Title: CORN EVENT DAS-59122-7 AND METHODS FOR DETECTION THEREOF

Abstract: The invention provides DNA compositions that relate to transgenic insect resistant maize plants. Also provided are assays for detecting the presence of the maize DAS-59122-7 event based on the DNA sequence of the recombinant construct inserted into the maize genome and the DNA sequences flanking the insertion site. Kits and conditions useful in conducting the assays are provided.
Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
CORN EVENT DAS-59122-7 AND METHODS FOR DETECTION THEREOF

FIELD OF INVENTION

Embodiments of the present invention relate to the field of plant molecular biology, specifically an embodiment of the invention relates to a DNA construct for conferring insect resistance to a plant. Embodiments of the invention more specifically relate to an insect resistant corn plant DAS-59122-7 and to assays for detecting the presence of corn plant DAS-59122-7 DNA in a sample and compositions thereof.

BACKGROUND OF INVENTION

An embodiment of this invention relates to the insect resistant corn (Zea mays) plant DAS-59122-7, also referred to as maize line DAS-59122-7 or maize event DAS-59122-7, and to the DNA plant expression construct of corn plant DAS-59122-7 and the detection of the transgene/flanking insertion region in corn plant DAS-59122-7 and progeny thereof.

Corn is an important crop and is a primary food source in many areas of the world. Damage caused by insect pests is a major factor in the loss of the world’s corn crops, despite the use of protective measures such as chemical pesticides. In view of this, insect resistance has been genetically engineered into crops such as corn in order to control insect damage and to reduce the need for traditional chemical pesticides. One group of genes which have been utilized for the production of transgenic insect resistant crops are the delta-endotoxins from Bacillus thuringiensis (B.t.). Delta-endotoxins have been successfully expressed in crop plants such as cotton, potatoes, rice, sunflower, as well as corn, and have proven to provide excellent control over insect pests. (Perlak, F.J et al. (1990) Bio/Technology 8, 939-943; Perlak, F.J. et al. (1993) Plant Mol. Biol. 22: 313-321; Fujimoto H. et al. (1993) Bio/Technology 11: 1151-1155; Tu et al. (2000) Nature Biotechnology 18:1101-1104; PCT publication number WO 01/13731; and Bing JW et al. (2000) Efficacy of Cry1F Transgenic Maize, 14th Biennial International Plant Resistance to Insects Workshop, Fort Collins, CO).

The expression of foreign genes in plants is known to be influenced by their location in the plant genome, perhaps due to chromatin structure (e.g., heterochromatin) or the proximity of transcriptional regulatory elements (e.g., enhancers) close to the
integration site (Weising et al., Amn. Rev. Genet 22:421-477, 1988). At the same time the presence of the transgene at different locations in the genome will influence the overall phenotype of the plant in different ways. For this reason, it is often necessary to screen a large number of events in order to identify an event characterized by optimal expression of an introduced gene of interest. For example, it has been observed in plants and in other organisms that there may be a wide variation in levels of expression of an introduced gene among events. There may also be differences in spatial or temporal patterns of expression, for example, differences in the relative expression of a transgene in various plant tissues, that may not correspond to the patterns expected from transcriptional regulatory elements present in the introduced gene construct. For this reason, it is common to produce hundreds to thousands of different events and screen those events for a single event that has desired transgene expression levels and patterns for commercial purposes. An event that has desired levels or patterns of transgene expression is useful for introgressing the transgene into other genetic backgrounds by sexual outcrossing using conventional breeding methods. Progeny of such crosses maintain the transgene expression characteristics of the original transformant. This strategy is used to ensure reliable gene expression in a number of varieties that are well adapted to local growing conditions.

It would be advantageous to be able to detect the presence of a particular event in order to determine whether progeny of a sexual cross contain a transgene of interest. In addition, a method for detecting a particular event would be helpful for complying with regulations requiring the pre-market approval and labeling of foods derived from recombinant crop plants, for example, or for use in environmental monitoring, monitoring traits in crops in the field, or monitoring products derived from a crop harvest, as well as for use in ensuring compliance of parties subject to regulatory or contractual terms.

It is possible to detect the presence of a transgene by any nucleic acid detection method known in the art including, but not limited to, the polymerase chain reaction (PCR) or DNA hybridization using nucleic acid probes. These detection methods generally focus on frequently used genetic elements, such as promoters, terminators, marker genes, etc., because for many DNA constructs, the coding region is interchangeable. As a result, such methods may not be useful for discriminating between different events, particularly those produced using the same DNA construct or very similar constructs unless the DNA sequence of the flanking DNA adjacent to the inserted heterologous DNA is known. For example, an event-specific PCR assay is described in U.S. Patent No. 6,395,485 for the
detection of elite event GAT-ZM1. Accordingly, it would be desirable to have a simple and discriminative method for the identification of event DAS-59122-7.

SUMMARY OF INVENTION

5 Embodiments of this invention relate to methods for producing and selecting an insect resistant monocot crop plant. More specifically, a DNA construct is provided that when expressed in plant cells and plants confers resistance to insects. According to one aspect of the invention, a DNA construct, capable of introduction into and replication in a host cell, is provided that when expressed in plant cells and plants confers insect resistance to the plant cells and plants. The DNA construct is comprised of a DNA molecule named PHI17662A and it includes three (3) transgene expression cassettes. The first expression cassette comprises a DNA molecule which includes the promoter, 5' untranslated exon, and first intron of the maize ubiquitin (Ubi-1) gene (Christensen *et al.* (1992) *Plant Mol. Biol.* 18:675-689 and Christensen and Quail (1996) *Transgenic Res.* 5:213-218) operably connected to a DNA molecule encoding a *B.t.* δ-endotoxin identified as Cry34Ab1 (U.S. Pat. Nos. 6,127,180, 6,624,145 and 6,340,593) operably connected to a DNA molecule comprising a Pin II transcriptional terminator isolated from potato (Gyheung *An et al.* (1989) *Plant Cell.* 1:115-122). The second transgene expression cassette of the DNA construct comprises a DNA molecule encoding the wheat peroxidase promoter (Hertig *et al.* (1991) *Plant Mol. Biol.* 16:171-174) operably connected to a DNA molecule encoding a *B.t.* δ-endotoxin identified as Cry35Ab1 (U.S. Pat. Nos. 6,083,499, 6,548,291 and 6,340,593) operably connected to a DNA molecule comprising a Pin II transcriptional terminator isolated from potato (Gyheung *An et al.* (1989) *Plant Cell.* 1:115-122). The third transgene expression cassette of the DNA construct comprises a DNA molecule of the cauliflower mosaic virus (CaMV) 35S promoter (Odell J.T. *et al.* (1985) *Nature* 313: 810-812; Mitsuhara *et al.* (1996) *Plant Cell Physiol.* 37: 49-59) operably connected to a DNA molecule encoding a phosphinothricin acetyltransferase (PAT) gene (Wohlleben W. *et al.* (1988) *Gene* 70: 25-37) operably connected to a DNA molecule comprising a 3' transcriptional terminator from (CaMV) 35S (see Mitsuhara *et al.* (1996) *Plant Cell Physiol.* 37: 49-59). Plants containing the DNA construct are also provided.

According to another embodiment of the invention, compositions and methods are provided for identifying a novel corn plant designated DAS-59122-7, which methods are based on primers or probes which specifically recognize the 5' and/or 3' flanking sequence
of DAS-59122-7. DNA molecules are provided that comprise primer sequences that when utilized in a PCR reaction will produce amplicons unique to the transgenic event DAS-59122-7. These molecules may be selected from the group consisting of:

5'-GTGGCTCCTTCAACGTGGTCGTTCTGTC-3' (SEQ ID NO: 1);
5'-CGTGCAAGCGCTCAATCCGCTATAGT-3' (SEQ ID NO: 2);
5'-AATTGAGCGCTTGCACTT-3' (SEQ ID NO: 3);
5'-AACAAACAGCCCGCCACCCG-3' (SEQ ID NO: 4);
5'-GAGGTGGTCTGGATTGTAGGTCA-3' (SEQ ID NO: 5);
5'-TACCATCTTCAAGTGTTTCTCTTCC-3' (SEQ ID NO: 6);
5'-GAGGTCTGATCTGATGATGACGA-3' (SEQ ID NO: 7);
5'-ACCCCTTAGTATGTATTGT-3' (SEQ ID NO: 8);
5'-CTCCCTTCAACGTTTGGTTCTGTCA-3' (SEQ ID NO: 9);
5'-TTTTGCAAGCGGAACGATTCAGATG-3' (SEQ ID NO: 10);
5'-GCGGGACAAAGCCGTTTTCAGT-3' (SEQ ID NO: 11);
5'-GACGGGTGATTTTATGTCTGAC-3' (SEQ ID NO: 12);
5'-CATCTGAATCGTGCTTGGCAAA-3' (SEQ ID NO: 13);
5'-CTACGTTCATCGAGCTGACTGTC-3' (SEQ ID NO: 14);
5'-GGTGCAAGTGGACACTTGGTCATCA-3' (SEQ ID NO: 15);
5'-GAGTGAAAGGATAAGCAAGGTAAGA-3' (SEQ ID NO: 16);
5'-CATGTATAGTTTGTTGGTGCTGG-3' (SEQ ID NO: 17);
5'-AATCCACAGATGGAGCAACGAC-3' (SEQ ID NO: 18);
5'-CGTATTACATCGTAACTGCAATTCG-3' (SEQ ID NO: 36);
5'-GGATACAAACAGCGCTACCATAGAG-3' (SEQ ID NO: 37) and complements thereof. The corn plant and seed comprising these molecules is an embodiment of this invention. Further, kits utilizing these primer sequences for the identification of the DAS-59122-7 event are provided.

An additional embodiment of the invention relates to the specific flanking sequences of DAS-59122-7 described herein, which can be used to develop specific identification methods for DAS-59122-7 in biological samples. More particularly, the invention relates to the 5' and/or 3' flanking regions of DAS-59122-7, SEQ ID NO: 19, 5' flanking and SEQ ID NO: 20, 3' flanking, respectively, which can be used for the development of specific primers and probes. A further embodiment of the invention relates to identification methods for the presence of DAS-59122-7 in biological samples based on the use of such specific primers or probes.
According to another embodiment of the invention, methods of detecting the presence of DNA corresponding to the corn event DAS-59122-7 in a sample are provided. Such methods comprise: (a) contacting the sample comprising DNA with a DNA primer set, that when used in a nucleic acid amplification reaction with genomic DNA extracted from corn event DAS-59122-7 produces an amplicon that is diagnostic for corn event DAS-59122-7; (b) performing a nucleic acid amplification reaction, thereby producing the amplicon; and (c) detecting the amplicon.

DNA molecules that comprise the novel transgene/flanking insertion region, SEQ ID NO: 21, 5' flanking plus 1000 internal and SEQ ID NO: 22, 3' flanking plus 1000 internal and are homologous or complementary to SEQ ID NO: 21 and SEQ ID NO: 22 are an embodiment of this invention.

DNA sequences that comprise the novel transgene/flanking insertion region, SEQ ID NO: 21 are an embodiment of this invention. DNA sequences that comprise a sufficient length of polynucleotides of transgene insert sequence and a sufficient length of polynucleotides of maize genomic and/or flanking sequence from maize plant DAS-59122-7 of SEQ ID NO: 21 that are useful as primer sequences for the production of an amplicon product diagnostic for maize plant DAS-59122-7 are included.

In addition, DNA sequences that comprise the novel transgene/flanking insertion region, SEQ ID NO: 22 are provided. DNA sequences that comprise a sufficient length of polynucleotides of transgene insert sequence and a sufficient length of polynucleotides of maize genomic and/or flanking sequence from maize plant DAS-59122-7 of SEQ ID NO: 22 that are useful as primer sequences for the production of an amplicon product diagnostic for maize plant DAS-59122-7 are included.

According to another embodiment of the invention, the DNA sequences that comprise at least 11 or more nucleotides of the transgene portion of the DNA sequence of SEQ ID NO: 21 or complements thereof, and a similar length of 5' flanking maize DNA sequence of SEQ ID NO: 21 or complements thereof are useful as DNA primers in DNA amplification methods. The amplicons produced using these primers are diagnostic for maize event DAS-59122-7. Therefore, embodiments of the invention also include the amplicons produced by DNA primers homologous or complementary to SEQ ID NO: 21.

According to another embodiment of the invention, the DNA sequences that comprise at least 11 or more nucleotides of the transgene portion of the DNA sequence of SEQ ID NO: 22 or complements thereof, and a similar length of 3' flanking maize DNA sequence of SEQ ID NO: 22 or complements thereof are useful as DNA primers in DNA
amplification methods. The amplicons produced using these primers are diagnostic for maize event DAS-59122-7. Therefore, embodiments of the invention also include the amplicons produced by DNA primers homologous or complementary to SEQ ID NO: 22.

More specifically, a pair of DNA molecules comprising a DNA primer set, wherein the DNA molecules are identified as SEQ ID NO: 18 or complements thereof and SEQ ID NO: 1 or complements thereof; SEQ ID NO: 2 or complements thereof and SEQ ID NO: 17 or complements thereof; SEQ ID NO: 10 or complements thereof and SEQ ID NO: 9 or complements thereof; SEQ ID NO: 8 or complements thereof and SEQ ID NO: 17 or complements thereof; and SEQ ID NO: 36 or complements thereof and SEQ ID NO: 37 or complements thereof are embodiments of the invention.

Further embodiments of the invention include the amplicon comprising the DNA molecules of SEQ ID NO: 18 and SEQ ID NO: 1; the amplicon comprising the DNA molecules of SEQ ID NO: 2 and SEQ ID NO: 17; the amplicon comprising the DNA molecules of SEQ ID NO: 10 and SEQ ID NO: 9; the amplicon comprising the DNA molecules of SEQ ID NO: 8 and SEQ ID NO: 17; and the amplicon comprising the DNA molecules of SEQ ID NO: 36 and SEQ ID NO: 37.

Further embodiments of the invention include the following primers, which are useful in detecting or characterizing event DAS-59122-7: SEQ ID NO: 11 or complements thereof; SEQ ID NO: 5 or complements thereof; SEQ ID NO: 4 or complements thereof; SEQ ID NO: 7 or complements thereof; SEQ ID NO: 6 or complements thereof; SEQ ID NO: 3 or complements thereof; SEQ ID NO: 18 or complements thereof; SEQ ID NO: 14 or complements thereof; SEQ ID NO: 13 or complements thereof; SEQ ID NO: 15 or complements thereof; SEQ ID NO: 17 or complements thereof; SEQ ID NO: 16 or complements thereof; and SEQ ID NO: 12 or complements thereof. Further embodiments also include the amplicons produced by pairing any of the primers listed above.

According to another embodiment of the invention, methods of detecting the presence of a DNA molecule corresponding to the DAS-59122-7 event in a sample, such methods comprising: (a) contacting the sample comprising DNA extracted from a corn plant with a DNA probe, molecule that hybridizes under stringent hybridization conditions with DNA extracted from corn event DAS-59122-7 and does not hybridize under the stringent hybridization conditions with a control corn plant DNA; (b) subjecting the sample and probe to stringent hybridization conditions; and (c) detecting hybridization of the probe to the DNA. More specifically, a method for detecting the presence of a DNA
molecule corresponding to the DAS-59122-7 event in a sample, such methods, consisting of (a) contacting the sample comprising DNA extracted from a corn plant with a DNA probe molecule that consists of sequences that are unique to the event, e.g. junction sequences, wherein said DNA probe molecule hybridizes under stringent hybridization conditions with DNA extracted from corn event DAS-59122-7 and does not hybridize under the stringent hybridization conditions with a control corn plant DNA; (b) subjecting the sample and probe to stringent hybridization conditions; and (c) detecting hybridization of the probe to the DNA.

In addition, a kit and methods for identifying event DAS-59122-7 in a biological sample which detects a DAS-59122-7 specific region within SEQ ID NO: 23 are provided. DNA molecules are provided that comprise at least one junction sequence of DAS-59122-7 selected from the group consisting of SEQ ID NO: 32, 33, 34, and 35 and complements thereof, wherein a junction sequence spans the junction between heterologous DNA inserted into the genome and the DNA from the corn cell flanking the insertion site, i.e. flanking DNA, and is diagnostic for the DAS-59122-7 event.

According to another embodiment of the invention, methods of producing an insect resistant corn plant that comprise the steps of: (a) sexually crossing a first parental corn line comprising the expression cassettes of the invention, which confers resistance to insects, and a second parental corn line that lacks insect resistance, thereby producing a plurality of progeny plants; and (b) selecting a progeny plant that is insect resistant. Such methods may optionally comprise the further step of back-crossing the progeny plant to the second parental corn line to producing a true-breeding corn plant that is insect resistant.

A further embodiment of the invention provides a method of producing a corn plant that is resistant to insects comprising transforming a corn cell with the DNA construct PHI17662A (SEQ ID NO: 24), growing the transformed corn cell into a corn plant, selecting the corn plant that shows resistance to insects, and further growing the corn plant into a fertile corn plant. The fertile corn plant can be self pollinated or crossed with compatible corn varieties to produce insect resistant progeny.

Another embodiment of the invention further relates to a DNA detection kit for identifying maize event DAS-59122-7 in biological samples. The kit comprises a first primer which specifically recognizes the 5' or 3' flanking region of DAS-59122-7, and a second primer which specifically recognizes a sequence within the foreign DNA of DAS-59122-7, or within the flanking DNA, for use in a PCR identification protocol. A further embodiment of the invention relates to a kit for identifying event DAS-59122-7 in
biological samples, which kit comprises a specific probe having a sequence which corresponds or is complementary to, a sequence having between 80% and 100% sequence identity with a specific region of event DAS-59122-7. The sequence of the probe corresponds to a specific region comprising part of the 5’ or 3’ flanking region of event DAS-59122-7.

The methods and kits encompassed by the embodiments of the present invention can be used for different purposes such as, but not limited to the following: to identify event DAS-59122-7 in plants, plant material or in products such as, but not limited to, food or feed products (fresh or processed) comprising, or derived from plant material; additionally or alternatively, the methods and kits can be used to identify transgenic plant material for purposes of segregation between transgenic and non-transgenic material; additionally or alternatively, the methods and kits can be used to determine the quality of plant material comprising maize event DAS-59122-7. The kits may also contain the reagents and materials necessary for the performance of the detection method.

