Title: PILE DRIVING SYSTEM AND PILE FOR ENGAGEMENT WITH SAID SYSTEM

Abstract: A system for controlling pile orientation comprises a pile (14) and a pile guide (20) for supporting the pile as it is driven into a substrate, the pile guide comprising a base frame (10) and a pile guide member (22) mounted on the base frame. The pile (14) and the pile guide member (22) have slidable interengaging profiles (30, 40) comprising first and second parts (32, 42), which are configured to axially rotate the pile to correct any misorientation relative to the pile guide as the parts slide past each other, and third and fourth parts (34, 44), which are configured to maintain a predetermined orientation of the pile relative to the pile guide once any misorientation has been corrected by interengagement of the first and second parts.
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
PILE DRIVING SYSTEM AND PILE FOR ENGAGEMENT WITH SAID SYSTEM

10 BACKGROUND OF THE INVENTION

15 FIELD OF THE INVENTION

The invention relates to pile driving, and more particularly, but not exclusively, to underwater pile driving, e.g. for stabbing piles directly into the seabed.

DESCRIPTION OF THE BACKGROUND ART

20 It is known to provide a guide for aligning a pile with the surface of a substrate into which the pile is to be driven and to provide stability for a piling hammer. Particularly when piling underwater there is the problem that after the pile has been introduced into the seabed or the like, the guide must be removed to allow the pile to be driven into its final position. This guide removal is time consuming and thus expensive. Accordingly, the present applicant proposed in International patent
publication WO99/11872 a pile guide which allows pile driving to continue from start to finish without any need to interrupt driving to remove the guide.

The pile driving apparatus described in WO99/11872 comprises a pile guide member which is supported on a base frame, a plan view of which is reproduced in Figure 1. The base frame (10) has a substantially rectangular footprint (made up of a welded framework of girders and mudmats) with a centrally-placed aperture (12) through which a pile (14) is guided. The base frame 10 thus surrounds the pile (14). It will be seen however, that the base frame is formed with an aperture or slot (16) extending through the frame from its exterior to the central aperture (12) and through which a tether or rigging (18) fixed to the pile (14) can be passed.

In practice, it is important to orientate the pile so that the tether/rigging (18) will be aligned in a predetermined direction according to the intended use of the pile (14). Until now, a set pile orientation has been achieved using so-called orientation plates on the piles which engage a guide plate system in the pile guide member of the pile guide. The orientation plates are positioned on the piles in a known orientation relative to the tether/rigging couplings provided on the piles. In use, the orientation plates will engage the guide plate system as each mis-orientated pile is introduced into the pile guide member. The guide plate system forces the orientation plates to follow a helical path as the pile is
further lowered through the pile guide member, causing the pile to rotate about its axis until the desired orientation relative to the base frame is achieved.

The present applicant has appreciated that more precise control of the orientation of piles being driven into a substrate (e.g. seabed) may be desirable, particularly in high swell conditions producing heave situations.

In accordance with a first aspect of the present invention, there is provided a system for controlling pile orientation comprising: a pile; and a pile guide for supporting the pile as it is driven into the substrate, comprising a base frame and a pile guide member mounted on the base frame, the pile and pile guide member having slidably interengagable profiles comprising first and second parts which are configured to axially rotate the pile to correct any mis-orientation relative to the pile guide as the parts slide past each other; characterised in that the interengaging profiles further comprise third and fourth parts which are configured to maintain a predetermined orientation of the pile relative to the pile guide once any mis-orientation has been corrected by interengagement of the first and second parts.

The third and fourth parts prevent the orientation of the pile from changing after the first and second parts have cleared each other as the pile is driven into the substrate. The third and fourth parts may be configured to engage each other before the first and second parts
slide past and disengage each other. In this way, there is no risk that the predetermined orientation of the pile will not be maintained when the first and second parts disengage. This may be particularly important in heave situations which may produce periodic upward movements in the pile relative to the pile guide. In the conventional arrangement, once the first and second parts have slid past one another, any new mis-orientation in the pile may cause the first and second parts to jam against each other during heave-induced, relative upward movement.

The interengagable profiles (e.g. second and fourth parts) on the pile guide may be contiguous or may be spaced apart. The interengagable profiles (e.g. first and third parts) on the pile are spaced apart along the length of the pile.

The third and fourth parts may comprise a plate-like member and a channel in which the plate-like member is a sliding fit. The plate-like member may be mounted on the pile, and the channel may be provided on an inner periphery of the pile guide member.

The channel may have an upper flared opening for first receiving the plate-like member as the pile is lowered through the pile guide. The channel may also have a lower flared opening for re-engaging the plate-like member if the pile rises up through the pile guide (e.g. during heave situation).

The channel may be formed between a pair of spacer plates, the spacer plates being configured to centre the
pile in the pile guide member.

