(54) Title: DIPEPTIDE EXHIBITING ANTIHYPERTENSIVE ACTION

(54) 発明の名称: 血圧降下作用を有するジペプチド

(57) Abstract: A novel substance having an inhibitory activity on angiotensin I converting enzyme and exhibiting an antihypertensive action; a process for producing the novel substance; and a food or beverage, or functional food, or pharmaceutical composition comprising the novel substance. There are provided alanylphenylalanine (Ala-Phe), glycylylphenylalanine (Gly-Phe), and salts thereof. Further, there is provided an inhibitory composition for angiotensin I converting enzyme comprising the same, and provided, comprising them, a material for food or beverage, food or beverage, or pharmaceutical composition.

(57) 報告: アンジオテンシンI変換酵素の阻害活性を有し、血圧降下作用を示す新規物質、該新規物質の製造方法、並びに該物質を含む飲食品、機能性食品及び医薬製品組成物を提供する。本発明はアラニルフェニルアラニン（Ala-Phe）、グリシルフェニルアラニン（Gly-Phe）、それらの塩、及びそれらを含むアンジオテンシンI変換酵素阻害用組成物、並びにそれらを含有する飲食品用素材、飲食品及び医薬製品組成物に関する。
明細書
血圧降下作用を有するジペプチド

技術分野

[0001] 本発明は、血圧降下作用を有するジペプチド、該ジペプチドを含む組成物、該組成物のピール酵母からの抽出製造法、並びに該ジペプチド又は組成物を含有する飲食品、機能性食品及び医薬品に関する。

背景技術

[0002] 現在国民の4人に1人は高血圧であると言われている。高血圧はサイレントキラーと言われ、大きな症候は無い。しかし放っておくと、主要死因の一つに脳血管障害、心疾患、さらに動脈硬化など、各種の疾患を引き起こす。高血圧の治療として、現在、さまざまな治療薬が使用されているが、そのいくつかについては、副作用の問題が懸念されている。

[0003] 高血圧の原因物質として知られる、強力な血管収縮物質であるアンジオテンシンII（Asp-Arg-Val-Try-Ile-His-Pro-Phe）は、不活性型ペプチドであるアンジオテンシンI（Asp-Arg-Val-Try-Ile-His-Pro-Phe-His-Leu）から、それが肺及び腎臓を循環する間にC末端側のHis-LeuがアンジオテンシンI変換酵素（ACE）により切断されることによって生成されることが知られている。近年では、このアンジオテンシンIからアンジオテンシンIIへの変換を伴う腎臓のレニン・アンジオテンシン系（RAS）が、高血圧症の約90%を占める本態性高血圧の発症に密接に関連しているとの報告もなされている。一方でアンジオテンシンI変換酵素（ACE）は、キニンーカリクリン系において降圧ペプチドであるブリキニンの分解を不活性化する反応も有する。これらのことから、ACE活性を阻害すれば、血圧上昇が抑制され、高血圧の抑制につながることが予測される。

[0004] これまでに、ACE活性を阻害する様々なペプチド化合物が合成されてきている（特許文献1及び2）。また、乳タンパク質、魚介類及び植物起源のペプチド類からも、アンジオテンシンI変換酵素の基質と拮抗する基質として作用し、その結果血圧上昇レベルを低く維持するペプチド類が見出されており、それらの食品としての長期間にお
たる摂取は高血圧の予防に有効であることが報告されている（非特許文献1〜3）。最近では、ACEを特異的に阻害したり、アンジオテンシンIと同じようにACEの基質として作用して相対的に低いACE活性をもたらしたりすることにより血圧上昇を抑制し、高血圧を改善・予防する成分を、様々な食品起源のタンパク質から創製・探索・分離する試みが活発に行われている（特許文献3〜6、非特許文献4〜9）。また、機能性食品素材の一つであるローヤルゼリー（RJ）に含まれるタンパク質は、タンパク質分解酵素処理によってACE阻害活性が著しく増強することが見出されており（非特許文献10）、その際に遊離したペプチド類の経口投与によって、高血圧自然発症ラット（SHR）の血圧を降下させることも合わせて報告されている（非特許文献11）。

特許文献1：特開昭57－53447号公報
特許文献2：特開平2－282395号公報
特許文献3：特開平5－958号公報
特許文献4：特開平11－29594号公報
特許文献5：特開2002－29995号公報
特許文献6：特開2002－291452号公報
非特許文献1：関栄治ら著、「イワシタンパク質由来のペプチドならびにValyl-Tyrosineの降圧作用」、日本栄養食糧学会誌、(1999) 52, p.271-277
非特許文献2：大鶴勝ら著、「マイタケ投与が高血圧自然発症ラットの血圧および体重に及ぼす影響」、日本食品工業学会誌、(1999) 46, p.806-814
非特許文献3：川岸舜朗編、「生物化学実験法38 食品中の生体機能調節物質研究法」、学会出版センター、(1996), p.116-129
非特許文献6：受田浩之ら著、「イワシタンパク質加水分解物からのANGI変換酵素阻害ペプチドの調製とその分離」、日本農芸化学会誌、(1991) 65, p.1223-1228
非特許文献10：鈴木和道ら著，「プロテアーゼによるローヤルゼリー分解物のアンジオテンシンI変換酵素阻害活性」，日本食品科学工学会誌，(2003) 50, p.286–288
非特許文献11：鈴木和道ら著，「血圧自然発症ラットに対する蛋白質分解酵素処理ローヤルゼリーの血圧調節作用」，日本食品科学工学会誌，(2003) 50, p.47–462
発明の開示
発明が解決しようとする課題

[0005] 本発明は、アンジオテンシンI変換酵素の阻害活性を有し、血圧降下作用を示す物質、該物質の製造方法、並びに該物質を含む飲食品、機能性食品及び医薬品を提供することを目的とする。

課題を解決するための手段

[0006] 本研究者らは、上記課題を解決するために鋭意研究を行い、乾燥ビール酵母の加水分解物に由来するペプチド画分を高血圧自然発症ラット(SHR)に投与すると、ラットの血圧が降下することを見出した。そこで本発明者らは、乾燥ビール酵母加水分解物中から、アンジオテンシンI変換酵素(ACE)活性を阻害するペプチドの探索を行ったところ、血圧降下作用を有する2種のペプチドAla-Phe及びGly-Pheが見出された。本発明はこれらの知見に基づいて完成されたものであり、すなわち以下の通りである。

[0007] [1] アラニルフェニルアラニン（Ala-Phe）であるジペプチド又はその塩。

[0008] [2] グリシンフェニルアラニン（Gly-Phe）であるジペプチド又はその塩。
[0009] [3] アラニルフェニルアラニン(Ala-Phe)、グリシンフェニルアラニン(Gly-Phe)、及びそれらの塩からなる群より選択される少なくとも1つを含有する、アンジオテンシンI変換酵素阻害用組合物。

[0010] [4] 以下の工程a)～c)を含む、アンジオテンシンI変換酵素阻害用組成物の製造方法。

[0011] a) ビール酵母を加水分解する工程、
 b) その加水分解物をクロマトグラフィー法によって分画する工程、及び
c) アラニルフェニルアラニン(Ala-Phe)及び/又はグリシンフェニルアラニン(Gly-Phe)を含有する画分を分取する工程

[0012] [5] アラニルフェニルアラニン(Ala-Phe)及び/又はグリシンフェニルアラニン(Gly-Phe)を含有する画分が、分子量150～2,000のペプチドを含む画分である、上記[4]に記載の方法。

[0024] [17] 以下の工程a)～c)を含む、アラニルフェニルアラニン(Ala-Phe)及び/又はグリシンフェニルアラニン(Gly-Phe)を含有する組成物の製造方法。

a) ビール酵母を加水分解する工程、
b) その加水分解物を、疎水性吸着剤を充填したカラムに通液する工程、及び
c) 50〜100％の濃度のエタノール水溶液を用いて、その中性吸着剤から吸着物質を溶出させる工程

発明の効果

[0025] 本発明に係るペプチドAla-Phe、Gly-Phe及びそれらの塩、並びにそれらを含む組成物は、アンジオテンシンI変換酵素（ACE）阻害活性を有する。本発明のペプチド、その塩及びそれらを含む組成物は、血圧上昇を抑制する効果を発揮する。本発明のペプチド、その塩、又はそれらを含む組成物を含有する飲食品用素材、飲食品及び医薬組成物は、例えば経口投与によって、血圧上昇を抑制することができる。