A further embodiment of this invention relates to the DAS-59122-7 corn plant or its parts, including, but not limited to, pollen, ovules, vegetative cells, the nuclei of pollen cells, and the nuclei of egg cells of the corn plant DAS-59122-7 and the progeny derived thereof. The corn plant and seed DAS-59122-7 from which the DNA primer molecules provide a specific amplicon product is an embodiment of the invention.

The foregoing and other aspects of the invention will become more apparent from the following detailed description and accompanying drawing.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. DNA sequence (SEQ ID NO: 23) showing the transgenic insert PHV17662A, as well as the sequences flanking the transgenic insert. The 5’ and 3’ border regions, bp 1 to bp 2593 and bp 9937 to bp 11922, respectively, are underlined. Two nucleotide differences (bp 6526 and bp 6562) based on comparison to the transforming plasmid PHP17662 are noted in bold and underlined.

FIG. 2. Schematic diagram of the B.t. Cry34/35Ab1 event DAS-59122-7 insert region is divided into three separate sections; the 5’ border region with corn genomic DNA, the intact T-DNA insert, and the 3’ border region with corn genomic DNA. The two arrows beneath the diagram of the insert indicate the start and end points of the sequence derived from 5’ and 3’ genome walking fragments. Other boxes beneath the diagram of the insert represent PCR fragments that were amplified from genomic DNA of...
event DAS-59122-7 and sequenced to cover the intact T-DNA insert and the 5’ and 3’ insert/border junction regions.

FIG. 3. Schematic diagram of the *B.t.* Cry34/35Ab1 event DAS-59122-7 insert region is divided into three separate sections; the 5’ border region with corn genomic DNA, the intact T-DNA insert, and the 3’ border region with corn genomic DNA. Boxes beneath the diagram of the insert represent PCR fragments located in either the genomic border regions or across the 5’ and 3’ junction regions of the T-DNA insert with corn genomic DNA that were amplified from genomic DNA from event DAS-59122-7.

DETAILED DESCRIPTION

The following definitions and methods are provided to better define the present invention and to guide those of ordinary skill in the art in the practice of the present invention. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art. Definitions of common terms in molecular biology may also be found in Rieger *et al.*, *Glossary of Genetics: Classical and Molecular, 5th edition*, Springer-Verlag; New York, 1991; and Lewin, *Genes V*, Oxford University Press: New York, 1994. The nomenclature for DNA bases as set forth at 37 CFR §1.822 is used.

As used herein, the term “comprising” means “including but not limited to”.

As used herein, the term “corn” means Zea mays or maize and includes all plant varieties that can be bred with corn, including wild maize species.

As used herein, the term “DAS-59122-7 specific” refers to a nucleotide sequence which is suitable for discriminatively identifying event DAS-59122-7 in plants, plant material, or in products such as, but not limited to, food or feed products (fresh or processed) comprising, or derived from plant material.

As used herein, the terms “insect resistant” and “impacting insect pests” refers to effecting changes in insect feeding, growth, and/or behavior at any stage of development, including but not limited to: killing the insect; retarding growth; preventing reproductive capability; inhibiting feeding; and the like.

As used herein, the terms “pesticidal activity” and “insecticidal activity” are used synonymously to refer to activity of an organism or a substance (such as, for example, a protein) that can be measured by numerous parameters including, but not limited to, pest mortality, pest weight loss, pest attraction, pest repellency, and other behavioral and physical changes of a pest after feeding on and/or exposure to the organism or substance.
for an appropriate length of time. For example “pesticidal proteins” are proteins that
display pesticidal activity by themselves or in combination with other proteins.

“Coding sequence” refers to a nucleotide sequence that codes for a specific amino
acid sequence. As used herein, the terms “encoding” or “encoded” when used in the
context of a specified nucleic acid mean that the nucleic acid comprises the requisite
information to guide translation of the nucleotide sequence into a specified protein. The
information by which a protein is encoded is specified by the use of codons. A nucleic
acid encoding a protein may comprise non-translated sequences (e.g., introns) within
translated regions of the nucleic acid or may lack such intervening non-translated
sequences (e.g., as in cDNA).

“Gene” refers to a nucleic acid fragment that expresses a specific protein, including
regulatory sequences preceding (5’ non-coding sequences) and following (3’ non-coding
sequences) the coding sequence. “Native gene” refers to a gene as found in nature with its
own regulatory sequences. “Chimeric gene” refers any gene that is not a native gene,
comprising regulatory and coding sequences that are not found together in nature.
Accordingly, a chimeric gene may comprise regulatory sequences and coding sequences
that are derived from different sources, or regulatory sequences and coding sequences
derived from the same source, but arranged in a manner different than that found in nature.

“Endogenous gene” refers to a native gene in its natural location in the genome of an
organism. “Foreign” refers to material not normally found in the location of interest.
Thus “foreign DNA” may comprise both recombinant DNA as well as newly introduced,
rearranged DNA of the plant. A “foreign” gene refers to a gene not normally found in the
host organism, but that is introduced into the host organism by gene transfer. Foreign
genes can comprise native genes inserted into a non-native organism, or chimeric genes.

A “transgene” is a gene that has been introduced into the genome by a transformation
procedure. The site in the plant genome where a recombinant DNA has been inserted may
be referred to as the “insertion site” or “target site”.

As used herein, “insert DNA” refers to the heterologous DNA within the expression
cassettes used to transform the plant material while “flanking DNA” can exist of either
genomic DNA naturally present in an organism such as a plant, or foreign (heterologous)
DNA introduced via the transformation process which is extraneous to the original insert
DNA molecule, e.g. fragments associated with the transformation event. A “flanking
region” or “flanking sequence” as used herein refers to a sequence of at least twenty (20)
base pair, preferably at least fifty (50) base pair, and up to five thousand (5000) base pair
which is located either immediately upstream of and contiguous with or immediately downstream of and contiguous with the original foreign insert DNA molecule. Transformation procedures leading to random integration of the foreign DNA will result in transformants containing different flanking regions characteristic and unique for each transformant. When recombinant DNA is introduced into a plant through traditional crossing, its flanking regions will generally not be changed. Transformants will also contain unique junctions between a piece of heterologous insert DNA and genomic DNA, or two (2) pieces of genomic DNA, or two (2) pieces of heterologous DNA. A "junction" is a point where two (2) specific DNA fragments join. For example, a junction exists where insert DNA joins flanking DNA. A junction point also exists in a transformed organism where two (2) DNA fragments join together in a manner that is modified from that found in the native organism. “Junction DNA” refers to DNA that comprises a junction point.

As used herein, “heterologous” in reference to a nucleic acid is a nucleic acid that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention. For example, a promoter operably linked to a heterologous nucleotide sequence can be from a species different from that from which the nucleotide sequence was derived, or, if from the same species, the promoter is not naturally found operably linked to the nucleotide sequence. A heterologous protein may originate from a foreign species, or, if from the same species, is substantially modified from its original form by deliberate human intervention.

“Regulatory sequences” refer to nucleotide sequences located upstream (5’ non-coding sequences), within, or downstream (3’ non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include promoters, translation leader sequences, introns, and polyadenylation recognition sequences.

“Promoter” refers to a nucleotide sequence capable of controlling the expression of a coding sequence or functional RNA. In general, a coding sequence is located 3’ to a promoter sequence. The promoter sequence consists of proximal and more distal upstream elements, the latter elements are often referred to as enhancers. Accordingly, an “enhancer” is a nucleotide sequence that can stimulate promoter activity and may be an innate element of the promoter or a heterologous element inserted to enhance the level or
tissue-specificity of a promoter. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic nucleotide segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. Promoters that cause a nucleic acid fragment to be expressed in most cell types at most times are commonly referred to as “constitutive promoters”. New promoters of various types useful in plant cells are constantly being discovered; numerous examples may be found in the compilation by Okamuro and Goldberg (1989) *Biochemistry of Plants* 15:1-82. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, nucleic acid fragments of different lengths may have identical promoter activity.

The “translation leader sequence” refers to a nucleotide sequence located between the promoter sequence of a gene and the coding sequence. The translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence. The translation leader sequence may affect numerous parameters including, processing of the primary transcript to mRNA, mRNA stability and/or translation efficiency. Examples of translation leader sequences have been described (Turner and Foster (1995) *Mol. Biotechnol.* 3:225-236).

The “3’ non-coding sequences” refer to nucleotide sequences located downstream of a coding sequence and include polyadenylation recognition sequences and other sequences encoding regulatory signals capable of affecting mRNA processing or gene expression. The polyadenylation signal is usually characterized by affecting the addition of polyadenylic acid tracts to the 3’ end of the mRNA precursor. The use of different 3’ non-coding sequences is exemplified by Ingelbrecht *et al.* (1989) *Plant Cell* 1:671-680.

A “protein” or “polypeptide” is a chain of amino acids arranged in a specific order determined by the coding sequence in a polynucleotide encoding the polypeptide.

A DNA construct is an assembly of DNA molecules linked together that provide one or more expression cassettes. The DNA construct may be a plasmid that is enabled for self replication in a bacterial cell and contains various endonuclease enzyme restriction sites that are useful for introducing DNA molecules that provide functional genetic elements, i.e., promoters, introns, leaders, coding sequences, 3’ termination regions, among others; or a DNA construct may be a linear assembly of DNA molecules, such as an expression cassette. The expression cassette contained within a DNA construct
comprise the necessary genetic elements to provide transcription of a messenger RNA. The expression cassette can be designed to express in prokaryote cells or eukaryotic cells. Expression cassettes of the embodiments of the present invention are designed to express in plant cells.

The DNA molecules of embodiments of the invention are provided in expression cassettes for expression in an organism of interest. The cassette will include 5' and 3' regulatory sequences operably linked to a coding sequence. "Operably linked" means that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in the same reading frame. Operably linked is intended to indicate a functional linkage between a promoter and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence. The cassette may additionally contain at least one additional gene to be cotransformed into the organism. Alternatively, the additional gene(s) can be provided on multiple expression cassettes or multiple DNA constructs.

The expression cassette will include in the 5' to 3' direction of transcription: a transcriptional and translational initiation region, a coding region, and a transcriptional and translational termination region functional in the organism serving as a host. The transcriptional initiation region (i.e., the promoter) may be native or analogous, or foreign or heterologous to the host organism. Additionally, the promoter may be the natural sequence or alternatively a synthetic sequence. The expression cassettes may additionally contain 5' leader sequences in the expression cassette construct. Such leader sequences can act to enhance translation.

It is to be understood that as used herein the term "transgenic" includes any cell, cell line, callus, tissue, plant part, or plant, the genotype of which has been altered by the presence of a heterologous nucleic acid including those transgenics initially so altered as well as those created by sexual crosses or asexual propagation from the initial transgenic. The term "transgenic" as used herein does not encompass the alteration of the genome (chromosomal or extra-chromosomal) by conventional plant breeding methods or by naturally occurring events such as random cross-fertilization, non-recombinant viral infection, non-recombinant bacterial transformation, non-recombinant transposition, or spontaneous mutation.

A transgenic "event" is produced by transformation of plant cells with a heterologous DNA construct(s), including a nucleic acid expression cassette that comprises a transgene of interest, the regeneration of a population of plants resulting from the
insertion of the transgene into the genome of the plant, and selection of a particular plant characterized by insertion into a particular genome location. An event is characterized phenotypically by the expression of the transgene. At the genetic level, an event is part of the genetic makeup of a plant. The term “event” also refers to progeny produced by a sexual outcross between the transformant and another variety that include the heterologous DNA. Even after repeated back-crossing to a recurrent parent, the inserted DNA and flanking DNA from the transformed parent is present in the progeny of the cross at the same chromosomal location. The term “event” also refers to DNA from the original transformant comprising the inserted DNA and flanking sequence immediately adjacent to the inserted DNA that would be expected to be transferred to a progeny that receives inserted DNA including the transgene of interest as the result of a sexual cross of one parental line that includes the inserted DNA (e.g., the original transformant and progeny resulting from selfing) and a parental line that does not contain the inserted DNA.

An insect resistant DAS-59122-7 corn plant can be bred by first sexually crossing a first parental corn plant consisting of a corn plant grown from the transgenic DAS-59122-7 corn plant and progeny thereof derived from transformation with the expression cassettes of the embodiments of the present invention that confers insect resistance, and a second parental corn plant that lacks insect resistance, thereby producing a plurality of first progeny plants; and then selecting a first progeny plant that is resistant to insects; and selfing the first progeny plant, thereby producing a plurality of second progeny plants; and then selecting from the second progeny plants an insect resistant plant. These steps can further include the back-crossing of the first insect resistant progeny plant or the second insect resistant progeny plant to the second parental corn plant or a third parental corn plant, thereby producing a corn plant that is resistant to insects.

As used herein, the term "plant" includes reference to whole plants, plant organs (e.g., leaves, stems, roots, etc.), seeds, plant cells, and progeny of same. Parts of transgenic plants understood to be within the scope of the invention comprise, for example, plant cells, protoplasts, tissues, callus, embryos as well as flowers, stems, fruits, leaves, and roots originating in transgenic plants or their progeny previously transformed with a DNA molecule of the invention and therefore consisting at least in part of transgenic cells, are also an embodiment of the present invention.

As used herein, the term "plant cell" includes, without limitation, seeds, suspension cultures, embryos, meristematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen, and microspores. The class of plants that can be used in the methods
of the invention is generally as broad as the class of higher plants amenable to transformation techniques, including both monocotyledonous and dicotyledonous plants.

"Transformation" refers to the transfer of a nucleic acid fragment into the genome of a host organism, resulting in genetically stable inheritance. Host organisms containing the transformed nucleic acid fragments are referred to as "transgenic" organisms. Examples of methods of plant transformation include Agrobacterium-mediated transformation (De Blaere et al. (1987) Meth. Enzymol. 143:277) and particle-accelerated or "gene gun" transformation technology (Klein et al. (1987) Nature (London) 327:70-73; U.S. Patent No. 4,945,050, incorporated herein by reference). Additional transformation methods are disclosed below.

Thus, isolated polynucleotides of the invention can be incorporated into recombinant constructs, typically DNA constructs, which are capable of introduction into and replication in a host cell. Such a construct can be a vector that includes a replication system and sequences that are capable of transcription and translation of a polypeptide-encoding sequence in a given host cell. A number of vectors suitable for stable transfection of plant cells or for the establishment of transgenic plants have been described in, e.g., Pouwels et al., (1985; Supp. 1987) Cloning Vectors: A Laboratory Manual, Weissbach and Weissbach (1989) Methods for Plant Molecular Biology, (Academic Press, New York); and Flevin et al., (1990) Plant Molecular Biology Manual, (Kluwer Academic Publishers). Typically, plant expression vectors include, for example, one or more cloned plant genes under the transcriptional control of 5' and 3' regulatory sequences and a dominant selectable marker. Such plant expression vectors also can contain a promoter regulatory region (e.g., a regulatory region controlling inducible or constitutive, environmentally- or developmentally-regulated, or cell- or tissue-specific expression), a transcription initiation start site, a ribosome binding site, an RNA processing signal, a transcription termination site, and/or a polyadenylation signal.

It is also to be understood that two different transgenic plants can also be mated to produce offspring that contain two independently segregating added, exogenous genes. Selfing of appropriate progeny can produce plants that are homozygous for both added, exogenous genes. Back-crossing to a parental plant and out-crossing with a non-transgenic plant are also contemplated, as is vegetative propagation. Descriptions of other breeding methods that are commonly used for different traits and crops can be found in one of several references, e.g., Fehr, in Breeding Methods for Cultivar Development, Wilcos J. ed., American Society of Agronomy, Madison Wis. (1987).
A "probe" is an isolated nucleic acid to which is attached a conventional detectable label or reporter molecule, e.g., a radioactive isotope, ligand, chemiluminescent agent, or enzyme. Such a probe is complementary to a strand of a target nucleic acid, in the case of the present invention, to a strand of isolated DNA from corn event DAS-59122-7 whether from a corn plant or from a sample that includes DNA from the event. Probes according to the present invention include not only deoxyribonucleic or ribonucleic acids but also polyamides and other probe materials that bind specifically to a target DNA sequence and can be used to detect the presence of that target DNA sequence.

"Primers" are isolated nucleic acids that are annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, then extended along the target DNA strand by a polymerase, e.g., a DNA polymerase. Primer pairs of the invention refer to their use for amplification of a target nucleic acid sequence, e.g., by the polymerase chain reaction (PCR) or other conventional nucleic-acid amplification methods. "PCR" or "polymerase chain reaction" is a technique used for the amplification of specific DNA segments (see, U.S. Patent Nos. 4,683,195 and 4,800,159; herein incorporated by reference).

Probes and primers are of sufficient nucleotide length to bind to the target DNA sequence specifically in the hybridization conditions or reaction conditions determined by the operator. This length may be of any length that is of sufficient length to be useful in a detection method of choice. Generally, eleven (11) nucleotides or more in length, eighteen (18) nucleotides or more, and twenty-two (22) nucleotides or more, are used. Such probes and primers hybridize specifically to a target sequence under high stringency hybridization conditions. Probes and primers according to embodiments of the present invention may have complete DNA sequence similarity of contiguous nucleotides with the target sequence, although probes differing from the target DNA sequence and that retain the ability to hybridize to target DNA sequences may be designed by conventional methods. Probes can be used as primers, but are generally designed to bind to the target DNA or RNA and are not used in an amplification process.

Specific primers can be used to amplify an integration fragment to produce an amplicon that can be used as a "specific probe" for identifying event DAS-59122-7 in biological samples. When the probe is hybridized with the nucleic acids of a biological sample under conditions which allow for the binding of the probe to the sample, this binding can be detected and thus allow for an indication of the presence of event DAS-59122-7 in the biological sample. Such identification of a bound probe has been described
in the art. In an embodiment of the invention the specific probe is a sequence which, under optimized conditions, hybridizes specifically to a region within the 5' or 3' flanking region of the event and also comprises a part of the foreign DNA contiguous therewith. The specific probe may comprise a sequence of at least 80%, between 80 and 85%, between 85 and 90%, between 90 and 95%, and between 95 and 100% identical (or complementary) to a specific region of the event.

