Title: METHOD OF AND APPARATUS FOR RECORDING TIME SENSITIVE DATA WITHIN A STORAGE DEVICE AND RESYNCHRONIZING THE DATA WHEN TRANSMITTING RECORDED DATA FROM THE STORAGE DEVICE IN ORDER TO REGAIN TIME SYNCHRONY AFTER A LAPSE IN SYNCHRONY OR ERROR CONDITION

Abstract: A media storage device (40) records a meta-data header with packets received by the media storage device (40). The meta-data headers include a cycle mark value and a cycle count value. The cycle mark value has a specific pattern which is then used to locate cycle boundaries within the recorded stream of data. The cycle count value specifies the value of the isochronous cycle number on which the packet was received. Preferably, the media storage device (40) includes an embedded stream processor (44) which is responsible for appropriately adding the meta-data header to the packets within the recorded stream of data. The embedded stream processor (44) is also integral to the playback of recorded data, and is used to retrieve data from the storage media (48), strip the meta-data headers from retrieved data being played back and recover from any error conditions encountered during the playback of previously recorded data. The meta-data headers stored within the recorded stream of data are also utilized to recover from any error conditions and resynchronize the transmission of the data during playback.
METHOD OF AND APPARATUS FOR RECORDING TIME
SENSITIVE DATA WITHIN A STORAGE DEVICE AND
RESYNCHRONIZING THE DATA WHEN TRANSMITTING RECORDED
DATA FROM THE STORAGE DEVICE IN ORDER TO REGAIN TIME
SYNCHRONY AFTER A LAPSE IN SYNCHRONY OR ERROR CONDITION

FIELD OF THE INVENTION:
The present invention relates to the field of writing data to and reading data from a
media storage device. More particularly, the present invention relates to the field of writing
data to and reading time sensitive data from a media storage device to regain synchrony after
an error or lapse in synchrony.

BACKGROUND OF THE INVENTION:
The IEEE Std 1394-1995 standard, "1394 Standard For A High Performance Serial
Bus," is an international standard for implementing an inexpensive high-speed serial bus
architecture which supports both asynchronous and isochronous format data transfers. In
addition, the IEEE 1394-1995 bus has a universal clock called the cycle timer. This clock is
synchronized on all nodes. Isochronous data transfers are real-time transfers which take place
based on the universal clock such that the time intervals between significant instances have
the same duration at both the transmitting and receiving applications. Each packet of data
transferred isochronously is transferred in its own time period. An example of an ideal
application for the transfer of data isochronously would be from a video recorder to a
television set. The video recorder records images and sounds and saves the data in discrete
chunks or packets. The video recorder then transfers each packet, representing the image and
sound recorded over a limited time period, during that time period, for display by the
television set. The IEEE 1394-1995 standard bus architecture provides multiple independent
channels for isochronous data transfer between applications. A six bit channel number is
broadcast with the data to ensure reception by the appropriate application. This allows
multiple applications to simultaneously transmit isochronous data across the bus structure.
Asynchronous transfers are traditional reliable data transfer operations which take place as
soon as arbitration is won and transfer a maximum amount of data from a source to a
destination.

The IEEE 1394-1995 standard provides a high-speed serial bus for interconnecting
digital devices thereby providing a universal I/O connection. The IEEE 1394-1995 standard
defines a digital interface for the applications thereby eliminating the need for an application
to convert digital data to analog data before it is transmitted across the bus. Correspondingly,
a receiving application will receive digital data from the bus, not analog data, and will
therefore not be required to convert analog data to digital data. The cable required by the
IEEE 1394-1995 standard is very thin in size compared to other bulkier cables used to
connect such devices in other connection schemes. Devices can be added and removed from
an IEEE 1394-1995 bus while the bus is operational. If a device is so added or removed the
bus will then automatically reconfigure itself for transmitting data between the then existing
nodes. A node is considered a logical entity with a unique address on the bus structure. Each
node provides in a standard address space, an identification ROM, a standardized set of
control registers and in addition, its own address space.