[0026] 本明細書は本願の優先権の基礎である日本国特許出願2004-166223号の明細書および／または図面に記載される内容を包含する。

図面の簡単な説明

[0027] [図1]図1は、乾燥ビール酵母加水分解物の調製手順を示す概略図である。

[図2]図2は、乾燥ビール酵母加水分解物のACE阻害活性の測定手順を示す概略図である。

[図3]図3は、各実験組への飼料給与スキュームを示す図である。

[図4]図4は、各実験群における血圧の推移を表す図である。

[図5]図5は、各実験群における血圧変化量を表す図である。

[図6]図6は、血清中のアンジオテンシンI変換酵素活性の測定手順を示す概略図である。

[図7]図7は、腎臓からのアンジオテンシンI変換酵素活性測定用サンプルの調製手順を示す概略図である。

[図8]図8は、50%EtOH溶出画分からACE阻害物質を同定するために用いた実験手順を示す概略図である。

[図9]図9は、Sephadex-G-25カラムクロマトグラフィーによる酵母アルカロイド加水分解物の溶出パターンと、溶出画分のACE阻害活性を示す図である。

[図10]図10は、画分18の逆相分取HPLCクロマトグラムを示す図である。ピーク画分A〜Cが示されている。

[図11]図11は、画分18の逆相分取HPLCクロマトグラムを示す図である。ピーク画分
D～Fが示されている。
【図12】図12は、画分Bと画分Eの混合物をゲル濾過HPLCに掛けて得られたHPLCクロマトグラムを示す図である。
【図13】図13は、画分Gのマススペクトラムとフェニルアラニンの化学構造式を示す。
【図14】図14は、画分Hのマススペクトラムとアラニルフェニルアラニンの化学構造式を示す。
【図15】図15は、画分Iのマススペクトラムとグリシンフェニルアラニンの化学構造式を示す。
【図16】図16は、AF又はGFの単回経口投与に伴う収縮期血圧の変動を示す図である。
【図17】図17は、AF又はGFの単回経口投与に伴う最大収縮期血圧変化量の推移を示す図である。
発明を実施するための最良の形態

[0028]以下、本発明を詳細に説明する。

[0029]1) アンジオテンシンI変換酵素(ACE)阻害活性を有する、ペプチドAla-Phe、Gly-Phe及びそれらの塩、並びにそれらを含むアンジオテンシンI変換酵素阻害用組成物
本発明に係るペプチドである、アラニルフェニルアラニン(Ala-Phe)、グリシンフェニルアラニン(Gly-Phe)及びそれらの塩は、それぞれ、アンジオテンシンI変換酵素(ACE)阻害活性を有する。

[0030]本発明において、アラニルフェニルアラニン(Ala-Phe)とは、N末端のアラニン残基とC末端のフェニルアラニン残基を含むジペプチドを意味する。本発明におけるアラニルフェニルアラニンの塩としては、ナトリウム塩、カリウム塩等が挙げられる。

[0031]本発明では、グリシンフェニルアラニン(Gly-Phe)は、N末端のグリシン残基とC末端のフェニルアラニン残基を含むジペプチドを意味する。本発明におけるグリシンフェニルアラニンの塩としては、ナトリウム塩、カリウム塩等が挙げられる。

[0032]本発明のペプチドAla-Phe、Gly-Phe又はそれらの塩は、当業者に公知のペプチド合成法、例えば、限定するものではないが、化学的若しくは酵素的切断法、化学合成法(液相法、固相法、カラム法及びバッチ法等)、クロマトグラフィー法による精製抽

[0033] また本発明のペプチドAla-Phe, Gly-Phe及びそれらの塩からなる群から選択される少なくとも1つを含有する組成物も、アンジオテンシンI変換酵素阻害活性を有する。従って本発明のこのような組成物は、アンジオテンシンI変換酵素（ACE）阻害用組成物として用いることができる。本発明のペプチドAla-Phe, Gly-Phe及びそれらの塩からなる群から選択される少なくとも1つを含有する組成物は、ビール酵母加水分解物から得られるペプチド画分（以下、AF/GFビール酵母由来画分と呼ぶ）として調製することもできる。

[0034] 本発明に係るAF/GFビール酵母由来画分は、当業者に公知の任意の手法を用いて、以下の工程a)〜c):
 a) ビール酵母を加水分解する工程、
 b) その加水分解物をクロマトグラフィー法によって分画する工程、及び
 c) アラニルフェニルアラニン（Ala-Phe）及び／又はグリシルフェニルアラニン（Gly-Phe）を含有する画分を分取する工程を含む方法によって製造することができる。ビール酵母由来画分に含まれるペプチドの分子量は、150〜2000の範囲にあることが望ましいが、これに限定されるものではない。

[0035] AF/GFビール酵母由来画分の製造に使用するビール酵母は、ビールの醸造に用いられる任意の酵母であってよし、サッカロミセス・セレビシエ（Saccharomyces cerevisiae）、サッカロミセス・バストリアヌス（Saccharomyces pastorianus）、サッカロミセス・バヤナス（Saccharomyces bayanus）等を用いることが好ましい。本発明に係るビール酵母は、乾燥状態（例えば粉末状又は顆粒状）であってもよいし、培養物であってもよい。本明細書で用いる「培養物」とは、培養中の細胞（菌体）と培地を含む培養液、及び培養液から分離された培養細胞を包含する。

[0036] ビール酵母に適用する加水分解法には、典型的には酵素的又は化学的加水分解法がある。酵素的加水分解法としては、例えば、アルカリ性プロテアーゼ、中性
プロテアーゼ、及び酸性プロテアーゼ等を含むプロテアーゼによって処理する方法が挙げられる。本発明で用いるプロテアーゼとしては、アルカリ性プロテアーゼ（アルカリーゼ（Alcalase 2.4L FG; Novozymes社製）等）が好ましいが、これに限定されるものではない。化学的加水分解法としては、例えば、強酸又は強アルカリによって処理する方法が挙げられる。加水分解の条件としては、公知の加水分解法で用いられる任意の条件を用いればよい。酵素法における酵素の添加量は、通常、タンパク質1g当たり0.001％以上、好ましくは0.1～10％が適当である。反応pH及び反応温度は、使用する酵素の至適pH、至適温度付近に設定することが好ましい。反応時間が、酵素の種類、添加量、反応温度、反応pHに合わせて当業者が適宜設定することができるが、通常は、30分～40時間の範囲である。加水分解反応の停止は、反応混合液の加熱やpH変化等による酵素の失活、限外濾過等による酵素の篩別等を含む公知の方法に従って行うことができる。

[0037] AF/GFビール酵母由来画分を分画するための手法として、有機物の分析に用いる様々な技術を用いることができる。そのような分画技術としては、例えば、限外濾過や精密濾過等の膜濾過、ゲル浸透クロマトグラフィー、ゲル濾過クロマトグラフィー（例えば、高速液体クロマトグラフィー）等のサイズ排除クロマトグラフィー、分配クロマトグラフィー、吸着クロマトグラフィー、イオン交換クロマトグラフィー等が挙げられる。具体的には例えば、ビール酵母加水分解物をクロマトグラフィーにかけて分画し、Ala-Phe及び／又はGly-Pheを含む画分を同定し、それを分取することが好ましい。ビール酵母加水分解物を順次異なるクロマトグラフィーにかけて、より精製された画分を得てもよし、この場合、ビール酵母加水分解物を、まず、渇水性を有する物質が吸着される吸着剤（例えばAmberlite™XAD-2™樹脂を充填したクロマトグラフィーに通し、有機溶媒（例えばエタノール（50～100％EtOH）やメタノール等）で吸着画分を溶出させる）により渇水性を有する物質を含む画分を分取し、その画分をHPLC等のクロマトグラフィー法によってさらに分画し、各画分のACE阻害活性を測定し、高いACE阻害活性を有する画分を分取し、得られた画分をさらにHPLC等で分画してもよし、渇水性を有する物質を吸着する吸着剤としては、Amberlite™XAD-2™樹脂（Rohm & Haas社製；ポリスチレン-ジビニルベンゼン共重合体、平均細孔径90Å、比表面積300m²/g
、細孔容積率42%、真の密度1.02g/ml）、Amberlite™XAD-4™樹脂等が挙げられる。
ビール酵母加水分解物は、クロマトグラフィーにかける前に、遠心分離や濾過等で
固形成分を除去することが好ましい。

[0038] AF/GFビール酵母由来画分の具体的な製造方法の例は、実施例1及び4に記載
した。

[0039] これによって製造されるAF/GFビール酵母由来画分は、Ala-Phe（分子量236.12）
、Gly-Phe（分子量222.10）及び／又はその塩を含有する。単一ピークのみを含む画
分にまで分画して、アミノ酸分析又は質量分析を行えば、その画分に含まれるAla-Phe、
Gly-Phe又はそれぞれの塩をさらに正確に確認することができる。アミノ酸分析や質
量分析は当業者に公知の方法に従って行えばよ。例えばアミノ酸分析は、アミノ酸
分析計（ATO MLC-703型）を用いて、製造業者の説明書に従って実施することがで
きる。また質量分析は、液体クロマトグラフ／タンデム型質量分析装置（LC/MS/MS；
LCQ Advantage ion trap mass spectrometer（Thermo Finnigan））等を用いて行うこ
とができる。

[0040] 以上のようなAF/GFビール酵母由来画分は、そのままの溶液状態で、アングオテン
シンI変換酵素阻害用組成物として用いることができる。あるいは、AF/GFビール酵母
由来画分に、例えば濃縮及び／又はエタノール除去等のさらなる処理を施したもの
を、アングオテンシンI変換酵素阻害用組成物として用いてもよい。濃縮には、任意の
手法を用いればよいが、加熱濃縮法、減圧加熱濃縮法やエタノール沈殿による濃縮
方法、及び活性炭やイオン交換樹脂による濃縮法などが挙げられる。AF/GFビール
酵母由来画分を乾燥させて、アングオテンシンI変換酵素阻害用組成物として用いる
こともできる。そのような乾燥のための手法としては、風乾法、凍結乾燥法、スプレー
ドライ法、減圧乾燥法、及び加熱乾燥法等の任意の手法が挙げられる。本発明のア
ングオテンシンI変換酵素（ACE）阻害用組成物は、Ala-Phe、Gly-Phe及び／又はそ
れらの塩に加えて、場合により、薬剤に慣用的に添加される任意の賦形剤（水、安定
化剤、緩衝剤、保存剤、及び抗酸化剤等）をさらに含んでいてもよい。

