Title: IMPROVED METHOD FOR THE PRODUCTION OF N-SUBSTITUTED AMIDES FROM NITRILES

Abstract: An improved method for the production of N-substituted amides of formula RCONHR1 (I) wherein R represents an optionally monosubstituted or polysubstituted C1-C29 alkyl-, C5-C29 aryl- or C5-C29 heterocyclic radical and R1 represents an optionally monosubstituted or polysubstituted C1-C29 alkyl- or C5-C29 aryl radical from corresponding nitriles of formula RCON (II) wherein R1 is defined as above, wherein a nitrite of formula (I) is reacted in polyphosphoric acid with an alcohol of formula R1OH (III) wherein R1 is as defined above, in the presence of a compound from the group consisting of phosphor pentoxide, phosphorus oxychloride, sulfuric acid, dialkyl carbonate and dialkylsulfate at a temperature of 80 - 190 °C to form the corresponding N-substituted amide.

Zusammenfassung: Verbessertes Verfahren zur Herstellung von N-substituierten Amiden der Formel RCONHR1 (I) in der R einen gegebenenfalls ein- oder mehrfach substituierten C1-C29 Alkyl-, C5-C29 Aryl- oder C5-C29 Heterocyclusrest und R1 einen gegebenenfalls ein- oder mehrfach substituierten C1-C29 Alkyl- oder C5-C29 Arylrest bedeuten aus den entsprechenden Nitrilen der Formel RCON (II) in der R1 wie oben definiert ist, bei welchem ein Nitrit der Formel (II) in Polyphosphorsäure mit einem Alkohol der Formel R1OH (III) in der R1 wie oben definiert ist, in Gegenwart einer Verbindung aus der Gruppe Phosphorpentoxid, Phosphoroxychlorid, Sulfurylchlorid, Dialkylcarbonat und Dialkylsulfat bei einer Temperatur zwischen 80 und 190 °C zu dem entsprechenden N-substituierten Amid umgesetzt wird.
So wird beispielsweise gemäß dieser Literaturstelle Menthylnitril in 115% Polyphosphorsäure mit (EtO)_3PO bei 140°C während 7 Stunden zum entsprechenden N-Ethylamid umgesetzt (Entry 17). Eine isolierte Ausbeute wird jedoch nicht angegeben. Vergleichsversuche mit kommerziell erhältlicher 85%iger Polyphosphorsäure zeigten jedoch, dass nach 7 Stunden lediglich ca. 57% (Flächen% HPLC) des gewünschten N-Ethylamids erhalten wurden. Die Ausbeute nach 16 Stunden betrug etwa 72% (Flächen% HPLC).

Aufgabe der vorliegenden Erfindung war es, ein verbessertes Verfahren zur Herstellung von N-substituierten Amiden aus den korrespondierenden Nitrilen zu finden, das die Herstellung der gewünschten Amide unter Verwendung von umweltfreundlichen Reagenzien ermöglicht oder das, unter Verwendung von kommerziell erhältlichen Reagenzien bei der Umsetzung der Nitrile, die gewünschten Amide in kurzer Zeit in hohen Ausbeuten liefert.

Unerwarteterweise konnte diese Aufgabe durch die Umsetzung der Nitrile in kommerziell erhältlicher Polyphosphorsäure mit einem Alkohol in Gegenwart von Phosphorpentoxtid, Phosphoroxychlorid oder Sulfurylchlorid oder unter Verwendung von Dialkylcarbonaten oder -sulfaten gelöst werden.

Gegenstand der vorliegenden Erfindung ist demnach ein verbessertes Verfahren zur Herstellung von N-substituierten Amiden der Formel

\[RCONHR1 \text{ (I)} \]

in der R einen gegebenenfalls ein- oder mehrfach substituierten C_1-C_{20}-Alkyl-, C_5-C_{20}-Aryl- oder C_5-C_{20}-Heterocycluserst und R1 einen gegebenenfalls ein- oder mehrfach substituierten C_1-C_{20}-Alkyl- oder C_5-C_{20}-Arylrest bedeuten aus den korrespondierenden Nitrilen der Formel

\[RCN \text{ (II)} \]

in der R wie oben definiert ist, das dadurch gekennzeichnet ist, dass ein Nitril der Formel (II) in Polyphosphorsäure mit einem Alkohol der Formel
R1OH (III)
in der R1 wie oben definiert ist, in Gegenwart einer Verbindung aus der Gruppe Phosphorpentoxtid, Phosphor oxychlorid, Sulfurylchlorid, Dialkylcarbonat und Dialkylsulfat bei einer Temperatur zwischen 80 und 190°C zu dem entsprechenden N-substituierten Amid umgesetzt wird.

