AUSTENITIC STAINLESS STEEL COMPOSITION AND USE THEREOF FOR THE PRODUCTION OF STRUCTURAL PARTS FOR LAND TRANSPORT MEANS AND CONTAINERS

COMPOSITION D’ACIER INOXYDABLE AUSTENITIQUE ET SON UTILISATION POUR LA FABRICATION DE PIÈCES DE STRUCTURE DE MOYENS DE TRANSPORT TERRESTRES ET DE CONTAINERS

The invention relates to an austenitic stainless steel composition containing by weight percent: C = 0.03 %, 14 % = Cr = 17 %, 8 % = Ni = 10 %, 2 % = Mo = 3.5 %, Mn = 2 %, Si = 1 %, N = 0.2 %, Cu = 1 %, Ti = 0.01 %, Co = 0.5 %, Sn = 0.4 %, P = 0.045 %, S = 0.03 %, the remainder comprising iron and unavoidable impurities resulting from preparation. The invention also relates to the use of said composition for the production of containers and structural parts for land transport means.

The invention concerns a composition of an inoxydable austénitique containing, in % by weight: C ≤ 0.03 %, 14 % ≤ Cr ≤ 17 %, 8 % ≤ Ni ≤ 10 %, 2.0 % ≤ Mo ≤ 3.5 %, Mn ≤ 2.0 %, Si ≤ 1.0 %, N ≤ 0.20 %, Cu ≤ 1.0 %, Ti ≤ 0.01 %, Co ≤ 0.5 %, Sn ≤ 0.4 %, P ≤ 0.045 %, S ≤ 0.030 %, the complement being constituted of iron and impurities inevitable resulting from the elaboration, as well as the utilization for the fabrication of containers and pieces of structure for means of transport terrestres.
1

COMPOSITION D’ACIER INOXYDABLE AUSTENITIQUE ET SON
UTILISATION POUR LA FABRICATION DE PIECES DE STRUCTURE DE
MOYENS DE TRANSPORT TERRESTRES ET DE CONTAINERS

La présente invention concerne une composition d’acier améliorée
qui peut en particulier être utilisée pour la fabrication de pièces de structure de
moyens de transport terrestres, ainsi que pour la fabrication de containers pour
tous types d’industries, comme, par exemple, l’industrie chimique ou l’industrie
agroalimentaire.

De façon plus générale, cette nouvelle composition peut être
avantageusement utilisée pour toutes les applications nécessitant un important
potentiel d’absorption d’énergie, en particulier en cas d’accidents, ainsi qu’une
bonne résistance à la corrosion par piqûres et à la corrosion généralisée.

La problématique de la réduction du poids est une préoccupation
constante pour les fabricants de moyens de transports en général, et en
particulier pour les fabricants et les utilisateurs de cuves de transport. En
raison des limitations de poids imposées pour les camions, par exemple, les
fabricants de ces camions cherchent constamment des solutions techniques
leur permettant de diminuer le poids de la structure, tout en augmentant le
volume de produits transportés et en diminuant la quantité d’acier nécessaire à
la fabrication d’une cuve, en réduisant l’épaisseur des feuilles d’acier utilisées.

D’un autre côté, il n’est pas envisageable d’abaisser la sécurité de
ces camions, et une réduction de l’épaisseur des feuilles d’acier ne peut être
admise que si cet acier présente un potentiel d’absorption d’énergie amélioré.
Ce potentiel d’absorption d’énergie, encore appelé résistance au crash, peut
être évalué par la valeur du produit Rm x A, dans lequel Rm représente la
résistance à la traction de l’acier en MPa, et A représente l’allongement de
l’acier en %. Son amélioration dépend donc de ces deux facteurs et de leur
évolution.

Par ailleurs, une dégradation de la tenue à la corrosion de l’acier ne
peut être envisagée, en particulier pour des applications dans les domaines de
la chimie ou de l’agroalimentaire où le stockage et le transport de liquides acides, voire corrosives, est fréquent.

Les nuances d’acier existant sur le marché ne permettent pas de satisfaire à la fois les exigences de résistance au crash améliorée et de bonne résistance contre la corrosion. Ainsi, les nuances de type 301, 301LN, 304 ou 305 ne présentant pas de bonnes caractéristiques de tenue à la corrosion, tandis que les nuances d’acier duplex 316 n’ont pas une résistance au crash satisfaisante.

