Title: METHOD OF CONTROLLING DRUG RELEASE FROM A COATED MEDICAL DEVICE THROUGH THE USE OF NUCLEATING AGENTS

Abstract: A coated medical device have a drug and a nucleating agent thereon. Also provided are methods of increasing or decreasing the size of drug particles on a coated substrate through the use of nucleating agents to thereby increase or decrease the release rate of the drug from the coated substrate.
METHOD OF CONTROLLING DRUG RELEASE FROM A COATED MEDICAL DEVICE THROUGH THE USE OF NUCLEATING AGENTS

FIELD OF THE INVENTION

[0001] The present invention is directed to a method of controlling the release of drug particles from the surface of a coated medical device by adding nucleating agents to the coating of the medical device.

BACKGROUND OF THE INVENTION

[0002] Minimally invasive medical devices such as stents, grafts, and balloon catheters, are used for a number of medical purposes. It is often beneficial to add coatings containing drugs to such medical devices to provide desired therapeutic properties and effects. For example, it is useful to apply a coating containing drugs to medical devices to provide for the localized delivery of drugs to target locations within the body. Compared to systemic drug administration, such localized drug delivery minimizes unwanted effects on parts of the body that are not to be treated and allows for the delivery of higher amounts of drugs to the afflicted part of the body.

[0003] An important consideration in the manufacture of medical devices having a coating containing drugs is obtaining the desired release rate of the drugs from the coating. Current factors that affect drug release and that are therefore modulated during the medical device development process to affect drug release from a coating include polymer characteristics, drug loading, solvent selection, and variables in the coating process such as solution flow rate, nitrogen pressure, temperature, and humidity. For coatings applied by a spray process, varying any of the spray process factors within current manufacturing limits typically has a relatively small impact on the kinetic drug release of the drug. Currently, the primary way to substantially affect the kinetic drug release of drug particles from a coating is to modulate the amount of drug in the coating. However, simply adding more or less drug to the coating to affect the rate of drug release from the surface of the coating can create unwanted effects on the subsequent release of drug embedded in the polymer matrix of the coating, such as higher or lower drug release than desired. Furthermore, adding more drug to the coating may not be a cost-efficient
mechanism to increase the drug release considering the high cost of many of the drugs that are incorporated into the coating.

[0004] Accordingly, there is a need in the art for a more efficient and precise method of controlling the rate of drug release from the surface of a coated medical device.

SUMMARY OF THE INVENTION

[0005] In an embodiment, the present invention provides a medical device having a coating on at least a portion thereof. The coating comprises a polymer, a drug, and a nucleating agent having a particle radius greater than the critical radius for particle growth.

[0006] In another embodiment, the present invention provides a method of increasing the size of drug particles in a coating on a substrate comprising providing a substrate and preparing a mixture comprising a polymer, a solvent, drug particles, and nucleating agents that decrease the nucleation rate of the drug particles. The method further comprises applying the mixture to the substrate to form a coating on the substrate and allowing the drug particles to bind to the nucleating agents.

[0007] In another embodiment, the present invention provides a method of decreasing the size of drug particles in a coating on a substrate comprising providing a substrate and preparing a mixture comprising a polymer, a solvent, drug particles, and nucleating agents that increase the nucleation rate of the drug particles. The method further comprises applying the mixture to the substrate to form a coating on the substrate and allowing the drug particles to bind the nucleating agents.

DETAILED DESCRIPTION OF THE INVENTION

[0008] In an embodiment, the present invention provides a medical device having a coating that comprises a polymer, a drug, and a nucleating agent that increases or decreases the nucleation rate of the drug. As understood by one of skill in the art, the nucleation rate is the number of drug particles that form in the polymer per unit of time. Such effect on the nucleation rate of the drug can increase or decrease the size and number of the drug particles and therefore affect the release rate of the drug from the
coating. In order for nucleation to occur, the nucleating agent, according to the present invention, has a particle radius of the following formula:

\[
\frac{(R)}{(G)} > \frac{2(s)}{}
\]

wherein \((R)\) is the particle radius of the nucleating agent, \((s)\) is the drug/solution surface tension and \((G)\) is the drug energy of formation. To increase the nucleation rate of the drug, a nucleating agent can be chosen that decreases the surface tension or increases the formation enthalpy of the drug, for example. To decrease the nucleation rate of the drug, a nucleating agent can be chosen that increases the surface tension or decreases the formation enthalpy of the drug, for example.