Durch das erfindungsgemäße Verfahren werden Nitrile der Formel (II) mit Alkoholen der Formel (III) in einem Schritt zu den entsprechenden N-substituierten Amiden der Formel (I) umgesetzt.

In der Formel (I) und in der Formel (II) bedeutet R einen gegebenenfalls ein- oder mehrfach substituierten C₃₋C₁₀-Alkyl-, C₅₋C₁₀-Aryl- oder C₅₋C₁₀-Heterocyclusrest. Unter C₁₋C₁₀-Alkyl sind dabei gesättigte oder ein- oder mehrfach ungesättigte, lineare, verzweigte oder cyclische Alkylreste zu verstehen. Dies sind beispielsweise C₁₋C₁₀-Alkylreste, wie etwa Methyl, Ethyl, Propyl, iso-Propyl, Butyl, iso-Butyl, t-Butyl, Butenyl, Butinyl, Pentyl, Cyclopentyl, iso-Pentyl, neo-Pentyl, Pentenyl, Pentinyl, Hexyl, iso-Hexyl, Cyclohexyl, Cyclohexenyl, Cyclohexylmethyl, 4-Isopropyl-1-methylcyclohexyl, 3-Methylpentyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, (Di-i-propyl)-methyl, Octyl, Cyclooctyl, Cyclooctenyl, Decyl, Cyclodecyl, Dodecyldicyclohexyl u.s.w.

Unter den cyclischen Alkylresten sind dabei auch überbrückte Cyclen, wie etwa Norbornyl, u.s.w., und kondensierte Ringsysteme, wie etwa Cholestan, u.s.w., zu verstehen.

Unter Aryl sind bevorzugt C₆-C₂₀-Arylgruppen zu verstehen, wie etwa Phenyl, Biphenyl, Naphthyl u.s.w..

Unter Heterocyclus sind cyclische Reste zu verstehen die zumindestens ein S-, O- oder N-Atom im Ring enthalten. Dies sind beispielsweise Furyl, Pyridyl, Pyrimidyl, Thienyl, Isothiazolyl, Imidazolyl, Tetrazolyl, Pyrazinyl, Benzofuranyl, Benzothiophenyl, Chinolyl, Isochinolyl, Benzothienyl, Isobenzofuranyl, Pyrazolyl, Indolyl, Isoindolyl, Benzoimidazolyl, Purinyl, Carbazolyl, Oxazolyl, Thiazolyl, 1,2,4-Thiadiazolyl, Isoxazolyl, Pyrrolyl, Chinazoliny1, Pyridazinyl, Phenazinyl, Morpholinyl, Triazolyl, Imidazolidinyl, Chinocardin, Piperazinyl, Piperidinyl, u.s.w.

Die Heteroarylgruppe bzw. der Heterocyclus kann dabei gegebenenfalls ein- oder mehrfach durch die bereits oben angeführten Substituenten substituiert sein.

Bevorzugt bedeutet R einen gesättigten oder einfach ungesättigten, linearen, verzweigten oder cyclischen C₁-C₁₂-Alkylrest, C₅-C₁₀-Aryl- oder C₅-C₁₀-Heterocyclusrest, die gegebenenfalls ein oder mehrfach durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Phenyl, Carbonsäure, Halogen, Cyano oder Nitro substituiert sein können.

R₁ bedeutet in der Formel (I) und in der Formel (III) einen gegebenenfalls ein- oder mehrfach substituierten C₁-C₂₀-Alkyl- oder C₅-C₂₀-Arylrest.

Unter C₁-C₂₀-Alkyl sind dabei wiederum die oben angeführten Reste zu verstehen.

Bevorzugt sind für R₁ gesättigte, lineare oder verzweigte C₁-C₆-Alkylreste.
Als Arylrest wird ein Phenylrest bevorzugt. Die Reste können gegebenenfalls ein- oder mehrfach, bevorzugt einfach, durch Phenyl oder Halogen substituiert sein.

