Title: SLIM MULTI-BAND ANTENNA ARRAY FOR CELLULAR BASE STATIONS

Abstract: This invention is in the field of base station antennas for wireless communications. The present invention refers to a slim multi-band antenna array for cellular base stations, which provides a reduced width of the base station antenna and minimizes the environmental and visual impact of a network of cellular base station antennas, in particular in mobile telephony and wireless service networks. A multiband antenna array comprises a first set of radiating elements operating at a first frequency band and a second set of radiating elements operating at a second frequency band, said radiating elements being smaller than \(\lambda/2 \) or smaller than \(\lambda/3 \), being \(\lambda \) the longest operating wavelength. The ratio between the largest and the smaller of said frequency bands is smaller than 2.
Published:
— with international search report

before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the “Guidance Notes on Codes and Abbreviations” appearing at the beginning of each regular issue of the PCT Gazette.
SLIM MULTI-BAND ANTENNA ARRAY FOR CELLULAR BASE STATIONS

DESCRIPTION

OBJECT OF THE INVENTION

The present invention refers to a slim multi-band antenna array for cellular base stations, which provides a reduced width of the base station antenna and minimizes the environmental and visual impact of a network of cellular base station antennas, in particular in mobile telephony and wireless service networks. The invention relates to a generation of slim base station sites that are able to integrate multiple mobile/cellular services into a compact radiating system.

A Multi Band antenna array of the invention comprises an interlaced arrangement of small radiating elements to significantly reduce the size of the antenna. More specifically the width of this antenna being similar to the width of a typical single band antenna so about half of the width of typical Dual Band antenna.

BACKGROUND OF THE INVENTION

The UMTS, third generation of wireless communications systems, that is being added to 2nd generation of wireless communications systems (such as GSM900, DCS, PCS1900, CDMA, TDMA) has created a demand for multiband antennas and in particular to Dual Band Base Station Antennas. The typical Dual band antennas that are used today are side by side arrays where the size is typically twice of the size of a single band antenna. To be more specific the typical width of Dual Band antenna is around 2 wavelengths, which is about 30cm in the case of an antenna operating at two of the following communication services DCS, PCS or UMTS while the width of a Single Band antenna is typically around one wavelength, which is around 15cm in case of a DCS, PCS or UMTS antenna.

The cellular services require several Base Stations that are composed by several base station antennas to give service to the cellular users. The antennas are the radiating part of the Base Station. Typically, the radiating part of the Base Station is
composed by nine or three independent antennas that give coverage to a specific part of the city, village, road, motorway. As the radiating part of the Base Station is composed by several antennas, the size of the Base Station is large and has a significant visual impact.

The visual impact due to the size and number of antennas at the Base Station has been a rising issue for operators and consumers, so creating a demand for smaller antennas, having less visual impact, but still maintaining the same performance and functionality. Governments desire to minimize the visual impact of the Base Station, and it is becoming very difficult for the operators to get a licence to set up new Base Stations on the cities and villages around the world.

Adjustable electrical down-tilt techniques for antenna systems are very well known in the related background art.

SUMMARY OF THE INVENTION

The invention provides tools and means to minimize the visual impact and cost of mobile telecommunication networks while at the same time simplifying the logistics of the deployment, installation and maintenance of such networks. The invention provides a slim base station site which integrates multiple mobile/cellular services into a compact radiating system. The radiating system includes an adjustable electrical tilt system for one or more of the operating frequency bands, thus providing additional flexibility when planning, adjusting, and optimizing the coverage, and increasing the capacity of the network. Also, the slim form factor of the radiating system as described by the present invention enables slimmer, lighter towers to support such radiating systems, which are easier to carry to the roof of buildings (through elevators, through stairs or small gear systems) where the systems might be installed. Also, such slim systems enable such lighter and portable towers to be implemented as a cascading of modular elements, and also, to introduce folding, retracting or bending mechanisms for an easier installation. Also, the slim site can be easily disguised in the form of other urban architectural elements (such as for instance street light poles, chimneys, flag posts, advertisement posts and so on)
while at the same time integrating other equipment (such as filters, diplexers, tower mounted low-noise amplifiers and/or power amplifiers) in a single, compact unit.

One aspect of the invention refers to a Slim Stacked dual band antenna array using compact antenna and compact phase shifter technology to allow the integration of three dual band antennas on a slim cylinder, that result in a base station of reduced size and reduced visual impact when compared to the radiating part of current base stations. More specifically, the diameter of this slim array that compose the radiating part of the base station is typically less than 2 wavelengths for the longest operating wavelength, and in some embodiments, such a diameter is less than 1.6, 1.5, 1.4 or 1.3 wavelengths, which is significantly smaller than the size of the radiating part of typical base stations. The invention therefore provides as well a method for reducing the size of the radiating part of the base station, and therefore a method for minimizing the environmental and visual impact of a network of cellular base station antennas. Also, this provides a means of reducing the cost of installation of the whole network, and a means to speed-up the deployment of the network.

A particular embodiment of this invention includes a Dual Band and dual polarized array with independent variable down-tilt for each frequency band. The ratio between frequency bands is less than 2, and in some preferred embodiments less than 1.6, 1.5, 1.4, 1.3, 1.2 and 1.15. In particular, this invention is suitable for combining frequency bands such as UMTS and GSM1800 (DCS), UMTS with PCS1900 or in general two or more cellular or wireless systems operating in the vicinity of the 1700 MHz - 2700 MHz frequency range. For instance, in the case of UMTS (1920MHz-2170MHz) the central frequency is f2=2045 MHz, while for GSM1800 (1710MHz-1880MHz) the central frequency is f1=1795MHz. In a preferred embodiment the ratio between both frequencies is f2/f1=1,139 which is smaller than 1.3. In some embodiments the ratio is computed from the central frequencies of the band. In some embodiments the ratio is computed from other frequencies chosen at the two bands.

The width and thickness of this antenna is small compared to typical Dual Band base station antenna. Particularly the width is less than two wavelengths, such as for instance one and half wavelengths (1.5λ), 1.4 times the wavelength (1.4λ), 1.3 times
the wavelength (1.3\(\lambda\)) and even in some embodiments less than one wavelength (\(\lambda\)) for any of the operating bands. The thickness of this antenna is less than one third of the wavelength, such as for instance 0.3 times the wavelength (0.3\(\lambda\)) and even in some embodiments less than one third of the wavelength (0.3\(\lambda\)) for any of the operating bands. Despite of the narrow width and thickness of the antenna, the radiation pattern characteristics, such as vertical and horizontal beamwidth, and upper side-lobes suppression, are maintained.