[0041] なお本発明は、上記のAF/GFビール酵母由来画分又はその画分からさらに分画し
た単一ピーク画分などの、アラニルフェニルアラニン（Ala-Phe）及び／又はグリシルフ
イミダゾールアラニン（Gly-Phe）を含有する組成物の製造方法にも関する。本発明のそのような組成物の製造方法は、本明細書でも既に上述しているが、少なくとも以下の工程a)〜c)：

a) ビール酵母を加水分解する工程、

b) その加水分解物を、塩水性吸着剤を充填したカラムに通液する工程、及び

c) 濃度が0〜100%（好ましくは50〜100%）のエタノール水溶液を用いて、その塩水性吸着剤から吸着物質を溶出させる工程を含む。

[0042] この製造方法において、工程a)でビール酵母に適用する加水分解法は上述の通りである。また、工程b)で用いる塩水性吸着剤としては、限定するものではないが、Amberlite XAD-2、Amberlite XAD-4、Amberlite XAD-7、及びAmberlite XAD-10などのAmberlite XAD樹脂シリーズの吸着剤（Rohm & Haas, USA）が挙げられる。工程b)で用いる塩水性吸着剤としては、とりわけAmberlite XAD-2が好適である。

[0043] さらに、この製造方法の工程c)では、0〜100%（但し0%を除く）、好ましくは50〜100%の範囲に含まれる任意の濃度のエタノール水溶液を、適宜使用することができる。この工程c)における溶出法としては、例えばステップワイズ溶出、グラディエント溶出などの様々なカラム溶出順手順を用いることができる。

[0044] 上記の工程c)で溶出させた吸着物質には、アラニルフェニルアラニン（Ala-Phe）及びグリシンフェニルアラニン（Gly-Phe）の両方が含まれる。その場合、工程c)で溶出させた吸着物質をさらにクロマトグラフィー等の公知の分画方法によって分離することにより、アラニルフェニルアラニン（Ala-Phe）又はグリシンフェニルアラニン（Gly-Phe）を単独で含む画分を単離してもよい。

[0045] 2) Ala-Phe、Gly-Phe、及びそれらの塩、並びにそれらを含むアンジオテンシンI変換酵素阻害用組成物、アンジオテンシンI変換酵素阻害活性

Ala-Phe、Gly-Phe、及びそれらの塩、並びにそれらを含む組成物のアンジオテンシンI変換酵素（ACE）阻害活性は、非特許文献3に記載の方法で測定することができる。以下測定法の例示を行う。

[0046] 本発明におけるACE阻害活性測定法は、酵素エチル抽出法に従ってin vitroでの
アンジオテンシンⅠ変換酵素（ACE）阻害率を算出し、それを指標としてACE阻害活性を表すものである（非特許文献3、図2を参照）。具体的には、まず、ACE阻害活性を調べる被験サンプルを、10mg/ml濃度になるように蒸留水を用いて調製する。また、トリペプチドHip-His-Leu、及びNaClを、反応溶液中の最終濃度がそれぞれ5mM、400mMになるようにホウ酸バッファー（pH8.3）に溶解したものを、アンジオテンシンⅠ変換酵素の基質溶液として調製する。次いで、被験サンプル溶液15μlに、調製した基質溶液を125μl加え、37℃で5分間インキュベートする。続いて、アンジオテンシンⅠ変換酵素（ACE）溶液（60mU/mlになるようにホウ酸バッファー（pH8.3）で調製したもの）50μlを加え、37℃で30分間インキュベートする。次に、1N HCl 125μlを加えて反応を停止させ、酢酸エチル0.75mlを加えて十分混和し、遠心分離（3,000rpm、15℃、10分）を行う。上層の酢酸エチル層を採取し、減圧乾固したものを、蒸留水1.0mlに溶解させる。最後に、その228nmにおける吸光度を測定する。

[0047] 対照サンプルとして、被験サンプル50μlに1N HCl 125μlを加えて37℃で5分間インキュベートし、次いで基質溶液125μlとACE溶液50μlを加えて37℃で30分間インキュベートした後、上記と同様に酢酸エチル0.75mlを加え、さらにそれ以後の一連の操作を行って、サンプルブランクを調製する。また、被験サンプル溶液の代わりにホウ酸バッファー50μlを加えて基質溶液125μlととともに37℃で5分間インキュベートし、次いで1N HCl 125μlを加え、続いてACE溶液50μlを加えて37℃で30分間インキュベートした後、上記と同様に酢酸エチル0.75mlを加え、さらにそれ以後の一連の操作を行って、ブランクを調製する。さらに、被験サンプル溶液の代わりに蒸留水を加えること以外は上記と同様の一連の操作を行って、コントロールを調製する。サンプルブランク、ブランク、及びコントロールの吸光度測定を、上記と同様にして行う。

[0048] このようにして得られる吸光度の測定値に基づき、ACEの阻害率（%）を以下の式により算出する。

[0049] 阻害率（%）＝{(Ec－Eb)－Es}/(Ec－Eb)×100

 Ec: コントロールの吸光度
 Eb:ブランクの吸光度
 Es:被験サンプルの吸光度－サンプルブランクの吸光度
本発明においては、この阻害率(%)でACE阻害活性を表す。阻害率(%)が高いほどACE阻害活性も高く、阻害率が低いほどACE阻害活性も低い。

【0050】3) Ala-Phe、Gly-Phe、若しくはそれらの塩、又は本発明のアンジオテンシンⅠ変換酵素(ACE)阻害用組成物を含有する飲食品及び飲食品用素材

本発明の、Ala-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むアンジオテンシンⅠ変換酵素(ACE)阻害用組成物は、飲食慜用素材として用いることができる。この飲食品用素材は、適量を添加することにより、例えば血圧降下作用等の機能性を飲食品に付与することができる。この飲食品用素材は、限定するものではないが、液体状、粉末状、顆粒状、又は固形状等であってよい。本発明の飲食品用素材としては、例えば酢母エキス等が含まれる。好ましくは、この飲食品用素材は、Ala-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むアンジオテンシンⅠ変換酵素(ACE)阻害用組成物を高含量で含む。

【0051】本発明は、Ala-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むアンジオテンシンⅠ変換酵素(ACE)阻害用組成物を添加した飲食品にも関する。本明細書において「飲食品」とは、限定するものではないが、飲料、食品及び機能性食品を包含する。

【0052】Ala-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むACE阻害用組成物の飲食品への配合量は特に限定されず、例えば、Ala-Phe、Gly-Phe及びそれらの塩の総量が0.001〜100重量％となる配合量を例示することができる。但し実際の配合量は、飲食品の種類や求められる香りや風味を考慮して、当業者が適宜定めることができる。

【0053】本発明のさらに好ましい態様は、Ala-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むACE阻害用組成物を添加してその量を増大させた(添加増量した)飲食品である。このような本発明に係る飲食品は、Ala-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むACE阻害用組成物のいずれか1つを、又はそれらを組み合わせて、有効量にて含有することが特に好ましい。

【0054】Ala-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むアンジオテンシンⅠ変換酵素(ACE)阻害用組成物は、当業者が利用可能な任意の適切な方法によって、飲食品に含有させればよい。例えば、Ala-Phe、Gly-Phe、若しくはそれらの塩、又
はそれらを含むACE阻害用組成物は、液状、固体若しくは顆粒状に加工してから食品に含有させてもよい。あるいは飲食品中に直接混合又は溶解してもよいし、飲食品中に埋め込んでもよい。Ala-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むACE阻害用組成物は、食品中に塗布、被覆、浸透又は吹き付けてもよい。Ala-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むACE阻害用組成物は、飲食品中に均一に分布していてもよいし、不均一に分布していてもよい。あるいはAla-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むACE阻害用組成物は、食品中の特定部位に偏在していてもよい。Ala-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むACE阻害用組成物を、凍結乾燥させた状態で飲料に溶解する場合には、例えば水に溶解させ、攪拌により均一に混合させた後、飲料、水等に添加することが好ましい。また、Ala-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むACE阻害用組成物を固形食品に混合する場合は、例えば食品材料に添加し、攪拌により均一に混合した後、加工することが好ましい。また、Ala-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むACE阻害用組成物を含有させた飲食品をさらに加工することもできる。そのような加工製品も、本発明の範囲に包含される。あるいはまた、Ala-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むACE阻害用組成物それ自体を、固形形したり、カプセルや糖衣錠等の形状に製剤したりしたものも、本発明の飲食品に包含される。