Als Ausgangsverbindungen für das erfindungsgemäße Verfahren werden Nitrile der Formel (II) und Alkohole der Formel (III) eingesetzt.

Beispiele für geeignete Nitrile sind etwa Acetonitril, Propionitril, n-Butyronitril, p-Menthon-3-carbonitril, Benzonitril u.s.w. Die Nitrile der Formel (II) sind zum Teil käuflich erwerbbar oder können durch bekannte Verfahren hergestellt werden.

Beispiele für geeignete Alkohole sind Methanol, Ethanol, n-Propanol, i-Propanol, n-Butanol, Benzylalkohol u.s.w..

Das Nitril und der Alkohol werden bei dem erfindungsgemäßen Verfahren in einem Molverhältnis von 1:1 bis 1:5 und bevorzugt von 1:1 bis 1:3,5 eingesetzt.

Die Umsetzung erfolgt in Polyphosphorsäure. Bevorzugt wird für das erfindungsgemäße Verfahren kommerziell erhältliche, etwa 85%ige Polyphosphorsäure eingesetzt.

Das Molverhältnis von Polyphosphorsäure zu Alkohol beträgt bei dem erfindungsgemäßen Verfahren 1:0,1 bis 1:2, bevorzugt 1:0,2 bis 1:1,8 und besonders bevorzugt 1:0,3 bis 1:1,5.

Weiters erfolgt die erfindungsgemäße Umsetzung in Gegenwart einer Verbindung aus der Gruppe Phosphorpentoxyd, Phosphoroxychlorid, Sulfurylchlorid, Dialkylcarbonat und Dialkylsulfat, wobei die Alkylkette 1 bis 6, bevorzugt 2 bis 4 C-Atome aufweist.
Das Molverhältnis von Alkohol zu Phosphorpentoxyd, Phosphoroxychlorid, Sulfurylchlorid, Dialkyldicarbonat oder Dialkylsulfat liegt dabei bei 1:0,1 bis 1:2, bevorzugt bei 1:0,2 bis 1:1,3 und besonders bevorzugt bei 1:0,3 bis 1:1,1.

Wird ein Dialkyldicarbonat als Reagens verwendet, kann gegebenenfalls auf die Zugabe des Alkohols der Formel (III) verzichtet werden.

Die Reaktionstemperatur liegt bei 80 bis 190°C, bevorzugt bei 100 bis 170°C.

Bei dem erfindungsgemäßen Verfahren wird bevorzugt Polyphosphorsäure und der Alkohol der Formel (III) vorgelegt und unter Kühlung Phosphorpentoxyd, Phosphoroxychlorid, Sulfurylchlorid, Dialkyldicarbonat oder Dialkylsulfat zugegeben. Anschließend wird die Lösung mit dem entsprechenden Nitril der Formel (II) versetzt und die Reaktionslösung, im Falle von Phosphorpentoxyd, Phosphoroxychlorid oder Sulfurylchlorid bevorzugt für etwa 1 bis 10 Stunden und im Falle von Dialkyldicarbonat oder Dialkylsulfat bis zu mehreren Tagen, auf der gewünschten Temperatur gekocht.

Die Isolierung des erhaltenen N-substituierten Amids erfolgt sodann durch übliche Verfahren, wie etwa Extraktion, Säulen chromatographie, Destillation oder Kristallisation.

Durch das erfindungsgemäße Verfahren werden die gewünschten N-substituierten Amide auf umweltfreundlichere Weise und/oder in wesentlich schnellerer Zeit verglichen zum Stand der Technik in hohen Ausbeuten erhalten.
Beispiel 1:

0,89 g (9,1 mmol) 85 %ige Polyphosphorsäure und 0,42 g (9,1 mmol) Ethanol wurden eingewogen und dazu unter Kühlung 0,61 g (4,5 mmol) Sulfurylchlorid zuge tropft. Die Lösung wurde anschließend mit 0,5 g (3,0 mmol) p-Menthon-3-carbonitril versetzt. Die Reaktionslösung wurde 2 Stunden lang bei 150°C gekocht. Die GC Analyse ergab einen Umsatz von 94,5 %. Das gewünschte Produkt, das Menthamid, wurde anhand des Massenspektrums identifiziert.