The IEEE 1394-1995 standard defines a protocol as illustrated in Figure 1. This
protocol includes a serial bus management block 10 coupled to a transaction layer 12, a link
layer 14 and a physical layer 16. The physical layer 16 provides the electrical and mechanical
connection between a device and the IEEE 1394-1995 cable. The physical layer 16 also
provides arbitration to ensure that all devices coupled to the IEEE 1394-1995 bus have
arbitrated access to the bus as well as actual data transmission and reception. The link layer
14 provides data packet delivery service for both asynchronous and isochronous data packet
transport. This supports both asynchronous data transport, using an acknowledgement
protocol, and isochronous data transport, providing an un-acknowledged real-time guaranteed
bandwidth protocol for just-in-time data delivery. The transaction layer 12 supports the
commands necessary to complete asynchronous data transfers, including read, write and lock.
The serial bus management block 10 contains an isochronous resource manager for managing
isochronous data transfers. The serial bus management block 10 also provides overall
configuration control of the serial bus in the form of optimizing arbitration timing, guarantee
of adequate electrical power for all devices on the bus, assignment of the cycle master,
assignment of isochronous channel and bandwidth resources and basic notification of errors.

The IEEE 1394-1995 cables connect ports together on different nodes. Each port
includes terminators, transceivers and logic. A node can have multiple ports at its physical
connection. The cable and ports act as bus repeaters between the nodes to simulate a single
logical bus. The cable physical connection at each node includes one or more ports,
arbitration logic, a resynchronizer and an encoder. Each of the ports provide the cable media
interface into which the cable connector is connected. The arbitration logic provides access
to the bus for the node. The resynchronizer takes received data-strobe encoded data bits and
generates data bits synchronized to a local clock for use by the applications within the node.
The encoder takes either data being transmitted by the node or data received by the
resynchronizer, which is addressed to another node, and encodes it in data-strobe format for
transmission across the IEEE 1394-1995 serial bus. Using these components, the cable
physical connection translates the physical point-to-point topology of the cable environment
into a virtual broadcast bus, which is expected by higher layers of the system. This is
accomplished by taking all data received on one port of the physical connection,
resynchronizing the data to a local clock and repeating the data out of all of the other ports
from the physical connection.

Each isochronous data packet includes at least an IEEE 1394-1995 packet header.
The packet header includes overhead information necessary for proper communication of the
packet. Typically, content data, such as audio-visual data, is included in the packet, in a data
field following the packet header. When an isochronous data packet is received, the receiving
device must generally separate the header information from the content data so that the
content data can be appropriately processed, such as for display. The data field may contain a
header and audio-visual content data, as when the CIP Transport Protocol is used. This
header within the data field is the CIP header.

A hard disk drive including an IEEE 1394-1995 serial bus interface is illustrated in
Figure 2. The hard disk drive 20 includes the IEEE 1394-1995 serial bus interface circuit 22
for interfacing to an IEEE 1394-1995 serial bus network. The interface circuit 22 is coupled
to a buffer controller 24. The buffer controller 24 is coupled to a random access memory
(RAM) 26 and to a read/write channel circuit 28. The read/write channel circuit 28 is
coupled to the media 30 on which data is stored within the hard disk drive 20. The read/write
channel circuit 28 controls the storage operations on the media 30, including reading data
from the media 30 and writing data to the media 30.

During a write operation to the hard disk drive 20, a stream of data is received from a
device coupled to the IEEE 1394-1995 serial bus structure by the IEEE 1394-1995 interface
circuit 22. This stream of data is forwarded from the IEEE 1394-1995 interface circuit 22 to
the buffer controller 24. The buffer controller 24 then stores this data temporarily in a buffer
in the RAM 26. When the read/write channel circuit 28 is available, the buffer controller 24
reads the data from the RAM 26 and forwards it to the read/write channel circuit 28. The
read/write channel circuit 28 then writes the data onto the media 30.

During a read operation from the hard disk drive 20, a stream of data is read from the
media 30 by the read/write channel circuit 28. This stream of data is forwarded by the
read/write channel circuit 28 to the buffer controller 24. The buffer controller 24 then stores
this data temporarily in a buffer in the RAM 26. When the IEEE 1394-1995 serial bus
interface circuit 22 is available, the buffer controller 24 reads the data from the RAM 26 and
forwards it to the interface circuit 22. The IEEE 1394-1995 serial bus interface circuit 22
then formats the data according to the requirements of the IEEE 1394-1995 standard and
transmits this data to the appropriate device or devices over the IEEE 1394-1995 serial bus.

A traditional hard disk drive 20, as described, records data and plays it back according
to commands received from an external controller using a protocol such as the serial bus
protocol (SBP). The external controller provides command data structures to the hard disk
drive 20 which inform the hard disk drive 20 where on the media 30 the data is to be written,
in the case of a write operation, or read from, in the case of a read operation. The function of
the hard disk drive 20 during a read operation is to recreate the original, unmodified stream of
data which was previously written on the media 30.