[0055] 本発明の飲食品の製造においては、飲食品に慣用的に使用される各種添加物を使用してもよい。添加物としては、限定するものではないが、発色剤（亜硝酸ナトリウム等）、着色剤（クチナシ色素、赤102等）、香料（オレンジ香料等）、甘味料（ステビア、アステルバーム等）、保存料（酢酸ナトリウム、ソルビン酸等）、乳化剤（コンドロイチン硫酸ナトリウム、プロビレングリコール脂肪酸エステル等）、酸化防止剤（EDTAニッカトリュム、ビタミンC等）、pH調整剤（クエン酸等）、化学調味料（イノシリン酸ナトリウム等）、増粘剤（キサンタンガム等）、膨張剤（炭酸カルシウム等）、消泡剤（リン酸カルシウム）等、結着剤（ポリビニル酸ナトリウム等）、栄養強化剤（カルシウム強化剤、ビタミンA等）等が挙げられる。さらに、オタニのエキス、エノウコギエキス、ユーカリエキス、杜仲茶エキス等の機能性素材を添加してもよい。
[0056] 本発明の飲料の種類は、特に限定されない。本発明の飲料は、例えば、茶系飲料（玄米茶や緑茶等の不発酵茶、紅茶等の発酵茶、ウーロン茶やジャスミン茶等の半発酵茶、杜仲茶、柿の葉茶、熊笹茶、ギャバロン茶、コーン茶、ハプ茶、菊花茶等を含む飲料）、果物・野菜系飲料（オレンジ、りんご、ぶどう、もも、いちご、バナナ、レモンなどの果汁や、トマト、ニンジン、キャベツ、セロリなどの野菜汁を含む飲料）、アルコール性飲料（ビール、発泡酒、ウイスキー、ワイン、リキュール等を含む飲料）、炭酸飲料、乳酸菌飲料、乳飲料（コーヒー牛乳、フルーツ牛乳、機能性牛乳等）、清涼飲料、低カロリー飲料等の飲料を具体的に例示することができる。各種飲料の製造法等については、既存の参考書、例えば「最新・ソフトドリンクス」（2003）（株式会社光琳）等を参考にすることができる。

[0057] 本発明の食品の種類は、特に限定されない。本発明の食品は、生鮮食品であってもよいし、加工食品であってもよい。例えば、クッキー、パン、ケーキ、煎餅などの焼き菓子、羊羹などの和菓子、プリン、ゼリー、アイスクリーム類などの冷菓、チューインガム、キャンディー等の菓子類、クラッカー、チップス等のスナック類、バスタ、うどん、そば等の麺類、かまぼこ、ハム、魚肉ソーセージ等の魚肉練り製品、みそ、しょうゆ、ドレッシング、マヨネーズ、甘味料等の調味料類、豆腐、こんにゃく、その他佃煮、餃子、コロッケ、サラダ、スープ、シチュー等の各種総菜、パン、カット野菜、魚の切り身、加工肉等を具体的に例示することができる。

[0058] 上記のAla-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むアンジオテンシンⅠ変換酵素（ACE）阻害用組成物を含有する飲食品は、好ましくは機能性食品である。本発明の「機能性食品」は、一定の機能をもつ食品を意味し、例えば、特定保健用食品及び栄養機能食品を含む保健機能食品、特定用途食品（病者用食品、妊娠婦・授乳婦用粉乳、乳児用調整粉乳、高齢者用食品等）に加えて、栄養補助食品、健康補助食品、サプリメント及び美容食品（例えばダイエット食品）等のいわゆる健康食品全般を包含する。本発明の機能性食品は、また、コーデックス（FAO/WHO合同食品規格委員会）の食品規格に基づく健康強調表示（Health claim）が適用される健康食品を包含する。

[0059] 本発明の機能性食品は、錠剤、顆粒剤、散剤、丸剤、カプセル剤等の固形製剤、
機能性食品へのAla-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むアンジオテンシンⅠ変換酵素（ACE）阻害用組成物の配合量、配合方法、並びに機能性食品に配合しうる添加物については、上記の飲食品の記載と同じである。

本発明の機能性食品は、限定するものではないが、特に血圧を降下させるためのものであることが好ましく、具体的には、血圧降下が望まれる人を対象とするものであることが好ましい。本発明において「血圧降下が望まれる人」とは、一般的には血圧が高めな人を意味し、客観的には同年代の同性の人々の平均値と比べて血圧が有意に高いけれどもまだ高血圧とは診断されていない人を指すが、血圧が日常的に高めであって血圧を降下させる必要性を感じると主観的に認識している人も含まれるものとする。「血圧降下が望まれる人を対象とする」とは、血圧降下が望まれる人の摂取に適した飲食品である旨が記載又は表示されており、それを摂取した人の血圧上昇レベルを抑制したり、血圧を降下させたりする効果が期待されることを意味する。血圧降下が望まれる人の摂取に適した飲食品である旨の記載又は表示は、例えば特定保健用食品及び栄養機能食品等の保健機能食品について法令上の規定に基づいて認められた機能表示（栄養成分機能表示又は保健用途の表示）に従ったものであってよい。

4) Ala-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むアンジオテンシンⅠ変換酵素（ACE）阻害用組成物を含有する医薬組成物

本発明は、Ala-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むアンジオテンシンⅠ変換酵素（ACE）阻害用組成物を有効成分として含有する医薬組成物にも関する。

本発明の医薬組成物には、医薬製剤上許容される担体又は添加物を配合してもよい。このような担体及び添加物の例として、水、医薬的に許容される有機溶剤、コーナーガン、ポリビニルアルコール、ポリビニルビロリド、カルボキシビリオリマー、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ベクチ
本発明の医薬組成物は、経口的又は非経口的に投与することができるが、特に経口的に投与することが好ましい。経口的に投与される本発明の医薬組成物は、鉱剤、顆粒剤、散剤、丸剤、カプセル剤などの固形製剤、ジェル剤、あるいは液剤、懸濁剤、シロップ剤などの液体製剤等の剤形であってよい。液体製剤として用いる場合には、本発明の医薬組成物を使用する際に再溶解させることを意図した乾燥物として供給してもよい。

上記剤形のうち、経口用固形製剤は、薬学上一般に使用される結合剤、賦形剤、滑沢剤、崩壊剤、温潤剤などの添加剤を含有してもよい。また、経口用液体製剤は、薬学上一般に使用される安定剤、緩衝剤、高味剤、保存剤、芳香剤、着色剤などの添加剤を含有してもよい。

本発明の医薬組成物は、血圧降下作用を有することから、血圧降下剤として用いることができる。本発明の血圧降下剤は、血圧の上昇レベルを有意に抑制するか、あるいは血圧を有意に降下させることができる。本発明の血圧降下剤は、例えば、最大収縮期血圧を、単回投与から8時間後までに、投与前の血圧の90～60％のレベルまで、降下させることができる。

また、本発明の医薬組成物の投与量は、投与対象の年齢及び体重、投与経路、投与回数により異なり、当業者の裁量によって広範囲に変更することができる。例えば、経口的に投与する場合には、本発明のAla-Phe、Gly-Phe、若しくはそれらの塩、又はそれらを含むアンジオテンシンI変換酵素（ACE）阻害用組成物の乾燥重量で、1日ににつき体重1kg当たり1mg～1gであることが好ましい。本発明の医薬組成物は、単回投与でもよいが、6～8時間の間隔で反復的に投与してもよい。

本発明の医薬組成物を投与する対象は、ヒト、家畜、愛玩動物、実験（試験）動物
等を含む哺乳動物である。特に、血圧（収縮期血圧）が健常な個体の平均値よりも日常的に有意に高い哺乳動物、血圧（収縮期血圧）が健常な個体の平均値よりも高く
なりやすい傾向のある哺乳動物、あるいは、高血圧の素因（遺伝的又は環境的素因）を有する哺乳動物が、本発明の医薬組成物を投与する対象として好ましい。本発明
の医薬組成物は、副作用の心配が少ないことから、継続的に利用する上で非常に有用に用いることができる。

5) Ala-Phe、Gly-Phe及びそれらの塩、並びにそれらを含むアンジオテンシンI変換酵素
（ACE）阻害用組成物の、血圧降下作用

本発明の、Ala-Phe、Gly-Phe及びそれらの塩、並びにアンジオテンシンI変換酵素（ACE）阻害用組成物は、血圧降下作用を有する。この血圧降下作用は、当業者に公
知の方法によって確認することができるが、本発明においては例えば次のようにして
確認することができる。

まず、12時間絶食させた高血圧自然発症ラット（ SHR）（雄、日本SLCから購入可能）
に、16mg/ml H2Oとして調製した本発明のAla-Phe、Gly-Phe若しくはそれらの塩又は
それらを含むアンジオテンシンI変換酵素（ACE）阻害用組成物を、一匹当たり1ml経
口投与する。経口投与直前（0時間）、並びに経口投与の2、4、6及び8時間後に、（株
）ソフトロン社製の非観血式自動血圧装置BP-98Aを用いてTail cuff法により血圧測
定を行う。血圧測定は、ラットを37℃で約10～15分間予備保温し、そのすぐ後に行う
。血圧測定は連続して複数回（2～3回）行うことが好ましい。

血圧は、測定した最大収縮期血圧値について複数回の測定値の平均として表す。
データは、分散分析（ANOVA）、Duncanの多重比較検定法、Student’s t-test等によ
って統計的に処理し、実験群間での有意差及び有意性を検討することが好ましい。

本発明における血圧降下作用は、このようにして測定及び算出された血圧の値で
評価することができる。本発明では、投与後の最大収縮期血圧（収縮期血圧）が投与
直前の最大収縮期血圧と比較して95～60％のレベルまで、好ましくは90％～60％の
レベルまで低下している場合に、血圧降下作用があるものとする。

