYQKPGKAPKLليفساSYTAVVGPS
70  80  90  100  110  120
RFSGSGSGTFTLTLTISSLQPEDTATYVCKQNYIYPTFGQGGTKVEIKRTVAAPSVPFFP
130  140  150  160  170  180
SDEQLKGSITAVCLNKLNFYPRAKVGQVWNLVSLGQSGQESVTEQDSDKSTYTSLSSTLT
190  200  210
LSKADYEKHKVYACEVTHQGLSVPVTSFNRGE
```

FIG. 3B

Amino Acid Sequence for Pertuzumab Heavy Chain

```
1  10  20  30  40  50  60
EVQLVESGGGLVPRGGLVQPSLQLCAASGFTFSDYTDWVRQAPGKGLEWAVDVPNPSGGSITY
70  80  90  100  110  120
NQRFKGRFTLSVDRSKNTLYLQMNSLRAEDTAVYCARNLGPSFVFDYWQQTYWQLTVSSA
130  140  150  160  170  180
STKGPSVPVTAPSSSWTAALGCLVDYFPEGFPTVSWSNLSGALTSGVHTPAPVLSGGS
190  200  210  220  230  240
LYLSLSSVTVTPSSSLGTQTYICNVHKPSNTKVDKVEFSDCKTVHCPPCPAPELLLGDP
250  260  270  280  290  300
SVFLFPPKPDKTLMLISRTPEVTVCVDVSHEDEPEVKFNWYVDGVEHNAKTKPREEQYN
310  320  330  340  350  360
TYRVSVLTVLHQLNGKEYKCVSNKAPIKETISKAAGQPREPQYVVLSLPSREEM
370  380  390  400  410  420
TKNQVSLTCLEVKGYPFSDAWEESNGQPENNYKTTPVLDSDLSSFLYSKLTVDKSREQ
430  440  448
QGNVFSCSVHEALHNHTQKSLSLSPG
```
Ligand-activated EGFR Heterodimerizes with HER2 2C4 Binds at the Heterodimeric Binding Site

FIG. 4
Trastuzumab
Herceptin

- Binds in IV near JM.
- Protects against receptor shedding
- Moderately affects receptor down-modulation
- Slight effect on HER2's role as a coreceptor

Pertuzumab
Omittarg

- Binds in II at dimerization interface
- Does not prevent receptor shedding
- Moderately affects receptor down-modulation
- Major effect on HER2's role as a coreceptor

FIG. 6
LIGHT CHAIN

1 15 30 45
DIQMTQSPSSLASSVGVDRVTITCRASQDVNTAVAWYQKPGKAPK

46 60 75 90
LLIYSAFSLYSGVPSRFSGSGSTDFTLTISSLQPEDFATYYCQQ

91 105 120 135
HYTTPPTFGQGTKVIEIKRTVAAPSFIIFPPSDEQLKSGTASVVCL

136 150 165 180
LNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSSTYSLSSTLT

181 195 210 214
LSKADYEKHKVYACEVTHTQGLSSPVTKSFNUGEC

FIG. 7A
HEAVY CHAIN

1 15 30 45
46 60 75 90
91 105 120 135
136 150 165 180
181 195 210 225
226 240 255 270
271 285 300 315
316 330 345 360
361 375 390 405
406 420 435 449
S F F L Y S K L T V D K S R W Q Q G N V F S C S V M H E A L H N H Y T Q K S L S S L S P G

FIG. 7B
FIG. 8A
<table>
<thead>
<tr>
<th></th>
<th>HER2</th>
<th>TGF-α</th>
<th>AMPH</th>
<th>IREG</th>
<th>EGF</th>
</tr>
</thead>
<tbody>
<tr>
<td>HER2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>TGF-α</td>
<td>.2</td>
<td>1</td>
<td></td>
<td></td>
<td>.2</td>
</tr>
<tr>
<td>AMPH</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>.07</td>
</tr>
<tr>
<td>IREG</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EGF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Mean/Correlation of markers w/ clinical covariates

<table>
<thead>
<tr>
<th></th>
<th>HER2</th>
<th>TGF-α</th>
<th>AMPHI</th>
<th>EGF</th>
</tr>
</thead>
<tbody>
<tr>
<td>BECOG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>96</td>
<td>96</td>
<td>93</td>
<td>95</td>
</tr>
<tr>
<td>0</td>
<td>53</td>
<td>15.50</td>
<td>13.30</td>
<td>41.69</td>
</tr>
<tr>
<td>1</td>
<td>42</td>
<td>13.54</td>
<td>11.05</td>
<td>28.40</td>
</tr>
<tr>
<td>>1</td>
<td>1</td>
<td>12.53</td>
<td>13.39</td>
<td>11.15</td>
</tr>
<tr>
<td>PRITCN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><=4</td>
<td>46</td>
<td>13.94</td>
<td>14.40</td>
<td>19.5</td>
</tr>
<tr>
<td>>4</td>
<td>50</td>
<td>15.22</td>
<td>10.40</td>
<td>51.06</td>
</tr>
<tr>
<td>TUMOR BURDEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>.04</td>
<td>.09</td>
<td>0</td>
<td>.02</td>
</tr>
<tr>
<td>DIAGDUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>-.09</td>
<td>.07</td>
<td>.04</td>
<td>.1</td>
</tr>
</tbody>
</table>
Figure 11

Cutoff determination using PFS

Log-rank test based method
Cutoff = 27.01

Log-rank test based method
Cutoff = 3.61

Log-rank test based method
Cutoff = 56.15

Log-rank test based method
Cutoff = 230.5

SUBSTITUTE SHEET (RULE 26)
Figure 12

Cutoff determination using OS

Log-rank test based method
- Cutoff = 38.94

![Graph 1](image1)

Log-rank test based method (OS)
- Cutoff = 30.96

![Graph 2](image2)

Log-rank test based method (OS)
- Cutoff = 25.77

![Graph 3](image3)

Log-rank test based method (OS)
- Cutoff = 632.12

![Graph 4](image4)
Figure 13

Distribution of patients according to cutoffs

<table>
<thead>
<tr>
<th>Marker</th>
<th>perc.TRUE</th>
<th>perc.FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HER2 ≥ 13.62</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>TGF ≥ 8.06</td>
<td>47</td>
<td>53</td>
</tr>
<tr>
<td>AMPHI ≥ 56.15</td>
<td>12</td>
<td>88</td>
</tr>
<tr>
<td>EGF ≥ 230.5</td>
<td>54</td>
<td>46</td>
</tr>
</tbody>
</table>

TGF=HI, EGF=HI (a function of two markers both HI)
Figure 14

HER2

HER2 on PFS (p-value = 0.19 ; n = 96)

HER2 on OS (p-value = 0.27 ; n = 96)
Figure 15

TGF-α

TGF on PFS (p-value = 0.055; n = 96)

TGF on OS (p-value = 0.083; n = 96)
Figure 16

EGF

EGF on PFS (p-value = 0.0075; n = 96)

EGF on OS (p-value = 0.14; n = 96)