Abstract: Method and apparatus for ablating target tissue adjacent pulmonary veins of a patient. A clamping ablation tool can include an upper arm (12) having an upper neck (24), a link assembly (25), and an upper actuator (18). The link assembly can include a distal electrode and a proximal electrode. The clamping ablation tool includes a lower arm (14) that mates with the upper arm (12). The lower arm (21) can include a lower neck (42), a distal jaw (44), and a lower actuator (46). The distal jaw can include a jaw electrode (48), and the lower actuator (46) can control movement of the distal jaw (44).
Declarations under Rule 4.17:


- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations

Published:

- with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
CLAMPING ABLATION TOOL

RELATED APPLICATIONS

This application claims the benefit of the filing date of United States Provisional Patent Application No. 60/576,356 filed on June 2, 2004, which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The invention is generally directed to minimally-invasive ablation of cardiac tissue.

BACKGROUND

The interest in ablation practice has been to use minimally invasive techniques to ease patient recovery. Bipolar ablation devices have been used extensively to deliver linear lesions accurately to tissue especially for the purpose of reducing the effect of atrial fibrillations.

SUMMARY OF THE INVENTION

Some embodiments of the invention provide a clamping ablation tool for ablating target tissue adjacent pulmonary veins of a patient. The clamping ablation tool can include an upper arm having an upper neck, a link assembly, and an upper actuator. The link assembly can include a distal electrode and a proximal electrode. The link assembly can be guided around the pulmonary veins. In some embodiments, the upper actuator can control movement of the link assembly. In some embodiments, the clamping ablation tool can include a lower arm that mates with the upper arm. The lower arm can include a lower neck, a distal jaw, and a lower actuator. In some embodiments, the distal jaw can include a jaw electrode, and the lower actuator can control movement of the distal jaw. In some embodiments, the upper actuator and the lower actuator can be independently operable in order to position the link assembly and the distal jaw independently. In some embodiments, the distal electrode and the proximal electrode can receive energy
independently of the jaw electrode in order to allow partial blood flow through the pulmonary veins and create a continuous lesion.

In some embodiments, the clamping ablation tool can include an upper arm having an upper neck, an upper left link, an upper right link, and an upper actuator. In some embodiments, the upper left link can include a first proximal electrode and the upper right link can include a first distal electrode. The upper arm can be guided around the pulmonary veins, and the upper actuator can control movement of the upper left link and the upper right link, in some embodiments. A lower arm can mate with the upper arm. In some embodiments, the lower arm can include a lower neck, a lower left link, a lower right link, and a lower actuator. In some embodiments, the lower left link can include a second proximal electrode and the lower right link can include a second distal electrode. In some embodiments, the lower actuator can control movement of the lower left link and the lower right link. In one embodiment, the upper actuator and the lower actuator can be independently operable in order to position the upper left link and the upper right link independently of the lower left link and the lower right link. In some embodiments, the first proximal electrode and the second proximal electrode can receive energy independently of the first distal electrode and the second distal electrode in order to allow partial blood flow through the pulmonary veins and create a continuous lesion.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross-sectional view of a patient's heart with a clamping ablation tool according to one embodiment of the invention positioned around pulmonary veins.

FIG. 2 is a cross-sectional view of a patient's heart with a clamping ablation tool according to another embodiment of the invention positioned around pulmonary veins.

FIGS. 3A-3G are perspective views of one embodiment of a clamping ablation tool.

FIGS. 4A-4D are perspective views of another embodiment of a clamping ablation tool.

FIGS. 5A-5E are side views of another embodiment of a clamping ablation tool.
FIGS. 6A-6J are side views of another embodiment of a clamping ablation tool.

FIGS. 7A-7D are perspective and side views of another embodiment of a clamping ablation tool.

FIG. 8 is a side view of another embodiment of a clamping ablation tool.

FIGS. 9A and 9B are side views of another embodiment of a clamping ablation tool.

FIGS. 10A-10H are side views of another embodiment of a clamping ablation tool.

FIGS. 11A and 11B are side and perspective views of another embodiment of a clamping ablation tool.

FIG. 12A-12F are side and perspective views of another embodiment of a clamping ablation tool.

FIGS. 13A-13E are side views of another embodiment of a clamping ablation tool.

FIGS. 14A-14F are perspective views of another embodiment of a clamping ablation tool.