本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本
明細書にとり入れるものとする。
実施例

[0074] 以下、本発明を実施例を用いてさらに具体的に説明する。但し、本発明はこれら実施例にその技術的範囲を限定されるものではない。

[0075] [実施例1] 乾燥ビール酵母加水分解物由来画分の調製

本実施例で用いた乾燥ビール酵母加水分解物由来画分の調製手順の概略を図1に示す。

[0076] まず、キリンビール株式会社製の乾燥ビール酵母粉末（サッカロミセス・セレビシエ（Saccharomyces cerevisiae）；商品名 キリン乾燥ビール酵母A）50gに、0.05N NaOH 500ml、及びアルカラーゼ（Alcalase 2.4L FG；novozymes社製）10mlを添加し、50℃で12時間攪拌しながら加水分解を行った。その後、4℃下、10,000 × gで20分の遠心分離を行い、その上清をToyo No.2濾紙を用いて濾過した。濾液をXAD-2カラム（Rohm & Haas社製）に通し、非吸着画分を含む透過液を得た。一方、XAD-2カラムへの吸着画分を、順次、50％EtOH、100％EtOHを用いて溶出した。得られたそれぞれの画分を減圧下で濃縮し、さらに凍結乾燥した。このようにして得られた各画分の凍結乾燥物（粉末状）を、以下の実施例において使用した。

[0077] [実施例2] 乾燥ビール酵母加水分解物由来画分のin vitroにおけるアンジオテンシンI変換酵素（ACE）阻害活性

アンジオテンシンI変換酵素（ACE）阻害活性は、非特許文献3に記載の「酢酸エチル抽出法」に従ってアンジオテンシンI変換酵素（ACE）阻害率を算出し、それを指標として表した。酢酸エチル抽出法は、ACEを用いてHip（馬尿酸）-His-LeuからジペプチドHis-Leuを切断し、それによって遊離したHipを酢酸エチルで抽出することを利用した方法である。図2に、本実施例で用いたACE阻害活性の測定手順の概略を示した。

[0078] ACE阻害活性の指標とする、算出された阻害率（％）を表1に示す。

[表1]
乾燥ビール酵母加水分解物由来する亜分のACE阻害率（％）

<table>
<thead>
<tr>
<th>被検サンプル</th>
<th>阻害率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>XAD-2 カラム非吸着亜分</td>
<td>5.6</td>
</tr>
<tr>
<td>XAD-2 カラムからの 50%EtOH 溶出亜分</td>
<td>8.1</td>
</tr>
<tr>
<td>XAD-2 カラムからの 100%EtOH 溶出亜分</td>
<td>9.5</td>
</tr>
</tbody>
</table>

[0079] 表1に示される通り、50%EtOH溶出亜分と100%EtOH溶出亜分はいずれも高い阻害率を示したことから、それらが高いACE阻害活性を有することが分かった。

[0080] XAD-2カラム非吸着亜分のACE阻害活性は低いことから、乾燥ビール酵母加水分解物中に含まれるACE阻害物質は疎水性を有することが推察された。

[0081] [実施例3] 乾燥ビール酵母加水分解物由来亜分及び乾燥ビール酵母の in vivoにおける血圧上昇抑制作用

(1) 実験動物への乾燥ビール酵母加水分解物由来亜分の経与

日本SLCから購入した、高血圧自然発症ラット（SHR）（雄、10週令、初体重平均300 g）を用いた。

[0082] 飼育は、個別のワイヤーゲージに入れ、室温22℃±2℃、湿度40～60％、明暗周期は12時間（7時～19時）の条件下で行った。飼育期間は22日間とした。飼料は午後10時から翌日の午前11時まで与え、水は自由摂取とした。

[0083] ラットに与える飼料は、基本飼料（ここでは「Con(-)」と称する）、基本飼料にNaClを1％添加した飼料（ここでは「Con(+)」と称する）、Con(+)に50%EtOH溶出亜分（「Alka」）0.4％を添加した飼料（ここでは「+(+)+Alka」と称する）、及びCon(+)に上記乾燥ビール酵母粉末（「koubo」）を3％添加した飼料（ここでは「+(+)+Koubo」と称する）を用いた。

飼料組成を表2に示した。

[表2]
飼料組成

<table>
<thead>
<tr>
<th>成分</th>
<th>Con(-)</th>
<th>Con(+)</th>
<th>(+)+Alka</th>
<th>(+)+Koubo</th>
</tr>
</thead>
<tbody>
<tr>
<td>カゼイン</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>α-コーンスタンダ－:スクロー</td>
<td>65.5</td>
<td>64.5</td>
<td>64.1</td>
<td>61.5</td>
</tr>
<tr>
<td>スキー2:1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セルロースパウダー</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>コーン油</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ミネラル混合（AIN-93G-MK）</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>ビタミン混合（AIN-93-VK）</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NaCl</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Alka</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>粉状粉末</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>合計</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

[0084] 実験群は、Con(-)を実験食として与与する対照群(Con(-)群)、Con(+)を実験食として与与する群(Con(+))群、及び、実験前半に(+)+Alkaを実験食として与与((+)+Alka群)し、実験後半に(+)+Alkaの代わりに(+)+Kouboを実験食として与与((+)+Koubo群)する群とし、各群のラットを5匹とした。

[0085] 各実験群のラットへの飼料の与与は図3に示すようににして行った。本実施例では、各実験群への飼料(Con(-))の与与を開始した日付を、0日目とした。最初の2日間は全ての実験群にCon(-)を与え、その後4日間は各実験群に実験食（それぞれ、Con(-)、Con(+))、(+)+Alka）を与えた。さらにその後4日間は、Con(+))群及び(+)+Alka群にはCon(+)、Con(-)群にはそのままCon(-)を与えた。その後は実験終了まで再び各実験群の実験食を与えたが、但し(+)+Alka群には(+)+Alkaの代わりに(+)+Kouboを与与し、(+)+Koubo群と称した。

[0086] 各実験群のラットについては、飼料摂取量と体重を毎日9時～11時に測定した。2日目の体重、6日間の累積飼料摂取量、及び体重増加量を表3に示す。各値は、各実験群のラット5匹の平均値±標準誤差(SEM)を表す。

[表3]
5日間のラットの飼料摂取量及び体重増加

<table>
<thead>
<tr>
<th></th>
<th>Con(−)</th>
<th>Con(+)</th>
<th>(+) + Alka</th>
</tr>
</thead>
<tbody>
<tr>
<td>2日目の体重 (g)</td>
<td>304.08±4</td>
<td>295.86±7</td>
<td>590.42±5</td>
</tr>
<tr>
<td>6日間の累積飼料摂取量 (g)</td>
<td>112.84±1.3</td>
<td>120.26±2.40</td>
<td>114.44±2.8</td>
</tr>
<tr>
<td>6日間の体重増加量 (g)</td>
<td>5.24±1.12</td>
<td>10.98±2.72</td>
<td>6.76±1.75</td>
</tr>
</tbody>
</table>

[0087] また、6日目の体重と、それ以降22日目までの16日間の累積飼料摂取量と体重増加量、及び解剖時の肝重量を表4に示す。各値は、各実験群に含まれるラット5匹についての平均値±標準誤差(SEM)を表す。

[表4]

6日目以降のラットの飼料摂取量及び体重増加

<table>
<thead>
<tr>
<th></th>
<th>Con(−)</th>
<th>Con(+)</th>
<th>(+) + Koubo</th>
</tr>
</thead>
<tbody>
<tr>
<td>6日目の体重 (g)</td>
<td>311.94±5.3</td>
<td>306.7±6.4</td>
<td>307.3±5.9</td>
</tr>
<tr>
<td>16日間の累積飼料摂取量 (g)</td>
<td>278.1±7.7</td>
<td>319.1±16.0</td>
<td>278.1±6.5</td>
</tr>
<tr>
<td>16日間の体重増加量 (g)</td>
<td>22.32±1.7</td>
<td>29.34±4.3</td>
<td>22.9±2.6</td>
</tr>
<tr>
<td>解剖時の肝重量（体重に対する％）</td>
<td>3.96±0.06</td>
<td>3.86±0.1</td>
<td>3.73±0.06</td>
</tr>
</tbody>
</table>

[0088] 表3に示すように、6日目までは、累積飼料摂取量、体重増加量のいずれにおいても各群間で有意差はみられなかった。6日目以降22日目までの16日間では、表4に示すように、(+)+Koubo群は、Con群に比べて、累積飼料摂取量と体重増加量のいずれにおいても有意に低いか、又は低い傾向を示した。解剖時の肝重量（体重比）については、Con群、Con群、(+)+Koubo群間で有意な差はみられなかった。

[0089] (2) 血圧測定

本実施例では、ラットの血圧測定を、(株)ソフトロン社製の非観血式自動血圧装置BP-98Aを用いてTail cuff法により行った。ラットは、測定前に37℃で約10～15分間予備保温し、その後連続して血圧測定を3回行った。測定値はその3回の測定の平均値として表した。得られた血圧測定値に基づく血圧の推移を図4に、各ラットにおける2日目の血圧測定値を0とした場合の血圧変化量に基づく血圧の変動を図5に示した。

