(51) International Patent Classification:
G05B 19/418 (2006.01)

(21) International Application Number:
PCT/US2007/066315

(22) International Filing Date: 10 April 2007 (10.04.2007)

(25) Filing Language: English

(30) Priority Data:

(72) Inventors; and

(74) Agent: CHESS, Deborah; Honeywell International Inc., Law Department AB/2B, 101 Columbia Road, Morristown, New Jersey 07962 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MG, NA, SD, SL, SZ, TZ, UC, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(54) Title: SYSTEM AND METHOD FOR MONITORING VALVE STATUS AND PERFORMANCE IN A PROCESS CONTROL SYSTEM

Abstract: A process control system (100) includes at least one controller (104a-104b) and at least one wireless valve element (202) capable of being controlled by the at least one controller (104a-104b). The process control system (100) also includes a first transceiver (204) configured to communicate with at least one wireless valve element (202) and a second transceiver (206) configured to communicate wirelessly with the first transceiver (204). The second transceiver (206) is further configured to communicate with the at least one controller (104a-104b).
SYSTEM AND METHOD FOR MONITORING VALVE STATUS AND PERFORMANCE IN A PROCESS CONTROL SYSTEM

TECHNICAL FIELD

[0001] This disclosure relates generally to process control systems and more particularly to a system and method for monitoring valve status and performance in a process control system.
BACKGROUND

[0002] Processing facilities are often managed using process control systems. Example processing facilities include manufacturing plants, chemical plants, crude oil refineries, and ore processing plants. Among other operations, process control systems typically manage the use of motors, valves, and other industrial equipment in the processing facilities.

[0003] Valves (whether control valves, rotary valves, or other types of valves) are often critical plant control elements, and they are one of the most common sources of disruptions during plant operations. Valve failures are often difficult to detect or predict because a large number of facilities do not have intelligent valve positioners. Instead, these facilities often use simple current-to-pressure converters (with or without external position sensors) or normal 4-20mA based valve positioners (which are basically current-to-pressure converters and position sensors in one package). Despite the benefits of smart valves or intelligent valve positioners, facilities typically do not plan replacement of legacy simple valve positioners until end of life of the equipment since equipment cost and loss of production for such a change often cannot be financially justified. The ability to add wireless smart devices to existing equipment without requiring a major outage makes the wireless implementation financially viable for industrial facilities and allows both diagnostics and control data to be brought into the industrial facility to improve maintenance and process control.
SUMMARY

[0004] This disclosure provides a system and method for monitoring valve status and performance in a process control system.

[0005] In a first embodiment, an apparatus includes at least one wireless valve element, a first transceiver configured to communicate with at least one wireless valve element, and a second transceiver configured to communicate wirelessly with the first transceiver. The second transceiver is also configured to communicate with a process control system.

[0006] In particular embodiments, the apparatus also includes at least one second wireless valve element and a third transceiver configured to communicate with at least one second wireless valve element. The second transceiver is also configured to communicate wirelessly with the third transceiver.

[0007] In a second embodiment, a process control system includes at least one controller. The process control system also includes at least one wireless valve element capable of being controlled by at least one controller. The process control system further includes a first transceiver configured to communicate with at least one wireless valve element and a second transceiver configured to communicate wirelessly with the first transceiver. The second transceiver is further configured to communicate with at least one controller.

[0008] In a third embodiment, a method includes receiving data from at least one wireless valve element at a first transceiver. The method also includes wirelessly communicating the data to a second transceiver and communicating the data from the second transceiver to a
process control system.

[0009] In a fourth embodiment, an apparatus includes at least one wireless valve element, and a first transceiver configured to communicate with the at least one wireless valve element. The apparatus also includes a second transceiver configured to communicate wirelessly with the first transceiver. In some embodiments, the second transceiver further configured to communicate with a monitoring system.

[0010] Other technical features may be readily apparent to one skilled in the art from the following figures, descriptions, and claims.
BRIEF DESCRIPTION OF THE DRAWINGS

[0011] For a more complete understanding of this disclosure, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:

[0012] FIGURE 1 illustrates an example process control system according to one embodiment of this disclosure;

[0013] FIGURE 2 illustrates an example process element including a wireless portion in a process control system according to one embodiment of this disclosure; and

[0014] FIGURE 3 illustrates an example method for process control using wireless devices according to one embodiment of this disclosure.
FIGURE 1 illustrates a process control system 100 according to one embodiment of this disclosure. The embodiment of the process control system 100 shown in FIGURE 1 is for illustration only. Other embodiments of the process control system 100 may be used without departing from the scope of this disclosure.