DETAILED DESCRIPTION

Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limited. The use of “including,” “comprising” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. The terms “mounted,” “connected” and “coupled” are used broadly and encompass both direct and indirect mounting, connecting and coupling. Further, “connected” and “coupled” are not restricted to physical or mechanical
connections or couplings, and can include electrical connections or couplings, whether direct or indirect.

FIG. 1 is a cross-sectional view of a patient’s heart with a clamping ablation tool 10 positioned around the patient’s pulmonary veins 13. The clamping ablation tool 10 can include an upper arm 12 and a lower arm 14. Some embodiments of the invention include a clamping device having two or more electrodes on a single arm, such as the upper arm 12 shown schematically in FIG. 1. The electrodes can be brought together to clamp and ablate target tissue. Some methods and devices embodying the invention provide for a single-sided approach to enter a patient’s chest cavity and to manipulate jaws of an ablation tool. The ablation tool can include an articulating finger or a drawbridge-type configuration to surround and clamp onto target tissue. In some embodiments, the ablation tool can be divided into two assemblies to allow for independent placement of the electrodes in specific locations along the target tissue. After placement, the two assemblies can be joined into a single ablation tool. In some embodiments, the ablation tool can include jaws carrying the electrodes, and the jaws can clamp with respect to each other to bring the electrodes into contact with the target tissue.

Some embodiments of the invention include a two-piece ablation device with an upper arm and a lower arm that can isolate the pulmonary veins. In one embodiment, the upper arm can include a handle with an elongated neck and two or more distal links connected (e.g., by pins) at several pivot points or knuckles. The distal links can be spring-loaded with a relatively light force into a substantially straight position. In some embodiments, the distal links can only bend in one direction. One end of a cable can be attached to a middle link, routed under a short link, and through a handle. The other end of the cable can be attached to a thumb slide on the handle. In some embodiments, one long electrode can be attached to the short link and a distal end of the handle. A shorter electrode (e.g., half of the length of the long electrode) can be attached to the middle link and an end link.

Some embodiments of the invention provide a method of isolating the pulmonary veins 13 of a beating heart for the purpose of ablation, while allowing some blood flow through the pulmonary veins 13. The upper arm 12 can be used alone as a clamping
device, can be modified to be a dissecting device, or can be used for monopolar ablation. A bipolar embodiment of the clamping ablation tool 10 can be used in a minimally-invasive environment (e.g., in a mini-thoracotomy or an endoscopic environment). The clamping ablation tool 10 can be designed to clamp the atrial tissue in a two-step process in order to minimize the time of complete blood flow occlusion, while ensuring a continuous lesion. Some embodiments of the invention provide a minimally-invasive approach that is less traumatic than a sternotomy. The bipolar clamping ablation tool 10 can result in a narrower lesion than the monopolar clamping ablation tool 10. The bipolar clamping ablation tool 10 can create a long continuous lesion with two ablations. In some embodiments, the clamping ablation tool 10 does not completely occlude blood flow, resulting in less trauma than with a complete occlusion. In some embodiments, the clamping ablation tool 10 never completely releases the heart, which ensures a continuous lesion. Clamping heart tissue can decrease the blood’s heat sink effect.

FIG. 2 illustrates another embodiment of the clamping ablation tool 10 including a relatively straight upper arm 12 and a lower arm 14 including two or more jaws. In some embodiments, as shown schematically in FIG. 2, the ablation tool can include three jaws and three electrodes. The ablation tool can include an elongated jaw and two shorter jaws (e.g., proximal and distal lower jaws). The shorter jaws can function like a drawbridge to close one at a time or substantially simultaneously, clamping tissue against the elongated jaw. In this manner, blood flow can continue through one set of pulmonary veins, while the other set of pulmonary veins is being clamped for ablation. The lesions created by each of the two shorter jaws can be aligned to create a single long lesion for faster and more accurate ablation of the target tissue. In some embodiments, the jaws overlap to ensure a continuous lesion is created.

