Title: BOREHOLE CLEANING USING DOWNHOLE PUMPS

Abstract: Apparatus for borehole cleaning, comprises: a tubular conveyance for extending from the surface into a borehole to a region to be cleaned; a motor mounted at the end of the tubular conveyance that in use is introduced into the borehole; a pump connected to the motor and having a nozzle; a power cable extending through the tubular conveyance from the surface to provide power to the motor; the pump being arranged such that, when positioned in the borehole and operated by the motor, the pump withdraws material from the borehole through the nozzle and pumps it into the tubular conveyance to the surface.
Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
Description
BOREHOLE CLEANING USING DOWNHOLE PUMPS

Technical field
[0001] This invention relates to systems for borehole cleaning that allow removal of materials in a borehole preventing flow. In particular, the invention relates to system for use in wells such as oil and gas wells.

Background art
[0002] As oil and gas are extracted from producing wells, sand and heavy oils that have flowed through the perforations accumulate. These are too heavy to flow to the surface along with the usual fluids produced by the well at normal production rates, and tend to accumulate in low-lying areas as shown in Figures 1 and 2. Additionally, drilling muds used during the drilling process are generally heavier than the reservoir fluid, and tend to also segregate to low-lying areas of the well. Finally, proppant used during reservoir fracturing operations is not always completely removed. The accumulation problem in particularly severe where the trajectory of the well 10 is at or close to horizontal in the producing reservoir 12 and sumps 14 are present. Deposits 16 in these regions reduce the effective cross-section of the well 10 with a corresponding decrease in flow area 18 and therefore increase the pressure drop of the production fluids. In order to maintain or increase the production of such a well, it is necessary to remove this fill.

Conventional methods of fill removal (or cleanout) involve high-pressure jetting through coiled tubing (CT) to mobilize the fill around the cleaning tool and sweep it to the surface by slowly pulling the CT up, the flow of jetting fluid and production fluid carrying the loosened fill to the surface. This high pressure mobilization jetting does increase the Bottom Hole Pressure (BHP) of the reservoir though, so it is only applicable to wells in formations that can sustain a full hydrostatic column (or foam column, in the case of foam clean-outs) and the increased pressure due to jetting.
An example of one such technique is the PowerCLEAN service offered by Schlumberger.

[0003] In most well cleanout applications, the reservoir pressure is high enough, and the rock permeability low enough, to allow increase of pressure in the well while performing cleanout operations. In others, foam can be used to sweep the fill up. However there are still many wells that either cannot hold a foam column, or where foam use is restricted due to logistics reasons (e.g. procurement and disposal of N2 foam). In these situations, the only existing cleanout solution is a concentric coiled tubing (CCT) service to power a downhole jet pump. Using CCT implies a high use of power liquid to move the fill out and is limited in length by the weight of the coil-in-coil assembly.

[0005] This invention aims to provide an alternative to CCT techniques while also extending the depths at which clean-out operations can be performed. The invention is based on the use of a downhole pump that is powered by a cable running inside the tubing conveyance.

Disclosure of the invention

[0006] One aspect of the invention provides apparatus for borehole cleaning, comprising:
- a tubular conveyance for extending from the surface into a borehole to a region to be cleaned;
- a motor mounted at the end of the tubular conveyance that in use is introduced into the borehole;
- a pump connected to the motor and having a nozzle;
- a power cable extending through the tubular conveyance from the surface to provide power to the motor;
the pump being arranged such that, when positioned in the borehole and operated by the motor, the pump withdraws material from the borehole through the nozzle and pumps it into the tubular conveyance to the surface.

[0007] A second motor and pump can be located in the tubular conveyance above the pump so as to provide extra lift to the material to be removed from the well. Additional 'booster' pumps can be added in this way up to the power limit of the wireline cable.

[0008] A gas supply line can extend at least part way along the inside of the tubular conveyance and be arranged to introduce gas into the material-laden flow in the tubular conveyance above the pump.

[0009] The apparatus can further comprise a filter between the nozzle and the pump to prevent large particulate material passing into the pump from the borehole. Preferably, the filter removes material of greater than 1mm from the flow.