A “kit” as used herein refers to a set of reagents for the purpose of performing the method embodiments of the invention, more particularly, the identification of the event DAS-59122-7 in biological samples. The kit of the invention can be used, and its components can be specifically adjusted, for purposes of quality control (e.g. purity of seed lots), detection of event DAS-59122-7 in plant material, or material comprising or derived from plant material, such as but not limited to food or feed products. “Plant material” as used herein refers to material which is obtained or derived from a plant.

Primers and probes based on the flanking DNA and insert sequences disclosed herein can be used to confirm (and, if necessary, to correct) the disclosed sequences by conventional methods, e.g., by re-cloning and sequencing such sequences. The nucleic acid probes and primers of the present invention hybridize under stringent conditions to a target DNA sequence. Any conventional nucleic acid hybridization or amplification method can be used to identify the presence of DNA from a transgenic event in a sample. Nucleic acid molecules or fragments thereof are capable of specifically hybridizing to other nucleic acid molecules under certain circumstances. As used herein, two nucleic
acid molecules are said to be capable of specifically hybridizing to one another if the two molecules are capable of forming an anti-parallel, double-stranded nucleic acid structure.

A nucleic acid molecule is said to be the "complement" of another nucleic acid molecule if they exhibit complete complementarity. As used herein, molecules are said to exhibit "complete complementarity" when every nucleotide of one of the molecules is complementary to a nucleotide of the other. Two molecules are said to be "minimally complementary" if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional "low-stringency" conditions. Similarly, the molecules are said to be "complementary" if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional "high-stringency" conditions. Conventional stringency conditions are described by Sambrook et al., 1989, and by Haymes et al., in: Nucleic Acid Hybridization, a Practical Approach, IRL Press, Washington, D.C. (1985), departures from complete complementarity are therefore permissible, as long as such departures do not completely preclude the capacity of the molecules to form a double-stranded structure. In order for a nucleic acid molecule to serve as a primer or probe it need only be sufficiently complementary in sequence to be able to form a stable double-stranded structure under the particular solvent and salt concentrations employed.

In hybridization reactions, specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. The thermal melting point (Tm) is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. For DNA-DNA hybrids, the Tm can be approximated from the equation of Meinkoth and Wahl (1984) Anal. Biochem. 138:267-284: Tm = 81.5°C + 16.6 (log M) + 0.41 (%GC) - 0.61 (% form) - 500/L; where M is the molarity of monovalent cations, %GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. Tm is reduced by about 1°C for each 1% of mismatching; thus, Tm, hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with >90% identity are sought, the Tm can be decreased 10°C. Generally, stringent conditions are selected to be about 5°C lower than the Tm for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4°C lower than the Tm; moderately stringent conditions can utilize a hybridization and/or
wash at 6, 7, 8, 9, or 10°C lower than the Tm; low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15, or 20°C lower than the Tm.

Using the equation, hybridization and wash compositions, and desired Tm, those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a Tm of less than 45°C (aqueous solution) or 32°C (formamide solution), it is preferred to increase the SSC concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993) *Laboratory Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Acid Probes*, Part I, Chapter 2 (Elsevier, New York); and Ausubel *et al.*, eds. (1995) *Current Protocols in Molecular Biology*, Chapter 2 (Greene Publishing and Wiley-Interscience, New York). See Sambrook *et al.* (1989) *Molecular Cloning: A Laboratory Manual* (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).

As used herein, a substantially homologous sequence is a nucleic acid molecule that will specifically hybridize to the complement of the nucleic acid molecule to which it is being compared under high stringency conditions. Appropriate stringency conditions which promote DNA hybridization, for example, 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by a wash of 2X SSC at 50°C, are known to those skilled in the art or can be found in *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of a destabilizing agent such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulphate) at 37°C, and a wash in 1X to 2X SSC (20X SSC = 3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55°C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 0.5X to 1X SSC at 55 to 60°C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 0.1X SSC at 60 to 65°C. A nucleic acid of the invention may specifically hybridize to one or more of the nucleic acid molecules unique to the DAS-59122-7 event or complements thereof or fragments of either under moderately stringent conditions.

Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, California); the ALIGN program (Version 2.0); the ALIGN PLUS program (version 3.0, copyright 1997); and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Version 10 (available from Accelrys, 9685 Scranton Road, San Diego, CA 92121, USA). Alignments using these programs can be performed using the default parameters.

To obtain gapped alignments for comparison purposes, Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul *et al.* (1997) *Nucleic Acids Res.*
25:3389. Alternatively, PSI-BLAST (in BLAST 2.0) can be used to perform an iterated search that detects distant relationships between molecules. See Altschul et al. (1997) supra. When utilizing BLAST, Gapped BLAST, PSI-BLAST, the default parameters of the respective programs (e.g., BLASTN for nucleotide sequences, BLASTX for proteins) can be used. See www.ncbi.nlm.nih.gov.

As used herein, “sequence identity” or “identity” in the context of two nucleic acid or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences that differ by such conservative substitutions are said to have “sequence similarity” or “similarity”. Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, California).

As used herein, “percentage of sequence identity” means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.
Regarding the amplification of a target nucleic acid sequence (e.g., by PCR) using a particular amplification primer pair, "stringent conditions" are conditions that permit the primer pair to hybridize only to the target nucleic-acid sequence to which a primer having the corresponding wild-type sequence (or its complement) would bind and preferably to produce a unique amplification product, the amplicon, in a DNA thermal amplification reaction.

The term "specific for (a target sequence)" indicates that a probe or primer hybridizes under stringent hybridization conditions only to the target sequence in a sample comprising the target sequence.

As used herein, "amplified DNA" or "amplicon" refers to the product of nucleic acid amplification of a target nucleic acid sequence that is part of a nucleic acid template. For example, to determine whether a corn plant resulting from a sexual cross contains transgenic event genomic DNA from the corn plant of the invention, DNA extracted from the corn plant tissue sample may be subjected to a nucleic acid amplification method using a DNA primer pair that includes a first primer derived from flanking sequence adjacent to the insertion site of inserted heterologous DNA, and a second primer derived from the inserted heterologous DNA to produce an amplicon that is diagnostic for the presence of the event DNA. Alternatively, the second primer may be derived from the flanking sequence. The amplicon is of a length and has a sequence that is also diagnostic for the event. The amplicon may range in length from the combined length of the primer pairs plus one nucleotide base pair to any length of amplicon producible by a DNA amplification protocol. Alternatively, primer pairs can be derived from flanking sequence on both sides of the inserted DNA so as to produce an amplicon that includes the entire insert nucleotide sequence of the PHI17662A expression construct as well as the sequence flanking the transgenic insert, see FIG. 1 (SEQ ID NO: 23), approximately twelve (12) Kb in size. A member of a primer pair derived from the flanking sequence may be located a distance from the inserted DNA sequence, this distance can range from one nucleotide base pair up to the limits of the amplification reaction, or about twenty thousand nucleotide base pairs. The use of the term "amplicon" specifically excludes primer dimers that may be formed in the DNA thermal amplification reaction.

Nucleic acid amplification can be accomplished by any of the various nucleic acid amplification methods known in the art, including the polymerase chain reaction (PCR). A variety of amplification methods are known in the art and are described, inter alia, in U.S. Pat. Nos. 4,683,195 and 4,683,202 and in PCR Protocols: A Guide to Methods and
Applications, ed. Innis et al., Academic press, San Diego, 1990. PCR amplification methods have been developed to amplify up to 22 Kb of genomic DNA and up to 42 Kb of bacteriophage DNA (Cheng et al., Proc. Natl. Acad. Sci. USA 91:5695-5699, 1994). These methods as well as other methods known in the art of DNA amplification may be used in the practice of the embodiments of the present invention. It is understood that a number of parameters in a specific PCR protocol may need to be adjusted to specific laboratory conditions and may be slightly modified and yet allow for the collection of similar results. These adjustments will be apparent to a person skilled in the art.

The amplicon produced by these methods may be detected by a plurality of techniques, including, but not limited to, Genetic Bit Analysis (Nikiforov, et al. Nucleic Acid Res. 22:4167-4175, 1994) where a DNA oligonucleotide is designed which overlaps both the adjacent flanking DNA sequence and the inserted DNA sequence. The oligonucleotide is immobilized in wells of a microwell plate. Following PCR of the region of interest (using one primer in the inserted sequence and one in the adjacent flanking sequence) a single-stranded PCR product can be hybridized to the immobilized oligonucleotide and serve as a template for a single base extension reaction using a DNA polymerase and labeled ddNTPs specific for the expected next base. Readout may be fluorescent or ELISA-based. A signal indicates presence of the insert/flanking sequence due to successful amplification, hybridization, and single base extension.

Another detection method is the Pyrosequencing technique as described by Winge (Innov. Pharma. Tech. 00: 18-24, 2000). In this method an oligonucleotide is designed that overlaps the adjacent DNA and insert DNA junction. The oligonucleotide is hybridized to a single-stranded PCR product from the region of interest (one primer in the inserted sequence and one in the flanking sequence) and incubated in the presence of a DNA polymerase, ATP, sulfurylase, luciferase, apyrase, adenosine 5’ phosphosulfate and luciferin. dNTPs are added individually and the incorporation results in a light signal which is measured. A light signal indicates the presence of the transgene insert/flanking sequence due to successful amplification, hybridization, and single or multi-base extension.

Fluorescence Polarization as described by Chen et al., (Genome Res. 9:492-498, 1999) is also a method that can be used to detect an amplicon of the invention. Using this method an oligonucleotide is designed which overlaps the flanking and inserted DNA junction. The oligonucleotide is hybridized to a single-stranded PCR product from the region of interest (one primer in the inserted DNA and one in the flanking DNA sequence)
and incubated in the presence of a DNA polymerase and a fluorescent-labeled ddNTP. Single base extension results in incorporation of the ddNTP. Incorporation can be measured as a change in polarization using a fluorometer. A change in polarization indicates the presence of the transgene insert/flanking sequence due to successful amplification, hybridization, and single base extension.

Taqman® (PE Applied Biosystems, Foster City, Calif.) is described as a method of detecting and quantifying the presence of a DNA sequence and is fully understood in the instructions provided by the manufacturer. Briefly, a FRET oligonucleotide probe is designed which overlaps the flanking and insert DNA junction. The FRET probe and PCR primers (one primer in the insert DNA sequence and one in the flanking genomic sequence) are cycled in the presence of a thermostable polymerase and dNTPs. Hybridization of the FRET probe results in cleavage and release of the fluorescent moiety away from the quenching moiety on the FRET probe. A fluorescent signal indicates the presence of the flanking/transgene insert sequence due to successful amplification and hybridization.

Molecular Beacons have been described for use in sequence detection as described in Tyangi et al. (Nature Biotech. 14:303-308, 1996). Briefly, a FRET oligonucleotide probe is designed that overlaps the flanking and insert DNA junction. The unique structure of the FRET probe results in it containing secondary structure that keeps the fluorescent and quenching moieties in close proximity. The FRET probe and PCR primers (one primer in the insert DNA sequence and one in the flanking sequence) are cycled in the presence of a thermostable polymerase and dNTPs. Following successful PCR amplification, hybridization of the FRET probe to the target sequence results in the removal of the probe secondary structure and spatial separation of the fluorescent and quenching moieties. A fluorescent signal results. A fluorescent signal indicates the presence of the flanking/transgene insert sequence due to successful amplification and hybridization.

A hybridization reaction using a probe specific to a sequence found within the amplicon is yet another method used to detect the amplicon produced by a PCR reaction. Embodiments of the present invention are further defined in the following Examples. It should be understood that these Examples are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the embodiments of the
invention to adapt it to various usages and conditions. Thus, various modifications of the embodiments of the invention, in addition to those shown and described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.

The disclosure of each reference set forth herein is incorporated herein by reference in its entirety.

EXAMPLES

Example 1. Transformation of Maize by Agrobacterium transformation and Regeneration of Transgenic Plants Containing the Cry34Ab1 and Cry35Ab1 (Cry34/35Ab1) Genes

A DNA molecule of approximately 7.4 Kb, designated PHI17662A (SEQ ID NO: 24), which includes a first transgene expression cassette comprising a DNA molecule which includes the promoter, 5’ untranslated exon, and first intron of the maize ubiquitin (Ubi-1) gene (Christensen et al. (1992) Plant Mol. Biol. 18:675-689 and Christensen and Quail (1996) Transgenic Res. 5:213-218) operably connected to a DNA molecule encoding a B.t. δ-endotoxin identified as Cry34Ab1 (U.S. Pat. Nos. 6,127,180, 6,624,145 and 6,340,593) operably connected to a DNA molecule comprising a Pin II transcriptional terminator isolated from potato (Gyheung An et al. (1989) Plant Cell. 1:115-122). The second transgene expression cassette of the DNA construct comprises a DNA molecule encoding the wheat peroxidase promoter (Hertig et al. (1991) Plant Mol. Biol. 16:171-174) operably connected to a DNA molecule encoding a B.t. δ-endotoxin identified as Cry35Ab1 (U.S. Pat. Nos. 6,083,499, 6,548,291 and 6,340,593) operably connected to a DNA molecule comprising a Pin II transcriptional terminator isolated from potato (Gyheung An et al. (1989) Plant Cell. 1:115-122). The third transgene expression cassette of the DNA construct comprises a DNA molecule of the cauliflower mosaic virus (CaMV) 35S promoter (Odell J.T. et al. (1985) Nature 313: 810-812; Mitsuhara et al. (1996) Plant Cell Physiol. 37: 49-59) operably connected to a DNA molecule encoding a phosphinothricin acetyltransferase (PAT) gene (Wohleben W. et al. (1988) Gene 70: 25-37) operably connected to a DNA molecule comprising a 3’ transcriptional terminator from (CaMV) 35S (see Mitsuhara et al. (1996) Plant Cell Physiol. 37: 49-59) was used to transform maize embryo tissue.

B.t. Cry34/35 Ab1 maize plants were obtained by Agrobacterium transformation, the method of Zhao was employed (U.S. Patent No. 5,981,840, and PCT patent publication
WO98/32326; the contents of which are hereby incorporated by reference). Briefly, immature embryos were isolated from maize and the embryos contacted with a suspension of *Agrobacterium*, where the bacteria was capable of transferring PHI17662 DNA (SEQ ID NO:24) to at least one cell of at least one of the immature embryos (step 1: the infection step). Specifically, in this step the immature embryos were immersed in an *Agrobacterium* suspension for the initiation of inoculation. The embryos were co-cultured for a time with the *Agrobacterium* (step 2: the co-cultivation step). Specifically, the immature embryos were cultured on solid medium following the infection step. Following this co-cultivation period a "resting" step was provided. In this resting step, the embryos were incubated in the presence of at least one antibiotic known to inhibit the growth of *Agrobacterium* without the addition of a selective agent for plant transformants (step 3: resting step). In particular, the immature embryos are cultured on solid medium with antibiotic, but without a selecting agent, for elimination of *Agrobacterium* and for a resting phase for the infected cells. Next, inoculated embryos were cultured on medium containing a selective agent and growing transformed callus was recovered (step 4: the selection step). Specifically, the immature embryos were cultured on solid medium with a selective agent resulting in the selective growth of transformed cells. The callus was then regenerated into plants (step 5: the regeneration step), and, specifically, calli grown on selective medium were cultured on solid medium to regenerate the plants. Individual embryos were kept physically separate during culture, and the majority of explants died on the selective medium.

Those embryos that survived and produced healthy, glufosinate-resistant callus tissue were assigned unique identification codes representing putative transformation events, and continually transferred to fresh selection medium. Plants were regenerated from tissue derived from each unique event and transferred to the greenhouse. Leaf samples were taken for molecular analysis to verify the presence of the transgene by PCR and to confirm expression of the Cry34/35Ab1 protein by ELISA. Plants were then subjected to a whole plant bioassay using western corn rootworm insects. Positive plants were crossed with inbred lines to obtain seed from the initial transformed plants. A number of lines were evaluated in the field. The DAS-59122-7 event was selected from a population of independent transgenic events based on a superior combination of characteristics, including insect resistance and agronomic performance.
Example 2. Identification of *Bacillus thuringiensis* Cry34/35Ab1 maize line DAS-59122-7

Seed from event DAS-59122-7 was evaluated. The T1S2 seed represents transformation into the Hi-II background, followed by a cross with inbred line PH09B and two rounds of self-crossing. All seed were obtained from Pioneer Hi-Bred (Johnston, IA). Primary characterization was conducted on plant leaf tissue during the study by confirmation of phosphinothricin acetyltransferase (PAT) activity via herbicide leaf painting and Cry34Ab1 expression using lateral flow devices.

Control substances in this study were defined as unmodified seed representative of the test substance background. Control seeds of Hi-II and PH09B backgrounds were used as negative controls. These unmodified seed do not contain the plant transcription units for the cry34Ab1, cry35Ab1, and pat genes. All seed were obtained from Pioneer Hi-Bred (Johnston, IA).

DNA samples from two additional B.t. Cry34/35Ab1 events, event DAS-45214-4 and event DAS-45216-6, were used as negative controls for event specific PCR analysis. The two events were produced through Agrobacterium transformation using the same vector used to produce event DAS-59122-7 and therefore contained the plant transcription units for the cry34Ab1, cry35Ab1, and pat genes. However, the insertions sites of the T-DNA in events DAS-45214-4 and DAS-45216-6, including genomic DNA border regions, were different from that in event DAS-59122-7. DNA samples from event DAS-45214-4 and event DAS-45216-6 were isolated and characterized by Southern blot analysis. (Data not shown.)

Corn seed for event DAS-59122-7 and unmodified control seed (Hi-II and PH09B) were planted in growth chambers at the DuPont Experimental Station (Wilmington, DE) to produce sufficient numbers of plants for DNA analysis. For characterization of event DAS-59122-7, ten (10) T1S2 seeds were planted. Ten (10) seeds were also planted for each unmodified control line. One (1) seed was planted per pot, and the pot was uniquely identified. Planting and growing conditions were conducive to healthy plant growth including regulated light and water.