Variable down-tilt is achieved by using a phase shifter and using adequate vertical spacing between radiating elements, less than one \(\lambda\), but also preferably less than \(\frac{3}{4}\) of \(\lambda\) and less than \(\frac{2}{3}\) of \(\lambda\) at all frequencies of operation to maintain a good radiation pattern. Such a spacing is specified, for instance, taking into consideration the center of the radiating elements. In a preferred embodiment, the phase shifter comprises a movable transmission line above a main transmission line.

The invention allows the integration of three dual band antennas in a slim cylinder due to the compact phase-shifter that allows variable electrical downtilt, being the downtilt independent for the two operating bands of the dual band antenna. The thickness of the phase shifter is less than 0.07 times the wavelength (0.07\(\lambda\)).

The invention makes it possible to integrate three dual band antennas in a slim cylinder, due to the use of compact radiating elements and compact ground plane. When considering the maximum length in the axis of the array, these radiating elements are smaller than half a wavelength (\(\lambda/2\)) at the frequency of operation, but also smaller than \(\lambda/3\) in several embodiments. Several techniques are possible to reduce the size of the radiating elements within the present invention, such as for instance using space-filling structures, multilevel structures, box-counting and grid dimension curves, dielectric loading and fractal techniques.

Therefore, one aspect of the present invention refers to a multiband antenna system for cellular base stations, which includes at least one multiband antenna array, wherein each antenna array comprises a first set of radiating elements operating at a first frequency band and a second set of radiating elements operating at a second frequency band. The radiating elements of this antenna system are smaller than \(\lambda/2\)
or smaller than \(\lambda/3 \), being \(\lambda \) the longest operating wavelength. Preferably the ratio between the largest and the smallest of said frequency bands is smaller than 2. This ratio can be computed from the largest and smallest operating frequency within the bands, or by taking the central frequencies of each band.

In a preferred embodiment said antenna arrays are radially spaced from a central axis of the antenna system, and each antenna array is longitudinally (i.e., along the direction of the central axis) placed within an angular sector defined around said central axis.

BRIEF DESCRIPTION OF THE DRAWINGS

To complete the description and in order to provide for a better understanding of the invention, a set of drawings is provided. Said drawings form an integral part of the description and illustrate a preferred embodiment of the invention, which should not be interpreted as restricting the scope of the invention, but just as an example of how the invention can be embodied. The drawings comprise the following figures:

Figure 1.- shows a schematic plan view of an example of a U shaped microstrip or strip-line phase shifter. In figure (a) the phase-shifter is at its minimum phase position and in figure (b) it is at its maximum phase position. The moveable transmission line is shown in lighter shading than the fixed main transmission line.

Figure 2.- shows an elevational front view of a flexible bridge mounted together with a movable transmission line and a main transmission line.

Figure 3.- shows a graphic representing phase progression for different positions of the phase shifter.

Figure 4.- shows examples of some possible embodiments of the small radiating elements for the antenna array. In figures (b), (c) and (e) the radiating elements are represented in perspective and housed within a box type ground-plane. In figures (a), (d) and (f) the radiating elements are shown in a plan view.
Figure 5.- shows in figures (a), (b) and (c) perspective views of examples of the arrangement of interleaving radiating elements working at different frequencies. Figure (d) is a schematic plan view of the interlaced disposition of the radiating elements. The position of each radiating element is represented by a square and the elements for a first frequency are shown in lighter shading, and the elements for a second frequency are shown in darker shading.

Figure 6.- shows in perspective more examples of interleaving radiating elements working at different frequencies according to the present invention.

Figure 7.- shows a front view of the top portion of an antenna array, showing the arrangement of the radiating elements and its interlaced configuration.

Figure 8.- shows in figure (a) a perspective view of a preferred arrangement of an antenna array showing the radiating elements and its stacked configuration. Figure (b) is an schematic front view of an example of the spatial arrangement of the stacked radiating elements working at different frequencies (elements for a first frequency shown in black boxes, elements for a second frequency shown in gridded boxes). Figure (c) is a schematic front view of an example of stacked radiating elements in which some elements are interlaced in the central portion of the array.

Figure 9.- shows a schematic cross-sectional views of a tri-sector antenna housed within a cylindrical radome. The three rectangular shapes represent the antenna arrays in a top view. Figure (a) shows three dualband antennas forming a tri-sector with 20 degrees of angular spacing. Figure (b) shows a tri-sector antenna without angular spacing, and figure (c) a tri-sector antenna with 20 degrees of angular spacing and ground-planes with bent flanges.

Figure 10.- shows a perspective view of slim stacked dual band antenna arrays mounted on a modular tower, in three different heights from the floor.

Figure 11.- shows an example of how the box-counting dimension is computed according to the present invention.
Figure 12.- shows an example of a curve featuring a grid-dimension larger than 1, also referred here as a 'grid-dimension curve'.

Figure 13.- shows the curve of fig.12 in a 32-cell grid.

Figure 14.- shows the curve of fig.12 in a 128-cell grid.

Figure 15.- shows the curve of fig.12 in a 512-cell grid.

DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION

The multiband antenna array of the invention comprises a first set of radiating elements (17) operating at a first frequency band and a second set of radiating elements (16) operating at a second frequency band. The radiating elements of this antenna system are smaller than \(\lambda/2 \) or smaller than \(\lambda/3 \), being \(\lambda \) the longest operating wavelength. Figure 4 shows a few examples of some possible radiating elements (13) that might be used within the scope of the present invention. The height of the radiating elements (13) with respect to the ground plane of the antenna is also small, helping the integration of three dual band antennas on a slim cylinder. Such a height (13) is smaller than 0.15 wavelengths (0.15\(\lambda \)) at the frequency of operation, but also smaller than 0.08\(\lambda \) in several embodiments. Such reduced height is possible because of the feeding technique used to feed the elements. In some embodiments, the radiating elements (13) placed on substrate (15) are fed in four points (14) and the two ports with the same polarization are combined with a divider, resulting in an element with two ports, that exhibits orthogonal polarizations.

These four feeding points (14) can be feeding the radiating element (13) for instance by direct contact or by capacitive coupling. In case of using the capacitive coupling, no electrical contact is required to connect the element, so solder joints or metal fasteners are avoided on the element. This can improve inter-modulation performance and it is one of the preferred arrangements of the invention. In some embodiments the aspect ratio of the elements (vertical:horizontal sizes) will be 1 to 1 (1:1), in some other preferred embodiments, a deviation smaller than a 15\% in one
of axes will be introduced in at least one of the elements to improve the polarization isolation, the isolation between connectors of different bands, or both.