When recording such data, the hard disk drive 20 does not necessarily understand or is
unable to use the data. The hard disk drive 20 is typically employed to record the data in a
manner to preserve the integrity of the data when the data is read and transmitted from the
hard disk drive 20 to another device within the IEEE 1394-1995 serial bus network.

However, this can be a problem when the hard disk drive 20 has recorded a stream of
isochronous data which must be transmitted in packets at appropriate intervals. Especially, when the hard disk drive 20 cannot understand the data and differentiate particular boundaries within the data stream. This makes it difficult for the hard disk drive 20 to record the data and then later retrieve it for transmission over the network in the correct format and order.

In a draft of the SBP2 protocol standard an isochronous recording format was proposed for recording isochronous data. Within this proposal, the first quadlet of each logical block within the hard disk drive was reserved. When isochronous data was saved within this logical block, this reserved quadlet would then be used to save a pointer to the first cycle start packet within the logical block. This pointer could then be used to determine the appropriate order of the data and to locate specified locations within the data stream.

SUMMARY OF THE INVENTION:
A media storage device records a meta-data header with packets received by the media storage device. The meta-data headers include a cycle mark value and a cycle count value. The cycle mark value has a specific pattern which is then used to locate cycle boundaries within the recorded stream of data. The cycle count value specifies the value of the isochronous cycle number on which the packet was received. Preferably, the media storage device includes an embedded stream processor which is responsible for appropriately adding the meta-data header to the packets within the recorded stream of data. The embedded stream processor is also integral to the playback of recorded data, and is used to retrieve data from the storage media, strip the meta-data headers from retrieved data being played back and recover from any error conditions encountered during the playback of previously recorded data. The meta-data headers stored within the recorded stream of data are also utilized to recover from any error conditions and resynchronize the transmission of the data during playback.

In one aspect of the present invention, a method of writing data to a media storage device comprises receiving a received packet of data to be written to the media storage device, adding a header to the received packet of data thereby forming an extended packet of data and storing the extended packet of data onto a media within the media storage device. The header includes a cycle mark value which includes a pattern used to locate cycle boundaries, and a cycle count value specifying a cycle number of a cycle in which the received packet of data was received. The received packet of data is an isochronous packet of data received over an isochronous channel. Receiving the received packet of data includes receiving packets of data on multiple channels and further wherein adding a header to the received packet of data includes grouping packets received on multiple channels within a same isochronous cycle into a cycle group of packets and adding the header to the cycle group of packets. Adding a header to the received packet of data is performed by an embedded stream processor within the media storage device. The received packet of data is preferably received from a bus structure which substantially complies with a version of an IEEE 1394 standard. The media storage device is preferably a hard disk drive.
In another aspect of the present invention, a method of reading data from a media storage device which has previously been stored with header data generated by the media storage device comprises locating a first header data, including a cycle mark value having a pattern, reading a previously stored packet of data following the first header data from a media within the media storage device, stripping the first header data from the previously stored packet of data thereby forming a retrieved packet of data and transmitting the retrieved packet of data to another device. Transmitting includes transmitting the manipulated packet of data onto a bus structure which preferably substantially complies with a version of an IEEE 1394 standard. The pattern is used to locate cycle boundaries, and the first header data further includes a cycle count value specifying a cycle number of a cycle in which the previously stored packet of data was received. The retrieved packet is an isochronous packet of data and is transmitted over an isochronous channel. Stripping the first header data from the previously stored packet of data is performed by an embedded stream processor within the media storage device. The media storage device is preferably a hard disk drive. Locating the first header data, including a cycle mark value having a pattern includes locating the pattern within the previously stored data, then determining if a cycle count value within the first header data is within an appropriate range, determining if an isochronous header follows the first header data and then determining if a data length value includes a legitimate value. The appropriate range for the cycle count value is any number including and between 0 and 7999. The appropriate range for the data length value is format dependent.

In yet another aspect of the present invention, a method of recovering from an error condition during playback of a recorded stream of data including packets of data and header data comprises locating a next header data, including a cycle mark value having a pattern, determining if a cycle count value within the next header data is within an appropriate range and determining if an isochronous header follows the next header data. The method further comprises determining if a data length value includes a legitimate value. The appropriate range for the cycle count value is any number including and between 0 and 7999. The appropriate range for the data length value is format dependent.