Individual insertion of two jaw assemblies can allow the surgeon to focus on the placement of each individual electrode, while not having to deal with the other electrodes until the ablation tool is fully assembled. Some embodiments of the ablation tool can include pins and magnets on the jaw assemblies to guide the assembly, alignment, and retention of the two jaw assemblies. In some embodiments, the jaws can be independently controlled to allow the ablation to be done in two or more steps, while preventing full occlusion of blood flow through the pulmonary veins.
Some embodiments of the invention include a clamping device with independently-separable jaws. Each jaw can be individually manipulated into the appropriate space. Once positioned, the jaws can be brought together to create a bipolar ablation device. After appropriate dissection, the separable jaws can be placed in the patient’s thoracic cavity through an incision. The incision can be a thoracotomy, a sub-xyphoid incision, a sternotomy, or any other suitable incision. Ports may or may not be used to aid insertion of the jaws. A positioning device (such as the Starfish® heart positioner manufactured by Medtronic, Inc.) may or may not be used to lift, rotate, or elevate the heart. Once both jaws are appropriately positioned, the jaws can be brought together at a hinge point and assembled. Magnets, keys, accessory tools, and/or visualization techniques can be used to position and assemble the jaws. After assembly, the jaws can be closed to act as a bipolar ablation device. The jaws can be removed from the patient as an assembled unit or after disassembly.

In some embodiments, the electrodes can be positioned within a tube of a porous material to isolate the target tissue from direct contact with the ablation energy. The tubes can be constructed of a porous polymer suitable for insertion into the body and suitable for contact with tissue and blood. The porous polymer can be a “weeping” polymer capable of allowing a liquid (such as a saline) to be pumped into the tube, to surround the electrodes, and to conduct the ablation energy from the electrodes to the target tissue. The electrodes in the tube can be configured as a bipolar ablation device for creating a linear lesion on the atrium adjacent the pulmonary veins.

FIGS. 3A-3G illustrate one embodiment of an upper arm 12 of a clamping ablation tool 10. The upper arm 12 can include a handle 16. The handle 16 can include a thumb slide 18 and a slide release button 20 positioned within an elongated aperture 22. The upper arm 12 can also include a neck 24 and a link assembly 25. The link assembly 25, in some embodiments, can include a short link 26, a middle link 28, and an end link 30. Alternatively, link assembly 25 may include a short link 26 and a longer end link 30. As shown in FIGS. 3E and 3G, the links 26, 28, 30 can be coupled to one another with pins 32. The pins 32 can create three pivot points or knuckles. The links 26, 28, 30 can be spring-loaded substantially straight and can only bend in one direction, in some embodiments.
In the position shown in FIG. 3A, the upper arm 12 can be placed through an incision or port into the right side of the patient's chest, and then guided through the transverse sinus until the end link 30 reaches the pericardium. By gently pushing forward and slightly turning the upper handle 16, the end link 30 can naturally guide itself around the left pulmonary veins 13 and into the oblique sinus, as shown in FIGS. 3B through 3D. The upper handle 16 can be guided forward until the short link 26 is completely through the transverse sinus and up against the pericardium.

As shown in FIGS. 3E and 3G, the upper arm 12 can also include a cable 34, a distal electrode 36 and a more proximal electrode 38. Electrode 38 may comprise one continuous electrode or electrode 38 may comprise multiple shorter electrodes, e.g., two electrodes, insulated from each other, as shown in FIG. 3G. The cable 34 can be attached to the middle link 28, routed under the short link 26, through the upper handle 16, and attached to the thumb slide 18. The distal electrode 36 can be attached to the distal end of the upper handle 16 and may include a shorter electrode than the more proximal electrode 38, e.g., half the length of electrode 38. The distal electrode 36 may be a long flexible electrode, thereby allowing electrode 36 to remain continuous while attached to both the middle link 28 and the end link 30. Alternatively, distal electrode 36 may comprise multiple shorter electrodes, e.g., two electrodes, insulated from each other, thereby allowing one portion of electrode 36 to be attached to the middle link 28 and another portion of electrode 36 to be attached to the end link 30. In one embodiment, the middle link 28 may be shortened and the end link 30 configured of a sufficient length as to support the entire length of the distal electrode 36. The proximal electrode 38 can be a flexible, short electrode (e.g., half the length of the distal electrode 36). The proximal electrode 38 can be attached to the middle link 28 and the end link 30. As shown in FIG. 3F, pulling back on the thumb slide 18 can result in the middle link 28 and the end link 30 beginning to straighten and lightly clamp on the atrial tissue around the pulmonary veins 13. Rather than a thumb slide 18, the clamping ablation tool 10 can include a trigger, a torque screw, a lever, etc. to control the links 28 and 30.