[0090] 図5に示したデータについては、Con群、Con群及び(+)+Alka群の3群間、並びにCon群、Con群及び(+)+Koubo群の3群間に関して、分散分析(ANOVA)を行って有意性を検討した。またそれらの有意差はDuncanの多重比較検定法で検討
した。また、2群間の有意差については、Student's t-testによる検定も行った。

[0091] この結果、実験食（Con+、Con+、(+)+Alka）に変更してから3日間飼料を給与した後の血圧測定では、(+)+Alka群がCon+群に比べて有意に低い血圧上昇レベルを示した（図5）。その後、Con+、Con+、(+)+Alka食を4回給与した後で、Con群と(+)+Alka群にはCon+群、Con－群にはそのままCon群を給与した4日間の血圧測定では、実験群間の血圧上昇レベルに有意な差は認められなかった（図5）。さらに、続いてCon－群にはCon群、Con群にはCon群、(+)+Alka群には(+)+Koubo食を給与したところ、12～20日目の血圧測定では、(+)+Alka群に(+)+Koubo食を給与した群（ここでは、(+)+Koubo群を称する）がCon群に比べて有意に低い血圧上昇レベルを示した（図5）。

[0092] 以上の結果から、(+)+Alka食及び(+)+Koubo食が、血圧上昇抑制効果を有することが示された。後述の(4)及び(5)で示されるように、Con群と(+)+Koubo群との間で血清中のACE活性に有意な差が認められないと、腎臓におけるACE活性については(+)+Koubo群においてCon－群及びCon群より低い値が示されることから、(+)+Koubo食による血圧上昇レベルの抑制は、少なくとも部分的には、腎臓におけるACE活性が低く維持されることに起因するものと推察された。

[0093] (3) 血清の調製

飼育最終日（22日目）に、各実験群のラットについて、ネプトナル麻酔下（0.1ml/体重100g）で開腹し、シリンジを用いて心臓より直接採血を行った。採血した血液は、試験管に入れ、室温で1時間放置した後、遠心分離（3,000rpm、15℃、15min）を行い、血清を分離した。

[0094] (4) 血清中のアンジオテンシン変換酵素活性の測定

ドHis-Leuを切断し、それによって遊離した馬尿酸(Hip)を酢酸エチルで抽出することを利用した方法である。図6に、本実施例で用いた血清中のACE活性の測定手順の概要を示す。

[0095] 血清中のACE活性を表5に示す。表5に示したデータについては、Con(−)群、Con(+)群及び(+)+Koubo群の3群間で分散分析(ANOVA)を行って、有意性を検討した。それらの有意差はDuncanの多重比較検定法で検討した。また、2群間の有意差についてはStudent’s t-testによる検定も行った。その結果、血清中のACE活性については、Con(−)群、Con(+)群及び(+)+Koubo群の3群間で有意な差が示されなかった。

[表5]

<table>
<thead>
<tr>
<th>血清中のACE活性</th>
<th>実験群</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Con(−)</td>
</tr>
<tr>
<td>ACE (U/血清1ml)</td>
<td>10.9±0.6</td>
</tr>
</tbody>
</table>

[0096] （5）腎臓におけるACE酵素活性の測定

腎臓からのACE活性測定用サンプルの調製手順の概要を図7に示した。凍結した約0.7gの腎臓組織をテフロン製ホモジナイザに入れ、10倍量の緩衝液(50mM Na₂B₄O₇、200mM H₃BO₃とを混合し、pH8.3に調整)を加えてホモジナイズした後、4℃下で遠心分離(10,000rpm、20分)を行った。バスクールペペットで採取した上清を、測定用サンプルとした。

[0097] ACE活性の測定は、上記(4)に記載した血清の場合と同様に、酢酸エチル抽出法を用いて馬尿酸の定量を行い、その測定値に基づいて算出した。

[0098] さらに、腎臓組織に含まれるタンパク質1mg当たりのACE活性を算出するため、Lowryらの方法(Lowry, OH., Rosenbrough, NJ., Farr, AJ. and Randall RJ.: Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, pp.265-275 (1951))に従って、使用した約0.7gの腎臓組織に含まれるタンパク量を定量した。

[0099] 得られた測定値から、腎臓組織に含まれるタンパク質1mg当たりのACE活性を算出した。腎臓におけるACE活性を表6に示す。また表6のデータについては、Con(−)群、Con(+)群及び(+)+Koubo群の3群間で分散分析(ANOVA)を行って、有意性を検討
した。それらの有意差はDuncanの多重比較検定法で検討した。また、2群間の有意差についてはStudent's t-testによる検定も行った。腎臓でのACE活性については、Con(-)群及びCon(+)群と比較して、(+)-Koubo群で有意に低い値が示された（p<0.01）。

[表6]

<table>
<thead>
<tr>
<th></th>
<th>Con(-)</th>
<th>Con(+)</th>
<th>(+)-Koubo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE (U)</td>
<td>60.27±4.8</td>
<td>55.81±3.1</td>
<td>32.70±11.99</td>
</tr>
<tr>
<td>ACE (U/タンパク質1mg)</td>
<td>44.62±8.14</td>
<td>41.31±1.63</td>
<td>14.38±3.97*</td>
</tr>
</tbody>
</table>

*: 対照群と比較して有意差あり（p<0.01）

[0100] [実施例4] アンジオテンシンI変換酵素阻害物質の探索及び構造解析

（1）カラムクロマトグラフィーによる分画

実施例2で高いACE阻害活性を示した50%EtOH溶出画分から、アンジオテンシンI変換酵素阻害物質の同定を試みた。

[0101] まず、実施例1と同様にして、乾燥ピール酵母をアルカローゼにより加水分解し、遠心分離後に篩過して上清を得、それをXAD-2カラムに通し、カラムを水洗後、50%EtOHを用いてペプチド類の溶出を行った。さらに、50%EtOH溶出画分をロータリーエバポレーターで濃縮してエタノールを除去し、次いで凍結乾燥することにより、50%EtOH溶出画分の凍結乾燥物を調製した。この凍結乾燥物からACE阻害物質を同定するために本実施例で用いた手順を図8に示す。

[0102] 凍結乾燥物を蒸留水に溶解した後、その可溶画分をSephadex-G-25カラムクロマトグラフィー（展開溶媒:蒸留水）にかけ、18の画分に分画した。得られたSephadex-G-25カラムクロマトグラフィーによる溶出パターンを図9に示す。各画分について280

nmでの吸光度を測定した。吸光度が高かった画分については、実施例2と同様の方法でACE阻害活性を測定した。280nmで高い吸光度を示した画分17～19は、ACE阻害活性（阻害率）の値もそれぞれ61%、62%、64%と高かった。溶出画分17、18、19、20及び24のACE阻害活性を表7に示す（表7）。高いACE阻害活性を示した画分17～19を、ロータリーエバポレーターにより減圧下で濃縮した後、凍結乾燥した。

[表7]
酵母アルカローゼ加水分解物由来画分のACE阻害活性

<table>
<thead>
<tr>
<th>画分番号</th>
<th>阻害率%</th>
</tr>
</thead>
<tbody>
<tr>
<td>画分17</td>
<td>6.1</td>
</tr>
<tr>
<td>画分18</td>
<td>6.2</td>
</tr>
<tr>
<td>画分19</td>
<td>6.4</td>
</tr>
<tr>
<td>画分20</td>
<td>4.7</td>
</tr>
<tr>
<td>画分21</td>
<td>2.1</td>
</tr>
</tbody>
</table>

[0103] (2) 逆相分取HPLCによる分画・精製

上記(1)で調製された高いACE阻害活性を示した画分の凍結乾燥物を、蒸留水に溶解した後、さらに逆相分取HPLCにかけた。なお逆相分取HPLCでは、カラムとしてDevelosil C30-UG-5（25mm×250mm）を、展開溶媒として1) 5%MeCN、及び2) 20%MeCNを用い、展開溶媒2)が180分で100%となるリニアグラジェント（線形勾配）で展開させた。流速は2.0ml/分、検出波長は215nmで行った。

[0104] 図10及び図11は、上記(1)で調製された画分18を逆相分取HPLC（Develosil C30-UG-5（25mm×250mm））を行なって得られたHPLCクロマトグラムを示している。主要なピークは30、50、70分付近（溶出時間）で見られた。それらの主要なピークを図10ではA～C、図11ではD～Fとして示した。主要なピークについては、実施例2と同様にしてACE阻害活性を測定した。ピークAを含む画分（画分A）、ピークBを含む画分（画分B）のACE阻害活性（阻害率）は、18%、23%であった。同様に、ピークE、ピークFをそれぞれ含む画分（画分E、画分F）のACE阻害活性（阻害率）は、18%、14%であった。

[0105] 次に、高いACE阻害活性を示した画分B及び画分Eを混合し、それをゲル濾過HPLCに供した。ゲル濾過HPLCでは、カラムとしてDevelosil 300 Diol-5（10mm×250mm）を用い、展開溶媒としては蒸留水を用いた。検出波長は215nmで行い、主要なピーク画分について上記と同様にACE阻害活性を測定した。得られたゲル濾過HPLCクロマトグラムを図12に示す。3つの主要なピークG～Iが得られたが、それらのピークを含む画分（画分G～I）はいずれもACE阻害活性を示した（表8）。