Beispiel 2:

0,89 g (9,1 mmol) 85 %ige Polyphosphorsäure und 0,62 g (13,5 mmol) Ethanol wurden eingewogen und dazu unter Kühlung 0,7 g (4,5 mmol) Phosphoroxychlorid zuge tropft. Die Lösung wurde anschließend mit 0,5 g (3,0 mmol) p-Menthon-3-carbonitril versetzt. Die Reaktionslösung wurde 8 Stunden lang bei 140°C gekocht. Die GC Analyse ergab einen Umsatz von 92,5 %. Das gewünschte Produkt, das Menthamid wurde anhand des Massenspektrums identifiziert.

Beispiel 3:

Es wurden 0,89 g (9,1 mmol) Polyphosphorsäure (85%) und 0,14 g (3 mmol) Ethanol eingewogen. Unter Kühlung im Eisbad wurden langsam 0,41 g (3 mmol) Sulfurylchlorid zuge tropft, wobei die Temperatur leicht anstieg. Nach ca. 5 Minuten wurden 0,5 g (3 mmol) p-Menthon-3-carbonitril zugegeben. Diese Reaktionslösung wurde nun für 2 Stunden bei 140°C gekocht.

Nach den 2 Stunden war das Ausgangsmaterial zu 90 % (laut GC) zu N-Ethyl-p-menthan-3-carboxamid umgesetzt.
Vergleichsbeispiel gemäß Stand der Technik

Es wurden 1 g (10,2 mmol) 85%ige Polyphosphorsäure, 1,98 g (10,9 mmol) Triethylphosphat und 1 g (6 mmol) p-Menthon-3-carbonitril 16 h lang bei 140°C gekocht. Die Umsetzung zu Menthramid wurde mittel HPLC verfolgt.

<table>
<thead>
<tr>
<th>Reaktionszeit</th>
<th>PO(OEt)$_3$</th>
<th>Nitril</th>
<th>Amid</th>
</tr>
</thead>
<tbody>
<tr>
<td>2h</td>
<td>16,4</td>
<td>69,6</td>
<td>5,1</td>
</tr>
<tr>
<td>4h</td>
<td>26,4</td>
<td>34,0</td>
<td>27,2</td>
</tr>
<tr>
<td>7h</td>
<td>24,7</td>
<td>9,4</td>
<td>56,8</td>
</tr>
<tr>
<td>16h</td>
<td>13,3</td>
<td>5,1</td>
<td>72,4</td>
</tr>
</tbody>
</table>

Nach 16 h wurden 78% Rohamid isoliert.

Beispiel 4:

Es wurden 1,62 g (0,0165 mol) Polyphosphorsäure (85%) und 0,25 g (0,0055 mol) Ethanol eingewogen. Unter Kühlung im Eisbad wurden langsam 0,74 g (0,0055 mol) Sulfurylchlorid zuge tropft, wobei die Temperatur leicht anstieg. Nun wurde nach ca. 5 Minuten 1,0 g (0,0055 mol) p-Brombenzonitril zugegeben. Diese Reaktionslösung wurde aufgeheizt und für 1 Stunden bei 170°C gerührt.

Am Ende betrug der Umsatz laut GC ca. 85% zum gewünschten N-Ethyl-p-brombenzo-carboxamid.
Beispiel 5:

Es wurden 2,69 g (0,0275mol) Polyphosphorsäure (85%) und 0,42 g (0,0092mol) Ethanol eingewogen. Unter Kühlung im Eisbad wurden langsam 1,24 g (0,0092mol) Sulfurylchlorid zugetropft, wobei die Temperatur leicht anstieg. Nun wurde nach ca. 5 Minuten 1,0 g (0,0092mol) 2-Thiophencarbonsäureanilid zugegeben. Diese Reaktionslösung wurde aufgeheizt und für 1,5 Stunden bei 100°C gerührt.
Am Ende betrug der Umsatz laut GC ca. 50% zum gewünschten Ethylthiophencarboxamid.