FIGS. 4A-4D illustrate the clamping ablation tool 10 including both the upper arm 12 and the lower arm 14. The lower arm 14 can include a lower handle 40, a lower neck 42, and a distal jaw 44. The lower handle 40 can include a lower thumb slide 46. The
distal jaw 44 can include a jaw electrode 48. The lower arm 14 can be inserted through the incision or port through which the upper arm 12 was inserted or any other suitable incision or port. The lower arm 14 can be positioned so that the distal jaw 44 is in the oblique sinus. The lower arm 14 can include a cable (not shown) that runs through the lower handle 40 and is attached to the lower thumb slide 46. The cable can actuate the distal jaw 44. In some embodiments, the jaw electrode 48 can be half the length of electrode 38 of the upper arm 12. For example, length of electrodes 36 and 48, together, may be approximately equivalent to the length of electrode 38. In one embodiment, the length of electrode 36 may be approximately equal to one portion of electrode 38 while the length of electrode 48 may be approximately equal to a separate portion of electrode 38. The two portions of electrode 38 may be insulated from each other. In one embodiment, the lower arm 14 can lock into a specific position in relation to the upper arm 12 in order to ensure the electrode tips are aligned to create a substantially continuous lesion.

As shown in FIG. 4B, pulling back on the upper thumb slide 18 can actuate the middle link 28 and the end link 30 in order to occlude the left pulmonary veins 13. The distal jaw 44 of the lower arm 14 may not be activated in order to allow blood to continue flowing through the right pulmonary veins 13. The distal electrode 36 and the electrode 38 can be activated and the ablation can be performed with the clamping ablation tool 10 shown in the position of FIG. 4B.

As shown in FIG. 4C, the lower thumb slide 46 on the lower arm 14 can be moved in order to actuate the distal jaw 44. In this manner, flow through the pulmonary veins 13 can be completed occluded (e.g., for a brief time period). This can ensure that the electrodes will align in order to provide a substantially continuous lesion on the atrial tissue. The distal jaw 44 can clamp the atrial tissue in the position shown in FIG. 4D. The jaw electrode 48 can be activated and the ablation can be performed. As shown in FIG. 4D, the upper thumb slide 18 can be moved as quickly as possible in order to minimize the time of complete occlusion in order to release the link assembly 25. The electrode 48 can be activated and the ablation can be performed. Once the ablation is complete, the lower thumb slide 46 can be released and the clamping ablation tool 10 can be removed in the reverse order in which it was placed within the patient.
Some embodiments of the invention can include a clamp ablation device having a shutter design. The clamp ablation device can include a rigid framework that can carry movable segments, such as shutters or beams that can be deployed in opposing sets to clamp and occlude the atrium adjacent the pulmonary veins 13. The clamping ablation tool 10 with the shutter design can be configured to clamp adjacent to the left or right pulmonary veins, either sequentially or simultaneously. Movable segments within the clamping ablation tool 10 can be actuated using linkages, rods, balloons, and bellows. Ablation electrodes can be affixed to the movable segments and can make contact with the atrium when in a deployed position. The movable segments can travel out of the plane defined by the frame of the clamping ablation tool 10 in order to extend upward into the atrium, in some embodiments. In some embodiments, the clamping ablation tool 10 with a shutter design can include separately or simultaneously deployed members to provide occlusion and carry radio frequency electrodes for atrial fibrillation therapies. The clamping ablation tool 10 can be compatible with minimally-invasive cardiac surgery techniques. The clamping ablation tool 10 can be integrated into both rigid and flexible delivery systems. The clamping ablation tool 10 can be deployed through single-sided surgical approaches. Balloon activation can be used to provide lateral displacement of surrounding tissues or structures. An open position of the clamping ablation tool 10 can provide flow through both pulmonary veins sets 13. The clamping ablation tool 10 can be a single-placement, dual-action device which does not require that the overall system be repositioned by the surgeon between right and left pulmonary vein isolation procedures. The clamping ablation tool can provide a backbone for ablation and other therapies requiring interruption of pulmonary vein flow or intermittent and controlled clamping of tissue or other structures.

FIGS. 5A-5E illustrate an embodiment of the clamping ablation tool 10 including a shutter design. The clamping ablation tool 10 can include an upper left link 50, an upper right link 52, a lower left link 54, and a lower right link 56. The upper left link 50 and the upper right link 52 can be connected to the upper arm 12 via fasteners 66. The lower left link 54 and the lower right link 56 can be coupled to the lower arm 14 with fasteners 66. The links 50, 52, 54, 56 can each include an electrode face 58. The links 50, 52, 54, 56 can include multiple positions as shown as shown in phantom in FIG. 5A. FIG. 5A also
illustrates that the upper arm 12 and the lower arm 12 can each include a width w₁ of approximately 10 mm.