In order to further reduce the size of the antenna system, the radiating elements (13) of each multiband antenna array may be interlaced in different configurations. An example of the interlaced arrangement of the radiating elements is shown in figure 5. The radiating elements of a first frequency band (16) are interlaced with the radiating elements of a second frequency band (17).

More in detail, and in view of figure 5d, all the radiating elements are arranged in a matrix defined by two substantially parallel columns and a plurality of substantially parallel horizontal rows. In each column, each radiating element of one frequency band is placed in between radiating elements of the other frequency band. In addition, in each row two radiating elements of different frequency bands are facing each other. In this interlaced disposition, each radiating element of one frequency band is vertically and horizontally adjacent to radiating elements of the other frequency band. In some embodiments, all the elements in the array are sequentially interlaced, while in other embodiments only a fraction of the elements are interlaced and some others remain on their respective side-by-side columns with no interlacing.

Examples of interleaving radiating elements working at different frequencies, are shown in figures 5a,b,c and in figure 6.

The horizontal separation between elements (centre to centre) is smaller than $\lambda/2$, but bigger than $\lambda/3$ to maintain the proper horizontal beamwidth (<75 degrees). It could be less than $\lambda/3$ if broader horizontal beamwidth (>70 degrees) is required.

A horizontal offset between bands is also introduced in some embodiments to adjust horizontal beamwidth. This is for instance shown in figure 7, where the horizontal spacing between interlaced elements (16) is smaller than the horizontal spacing between interlaced elements (17).
Figure 7 shows a practical embodiment of a multiband antenna array in which the radiating elements (16), (17) of the two frequency bands are interlaced as previously described. Several features are included in some embodiments to improve isolation between polarization and cross-polarization level, for instance each column of elements having a discontinuous ground plane in between, for which slots (27) are provided therein. In some embodiments each radiating element is mounted inside a box type ground plane (18), having side walls connected to a bottom base, whereas the top base is open, so that the radiating element is orthogonally placed with respect to the walls of the box type ground plane (18). The bottom base acts as a ground plane for each radiating elements (16), (17) while the side walls (18) enhance the isolation between radiating elements.

For a better manufacturability, this box (18) can be made of metal casting or injection-moulded plastic covered with a conductor. So there is a possibility to manufacture this antenna without using an extruded or sheet metal ground plane. Also, for better isolation and cross polarization performance, each element should preferably have four feeding points (14) or more, preferably symmetrical, although unsymmetrical embodiments are allowed as well.

The vertical spacing (d) between radiating elements has been represented in figure 7, where such spacing has been considered as an example between the centers of consecutive radiating elements of a first frequency band (17). Said vertical spacing (d) may be less than one λ, but also preferably less than 3/4 of λ and less than 2/3 of λ at all frequencies of operation to maintain a good radiation pattern.

In some embodiments a Filter/Diplexer is added inside the antenna to achieve greater isolation between electrical ports of different frequency bands.

Alternately, the radiating elements may be arranged in a stacked topology also in order to reduce the size of the antenna array. An example of the spatial arrangement of the stacked radiating elements working at different frequencies is shown in figure 8. Squared elements are shown in figure 8b to illustrate the positions of the elements in the array according to the present invention. Nevertheless, other shapes of elements (for instance space-filling, fractal, multilevel, straight, triangle, circular, polygonal) and antenna topologies (for instance patches, dipoles, slots) are
possible according to the invention. All the radiating elements are aligned in a single column, wherein the elements of a first frequency band (17) are grouped together in the column below the elements of a second frequency band (16) which are grouped at the top portion of the column. In some embodiments, the second frequency band is the highest frequency one to reduce the gain difference between bands. When the gain at the upper band is to be maximized, the highest frequency elements are preferably placed in the lower section of the stack.

The number of radiating elements at each of the two regions for each band does not need to be the same. Different number of elements will be preferably used in those cases where a different radiation pattern for each band is desired. The spacing between elements will preferably be between 0.6λ and 1.2λ at the shortest operating band within each corresponding region. For instance, in some embodiments the physical distance between elements in a first frequency region will be different than the physical distance between elements in a second frequency region, but the electrical distance (in terms of their corresponding operating frequencies) will be substantially similar.

A preferred embodiment with stacked configuration of the radiating elements is shown in figure 8a, wherein each radiating element is located within a box-like ground plane (18).

The vertical separation between stacked arrays (centre to centre of each group of elements corresponding to a band) is larger than λ, such distance is modified to control the gain adding more elements. In some embodiments, as shown in figure 8c it is possible to interlace some elements of a first frequency (17) with some elements of a second frequency (16) to modify the radiation pattern and gain of the antenna.

Several features are included in some embodiments to improve isolation between polarization and cross-polarization level, for instance some flanges (29) between elements. In some embodiments, the flanges (29) will be placed between every single radiating element and will have the same shape. In other embodiments, further improvement of the polarization isolation is achieved by using asymmetrical
arrangements and distributions of flanges (29) between radiating elements, as shown for instance in figure 5b.

In figure 8a only one antenna array has been represented mounted on a central support (28), however a preferred embodiment of the invention comprises two additional antenna arrays to form a tri-sector antenna. Therefore, one of the main advantages of the present invention is that it is possible to integrate three dual band antennas in a slim cylinder, forming a tri-sector antenna. A single cylinder radome (22) can be used. This technique is used to reduce visual impact by Base Station Antenna Manufacturers. However, in the case of this Dual Band antenna, the diameter of the circumference formed by the three antennas is less than 2λ at the greater frequency of each band, and even less than 1.5λ. This is achieved because of the compact size and architecture of each Dual Band antenna.

In some embodiments, the number of radiating elements around the central support (28) will be just two, while in some other embodiments this number will be larger than three, preferably 4, 5 or 6.

In some embodiments, an angular spacing is introduced between antennas, and a mechanical feature is added in order to adjust the horizontal boresight of each sector so optimising the azimuth coverage. In this particular case, the diameter of the total circumference formed by the three antennas is still less than 2λ, and even less than 1.82λ at the highest frequency, with an angular spacing of at least 20 degrees. Smaller diameter is achieved in some embodiments by reducing the angular spacing and/or its adjustment range.

In order to shrink the diameter of a tri-sector Dual Band even further, small radiating elements with smaller ground plane are used in some embodiments including a stacked configuration according to the present invention. As shown in figure 9, the antenna arrays (19, 19', 19'') are radially spaced from a central axis (21) of the antenna system. Each antenna array (19, 19', 19'') is respectively placed longitudinally within an angular sector (20, 20', 20'') defined around said central axis (21), the antenna arrays (19, 19', 19'') being substantially parallel to said central axis (21). The three antenna arrays (19, 19', 19'') are housed within a substantially
cylindrical radome (22), which is preferably made of dielectric material and is substantially transparent within the 1700-2700 MHz frequency range. As shown in figure 9, each array is placed according to the position of the sides of an equilateral triangle, which center is the axis (21) of the antenna system. The central support (28) is aligned with respect said axis (21), and the antenna arrays (19, 19', 19'') are mounted on said central support (28) at a selected distance.