[0010] It is particularly preferred that the apparatus comprises means to move the nozzle when the pump is operated downhole. Movement of the nozzle can be used to further mobilize the fill and suspend it in the fluids in the well. The means can rotate and/or reciprocate the nozzle. A separate motor can be provided to enable this mobilizing movement. Alternatively, a mechanical connection to a rotor in the pump can be provided for this purpose.

[0011] Features can be provided on the outside and/or inside of the nozzle to accelerate the flow of material when operated downhole to aid in movement of solids.

[0012] The tubular conveyance is preferably coiled tubing.

[0013] Another aspect of the invention provides a method of cleaning a well using an apparatus as defined above, comprising:
- extending the tubular conveyance into the borehole so as to position the nozzle in a region to be cleaned;
- operating the pump so as to draw fluid and solid material from the
region and pump them to the surface through the tubular conveyance.

[0014] The method can further comprise injecting gas into the materials in the
tubular conveyance to create foam of reduced density to assist pumping
of the materials to the surface.

[0015] Preferably, the solid materials are agitated downhole to improve removal
by the pump.

[0016] The nozzle can be rotated or reciprocated while operating the pump.

[0017] Alternately advancing and withdrawing the tubular conveyance over a
limited distance can be used to reciprocate the downhole end of the
conveyance in the region to be cleaned.

[0018] In one embodiment, the tubular conveyance is extended until the pump is
located at the bottom of a region to be cleaned and progressively
withdrawing the conveyance to move the pump upwards through the
region as the pump is operated. In another, the tubular conveyance is
extended until the pump is positioned at the top of a region to be cleaned
and progressively advancing the conveyance to move the pump
downwards through the region as the pump is operated.

Brief description of the drawings

[0019] Figure 1 shows a schematic view of a well in which the invention can be
used;
Figure 2 shows a cross-section through the well on line A-A of Figure 1;
Figure 3 shows a schematic view of a system according to the invention
deployed in a well;
Figure 4 shows a detailed view of part of the system of Figure 3;
Figure 5 shows an embodiment of the invention for handling larger
particulate materials in the fill;
Figure 6 shows an embodiment of the invention for fill mobilisation;
Figures 7-9 show embodiments of features that can be added to a nozzle
to improve fill mobilisation;

Mode(s) for carrying out the invention

[0020] Figure 3 shows the use of a system according to an embodiment of the invention in a well of the type shown in Figures 1 and 2. The system includes a CT surface system 20 that reels a coiled tubing 22 into the well 24 through surface pressure control equipment 26. An electrically powered motor 28 and pump 30 are located at the end of the CT 22. A power cable 32 (see Figure 4) runs from the surface to the motor 28 through the CT 22 for protection. The CT 22 also acts as a conduit for fluid/fill mixture removal. The pump 30 is configured to flow in the 'reverse' sense, sucking from the lower end and moving the fluid and fill solids upwards through the pump 30 itself and through the CT 22 towards the surface. The CT insulates the well from any pressure increase caused by the pump as it pumps fluid to the surface so avoiding damage to the formation. This can be particularly important in Low BHP reservoirs that can easily be damaged by relatively small increases in wellbore pressure above the in-situ reservoir pressure.

[0021] The power required to overcome the vertical height (TVD) hydrostatic pressure can be relatively large compared to the power usually available for downhole tools powered via an electric cable (e.g. wireline tools). Since 3-9 kW of electrical power is typically available to power the pump with current wireline technology, for a flow rate of 10 gpm (considered as suitable for this type of application), flow can only be assured for the first few kilometres (depending on CT size and fluid/fill density and viscosity). Therefore, an additional boost may be required to move the fluid mixture to the surface where it can be disposed of or separated.

[0022] One method of boosting the hydraulic power is to add a second pump/motor combination 34 in series with the first pump of this invention; either right next to it, or further up along the CT 22. Another method of
using dual pumps to carry cuttings during drilling has been disclosed in GB2416550A.