Although the configurations and connections are sometimes described herein with respect to a single link or two links, it should be understood that any of the alternative configurations and connections can be used in conjunction with any or all of the links 50, 52, 54, 56. FIG. 5B illustrates a cable or wire 60 that can be connected to the lower left link 54 and/or the lower right link 56 in order to move the links 54, 56 and their electrode faces 58. FIG. 5C illustrates an embodiment of the lower arm 14 including the lower left link 54 and the lower right link 56 each coupled via fasteners 66 to lower arm segments. The lower arm segments can be constructed of a flexible material, for example, having a width w₂ of approximately 8 mm. The lower arm 14 can include a clamping area section 64 that can be constructed of a substantially rigid material. In some embodiments, the lower arm 14 can include a smooth transition between the flexible lower arm segments and the rigid clamping area section 64. The links 50, 52, 54, 56 can be actuated using air and/or fluid pressure or a deflection caused by the rod 62. FIG. 5D illustrates a rod 62 that can be used to move the electrode face 58 of the links 50, 52, 54, 56. FIG. 5E illustrates the various forces placed on the links 50, 52, 54, 56 and the upper arm 12 and the lower arm 14.

FIGS. 6A-6J illustrate an embodiment of the clamping ablation tool 10 including a shutter design. FIG. 6A illustrates the lower arm 14, which can include a lower left link 54, a lower right link 56, and a clamping area section 64. The links 54 and 56 can be coupled to the lower arm 14 with fasteners 66 in the form of collars. In some embodiments, the links 54 and 56 can rotate out of a plane of the clamping area section 64, as shown in FIG. 6A. FIG. 6I is a top view of the lower arm 14 positioned with respect to the pulmonary veins 13. The lower right link 56 is shown rotated out of the plane of the lower arm 14 and the clamping area section 64. In some embodiments, the links 54 and 56 can be rotated toward an anterior portion of the patient.

FIG. 6B is a side view of the lower arm 14 including the links 54 and 56. FIG. 6B illustrates the lower left link 54 in a lower position, and the lower right link 56 in an upper
position. FIG. 6C illustrates the lower left link 54 and the lower right link 56 in raised positions.

FIG. 6D illustrates one embodiment of the lower right link 56 coupled to a stiffener 68. The stiffener 68 can be extended from the lower arm 14 into the lower right link 56, or any other link. FIG. 6E also illustrates the stiffener 68 connected to the lower right link 56, along with a cable 60 that can be used to move the link 56 between its lower and upper positions.

FIG. 6F illustrates the forces that can be exerted on the links of the lower arm 14. FIG. 6G illustrates one embodiment of the clamping area section 64 including a recessed area with a diameter d. The diameter d can, in some embodiments, be approximately 10 mm. FIG. 6J also illustrates the stiffeners 68 that can be placed within the lower arm 14 and through a portion of the clamping area section 64 and into the links 54 and 56.

FIG. 6H illustrates another embodiment of the clamping area section 64 with a more shallow recessed area. FIG. 6K illustrates an embodiment of the lower right link 56 having a curvature to more closely match the framework of the clamping area section 64.

FIGS. 7A-7D illustrate another embodiment of the clamping ablation tool 10 including a shutter design. The clamping ablation tool 10 can include tubes 70 that can connect to the lower arm 14. The tubes 70 can include rectangular recesses 71 that can receive the lower left link 54 and the lower right link 56. The tubes 70 can be coupled to the clamping area section 64, which can include a curved recess 72 that can receive the end portions of the links 54 and 56. The tube 70 can be coupled to the clamping area section 64 with any suitable fasteners 66, such as pins.

FIGS. 7A and 7B illustrate the lower left link 54 in a lower position and the lower right link 56 in an upper position. FIG. 7C illustrates a cross-sectional profile of the clamping area section 64 including the curved recess 72. FIG. 7D illustrates the lower left link 54 and the lower right link 56 in their upper positions. In some embodiments, the lower left link 54 and the lower right link 56 can include mating surfaces 88. For example, the lower right link 56 can include a recess that can mate with an end of the lower left link 54. FIG. 7E is a solid model diagram of the lower arm 14 including the
lower left link 54 and the lower right link 56 in their upper positions with the mating surfaces 88 in contact.