Compte-tenu des ces éléments, la présente invention a pour but de mettre à disposition une composition d’acier améliorée, présentant de bonnes caractéristiques de résistance contre la corrosion par piqûres et contre la corrosion généralisée, ainsi qu’un potentiel d’absorption d’énergie plus importants que celui des nuances d’acier de l’art antérieur.

Un premier objet de l’invention est constitué par une composition d’acier inoxydable austénitique, comprenant, en % en poids :

C ≤ 0,03 %
14 % ≤ Cr ≤ 17 %
8 % ≤ Ni ≤ 10 %
2,0 % ≤ Mo ≤ 3,5 %
Mn ≤ 2,0 %
Si ≤ 1,0 %
N ≤ 0,20 %
Cu ≤ 1,0 %
Ti ≤ 0,01 %
Co ≤ 0,5 %
Sn ≤ 0,4 %
P ≤ 0,045 %
S ≤ 0,030 %

Le complément étant constitué de fer et d’impuretés inévitables résultant de l’élaboration.
La composition d’acier selon l’invention permet d’obtenir un acier inoxydable à structure austénitique, mais dont l’austénite est suffisamment instable à température ambiante (valeur de Md), et qui présente une résistance à la corrosion du même niveau que celle de la nuance 316L en particulier en ce qui concerne la corrosion par piqûres, et une bonne aptitude à la mise en œuvre par le contrôle de la teneur en ferrite delta.

La composition d’acier selon l’invention peut également présenter les caractéristiques supplémentaires suivantes, prises isolément ou en combinaison :

- La composition d’acier comprend moins de 16,0% de chrome
- La composition d’acier comprend moins de 9,5% de nickel.
- La composition d’acier présente une valeur d’indice de stabilité de l’austénite Md30, défini par la formule :
  
  \[ Md30 = 497 - 462(\%C + \%N) - 9,2x\%Si - 8,1x\%Mn - 13,7x\%Cr 
  - 20x\%Ni - 18,5x\%Mo \]

  comprise entre -130 et + 90°C, de préférence entre 0 et 60°C, et de façon plus particulièrement préférée comprise entre 0 et 30°C.

- La composition d’acier présente une teneur en ferrite delta inférieure ou égale à 7%,

- La composition d’acier présente une valeur du produit Rm x A, dans lequel Rm est la résistance à la traction de l’acier et A l’allongement de l’acier, supérieure à 32 000, de préférence supérieure à 34 000.

Un second objet de l’invention est constitué par l’utilisation de l’acier selon l’invention pour la fabrication de containers et pour la fabrication pièces de structure de moyens de transport terrestres.

Dans le cadre de cette demande, il faut comprendre par moyens de transport terrestres les véhicules automobiles, mais aussi les moyens de transport ferroviaires de toutes sortes. Les containers auxquels s’adressent l’invention peuvent notamment être utilisés pour le transport de toutes sortes de matières liquides, solides ou gazeuses, telles que des acides, du lait ou du vin par exemple.
L'invention va à présent être décrite en détail, la portée des revendications n'étant bien sur pas limitée par cette description.

La composition d'acier inoxydable austénitique selon l'invention comprend jusqu'à 0,03% de carbone. Dans un mode de réalisation préféré, la teneur en carbone est comprise entre 0,022 et 0,027%.

La composition comprend également du chrome en une teneur de 14 à 17%, de préférence entre 14 et 16,5%, de façon plus particulièrement préférée entre 14 et 16,0%, et mieux entre 15 et 15,2%. Le chrome est un élément essentiel pour la résistance à la corrosion de la nuance. Sa teneur est limitée en raison de son influence sur la stabilité de la structure austénitique.

La composition comprend également du nickel en une teneur de 8 à 10%, de façon préférée entre 8 et 9,5%, de façon plus particulièrement préférée entre 8 et 9,0 %, et mieux entre 8,9 et 9,1%. Le principal effet de cet élément est son action favorable sur la résistance à la corrosion généralisée. Sa teneur est limitée en raison de son coût élevé et de son influence sur la stabilité de la structure austénitique.