In still yet another aspect of the present invention, a meta data header added to received packets by a media storage device as the packets are recorded on storage media within the media storage device comprises a cycle mark value including a pattern used to locate cycle boundaries within the received packets and a cycle count value specifying a cycle number of a cycle in which the received packets are received. The cycle count value preferably has a range between and including 0 and 7999. The received packets are preferably isochronous data packets. Preferably, the meta data header is added to each received packet. Alternatively, the meta data header is added to each group of received packets received during a same isochronous cycle.

In another aspect of the present invention, a media storage device comprises means for interfacing configured for receiving a stream of data, thereby forming a received stream of data, and also for transmitting a retrieved stream of data, means for storing data for storing
and retrieving the received stream of data and means for processing coupled to the means for interfacing and to the means for storing for adding header data to the received stream of data as the received stream of data is received and providing the header data and the received stream of data to the means for storing for recording thereby forming a recorded stream of data, the header data including a cycle mark value marking cycle boundaries within the recorded stream of data. The means for processing is preferably an embedded stream processor which also locates a first cycle mark value within the recorded stream of data during a playback operation, reads packets within the recorded stream of data after the first cycle mark value, strips the header data from read packets within the recorded stream of data thereby forming retrieved packets of data and transmits the retrieved packets of data through the means for interfacing to a receiving device. The receiving device is coupled to the means for interfacing by a bus structure which preferably substantially complies with a version of an IEEE 1394 standard. The embedded stream processor locates the first cycle mark value by locating a pattern included within the cycle mark value, then determining if a cycle count value within the header data is within an appropriate range, determining if an isochronous header follows the header data and then determining if a data length value includes a legitimate value. The appropriate range for the cycle count value is any number including and between 0 and 7999. The appropriate range for the data length value is format dependent. The header data further includes a cycle count value specifying a cycle number of a cycle in which packets of data within the received stream of data were received.

In still yet another aspect of the present invention, a media storage device comprises an interface circuit configured to receive a stream of data, thereby forming a received stream of data, and also to transmit a retrieved stream of data, storage media configured to store and retrieve the received stream of data and an embedded stream processor coupled to the interface circuit and to the storage media to add header data to the received stream of data as it is received and provide the header data and the received stream of data to the storage media for recording to form a recorded stream of data, the header data including a cycle mark value marking cycle boundaries within the recorded stream of data. The embedded stream processor also locates a first cycle mark value within the recorded stream of data during a playback operation, reads packets within the recorded stream of data after the first cycle mark value, strips the header data from read packets within the recorded stream of data thereby forming retrieved packets of data and transmits the retrieved packets of data through the interface circuit to a receiving device. The receiving device is coupled to the media storage device by a bus structure which preferably substantially complies with a version of an IEEE 1394 standard. The embedded stream processor locates the first cycle mark value by locating a pattern included within the cycle mark value, then determining if a cycle count value within the header data is within an appropriate range, determining if an isochronous header follows the header data and then determining if a data length value includes a legitimate value. The appropriate range for the cycle count value is any number including and between 0 and 7999. The appropriate range for the data length value is format dependent. The header data further
includes a cycle count value specifying a cycle number of a cycle in which packets of data within the received stream of data were received.

In yet another aspect of the present invention, a network of devices comprises a source device which generates isochronous source packets of data each including an isochronous packet header and a data payload, a receiving device which utilizes isochronous data and a media storage device including an interface circuit coupled to the source device for receiving the isochronous source packets of data, thereby forming a received stream of data, and also coupled to the receiving device for transmitting a retrieved stream of data, storage media for storing and retrieving the received stream of data and an embedded stream processor coupled to the interface circuit and to the storage media for adding header data to the received stream of data as it is received and providing the header data and the received stream of data to the storage media for recording thereby forming a recorded stream of data, the header data including a cycle mark value marking cycle boundaries within the recorded stream of data. The embedded stream processor also locates a first cycle mark value within the recorded stream of data during a playback operation, reads packets within the recorded stream of data after the first cycle mark value, strips the header data from read packets within the recorded stream of data thereby forming retrieved packets of data and transmits the retrieved packets of data through the interface circuit to the receiving device. The embedded stream processor locates the first cycle mark value by locating a pattern included within the cycle mark value, then determining if a cycle count value within the header data is within an appropriate range, determining if an isochronous header follows the header data and then determining if a data length value includes a legitimate value. The appropriate range for the cycle count value is any number including and between 0 and 7999. The appropriate range for the data length value is format dependent. The source device, the receiving device and the media storage device are preferably coupled together by a bus structure which substantially complies with a version of an IEEE 1394 standard. The header data further includes a cycle count value specifying a cycle number of a cycle in which packets of data within the received stream of data were received. The isochronous source packets each further include a CIP header. The receiving device is preferably a display device.