Leaf samples were collected for each of the control and event DAS-59122-7 plants. For each sample, sufficient leaf material from above the growing point was collected and placed in a pre-labeled sample bag. The samples were placed on dry ice and were transferred to an ultralow freezer following collection. All samples were maintained
frozen until processing. All leaf samples were uniquely labeled with the plant identifier and the date of harvest.

To confirm the expression of the Cry34Ab1 protein in event DAS-59122-7 and the absence of expression in the controls, leaf samples were collected from all event DAS-59122-7 and control plants, and screened for transgenic protein using lateral flow devices specific for Cry34Ab1 (Strategic Diagnostics, Inc., Newark, DE). Leaf punches were taken from each plant and ground in a phosphate buffered saline solution with Tween 20 to crudely extract the protein. A strip device was dipped into the extract to determine the presence or absence of the Cry34Ab1 protein. The immunoassay results were used to confirm the identity of the test substance plants prior to molecular analysis as shown in Table 1.

To confirm the expression of phosphinothricin acetyltransferase (PAT) in event DAS-59122-7 plants, herbicide leaf painting was conducted. All plants used in this study were leaf painted to confirm plant identity. Plants were assayed prior to the R1 growth stage. Assays were conducted following a standard procedure known in the art for herbicide leaf painting for the identification of PAT-expressing transgenic plants. Specifically, a portion of one leaf of each plant was treated with approximately 2% solution of glufosinate herbicide, Basta® (Bayer CropScience) in water and visually checked for brown or necrotic tissue in the painted leaf area 4–12 days after application.

Results for each plant were recorded and used to determine expression of PAT in each test plant as shown in Table 1. As shown in Table 1, of the ten (10) plants tested for event DAS-59122-7 T1S2 generation, six (6) plants expressed both Cry34Ab1 and PAT, while four (4) plants did not express either protein. All unmodified controls tested negative for both CryAb1 and PAT assays (data not shown).
Table 1: Cry34Ab1 and PAT Protein Expression and Southern Hybridization Data for *B.t.* Cry34/35Ab1 Event DAS-59122-7

<table>
<thead>
<tr>
<th>Plant ID</th>
<th>Sample ID</th>
<th>Cry34Ab1 and PAT Expression<sup>1</sup></th>
<th>Southern Blot <i>cry34Ab1</i> Probe<sup>2</sup></th>
<th>Southern Blot <i>cry35Ab1</i> Probe<sup>2</sup></th>
<th>Southern Blot <i>pat</i> Probe<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>02-122C 1</td>
<td>DAS59122-7 T182 1</td>
<td>positive</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>02-122C 2</td>
<td>DAS59122-7 T182 2</td>
<td>positive</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>02-122C 3</td>
<td>DAS59122-7 T182 3</td>
<td>positive</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>02-122C 4</td>
<td>DAS59122-7 T182 4</td>
<td>negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>02-122C 5</td>
<td>DAS59122-7 T182 5</td>
<td>positive</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>02-122C 6</td>
<td>DAS59122-7 T182 6</td>
<td>negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>02-122C 7</td>
<td>DAS59122-7 T182 7</td>
<td>positive</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>02-122C 8</td>
<td>DAS59122-7 T182 8</td>
<td>negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>02-122C 9</td>
<td>DAS59122-7 T182 9</td>
<td>negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>02-122C 10</td>
<td>DAS59122-7 T182 10</td>
<td>positive</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

¹ Positive Cry34Ab1 expression indicates detection of protein expression as determined by the immunoassay-based lateral flow device specific for Cry34Ab1 protein detection. Negative indicates no detection of the Cry34Ab1 protein. Positive PAT expression indicates plants that were tolerant to the herbicide treatment and negative indicates plants that were sensitive to the herbicide.

² + indicates hybridization signal on Southern blot; - indicates no hybridization signal on Southern blot. The <i>cry34Ab1</i> gene probe hybridized to the expected internal T-DNA fragment of 1.915 kb, the <i>cry35Ab1</i> gene probe hybridized to the expected internal T-DNA fragment of 2.607 kb, and the <i>pat</i> gene probe hybridized to a 3.4 kb border fragment consistent with a single intact T-DNA insertion as determined by Southern blot analysis.

Example 3. Southern Blot Analysis of *Bacillus thuringiensis* Cry34/35Ab1 maize line DAS-59122-7

One gram quantities of leaf samples were ground under liquid nitrogen, and the genomic DNA was isolated using DNeasy™ Plant Mini Kit (Qiagen, Valencia, CA) or using a standard Urea Extraction Buffer procedure. Following extraction, the DNA was visualized on an agarose gel to determine the DNA quality, and was quantified using Pico Green™ reagent (Molecular Probes, Inc., Eugene, OR) and spectrofluorometric analysis.
The 1 Kb DNA Ladder (Invitrogen, Carlsbad, CA) was used to estimate DNA fragment sizes on agarose gels.

Genomic DNA isolated from event DAS-59122-7 plants was digested with Nco I and electrophoretically separated, transferred to nylon membranes, and hybridized to the cry34Ab1, cry35Ab1 and pat gene probes using standard procedures known in the art. Blots were exposed to X-ray film for one or more time periods to detect hybridizing fragments and to visualize molecular weight standards. Images were then digitally captured by photographing X-ray films and/or by detection with a Lumi-Imager™ instrument (Roche, Indianapolis, IN). The sizes of detected bands were documented for each probe. Southern blot analysis was used as a means of verifying the presence of the insertion in the test plants and confirming that all plants from event DAS-59122-7 contained the same insertion as shown in Table 1. (Southern blots not shown.) Southern blot analysis indicated that event DAS-59122-7 contained a single insertion consisting of an intact copy of the T-DNA region from plasmid PHP17662, while the null segregants, as determined by the protein expression analysis did not hybridize to the gene probes. Further, event DAS-59122-7 plants expressing the two proteins exhibited identical hybridization patterns on Southern blots (data not shown). Specifically, the cry34Ab1 gene probe hybridized to the expected internal T-DNA fragment of 1.915 kb, the cry35Ab1 gene probe hybridized to the expected internal T-DNA fragment of 2.607 kb, and the pat gene probe hybridized to a 3.4 kb border fragment consistent with a single intact T-DNA insertion as determined by Southern blot results.

Example 4. T-DNA Insert and Flanking Border Region Sequencing of Bacillus thuringiensis Cry34/35Ab1 maize line DAS-59122-7

The T-DNA insert and flanking border regions were cloned from B.t. Cry34/35Ab1 event DAS59122-7 using PCR based methods as diagramed in Figures 2 and 3. Specifically, sequences bordering the 5' and 3' ends of the insert in event DAS-59122-7 were obtained using two genome walking techniques. The first walking method was essentially the method as described for the Universal Genome Walker Kit (BD Biosciences Clontech, Palo Alto, CA), and the second method was conducted according to the splinkerette protocol outlined in Devon et al., (1995) *Nucleic Acids Research* 23 (9):1644-1645, with modifications as described by Stover (2001), U.C. Irvine (personal communication).
Briefly, genomic DNA was digested with various restriction enzymes (\textit{Dra} I, \textit{EcoRV}, \textit{Pvu} II, \textit{Sma} I and \textit{Stu} I for the Universal Genome Walker method and \textit{Bam}HI, \textit{EcoRI}, \textit{Hind} III, and \textit{Xba} I for the splinkerette method) and then ligated to blunt-end adaptors for the Genome Walker method and to adaptors specific for the restriction enzyme used for the splinkerette method. The adaptors for both genome walking methods were designed to prevent extension of the 3' end of the adaptor during PCR and thus reduce or eliminate nonspecific amplification. The adaptor-ligated genomic DNA fragments were then referred to as genome walker libraries or splinkerette libraries, one library for each restriction enzyme. Libraries were prepared from genomic DNA isolated from three individual T1S2 plants of \textit{B.t. Cry34/35Ab1} event DAS-59122-7; plants DAS-59122-7 T1S2 1, DAS-59122-7 T1S2 2 and DAS-59122-7 T1S2 10, and from one Hi-II and one PH09B control plant.

Following construction of the libraries, nested PCR amplifications were completed to amplify the target sequence using AdvantageTM-GC Genomic PCR kit (BD Biosciences Clontech, Palo Alto, CA). The primary PCR amplification used one primer with identity to the adaptor and one gene specific primer. The adaptor primer will not amplify a product in the first cycle of the primary PCR and only products from the gene specific primer will be produced. Annealing and amplification from the adaptor primer only occurs after the complementary strand has been produced from the gene specific primer. Following primary PCR amplification, a secondary nested PCR reaction was performed to increase the specificity of the genomic PCR reactions. The nested primers consisted of gene-specific and adaptor-specific sequences internal to the respective primers used in the primary PCR.

For 5' flanking border sequences, nested PCR was initiated using primers specific to the 5' end of the inserted T-DNA along with primers complementary to the adaptor sequence ligated onto the digested DNA. Similarly, cloning of the 3' flanking border sequence started with a primer specific for the 3' end of the inserted T-DNA and a primer complementary to the adaptor sequence. DNA sequences internal to the T-DNA Right Border and Left Border sequences within the T-DNA region were used as the starting points for "walking out" to the maize genomic sequence, because they represented unique sequence (not homologous to endogenous maize genomic sequences) from which to anchor the genome walking primers.
The products produced by the nested PCR were analyzed by agarose gel electrophoresis (data not shown). Fragments visible in libraries prepared from one or more of the event DAS-59122-7 DNA samples and absent in libraries prepared from the Hi-II and PH09B genomic DNA samples were identified for further characterization. The identified PCR amplified fragments were separated by preparatory gel electrophoresis, isolated using a QIAquick Gel Extraction Kit (Qiagen), and sent directly for sequencing or cloned into a pGEM-T Easy plasmid vector using the pGEM-T Easy Vector System I (Promega Corp., Madison, WI) prior to DNA sequencing. Sequencing reactions were carried out with primers used for the nested PCR amplification or with primers specific for use with the pGEM-T Easy vector. The sequence obtained was used to design additional gene specific primers to continue “walking out” into the unknown maize genomic sequence. Multiple rounds of genome walking were performed until at least 500 bp of border sequence from the ends of the T-DNA insert were obtained.

To ensure validity of the flanking border sequences, additional event-specific PCR amplifications on genomic DNA from event DAS-59122-7 were performed. The amplified fragments were sequenced in order to further extend the region of sequence overlap from the T-DNA insert region into the 5’ and 3’ bordering genomic DNA. Primers, shown in Table 2, were designed based on the sequence obtained from the genome walking experiments to amplify a fragment spanning the unique junction of the T-DNA with the corn genomic DNA. Primer set 03-O-506/02-O-476 (SEQ ID NO: 10/SEQ ID NO:9) spanned the 5’ junction and amplified a 313 bp fragment (from bp 2427 to bp 2739, see Figure 1), and primer set 02-O-447/03-O-577 (SEQ ID NO: 8/SEQ ID NO:17) spanned the 3’ junction and amplified a 754 bp fragment (from bp 9623 to bp 10376, see Figure 1).
<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Sequence (5' – 3')</th>
<th>Target Sequence Location (bp to bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02-O-215</td>
<td>(SEQ ID NO: 1) GTTGCTCTTTCAACGTGTTGAGTCTGTC</td>
<td>2743-2716</td>
</tr>
<tr>
<td>02-O-219</td>
<td>(SEQ ID NO: 2) CGTGGCAAGCGCTCAATTCCGCTTATAGT</td>
<td>9830-9858</td>
</tr>
<tr>
<td>02-O-227</td>
<td>(SEQ ID NO: 3) AATGAGCGATTGACAGTATT</td>
<td>9846-9827</td>
</tr>
<tr>
<td>02-O-370</td>
<td>(SEQ ID NO: 4) AACAAGAACGGGCCACACCC</td>
<td>4871-4894</td>
</tr>
<tr>
<td>02-O-371</td>
<td>(SEQ ID NO: 5) GAGGTGTTGCTGGATGTAGGTCA</td>
<td>5187-5163</td>
</tr>
<tr>
<td>02-O-372</td>
<td>(SEQ ID NO: 6) TACAAACCTCAGATTGGTCTTCCCTTACGA</td>
<td>7017-7044</td>
</tr>
<tr>
<td>02-O-373</td>
<td>(SEQ ID NO: 7) GAGGTCTGGATCTGATGCGGA</td>
<td>7897-7873</td>
</tr>
<tr>
<td>02-O-447</td>
<td>(SEQ ID NO: 8) AACCCCTAGTATGTTATATTTGTATT</td>
<td>9623-9645</td>
</tr>
<tr>
<td>02-O-476</td>
<td>(SEQ ID NO: 9) CTCCTTTCAACGTGCTGTTGCTTCTGTCAG</td>
<td>2739-2714</td>
</tr>
<tr>
<td>03-O-506</td>
<td>(SEQ ID NO: 10) TTTGGCAAAAACGGAACGTACTAGT</td>
<td>2427-2451</td>
</tr>
<tr>
<td>03-O-514</td>
<td>(SEQ ID NO: 11) GCGGGACAAAGCCGTTTTACGTTT</td>
<td>2687-2709</td>
</tr>
<tr>
<td>03-O-542</td>
<td>(SEQ ID NO: 12) GACGGGTGATTTATATTTGATCGTAC</td>
<td>10766-10742</td>
</tr>
<tr>
<td>03-O-543</td>
<td>(SEQ ID NO: 13) CATCTGAAATCGTGCTGTTGCAA</td>
<td>2451-2427</td>
</tr>
<tr>
<td>03-O-564</td>
<td>(SEQ ID NO: 14) CTAAGTTTTCTGCTGCTCAGTGTC</td>
<td>2324-2299</td>
</tr>
<tr>
<td>03-O-569</td>
<td>(SEQ ID NO: 15) GGTCAAGTGACACTTGCTGTCAGTCA</td>
<td>10150-10174</td>
</tr>
<tr>
<td>03-O-570</td>
<td>(SEQ ID NO: 16) GAGTGAAAGAGATAAGCGCAAATGAC</td>
<td>10275-10299</td>
</tr>
<tr>
<td>03-O-577</td>
<td>(SEQ ID NO: 17) CATGTATACGTTAGTTGCTGCTG</td>
<td>10376-10352</td>
</tr>
<tr>
<td>03-O-784</td>
<td>(SEQ ID NO: 18) AATCCAAAGATTGAGCAGAAACGAC</td>
<td>2189-2213</td>
</tr>
<tr>
<td>67609</td>
<td>(SEQ ID NO: 36) CGTTTACATCGTAAGTATCTGAGCAGTACAGT</td>
<td>9862-9886</td>
</tr>
<tr>
<td>69240</td>
<td>(SEQ ID NO: 37) GGATTAAACAAACGGGCCCATAGGAAG</td>
<td>9941-9965</td>
</tr>
</tbody>
</table>

1. Location in sequence of Event DAS-59122-7 (see Figure 1). Bases 1 - 2593 = 5' border, bases 2594 - 9936 = T-DNA insert, bases 9937 - 11922 = 3' border.
For verification of the DNA sequence that inserted into the maize genome, PCR was performed to amplify, clone, and sequence the inserted T-DNA from event DAS-59122-7. PCR primer sets, (SEQ ID NO: 11/SEQ ID NO:5); (SEQ ID NO: 4/SEQ ID NO:7); and (SEQ ID NO: 6/SEQ ID NO:3) shown in Table 3 were used to amplify three overlapping fragments labeled 22I-1 (SEQ ID NO: 25), 22I-2 (SEQ ID NO: 26), and 22I-3 (SEQ ID NO: 27) representing sequence from the 5' region of the T-DNA running through to the 3' region of the T-DNA insert from bp 2687 to bp 9846 for event DAS-59122-7 (see Figure 1). PCR amplicon information is reported in Table 3 and primer sequences are listed in Table 2.

<table>
<thead>
<tr>
<th>PCR Amplicon</th>
<th>Size (bp)</th>
<th>Target Sequence</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
<th>Location of PCR Amplicon (bp to bp)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>22I-1 (SEQ ID NO:25)</td>
<td>2501</td>
<td>T-DNA insert</td>
<td>03-O-514 (SEQ ID NO:11)</td>
<td>02-O-371 (SEQ ID NO:5)</td>
<td>2687 – 5187</td>
</tr>
<tr>
<td>22I-2 (SEQ ID NO:26)</td>
<td>3027</td>
<td>T-DNA insert</td>
<td>02-O-370 (SEQ ID NO:4)</td>
<td>02-O-373 (SEQ ID NO:7)</td>
<td>4871 – 7897</td>
</tr>
<tr>
<td>22I-3 (SEQ ID NO:27)</td>
<td>2830</td>
<td>T-DNA insert</td>
<td>02-O-372 (SEQ ID NO:6)</td>
<td>02-O-227 (SEQ ID NO:3)</td>
<td>7017 – 9846</td>
</tr>
<tr>
<td>O784/O564 (SEQ ID NO:28)</td>
<td>136</td>
<td>5’ genomic border</td>
<td>03-O-784 (SEQ ID NO:18)</td>
<td>03-O-564 (SEQ ID NO:14)</td>
<td>2189 – 2324</td>
</tr>
<tr>
<td>O784/O543 (SEQ ID NO:29)</td>
<td>263</td>
<td>5’ genomic border</td>
<td>03-O-784 (SEQ ID NO:18)</td>
<td>03-O-543 (SEQ ID NO:13)</td>
<td>2189 – 2451</td>
</tr>
<tr>
<td>O569/O577 (SEQ ID NO:30)</td>
<td>227</td>
<td>3’ genomic border</td>
<td>03-O-569 (SEQ ID NO:15)</td>
<td>03-O-577 (SEQ ID NO:17)</td>
<td>10150 – 10376</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PCR Amplicon</th>
<th>Size (bp)</th>
<th>Target Sequence</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
<th>Location of PCR Amplicon (bp to bp)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>O570/O542 (SEQ ID NO:31)</td>
<td>492</td>
<td>3’ genomic border</td>
<td>03-O-570 (SEQ ID NO:16)</td>
<td>03-O-542 (SEQ ID NO:12)</td>
<td>10275 – 10766</td>
</tr>
<tr>
<td>O784/O215 (SEQ ID NO:32)</td>
<td>555</td>
<td>5’ junction</td>
<td>03-O-784 (SEQ ID NO:18)</td>
<td>02-O-215 (SEQ ID NO:1)</td>
<td>2189 – 2743</td>
</tr>
<tr>
<td>O219/O577 (SEQ ID NO:33)</td>
<td>547</td>
<td>3’ junction</td>
<td>02-O-219 (SEQ ID NO:2)</td>
<td>03-O-577 (SEQ ID NO:17)</td>
<td>9830 – 10376</td>
</tr>
<tr>
<td>O506/O476 (SEQ ID</td>
<td>313</td>
<td>5’ junction</td>
<td>03-O-506 (SEQ ID)</td>
<td>02-O-476 (SEQ ID)</td>
<td>2427 - 2739</td>
</tr>
</tbody>
</table>

1. bp = base pair
PCR GC2 Advantage™ Polymerase kit (BD Biosciences Clontech, Inc.) was used according to manufacturer’s instructions to amplify the insert fragments (22I-1 (SEQ ID NO: 25), 22I-2 (SEQ ID NO: 26), and 22I-3 (SEQ ID NO: 27)). Briefly, a 50μL reaction contained 5’ and 3’ primers at a final concentration of 0.2μM and 40 ng of genomic DNA. PCR reactions were set up in duplicate using genomic DNA preparation from plants DAS-59122-7 T1S2 1 and DAS-59122-7 T1S2 2. PCR conditions were as follows: initial denaturation at 95°C for 1 min, followed by 35 cycles of 94°C/95°C for 30 sec, 55°C for 30 sec, and 68°C for 5 min, with final extension at 68°C for 6 min. PCR amplification products were visualized under UV light, following electrophoresis through a 1% agarose gel in 1X TBE (89mM Tris-Borate, 2mM EDTA, pH 8.3) stained with ethidium bromide.