La composition comprend en outre du molybdène en une teneur de 2,0 à 3,5%, de préférence entre 2,0 et 3,0%, et de façon plus particulièrement préférée entre 2,9 et 3,1%. Cet élément permet d'améliorer la tenue à la corrosion, en particulier la tenue à la corrosion par piqûres de la nuance, mais doit être limité en raison de son effet durcissant.

La composition peut aussi comprendre jusqu'à 2,0% de manganèse et avantageusement jusqu'à 1,45% de manganèse. Dans un mode de réalisation préféré, la teneur en manganèse est comprise entre 1,3 et 1,45%.

La composition peut également comprendre jusqu'à 1,0% de silicium et avantageusement jusqu'à 0,5% de silicium. Dans un mode de réalisation préféré, la teneur en silicium est comprise entre 0,35 et 0,5%. Cet élément peut être utilisé comme agent désoxydant pendant l'élaboration de la nuance, mais doit être limité en raison de son influence néfaste sur la formabilité de la nuance.

La composition peut aussi comprendre de l'azote en une teneur maximale de 0,20%, de préférence de 0,03%. Dans un mode de réalisation préféré, la teneur en azote est comprise entre 0,02 et 0,03%.
Cet élément a un effet durcissant lorsqu'il est présent en solution solide dans l'acier. Il peut ainsi participer à l'augmentation de la résistance à la traction Rm, mais il diminue dans le même temps la valeur de l'allongement A. Son ajout est donc limité aux valeurs mentionnées ci-dessus.

La composition peut également contenir du cuivre en une teneur maximale de 1,0%, et de préférence de 0,4%. Le cuivre agit aussi comme un élément durcissant lorsqu'il est présent en solution solide. Sa teneur est limitée à 0,4% en raison de son influence négative sur la résistance à la corrosion mais aussi sur la formabilité à chaud de la nuance.

La composition peut enfin contenir des éléments résiduels, tels que le titane en une teneur maximum de 0,01%, le cobalt en une teneur maximum de 0,5%, l'étain en une teneur maximum de 0,4%, le phosphore en une teneur maximum de 0,045% et le soufre en une teneur maximum de 0,030%.

On limite en particulier la teneur en soufre à 0,030%, de préférence à 0,0080%, et de façon plus particulièrement préférée à 0,0060%, en raison de son influence néfaste sur la résistance à la corrosion. En outre, il peut se combiner facilement au manganèse pour générer des inclusions de type MnS qui ne sont pas souhaitées.

Exemples

Caractéristiques mécaniques

Des aciers dont les compositions sont rassemblées dans le tableau 1, ont été élaborés, puis coulés en continu sous forme de brames et laminés à chaud jusqu'à atteindre une épaisseur de 8 mm. Les bandes laminées à chaud ont ensuite été recuites en continu à une température de 1150°C, puis laminées à froid jusqu'à atteindre une épaisseur finale de 4,2 mm.

Les bandes laminées à froid ont ensuite été recuites en continu à une température de 1040°C.

Les caractéristiques mécaniques de chaque bande laminée à froid ont été mesurées et rassemblées dans le tableau 2.
Les abréviations suivantes ont été utilisées :

- **A** : représente l'allongement de l'acier, exprimé en %
- **Rm** : représente la résistance à la traction de l'acier, exprimée en MPa
- **Δ** : représente la teneur en ferrite delta, exprimée en %, et mesurée par diffraction RX après électro-polissage.

Les compositions d'aciers A et B sont selon la présente invention, tandis que la composition d'acier C est un exemple comparatif.

**Tableau 1**

<table>
<thead>
<tr>
<th>Acier</th>
<th>C (%)</th>
<th>Cr (%)</th>
<th>Ni (%)</th>
<th>Mo (%)</th>
<th>Mn (%)</th>
<th>Si (%)</th>
<th>N (%)</th>
<th>Cu (%)</th>
<th>P (%)</th>
<th>S ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,026</td>
<td>15,14</td>
<td>8,92</td>
<td>2,99</td>
<td>1,36</td>
<td>0,38</td>
<td>0,032</td>
<td>0,23</td>
<td>0,023</td>
<td>90</td>
</tr>
<tr>
<td>B</td>
<td>0,020</td>
<td>15,47</td>
<td>9,08</td>
<td>3,01</td>
<td>1,5</td>
<td>0,39</td>
<td>0,037</td>
<td>0,17</td>
<td>0,025</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>0,029</td>
<td>17,3</td>
<td>11,1</td>
<td>2,06</td>
<td>1,36</td>
<td>0,46</td>
<td>0,019</td>
<td>0,29</td>
<td>0,03</td>
<td>40</td>
</tr>
</tbody>
</table>