FIG. 8 illustrates an embodiment of the lower arm 14 including a lower left link 54 and a lower right link 56 that can slide toward the pulmonary veins 13 with respect to the tubes 70. FIG. 8 illustrates the lower right link 56 in a recessed position with respect to the tubes 70 and in an extended position with respect to the tubes 70 (in phantom). The lower right link 56 can be moved along a length of the clamping area section 64.

FIG. 9A and 9B illustrate an embodiment of the clamping ablation tool 10 including a lower right link 56 with a tapered portion 76 coupled to the tube 70. The lower right link 56 can also include a ball attachment 74 that can connect to a portion of the clamping area section 64, for example, by use of one or more magnets. In other embodiments, the ball attachment 74 can be fit within the curved recess 72 of the clamping area section 64 by a press-fit or by a friction-fit connection.

FIGS. 10A-10H illustrate an embodiment of the clamping ablation tool 10 that can use balloons 78 or cylinders 80 to position the links 50, 52, 54, 56. As shown in FIG. 10A, a balloon 78 can be inflated or deflated in order to position the upper left link 50 or the lower left link 54. Similarly, a cylinder 80 can be used to position the upper right link 52 or the lower right link 54. Balloons 78 and/or cylinders 80 can be used in order to position any one or more of the links 50, 52, 54, 56. The embodiment illustrated in FIG. 10A is only one example of the use of balloons 78 and cylinders 80. As shown in FIG. 10A, in the extended position, the links 50 and 54 can have a spaced apart distance d, which in some embodiments, can be approximately 2 mm.

FIG. 10B illustrates an embodiment of the lower left arm 54 including a first member 82 coupled to a second member 84. The first member 82 can also be coupled to a connector 86. The lower left link 54 can include a mating surfaces 88 between the first member 82 and the second member 84. The mating surfaces 88 can include a rectangular portion secured by a pin along with one or more curved portions. FIG. 10B illustrates the lower left link 54 in its fully extended position. FIG. 10C illustrates the lower left link 54 in a retracted position.
FIG. 10D illustrates examples of forces that can be exerted on the links 50, 52, 54, 56. FIG. 10E illustrates one embodiment of the lower left link 54 including a slider member 90. The slider member 90 can be used to extend and retract the lower left link 54. FIG. 10F illustrates an example of forces that can be exerted on the lower left link 54. FIGS. 10G and 10H illustrate an embodiment of the lower left link 54 including a four-bar linkage 92 that can be used to extend or retract the lower left link 54. FIG. 10G illustrates the lower left link 54 in a deployed position, and FIG. 10H illustrates the lower link 54 in a retracted position. Balloon 78 or cylinders 80 can be used in conjunction with the embodiments shown in FIGS. 10G and 10H in order to provide a force to move the four-bar linkage 92.

FIGS. 11A and 11B illustrate an embodiment of the lower arm 14 including the lower left link 54 with a connector 86 coupled to the clamping area section 64 with a fastener 66. Although not shown, a lower right link 56 can also be coupled to the lower arm 14 at the right portion of the clamping area section 64. The lower arm 14 shown in FIGS. 11A and 11B can also include tubes 70 with a first concentric portion 94 and a second smaller concentric portion 96. The clamping area section 64 can include a curved recess 72, as shown in FIG. 11B. The curved recess 72 can receive the lower left link 54.

FIGS. 12A-12F illustrate an embodiment of the lower arm 14 including a two-piece lower left link 54. The lower left link 54 can include a first member 82 coupled to a second member 84. The first member 82 can include a connector 86 that can couple the lower left link 54 to the clamping area section 64 via a fastener 66. The first member 82 and the second member 84 can mate with one another in order to form mating surfaces 88, such as male and female recesses joined with a pin. FIG. 12A illustrates the lower left link 54 in an extended position, and in a retracted position (in phantom). In some embodiments, the lower left link 54 can be prevented from extending beyond the position shown in FIG. 12A as the extended position.

FIGS. 12B-12D illustrate the lower left link 54 in its retracted position in which it can lie within the curved portion 72 of the clamping area section 54. FIGS. 12E and 12F illustrate the lower left link 54 in its extended position in which it lies within the same plane as the tubes 70. The first and second concentric portions 94 and 96 can be used to
couple the tubes 70 to another portion of the lower arm 14. Although not shown, the lower arm 14 can also include a lower right link 56. It should also be understood that the upper arm 12 can include embodiments of the link 54 being positioned in as an upper left link 50 and/or an upper right link 52.