Another preferred method of assisting the fluid to reach the surface is to run a pilot line 38 partway along the CT (to point 36) to inject N₂ gas via a nozzle 40. The length of this pilot line 38 can be determined a priori by knowing the geometry of the well, as it is preferable to inject the gas into the CT above the horizontal section. This will decrease the hydrostatic weight of the fluid above the injection point as the gas moves up, and will also avoid the risk of creating a gas 'plug' if the gas were injected lower (if the gas is injected in the horizontal section 42, then the pump 30 will need to push the fluid and the gas up the CT 22, thus increasing the system losses and causing a 'slug' flow condition where gas and fluid 'slugs' alternatively flow to the surface; leading to a less efficient carrying capacity system).

In the case of the sand plug where it is not possible to force the end of the CT 22 through merely by pushing the CT from the surface, pump operation can start from the top of the plug and the CT 22 slowly be run-in-hole to pump a mixture of well fluid and sand.

A mechanical sand mobilization means may be beneficial under this situation so as to fluidize the sand and make it easier to flow through the pump and up the CT. These are described below in more detail in relation to Figures 7-9.

In the case of leftover drilling muds or heavy oils, then the apparatus can be run to the bottom of the well and pulled out of hole while the pump is operated. This will use the heavy fluids behind (i.e. above) the apparatus to act as a temporary dynamic seal and the removal of fluid from the lower part of the well can create a localized drawdown at that level. If the upper fluid is not viscous enough, then the drawdown will not materialize locally, but rather from a reduction of the well fluid level; in turn lowering the hydrostatic pressure over the entire well. If this is not desired, water
or other appropriate fluid can be injected at the well head to compensate for the fluid removal through the CT.

[0027] During a clean-out operation, the apparatus may encounter pebbles and larger particles that have gravitated to the low side of the well and are mixed with the fill. One particular embodiment of the invention for use in such circumstances is shown in Figure 5. In this embodiment, the pump motor 50 is connected to the rotor 52 of a Moineau-type pump having an elastomer stator 54. A junk basket 56 is added between the pump nozzle 58 and the pump 52, 54 and can be used to retain the larger particles that might otherwise harm the pump or that cannot be effectively transported to the surface while still allowing through the finer fill encountered in the well. A typical pass-through particle diameter can be <1mm.

[0028] The effectiveness of the mobilization of the fill can be greatly enhanced if a mechanical mixing of some sort takes place. There are various techniques that can be used for creating mechanical mobilization of fine particles and sand.

[0029] The surface injector can be used to stroke the CT backwards and forwards over a predetermined length (e.g. 1 foot (300mm) as the nozzle is moved through the fill.)

[0030] A second motor can be provided at the tip of the pump tool to rotate the pump nozzle as is shown in Figure 6. In this embodiment, an electric motor 60 is positioned in the CT 62 near the nozzle 64. The nozzle 64 is provided with a wire brush or mill 66. Operation of the motor 60 rotates the nozzle 64 and brush or mill 66 to mobilise the fill.

[0031] Features can be added at or around the pump nozzle to mechanically agitate the fill as the nozzle is rotated. Figures 7-9 show examples of such features. In Figure 7, blades/scallops and threads 70 are formed around the outside and inside respectively of the nozzle 72, serving to accelerate the fill as the nozzle 72 is rotated. In Figure 8, hard buttons
74 are provided around the nozzle 72 for the same purpose. In Figure 9, a brush 76 is connected to the pump rotor (not shown) and projects through the nozzle 72 into the fill. As the rotor rotates, the brush 76 rotates to mobilise the fill. These and/or other features can be used alone or in combination to improve mobilisation of the fill.

[0032] In another embodiment, pump hydraulic power can be used to create a slow reciprocating motion of the nozzle (via a low power turbine for example), that can assist mobilisation of the fill using features such as those described above.

[0033] Figure 10 shows and embodiment in which the nozzle 80 (carrying a brush/mill 82 similar to that shown in Figure 6) is linked to the lower part of the pump rotor 84 (for a Moineau-type positive displacement pump, for example) that is driven by an electric motor 86. In use, some of the power of the motor 86 is used to rotate the nozzle and brush/mill 82, the remaining power being used to pump the mobilised fill.