**Tableau 2**

<table>
<thead>
<tr>
<th>Acier</th>
<th>Rm (MPa)</th>
<th>A (%)</th>
<th>m x A</th>
<th>Taille de grain (ASTM)</th>
<th>Δ (%)</th>
<th>Md₃₀ (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>615</td>
<td>60</td>
<td>36900</td>
<td>8,5</td>
<td>4,5</td>
<td>+ 14,559</td>
</tr>
<tr>
<td>B</td>
<td>610</td>
<td>62</td>
<td>37820</td>
<td>9</td>
<td>5</td>
<td>+ 5,704</td>
</tr>
<tr>
<td>C</td>
<td>623</td>
<td>49</td>
<td>30527</td>
<td>10</td>
<td>7</td>
<td>- 37,544</td>
</tr>
</tbody>
</table>
Résistance à la corrosion

Les résistances à la corrosion par piqûres et à la corrosion généralisée des échantillons ont été mesurées selon les procédures suivantes :

Corrosion par piqûres

Selon la norme ASTM G 61, les échantillons d’acier ont été trempés dans une solution contenant 0,5M de NaCl, et ayant un pH de 6,6 et une température de 23°C. Les échantillons ont ensuite été meulés à l’état humide avec un papier abrasif 1200 SiC.

Le potentiel de rupture de chaque échantillon a ensuite été évalué à une vitesse de 100 mV/min, en partant du potentiel de corrosion libre. Le courant de fin était de 50 μA/cm².

Corrosion généralisée

Selon la norme ASTM G 61, les échantillons d’acier ont été trempés dans une solution contenant 2M de H₂SO₄, à une température de 23°C. Les échantillons ont ensuite été meulés à l’état humide avec un papier abrasif 1200 SiC.

Le courant critique (valeur maximum de courant atteinte dans la phase active) de chaque échantillon a ensuite été évalué à une vitesse de 10 mV/min, de −750 mV/ECS à 1200 mV/ECS et la perte en poids a été évaluée.

Les abréviations suivantes ont été employées :

- BP : représente le potentiel de rupture, exprimé en mV par rapport à l’ECS (électrode au calomel saturée),
- CC : représente le courant critique, exprimé en μA/cm².
- WL : représente la perte en poids, exprimée en mm/an

Les résultats des tests de corrosion ont été rassemblés dans le tableau 3.
Tableau 3

<table>
<thead>
<tr>
<th>Acier</th>
<th>BP (mV/ECS)</th>
<th>CC (μA/cm²)</th>
<th>WL (mm/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>485</td>
<td>16,6</td>
<td>0,19</td>
</tr>
<tr>
<td>C</td>
<td>465</td>
<td>15,8</td>
<td>0,19</td>
</tr>
</tbody>
</table>

Comme on peut le voir d’après ces tests, la composition d’acier selon l’invention permet d’atteindre de très hauts niveaux du produit RmxA, principalement en raison d’une amélioration de l’allongement, la valeur de Rm restant stable. Cette valeur améliorée d’allongement présente l’avantage supplémentaire de faciliter la fabrication ultérieure de containers, car l’acier est plus facilement formable.

La faible teneur en ferrite delta est en outre favorable pour la soudabilité et la résistance à la corrosion de la nuance.

Cette nouvelle composition d’acier permet de réduire significativement l’épaisseur des feuilles d’acier requise pour la fabrication d’un container, ce qui réduit son coût, permet d’augmenter la charge transportable et permet également une économie d’énergie lorsque le container rentre à vide.