BRIEF DESCRIPTION OF THE DRAWINGS:

Figure 1 illustrates a protocol stack defined by the IEEE 1394-1995 standard.
Figure 2 illustrates a block diagram of a media storage device of the prior art.
Figure 3 illustrates a block diagram of a media storage device according to the present invention.
Figure 4A illustrates the packetization of data at a source device for transmission over an IEEE 1394-1995 serial bus.
Figure 4B illustrates the addition of the meta-data header of the present invention to a received isochronous packet.
Figure 5 illustrates a format of the meta-data header of the preferred embodiment of
the present invention.

Figure 6 illustrates an exemplary stream of isochronous packets received by the IEEE 1394-1995 serial bus interface of the media storage device of the present invention.

Figure 7 illustrates an exemplary stream of isochronous packets, including pre-pended meta-data headers as recorded within the media storage device of the present invention.

Figure 8 illustrates a block flow diagram of error recovery operations performed by the media storage device of the present invention.

Figure 9 illustrates an exemplary stream of isochronous packets, received by the IEEE 1394-1995 serial bus interface of the media storage device of the present invention, including packets on multiple channels.

Figure 10 illustrates an exemplary stream of isochronous packets received on multiple channels, as recorded within the media storage device of the present invention, including pre-pended meta-data headers.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT:

The media storage device of the present invention maps an incoming stream of data which is to be recorded on storage media within the media storage device in order that significant points within the stream of data can be efficiently found during the playback of the stream of data. When a stream of data is recorded on the storage media within the media storage device of the present invention, a meta-data header is added by the media storage device to each incoming packet within the stream of data. Preferably, the media storage device includes an embedded stream processor which is responsible for appropriately adding this meta-data header to the stream of data. The stream of data can include data on one or more channels. The meta-data header is preferably added to the beginning of each packet within the stream, if packets are received on a single isochronous channel, and to the beginning of each group of packets within an isochronous cycle, if packets are received on multiple isochronous channels. The meta-data header includes a cycle mark value and a cycle count value. The cycle mark value marks isochronous cycle boundaries within the recorded data stream. The cycle count value specifies the value of the isochronous cycle number on which the packet or group of packets was received. The cycle count value preferably has a value between 0 and 7999.

When transmitting data which has been previously stored on storage media within the media storage device, the meta-data headers stored within the stream of data are used to locate specific locations within the stream of data during retrieving operations. The meta-data header stored with each packet or group of packets within the stream of data is also utilized if an error occurs during the transmission of a stream of data to resynchronize the stream of data and continue the transmission of the stream of data. During transmission, the stream of data is read from the storage media, processed by the media storage device and transmitted from the media storage device according to appropriate protocol conventions. The processing performed by the media storage device during transmission includes stripping
the meta-data header from the packets and reformatting the packets, as appropriate, for transmission on the appropriate channel over the IEEE 1394-1995 serial bus. This processing is preferably performed by the embedded stream processor within the media storage device.

Preferably, the embedded stream processor within the media storage device includes fixed firmware for performing the appropriate manipulations of data, as described herein, including adding the meta-data to each packet as it is stored on the storage media and stripping the meta-data from each packet as it is read from the storage media. Alternatively, the embedded stream processor is programmed by an external controller within the IEEE 1394-1995 serial bus network which is controlling the media storage device.