In this example embodiment, the process control system 100 includes one or more process elements 102a-102b. The process elements 102a-102b represent components in a process or production system that may perform any of a wide variety of functions. For example, the process elements 102a-102b could represent motors, catalytic crackers, valves, and other industrial equipment in a production environment. The process elements 102a-102b could represent any other or additional components in any suitable process or production system. Each of the process elements 102a-102b includes any hardware, software, firmware, or combination thereof for performing one or more functions in a process or production system. While only two process elements 102a-102b are shown in this example, any number of process elements may be included in a particular implementation of the process control system 100. The implementation of new process elements 102a-102b may include augmenting existing process elements with new wireless enabled devices that augment the existing process elements. Augmentation devices may be to provide additional process data as well as diagnostic data to the process control system or maintenance system (controllers, applications, servers, stations).

In various embodiments, process element 102a includes a transceiver 206, described in more detail with
respect to Figure 2, used to control and communicate with any process elements as part of process element 102a. [0018] Two controllers 104a-104b are coupled to the process elements 102a-102b. The controllers 104a-104b control the operation of the process elements 102a-102b. For example, the controllers 104a-104b could be capable of monitoring the operation of the process elements 102a-102b and providing control signals to the process elements 102a-102b. Each of the controllers 104a-104b includes any hardware, software, firmware, or combination thereof for controlling one or more of the process elements 102a-102b. The controllers 104a-104b could, for example, include processors of the POWERPC processor family running the GREEN HILLS INTEGRITY operating system or processors of the X86 processor family running a MICROSOFT WINDOWS operating system.
Two servers 106a-106b are coupled to the controllers 104a-104b. The servers 106a-106b perform various functions to support the operation and control of the controllers 104a-104b and the process elements 102a-102b. For example, the servers 106a-106b could log information collected or generated by the controllers 104a-104b, such as status information related to the operation of the process elements 102a-102b. The servers 106a-106b could also execute applications that control the operation of the controllers 104a-104b, thereby controlling the operation of the process elements 102a-102b. In addition, the servers 106a-106b could provide secure access to the controllers 104a-104b. Each of the servers 106a-106b includes any hardware, software, firmware, or combination thereof for providing access to or control of the controllers 104a-104b. The servers 106a-106b could, for example, represent personal computers (such as desktop computers) executing a MICROSOFT WINDOWS operating system. As another example, the servers 106a-106b could include processors of the POWERPC processor family running the GREEN HILLS INTEGRITY operating system or processors of the X86 processor family running a MICROSOFT WINDOWS operating system.

One or more operator stations 108a-108b are coupled to the servers 106a-106b, and one or more operator stations 108c are coupled to the controllers 104a-104b. The operator stations 108a-108b represent computing or communication devices providing user access to the servers 106a-106b, which could then provide user access to the controllers 104a-104b and the process elements 102a-102b. The operator stations 108c represent computing or communication devices providing user access to the
controllers 104a-104b (without using resources of the servers 106a-106b). As particular examples, the operator stations 108a-108c could allow users to review the operational history of the process elements 102a-102b using information collected by the controllers 104a-104b and/or the servers 106a-106b. The operator stations 108a-108c could also allow the users to adjust the operation of the process elements 102a-102b, controllers 104a-104b, or servers 106a-106b. Each of the operator stations 108a-108c includes any hardware, software, firmware, or combination thereof for supporting user access and control of the system 100. The operator stations 108a-108c could, for example, represent personal computers having displays and processors executing a MICROSOFT WINDOWS operating system.

In this example, at least one of the operator stations 108b is remote from the servers 106a-106b. The remote station is coupled to the servers 106a-106b through a network 110. The network 110 facilitates communication between various components in the system 100. For example, the network 110 may communicate Internet Protocol (IP) packets, frame relay frames, Asynchronous Transfer Mode (ATM) cells, or other suitable information between network addresses. The network 110 may include one or more local area networks (LANs), metropolitan area networks (MANs), wide area networks (WANs), all or a portion of a global network such as the Internet, or any other communication system or systems at one or more locations.

In this example, the system 100 also includes two additional servers 112a-112b. The servers 112a-112b execute various applications to control the overall operation of the system 100. For example, the system 100 could be used in a processing or production plant or other
facility, and the servers 112a-112b could execute applications used to control the plant or other facility. As particular examples, the servers 112a-112b could execute applications such as enterprise resource planning (ERP), manufacturing execution system (MES), or any other or additional plant or process control applications. Each of the servers 112a-112b includes any hardware, software, firmware, or combination thereof for controlling the overall operation of the system 100.