Ainsi, on peut noter qu’une réduction de 0,1 mm d’épaisseur de la feuille représente une augmentation de 35 kg de la charge transportable. Si l’on tient compte des performances de la nuance selon l’invention, on peut réaliser une diminution des feuilles d’acier de 0,2 mm dans la plupart des cas.
REVENDICATIONS

1. Composition d'acier inoxydable austénitique comprenant, en % en poids :
   - C ≤ 0,03 %
   - 14 % ≤ Cr ≤ 17 %
   - 8 % ≤ Ni ≤ 10 %
   - 2,0 % ≤ Mo ≤ 3,5 %
   - Mn ≤ 2,0 %
   - Si ≤ 1,0 %
   - N ≤ 0,20 %
   - Cu ≤ 1,0 %
   - Ti ≤ 0,01 %

2. Composition d'acier selon la revendication 1, comprenant en outre moins de 16,0% de chrome.

3. Composition d'acier selon la revendication 1 ou 2, comprenant en outre moins de 9,5% de nickel.

4. Composition d'acier selon l'une quelconque des revendications 1 à 3, comprenant en outre, en % en poids :
   - 0,022 % ≤ C ≤ 0,027 %
   - 15 % ≤ Cr ≤ 15,2 %
   - 8,9 % ≤ Ni ≤ 9,1 %
   - 2,9 % ≤ Mo ≤ 3,1 %
   - 1,3 % ≤ Mn ≤ 1,45 %

Le complément étant constitué de fer et d'impuretés inévitables résultant de l'élaboration.
0,35 % ≤ Si ≤ 0,5 %
0,02 % ≤ N ≤ 0,03 %
    Cu ≤ 0,4 %
    Ti ≤ 0,01 %
    Co ≤ 0,5 %
    Sn ≤ 0,4 %
    P ≤ 0,045 %
    S ≤ 0,030 %
le complément étant constitué de fer et d’impuretés inévitables résultant
de l’élaboration.

5. Composition d’acier selon l’une quelconque des revendications 1 à 4,
caractérisée en ce que la valeur de l’index de stabilité de l’austénite
Md30, défini par la formule :

\[
Md30 = 497 - 462(\%C+\%N) - 9,2x\%Si - 8,1x\%Mn - 13,7x\%Cr
- 20 x\%Ni - 18,5x\%Mo
\]
est comprise entre -130 et + 90°C.

6. Composition d’acier selon l’une quelconque des revendications 1 à 5,
caractérisée en ce que la valeur de l’index de stabilité de l’austénite
Md30, défini par la formule

\[
Md30 = 497 - 462(\%C+\%N) - 9,2x\%Si - 8,1x\%Mn - 13,7x\%Cr
- 20 x\%Ni - 18,5x\%Mo
\]
est comprise entre 0 et 60°C.

7. Composition d’acier selon l’une quelconque des revendications 1 à 6,
caractérisée en ce que sa teneur en ferrite delta ferrite est inférieure ou
égale à 7%.
8. Composition d'acier selon l'une quelconque des revendications 1 à 7, caractérisée en ce que la valeur du produit Rm x A, dans lequel Rm est la résistance à la traction de l'acier et A l'allongement de l'acier, est supérieure à 32 000.

9. Composition d'acier selon l'une quelconque des revendications 1 à 8, caractérisée en ce que la valeur du produit Rm x A, dans lequel Rm est la résistance à la traction de l'acier et A l'allongement de l'acier, est supérieure à 34 000.

10. Utilisation d'un acier inoxydable austénitique dont la composition est selon l'une quelconque des revendications 1 à 9 pour la fabrication de containers.

11. Utilisation d'un acier inoxydable austénitique dont la composition est selon l'une quelconque des revendications 1 à 9 pour la fabrication de pièces de structure de moyens de transport terrestres.
## INTERNATIONAL SEARCH REPORT

### A. CLASSIFICATION OF SUBJECT MATTER

| IPC 7   | C22C38/44 | C22C38/40 |

According to International Patent Classification (IPC) or to both national classification and IPC.