In the embodiment of figure 9a, the three angular sectors (20, 20', 20'') are less than 120° so that an angular spacing (A) is defined between said angular sectors. Preferably, said angular spacing (A) is within the range 0° to 30°. In the embodiment of figure 9b the diameter of the cylindrical radome (22) is reduced with respect to the embodiment of figure 9a, for which the three angular sectors (20, 20', 20'') extend 120° so that there is no angular spacing (A) in between. The antenna arrays (19, 19', 19'') may be in contact at their sides.

Figure 9c is an example of a Tri-Band antenna with three independent down-tilt and an angular spacing of 20 degrees. For each antenna array (19, 19', 19'') the ground plane profile (23, 23', 23'') has flanges (24, 24', 24'') bent upwards at the optimum angle for minimizing antenna diameter and maximizing aperture of radiation, which is 40 degrees in this example.

For any given tri-sector antenna, there is always the compromise of:

- having the smallest radome diameter for lower visual impact and lower windload,
- allowing the mimetization of the radiating part of the base station with the environment,
- having the biggest angular spacing for more flexibility in optimising the azimuth coverage of each sector,
- having the maximum horizontal radiation aperture to increase the directivity of the antenna in the horizontal plane.

In some embodiments, a preferred angle (α) that would allow the best compromise is equal to 30 degrees + Angular Spacing (A) divided by 2:
\[\alpha = 30 + A/2 \]

where \(\alpha \) is the angle between the horizontal and the flanges of the ground plane and \(A \) is the angular spacing between 2 antennas.

Each multiband antenna array is provided with a phase shifter device providing an adjustable electrical downtilt for each frequency band. The phase shifter includes an electrical path of variable length, for which the phase shifter preferably comprises a first transmission line slideably mounted on a second transmission line.

One aspect of the invention refers to the phase shifter shown in figure 1, which in a preferred embodiment is formed by a moveable line (1) mounted on a fixed main transmission line (3). The moveable line (1) has a "U" shape, but could have another shape featuring two transmission line ends (2, 2') that move together over such main transmission line (3). Preferably, the moveable line (1) will have two parallel ends (2, 2') that overlap an interrupted region of the fixed main transmission line (3), such that a linear displacement of said moveable line (1) introduces a longer electrical path on a whole transmission line set. As shown in figure 2, the moveable line (1) is formed by a first substrate (7) provided with a first conductive layer (6), and the fixed main transmission line (3) is similarly formed by a second substrate (9) and a second conductive layer (8) on one of its faces. The moveable line (1) slides above the main transmission line (3) and both are separated by respective low friction layers (30),(30') of a low microwave loss material, which could be for instance a Teflon base, to increase durability and avoid passive intermodulation (PIMs) at the same time. All parts are sandwiched together with a flexible bridge (5) that acts as a spring to avoid air gaps between layers and so maintaining the proper phase shifting. The bridge (5) is formed by a base (12) fixed for instance to a support (31) of the main transmission line (3). A flexible arm (10) projects horizontally from said base (12) and forms a protuberance (11) at its free end which maintains the moveable line (1) in contact with the main transmission line (3) during its displacement. The bridge (5) acts as a spring due to its shape and the plastic material used. For example, this plastic material can be chosen, without any limiting purpose, from the following set: Polypropylene, Acetal, PVC, and Nylon. This part can be moulded for manufacturability and low cost.
The electrical length of the phase shifter may be adjusted either manually or by means of a small electric motor (not shown), which in turn may be remotely controlled by means of any technique known to the prior art.

Another feature of the slim stacked dual band array is the integration of a modular system to easily modify the height of the antenna from the floor, as represented in figure 10. This modular system for modifying the height of the antenna from the floor, allows the operator to achieve the desired coverage region for the base station. This is possible owing to the light weight and small profile of the antenna. More in detail, the antenna system is mounted on an elongated tower or support (25) of adjustable height and preferably of cylindrical shape. The support may be formed by one or more modular support sections (26) axially coupled together, by means of any technique known in the state of the art suitable for this purpose. Additionally, the support (25) may comprises hinge means at its bottom end so that the support (25) can be bent to make easier its installation and maintenance. Alternately, the support sectors may form a telescopic structure, and the support (25) can be retracted.

Several techniques are possible to reduce the size of the radiating elements within the present invention, such as for instance using space-filling structures, multilevel structures, box-counting and grid dimension curves.

About Space-Filling Curves

A way of miniaturizing the radiating elements of the Multiband Array is shaping part of the antenna elements (for example at least a part of the arms of a dipole, the perimeter of the patch of a patch antenna, the slot in a slot antenna, the loop perimeter in a loop antenna) as a space-filling curve (SFC), i.e., a curve that is large in terms of physical length but small in terms of the area in which the curve can be included. More precisely, the following definition is taken in this invention for a space-filling curve: a curve composed by at least five segments which are connected in such a way that each segment forms an angle with their neighbours, i.e., no pair of adjacent segments define a larger straight segment. In some embodiments a SFC can comprise straight segments, and in some other embodiments a SFC can comprise curved segments, and yet in other cases a SFC can comprise both straight
and curved segments. Also, whatever the design of such SFC is, it can never intersect with itself at any point except the initial and final point (that is, the whole curve can be arranged as a closed curve or loop, but none of the parts of the curve can become a closed loop). A space-filling curve can be fitted over a flat or curved surface, and due to the angles between segments, the physical length of the curve is always larger than that of any straight line that can be fitted in the same area (surface) as said space-filling curve. Additionally, to properly shape the structure of a miniature antenna according to the present invention, the segments of the SFC curves must be shorter than at least one fifth of the free-space operating wavelength, in some embodiments preferably shorter than one tenth of the free-space operating wavelength. Although five is the minimum number of segments to provide some antenna size reduction, in some embodiments a larger number of segments can be chosen, for instance 10, 20 or more. In general, the larger the number of segments and the narrower the angles between them, the smaller the size of the final antenna.