[0023] As shown in FIGURE 1, the system 100 includes various redundant networks 114a-114b and single networks 116a-116b that support communication between components in the system 100. Each of these networks 114a-114b, 116a-116b represents any suitable network or combination of networks facilitating communication between components in the system 100. The networks 114a-114b, 116a-116b could, for example, represent Ethernet networks. The process control system 100 could have any other suitable network topology according to particular needs.

[0024] In one aspect of operation, one or more of the process elements 102a-102b may each include a wireless valve element, as described in more detail below with reference to FIGURE 2. For example, in some embodiments, at least one of the process elements 102a-102b represents a valve (such as a control valve or other valve), which includes a wireless valve element that is capable of wirelessly controlling the valve. While only process element 102a is described below as including a wireless valve element and wireless portion, any number of process elements in the process control system 100 can include a wireless valve element and wireless portion. The wireless valve element of the process element allows effective and
efficient valve monitoring and control. As examples, the wireless valve element may enable better control of the valve and provide additional information about the valve's health and status wirelessly to the process control system. Various embodiments provide the benefits of intelligent valve positioners with increased flexibility, lower cost, and lower risk.

[0025] Although FIGURE 1 illustrates one example of a process control system 100, various changes may be made to FIGURE 1. For example, a control system could include any number of process elements, controllers, servers, and operator stations.

[0026] FIGURE 2 illustrates an example process element 102a including a wireless valve element in a process control system 100 according to one embodiment of this disclosure. The process element 102a illustrated in FIGURE 2 is for illustration only. Other process elements could be used in a process control system without departing from the scope of this disclosure. Also, for ease of explanation, the process element 102a shown in FIGURE 2 is described with respect to the process control system 100 of FIGURE 1. The process element 102a shown in FIGURE 2 could be used with any other suitable device or system.

[0027] In this example, the process element 102a includes one or more wireless valve elements 202 and a wireless portion formed by two transceivers 204 and 206, which communicate by a wireless connection 208. Wireless valve element 202 includes any hardware, software, firmware, or combination thereof for performing one or more intelligent valve functions in a process or production system. In some embodiments, the wireless valve element 202 may be a conventional process valve that has been
modified to communicate with transceiver 204 as described below. On other embodiments, existing valves in a plant can be retrofitted with wireless valve elements 202 as described herein.

The one or more wireless valve elements 202 are coupled to the transceiver 204. In some embodiments, a wireless valve element 202 is directly connected to the transceiver 204. In particular embodiments, the transceiver 204 is integrated with or into a wireless valve element 202. The transceiver 204 communicates over the wireless connection 208 with the transceiver 206, which in turn communicates over the network 116b. Depending on the implementation, the transceiver 204 may support uni-directional or bi-directional communication. For example, the transceiver 204 may be capable of transmission and not reception when no instructions or other data is to be sent to the wireless valve element 202. As used herein, valve control data can include any data sent to the wireless valve element 202 or transceiver 204 via transceiver 206, and valve status data can include any data sent by wireless valve element 202 or transceiver 204 to transceiver 206.

The wireless connection 208 can be implemented using any suitable wireless technology according to particular needs. Suitable wireless technologies may include, but are not limited to, analog and digital radio frequency (RF) signals, as well as particular protocols such as WiFi, Bluetooth, TDMA, CDMA, OFDMA, RFID, optical signaling, and others. The transceivers 204 and 206 can be implemented using any suitable transceiver technology consistent with the wireless technology required.

While the transceiver 204 may typically be located very close to the wireless valve element 202 or
integrated with the wireless valve element 202, the transceiver 206 can be located as near or as far from the transceiver 204 as desired as long as the wireless connection 208 is reliable. In some implementations, the wireless valve element 202 and the transceiver 204 are battery-operated, and the transceiver 206 may be located as close as possible to the transceiver 204 in order to minimize transmission power consumption.

[0031] In some embodiments, the transceiver 206 is directly connected to the network 116b. In particular embodiments, the transceiver 206 is a dedicated transceiver or is implemented as part of a data processing system, a controller, or other device or system.

[0032] Wireless technology, coupled with advanced process control and optimization techniques, enables additional information about a valve to be provided to a controller or other device. This may provide better control fidelity without the high cost of installation associated with hardwired devices. It may also enable more efficient control of the valve and allow a greater ability to detect or predict valve failures. In some embodiments, the wireless valve element includes a preexisting process valve that has been modified to be capable of providing additional process value readings or diagnostic readings than the preexisting process valve alone. In some embodiments, these readings are not sent to a complete process control system, but are sent a monitoring system, that can be implemented in a conventional data processing system running any number of monitoring or diagnostic applications, or can be implemented as part of controller 104a.