The first and second parts may comprise an orientation plate and a guide plate system defining a helical pathway for the orientation plate. The orientation plate may be mounted on the pile, and the guide plate system may be provided on an inner periphery of the pile guide member. The guide plate system may define a pair of helical pathways of opposite senses of rotation, which define a tapering channel therebetween for correcting any mis-orientation in the pile. The tapering channel may have a flared portion at its lower end for recapturing the orientation plate should the pile move upwards relative to the pile guide after the first and second parts have slid past each other.

In another aspect of the present invention, there is provided a pile for driving into a substrate, the pile comprising: an elongate body with a leading end and a trailing end; a coupling for receiving a tether, the coupling being located towards the trailing end; a first member projecting radially outwardly from the body, the first member being located towards the leading end; and a second member projecting radially outwardly from the body, the second member being axially spaced towards the trailing end from the first member.

The coupling may be angularly offset (e.g. 90°) relative to at least one member. The first and second members may be angularly aligned. The first member and/or the second member may be plate-like with the plane of the
or each member parallel to the longitudinal axis of the body.

BRIEF DESCRIPTION OF THE DRAWINGS

An embodiment of the invention will now be described by way of example with reference to the accompanying drawings, in which:

Figure 1 is a plane view of a prior art base frame;

Figure 2 is a side view of a prior art pile guide for underwater pile driving;

Figure 3 is an exploded view showing a pile (from one side) and pile guide member (in vertical section) of a system embodying the present invention; and

Figure 4 is a view showing the pile of Figure 3 from another side.

DESCRIPTION OF SPECIFIC EMBODIMENT

Figure 2 shows a pile guide (20), known from WO99/11872, which comprises a base frame (10) (as per Figure 1) and a pile guide member (22) mounted on the base frame (10). A pile (14) (as per Figure 1) is supported by the pile guide member (22) whilst being driven into the substrate (24) (e.g. seabed).

The pile (14) and the pile guide member (22) have respectively interengaging profiles (30,40) different parts of which either correct any mis-orientation in the pile (14) relative to the pile guide (20) or maintain a predetermined orientation between the pile (14) and pile guide (20). Specifically, the interengaging profiles (30,40) include a first part (32) on pile (14) which
engages a second part (42) on the inner periphery of pile guide member (22). Furthermore, the interengaging profiles (30,40) include a third part (34), located rearwardly of the first part (32) on pile (14), and a fourth part (44) on the inner periphery of the pile guide member (22). In use, the first part (32) engages the second part (42) as the pile (14) is lowered into the pile guide member (22). Any mis-orientation in the pile (14) is corrected as the first part (32) slides against the second part (42). As the correctly orientated pile (14) is further lowered, the third part (34) will engage the fourth part (44) to maintain the orientation of the pile (14) relative to the pile guide (20). The structure of the various parts (32,34) and (42,44) will now be considered in more detail.

15 The Pile (14)

The pile (14) includes a coupling (50) for a tether (not shown) which is located towards the trailing end (52) of the cylindrical body (54) of the pile (14). The first part (32) of the interengaging profile (30) comprises a primary orientation plate (56) which is aligned parallel to the longitudinal axis AA of the pile (14) and which projects radially outwardly from the body (54). The orientation plate (56) has a curved leading edge (58) (closest to leading end (60) of the body (54)) and chamfer (62) on its trailing edge (64). The other part (34) of the interengaging profile (30) comprises a secondary orientation plate (70) which is aligned with, but spaced rearwardly of, the primary orientation plate (56). Again,
the leading edge (72) of the orientation plate (70) is rounded. Both orientation plates (56, 70) are angularly offset by 90° from the coupling (50).

The Pile Guide Member (22)

5 The pile guide member (22) has a generally cylindrical housing (80) which includes a plurality of spacers (82) for centering the pile (14) in the pile guide member (22). One part (42) of the interengaging profile (40) includes a pair of helical guide plates (84) of opposite senses of rotation which define a tapering channel (86) for correcting any mis-orientation of the pile (14). The tapering channel (86) tapers to a neck region (89) which is flared at its lower end (90). The other part of (44) the interengaging profile (40) includes a pair of parallel guide plates (92) with a flared opening (94) at its upper end (96). The guide plates (92) have a spacing function just like spacers (82).

In use, the primary orientation plate (56) engages on the helical guide plates (84) as a mis-orientated pile (14) is lowered into the pile guide member (22). The primary orientation plate (56) slides against the engaged helical guide plate (84), causing the pile (14) to rotate into a predetermined orientation as it is further lowered. Before the primary orientation plate (56) exits the channel (86) through the neck region (89), the secondary orientation plate (70) slides between the parallel guide plates (92), maintaining the predetermined orientation of the pile (14).
CLAIMS

1. A system for controlling pile orientation comprising: a pile (14); and a pile guide (20) for supporting the pile 5 (14) as it is driven into a substrate, comprising a base frame (10) and a pile guide member (22) mounted on the base frame (10), the pile (14) and pile guide member (22) having slidably interengagable profiles (30,40) comprising first and second parts (32,42) which are configured to 10 axially rotate the pile (14) to correct any mis-orientation relative to the pile guide (20) as the parts slide past each other; characterised in that the interengaging profiles (30,40) further comprise third and fourth parts (34,44) which are configured to maintain a predetermined orientation of the pile (14) relative to the pile guide (20) once any mis-orientation has been corrected by interengagement of the first and second parts (32,42).