[0009] In another embodiment, the present invention provides a method of increasing or decreasing the size of drug particles in a coating on a substrate comprising preparing a mixture comprising a polymer, a solvent, drug particles, and nucleating agents. If it is desired to increase the size of the drug particles, then nucleating agents are used that decrease the nucleation rate of the drug particles. If it is desired to decrease the size of the drug particles, then nucleating agents are used that increase the nucleation rate of the drug particles. The mixture is then applied to the substrate to form a coating on the substrate. The drug particles are allowed to bind to the nucleating agents to increase or decrease size of the drug particles in the coating (depending on the nucleating agent).

[0010] The methods of this embodiment of the present invention can also affect the number of drug particles in the coating. Specifically, nucleating agents that increase the size of the drug particles also decrease the number of the drug particles whereas nucleating agents that decrease the size of the drug particles increase the number of the drug particles. The methods of this embodiment also provide a mechanism by which to control the release rate of the drug particles from the coating. Specifically, a method where the nucleating agents decrease the size of the drug particles results in a decrease in the release rate of the drug particles from the substrate. A method where the nucleating agents increase the size of the drug particles results in an increase in the release rate of the drug particles from the substrate. In a preferred embodiment, the substrate is a medical device.
As stated earlier, the nucleating agent according to the present invention can be any nucleating agent having a particle radius of the following formula:

\[
(R) > 2(s) \\
(G)
\]

wherein \((R)\) is the particle radius of the nucleating agent, \((s)\) is the drug/solution surface tension and \((G)\) is the drug energy of formation. Such nucleating agents include polymers and compounds. Non-limiting examples of nucleating agent are nanoparticles such as clays or micas; polyhedral oligomeric silsequioxanes; carbon or ceramic nanotubes, nano-wires, or nano-fibers; nano-sized metal or metal oxide powders; nano-sized organic filler powders; and dendrimers. Non-limiting examples of clays or micas include montmorillonites, hectorites, hydrotalcites, vermiculites, and laponites. Non-limiting examples of polyhedral oligomeric silsequioxanes include functionalized and/or polymerized polyhedral oligomeric silsequioxanes. Non-limiting examples of carbon or ceramic nano-tubes, nano-wires, or nano-fibers include single or multi-walled fullerene nano-tubes, silica nano-gels, and alumina nano-fibers. Non-limiting examples of nano-sized metal or metal oxide powders include aluminum oxide, titanium oxide, and magnetic nydrium iron boron. Non-limiting examples of nano-powdered organic fillers include polytetrafluoroethylene. Non-limiting examples of dendrimers include metal-dendrimer complexes.

The drug incorporated in the coating may be any pharmaceutically acceptable agent such as a non-genetic therapeutic agent, a biomolecule, a small molecule, or cells. Exemplary non-genetic therapeutic agents include anti-thrombogenic agents such as heparin, heparin derivatives, prosta glandin (including micellar prosta glandin E1), urokinase, and PPack (dextrophalalanine proline arginine chloromethylketone); anti-proliferative agents such as enoxaprin, angiopeptin, sirolimus (rapamycin), tacrolimus, everolimus, monoclonal antibodies capable of blocking smooth muscle cell proliferation, hirudin, and acetylsalicylic acid; anti-inflammatory agents such as dexamethasone, rosiglitazone, prednisolone, corticosterone, budesonide, estrogen, estrodiol, sulfasalazine, acetylsalicylic acid, mycophenolic acid, and mesalamine; anti-neoplastic/anti-proliferative/anti-mitotic agents such as paclitaxel, epothilone, cladribine, 5-fluorouracil, methotrexate, doxorubicin, daunorubicin, cyclosporine, cisplatin, vinblastine, vincristine,
epothilones, endostatin, trapidil, halofuginone, and angiostatin; anti-cancer agents such as antisense inhibitors of c-myc oncogene; anti-microbial agents such as triclosan, cephalosporins, aminoglycosides, nitrofurantoin, silver ions, compounds, or salts; biofilm synthesis inhibitors such as non-steroidal anti-inflammatory agents and chelating agents such as ethylenediaminetetraacetic acid, O,O'-bis (2-aminoethyl)ethyleneglycol-N,N,N',N'-tetraacetic acid and mixtures thereof; antibiotics such as gentamycin, rifampin, minocyclin, and ciprofloxacacin; antibodies including chimeric antibodies and antibody fragments; anesthetic agents such as lidocaine, bupivacaine, and ropivacaine; nitric oxide; nitric oxide (NO) donors such as lisidomine, molsidomine, L-arginine, NO-carbohydrate adducts, polymeric or oligomeric NO adducts; anti-coagulants such as D-Phe-Pro-Arg chloromethyl ketone, an RGD peptide-containing compound, heparin, antithrombin compounds, platelet receptor antagonists, anti-thrombin antibodies, anti-platelet receptor antibodies, enoxaparin, hirudin, warfarin sodium, Dicumarol, aspirin, prostaglandin inhibitors, platelet aggregation inhibitors such as cilostazol and tick antiplatelet factors; vascular cell growth promotors such as growth factors, transcriptional activators, and translational promotor; vascular cell growth inhibitors such as growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin; cholesterol-lowering agents; vasodilating agents; agents which interfere with endogeneous vascoactive mechanisms; inhibitors of heat shock proteins such as geldanamycin; angiotensin converting enzyme (ACE) inhibitors; beta-blockers; bAR kinase (bARKct) inhibitors; phospholamban inhibitors; and any combinations and prodrugs of the above.