About the Box-Counting Dimension

One aspect of the present invention is the box-counting dimension of the curve that forms at least a portion of the antenna. For a given geometry lying on a surface, the box-counting dimension is computed in the following way: first a grid with substantially squared identical cells boxes of size L1 is placed over the geometry, such that the grid completely covers the geometry, that is, no part of the curve is out of the grid. Then the number of boxes N1 that include at least a point of the geometry are counted; secondly a grid with boxes of size L2 (L2 being smaller than L1) is also placed over the geometry, such that the grid completely covers the geometry, and the number of boxes N2 that include at least a point of the geometry are counted again. The box-counting dimension D is then computed as:

$$D = \frac{\log(N2) - \log(N1)}{\log(L2) - \log(L1)}$$

In terms of the present invention, the box-counting dimension is computed by placing the first and second grids inside the minimum rectangular area enclosing the curve of the antenna and applying the above algorithm.
The first grid should be chosen such that the rectangular area is meshed in an array of at least 5×5 boxes or cells, and the second grid is chosen such that $L_2 = 1/2 \ L$ and such that the second grid includes at least 10×10 boxes. By the minimum rectangular area it will be understood such area wherein there is not an entire row or column on the perimeter of the grid that does not contain any piece of the curve. Thus, some of the embodiments of the present invention will feature a box-counting dimension larger than 1.1, and in those applications where the required degree of miniaturization is higher, the designs will feature a box-counting dimension ranging from 1.3 up to 3, inclusive. These curves featuring at least a portion of its geometry with a box-counting dimension larger than 1.1 will be also referred as box-counting curves.

For some embodiments, a curve having a box-counting dimension close to 2 is preferred. For very small antennas, that fit for example in a rectangle of maximum size equal to one-twentieth of the longest free-space operating wavelength of the antenna, the box-counting dimension will be necessarily computed with a finer grid. In those cases, the first grid will be taken as a mesh of 10×10 equal cells, while the second grid will be taken as a mesh of 20×20 equal cells, and then D is computed according to the equation above. In general, for a given resonant frequency of the antenna, the larger the box-counting dimension the higher the degree of miniaturization that will be achieved by the antenna. One way of enhancing the miniaturization capabilities of the antenna according to the present invention is to arrange the several segments of the curve of the antenna pattern in such a way that the curve intersects at least one point of at least 14 boxes of the first grid with 5×5 boxes or cells enclosing the curve. Also, in other embodiments where a high degree of miniaturization is required, the curve crosses at least one of the boxes twice within the 5×5 grid, that is, the curve includes two non-adjacent portions inside at least one of the cells or boxes of the grid.

An example of how the box-counting dimension is computed according to the present invention is shown in figure 11. An example of a curve (2300) according to the present invention is placed under a 5×5 grid (2301) and under a 10×10 grid (2302). As seen in the graph, the curve (2300) touches $N_1=25$ boxes in grid (2301) while it touches $N_2=78$ boxes in grid (2302). In this case the size of the boxes in
grid (2301) is twice the size of the boxes in (2302). By applying the equation above it is found that the box-counting dimension of curve (2302) is, according to the present invention, equal to \(D = 1.6415 \). This example also meets some other characteristic aspects of some preferred embodiments within the present invention. The curve (2300) crosses more than 14 of the 25 boxes in grid (2301), and also the curve crosses at least one box twice, that is, at least one box contains two non-adjacent segments of the curve. In fact, (2300) is an example where such a double crossing occurs in 13 boxes out of the 25 in (2301).

About Grid Dimension

Analogously, in some embodiments, the radiating elements of the Multi Band Array of the present invention include a characteristic grid dimension curve forming at least a portion of the at least one radiating element of the antenna. A grid dimension curve does not need to show clearly distinct segments and can be a completely smooth curve. For a given geometry lying on a planar or curved surface, the grid dimension in a grid dimension curve is computed in the following way:

first a grid with substantially identical cells of size \(L_1 \) is placed over the geometry of said curve, such that the grid completely covers the geometry, and the number of cells \(N_1 \) that include at least a point of the geometry are counted; secondly a grid with cells of size \(L_2 \) (\(L_2 \) being smaller than \(L_1 \)) is also placed over the geometry, such that the grid completely covers the geometry, and the number of cells \(N_2 \) that include at least a point of the geometry are counted again. The grid dimension \(D \) is then computed as:

\[
D = \frac{\log(N_2) - \log(N_1)}{\log(L_2) - \log(L_1)}
\]

In terms of the present invention, the grid dimension is computed by placing the first and second grids inside the minimum rectangular area enclosing the curve of the antenna and applying the above algorithm. By the minimum rectangular area it will be understood such area wherein there is not an entire row or column on the perimeter of the grid that does not contain any piece of the curve.
The first grid should be chosen such that the rectangular area is meshed in an array of at least 25 substantially equal cells, and the second grid is chosen such that each cell on said first grid is divided in 4 equal cells, such that the size of the new cells is $L_2 = \frac{1}{4} L_1$, therefore the second grid including at least 100 cells. Thus, some of the embodiments of the present invention will feature a grid dimension larger than 1, and in those applications where the required degree of miniaturization is higher, the designs will feature a grid dimension ranging from 1.5 up to 3 (in case of volumetric structures), inclusive. For some embodiments, a curve having a grid dimension of about 2 is preferred. In any case, for the purpose of the present invention, a grid dimension curve will feature a grid dimension larger than 1.

In general, for a given resonant frequency of the antenna, the larger the grid dimension the higher the degree of miniaturization that will be achieved by the antenna. One way of enhancing the miniaturization capabilities of the antenna according to the present invention is to arrange the several segments of the curve of the antenna pattern in such a way that the curve intersects at least one point of at least 50% of the cells of the first grid with at least 25 cells enclosing the curve. Also, in other embodiments where a high degree of miniaturization is required, the curve crosses at least one of the cells twice within the 25 cell grid, that is, the curve includes two non-adjacent portions inside at least one of the cells or cells of the grid.

Figure 12 shows an example of a curve featuring a grid-dimension larger than 1, also referred here as a 'grid-dimension curve'. In figure 13 the curve of fig.12 is in a 32-cell grid. The curve crosses all 32 cells, and therefore $N_1=32$.

In figure 14 the curve of fig.12 is in a 128-cell grid. The curve crosses all 128 cells, and therefore $N_2=128$.

In figure 15 the curve of fig.12 is in a 512-cell grid. The curve crosses 509 cells at least at one point of the cell.

Preferably, the elements in the array, according to the present invention, will be patch antenna elements, having a perimeter or at least one portion of the element structure shaped with a curve of at least 5 segments, being said segments smaller
than the longest operating wavelength (λ) divided by 5. Preferably such a curve will feature a box-counting dimension or a grid dimension larger than 1.1, typical above 1.2 or 1.3. For non-rectilinear curves, it will feature a grid-dimension preferably larger than 1.1, typical above 1.2 or 1.3 as well. In general, the larger the box counting or grid-dimension, the smaller the size of the radiating element.