[0033] In some embodiments, the process control system
100 is capable of receiving data from the wireless valve element 202 and other process elements and is able to aggregate the data from each wireless valve element 202. The process control system 100 can then use this data to determine an accurate indication of a valve's performance. According to the valve performance, the process control system 100 can determine if the valve can continue to be used, identify any valve performance deterioration, and determine if the valve requires maintenance. The valve performance deterioration may be further used by the process control system 100 to determine its actions and to auto-tune any associated processes to compensate for the deterioration. In addition, this information can be used by the process control system 100 or an asset management system to estimate or determine the exact point of valve failure and to identify appropriate preventive or corrective actions.

[0034] A wireless valve element 202 may provide significant advantages, such as the ability to wirelessly detect valve system failures as they occur. The failures that can be detected could include a stuck valve, slow movement of the valve, air pressure failures (such as low pressure or an obstructed pressure path), or other failures. A wireless valve element 202 can also enable the process control system 100 to identify deterioration in the valve's performance and to optimize valve maintenance. This may include specifically being able to monitor particular valve characteristics, such as total accumulated travel, percent deviation, calculated stiction, hysteresis, direct or secondary valve position. The wireless valve element 202, in some embodiments, can combine position sensors and current-to-pressure converters with digital...
protocols like HART, Foundation Fieldbus, and Profibus to relay the valve characteristics back to the process control system 100. In some embodiments, wireless valve element 202 and/or process control system 100 can also monitor diagnostics related to the controller 104a (or other controllers), process element 102a, and other elements with which it can communicate.

[0035] Although FIGURE 2 illustrates one example of a process element 102a including a wireless valve element in a process control system 100, various changes may be made to FIGURE 2. For example, the transceiver 204 could be integrated into the wireless valve element 202. Also, the transceiver 206 could be configured to connect with one or multiple transceivers 204, where each transceiver 204 is associated with one or more process elements 202. Wireless valve element 202 is capable of determining valve performance data or diagnostic data.

[0036] In various embodiments, transceiver 206 can include a gateway or Marshalling panel that supports one or more wireless valve elements 202 and may receive and send communications among one or more wireless devices and the target control system, whether a controller, operator station, server, software application, or otherwise.

[0037] In various embodiments, wireless connection 208 may include additional transceivers or repeaters as necessary to accomplish communication between the wireless valve element 202 and the control system, whether a controller, operator station, server, software application, or otherwise.

[0038] FIGURE 3 illustrates an example method 300 for process control using wireless devices according to one embodiment of this disclosure. For ease of explanation,
the method 300 is described with respect to the process element 102a of FIGURE 2 operating in the process control system 100 of FIGURE 1. The method 300 could be used by any other suitable device and in any other suitable system.

[0039] Data, which can include valve performance data or diagnostic data, is received from a wireless valve element 202 at a transceiver 204 at step 302. The data is wirelessly communicated to a transceiver 206 from the transceiver 204 at step 304. The data is communicated from the transceiver 206 to a process control system 100 (such as through network 116b) at step 306. At this point, the process control system 100 can take any suitable actions, such as analyzing the operation of a valve and identifying any problems with the valve.

[0040] Second data is received from the process control system 100 at the transceiver 206 at step 308. The second data is wirelessly communicated to the transceiver 204 from the transceiver 206 at step 310. The second data is communicated from the transceiver 204 to the wireless valve element 202 at step 312. In this way, the process control system 100 may, for example, provide control instructions to the wireless valve element 202 for controlling the operation of the valve.

[0041] Although FIGURE 3 illustrates one example of a method 300 for using wireless communications for process elements, various changes may be made to FIGURE 3. For example, one, some, or all of the steps may occur as many times as needed. Also, while shown as a sequence of steps, various steps in FIGURE 3 could occur in parallel or in a different order.

[0042] It may be advantageous to set forth definitions of certain words and phrases used throughout this patent
document. The term "couple" and its derivatives refer to any direct or indirect communication between two or more elements, whether or not those elements are in physical contact with one another. The term "application" refers to one or more computer programs, sets of instructions, procedures, functions, objects, classes, instances, or related data adapted for implementation in a suitable computer language. The terms "include" and "comprise," as well as derivatives thereof, mean inclusion without limitation. The term "or" is inclusive, meaning and/or. The phrases "associated with" and "associated therewith," as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like. The term "controller" means any device, system, or part thereof that controls at least one operation. A controller may be implemented in hardware, firmware, software, or some combination of at least two of the same. The functionality associated with any particular controller may be centralized or distributed, whether locally or remotely.