[0014] Exemplary biomolecules include peptides, polypeptides and proteins; oligonucleotides; nucleic acids such as double or single stranded DNA (including naked and cDNA), RNA, antisense nucleic acids such as antisense DNA and RNA, small interfering RNA (siRNA), and ribozymes; genes; carbohydrates; angiogenic factors including growth factors; cell cycle inhibitors; and anti-restenosis agents. Nucleic acids may be incorporated into delivery systems such as, for example, vectors (including viral vectors), plasmids or liposomes.
Non-limiting examples of proteins include serca-2 protein, monocyte chemoattractant proteins ("MCP-1") and bone morphogenic proteins ("BMP's"), such as, for example, BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 (Vgr-1), BMP-7 (OP-1), BMP-8, BMP-9, BMP-10, BMP-11, BMP-12, BMP-13, BMP-14, BMP-15. Preferred BMPs are any of BMP-2, BMP-3, BMP-4, BMP-5, BMP-6, and BMP-7. These BMPs can be provided as homodimers, heterodimers, or combinations thereof, alone or together with other molecules. Alternatively, or in addition, molecules capable of inducing an upstream or downstream effect of a BMP can be provided. Such molecules include any of the "hedghog" proteins, or the DNA's encoding them. Non-limiting examples of genes include survival genes that protect against cell death, such as anti-apoptotic Bcl-2 family factors and Akt kinase; serca 2 gene; and combinations thereof. Non-limiting examples of angiogenic factors include acidic and basic fibroblast growth factors, vascular endothelial growth factor, epidermal growth factor, transforming growth factor α and β, platelet-derived endothelial growth factor, platelet-derived growth factor, tumor necrosis factor α, hepatocyte growth factor, and insulin like growth factor. A non-limiting example of a cell cycle inhibitor is a cathepsin D (CD) inhibitor. Non-limiting examples of anti-restenosis agents include p15, p16, p18, p19, p21, p27, p53, p57, Rb, nFkB and E2F decoys, thymidine kinase ("TK") and combinations thereof and other agents useful for interfering with cell proliferation.

Exemplary small molecules include hormones, nucleotides, amino acids, sugars, and lipids and compounds have a molecular weight of less than 100kD.

Exemplary cells include stem cells, progenitor cells, endothelial cells, adult cardiomyocytes, and smooth muscle cells. Cells can be of human origin (autologous or allogenic) or from an animal source (xenogenic), or genetically engineered. Non-limiting examples of cells include side population (SP) cells, lineage negative (Lin-) cells including Lin'CD34', Lin'CD34', Lin'cKit', mesenchymal stem cells including mesenchymal stem cells with 5-aza, cord blood cells, cardiac or other tissue derived stem cells, whole bone marrow, bone marrow mononuclear cells, endothelial progenitor cells, skeletal myoblasts or satellite cells, muscle derived cells, go cells, endothelial cells, adult cardiomyocytes, fibroblasts, smooth muscle cells, adult cardiac fibroblasts + 5-aza, genetically modified cells, tissue engineered grafts, MyoD scar fibroblasts, pacing cells,
embryonic stem cell clones, embryonic stem cells, fetal or neonatal cells, immunologically masked cells, and teratoma derived cells.