PCR fragments 22I-1 (SEQ ID NO: 25), 22I-2 (SEQ ID NO: 26), and 22I-3 (SEQ ID NO: 27) were purified by excising the fragments from 0.8% agarose gel in 1X TBE stained with ethidium bromide, and purifying the fragment from the agarose using a QIAquick Gel Extraction Kit (Qiagen). PCR fragments were cloned into a pGEM-T Easy plasmid vector using the pGEM-T Easy Vector System I (Promega Corp.). Cloned fragments were verified by minipreparation of the plasmid DNA (QIAprap Spin Miniprep Kit, Qiagen) and restriction digestion with Not I. Plasmid clones and/or purified PCR insert fragments were then sent for sequencing of the complete insert. Sequencing reactions were carried with primers designed to be specific for known T-DNA sequences or with primers specific for use with the pGEM-T Easy vector. Sigma-Genosys, Inc. (The Woodlands, TX) synthesized all PCR primers, which were used at a final concentration of 0.2 – 0.4 μM in the PCR reactions.

PCR reactions with genomic DNA isolated from B.t. Cry34/35Ab1 events DAS-59122-7, DAS-45214-4, and DAS-45216-6, and unmodified control lines Hi-II and PH09B were used to confirm (1) the presence of maize genomic DNA in the sequenced...
border regions of event DAS-59122-7, and (2) event specific amplification across the junctions of the T-DNA insert and genomic DNA borders in event DAS-59122-7.

PCR primers designed to amplify the border sequence flanking the insert in event DAS-59122-7 were used to confirm the presence of those regions in unmodified control lines as well as in event DAS-59122-7. Two (2) sets of primers each, for the 5' and 3' borders (four (4) sets total) were tested. Primer sets 03-O-784/03-O-564 (SEQ ID NO: 18/SEQ ID NO:14) and 03-O-784/03-O-543 (SEQ ID NO: 18/SEQ ID NO:13) were used to amplify 136 bp and 263 bp fragments, respectively, from border sequence 5' to the T-DNA insert in event DAS-59122-7 (Figures 2 and 3). Similarly, primer sets 03-O-569/03-O-577 (SEQ ID NO: 15/SEQ ID NO:17) and 03-O-570/03-O-542 (SEQ ID NO: 16/SEQ ID NO:12) were used to amplify 227 bp and 492 bp fragments, respectively, from the 3' genomic border (Figures 2 and 3).

Primers designed to amplify fragments across the junction of the border sequence and T-DNA insert were used to establish event-specific PCR fragments for event DAS-59122-7. One primer set was selected for each of the two junctions. Primer set 03-O-784/02-O-215 (SEQ ID NO: 18/SEQ ID NO:1) was designed to amplify a 555 bp fragment across the 5' junction, and primer set 02-O-219/03-O-577 (SEQ ID NO: 2/SEQ ID NO:17) was designed for amplification of a 547 bp fragment at the 3' junction. A set of primers, IVR1(O197) (SEQ ID NO: 39) 5' - CCGCTGTATCAAAGGGCTGGTACC-3' and IVR2(O198) (SEQ ID NO: 40) 5' - GGAGCCCGTGTAGAGCATGACGATC-3', based on the endogenous maize invertase gene (Hurst et al., (1999) Molecular Breeding 5 (6):579-586), was used to generate a 226 bp amplification product as an internal positive control for all maize genomic DNA samples.

All PCR primers were synthesized by Sigma-Genosys, Inc. and used at a final concentration of 0.2 – 0.4 μM in the PCR reactions. PCR primer sequences are listed in the Table 2. For PCR amplifications, Advantage™-GC 2 PCR kit (BD Biosciences) was used according to manufacturer’s instructions. Approximately 10-100 ng of genomic DNA template was used per 50 μL PCR reaction. PCR conditions were as follows: initial template denaturation at 94°C for 5 min, followed by 35 cycles of 95°C for 1 minute, 60°C for 2 minutes, and 72°C for 3 min, with final extension at 72°C for 7 min. The PCR amplification products were visualized under UV light following electrophoresis through a 1% agarose gel with 1X TBE and ethidium bromide.

Sequence data obtained for the T-DNA insert and border regions of event DAS-59122-7 was reviewed and assembled using Seqman II™ software Version 4.0.5
(DNASTar, Inc., Madison, WI). The 5' and 3' border sequences flanking the insert present in event DAS-59122-7 were used for homology searching against the GenBank public databases in order to further characterize the site of insertion in the maize genome. Analysis to identify open reading frames in the junction regions between the flanking borders and T-DNA insert in event DAS-59122-7 was conducted using Vector NTI 8.0 (InforMax™, Inc., Frederick, MD).

In total, 11922 bp of sequence from genomic DNA of event DAS-59122-7 was confirmed (see Figure 1). At the 5' end of the T-DNA insert, 2593 bp of flanking border sequence was identified, and 1986 bp of flanking border sequence was obtained on the 3' end from fragments derived from genome walking experiments. A total of 7160 bp of the T-DNA insert was cloned and sequenced using PCR primer sets designed to amplify three overlapping fragments labeled 22I-1 (2501 bp) (SEQ ID NO:25), 22I-2 (3027 bp) (SEQ ID NO:26), and 22I-3 (2830 bp) (SEQ ID NO:27) representing sequence from the 5' region of the T-DNA running through to the 3' region of the T-DNA insert for event DAS-59122-7 from bp 2687 to bp 9846 (see Figure 1). The remainder of the T-DNA insert region was sequenced from two PCR fragments, O506/O476 (SEQ ID NO: 10/SEQ ID NO:9) and O447/O577 (SEQ ID NO: 8/SEQ ID NO:17) that spanned the 5' and 3' junctions, respectively, of the T-DNA insert with corn genomic DNA. Primers used were designed based on the sequence obtained from the genome walking experiments to amplify a fragment spanning the unique junction of the T-DNA with the corn genomic DNA. Primer set 03-O-506/03-O-476 (SEQ ID NO: 10/SEQ ID NO:9) spanned the 5' junction and amplified a 313 bp fragment (from bp 2427 to bp 2739) and primer set 03-O-447/03-O-577 (SEQ ID NO: 8/SEQ ID NO:17) spanned the 3' junction and amplified a 754 bp fragment (from bp 9623 to bp 10376). Combined, a total of 7343 bp of the T-DNA insert in event DAS-59122-7 was cloned and sequenced (from bp 2594 to bp 9936, see Figure 1) and compared to the sequence of the transforming plasmid, PHP17662. Two nucleotide differences at bp 6526 and bp 6562 were observed in the non-translated wheat peroxidase promoter region of the T-DNA insert (see Figure 1). Neither of the observed base changes affected the open reading frame composition of the T-DNA insert. Both the 3' and 5' end regions of the T-DNA insert were found to be intact, except for deletion of the last 22 bp at the 5' end and 25 bp at the 3' end encompassing the Right and Left T-DNA Border regions, respectively. While T-DNA border sequences are known to play a critical role in T-DNA insertion into the genome, this result is not unexpected since insertions are often

BLAST (Basic Local Alignment Search Tool) analysis of the genomic border regions of event DAS-59122-7 showed limited homology with publicly available sequences (Release 138.0 GenBank, Oct 25, 2003). Analysis of the 5' border region found two areas with significant homology to maize genomic and EST (Expressed Sequence Tag) sequences. The first area encompasses 179 bp (bp 477 to bp 655 of the border sequence) and displays similarity to several molecular markers, chromosomal sequences, and consensus sequences obtained by alignment of various ESTs. The second area occurs at bp 1080 to bp 1153 (74 bp) of the 5' border sequence, and shows similarity to a number of different maize ESTs and genomic sequences. The 3' border region also had two small non-contiguous regions of similarity to plant DNA sequences. The inner 3' region of 162 bp (bp 9954 to bp 10115) showed similarity to the 3' untranslated end of two genomic *Zea mays* alcohol dehydrogenase (*adh1*) genes as well as to several EST consensus sequences. A smaller region (57 bp) in the middle of the 3' border (bp 10593 to bp 10649) showed similarity to non-coding regions from multiple maize genomic sequences.

Overall, no homologous regions greater than 179 base pairs were identified in either of the genomic border sequences, nor was more than one homologous region from the same known sequence found. Individual accessions displaying similarity to the event DAS-59122-7 border sequences were examined to determine if the insertion in event DAS-59122-7 occurred in a characterized protein coding sequence. None of the regions of similarity occurred within any known protein coding sequences. Local alignment of the entire transformation plasmid sequence, PHP17662, with the event DAS-59122-7 border sequences showed no significant homologies, indicating that the border regions flanking the T-DNA insert did not contain fragments of the transforming plasmid. Therefore, identification and characterization of the genomic sequence flanking the insertion site in event DAS-59122-7 was limited due to the absence of significant regions of homology to known sequences.

The 5' and 3' junction regions between the maize genomic border sequence and the T-DNA insert in event DAS-59122-7 were analyzed for the presence of novel open reading frames. No open reading frames of significant size (> 100 amino acids) were identified in the 5' or 3' border junction regions, indicating that no novel open reading frames were generated as a result of the T-DNA insertion. Additionally, the homology searches did not indicate the presence of endogenous maize open reading frames in the
border regions that might have been interrupted by the T-DNA insertion in B.t.
Cry34/35Ab1 event DAS-59122-7.

Example 5. PCR Primers

DNA event specific primer pairs were used to produce an amplicon diagnostic for DAS-59122-7. These event primer pairs include, but are not limited to, SEQ ID NO: 18 and SEQ ID NO: 1; SEQ ID NO: 2 and SEQ ID NO: 17; SEQ ID NO: 10 and SEQ ID NO: 9; and SEQ ID NO: 8 and SEQ ID NO: 17; and SEQ ID NO: 36 and SEQ ID NO: 37. In addition to these primer pairs, any primer pair derived from SEQ ID NO: 21 and SEQ ID NO: 22 that when used in a DNA amplification reaction produces a DNA amplicon diagnostic for DAS-59122-7 is an embodiment of the present invention. Any modification of these methods that use DNA primers or complements thereof to produce an amplicon DNA molecule diagnostic for DAS-59122-7 is within the ordinary skill of the art. In addition, control primer pairs, which include IVR1(O197)/IVR2(O198) (SEQ ID NO: 39/SEQ ID NO: 40) for amplification of an endogenous corn gene are included as internal standards for the reaction conditions.

The analysis of plant tissue DNA extracts to test for the presence of the DAS-59122-7 event should include a positive tissue DNA extract control (a DNA sample known to contain the transgenic sequences). A successful amplification of the positive control demonstrates that the PCR was run under conditions that allow for the amplification of target sequences. A negative, or wild-type, DNA extract control in which the template DNA provided is either genomic DNA prepared from a non-transgenic plant, or is a non-DAS-59122-7 transgenic plant, should also be included. Additionally a negative control that contains no template corn DNA extract will be a useful gauge of the reagents and conditions used in the PCR protocol.

Additional DNA primer molecules of sufficient length can be selected from SEQ ID NO: 21 and SEQ ID NO: 22 by those skilled in the art of DNA amplification methods, and conditions optimized for the production of an amplicon diagnostic for event DAS-59122-7. The use of these DNA primer sequences with modifications to the methods shown in these Examples are within the scope of the invention. The amplicon wherein at least one DNA primer molecule of sufficient length derived from SEQ ID NO: 21 and SEQ ID NO: 22 that is diagnostic for event DAS-59122-7 is an embodiment of the invention. The amplicon wherein at least one DNA primer of sufficient length derived from any of the genetic elements of PHI17662A that is diagnostic for event DAS-59122-7
is an embodiment of the invention. The assay for the DAS-59122-7 amplicon can be performed by using a Stratagene Robocycler, MJ Engine, Perkin-Elmer 9700, or Eppendorf Mastercycler Gradient thermocycler, or by methods and apparatus known to those skilled in the art.

Having illustrated and described the principles of the present invention, it should be apparent to persons skilled in the art that the invention can be modified in arrangement and detail without departing from such principles. We claim all modifications that are within the spirit and scope of the appended claims.

All publications and published patent documents cited in this specification are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
WHAT IS CLAIMED IS:

1. An isolated DNA molecule comprising a nucleotide sequence selected from the group consisting of:
 a) the nucleotide sequence set forth in SEQ ID NO: 19;
 b) the nucleotide sequence set forth in SEQ ID NO: 20;
 c) the nucleotide sequence set forth in SEQ ID NO: 23;
 d) the nucleotide sequence set forth in SEQ ID NO: 21; and
 e) the nucleotide sequence set forth in SEQ ID NO: 22.

2. A kit for identifying event DAS-59122-7 in a biological sample which detects a DAS-59122-7 specific region, said kit comprising at least a first primer, which recognizes a sequence within SEQ ID NO: 19 or within SEQ ID NO: 20.

3. The kit of claim 2, further comprising at least a second primer which recognizes a nucleotide sequence within a sequence selected from the group consisting of:
 a) the sequence of SEQ ID NO: 24; and
 b) the sequence of SEQ ID NO: 20.

4. The kit of claim 2, wherein the first primer recognizes a nucleotide sequence within a sequence selected from the group consisting of:
 a) the sequence of SEQ ID NO: 19; and
 b) the sequence of SEQ ID NO: 20.

5. The kit of claim 3, wherein said at least first and second primers, respectively, comprise a pair of sequences selected from the group consisting of:
 a) the sequences of SEQ ID NO: 18 and SEQ ID NO: 1;
 b) the sequences of SEQ ID NO: 10 and SEQ ID NO: 9;
 c) the sequences of SEQ ID NO: 2 and SEQ ID NO: 17;
 d) the sequences of SEQ ID NO: 8 and SEQ ID NO: 17; and
 e) the sequences of SEQ ID NO: 36 and SEQ ID NO: 37.

6. A DNA detection kit specific for junction DNA of maize event DAS-59122-7 and its progeny comprising at least one DNA molecule of a sufficient length of contiguous DNA polynucleotides to function in a DNA detection method, that is homologous or complementary to a sequence selected from the group consisting of:
 a) the nucleotide sequence set forth in SEQ ID NO: 21; and
 b) the nucleotide sequence set forth in SEQ ID NO: 22.
7. A kit for identifying event DAS-59122-7 in a biological sample, said kit comprising a specific probe comprising a sequence which hybridizes with sequences selected from the group consisting of:
 a) the sequences of SEQ ID NO: 19 and SEQ ID NO: 24; and
 b) the sequences of SEQ ID NO: 20 and SEQ ID NO: 24;

contiguous therewith.

8. A DNA detection kit comprising at least one DNA molecule of a sufficient length of contiguous nucleotides homologous or complementary to SEQ ID NO: 21 or SEQ ID NO: 22 that functions as a DNA primer or probe specific for maize event DAS-59122-7 and its progeny.

9. A DNA construct comprising: a first, second, and third expression cassette, wherein said first expression cassette in operable linkage comprises:
 (a) a maize ubiquitin promoter;
 (b) a 5’ untranslated exon of a maize ubiquitin gene;
 (c) a maize ubiquitin first intron;
 (d) a Cry34Ab1 encoding DNA molecule; and
 (e) a PinII transcriptional terminator;

said second expression cassette comprising in operable linkage
 (i) a wheat peroxidase promoter;
 (ii) a Cry35Ab1 encoding DNA molecule; and
 (iii) a PinII transcriptional terminator; and

said third expression cassette comprising in operable linkage
 (1) a CaMV 35S promoter;
 (2) a pat encoding DNA molecule; and
 (3) a 3’ transcriptional terminator from (CaMV) 35S.

10. A plant comprising the DNA construct of claim 9.

11. A plant of claim 10, wherein said plant is a corn plant.

12. A method for identifying event DAS-59122-7 in a biological sample, comprising detecting a DAS-59122-7 specific region with a probe or first primer which specifically recognizes a sequence within SEQ ID NO: 19 or SEQ ID NO: 20.

13. The method of claim 12, further comprising amplifying a DNA fragment from a nucleic acid present in said biological sample using a polymerase chain reaction with at least two primers, wherein said first primer recognizes a sequence within SEQ ID
NO: 19 or SEQ ID NO: 20, and a second primer recognizes a sequence within SEQ ID NO: 20 or SEQ ID NO: 24.

14. The method of claim 13, wherein said first primer recognizes a sequence within SEQ ID NO: 19 and said second primer recognizes a sequence within SEQ ID NO: 24.

15. The method of claim 13, wherein said first primer recognizes a sequence within SEQ ID NO: 20 and a second primer recognizes a sequence within SEQ ID NO: 20.

16. The method of claim 14, wherein said first and second primers comprise the sequence of SEQ ID NO: 18 and SEQ ID NO: 1 respectively.