FIGS. 13A-13E illustrate an embodiment of the clamping ablation tool 10 including captures 98 coupled around the tubes 70 of the upper arm 12 and the lower arm 14. As shown in FIGS. 13A and 13B, the links 50, 52, 54, 56 can be in the form of shutters. The shutters can be grouped in a right set that can operate independently of a left set. For example, when one set of shutters is open, the other set of shutters can be closed. The links or shutters 50, 52, 54, 56 can be coupled to the tubes 70 and to the clamping area section 64 via fasteners 66. The connection between the tubes 70 and the clamping area section 64 can have a smooth transition to flow into the captures 98. In some embodiments, the clamping area section 64 is constructed of a substantially rigid material with a diameter d of less than approximately 10 mm. Each of the links or shutters 50, 52, 54, 56 can include an electrode face 58 that can contact the target tissue. The tubes 70 can be constructed of a flexible material, such as a porous polymer.

FIG. 13B illustrates another embodiment in which distal ends of the clamping area section 64 can be coupled to one another with a cable 102. As shown in FIGS. 13A and 13B, a smooth transition section 100 can be formed between the clamping area section 64 and the tube 70. FIG. 13B also illustrates that the upper left link 50 and the lower left link 54 can be positioned in a partially-open position. FIG. 13C illustrates a cable or wire 60 that can be used to hold the shutters 50, 52, 54, 56 in tension in a closed position. FIG. 13D illustrates a rod 62 that can be used as a deflector to close one or more of the shutters 50, 52, 54, 56. FIG. 13E illustrates the forces that can act on the shutters 50, 52, 54, 56 in order to actuate the shutters 50, 52, 54, 56. In other embodiments, air or fluid pressure can be used to actuate the shutters 50, 52, 54, 56.

FIG. 2 is a schematic illustration of a clamping ablation tool 10 in the form of a compound clamp with a drawbridge design. FIGS. 14A-14F illustrate a more specific embodiment of a clamping ablation tool 10 having a drawbridge design. FIG. 14A illustrates the clamping ablation tool 10 including the upper arm 12, the lower arm 14, the
upper handle 16, the lower handle 42, the upper neck 24, the lower neck 42, and the link assembly 25. The clamping ablation tool 10 can include an upper rotary control 104 and the lower rotary control 106. The clamping ablation tool 10 can include a distal jaw 44 that can interact with the link assembly 25. The link assembly 25 can include the short link 26, the middle link 28, and the end link 30. The upper arm 12 can be inserted into the patient separately from the lower arm 14.

As shown in FIGS. 14B through 14C, the upper arm can be first inserted from a right thoracotomy into the patient. The lower arm 14 can then also be inserted into the right thoracotomy into the patient in order to mate with the upper arm 12, as shown in FIGS. 14D and 14E. FIG. 14F illustrates the upper arm 12 in its position before insertion into the patient or its final position while being withdrawn from the patient.

Various additional features and advantages of the invention are set forth in the following claims.
CLAIMS

1. A clamping ablation tool for ablating target tissue adjacent pulmonary veins of a patient, the clamping ablation tool comprising:

an upper arm including an upper neck, a link assembly, and an upper actuator, the link assembly including a distal electrode and a proximal electrode, the link assembly capable of being guided around the pulmonary veins, the upper actuator controlling movement of the link assembly; and

a lower arm that mates with the upper arm, the lower arm including a lower neck, a distal jaw, and a lower actuator, the distal jaw including a jaw electrode, the lower actuator controlling movement of the distal jaw;

the upper actuator and the lower actuator being independently operable in order to position the link assembly and the distal jaw independently;

the distal electrode and the proximal electrode receiving energy independently of the jaw electrode in order to allow partial blood flow through the pulmonary veins and create a continuous lesion.

2. The clamping ablation tool of claim 1 wherein the link assembly includes a short link, a middle link, and an end link.

3. The clamping ablation tool of claim 1 wherein at least one of the upper actuator and the lower actuator includes a thumb slide, a rotary control, a trigger, a torque screw, and a lever.

4. The clamping ablation tool of claim 1 wherein the proximal electrode is approximately half a length of the distal electrode.