Beispiel 6:

Es wurden 0,89 g (0,0091mol) Polyphosphorsäure (85%) und 0,42 g (0,0091mol) Ethanol eingewogen. Unter Kühlung im Eisbad wurden langsam 0,54 g (0,0046mol) Diethylcarbonat zugetropft, wobei die Temperatur leicht anstieg. Nun wurde nach ca. 5 Minuten 0,5 g (0,0030mol) p-Menthyl-3-carbonitril zugegeben. Diese Reaktionslösung wurde aufgeheizt und für 102 Stunden bei 150°C gerührt.
Am Ende betrug der Umsatz laut GC ca. 70% zum gewünschten N-Ethyl-p-menthan-carboxamid.

Beispiel 7:

Es wurden 2,21 g (0,0225mol) Polyphosphorsäure (85%) und 0,35 g (0,0075mol) Ethanol eingewogen. Unter Kühlung im Eisbad wurden langsam 1,01 g (0,0075mol) Sulfurylchlorid zugetropft, wobei die Temperatur leicht anstieg. Nun wurde nach ca. 5 Minuten 1,0 g (0,0075mol) Anissäureanilid zugegeben. Diese Reaktionslösung wurde aufgeheizt und für 1 Stunden bei 150°C gerührt.
Am Ende betrug der Umsatz laut GC ca. 60% zum gewünschten N-Ethylmethoxybenzo-carboxamid.
Beispiel 8:

Es wurden 2,29 g (0,0234mol) Polyphosphorsäure (85%) und 0,72 g (0,0156mol) Ethanol eingewogen. Unter Kühlung im Eisbad wurden langsam 2,10 g (0,0156mol) Sulfurylchlorid zugetropft, wobei die Temperatur leicht anstieg. Nun wurde nach ca. 5 Minuten 1,0 g (0,0078mol) 2,4-Dicyanobenzen zugegeben. Diese Reaktionslösung wurde aufgeheizt und für 2,5 Stunden bei 140°C am Rückfluss gerührt. Am Ende betrug der Umsatz laut GC ca. 50% zum gewünschten 2,4-Diethyl-benzo-carboxamid.

Beispiel 9:

Es wurden 2,21 g (0,0225mol) Polyphosphorsäure (85%) eingewogen und unter Kühlung im Eisbad wurden langsam 0,89 g (0,0075mol) Diethylcarbonat zugetropft, wobei die Temperatur leicht anstieg. Nun wurde nach ca. 5 Minuten 1,0 g (0,0075mol) Anissäurenitril zugegeben. Diese Reaktionslösung wurde aufgeheizt und für 13 Stunden bei 150°C am Rückfluss gerührt. Am Ende betrug der Umsatz laut GC >70% zum gewünschten N-Ethyl-anissäure-carboxamid.

Beispiel 10:

Es wurden 1,62 g (0,0165mol) Polyphosphorsäure (85%) und 0,18 g (0,0055mol) Methanol eingewogen. Unter Kühlung im Eisbad wurden langsam 0,74 g (0,0055mol) Sulfurylchlorid zugetropft, wobei die Temperatur leicht anstieg. Nun wurde nach ca. 5 Minuten 1,0 g (0,0055mol) p-Brombenzo-carbonitril zugegeben. Diese Reaktionslösung wurde aufgeheizt und für 1 Stunden bei 150°C am Rückfluss gerührt. Am Ende betrug der Umsatz laut GC ca. 75% zum gewünschten N-Methyl-p-brombenzo-carboxamid.
Beispiel 11:

Es wurden 1,62 g (0,0165mol) Polyphosphorsäure (85%) und 0,33 g (0,0055mol) iso-Propanol eingewogen. Unter Kühlung im Eisbad wurden langsam 0,74 g (0,0055mol) Sulfurylchlorid zugetropft, wobei die Temperatur leicht anstieg. Nun wurde nach ca. 5 Minuten 1,0 g (0,0055mol) p-Brombenzo-carbonitril zugegeben. Diese Reaktionslösung wurde aufgeheizt und für 1 Stunden bei 150°C am Rückfluss gerührt.