17. The method of claim 14, wherein said first and second primers comprise the sequence of SEQ ID NO: 10 and SEQ ID NO: 9 respectively.

18. The method of claim 15, wherein said first and second primers comprise the sequence of SEQ ID NO: 2 and SEQ ID NO: 17 respectively.

19. The method of claim 15, wherein said first and second primers comprise the sequence of SEQ ID NO: 8 and SEQ ID NO: 17 respectively.

20. The method of claim 14, wherein said first and second primers comprise the sequence of SEQ ID NO: 36 and SEQ ID NO: 37 respectively.

21. The method of claim 16, comprising amplifying a fragment of about 555 bp using a DAS-59122-7 PCR identification protocol.

22. The method of claim 17, comprising amplifying a fragment of about 313 bp using a DAS-59122-7 PCR identification protocol.

23. The method of claim 18, comprising amplifying a fragment of about 547 bp using a DAS-59122-7 PCR identification protocol.

24. The method of claim 19, comprising amplifying a fragment of about 754 bp using a DAS-59122-7 PCR identification protocol.

25. The method of claim 20, comprising amplifying a fragment of about 104 bp using a DAS-59122-7 PCR identification protocol.

26. A method of detecting the presence of maize event DAS-59122-7 or progeny thereof in a biological sample, comprising:

(a) extracting a DNA sample from said biological sample;

(b) providing a pair of DNA primer molecules selected from the group consisting of:

i) the sequences of SEQ ID NO: 18 and SEQ ID NO: 1;

ii) the sequences of SEQ ID NO: 10 and SEQ ID NO: 9;
iii) the sequences of SEQ ID NO:2 and SEQ ID NO:17; and
iv) the sequences of SEQ ID NO:8 and SEQ ID NO:17;
(c) providing DNA amplification reaction conditions;
(d) performing said DNA amplification reaction, thereby producing a DNA
amplicon molecule; and
(e) detecting said DNA amplicon molecule, wherein the detection of said
DNA amplicon molecule in said DNA amplification reaction indicates
the presence of maize event DAS-59122-7.

27. An isolated DNA molecule comprising any one of the amplicons produced
by the method of claim 26.

28. A method of detecting the presence of DNA corresponding to the DAS-
59122-7 event in a sample, the method comprising:
(a) contacting the sample comprising maize DNA with a polynucleotide
probe that hybridizes under stringent hybridization conditions with DNA
from maize event DAS-59122-7 and does not hybridize under said stringent
hybridization conditions with a non-DAS-59122-7 maize plant DNA;
(b) subjecting the sample and probe to stringent hybridization conditions;
and
(c) detecting hybridization of the probe to the DNA, wherein detection of
hybridization indicates the presence of the DAS-59122-7 event.

29. An isolated DNA nucleotide primer sequence comprising a sequence
selected from the group consisting of: SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 36 and 37, or its complement.

30. An isolated DNA nucleotide primer sequence of claim 29 comprising a
sequence selected from the group consisting of: SEQ ID NOs:1, 2, 8, 9, 10, 17 and 18, or
its complement.

31. A pair of DNA molecules comprising: a first DNA molecule and a second
DNA molecule, wherein the DNA molecules are of a sufficient length of contiguous
nucleotides of a sequence selected from the group consisting of:

a) the sequence set forth in SEQ ID NO: 21 or its complement; and
b) the sequence set forth in SEQ ID NO: 22 or its complement;
to function as DNA primers or probes diagnostic for DNA extracted from a DAS-59122-7
corn plant or progeny thereof.
32. An isolated DNA molecule comprising a junction sequence comprising a sequence selected from the group consisting of SEQ ID NO: 32, 33, 34, and 35 and complements thereof.

33. A method for confirming seed purity, comprising detection of a DAS-59122-7 specific region with a specific primer or probe which specifically recognizes a sequence within SEQ ID NO: 19 or SEQ ID NO: 20, in a seed sample.

34. A method for screening seeds for the presence of event DAS-59122-7, comprising detection of a DAS-59122-7 specific region with a specific primer or probe which specifically recognizes a sequence within SEQ ID NO: 19 or SEQ ID NO: 20 in a sample of a seed lot.

35. An insect resistant corn plant, or parts thereof, wherein DNA having at least one nucleotide sequence selected from the group consisting of SEQ ID NO: 32, 33, 34, and 35 and complements thereof forms part of the plant's genome.

36. A descent plant of the insect resistant corn plant of claim 35, wherein DNA having at least one nucleotide sequence selected from the group consisting of SEQ ID NO: 32, 33, 34, and 35 and complements thereof, forms part of the plant's genome.

37. Seed of a plant of claim 35 or 36.

38. A method of producing an insect resistant corn plant comprising breeding with a plant of claim 35 or 36, and selecting progeny by analyzing for at least one nucleotide sequence selected from the group consisting of SEQ ID NO: 32, 33, 34, and 35 and complements thereof.

39. An isolated DNA sequence comprising at least one nucleotide sequence selected from the group consisting of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 36 and 37, or complements thereof.

40. A pair of isolated DNA sequences, each comprising at least ten nucleotides and which when used together in a DNA amplification procedure will produce an amplicon diagnostic for event DAS-59122-7.

41. The pair of isolated DNA sequences of claim 40 wherein each sequence is chosen from within a nucleotide sequence selected from the group consisting of:

a) the sequence of SEQ ID NO: 21; and

b) the sequence of SEQ ID NO: 22.

42. A method of detecting the presence of the DAS-59122-7 event insertion in corn tissue comprising:
(a) selecting a primer pair each comprising at least ten nucleotides from SEQ ID NO: 21 or SEQ ID NO: 22 wherein each member of the pair is on opposite sides of a sequence diagnostic for said DAS-59122-7 event insertion;
(b) contacting a sample of said corn tissue with said primer pair;
(c) performing DNA amplification and analyzing for an amplicons.

43. The method of claim 42 wherein said primer pair is selected from the group consisting of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 36 and 37 or complements thereof.

44. A method of detecting the presence of the DAS-59122-7 event insertion in corn tissue comprising:
(a) contacting a sample of said corn tissue with a polynucleotide probe that hybridizes under stringent hybridization conditions with one or more DNA sequence selected from the group consisting of SEQ ID NO: 32, 33, 34, and 35 and complements thereof;
(b) subjecting said sample and probe to stringent hybridization conditions; and
(c) analyzing for hybridization of the probe.

45. A DNA detection kit comprising a polynucleotide probe that hybridizes under stringent hybridization conditions with one or more DNA sequences selected from the group consisting of SEQ ID NO: 32, 33, 34, and 35 and complements thereof.

46. A DNA detection kit comprising a primer pair each comprising at least 10 nucleotides from within SEQ ID NO: 21 and SEQ ID NO: 22, wherein each is on opposite sides of a sequence diagnostic for the DAS-59122-7 event insertion.

47. The DNA detection kit of claim 46 wherein said primer pair is selected from the group consisting of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 36 and 37 and complements thereof.

48. A kit for identifying event DAS-59122-7 in a biological sample which detects a DAS-59122-7 specific region within SEQ ID NO: 23.

49. A method for identifying DAS-59122-7 in a biological sample which detects a DAS-59122-7 specific region within SEQ ID NO: 23.
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3001</td>
<td>ATCGAGTTTT TAGAGATCTA TATAATGGAA CAGTTCAGCA TGGTCTAAAG</td>
</tr>
<tr>
<td>3051</td>
<td>GCAAAATTGAG TATTTTGGAC ACGAAGACTT ACGATTTTTA CCCATTTTAAG</td>
</tr>
<tr>
<td>3101</td>
<td>TGCACTGTTT CTCTTTTTTTT TTTGCAATAT GCTTTCACTA TAAATCTATT</td>
</tr>
<tr>
<td>3151</td>
<td>CTATCCCCATG TATAGTCACT CATTAGGAGG TTTAGGGATT ATGTTCACTA</td>
</tr>
<tr>
<td>3201</td>
<td>TAGACTAATT TTTTTATGAC ATCTATTATG TTCTTTATTA GCTTTCAAT</td>
</tr>
<tr>
<td>3251</td>
<td>TACGAAACTT AAAACTTATCC TTTAGGTGTT TTTAATTAATA ATTAGTATAT</td>
</tr>
<tr>
<td>3301</td>
<td>AAITTTAAATA ACTGAGGAAA CATTTTTTCT GTTCGGAGTA GATAGGCGCA</td>
</tr>
<tr>
<td>3351</td>
<td>GCCCTGTAAA CGGCTCGCGG AAGTCTCAAC GACAACTACG AGCGACGCGA</td>
</tr>
<tr>
<td>3401</td>
<td>CAGGCCGCGG CGGCTCGCGC GAGACAGGAG GCGAGAGCGC CTGCTTGCGC</td>
</tr>
<tr>
<td>3451</td>
<td>GCTCCTGCGG CCGCTCGCGG AGCTTCTCGG CATTGTGTTG ATGCTGTCG</td>
</tr>
<tr>
<td>3501</td>
<td>CCCTCGCCAT CTGATTGTTGG TCGGAGAGCT ATCACTGCGC TCAGGACAGC</td>
</tr>
<tr>
<td>3551</td>
<td>TCGGAGGAGC TCGTCTCCCT CTCAGCTGAC CAGAGAGTG CAGGGGATGC</td>
</tr>
<tr>
<td>3601</td>
<td>TCTCCTGCCG CTTCATGCTG TTCGAGGCCC ATGTTCAATC CTCAAGACTA</td>
</tr>
<tr>
<td>3651</td>
<td>CATCAGCCAC CTCACTGCTCT TCCCTTCTCT TCCCACTCTG CGTCCCGAGT</td>
</tr>
<tr>
<td>3701</td>
<td>CACCCCATCC ACCCACTTT TCCCAACACT GGGTGGTGTC CGAGCCGACA</td>
</tr>
<tr>
<td>3751</td>
<td>CACACACACG CAGATTCTGG CCAATCCAC CCGGCGGACA TCCCTGAGAG</td>
</tr>
<tr>
<td>3801</td>
<td>AGCTACGCCT CGTCTCCTTC CCCCTCCCCT CCCCTTCACT TCTCTAGACT</td>
</tr>
<tr>
<td>3851</td>
<td>GGCCTCTCGT TACAGGTTTA GGSSGCGTA GTTCATCTCT GTCTGCAATT</td>
</tr>
<tr>
<td>3901</td>
<td>TGGTGTATAG TTTTTTTTCT GGGCCGCTGC ATGTTCACTG TTGTTGCTGG</td>
</tr>
<tr>
<td>3951</td>
<td>GGATGGAGCC TGAGCTAGAC AGACGTTCTG ATGGCACTAT TGCAGAGCTG</td>
</tr>
<tr>
<td>4001</td>
<td>TCTCTTTTGGG GAATCTGGCT ATGCTGCAAT GCTTGGCCAC GAGGGAGCGC</td>
</tr>
<tr>
<td>4051</td>
<td>ATTGCCTCAT ATGTTTTTTT TATGGCCGCT TGGGTTGCT ATGCTGCAAT</td>
</tr>
<tr>
<td>4101</td>
<td>CTGCATATCC ATATAGTCCC GCTCGATTTG TTGAGAGTTG CTGGAGTTTC</td>
</tr>
<tr>
<td>4151</td>
<td>CTCTTTTTTG CTGGGTTTCA TCTGCTCACA CCCCTGAGTT TGCTGGGTCG</td>
</tr>
<tr>
<td>4201</td>
<td>AGATGGAGGT AGAATCTTGG TTCAAGTCAC ATGGGTTGAG TATTTATTGT</td>
</tr>
<tr>
<td>4251</td>
<td>GGATGGGAAG TATGGCTCAG TAAGATGTTG AGGAGGATGA TGGTGGGTGA</td>
</tr>
<tr>
<td>4301</td>
<td>TGGATGGAAAG TATGGCCTTA GATGGATGTA AGATTGGAGT CCGGCGGTTTA</td>
</tr>
<tr>
<td>4351</td>
<td>CTATGGCGTA TATGTCATGG CTGTTTTGGT CTGTTGTGTC GATGGGGTTG</td>
</tr>
<tr>
<td>4401</td>
<td>TGCTGATGGG CGTGCTCTCA GCTGCTCTAT ATGGGAGTGG AATAGTGAGG</td>
</tr>
<tr>
<td>4451</td>
<td>CAATTTCTCTT CTGATTTTTT GATGCTGCTA AATGTTAGGA TGAAGGTAGT</td>
</tr>
<tr>
<td>4501</td>
<td>GAATTACGTTG CTTGAGGGTT TTATGACGAT CATTGCTGCA GATGGAGATG</td>
</tr>
<tr>
<td>4551</td>
<td>GGATGGAGAGG TATGCGCTCA GATGCTGCTA GATGCTGCTA GATGCTGCTA</td>
</tr>
<tr>
<td>4601</td>
<td>GGCTGATCCG CCATCGAGGT TTGAGGCTAG TGTACCTGTA GATGCTGCTA</td>
</tr>
<tr>
<td>4651</td>
<td>GGCACTCTCTCT TATGAGCTAG TATGAGCTAG TATGAGCTAG TATGAGCTAG</td>
</tr>
<tr>
<td>4701</td>
<td>TATGCTAAGC TATGAGCTAG TATGAGCTAG TATGAGCTAG TATGAGCTAG</td>
</tr>
<tr>
<td>4751</td>
<td>TATGCTAAGC TATGAGCTAG TATGAGCTAG TATGAGCTAG TATGAGCTAG</td>
</tr>
<tr>
<td>4801</td>
<td>CTGAGAAGTCT TGTGCTCGAC TTTGATGTTT TTTGCTGTGG CTGGGTTTGG</td>
</tr>
<tr>
<td>4851</td>
<td>GCAGAGCTCC TGTACTGGTC CTGCTTCCTG CTGGGCTAGC CTGGGCTAGC</td>
</tr>
<tr>
<td>4901</td>
<td>GAGGACAGGG CAAGCACAGG GAGGACAGGG AGGGAGGACAG GCCGGCGCGG</td>
</tr>
<tr>
<td>4951</td>
<td>TGCTGAGGAC GACGAGAGGA TGGAGGAGGT GAGGAGGACG GGAGGAGGACG</td>
</tr>
<tr>
<td>5001</td>
<td>TGCCGCGCCT CGGAGCGACG AGGGAGGACG AGGGAGGACG AGGGAGGACG</td>
</tr>
<tr>
<td>5051</td>
<td>TGGTGAGACG AGGGAGGACG AGGGAGGACG AGGGAGGACG AGGGAGGACG</td>
</tr>
<tr>
<td>5101</td>
<td>CTGCCCTAGC GAGGGAGGACG AGGGAGGACG AGGGAGGACG AGGGAGGACG</td>
</tr>
<tr>
<td>5151</td>
<td>ACAGAGGCGG CAGGGAGGACG AGGGAGGACG AGGGAGGACG AGGGAGGACG</td>
</tr>
<tr>
<td>5201</td>
<td>CAGAGGCGG CAGGGAGGACG AGGGAGGACG AGGGAGGACG AGGGAGGACG</td>
</tr>
<tr>
<td>5251</td>
<td>CTGAGATAGT GCCAAGATTA TATGATGTA ATGATGTA ATGATGTA ATGATGTA</td>
</tr>
<tr>
<td>5301</td>
<td>TAGTACCTAG CTAATACATG TAATGAGGGC TGTGAGTGTG TGTGAGTGTG</td>
</tr>
<tr>
<td>5351</td>
<td>GAAATTAATA CAAATATTAG TGAATGAGGT GAGAGAGGAG GAGAGAGGAG</td>
</tr>
<tr>
<td>5401</td>
<td>ATCTTAACTG ATATATATAT ATGTTTAGTA ATGTTTAGTA ATGTTTAGTA</td>
</tr>
<tr>
<td>5451</td>
<td>ATTCGCCCTA AACAAAAACA AAAAAAATAA AAAAAAATAA AAAAAAATAA</td>
</tr>
<tr>
<td>5501</td>
<td>ATATCCTGAAG GGTAGCAGAA AAAAAATAGT TTTTGCTGG TTTTGCTGG</td>
</tr>
<tr>
<td>5551</td>
<td>GGGCGCGCGG AGGGAGGACG AGGGAGGACG AGGGAGGACG AGGGAGGACG</td>
</tr>
<tr>
<td>5601</td>
<td>TGCACTCTGG TCGGACACAG CGCATGAGC CTGAGCAGC AGGGAGGACG</td>
</tr>
<tr>
<td>5651</td>
<td>GTGGTTCTGC TCTGAGGGAG GCTGGTACTA ACAGAGGAGG AGGGAGGACG</td>
</tr>
<tr>
<td>5701</td>
<td>CGGGCTGGG AGGGAGGACG AGGGAGGACG AGGGAGGACG AGGGAGGACG</td>
</tr>
<tr>
<td>5751</td>
<td>GATGCTGCTG TCGGTGCTGG CAGTGAGAGT TTTTGCTGG TTTTGCTGG</td>
</tr>
<tr>
<td>5801</td>
<td>GAGTACGACG AGGAGGAGGAG GAGAGAGGAG GAGAGAGGAG GAGAGAGGAG</td>
</tr>
<tr>
<td>5851</td>
<td>GGATGGAGGG TATGAGCTAG TTTTGCTGG TTTTGCTGG TTTTGCTGG</td>
</tr>
<tr>
<td>5901</td>
<td>CTGTTTTTTT CGTATGCTGG TGGGAGGAGG GAGGTGATGT GATGTTGAGG</td>
</tr>
<tr>
<td>5951</td>
<td>AAGGCGATGA TGTTCTGCCG GCTGAGCTA TGTGAGCTA TGTGAGCTA</td>
</tr>
<tr>
<td>6001</td>
<td>AAATGCTCAT ATAAAACATT TGGTCTCTCT TATGAGTGCC TATGAGTGA</td>
</tr>
<tr>
<td>6051</td>
<td>ACGAAATTCTT CCGTTGCTGG GCTGTAGCAG CTAATCGAGC AATACAACGAG</td>
</tr>
</tbody>
</table>
SEQUENCE LISTING

Pioneer Hi-Bred International, Inc.
Dow AgroSciences LLC
E. I. DuPont de Nemours & Co.