5. The clamping ablation tool of claim 1 wherein the jaw electrode is approximately half a length of the distal electrode.
6. The clamping ablation tool of claim 1 wherein at least one of the distal electrode, the proximal electrode, and the jaw electrode receives at least one of radio frequency energy, thermal energy, cryogenic energy, and microwave energy.

7. A clamping ablation tool for ablating target tissue adjacent pulmonary veins of a patient, the clamping ablation tool comprising:

- an upper arm including an upper neck, an upper left link, an upper right link, and an upper actuator, the upper left link including a first proximal electrode and the upper right link including a first distal electrode, the upper arm capable of being guided around the pulmonary veins, the upper actuator controlling movement of the upper left link and the upper right link; and

- a lower arm that mates with the upper arm, the lower arm including a lower neck, a lower left link, a lower right link, and a lower actuator, the lower left link including a second proximal electrode and the lower right link including a second distal electrode, the lower actuator controlling movement of the lower left link and the lower right link;

- the upper actuator and the lower actuator being independently operable in order to position the upper left link and the upper right link independently of the lower left link and the lower right link;

- the first proximal electrode and the second proximal electrode receiving energy independently of first distal electrode and the second distal electrode in order to allow partial blood flow through the pulmonary veins and create a continuous lesion.

8. The clamping ablation tool of claim 7 wherein at least one of the upper left link, the upper right link, the lower left link, and the lower right link is coupled to at least one of a cable, a wire, and a rod.

9. The clamping ablation tool of claim 7 wherein at least one of the upper left link, the upper right link, the lower left link, and the lower right link include electrode faces and mating surfaces.
10. The clamping ablation tool of claim 7 wherein at least one of the upper left link, the upper right link, the lower left link, and the lower right link rotates out of a plane with a clamping area section.

11. The clamping ablation tool of claim 7 and further comprising a stiffener coupled to at least one of the upper arm and the lower arm.

12. The clamping ablation tool of claim 7 wherein at least one of the upper arm and the lower arm includes a curved recess that can receive at least one of the upper left link, the upper right link, the lower left link, and the lower right link.

13. The clamping ablation tool of claim 7 wherein at least one of the upper arm and the lower arm includes a tube coupled to a clamping area section and one of the upper left link, the upper right link, the lower left link, and the lower right link.

14. The clamping ablation tool of claim 7 wherein at least one of the upper left link, the upper right link, the lower left link, and the lower right link includes a first member coupled to a second member, with the first member being coupled to a clamping area section.

15. The clamping ablation tool of claim 7 and further comprising at least one capture coupling a portion of the upper arm to a portion of the lower arm.
A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61B18/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2002/115996 A1 (WILSON JEFFREY A ET AL) 22 August 2002 (2002-08-22) figures 1, 3, 4</td>
<td>1, 7</td>
</tr>
</tbody>
</table>

Date of actual completion of the international search: 2 September 2005

Date of mailing of the international search report: 12/09/2005

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax (+31-70) 340-2016

Authorized officer: Völlinger, M
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 1079747 A2</td>
<td>07-03-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002052602 A1</td>
<td>02-05-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9959486 A2</td>
<td>25-11-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004204706 A1</td>
<td>14-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004087941 A1</td>
<td>06-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002091384 A1</td>
<td>11-07-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002032440 A1</td>
<td>14-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2001031961 A1</td>
<td>18-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2417429 A1</td>
<td>27-07-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002103484 A1</td>
<td>01-08-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002091382 A1</td>
<td>11-07-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002115993 A1</td>
<td>22-08-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002091383 A1</td>
<td>11-07-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003032952 A1</td>
<td>13-02-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002107513 A1</td>
<td>08-08-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005171530 A1</td>
<td>04-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003018329 A1</td>
<td>23-01-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005021024 A1</td>
<td>27-01-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005033282 A1</td>
<td>10-02-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005033283 A1</td>
<td>10-02-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03037162 A2</td>
<td>08-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005033284 A1</td>
<td>10-02-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003125729 A1</td>
<td>03-07-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5739801 A</td>
<td>07-11-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2407645 A1</td>
<td>01-11-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1301134 A2</td>
<td>16-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004512859 T</td>
<td>30-04-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0180724 A2</td>
<td>01-11-2001</td>
</tr>
<tr>
<td>US 2002115996 A1</td>
<td>22-08-2002</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>