Am Ende betrug der Umsatz laut GC ca. 50% zum gewünschten Iso-propyl-p-brombenzo-carboxamid,
Patentansprüche:

1. Verbessertes Verfahren zur Herstellung von N-substituierten Amidren der Formel

 \[R \text{CONHR}1 \quad (I) \]

 in der R einen gegebenenfalls ein- oder mehrfach substituierten \(\text{C}1\text{-C}20\text{-Alkyl-} \), \(\text{C}5\text{-C}20\text{-Aryl-} \) oder \(\text{C}5\text{-C}20\text{-Heterocyclusrest} \) und R1 einen gegebenenfalls ein- oder mehrfach substituierten \(\text{C}1\text{-C}20\text{-Alkyl-} \) oder \(\text{C}5\text{-C}20\text{-Arylrest} \) bedeuten aus den korrespondierenden Nitrilen der Formel

 \[\text{RCN} \quad (II) \]

 in der R wie oben definiert ist, dadurch gekennzeichnet, dass ein Nitril der Formel (II) in Polyphosphorsäure mit einem Alkohol der Formel

 \[\text{R1OH} \quad (III) \]

 in der R1 wie oben definiert ist, in Gegenwart einer Verbindung aus der Gruppe Phosphorpentoxyd, Phosphoroxychlorid, Sulfurylchlorid, Dialkylcarbonat und Dialkylsulfat bei einer Temperatur zwischen 80 und 190°C zu dem entsprechenden N-substituierten Amid umgesetzt wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass Nitrile der Formel (II) in der R einen gesättigten oder ein- oder mehrfach ungesättigten, linearen, verzweigten oder cyclischen, polycyclischen oder überbrückten cyclischen \(\text{C}1\text{-C}20\text{-Alkylrest} \), einen \(\text{C}5\text{-C}20\text{-Aryl-} \) oder \(\text{C}5\text{-C}20\text{-Heterocyclusrest} \) bedeutet, wobei die Reste gegebenenfalls ein- oder mehrfach durch gegebenenfalls substituierte Aryl- oder Heteroarylgruppen, \(\text{C}1\text{-C}6\text{-Alkyl-} \), Halogen-\(\text{C}1\text{-C}6\text{-Alkoxy-} \), Aryloxy-, bevorzugt \(\text{C}6\text{-C}20\text{-Aryloxy-} \), \(\text{C}1\text{-C}6\text{-Alkythio-} \), Alkylamino-, bevorzugt \(\text{C}1\text{-C}6\text{-Alkylamino-} \), Arylamino-, bevorzugt \(\text{C}6\text{-C}20\text{-Arylamino-} \), Ether-, Thioether, Carbonsäure-, Carbonsäureester-, Carbonsäureamid-, Sulfoxid-, Sulfon-, Sulfonsäure, Sulfonsäureester-, Sulfinsäure-, Cyan- oder Nitrogruppen substituiert sein können, mit einem Alkohol der Formel (III) in der R1 einen gesättigten, linearen oder verzweigten \(\text{C}1\text{-C}6\text{-Alkylrest} \) oder einen Phenylrest bedeutet, wobei die Reste gegebenen-
falls ein- oder mehrfach durch Halogen oder Phenyl substituiert sein können, umgesetzt werden.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass Nitrile der Formel (II) eingesetzt werden, in der R einen gesättigten oder einfach ungesättigten, linearen verzeigten oder cyclischen C\textsubscript{1}-C\textsubscript{12}-Alkylrest, einen C\textsubscript{6}-C\textsubscript{10}-Arylrest oder C\textsubscript{5}-C\textsubscript{10}-Heterocyclusrest bedeutet, der gegebenenfalls ein- oder mehrfach durch C\textsubscript{1}-C\textsubscript{4}-Alkyl, C\textsubscript{1}-C\textsubscript{4}-Alkoxy, Phenyl, Carbonsäure, Halogen, Cyano oder Nitro substituiert sein kann.

4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Molverhältnis von Nitril der Formel (II) zu Alkohol der Formel (III) 1:1 bis 1:5 beträgt.

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Molverhältnis von Polyphosphorsäure zu Alkohol der Formel (III) 1:0,1 bis 1:2 beträgt.

6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Molverhältnis von Alkohol zu Phosphorpentoxid, Phosphoroxychlorid, Sulfurylchlorid, Dialkylcarbonat oder Dialkylsulfat 1:0,1 bis 1:2 beträgt.

7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Dialkylcarbonat und das Dialkylsulfat 1 bis 6 C-Atome in der Alkylkette aufweisen.