### B. FIELDS SEARCHED

| Minimum documentation searched (classification system followed by classification symbols) |
| IPC 7 | C22C |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic database consulted during the international search (name of database and, where practical, search terms used):

- EPO-Internal
- PAJ
- WPI Data
- CHEM ABS Data
- INSPEC
- COMpendex

### C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 494 537 A (MIYAKUSU ET AL) 27 February 1996 (1996-02-27) claims 1-5; table 1</td>
<td>1-3, 5, 6</td>
</tr>
<tr>
<td>A</td>
<td>EP 1 156 125 A (NISSHIN STEEL CO., LTD) 21 November 2001 (2001-11-21) claim 1; table 1</td>
<td>1-3, 5, 6</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 735 154 A (NIPPON YAKIN KOGYO CO., LTD) 2 October 1996 (1996-10-02) claim 1; tables 1-13</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

<table>
<thead>
<tr>
<th>Date of the actual completion of the international search</th>
<th>Date of mailing of the international search report</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 March 2005</td>
<td>06/04/2005</td>
</tr>
</tbody>
</table>

Name and mailing address of the ISA:
European Patent Office, P. B. 5816 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epos nl
Fax (+31-70) 940-3016

Authorized officer:
Lilimakis, E
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PATENT ABSTRACTS OF JAPAN&lt;br&gt;vol. 017, no. 352 (M-1439),&lt;br&gt;5 July 1993 (1993-07-05)&lt;br&gt;&amp; JP 05 050288 A (NIPPON STEEL CORP;&lt;br&gt;others: 01), 2 March 1993 (1993-03-02)&lt;br&gt;abstract</td>
<td>1-3, 7</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>JP 06093382</td>
<td>05-04-1994</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7233448 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7300654 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 19505955 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1327078 A,C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1156125 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 500811 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002015655 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8269633 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3364040 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8269634 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3422591 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8269635 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3422592 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8269618 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9003605 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9013149 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2172794 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0735154 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 188906 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5686044 A</td>
</tr>
<tr>
<td>JP 05050288</td>
<td>02-03-1993</td>
<td>NONE</td>
</tr>
</tbody>
</table>
# RAPPORT DE RECHERCHE INTERNATIONALE

## A. CLASSEMENT DE L'OBJET DE LA DEMANDE

CIB 7  C22C38/44  C22C38/40

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

## B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTÉ

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 7  C22C

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal, PAJ, WPI Data, CHEM ABS Data, INSPEC, COMPENDEX

## C. DOCUMENTS CONSIDERÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 494 537 A (MIYAKUSU ET AL) 27 février 1996 (1996-02-27) revendications 1-5; tableau 1</td>
<td>1-3,5,6</td>
</tr>
<tr>
<td>A</td>
<td>EP 1 156 125 A (NISSHEN STEEL CO., LTD) 21 novembre 2001 (2001-11-21) revendication 1; tableau 1</td>
<td>1-3,5,6</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 735 154 A (NISSHEN YAKIN KOGYO CO., LTD) 2 octobre 1996 (1996-10-02) revendication 1; tableaux 1-13</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:
  * "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
  * "B" document antérieur, mais publié à la date de dépôt international ou après cette date
  * "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (tableau indiqué)
  * "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
  * "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

Document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

* Document particulièrement pertinent, l'environnement revendiqué peut être considéré comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

* Document particulièrement pertinent, l'environnement revendiqué ne peut être considéré comme nouvelle ou comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

* Document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

23 mars 2005

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5518 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 51 651 epo nl,
Fax: (+31-70) 940-3019

Fonctionnaire autorisé

Lilimpakis, E

Formulée à PCT/ISA/210 (deuxième feuille) (janvier 2004)
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PATENT ABSTRACTS OF JAPAN vol. 017, no. 352 (M-1439), 5 juillet 1993 (1993-07-05) &amp; JP 05 050288 A (NIPPON STEEL CORP; others: 01), 2 mars 1993 (1993-03-02) abrégé</td>
<td>1-3,7</td>
</tr>
<tr>
<td>Document brevet cité au rapport de recherche</td>
<td>Date de publication</td>
<td>Membre(s) de la famille de brevet(s)</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>--------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>JP 06093382</td>
<td>05-04-1994</td>
<td>AUCUN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7233448 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7300654 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 19505955 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1327078 A ,C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1156125 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 500811 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002015655 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8269633 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3364040 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8269634 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3422591 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8269635 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3422592 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8269618 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9003605 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9013149 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2172794 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0735154 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 188906 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5686044 A</td>
</tr>
<tr>
<td>JP 05050288</td>
<td>02-03-1993</td>
<td>AUCUN</td>
</tr>
</tbody>
</table>