About Multilevel Antennae

The present invention consists of an antenna whose radiating element is characterised by its geometrical shape, which basically comprises several polygons or polyhedrons of the same type. That is, it comprises for example triangles, squares, pentagons, hexagons or even circles and ellipses as a limiting case of a polygon with a large number of sides, as well as tetrahedral, hexahedra, prisms, dodecahedra, etc. coupled to each other electrically (either through at least one point of contact or through a small separation providing a capacitive coupling) and grouped in structures of a higher level such that in the body of the antenna can be identified the polygonal or polyhedral elements which it comprises. In turn, structures generated in this manner can be grouped in higher order structures in a manner similar to the basic elements, and so on until reaching as many levels as the antenna designer desires.

A multilevel structure is characterized in that it is formed by gathering several polygon or polyhedron of the same type (for example triangles, parallelepipeds, pentagons, hexagons, etc., even circles or ellipses as special limiting cases of a polygon with a large number of sides, as well as tetrahedral, hexahedra, prisms, dodecahedra, etc.) coupled to each other electromagnetically, whether by proximity or by direct contact between elements. A multilevel structure or figure is distinguished from another conventional figure precisely by the interconnection (if it exists) between its component elements (the polygon or polyhedron). In a multilevel structure the majority of its component elements (in some embodiments preferably at least 75% of them) have more than 50% of their perimeter (for polygons) not in contact with any of the other elements of the structure. Thus, in a multilevel structure it is easy to identify geometrically and individually distinguish most of its basic component elements, presenting at least two levels of detail: that of the overall
structure and that of the polygon or polyhedron elements which form it. Its name is precisely due to this characteristic and from the fact that the polygon or polyhedron can be included in a great variety of sizes. Additionally, several multilevel structures may be grouped and coupled electromagnetically to each other to form higher level structures. In a multilevel structure all the component elements are polygons with the same number of sides or polyhedron with the same number of faces. Naturally, this property is broken when several multilevel structures of different natures are grouped and electromagnetically coupled to form meta-structures of a higher level.

Its designation as multilevel antenna is precisely due to the fact that in the body of the antenna can be identified at least two levels of detail: that of the overall structure and that of the majority of the elements (polygons or polyhedrons) which make it up. This is achieved by ensuring that the area of contact or intersection (if it exists) between the majority of the elements forming the antenna is only a fraction of the perimeter or surrounding area of said polygons or polyhedrons.

A particular property of multilevel antennae is that their radioelectric behaviour can be similar in several frequency bands. Antenna input parameters (impedance and radiation pattern) remain similar for several frequency bands (that is, the antenna has the same level of matching or standing wave relationship in each different band), and often the antenna presents almost identical radiation diagrams at different frequencies. This is due precisely to the multilevel structure of the antenna, that is, to the fact that it remains possible to identify in the antenna the majority of basic elements (same type polygons or polyhedrons) which make it up. The number of frequency bands is proportional to the number of scales or sizes of the polygonal elements or similar sets in which they are grouped contained in the geometry of the main radiating element.

In addition to their multiband behaviour, multilevel structure antennae usually have a smaller than usual size as compared to other antennae of a simpler structure. (Such as those consisting of a single polygon or polyhedron). Additionally, its edge-rich and discontinuity-rich structure enhances the radiation process, relatively increasing the radiation resistance of the antenna and reducing the quality factor Q, i.e. increasing its bandwidth.
Thus, the main characteristic of multilevel antennae are the following:

- A multilevel geometry comprising polygon or polyhedron of the same class, electromagnetically coupled and grouped to form a larger structure. In multilevel geometry most of these elements are clearly visible as their area of contact, intersection or interconnection (if these exist) with other elements is always less than 50% of their perimeter.

- The radioelectric behaviour resulting from the geometry: multilevel antennae can present a multiband behaviour (identical or similar for several frequency bands) and/or operate at a reduced frequency, which allows reducing their size.

In specialized literature it is already possible to find descriptions of certain antennae designs which allow to cover a few bands. However, in these designs the multiband behaviour is achieved by grouping several single band antennae or by incorporating reactive elements in the antennae (lumped elements as inductors or capacitors or their integrated versions such as posts or notches) which force the apparition of new resonance frequencies. Multilevel antennae on the contrary base their behaviour on their particular geometry, offering a greater flexibility to the antenna designer as to the number of bands (proportional to the number of levels of detail), position, relative spacing and width, and thereby offer better and more varied characteristics for the final product.

A multilevel structure can be used in any known antenna configuration. As a non-limiting example can be cited: dipoles, monopoles, patch or microstrip antennae, coplanar antennae, reflector antennae, wound antennae or even antenna arrays. Manufacturing techniques are also not characteristic of multilevel antennae as the best-suited technique may be used for each structure or application. For example: printing on dielectric substrate by photolithography (printed circuit technique); dieing on metal plate, repulsion on dielectric, etc.

Further embodiments of the invention and particular combinations of features of the invention, are described in the attached claims.
The invention is obviously not limited to the specific embodiment(s) described herein, but also encompasses any variations that may be considered by any person skilled in the art (for example, as regards the choice of materials, dimensions, components, configuration, etc.), within the general scope of the invention as defined in the claims.
CLAIMS

1.- A multiband antenna system for cellular base stations, comprising at least one multiband antenna array, wherein each antenna array comprises a first set of radiating elements operating at a first frequency band and a second set of radiating elements operating at a second frequency band, wherein the radiating elements are smaller than λ/2 or smaller than λ/3, being (λ) the longest operating wavelength, and wherein the ratio between the largest and the smallest frequency of said frequency bands is smaller than 2

2.- Antenna system according to claim 1 wherein the antenna arrays are radially spaced from a central axis of the antenna system, and wherein each antenna array is longitudinally placed within an angular sector defined around said central axis.

3.- Antenna system according to claim 2 wherein an angular spacing is defined between said angular sectors.

4.- Antenna system according to claim 3 wherein it includes three antenna arrays and wherein the angular spacing defined between said angular sectors is within the range 0° to 30°.

5.- Antenna system according to any of the preceding claims wherein at least a portion of at least one radiating element features a shape selected from the group comprising: space-filling curve, grid-dimension curve, multilevel, or fractal.

6.- Antenna system wherein each radiating element is a patch antenna having a perimeter of the element structure shaped with a curve of at least 5 segments, being said segments smaller than the longest operating wavelength (λ) divided by 5.

7.- Antenna system according to any of the preceding claims wherein in each antenna array the first and the second set of radiating elements are arranged in two substantially parallel columns and in several substantially parallel rows, wherein in each column at least some elements of the first and second set of radiating
elements are interlaced, so that each radiating element is vertically and horizontally adjacent to respective radiating elements of the other set of radiating elements.