8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass kommerziell erhältliche, etwa 85%ige Polyphosphorsäure eingesetzt wird.

9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Reaktionstemperatur bei 100 bis 170°C liegt.
10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei Verwendung von Dialkyldiorganophosphorylcarbonaten, die Reaktion gegebenenfalls in Abwesenheit des Alkohols der Formel (III) durchgeführt wird.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07C231/06 C07C233/58 C07C233/65 C07C235/46 C07D333/38

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07C C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data, PAJ, BEILSTEIN Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Seite 1398, Tabelle 1: Eintrag 12</td>
<td>1-10</td>
</tr>
<tr>
<td>Y</td>
<td>EP 1 182 191 A (INT FLAVORS & FRAGRANCES INC) 27 February 2002 (2002-02-27) Ansprüche 1 und 10; Beispiel 1</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

* Special categories of cited documents:
* 'A' document defining the general state of the art which is not considered to be of particular relevance
* 'E' earlier document published on or after the international filing date
* 'L' document which may throw doubts on priority claim(s) or which is cited to establish the public date of another citation or other special reason (as specified)
* 'O' document referring to an oral disclosure, use, exhibition or other means
* 'P' document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

*"A" document member of the same patent family

Date of the actual completion of the international search
7 January 2004

Date of mailing of the international search report
27/01/2004

Name and mailing address of the ISA
European Patent Office, P.B. 5618 Patentaal 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax (+31-70) 340-3018

Authorized officer
Fitz, W

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MARTINEZ A G ET AL: "AN IMPROVED MODIFICATION OF RITTER REACTION" TETRAHEDRON LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 30, 1989, pages 581-582, XP001119550 ISSN: 0040-4039 the whole document</td>
<td>1,10</td>
</tr>
<tr>
<td>P, X</td>
<td>WO 03 011816 A (MILLENNIUM SPECIALITY CHEMICAL) 13 February 2003 (2003-02-13) Beispiel 39 und 40; Ansprüche 6, 9 und 10</td>
<td>1-10</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1340499 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1182191 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002028969 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 7803654 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2860163 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0000059 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 470565 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN 148189 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1104726 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 54016401 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 7803259 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03011816 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003120113 A1</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEFZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7 C07C231/06 C07C233/58 C07C233/65 C07C235/46 C07D333/38

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK.

B. RECHERCHIERTE GEBIETE

Rechercherter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 C07C C07D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, BEILSTEIN Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>LEBEDEV M Y ET AL: "Lower primary alkanols and their esters in a Ritter-type reaction with nitriles. An efficient method for obtaining N−primary-alkyl amides" TETRAHEDRON LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, Bd. 43, Nr. 8, 18. Februar 2002 (2002-02-18), Seiten 1397-1399, XP004334949 ISSN: 0040-4039 in der Anmeldung erwähnt Seite 1398, Tabelle 1: Eintrag 12</td>
<td>10</td>
</tr>
<tr>
<td>Y</td>
<td>EP 1 182 191 A (INT FLAVORS & FRAGRANCES INC) 27. Februar 2002 (2002-02-27) Ansprüche 1 und 10; Beispiel 1</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

<table>
<thead>
<tr>
<th>Datum des Abschlusses der internationalen Recherche</th>
<th>Absenddatum des internationalen Recherchenberichts</th>
</tr>
</thead>
</table>

Name und Postanschrift der internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentliaan 2 NL − 2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Fitz, W
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MARTINEZ A G ET AL: "AN IMPROVED MODIFICATION OF RITTER REACTION" TETRAHEDRON LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, Bd. 30, 1989, Seiten 581-582, XP001119550 ISSN: 0040-4039 das ganze Dokument</td>
<td>1,10</td>
</tr>
<tr>
<td>P,X</td>
<td>WO 03 011816 A (MILLENNIUM SPECIALITY CHEMICAL) 13. Februar 2003 (2003-02-13) Beispiele 39 und 40; Ansprüche 6, 9 und 10</td>
<td>1-10</td>
</tr>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglied(er) der Patentfamilie</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1340499 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1182191 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002028969 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 7803654 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2860163 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0000059 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 470565 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN 148189 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1104726 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 54016401 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 7803259 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03011816 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003120113 A1</td>
</tr>
</tbody>
</table>