[0034] Figure 11 shows one particular mechanism for converting the rotational motion of a pump rotor into reciprocating motion at the nozzle. In this embodiment, a Moineau-type pump having a rotor 90 and a stator 92, the rotor 90 is driven by a motor 94. The stator housing is extended at its lower end and carries a nozzle 96 mounted so as to be able to slide therein. Keys 98 positioned between the stator 92 and nozzle 96 prevent relative rotation of the stator and nozzle while allowing relative axial sliding. A rotatable J-slot holder 100 is positioned inside the nozzle 96 and connected to the pump rotor 90 by means of a drive shaft 102. A J-slot 104 is provided in the outer surface of the holder 100. A peg 106 projects from the inner surface of the nozzle 96 so as to engage in the J-slot 104. As the holder 100 rotates with the rotor 90, the peg 106 is forced to follow the path of the J-slot 104, in turn causing the nozzle to move axially with respect to the stator 92 (the J-slot 104 and peg 106 act in the manner of a cam and cam follower to convert rotary motion into
reciprocating motion). Depending on the particular design of the rotor and stator, various mechanisms can be used to provide the rotary drive to the nozzle. These can include simple drive shafts, shafts connected by universal joints, nutation disks and other such devices.

[0035] The limitation of how far the pump could be pushed in the well is usually the helical lockup of the CT in a deviated well. One way of circumventing this limitation is to combine an electric borehole tractor to pull the pump to depth, and then disengage and deactivate it to allow pumping while pulling the CT and pump back towards the surface. Hydraulic tractors can also be used when flowing in 'standard' (i.e. down the CT) circulation. However, their flow requirements can tend to increase BHP, which may be undesirable in very low pressure reservoir conditions.

[0036] The pump can also contain a flow-diverter above it, commanded from the surface via optical or electrical means, that would allow opening ports to the annulus to flow through the CT in cases when well control or CT cleaning is required. Once the CT has been cleaned, or any obstructions have been removed, the flow-diverter can close the ports and normal 'reverse' circulation can resume.

[0037] Even without the flow-diverter described above, flowing in the 'standard' direction from the surface can also be used to clean the filter of accumulated pebbles by ejecting them further up the wellbore and then moving the tool back down to the fill and proceeding with the clean-out operation.

[0038] It will be appreciated that the various techniques described above can be combined to give the described advantages. Other changes can be made while staying within the scope of the invention.
Claims

1. Apparatus for borehole cleaning, comprising:
 - a tubular conveyance for extending from the surface into a borehole to a region to be cleaned;
 - a motor mounted at the end of the tubular conveyance that in use is introduced into the borehole;
 - a pump connected to the motor and having a nozzle;
 - a power cable extending through the tubular conveyance from the surface to provide power to the motor;
 the pump being arranged such that, when positioned in the borehole and operated by the motor, the pump withdraws material from the borehole through the nozzle and pumps it into the tubular conveyance to the surface.

2. Apparatus as claimed in claim 1, further comprising one or more further motors and pumps located in the tubular conveyance above the pump.

3. Apparatus as claimed in claim 1 or 2, further comprising a gas supply line extending at least part way along the inside of the tubular conveyance and arranged to introduce gas into the fluid / material mix in the tubular conveyance above the pump.

4. Apparatus as claimed in claim 1, 2 or 3, further comprising a filter between the nozzle and the pump to prevent large particulate material passing into the pump from the borehole.

5. Apparatus as claimed in claim 4, wherein the filter removes material of greater than 1mm from the flow.

6. Apparatus as claimed in any preceding claim, further comprising means to move the nozzle when the pump is operated downhole.

7. Apparatus as claimed in claim 6, wherein the means rotates and/or reciprocates the nozzle.

8. Apparatus as claimed in claim 6 or 7, wherein the means comprises a separate motor.
9. Apparatus as claimed in claim 6 or 7, wherein the means comprises a connection to the pump motor.

10. Apparatus as claimed in any preceding claim, wherein features are provided on the outside and/or inside of the nozzle to accelerate the flow of material when operated downhole to aid in movement of solids.

11. Apparatus as claimed in any preceding claim, wherein the tubular conveyance comprises coiled tubing.

12. A method of cleaning a well using an apparatus as claimed in any preceding claim, comprising:
 - extending the tubular conveyance into the borehole so as to position the nozzle in a region to be cleaned;
 - operating the pump so as to draw fluid and solid material from the region and pump them to the surface through the tubular conveyance.