8.- Antenna system according any of the claims 1 to 6 wherein the first and the second set of radiating elements of each antenna array are aligned in a single column, wherein the radiating elements of the first and the second set are grouped together forming respectively a first and a second sub arrays one on top of each other in a stacked arrangement, such that the distance between the center to center of each sub array is larger than one operating wavelength.

9.- Antenna system according to any of the preceding claims wherein each antenna array comprises at least one phase-shifter device providing an adjustable electrical downtilt for each frequency band, the phase shifter having an electrical path of variable length.

10.- Antenna system according to claim 9 wherein the phase-shifter comprises a first transmission line electrically connected and slideably mounted on a second transmission line.

11.- Antenna system according to any of the preceding claims wherein the antenna includes a substantially cylindrical radome of a dielectric material, said dielectric material being substantially transparent within the 1700-2700 MHz frequency range, the antenna arrays being housed within said radome.

12.- Antenna system according to any of the preceding claims wherein it is mounted on an elongated support of adjustable height.

13.- Antenna system wherein the support is formed by one or more modular support sections axially coupled.

14.- Antenna system wherein the support comprises hinge, folding or retracting means, so that the support can be retracted or folded.
15.- A multiband antenna array for cellular base station antennas, said antenna array operating at a first and a second frequency bands within the 1700 MHz-2700 MHz frequency range, the ratio between the largest and the smaller of said frequency bands being smaller than 1.28, said antenna array featuring a width smaller than one and a half times the longer operating wavelength, said array including a set of small radiating elements, said elements being smaller one half of the longest operating wavelength, wherein said set of elements include a first subset of elements, a first subset operating at the first frequency band, the second subset operating at the second frequency band, wherein the elements of the first and second frequency bands are spatially interlaced such that the spacing between them is between ½ and 1/3 of the operating wavelength, and wherein at least a portion of the radiating elements feature a shape selected from the following group: space-filling curve, grid-dimension curve, multilevel, fractal.

16.- A method for reducing the environmental and visual impact of a network of cellular or wireless base station antennas, consisting on combining one or more of the narrow width multiband antenna arrays described in claim 15.

17.- A method for reducing the environmental and visual impact of a network of cellular or wireless base station antennas, comprising the step of combining one or more of the narrow width multiband antenna arrays described in claim 15.

18.- A multiband antenna array for cellular base station, said antenna array adapted to operate at a first frequency band and at a second frequency band, the ratio between the largest and the smaller of said frequency bands being smaller than 2, said antenna array including a first set of radiating elements operating at said first frequency band and a second set of radiating elements operating at said second frequency band, said radiating elements being smaller than half a wavelength (λ/2) or smaller than λ/3 of the longest operating wavelength.

19.- Antenna array according to claim 18 wherein the ratio between the largest and the smaller of said frequency bands is smaller than 1.5 or smaller than 1.28.
20.- Antenna array according to claims 18 or 19 wherein the radiating elements of the first and second set of radiating elements are arranged in two parallel columns wherein the said radiating elements are spatially interlaced.

21.- Antenna array according to claim 20 wherein a horizontal spacing is defined between the radiating elements of the first and second set of frequency bands, wherein said spacing is between ½ and 1/3 of the operating wavelength (λ).

22.- Antenna array according to any of the claims 18 to 21 wherein at least a portion of said radiating elements feature a shape selected from the group comprising: a space-filling curve, a grid-dimension curve, a multilevel or fractal.

23.- Antenna array according to any of the claims 18 to 22 wherein each radiating element is a patch antenna or a dipole antenna, having a perimeter or at least a portion of the structure shaped with a curve of at least five segments, being said segments smaller than the longest operating wavelength divided by 5.

24.- Antenna array according to any of the claims 18 to 23 wherein at least a portion of the antenna is defined by a curve having a box-counting dimension or grid dimension larger than 1.1, or 1.2, or 1.3.

25.- Antenna array according to any of the claims 18 to 24 wherein it comprises at least one phase-shifter providing a variable down-tilt for at least one frequency band.

26.- Antenna array according to any of the claims 18 to 25 wherein the phase-shifter comprises a first transmission line slideably mounted on a second transmission line.

27.- Antenna array according to any of the claims 18 to 26 wherein the phase-shifter comprises a first transmission line on a first substrate, and a second transmission line on a second substrate, being the said first substrate mounted onto the said second substrate so that there is a region in which at least a portion of the said first transmission line is in the projection of at least a portion of the said second transmission line, and wherein the said first substrate can slide along a direction...
contained in the plane defined by the said second substrate so that the extension of said region is varied.

28.- Antenna array according to any of the claims 18 to 26 wherein the vertical spacing between radiating elements is less than one wavelength \(\lambda\), or less than \(\frac{3}{4}\) of \(\lambda\), or less than \(\frac{2}{3}\) of \(\lambda\) at all frequencies of operation.

29.- Antenna array according to any of the claims 18 to 28 wherein at least one of the radiating elements is housed within a box-like ground plane.

30.- Antenna array according to any of the claims 18 to 29 wherein at least one row of radiating elements has a discontinued ground-plane.

31.- Antenna array according to any of the claims 18 to 30 wherein a first and a second frequency bands are within the 1700 MHz-2700 MHz frequency range.

32.- Antenna array according to any of the claims 18 to 31 wherein said antenna array features a width smaller than two wavelengths, or one and a half times the longer operating wavelength, or \(1.4\lambda\), or \(1.3\lambda\), or less than \(1\lambda\) for any of the operating bands.

33.- An antenna system comprising three antenna arrays according to any of the claims 18 to 32, wherein the three antennas arrays are housed within a cylindrical radome.

34.- Antenna system according to claim 33 wherein three equal circular sectors are defined within said cylindrical radome, and wherein each antenna array is longitudinal placed within one of said circular sector, the angular spacing between sectors is approximately 20°.

35.- Antenna system according to claim 33 wherein three equal circular sectors are defined within said cylindrical radome, and wherein each antenna array is longitudinal placed within one of said circular sectors, and wherein there is approximately no angular spacing between sectors.
36.- Antenna system according to any of the claims 34 to 35 wherein each antenna array comprises a ground plane, the ground plane defines an horizontal central portion and two side flanges, wherein each flange defines an angle approximately equal to α, wherein $\alpha = 30 + \Delta/2$, and wherein Δ is the angular spacing between two adjacent circular sectors.