2. A system according to claim 1, in which the third and fourth parts (34,44) are configured to engage each other before the first and second parts (32,42) slide past and disengage each other.

3. A system according to any of the preceding claims, in which the third and fourth parts (34,44) comprise a plate-like member (70) and a channel in which the plate-like member is a sliding fit.

4. A system according to claim 3, in which the plate-like member (70) is mounted on the pile (14), and the channel is provided on an inner periphery of the pile
guide member (22).
5. A system according to claim 3 or 4, in which the channel has an upper flared opening (94) for first receiving the plate-like member (70) as the pile (14) is lowered through the pile guide (20).
6. A system according to any of claims 2 to 5, in which the channel further comprises a lower flared opening for re-engaging the plate-like member (70) if the pile (14) rises up through the pile guide (20).
7. A system according to any of claims 3 to 6, in which the channel is formed between a pair of spacer plates (92), the spacer plates (92) being configured to centre the pile (14) in the pile guide member (22).
8. A system according to any of the preceding claims, in which the first and second parts (32, 42) comprise an orientation plate (56) and a guide plate system (84) defining a helical pathway for the orientation plate (56).
9. A system according to claim 8, in which the orientation plate (56) is mounted on the pile (14), and the guide plate system (84) is provided on an inner periphery of the pile guide member (22).
10. A system according to claim 8 or claim 9, in which the guide plate system (84) defines a pair of helical pathways of opposite senses of rotation, which define a tapering channel (86) therebetween for correcting any mis-orientation in the pile (14).
11. A system according to claim 10, in which the tapering channel (86) has a flared portion at its lower end (90)
for re-capturing the orientation plate (56) should the pile (14) move upwards relative to the pile guide (20) after the first and second parts (32,42) have slid past each other.

12. A pile (14) for driving into a substrate, the pile (14) comprising: an elongate body (54) with a leading end and a trailing end (52); a coupling (50) for receiving a tether, the coupling (50) being located towards the trailing end (52); a first member (56) projecting radially outwardly from the body (54), the first member (56) being located towards the leading end; and a second member (70) projecting radially outwardly from the body, the second member (70) being axially spaced towards the trailing end (52) from the first member (56).

13. A pile according to claim 12, in which the coupling (50) is angularly offset relative to at least one member.

14. A pile according to claim 12 or claim 13, in which the first and second members (56,70) are angularly aligned.

15. A pile according to any of claims 12 to 14, in which the first member (50) is plate-like with the plane of the member parallel to the longitudinal axis of the body.

16. A pile according to any of claims 12 to 15, in which the second member (70) is plate-like with the plane of the member parallel to the longitudinal axis of the body.
A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 E02D13/04

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 E02D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic database consulted during the international search (name of database and, where practical, search terms used)
PAJ, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

[X] Further documents are listed in the continuation of box C.
[X] Patent family members are listed in annex.

* Special categories of cited documents:
* A* document defining the general state of the art which is not considered to be of particular relevance
* E* earlier document but published on or after the international filing date
* L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
* O* document referring to an oral disclosure, use, exhibition or other means
* P* document published prior to the international filing date but later than the priority date claimed

* T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
* P* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
* X* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
* * document member of the same patent family

Date of the actual completion of the international search:
6 May 2003

Date of mailing of the international search report:
16/05/2003

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk
Tel.: (+31-70) 340-2040, Tx. 31 651 apo nl,
Fax: (+31-70) 340-3018

Authorized officer:
Geiger, H
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4 509 883 A (THIBODEAUX EMILE ET AL) 9 April 1985 (1985-04-09) column 3, line 37 - column 6, line 35; figures 1,4</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 5 332 047 A (HIGNITE WALTER) 26 July 1994 (1994-07-26) column 2, line 49 - column 5, line 41; figures 2,3,5,9</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 897 034 A (INST OF MARINE BIOLOGY OF CRE) 17 February 1999 (1999-02-17) the whole document</td>
<td>1-16</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 61046611 B</td>
</tr>
<tr>
<td>US 4509883 A</td>
<td>09-04-1985</td>
<td>IN 160976 A1</td>
</tr>
<tr>
<td>US 5332047 A</td>
<td>26-07-1994</td>
<td>NONE</td>
</tr>
<tr>
<td>EP 0897034 A</td>
<td>17-02-1999</td>
<td>GR 97100318 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0897034 A1</td>
</tr>
</tbody>
</table>