13. A method as claimed in claim 12, further comprising injecting gas into the materials in the tubular conveyance to create a foam of reduced density to assist pumping of the materials to the surface.

14. A method as claimed in claim 12 or 13, further comprising agitating solid materials downhole to improve removal by the pump.

15. A method as claimed in claim 12, 13 or 14, further comprising rotating the nozzle while operating the pump.

16. A method as claimed in any of claims 12-15, further comprising reciprocating the nozzle while operating the pump.

17. A method as claimed in any of claims 12-16, further comprising alternately advancing and withdrawing the tubular conveyance over a limited distance to reciprocate the downhole end of the conveyance in the region to be cleaned.

18. A method as claimed in any of claims 12-17, comprising extending the tubular conveyance until the pump is located at the bottom of a region to be cleaned and progressively withdrawing the conveyance to move the pump upwards through the region as the pump is operated.
19. A method as claimed in any of claims 12-17, comprising extending the tubular conveyance until the pump is positioned at the top of a region to be cleaned and progressively advancing the conveyance to move the pump downwards through the region as the pump is operated.

20. A method as claimed in any of claims 12-17 further comprising a flow-diverter above the pump that can open ports to the annulus on command and allow high-volume circulation from the surface through the conveyance means to control the well pressure or perform other operations requiring high flow rates.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

INV. E21B37/00 E21B43/12 E21B41/00

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
E21B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>claims 1,2; figures 1-4</td>
<td>6,7,9, 10,14,15</td>
</tr>
<tr>
<td>X</td>
<td>GB 2 345 932 A (CAMCO INT [US]) 26 July 2000 (2000-07-26) page 3, line 16 - line 23; figure 1</td>
<td>1,2,11,12</td>
</tr>
<tr>
<td>Y</td>
<td>US 2 916 091 A (CAUDILL JAMES P) 8 December 1959 (1959-12-08) abstract; figures 1,2</td>
<td>6,7,10,14,15</td>
</tr>
<tr>
<td>Y</td>
<td>US 2 330 336 A (CRITES WILBUR J) 28 September 1943 (1943-09-28) claim 1; figure 1</td>
<td>9</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C

X See patent family annex

S Special categories of cited documents

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on prior claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

K document member of the same patent family

Date of the actual completion of the international search

1 August 2007

Date of mailing of the international search report

07/08/2007

Name and mailing address of the ISA/
European Patent Office, P B 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx 31651 epo nl
Fax (+31-70) 340-3016

Authorized officer
Dantinne, Patrick

Fors PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 216 788 B1 (WILSON BROWN LYLE [US]) 17 April 2001 (2001-04-17) column 1, line 40 - line 62; figure 1</td>
<td>1, 11, 12, 14</td>
</tr>
<tr>
<td>A</td>
<td>GB 2 340 155 A (CAMCO INC [US]) 16 February 2000 (2000-02-16) abstract; figure 6</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US 5 447 200 A (DEDORA GARTH [CA] ET AL) 5 September 1995 (1995-09-05) figures 1,2</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US 1 476 747 A (WOLEVER FRANKLIN H) 11 December 1923 (1923-12-11) claim 1; figure 3</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US 4 619 323 A (GIDLEY JOHN L [US]) 28 October 1986 (1986-10-28) claim 1; figure 13</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US 6 352 113 B1 (NEUROTH DAVID H [US]) 5 March 2002 (2002-03-05) column 3, line 30 - line 58; figure 1</td>
<td>1</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>US 2003198562 A1</td>
<td>23-10-2003</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20000278 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6168388 B1</td>
</tr>
<tr>
<td>US 2916091 A</td>
<td>08-12-1959</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2330336 A</td>
<td>28-09-1943</td>
<td>NONE</td>
</tr>
<tr>
<td>GB 2340155 A</td>
<td>16-02-2000</td>
<td>BR 9904228 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1244633 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6298917 B1</td>
</tr>
<tr>
<td>US 1476747 A</td>
<td>11-12-1923</td>
<td>NONE</td>
</tr>
<tr>
<td>US 4619323 A</td>
<td>28-10-1986</td>
<td>NONE</td>
</tr>
</tbody>
</table>