[0017] Any of the therapeutic agents may be combined to the extent such combination is biologically compatible.

[0018] Any of the above mentioned therapeutic agents may be incorporated into the polymeric coating on the substrate or medical device or applied onto a polymeric coating on the substrate or medical device. The polymers of the polymeric coatings may be biodegradable or non-biodegradable. Non-limiting examples of suitable non-biodegradable polymers include polystyrene; polyisobutylene copolymers and styrene-isobutylene-styrene block copolymers such as styrene-isobutylene-styrene tert-block copolymers (SIBS); polyvinylpyrrolidone including cross-linked polyvinylpyrrolidone; polyvinyl alcohols, copolymers of vinyl monomers such as EVA; polyvinyl ethers; polyvinyl aromatics; polyethylene oxides; polyesters including polyethylene terephthalate; polyamides; polyacrylamides; polyethers including polyether sulfone; polyalkylenes including polypropylene, polyethylene and high molecular weight polyethylene; polyurethanes; polycarbonates, silicones; siloxane polymers; cellulose polymers such as cellulose acetate; polymer dispersions such as polyurethane dispersions (BAYHDROL®); squalene emulsions; and mixtures and copolymers of any of the foregoing.

[0019] Non-limiting examples of suitable biodegradable polymers include polycarboxylic acid, polyanhydrides including maleic anhydride polymers; polyorthoesters; poly-amino acids; polyethylene oxide; polyphosphazenes; polylactic acid, polyglycolic acid and copolymers and mixtures thereof such as polylactic acid (PLLA), poly(D,L-lactide), poly(lactic acid-co-glycolic acid), 50/50 (DL-lactide-co-glycolide); polydioxanone; polypropylene fumarate; polydepsipeptides; polycaprolactone and co-polymers and mixtures thereof such as poly(D,L-lactide-co-caprolactone) and polycaprolactone co-butylacrylate; polyhydroxybutyrate valerate and blends; polycarbonates such as tyrosine-derived polycarbonates and arylates, polyiminocarbonates, and polydimethyltrimethylcarbonates; cyanoacrylate; calcium phosphates; polylactic acid, propyl methacrylate cellulose, and hydroxypropylmethyl cellulose; gelatin;
starches; dextrins; alginates and derivatives thereof), proteins and polypeptides; and mixtures and copolymers of any of the foregoing. The biodegradable polymer may also be a surface erodable polymer such as polyhydroxybutyrate and its copolymers, polycaprolactone, polyanhydrides (both crystalline and amorphous), maleic anhydride copolymers, and zinc-calcium phosphate.

Such coatings used with the present invention may be formed by any method known to one in the art. The nucleating agents and drug which are added to the polymer may be added in any particular order. For example, the drug may be initially added to the polymer, the polymer matrix then applied to the medical device and then the nucleating agents added to the polymer matrix. Alternatively, the drug and the nucleating agents are simultaneously or sequentially added to the polymer and the resulting suspension is applied to the medical device. Solvents may also be utilized in any order. For example, an initial polymer/solvent mixture can be formed and then the drug added to the polymer/solvent mixture. Alternatively, the polymer, solvent, and drug can be added simultaneously to form a mixture. The polymer/solvent/drug mixture may be a dispersion, suspension or a solution. The drug may also be mixed with the polymer in the absence of a solvent. The drug may be dissolved in the polymer/solvent mixture or in the polymer to be in a true solution with the mixture or polymer, dispersed into fine or micronized particles in the mixture or polymer, suspended in the mixture or polymer based on its solubility profile, or combined with micelle-forming compounds such as surfactants or adsorbed onto small carrier particles to create a suspension in the mixture or polymer. The nucleating agents can be added at any point to the mixture. Furthermore, multiple types of drug, nucleating agents, polymers, and/or solvents may be utilized.

The coating can be applied to the medical device or substrate by any known method in the art including dipping, spraying, rolling, brushing, electrostatic plating or spinning, vapor deposition, air spraying including atomized spray coating, and spray coating using an ultrasonic nozzle.

The medical device may also contain a radio-opacifying agent within its structure to facilitate viewing the medical device during insertion and at any point while the device is implanted. Non-limiting examples of radio-opacifying agents are bismuth
subcarbonate, bismuth oxychloride, bismuth trioxide, barium sulfate, tungsten, and mixtures thereof.