37.- A dual-band dual-polarized radiating system for a cellular base station, said radiating system including three antenna arrays radially displaced from a common mounting structure, wherein said three antenna arrays are symmetrically placed within three 120° angular sectors around said common mounting structure, wherein an angular spacing between antennas is provided such as to allow independent azimuthal mechanical tilt for each sector, wherein each of said three arrays is composed by at least two sub-arrays operating at a first and at a second frequency band respectively, wherein said first and a second frequency bands within are selected within the 1700 MHz-2700 MHz frequency range, the ratio between the largest and the smaller of said frequency bands being smaller than 1.28, wherein said at least two subarrays operating at two different frequency bands are colinearly aligned one on top of each other in a stacked arrangement such that the distance between the center to center of each sub array is larger than one operating wavelength,

wherein each of said three antenna array features a width smaller than one and a half times the longest operating wavelength, and a thickness smaller than half times the longer operating wavelength, wherein each of said three arrays includes a set of compact radiating elements, wherein said elements are smaller than one half of the longest operating wavelength,

wherein at least one of said sub-arrays operating at different frequencies includes a set of compact phase shifters for featuring variable electrical downtilt, wherein at least one phase shifter feeds two radiating elements together through a power splitter network,
wherein the whole radiating system is covered by a cylindrical radome of a dielectric material, said dielectric material being substantially transparent within the 1700-2700 MHz frequency range.

38.- A dual-band polarized radiating system according to claim 37 wherein at least a portion of at least one radiating element features a shape selected from the following group: space-filling curve, grid-dimension curve, multilevel, fractal.

39.- A radiating system according to claim 37, wherein the three antenna arrays are spaced in azimuth by an angle spacing ranging from 0° to 30°.

40.- A radiating system according to claim 37, wherein said system is supported by a set multiple modular sections, said sections being mounted in a colinearly stacked fashion to form a longer tower section.

41.- A radiating system according to claims 37, 38, 39, or 40 wherein the tower supporting the radiating system includes a hinge at its base, such that the whole tower can be bent to install, upgrade or reposition such a radiating system.

42.- A mobile telecommunication network including one or more radiating systems according to claim 37, said network co-allocating multiple services operating at least at two different frequency bands within the 1700 to 2700 MHz frequency range, wherein the coverage and capacity of the network is independently adjusted at each of said at least two frequency bands by means of adjusting the phase shifters included in the sub-arrays of said radiating system.

43.- A method for reducing the deployment and maintenance cost of a mobile telecommunication network consisting on deploying a substantial part of the sites of the network with the radiating systems according to claims 37 through 42.

44.- A method for reducing the deployment and maintenance cost of a mobile telecommunication network comprising the step of deploying a substantial part of the sites of the network with the radiating systems according to claims 37 through 42.
45. A dual-band dual-polarized radiating system for a cellular base station, said
radiating system including at least three antenna arrays radially displaced from a
central common mounting structure, wherein said three antenna arrays are
symmetrically placed within three 120° angular sectors around said central common
mounting structure, wherein each of the said three arrays comprises at least two
sub-arrays adapted to operate at a first and at a second frequency band
respectively, wherein said first and a second frequency bands are selected within
the 1700 MHz-2700 MHz frequency range, the ratio between the largest and the
smaller of said frequency bands being smaller than 2, wherein each of the said at
least three arrays includes a set of small radiating elements, wherein said elements
are smaller than (λ/2) or smaller than (λ/3) of the longest operating wavelength (λ).

46. Radiating system according to claim 45 wherein the ratio between the largest
and the smaller of said frequency bands is smaller than 1.6, 1.5, 1.4 or 1.3
wavelengths.

47. Radiating system according to claim 45 wherein said at least two subarrays
operating at two different frequency bands are colinearly aligned one on top of each
other in a stacked arrangement such that the distance between the center to center
of each sub array is larger than one operating wavelength.

48. Radiating system according to any of the claims 45 to 47 wherein at least one of
said sub-arrays operating at different frequencies includes a set of phase shifters for
featuring variable electrical downtilt, wherein at least one phase shifter feeds two
radiating elements together through a power splitter network.

49. Antenna array according to any of the claims 45 to 48 wherein the phase-shifter
comprises a first transmission line slideably mounted on a second transmission line.

50. Antenna array according to any of the claims 45 to 49 wherein the phase-shifter
comprises a first transmission line on a first substrate, and a second transmission
line on a second substrate, being the said first substrate mounted onto the said
second substrate so that there is a region in which at least a portion of the said first
transmission line is in the projection of at least a portion of the said second
transmission line, and wherein the said first substrate can slide along a direction contained in the plane defined by the said second substrate so that the extension of said region is varied.
FIG. 5
FIG. 6
INTERNATIONAL SEARCH REPORT

PCT/EP2005/009376

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>Classification</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>H01Q21/06</td>
<td></td>
</tr>
<tr>
<td>H01Q1/24</td>
<td></td>
</tr>
</tbody>
</table>

According to the International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- H01Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

- EP0-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2004/155820 A1 (SREENIVAS AJAY I ET AL) 12 August 2004 (2004-08-12) paragraphs [0036] - [0056], [0066], [0067]; figure 1</td>
<td>1,7-11, 18-21, 25,26, 28,31,32</td>
</tr>
<tr>
<td>Y</td>
<td>US 5 969 689 A (MARTEK ET AL) 19 October 1999 (1999-10-19) figures 1,2</td>
<td>2-4, 33-50</td>
</tr>
<tr>
<td>A</td>
<td>WO 00/46872 A (TELEFONAKTIEBOLAGET LM ERICSSON ; LILJEBLAD, LEIF) 10 August 2000 (2000-08-10) figure 1</td>
<td>1,18,37, 45</td>
</tr>
</tbody>
</table>

- **X** Patented family members are listed in annex.
- **A** Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

- **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- **S** document member of the same patent family

Date of the actual completion of the international search: 8 November 2005

Date of mailing of the international search report: 25, 01, 2006

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentissen 2, NL - 2280 HV Rijswijk,
Tel.: (+31-70) 340-2040, Tx: 31 651 epo nl, Fac.: (+31-70) 340-3016

Authorized officer: Van Dooren, G
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5960689 A</td>
<td>19-10-1999</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 9900411 A</td>
<td>09-08-2000</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (January 2004)
INTERNATIONAL SEARCH REPORT

Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. ☐ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. ☐ As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☑ No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

 1-4, 7-11, 18-21, 25, 26, 28, 31-50

Remark on Protest

☐ The additional search fees were accompanied by the applicant's protest.

☐ No protest accompanied the payment of additional search fees.
This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-4, 7-11, 18-21, 25, 26, 28, 31-50
 directed to radial spacing

2. claims: 5, 6, 15-17, 22-24
 directed to the shape of the radiating element

3. claims: 12-14
 directed to a support

4. claim: 27
 directed to a phase shifter

5. claims: 29, 30
 directed to ground plane effects