CORN EVENT DAS-59122-7 AND METHODS FOR DETECTION THEREOF

1895-PCT
60/614,225
2004-09-29
40

FastSEQ for Windows Version 4.0

1
28
DNA
Artificial Sequence

Oligonucleotide primer

gtggctcctt caacgtgctg gtctgtc
28

2
29
DNA
Artificial Sequence

Oligonucleotide primer

cgtgcaagcg ctcaatcgct cctatagt
29

3
20
DNA
Artificial Sequence

Oligonucleotide primer

aattgagcgc ttgacgtt
20

4
24
DNA
Artificial Sequence

<223> Oligonucleotide primer
<400> 4
aacaacaaga cggccacac cctc
24

<210> 5
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 5
gaggtgtct ggtggtgta ggtca
25

<210> 6
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 6
tacaacctca agtggttctct cttccgga
28

<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 7
gaggtcttgg tctgcatgt gogga
25

<210> 8
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 8
aaccottagt atgtatatttatt
23

<210> 9
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 9
ctccttcaac gttggttttc tgtcag
26

<210> 10
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 10
tttgcaag cgaacgattc agatg

<210> 11
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 11
gggggacaag ccgtttttag ttt

<210> 12
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 12
agcgggtgat ttatggattc tgcac

<210> 13
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 13
catctgaatc gttcgctttg caaaa

<210> 14
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 14
tacgttcca atggagctg actgtc

<210> 15
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer
<400> 15
ggtcaagtg gcaactttgtg cactca 25

<210> 16
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 16
gagtgagagt ataagcagtc caaag 25

<210> 17
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 17
catgtatacg taagtttggt gctgg 25

<210> 18
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 18
aatccacaag atgggagca aacgac 25

<210> 19
<211> 2593
<212> DNA
<213> Artificial Sequence

<220>
<223> 5' flanking sequence of DAS 59122-7.

<400> 19
cctgagcgcac aacagcagtg cgcatggcag cggacgacat gacgcgagatt tagatcggag 60
gtgcggcaca tggggaacc tgggccagtta aacgccgctt ccaacacgacc accaagagacg 120
ccaaccccgg gcaacctcaca gggaggtttg ggcctgcttt ccaacccacc agtcatgac 180
tgagccgggg acgagacca aacgccgaggg cgggctgtgg aatggggtctt cggagacg 240
gttgagaga aagatgattg ggcctccttc ggatttttac aataggttatt tttataaatg 300
tgagggctgga caacccgccc ggtcgtagcgc gtgtgatatg ggctcagagc gtggtgat 360
aaaaagtgac ggtctgtgaa cagtcgtgac caaacaactc acacacaaactc 420
cataaatgcc atttttttaaat catttttaaat ttttttaaat catttttaaat 540
atataacat catttttacag ccttttattc ctttttttatt ctttttttatt 660
tgtattgcct tcaattgatc ctttttttatt ctttttttatt ctttttttatt 720
agcctggaac gaaagattta ggtcgtgattc ttaattttaatt catttttattt 840
tctccttagt gatgaattac tggaggttcc atcagaaagtt cccctgaaaa gaggcatca 900

<400> 19
tttatactgg tgttcgacgt cagacatta tatttttaatt ctttttttatt ctttttttatt 1080
agaatattta catttttacag ccttttattc ctttttttatt ctttttttatt ctttttttatt 1200

<210> 20
<211> 1986
<212> DNA
<213> Artificial Sequence

<220> 3' flanking sequence of DAS 59122-7.

<400> 20

```
tttccctcta tgggtccggtt tgggttatct tctaattata taatccagct taaataagtt 60
aagagcaaca caacaaacac agattattaa atagattatg taatctagat acctagatta 120
tgaatcgaat taagatggtct tacaggtcatt ataatacatg tggagtcggat tagatatgta 180
taatcactcc tttttttttt taaattttt tgggttggta tacgatccac attaataaagtt 240
taatcactcc tttttttttt taaattttt tgggttggta tacgatccac attaataaagtt 300
taatcactcc tttttttttt taaattttt tgggttggta tacgatccac attaataaagtt 360
taatcactcc tttttttttt taaattttt tgggttggta tacgatccac attaataaagtt 420
taatcactcc tttttttttt taaattttt tgggttggta tacgatccac attaataaagtt 480
taatcactcc tttttttttt taaattttt tgggttggta tacgatccac attaataaagtt 540
taatcactcc tttttttttt taaattttt tgggttggta tacgatccac attaataaagtt 600
taatcactcc tttttttttt taaattttt tgggttggta tacgatccac attaataaagtt 660
taatcactcc tttttttttt taaattttt tgggttggta tacgatccac attaataaagtt 720
taatcactcc tttttttttt taaattttt tgggttggta tacgatccac attaataaagtt 780
taatcactcc tttttttttt taaattttt tgggttggta tacgatccac attaataaagtt 840
taatcactcc tttttttttt taaattttt tgggttggta tacgatccac attaataaagtt 900
taatcactcc tttttttttt taaattttt tgggttggta tacgatccac attaataaagtt 960
taatcactcc tttttttttt taaattttt tgggttggta tacgatccac attaataaagtt 1020
```

acctttctcag taatctcagc agcaatgtcag cgggtgtaaca acttcttcag ccccctctcct 1380
aacctttgca atgtggctagc ctgtggtcac aggtctgctc ctcaaggtgtc taaagcaatac 1440
aggccacgct ccttggcactg tttcctgctga aacactgcagt gaatcctggat agtcatagc 1500
cttcaccatga gctctccagcc ttgctctcctc ttaataacct atagcttcttc 1560
agttctctct ctttcctccca cagctgtctg cgggtctctga gatctcagctcta cggaccagc 1620
aatcaagggc cctccccacc cagttttttc aataataacta atatgcggctc tggaggaac 1680
tgcctcactc cttcctcaccat tgcaggtgct tgctgtgtgct cccctcagctc aggaccacc 1740
ggtggaaacc gctgcctcagg gatctcctcacc atatgctgtac 1800
ctcggctcca acgtcctctc aagctgtcctc cttctctctct ctggtctacaa gaacaaatgg 1860
ctcctaaagc cccatcctca cagctctcttc cttgctcctct ctggtctacaa gaacaaatgg 1920
tacgcggccag cgtcccaaccg caggtacccct cttcgaatag cattcccaaag cttcgcttacc 1980
<210> 21
<211> 3594
<212> DNA
<213> Artificial Sequence

<220> Sequence that represents part of the PHII7662A
insert as well as flanking sequence 5' to the
insert.

<400> 21
cctcgttggaac aacgcaaggt gccatgcgcga cggagactac cggcgtagg ccctcccacc 60
ggtgcgtgact ttcggtcagtg caagctgtc caagctgtc ccctccccacc 120
ccacagcagc cggcatgcttc aactcttctc aactcttctc cttcctcactc 180
tgagggcagg atagctgtcgt tgtggtggtc tgtggtggtc tgtggtggtc 240
gtttctcctc cctctctcct cctctctcct cccctctctc tccctctctc 300
tacaggtaac agagttcttc tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg 360
ctcttagtac cagcctgtcct cagcctgtcct cagcctgtcct cagcctgtcct 420
tttttagttact ctccagatcc ctaaatcattat ctaaatcattat ctaaatcattat 480
tctcatcattg agctcatcattg agctcatcattg agctcatcattg agctcatcattg 540
taatcattctag ttatatcattat ctaaatcattat ctaaatcattat ctaaatcattat 600
agccagactg cttcgttacct cttcgttacct cttcgttacct cttcgttacct 660
tggtgagctc cctctctcct cctctctcct cccctctctc tccctctctc 720
gttggtggtc tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg 780
ttcctctctc cccctctctc cccctctctc cccctctctc cccctctctc 840
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 900
ttaaatcattat ctaaatcattat ctaaatcattat ctaaatcattat ctaaatcattat 960
tctggtggtc cctctctctc cccctctctc cccctctctc cccctctctc 1020
ctctcatcattg atagctgtcct cttcctcattg atagctgtcct cttcctcattg 1080
tggtggtggtc tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg 1140
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 1200
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 1260
tcctctctc cccctctctc cccctctctc cccctctctc cccctctctc 1320
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 1380
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 1440
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 1500
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 1560
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 1620
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 1680
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 1740
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 1800
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 1860
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 1920
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 1980
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 2040
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 2100
tccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 2160
caagtttagg attgggaccgc ggacccgagc ttccacaaqgt ttggagcaaac gaccaaaaat 2220
ttcaccaaggt tggccggtcga cattgccagc gcggatccgc attgccgacgc ggcgcgcggc 2280
gcgacgccg gacgacgcgg cagtcgagct cctttggaac gtagaatact ttaaggccaa 2340
gtctccaaaa tacattgaac aataaggaat agaagaaat acatatggtg attaagtaat 2400
catttggagc attttgtaaag tgtgtgagctg gccaaaatata aataatctctc gtaactccca acattggtgc 2520
gccacctgtgaa tgtgctcata aaaaatcttg gaggagcgg agaagagagtt aagggataag 2580
caatagaaag gcctcagcaga ctttgtaagtt aataattgga agagaaagtg ccagaaacgt 2640
atggcgagag aatttaaggga gtcacggttat gcaccggccgc ggtcagccgg gacaacgctt 2700
ttatctggttg gaactgcacag aacgcacaaag ttgaagggag cacctcagca gatctactatg 2760
agccgtctttt aaacgtctctt caacttgaaga agccggttaacc gcagccgagag cttgccagcc 2820
tgcaagctcag gctggcctcct ctctagatag aataggcatt gcatactgtaa 2880
gttatatataa atattttctct attttttttg tcacactgtg ttgagagcga gtttatctat 2940	ctctatatat atatatttacct tttactcactc gataaataa atctatatag ttcataataa 3000
atcagtgttgt tagagatcatc tatactttgc ctttagcaca tgcgttcaag gacatattgq 3060	tatttgtgacca acaggtctctt acagttgctgt ctttttaatgt tcgtagttct cttctttttt 3120	tttgcacaata gcttcacacta tataaatctct catcactctttt atttagctaat cccatttagg 3180	tttaggttga tagaactatt ttatacttttc tttatataat ataattataa atctatatatta 3240
gcctcttaaa ttaaatctttt tcctcttattt tatattattt atttatatat atttatatat 3300
aaaaatatag attaatataac gccataaatc taataaatctt ccccttaaag attataaaaaa 3360
actaagaggca cattttcttttg gttgcgtagta gataagcgcg cgcctttggag ggcgcgtcag 3420
agtctcagac gcacacccacg agcgagacccg cagctcgtcgg ccggcccaac ggaacagcac 3480
ggcacggcct cttctgcgctc gcctctgagg ctcctcrtag agttcctcgc cacacgttga 3540
cctgcctcgcgc ttggcgcggatc cagaaattgc gtcggcggagc ggcacagcttg agcc 3594

<210> 22
<211> 2987
<212> DNA
<213> Artificial Sequence

<220>
<223> Sequence that represents part of the PHI7662A insert as well as flankng sequence 3' to the insert.

<400> 22
ctccgaggag gagacagcttg gagattaggg cagtcacagt cagctcagac agttgtgtatg gcggcggttt 60
gtgcatactg taacccattac atttgagact tcacagcgaa cttttgaggca gacgttcaagc 120
caccaccaaga gttgagtttgat gtagctgaga ggtcggcaga tagaccaact cttgggtgttt 180
cgtgactggta ggctggttgtt gcggctgatt gttacgcttg gcccctggagag gcctttgtgacag 240
ttcctacgtgg gagacaaacct agttcgtctac cttgtgtgac ccagctcgcac atgttgggcc 300
tagtagctcgg cttttggtttg atgagtctttgc atcagctttt gcacagcttc gcacagcttc 360
ttgtgtgtgt cctggcttgtg ctttcagctg gtcgttcttg gtcgctgtttt 420
caccaccccg cggctagtttg gcccgcgcctagt gcataacttg gcaccttacag gcaccttacag 480
gtttttgcggaagggctgc caggttctcc gcctccagcg ccagttctcca gccatcaggtg cagttctcca 540
tagtttgcttg ctttttggag gcgttctctag gcgttctctag gcgttctctag gcgttctctag 600
tttctctcttc ttataactttgt tagagatgcg ccaagatgg acatatagtt ctctttaggg 660	ttcgctctgt gttcgggtgaga ttcgtaaaaat cttatgtaggt tctttttaggg 720
tttatctgat caaatccctt ccttctgattt cccctttttt tccctctctc tccctctctc 780
agtgcgctgtg cccgttgcttc aggtgcgtctc gcggcggtttt gcgtggtgttt ttaacggtca 840
tgctggcgcag ctcctgcggtc ctttcttctt tctttaggag gtcgagcttg gcgtggtgttt 900
gcagctctcgct gcgcttcata gttcagctgt cttcagctgt gcacagcttc gcacagcttc 960
aacgcgccta cgttcagcttg ttttcgctgc ttcagctggt gcgttcgctgc 1020
tttggttttc ctttaatattc ctcagctaggt ctttaataagtt taagacgcag acaaaacaag 1080
cagattata cagatggtat gttacactcgata cttatgcagcc gttactataaa ctaagtatag 1140
atacagttgtc tatataaaat tcagtcgctc tttataatac ttaaaataag taaaacagatc 1200
ccctctaaag aagcgcgcac gctctgcagct gttccgtctc tcaactctgc ccctccttcct 1260
ccccctcccc ttggggttgggt atccacagctg aggtgttgtgt gcgtggtgttt 1320
aatctctttgc cggatgaggg agttgagatc gtcagagcag aaaaatggat gccagagcag 1380
cctcatacgt ctaaataattt gcgcgccagt gttgcgcggc cccacacatt gcgtatcataa 1440
<210> 23
<211> 11922
<212> DNA
<213> Artificial Sequence

<220> The insert and flanking regions of event DAS 5912-7.

<400> 23

cctagicgaca aacagcagagt gcatatgcaac cggacgacat tagatcggag 60
gtgccgaca tggggcaacc cgcccggctca agcgacggtc ccaacagccc 120
ccaaagcccttg ggcgtcggct caaagctgga cggcgtcggct cggcgtcggct 180
tggccgaggg ccagcgaagac aacagcgaac cggcgtcggct cggcgtcggct 240
tggccgaggg ccagcgaagac aacagcgaac cggcgtcggct cggcgtcggct 300
tggccgaggg ccagcgaagac aacagcgaac cggcgtcggct cggcgtcggct 360
ctttaaaggg ctatattgag ggttccaaac cgtatcctca cgtatcctca 420
gttccacca aatgtctctt ctaaaatagtc ctaaaatagtc ctaaaatagtc 480
cctaaaaggg atatattgag ggttccaaac cgtatcctca cgtatcctca 540
tggccgaggg ccagcgaagac aacagcgaac cggcgtcggct cggcgtcggct 600
ctttaaaggg ctatattgag ggttccaaac cgtatcctca cgtatcctca 660
tggccgaggg ccagcgaagac aacagcgaac cggcgtcggct cggcgtcggct 720
tggccgaggg ccagcgaagac aacagcgaac cggcgtcggct cggcgtcggct 780
tggccgaggg ccagcgaagac aacagcgaac cggcgtcggct cggcgtcggct 840
tggccgaggg ccagcgaagac aacagcgaac cggcgtcggct cggcgtcggct 900
ctttaaaggg ctatattgag ggttccaaac cgtatcctca cgtatcctca 960
ctttaaaggg ctatattgag ggttccaaac cgtatcctca cgtatcctca 1020
tggccgaggg ccagcgaagac aacagcgaac cggcgtcggct cggcgtcggct 1080
tggccgaggg ccagcgaagac aacagcgaac cggcgtcggct cggcgtcggct 1140
tggccgaggg ccagcgaagac aacagcgaac cggcgtcggct cggcgtcggct 1200
tggccgaggg ccagcgaagac aacagcgaac cggcgtcggct cggcgtcggct 1260
tggccgaggg ccagcgaagac aacagcgaac cggcgtcggct cggcgtcggct 1320
ctttaaaggg ctatattgag ggttccaaac cgtatcctca cgtatcctca 1380
ccatctggta agatgcctct gcgcgacagt gcccacaaga tggaccccca cccacagagg 8760
gctctgggga aaaaaggacc gtctccacca cgtctctcaaa gcaagtqttat tggatgtgata 8820
ctctcaagtga ctagggagat ccgatcttcc attgccacgc acatatggctg ctgctctct 8880
tataaggagg tttcttctct tggagagagag gggagatccc ctagttcccc cttctctctct 8940
gagagggacac caggtttgag ttagccagtc acaagcagctg atatggccgc ggtttgggtat 9000
atctttacag attacattga gacgtcttac ggtctcttc aatcagtttg gccataca caca 9060
caagagttga ttgtattgtct cagagagtctt cagatattat tacctggattt gttgttgtag 9120
gattgacagc ttgtagatct acaggtttctg ggtctcttcc tggagagatag cagatagatag 9180
caccaagctt atctgaattct cccctctgctt gggtggtgcgt gttctctctt tctgctttct 9240
gttgcttttag ccttccacaa cagcttttctg gttcttttag ctgctctctt atcgctgctg 9300
gctttagtact ccgcttttctg gccagagtctt gcctctcgtt ccgggtcttt gcctctcctc 9360
gccgccccgt cattcgccgc aogcttagatg aacaattgctc gttggatgtg gccatgtgtg 9420
tggcagaggg ctagttcttg ccagggcagct ttgagatcttt ctcctctctct tctctctctt 9480
tgagttccacc ccgctctctt ccagccagct ctagttcctc tctctctctt cctctcctct 9540
tcttcatata aatgtggtagt agtggccagag taaagggattt tagggtcttg tagggtcttg 9600
tctcatgtgta gacagtattaa gaaaccttta ttgatgtttt gatgctgtct gatagttccta 9660
tctataatat tttcttattct ttaaccaccc accatcggctg atctgtgctc ccagggaccc 9720
tcatagctcg acctgctaggcc atgcctggcacc atacggcagtt ggcacgcagct atcggctttg 9780
cggcgggctt caaggtttctg aatcggcacc atgccttggc acccgctggtt ggcacgcagct 9840
tcaatcctg gttgtattagtg ttaggtagata aatcctcaggt atcagttctt cttttttcct 9900
cgcagatgtt ctttcacagtt ttaaattttt ctaagttttt aatcagttctt cttttttcct 9960
tattatataag cagggagattg ctttttattct tttttatttt cttttttttt cttttttttt 10020
tataggtatat aatgtagttg tcttttacttt tttttttttt cttttttttt cttttttttt 10080
tgctctttatat aatcattttg atcgcctatttt ttaaattttt aatcagttctt ctttttttatt 10140
ataaaaggg gcacgtgagtt cactgtttgtc tctcttttttt cctctctctt cttttttttt 10200
atgctagttgc ttgagagatag ggtgtgcctt gcagtttttt cttttttttt cttttttttt 10260
ctggtctggtt gtagagagat cgaagttttt cgtgtttttt ctgctctctt cttttttttt 10320
tctctagtta ttagctggtc accggcaagt ctgctctctt cttttttttt cttttttttt 10380
tatgctgctga ccttccccct ccttccccct tctctctctt cttttttttt cttttttttt 10440
taatgcgatgtttttt cctctctctt cctctctctt cttttttttt cttttttttt cttttttttt 10500
attcagccca atctcaggtt ggtgtgcctt gcagtttttt cttttttttt cttttttttt 10560
gctcttgcct ctttgcttccag ctagttcttt cttttttttt cttttttttt cttttttttt 10620
agacacttca atctcaggtt ggtgtgcctt gcagtttttt cttttttttt cttttttttt 10680
ctttaacatcc caaatcagat ctggtctggtt gtagagagat cgaagttttt cgtgtttttt 10740
agtcgagttt atattaactta cctctctctt cctctctctt cttttttttt cttttttttt 10800
tcagttttttt cctctctctt cctctctctt cttttttttt cttttttttt cttttttttt 10860
agtcaagttt ttagcttcttt cctctctctt cctctctctt cttttttttt cttttttttt 10920
acccacattc tctcttttttt ctgctctctt cctctctctt cttttttttt cttttttttt 10980
ttttagttctt tctctctctt cctctctctt cttttttttt cttttttttt cttttttttt 11040
ccagcgatgc tgggtggttt cttttttttt cttttttttt cttttttttt cttttttttt 11100
ctttctctct tttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11160
cccagctgtt cccctctctt cctctctctt cttttttttt cttttttttt cttttttttt 11220
cttcagttttt ttagcttcttt cttttttttt cttttttttt cttttttttt cttttttttt 11280
atcctctgtt ttttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11340
tgctctctct ttttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11400
ctttctctct ttttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11460
ctttctctct ttttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11520
ctttctctct ttttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11580
ctttctctct ttttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11640
atgcctgttt ttttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11700
atcctctctct ttttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11760
agaggtcttt ttttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11820
tttctctctct ttttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11880
accccaggtt cagttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11940
ccatcctctct cagttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11990
24
11922<210>
211> 7390
212> DNA
213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)...(25)
<223> T-DNA right border