[表8]
<table>
<thead>
<tr>
<th>画分</th>
<th>阻害率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>画分G</td>
<td>87</td>
</tr>
<tr>
<td>画分H</td>
<td>20</td>
</tr>
<tr>
<td>画分I</td>
<td>45</td>
</tr>
</tbody>
</table>

[0106] なお、ピーク画分G〜Iについては、再度Develosil C30-UG-5(4.6mm×250mm)による逆相分取HPLC分析を行い、ピークの単一性を確認した。

[0107] (3) アミノ酸分析及び質量分析 (LC/MS-MS)
上記(2)で得られた単一ピークを含むピーク画分G〜Iのそれぞれについて、アミノ酸分析を行った。ピーク画分を0.5ml取り、それに12N HCl 0.5mlを加え、さらに、α-メルカプト酢酸を一滴入れ、N₂ガスで試験管内の空気を置換した。次いでアルミホイルで遮光した状態でリアクションビーターを使用して、110℃で24時間かけて加水分解を行った。放冷後、G-4グラスフィルターを用いて吸引濾過した後、0.2Nのクエン酸ナトリウム緩衝液(pH2.2)2mlを加えてアミノ酸を溶解させ、フィルター濾過(透水性:0.2μm)を行ったものを、アミノ酸分析用サンプルとした。分析には、アミノ酸分析計(ATO MLC-703型)を用いた。

[0108] アミノ酸分析の結果、画分Gにはアミノ酸としてPheのみが検出された。一方、画分Hではアラニン(Ala)：フェニルアラニン(Phe) = 1:1、画分Iではグリシン(Gly)：フェニルアラニン(Phe) = 2:1〜1:1のアミノ酸モル比が検出された。このように、画分G〜Iはいずれも、フェニルアラニンを含んでいた。

[0109] 続いて画分G〜Iについて、液体クロマトグラフ／タンデム型質量分析装置 (LC/MS/MS; LCQ Advantage ion trap mass spectrometer (Thermo Finnigan)) を用いて質量分析を行った。

[0110] その結果、画分Gは、m/z 166 [M+H]^+を与えたことから、フェニルアラニン(Phe、又はF)と同定された。図13に、画分Gについて得られたマススペクトラムとフェニルアラニンの化学構造式を示す。画分Hは、m/z 237 [M+H]^+を与え、さらにMS/MS分析の2次イオンとしてm/z 166 [M+H]^+を与えたことから、アラニンフェニルアラニン(Ala-Phe、又はAF)と同定された。図14に、画分Hについて得られたマススペクトラムとアラニ
ルフェニアルアラニンの化学構造式を示す。画分Iは、m/z 223 [M+H]⁺を与え、さらに2
次イオンとしてm/z 166 [M+H]⁺を与えたことから、グリシルフェニアルアラニン(Gly-Phe
、又はGF)と同定された。図15に、画分Iについて得られたマススペクトラムとグリシル
フェニアルアラニンの化学構造式を示す。

【0111】実施例5 合成AF及びGFによる血圧降下作用

BACHEM(Bachem AG, Hauptstrasse 144, CH-4416, Budendorf)に合成を委託し
入手した、合成アラニアルフェニアルアラニン(AF)又はグリシルフェニアルアラニン(GF)を、
12時間絶食させた SHRラット（雄、21週齢、366g～396g；日本SLCから購入）に、16mg
/ml H₂Oとして一匹当たり1mlを経口投与した。経口投与前（0時間）、並びに経口
投与の2、4、6及び8時間後に、(株)ソフトロン社製の非観血式自動血圧測定装置BP
-98Aを用いてTail cuff 法により血圧測定を2回行った。実験群は、AF投与群（2匹）
、GF投与群（2匹）、対照群（AF又はGFの代わりに蒸留水を1ml経口投与；1匹）とし
た。

【0112】この結果を表9に示す。表中のAF投与群及びGF投与群のデータは、各群のラット
の血圧測定値の平均値±標準誤差(SEM)である。

【表9】

<table>
<thead>
<tr>
<th></th>
<th>対照群 (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0時間</td>
<td>191±5.6</td>
</tr>
<tr>
<td>2時間</td>
<td>199.7±6.0</td>
</tr>
<tr>
<td>4時間</td>
<td>193.7±6.0</td>
</tr>
<tr>
<td>6時間</td>
<td>191.5±7.2</td>
</tr>
<tr>
<td>8時間</td>
<td>190.5±9.1</td>
</tr>
</tbody>
</table>

【0113】このデータに基づく収縮期血圧の推移を示すグラフを図16に示す。また、各ラット
における0時間の血圧をOとしたときの血圧変化値を算出し、その値に基づく血圧の
変化量の推移を図17にグラフで示す。

【0114】図16に示される通り、AFとGFはいずれも高血圧自然発症(SHR)ラットにおいて血圧
下降作用を示した。対照群ラットの血圧変動が大きいために、投与の2、4、6時間後
ではAF投与群、GF投与群における血圧下降は明瞭には示されていないが、投与の
8時間後には、AF投与群とGF投与群は対照群に比べて明らかに低い血圧を示した
図17に示される通り、AF投与群とGF投与群では、少なくとも投与の8時間後まで血圧が降下したまま維持されていた。
産業上の利用可能性
本発明に係るペプチド及び組成物は、アンジオテンシンⅠ変換酵素の活性を効果的に阻害することができる。また本発明に係るペプチド及び組成物は、飲食品、機能性食品及び医薬品に含有させることにより、血圧降下作用をもつ飲食品、機能性食品及び医薬品を製造することができる。
請求の範囲

[1] アラニルフェニルアラニン（Ala-Phe）であるジペプチド又はその塩。
[2] グリシルフェニルアラニン（Gly-Phe）であるジペプチド又はその塩。
[3] アラニルフェニルアラニン（Ala-Phe）、グリシルフェニルアラニン（Gly-Phe）、及びそれらの塩からなる群より選択される少なくとも1つを含有する、アンジオテンシンI変換酵素阻害用組成物。
[4] 以下の工程a)～c)を含む、アンジオテンシンI変換酵素阻害用組成物の製造方法。
 a) ビール酵母を加水分解する工程、
 b) その加水分解物をクロマトグラフィー法によって分画する工程、及び
 c) アラニルフェニルアラニン（Ala-Phe）及び／又はグリシルフェニルアラニン（Gly-Phe）を含有する画分を分取する工程
[5] アラニルフェニルアラニン（Ala-Phe）及び／又はグリシルフェニルアラニン（Gly-Phe）を含有する画分が、分子量150～2,000のペプチドを含む画分である、請求項4に記載の方法。
[6] 請求項4又は5に記載の方法により製造された、アンジオテンシンI変換酵素阻害用組成物。
[7] 請求項1又は2に記載のジペプチド又はその塩を含有する、飲食品用素材。
[8] 請求項1又は2に記載のジペプチド又はその塩を含有する、飲食品。
[9] 請求項1又は2に記載のジペプチド又はその塩を添加増量した飲食品。
[10] 請求項3又は6に記載の組成物を含有する、飲食品用素材。
[12] 飲料である、請求項8、9又は11に記載の飲食品。
[13] 血圧を降下させるための、請求項8、9、11又は12に記載の飲食品。
[14] 請求項1又は2に記載のジペプチド又はその塩を含有する、医薬組成物。
[15] 請求項3又は6に記載の組成物を含有する、医薬組成物。
[16] 血圧降下剤である、請求項14又は15に記載の医薬組成物。
[17] 以下の工程a)～c)を含む、アラニルフェニルアラニン（Ala-Phe）及び／又はグリシルフェニルアラニン（Gly-Phe）を含有する組成物の製造方法。
a) ビール酵母を加水分解する工程、
b) その加水分解物を、疎水性吸着剤を充填したカラムに通液する工程、及び
c) 濃度50〜100%のエタノール水溶液を用いて、その疎水性吸着剤から吸着物質を溶出させる工程
酵母粉末 50g

←0.05N-NaOH (500 ml)

混合

←アルカラーゼ 10 ml

50℃、12時間攪拌

遠心分離（9000 rpm, 20分, 4℃）

上清を濾過（Toyo No.2 濾紙）

XAD-2カラムクロマトグラフィー

非吸着画分 50%EtOHで溶出 100%EtOHで溶出

濃縮・凍結乾燥（粉末化） 濃縮・凍結乾燥（粉末化） 濃縮・凍結乾燥（粉末化）
サンプルサンプルプランクプランクコントロール

サンプル：15μlサンプル：15μlホウ酸バッファー（pH8.3）：15μl蒸留水：15μl
1N HCl：125μlIN HCl：125μl

基質溶液（125μl）
インキュベート（37℃, 5分）
ACE溶液50μl
インキュベート（37℃, 30分）

1N HCl：125μl（サンプルプランク、プランクは除く）
酢酸エチル：0.75ml
十分攪拌

遠心分離（3000rpm, 15℃, 10分）

上層（酢酸エチル層）下層（水層）

酢酸エチル層0.5ml採取（5ml容サンプル瓶）

減圧乾固後、室温で約3時間放置

蒸留水1ml
十分攪拌

吸光度測定（波長228nm）
A 血清：0.15ml

12.5mM Hippuryl-L-histidyl-L-leucine
1.0ml (ホウ酸バッファー(pH8.3で調整))