[0043] While this disclosure has described certain embodiments and generally associated methods, alterations and permutations of these embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure, as defined by the following claims.
WHAT IS CLAIMED IS:

1. An apparatus, comprising:
 - at least one wireless valve element (202);
 - a first transceiver (204) configured to communicate with the at least one wireless valve element (202); and
 - a second transceiver (206) configured to communicate wirelessly with the first transceiver (204), the second transceiver (206) further configured to communicate with a process control system (100).

2. The apparatus of Claim 1, wherein the process control system (100) is capable of receiving valve status data from the at least one wireless valve element (202) via a wireless connection between the first transceiver (204) and the second transceiver (206).

3. The apparatus of Claim 1, further comprising:
 - at least one second wireless valve element (202); and
 - a third transceiver (204) configured to communicate with the at least one second wireless valve element (202), wherein the second transceiver (206) is also configured to communicate wirelessly with the third transceiver (204).

4. The apparatus of Claim 1, wherein the first transceiver (204) is integrated into one of the at least one wireless valve element (202).

5. The apparatus of Claim 1, wherein the at least one wireless valve element (202) comprises a conventional process valve that has been modified to communicate with the first transceiver (204).
6. The apparatus of Claim 1, wherein the at least one wireless valve element (202) is capable of determining valve performance data or diagnostic data.

7. The apparatus of Claim 1, wherein the at least one wireless valve element (202) comprises a preexisting process valve that has been modified to be capable of providing additional process value readings or diagnostic readings than the preexisting process valve alone.

8. A process control system, comprising:
 at least one controller (104a-104b);
 at least one wireless valve element (202) capable of being controlled by the at least one controller (104a-104b);
 a first transceiver (204) configured to communicate with the at least one wireless valve element (202); and
 a second transceiver (206) configured to communicate wirelessly with the first transceiver (204), the second transceiver (206) further configured to communicate with the at least one controller (104a-104b).

9. A method, comprising:
 receiving data from at least one wireless valve element (202) at a first transceiver (204);
 wirelessly communicating the data to a second transceiver (206); and
 communicating the data from the second transceiver (206) to a process control system (100).

10. An apparatus, comprising:
 at least one wireless valve element (202);
a first transceiver (204) configured to communicate with the at least one wireless valve element (202); and a second transceiver (206) configured to communicate wirelessly with the first transceiver (204), the second transceiver (206) further configured to communicate with a monitoring system.
FIGURE 1
START

302
RECEIVE DATA FROM WIRELESS VALVE ELEMENT AT FIRST TRANSCEIVER

304
WIRELESSLY COMMUNICATE THE DATA TO SECOND TRANSCEIVER

306
COMMUNICATE DATA FROM SECOND TRANSCEIVER TO PROCESS CONTROL SYSTEM

308
RECEIVE SECOND DATA FROM PROCESS CONTROL SYSTEM AT SECOND RECEIVER

310
WIRELESSLY COMMUNICATE SECOND DATA TO FIRST TRANSCEIVER

312
COMMUNICATE SECOND DATA TO WIRELESS VALVE ELEMENT FROM FIRST TRANSCEIVER

END

FIGURE 3
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. G05B 19/418

According to International Patent Classification (IPC) and to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G05B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication where appropriate, of the relevant passages</th>
<th>Relevant to claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 01/35190 A2 (STATSIGNAL SYSTEMS INC [US]) 17 May 2001 (2001-05-17) page 25, line 9 - page 26, line 8; figure 8</td>
<td>1-10</td>
</tr>
</tbody>
</table>

D. Further documents are listed in the continuation of Box C. See patent family annex

Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled in the art
- "S" document member of the same patent family

Date of the actual completion of the international search: 17 August 2007

Date of mailing of the International search report: 24/08/2007

Nama and mailing address of the ISA:

European Patent Office P B 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel (+31-70) 340-2040 Tx 31 651 epo nl, Fax (+31-70) 340-3016

Authorized officer: Kahn, Klaus-Dieter

Form PCT/IB/305 (second sheet) (April 2005)
INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No: PCT/US2007/066315

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 1202145 A1</td>
<td>02-05-2002</td>
<td>DE 60018072 D1</td>
<td>17-03-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60018072 T2</td>
<td>29-12-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002065631 A1</td>
<td>30-05-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005047331 A1</td>
<td>03-03-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005049727 A1</td>
<td>03-03-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1604601 A</td>
<td>06-06-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0015528 A</td>
<td>25-02-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2391372 A1</td>
<td>17-05-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1236075 A2</td>
<td>04-09-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA02004732 A</td>
<td>14-10-2003</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)