<221> misc_feature
<222> (7366)...(7390)
<223> T-DNA left border

<400> 24
gtttaaccgcc caaatatatcc tgtcaaacac tgatagttta aactgaaggc gggaaacgac 60
aatctgtgtaa ttaggcggga ataagggggg ttatcgttaq atacccgccc aacccgggca 120
acaagccctg taacggctgg aagctgcaag aacccgctgt cggcgggctt tactgtgcgt ccggggccgg 180
tatctctgta tttttaatgt atgtctgtac aactgtacag aggtacaccc acacccgcaag 240
ttgccccctcg ttcggtgcgg agctgagctt ctctgtgcgg aacgtcagtt ggcgtggtgc 300
cattttggttt ttagggttta gtttttttaag gaaattttgt gttttaggtca tctttttttttt 360
tcttatttttt ttattttttttt attt
gtgctgtagg ttgaggttgt tggcgctgtt attgtctacg ctgggccttg gaaagcttagg 6600
aacggttagc atggagcttg tggaggtacg gttatagtgt ctgctagctg tcagttttg 6660
ggctatgat gcaccatgtt cacacatttg ttaaagcctt cagagcggcag aggttttaag 6720
tcgtgttggc ctgttataag gcttccaaac gatccatctcg ttaagtttgc tggagtcttg 6780
ggataacag ccggcggtgac ttggtccgca atgcgtgata gctggataca aagctggtgg 6840
ggttggttta ggccaaagtg tttttagtgg ccaagctcct cagcaagcgt ttagggcagt 6900
accagacag tgaagccagt ccgagcgccg tcttggaaat cacagctggct cctctatcaa 6960
tctatcctcct cttataata caagctgtgata gttcaccgat aagggaaat aagttcttta 7020
aggttctgcc tcattgtgttg agcataataa aacacccattag tattttttttt tatttttaag 7080
attatctcat caaatataac gccttcttac aatctaaaac tcagcaagcgt tcctgctg 7140
cgggaggttt tctagagctca cccgacgagc tgcggcagac ttgatctggg cgggaggttt 7200
agcgtcagcgt cggccagccg tggctcttt cctctcagga tgaagcagct cttgttaaag 7260
tcgcaagccg ttagtttctt cattagcttg gatttttttt tattttttttt aacacccattag 7320
taataaaggtc cgcaatgtgttt tattagtgat gcttaagcgc tttgtaatta cacacaata 7380
taatctgocca 7390<210>
25
<211> 2501
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Amplicon 22I-1

<400> 25
gccggacag ccgtttttccg ttggaacttg acagaaacgcg aacgttggaag gacgcaacctga 60
goactggtca tagctggtctt gtttttaacgc ctcttcaactg gaaagcgcttg taccgcagca 120
gagacgctgc tagccgagctg gacgtgcagcg ccggctttgc ggctctcctag agataataag 180
cattctgatg tgaatttttt aaaaatcaac gacttttttt tttgatcact gttgttttaag 240
tcgctttttc tcttccttttc aaacatggct cctcaatttt tctcaagtttt ctaatactctt 300
agactaaacta taatctgttg gtttttagag atctataaa taagcagctt tgaacaatga 360
aagaacgcct gcagcctctg tcattggca aacacccacc gcacacgcgt cggtcggcggc 420
cgggtcctgc aacgcggcct gccgccctgc cctcttccag cttgttaattt aagttaataaa 480
aatatctact ctacttttttt cttatagcaaac aatctaaaac gccttcttac ctactttttttt 540
aatataataa agatataataa cattttatgaa atcgcctacag cattttttttt aatctacaat 600
aagaacactg gacagctaaag cgcacatttt tttgatcact ttaagcagctt cctcttccag 660
taataaataa gcagccttaa aacacccacc gccttcttac cttgttatgtt cttgttatgtt 720
aagacgttcg ccggcagctg gcagacggcg gctgccgagcg gcagcctttt cttgttatgtt 780
cgggacagc gcgttcctgg ctttactgcg ctttttaacc gccttcttac cttgttatgtt 840
ttcgctttttc tttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 900
ttgctttttt ccctcttttt tttttttttt cttttttttt cttttttttt cttttttttt 960
ctcccttttt tttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 1020
tcccccaat tttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 1080
tcccccaat cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc 1140
cccccccttctt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 1200
cttctttttccc tgtgtgttctgc aggctggcgc cggatgtgttc acctgggtat cttttttttt 1260
aagacgctg tgcgtgcgtt cctctttttt gacagcctta aacacccacc gccttcttac 1320
tgggaacacc tggtcgccct cttacgtgctg ctcgggtgctt atcgggtaact gtcgttttttt 1380
ttgctgcttc caagcctttt ggccgggttt ttcctttttt cttatattat cctcgggtctc 1440
ttgctgcttc cggaaggcct gcattttttt gttctctttt tttgttagtg tggctgcttttt 1500
tgggaagctg ctgttagcct gatacataag gctgaataag gcctggttttt gttgttgtttaa 1560
gaaataactga cgtgtaatgt gcgagcgtgac cccatattat cttttttttt tttttttttt 1620
gatagctgtt ttgcgctttg ttttgtgttg gtttattttt gccgcttttt tttttttttt 1680
ctagatgcct gcagcgttaatt cttccttttt tctcgcctttt ggtctttttt tttttttttt 1740
tggtggttttt gatagctgtt ctaatatttt tattttttttt gtttttttttt gtttttttttt 1800
agtttttttt cccttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1860
cttttttttt cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1920
attttttttt cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1980
cttctttttt ctttcttttt tttttttttt tttttttttt tttttttttt tttttttttt 2040
cttttttttt cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2100
cttttttttt cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2160
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2220
<210> 26
| DNA |
| Artificial Sequence |

<220> PCR Amplicon 221-2.

<400> 26

```
aacaacaaga ccggccacac cctccagctg gaggacaaga ccaagtcgca cggccgcagg 60
tgcccacact ccgcagcaca cggccacaat ccgccgagc ggccgagtcg ccgccgaggc 120
aacggtccag tcacagcgaac cgagggcacc atcactattc caaatttaag gaagagccag 180
atcagctct acctgcaaca cccggtcggc ggtcgcaccc atacagctgg accgcccagg 240
aacgtcctag cagctgctggt cagccacacta aataatctag acatctggtg 420
gtaagagccaa ctgtagctattt ggattacaata aaaaatagta gaagagccag 540
aatatatgatt tcctttagat caccagttgg ggatctgctg cagagctgcg 660
tctgtgttgg tttaattacc cccatgtgta tgcggcgaca gaagagccag 720
tcgccgctgc tgctccccct ttgtaagctg gcggcgagtc ccggccgagg 840
```

The rest of the text continues similarly, listing sequences and their respective positions, with DNA and artificial sequence annotations.

PCT/US2005/034947
<210> 27
<211> 2830
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Amplicon 221-3.

<400> 27
tacaacctca agtggtctct ctccccagct gacagcagcc agtactacat cacctctctc 60
gcgccacaac actcgaagtt gtggaagctc aacaagcaca agatatatt gtcacactc 120
tcttcacaca acctccatcc gaagttggtg aatagcgcacc atcgctcttc ttaccgtgatc 180
catgccaggct ggttagtctcc tgcacagcag gttcttggcg gttcctccctg ctcacctgcc 240
tcccggtgaag atcagagcaag ctggtgctct aacaggctag gtagtttctg acacccggc 300
tgacctctgtag tggaggttctg tggaggttctg cttccctcctc ttcctccctc gcagttttctg 360
cctccctcctc 420
tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 480
tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 540
tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 600
tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 660
tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 720
tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 780
tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 840
tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 900
tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 960
tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1020
tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1080
tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1140
tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1200
tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1260
tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1320

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1380

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1440

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1500

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1560

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1620

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1680

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1740

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1800

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1860

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1920

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 1980

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 2040

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 2100

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 2160

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 2220

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 2280

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 2340

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 2400

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 2460

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 2520

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 2580

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 2640

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 2700

tgtagatcacag cccgcctcttc ggtctctctc cccgcctcttc ggtctctctc 2760
cgtcggggc catcgtggcc tcttgctctt caggatgaag agctatgttt aacagtgcac 2820
cccgtcaatt

<210> 28
<211> 136
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Amplicon 0784/0564

<400> 28
aatcccacaga attggagcaaa acgacacaaaa attccaacaggg attggcggct gacatgcca 60
gcgcgggtgtc gctgccgggcg gggccgacac gggacggagg gacagctcag 120
cctcatttgga acgtag 136

<210> 29
<211> 263
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Amplicon 0784/0543

<400> 29
aatcccacaga attggagcaaa acgacacaaaa attccaacaggg attggcggct gacatgcca 60
gcgcgggtgtc gctgccgggcg gggccgacac gggacggagg gacagctcag 120
cctcatttgga acgtagaata acttaagggc aagtcgccaa aatactgaa aaatagaaa 180
aaagaagaa atacatgaaa tggattttgaa atcaattgga agatgttagt aatcttgttt 240
ttcgaagcg aacgatcctg atg 263

<210> 30
<211> 227
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Amplicon 0569/0577

<400> 30
ggtcaagtgg accatggttc acctgatttaa tccctccccctc tccctcttttta tccctcttttt 60
tgggtgttac accaatagtg gttggacccctc gttattttctc cgtaaaaatt cttggacgga 120
tggaagagtg aagagataagg caagtcaaag aaagtaaaca acggaagtttc atcaacctca 180
aatattggcgc caacgtggttg ccacgaccac aacattaagct atacatg 227

<210> 31
<211> 492
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Amplicon 0570/0542

<400> 31
gatggaagag ataatgcaagtt caaaaagaaag taacaaaaag gtttcacatcg ctacaattaattt 60
tggcaccactg gttggccaca gacacaaactc tacgtataca tggatttctc tgctttccctc 120
attttggaga aaaaagggg ttccaaaccc caaatgcttctc aggagataaa aaagtataata 180
atctgaaaca ttgctccgac ctggccccttt aattggttac gttgcataacct aacoccaacctc 240
aacatgttctg tggagatgtag tgcgaacaaa cctagggccc tggctttgata 300
ggaaataaccc aggaatatctc ccaagctaaatc aaaaatata taaatggaag aaacaaatctg 360
gtacggaattg ttgccaggacc ttccattctgc agtaacagaa cggccctta atccacccca 420
atcacagtgg attggagtgg attgagttac agccaaacaa ggcotaagtg caagataaat 480
aaatcacccg tc 492

<210> 32
<211> 555
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Amplicon O784/O215

<400> 32
aattccacaag attggagcacg aagacacaaa aattcaacaag aattggcaggct gacattgcca 60
ggcccggatct gcatcggcgc gcgggcccgg ccggagcgac ggaagacggc gacaatcag 120
tctccattgga acgtgaaat acttaagggc aaggtcttc aatactgaa aaaatgaaag 180
aagaagaaaa atacatgaaat tagatattga aataattgga gatgtttttag aactcttgtt 240
ttgcaacagc aacgaatcag atggccaaac tacatgatct tttgttggaa gtcnnreacha 300
taaatttttc tctgtcattca caacctgttg gcgaacctgt gattggttca taaaaattctt 360
tggagggagc gaagaagagc tgaaggaata agcaagttaa aagcctcata actcagattg 420
taaactgaa cccgggcaca cgaatctga atcagaggg gcagatattg gcgtcagcgg 480
atgacccccc cccgatgacgc gggacaagcc gttatagctt tgtgaactgc agaaccgcaa 540
cgtggaagga gccac 555

<210> 33
<211> 547
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Amplicon O219/O577

<400> 33
cggcgacgcc ctcaatcgcct cctatatgta gccgtattac aatcgtacgc aatctcgtac 60
attaaaaacc tcgcagatgt ttatattatt gttcataaggcc ccataaattcc ccctctcttg 120
tccggttttt gtatctctca ttaatataaa tcacgcttaa ataagttaag agacaacaca 180
aacaaccaqg ttttaaaata tagtatattgacctcagatctt gattgatct 240
tagaataacgtc cgtgtcattca aatctctagc gctcggttct actaaaaataa aagaaaaca 300
tacagacccc tcataaaaggi ggtcagaggg gcctctgtttg actcatttta tctctctctc 360
tctctctttta ccacagatgtc ggtgacacct cttcctgttggt gcgctggctg 420
cgtaaaaattt ctttgagggc gagaagagtg aagagatataa agaatgcaca agaatgaaca 480
acgagatcct acatcgtaca aatcttgtgc caccagcacc aacctttgct 540
atacatg 547

<210> 34
<211> 243
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Amplicon O506/O476

<400> 34
tctcgtactc accaacaattg gcggcatcct gctgttggct cataaaaatttt ctggagggga 60
cgggaagaag aatggagggc atcagataa aacagctgtaa gtttaactgct 120
aagcgaaaaag acgatctttt gatctgtaga aagcctcagtc tttagctaaa aagcgtcagct 180
gggtcgagcg gcggagcaacg ccttttttgct ttgggaactg acagactgcg ccggtttag 240
gag 243

<210> 35
<211> 754
<212> DNA

18
Artificial Sequence

PCR Amplicon 0447/0577

400:35
aaccccttag atgtatttgt atttgtaaaa tacatctatc aataaaattt ctaattccta 60
aaccacaaat ccagggcgag atcggtgaccc gggatcttcc taagctgctc gcagctgtct 120
gccgccggg atcgatgggc ccggccgcaac gctcgcgatcc ggcccatagc ggctctgttg 180
tctctcagac gtaagtcctt cttttaaccg ctaacgcgttc cagccgctcc ataaggttcg 240
gtttcccaat cgtgctcaat tcgctagtcat aaaaaagcgtt gcaatgttgt attaagttgt 300
tcaagcgttc aatctttccc tcctagcttc cgtttgttta tcctctaatc tatataatcc 360
agttttaata agtttaagaga caaacaacaca acacaggtta tttaatatgt tatgtaatct 420
agatacctag attatgttaa cccataagtag aatatacagtt gtttatataa tctatgagct 480
gggattttta atcttttaaaag aaaacaaaca aagccccctat aaaaaaggggt caagttgagc 540
cctgtcact catttaatcc ccctcccctcc tcttttatcc ctctttttttt gtagttcacc 600
aatagttggtg tgcaccctgtt attggcgtctt aaataattctt ggagaaggtgg agaagttgaa 660
agataacgca gtcacacaaaa agtacacacg aagttctacac agctacaataa tttaagcccaa 720
cctggggac cagcacaaaa ttataagctg catg 754

36
25
DNA
Artificial Sequence

Oligonucleotide primer

400:36
cgtatttca acggtacgaa atcag 25

210:37
211:25
DNA
Artificial Sequence

223: Oligonucleotide primer

400:37
ggataacaa acgggacatt agaag 25

210:38
211:104
DNA
Artificial Sequence

222: Amplicon of SEQ ID NOs: 36 and 37

400:38
cgtatttca acggtacgaa atcag 60
tcaatgcagtc aatctttccc tcctacggttc ccggagtttt atcc 104

210:39
211:25
DNA
Artificial Sequence
IVR1 (0197) Primer used to generate a 226 bp amplicon as an internal positive control

cgcgtgatatc acaaggctgtgtacc

IVR2 (0198) Primer used to generate a 226 bp amplicon as an internal positive control

ggagccgctgtagagcatgacgatc