[0023] Non-limiting examples of substrates or medical devices according to the present invention include polymeric films, catheters, guide wires, balloons, filters (e.g., vena cava filters), stents, stent grafts, vascular grafts, intraluminal paving systems, implants and other devices used in connection with drug-loaded polymer coatings. Such medical devices may be implanted or otherwise utilized in body lumina and organs such as the coronary vasculature, esophagus, trachea, colon, biliary tract, urinary tract, prostate, brain, lung, liver, heart, skeletal muscle, kidney, bladder, intestines, stomach, pancreas, ovary, cartilage, eye, bone, and the like.

[0024] The foregoing description and examples have been set forth merely to illustrate the invention and are not intended as being limiting. Each of the disclosed aspects and embodiments of the present invention may be considered individually or in combination with other aspects, embodiments, and variations of the invention. In addition, unless otherwise specified, none of the steps of the methods of the present invention are confined to any particular order of performance. Modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art and such modifications are within the scope of the present invention. Furthermore, all references cited herein are incorporated by reference in their entirety.
We claim:

1. A medical device having a coating on at least a portion thereof, the coating comprising a polymer, a drug, and a nucleating agent having a size such that:

\[(R) > 2(s)/(G)\]

wherein (R) is the particle radius of the nucleating agent, (s) is the surface tension of the drug, and (G) is the drug energy of formation.

2. The medical device of claim 1, wherein the nucleating agent is a compound or a copolymer.

3. The medical device of claim 1, wherein the nucleating agent is a clay or a mica.

4. The medical device of claim 3, wherein the clay or mica is intercalated or exfoliated.

5. The medical device of claim 3, wherein the clay or mica is a montmorillonite, a hectorite, a hydrotalcite, a vermiculite, a laponite, or any combination thereof.

6. The medical device of claim 1, wherein the nucleating agent is a polyhedral oligomeric silsequioxane.

7. The medical device of claim 6, wherein the polyhedral oligomeric silsequioxane is functionalized or polymerized.

8. The medical device of claim 1, wherein the nucleating agent is a carbon or ceramic nano-tube, nano-wire, or nano-fiber.
9. The medical device of claim 8, wherein the carbon or ceramic nano-tube, nano-wire, or nano-fiber is a single wall fullerene nano-tube, a mult-walled fullerene nano-tube, a silica nano-gel, or an alumina nano-fiber.

10. The medical device of claim 1, wherein the nucleating agent is a nano-sized metal or metal oxide powder.

11. The medical device of claim 10, wherein the nano-sized metal or metal oxide powder is aluminum oxide, titanium oxide, gold, or magnetic neodymium iron boron.

12. The medical device of claim 1, wherein the nucleating agent is a nano-powdered organic filler.

13. The medical device of claim 12, wherein the nano-powdered organic filler is polytetrafluoroethylene.

14. The medical device of claim 1, wherein the nucleating agent is a dendrimer.

15. The medical device of claim 14, wherein the dendrimer is a metal dendrimer complex.

16. A method of increasing the size of drug particles in a coating on a substrate comprising:

 providing a substrate;

 preparing a mixture comprising a polymer, a solvent, drug particles, and nucleating agents that decrease the nucleation rate of the drug particles;

 applying the mixture to the substrate to form a coating on the substrate; and

 allowing the drug particles to bind to the nucleating agents to increase the size of the drug particles in the coating.
17. A method of increasing the release rate of drug particles from a coating on a substrate comprising the method of claim 16, wherein the increase in the size of the drug particles increases the release rate of the drug particles from the coating.

18. The method of claim 16, wherein the nucleating agents increase the surface tension or decrease the formation enthalpy of the drug particles.

19. A method of decreasing the size of drug particles in a coating on a substrate comprising:
 providing a substrate;
 preparing a mixture comprising a polymer, a solvent, drug particles, and nucleating agents that increase nucleation rate of the drug particles;
 applying the mixture to the substrate to form a coating on the medical device; and
 allowing the drug particles to bind to the nucleating agents to decrease the size of the drug particles in the coating.

20. A method of decreasing the release rate of drug particles from a coating on a substrate comprising the method of claim 19, wherein the decrease in the size of the drug particles decreases the release rate of the drug particles from the coating.

21. The method of claim 19, wherein the nucleating agents decrease the surface tension or increase the formation enthalpy of the drug particles