攪拌

インキュベート(37℃, 1時間)

攪拌

IN HCl : 2.5ml

5分間放置

15秒：攪拌

遠心分離(2500rpm, 15℃, 10分)

水層

上清

(酢酸エチル層)

1mlを5ml容サンプル瓶に採取

濃縮乾固

15秒：攪拌

15分間放置

吸光度測定(波長228nm)

B 血清：0.15ml

IN HCl : 2.5ml

攪拌

インキュベート(37℃, 1時間)

攪拌

IN HCl : 2.5ml

5分間放置

15秒：攪拌

遠心分離(2500rpm, 15℃, 10分)

水層

上清

(酢酸エチル層)

1mlを5ml容サンプル瓶に採取

濃縮乾固

15秒：攪拌

15分間放置

吸光度測定(波長228nm)
腎臓約0.7g

| ← 緩衝液: 10倍量

ホモジナイズ

遠心分離(10,000rpm、4℃、20分)

上清

腎臓におけるアンジオテンシンⅠ変換酵素活性測定用サンプル
50%EtOH画分をSephadex-G-25クロマトグラフィーにより分画

吸光度測定(検出波長 280 nm)

吸光度の高かった画分についてACE阻害活性を測定

ACE阻害活性の高かった画分を分取

HPLC(検出波長: 215 nm)

主なピークを減圧下で濃縮乾固

ACE阻害活性の測定

ACE阻害活性の高かった画分のゲル濾過(波長 215nm)HPLC

主なピークのACE阻害活性を測定

アミノ酸分析

LC/MS・MSの決定
図11
画分G→

←画分H

←画分I
C₉H₁₁NO₂
Exact Mass: 165.08
フェニルアラニン（F）
C_{11}H_{14}N_{2}O_{3}

Exact Mass: 222.10

グルタミルフェニルアラニン (GF)
図16
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 Int.Cl 7 C07K5/062, A23L1/305, A61P9/12, A61K38/05, C12N9/99, C12P21/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 Int.Cl 7 C07K5/062, A23L1/305, A61P9/12, A61K38/05, C12N9/99, C12P21/06

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 CAlplus(STN), REGISTRY(STN), BIOSIS/WPI(DIALOG), PubMed, JSTPlus(JOIS)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 6-256387 A (Yoko SUETSUNA), 13 September, 1994 (13.09.94), Full text (Family: none)</td>
<td>1-3,7-16 4-6,17</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>JP 2000-191691 A (Ichiban Shokuhin Kabushiki Kaisha), 11 July, 2000 (11.07.00), Full text (Family: none)</td>
<td>1-3,7-16 4-6,17</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>JP 8-245694 A (San-Ei Sucrochemical Co., Ltd.), 24 September, 1996 (24.09.96), Full text (Family: none)</td>
<td>1-3,7-16 4-6,17</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search 29 July, 2005 (29.07.05)
Date of mailing of the international search report 16 August, 2005 (16.08.05)

Name and mailing address of the ISA/ Japanese Patent Office
Facsimile No. Authorized officer
Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Cheung H.S. et al., Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence, J.Biol.Chem., 1980, Vol.255, pages 401 to 407</td>
<td>1-3,7-16 4-6,17</td>
</tr>
<tr>
<td>Y</td>
<td>Suetsuna K., Isolation and characterization of angiotensin I-converting enzyme inhibitor dipeptides derived from Allium sativum L(garlic), J.Nutr.Biochem., 1998, Vol.9, pages 415 to 419</td>
<td>1-3,7-16 4-6,17</td>
</tr>
<tr>
<td>X</td>
<td>Yonekura M. et al., Isolation and application of physiologically active peptides from soybean whey and okara proteins, Soy Protein Research, Japan, 2003, Vol.6, pages 88 to 93</td>
<td>1-3,7-16 4-6,17</td>
</tr>
<tr>
<td>Y</td>
<td>JP 9-56361 A (Kirin Brewery Co., Ltd.), 04 March, 1997 (04.03.97), Full text (Family: none)</td>
<td>7-9,12 1-6,10,11 13-17</td>
</tr>
<tr>
<td>X</td>
<td>JP 2003-102425 A (Kirin Brewery Co., Ltd.), 08 April, 2003 (08.04.03), Full text (Family: none)</td>
<td>7-9,12 1-6,10,11 13-17</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
Among the invention of independent claim 1 and inventions of claims 3-17, the matter common to those relating to Ala-Phe (invention group A) is relevance to Ala-Phe having an inhibitory activity on angiotensin I converting enzyme.
Among the invention of independent claim 2 and inventions of claims 3-17, the matter common to those relating to Gly-Phe (invention group B) is relevance to Gly-Phe having an inhibitory activity on angiotensin I converting enzyme.
Thus, the matter common to the invention groups A and B is a dipeptide having an inhibitory activity on angiotensin I converting enzyme. However, since this matter is publicly known as described in, for example, JP 6-256387 A, (continued to extra sheet)

1. ☑ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☒ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest
☐ The additional search fees were accompanied by the applicant’s protest.
☐ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2004)
JP 2000-191691 A and JP 8-245694 A, the common matter is not a special technical feature within the meaning of PCT Rule 13.2, second sentence.
A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl. C07K5/062, A23L1/305, A61P9/12, A61K38/05, C12N9/99, C12P21/06

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl. C07K5/062, A23L1/305, A61P9/12, A61K38/05, C12N9/99, C12P21/06

最小限資料以外の資料で調査を行った分野に含まれるもの
日本の実施新案公報 1922-1996年
日本国出願実施新案公報 1971-2005年
日本国出願新案登録公報 1996-2005年
日本国出願実施新案公報 1994-2005年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）
CAtplus(STN), REGISTRY(STN), BIOSIS/WPI(DIALOG), PubMed, JSTPlus(JOIS)

C. 関連すると認められる文献

<p>| 引用文献の | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 | 関連する | 請求の範囲の番号 |</p>
<table>
<thead>
<tr>
<th>カテゴリー</th>
<th></th>
<th>請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2000-191691 A (一番食品株式会社).2000.07.11, 全文 ファミリーなし</td>
<td>1-3, 7-16</td>
</tr>
<tr>
<td>X</td>
<td>JP 8-245694 A (サンエイ糖化株式会社).1996.09.24, 全文 ファミリーなし</td>
<td>1-3, 7-16</td>
</tr>
</tbody>
</table>

C欄の続きにも文献が列挙されている。 Franz パテントファミリーに関する別紙を参照。

※ 引用文献のカテゴリ
「A」特に関連のある文献ではなく、一般的技術水準を示すもの
「E」国際出願日前の出願または特許であるが、国際出願日前後に公表されたもの
「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
「O」口頭による聞き取り、使用、展示等に言及する文献
「P」国際出願日前でかつ優先権の主張の基礎となる出願

国際調査を完了した日 29.07.2005
国際調査報告の発送日 16.8.2005

特許庁審査官（権限のある職員） 東京都台東区谷に寄三丁目4番3号 樹立 柊二
電話番号 03-3581-1101 内線 3448

様式PCT/ISA/210（第2ページ）（2004年1月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Yonekura M. et al., Isolation and application of physiologically active peptides from soybean whey and okara proteins, Soy Protein Research, Japan, 2003, vol.6, p.88-93</td>
<td>1-3, 7-16, 4-6, 17</td>
</tr>
<tr>
<td>X</td>
<td>JP 9-56361 A (麒麟麦酒株式会社) 1997.03.04, 全文 ファミリーなし</td>
<td>7-9, 12, 1-6, 10, 11, 13-17</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2003-102425 A (麒麟麦酒株式会社) 2003.04.08, 全文 ファミリーなし</td>
<td>7-9, 12, 1-6, 10, 11, 13-17</td>
</tr>
</tbody>
</table>
第II欄　請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

1. 請求の範囲________________は、この国際調査機関が調査をすることを要しない対象に係るものである。つまり、

2. 請求の範囲________________は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、

3. 請求の範囲________________は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第III欄　発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

独立した請求の範囲1に係る発明と、請求の範囲3-17に係る発明のうち、Ala-Pheに係る発明（発明群A）に共通の事項は、シタジオーゼン1変換酵素阻害活性を有するAla-Pheに関するものであることである。

独立した請求の範囲2に係る発明と、請求の範囲3-17に係る発明のうち、Gly-Pheに係る発明（発明群B）に共通の事項は、シタジオーゼン1変換酵素阻害活性を有するGly-Pheに関するものであることである。

発明群A、Bに共通の事項は、シタジオーゼン1変換酵素阻害活性を有するジペプチドであることであるが、JP 6-256387 A、JP 2000-191691 A、JP 8-245694 Aなどに記載されているように、当該事項は公知であるので、PCT規則3 2の第2文の意味において、この共通事項は特別な技術的特徴ではない

1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告書は、すべての調査可能な請求の範囲について作成した。

2. 追加調査手数料を要するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。

3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告書は、手数料の納付のあった次の請求の範囲のみについて作成した。

4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告書は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意

出願人による追加調査手数料の納付と共に出願人から異議申立てがあった。

出願人による追加調査手数料の納付と共に出願人から異議申立てがなかった。

様式PCT／ISA／210（第1ページの経手（2））（2004年1月）