A media storage device according to the preferred embodiment of the present invention, within an exemplary IEEE 1394-1995 serial bus network of devices, is illustrated in Figure 3. The media storage device 40 includes an IEEE 1394-1995 serial bus interface circuit 42 for sending communications to and receiving communications from other devices coupled to the IEEE 1394-1995 serial bus network. In the exemplary network of Figure 3, the IEEE 1394-1995 serial bus interface circuit 42 is coupled to the source device 50 and the display device 52. Within the media storage device 40, the interface circuit 42 is coupled to an embedded stream processor 44. The embedded stream processor 44 is coupled to a storage management circuit 46. The storage management circuit 46 includes components such as the buffer controller, RAM and R/W channel, as discussed above. The storage management circuit 46 is coupled to storage media 48 on which data is stored within the media storage device 40. The storage management circuit 46 controls the storage operations on the storage media 48, including reading data from the storage media 48 and writing data to the storage media 48. The incoming and outgoing stream of IEEE 1394-1995 data to and from the media storage device 48 may contain data on multiple data channels, as illustrated in Figure 3 by the "/n" symbols between the components within the media storage device 48.

The media storage device 40 of the present invention is preferably a hard disk drive. However, it should be apparent to those skilled in the art that the media storage device 40 could also include both fixed and removable media using any one or more of magnetic, optical or magneto-optical storage technology or any other available mass storage technology.

During a write operation to the media storage device 40, the IEEE 1394-1995 serial bus interface circuit 42 receives a stream of data from the IEEE 1394-1995 serial bus. The interface circuit 42 then forwards this data to the embedded stream processor 44. The embedded stream processor 44 adds the meta-data headers into the stream of data, as appropriate. The storage management circuit 46 then manages the storage of the stream of data including the meta-data headers onto the storage media 48.

During a read operation from the media storage device 40, a stream of data including the meta-data headers is read from the storage media 48. The storage management circuit 46 also manages the reading of the stream of data including the meta-data headers from the storage media 48 in conjunction with the embedded stream processor 44. The data read from the storage media 48 is then provided to the embedded stream processor 44, which strips the
meta-data headers from the data and manipulates the data as appropriate for transmission on the IEEE 1394-1995 serial bus. Once the embedded stream processor 44 has finished manipulating the data, the IEEE 1394-1995 serial bus interface circuit 42 then formats the data according to the requirements of the IEEE 1394-1995 standard and transmits this data to the appropriate device or devices over the IEEE 1394-1995 serial bus.

The embedded stream processor 44 within the media storage device 40 of the present invention preferably includes fixed firmware for performing the appropriate manipulations of the stream of data, as described herein, including adding meta-data headers to the stream of data during write operations and stripping the meta-data headers from the stream of data during read operations. Alternatively, the embedded stream processor 44 within the media storage device 40 of the present invention is programmed by an external controlling device to perform the appropriate manipulations of the stream of data as data is written to or read from the media storage device 40. Other than adding meta-data headers to the stream of data during write operations and stripping the meta-data headers from the stream of data during read operations, the embedded stream processor 44 of the present invention can also be used to perform other appropriate manipulations of the data, as taught within U.S. Patent Application Serial Number 09/022,926, filed on February 12, 1998 and entitled "MEDIA STORAGE DEVICE WITH EMBEDDED DATA FILTER FOR DYNAMICALLY PROCESSING DATA DURING READ AND WRITE OPERATIONS," which is hereby incorporated by reference.

The embedded stream processor 44 is a special purpose function that handles the real-time processing of stream data, both data being written to the storage media 48 and data being read from the storage media 48. The embedded stream processor 44 preferably performs the data manipulation operations of the present invention within the media storage device 40, as described herein. The embedded stream processor 44 is preferably an isochronous data pipe. A preferred embodiment of the embedded stream processor 44 is taught in U.S. Patent Application Serial Number 08/612,322, filed on March 7, 1996 and entitled "ISOCHRONOUS DATA PIPE FOR MANAGING AND MANIPULATING A HIGH-SPEED STREAM OF ISOCHRONOUS DATA FLOWING BETWEEN AN APPLICATION AND A BUS STRUCTURE," which is hereby incorporated by reference. The embedded stream processor 44 is programmable and will execute a series of instructions on a stream of data in order to perform manipulations on the data as required to place the data in the appropriate format and add the appropriate meta-data to the data. The embedded stream processor 44 can be programmed to manipulate both asynchronous and isochronous data.

The packetization of data at a source device, such as the source device 50, for transmission over the IEEE 1394-1995 serial bus is illustrated in Figure 4A. The series of source packets 60-63 is generated at the source device 50. The nature and form of these source packets 60-63 is dependent on the data format which they represent, which can include formats such as DV and MPEG2. The source device 50 then applies the source packet headers 68-71 to each of the source packets 60-63, respectively. The structure of the source
packet headers is preferably as defined in the IEC-61883 protocol. The source device 50 then splits the combination source packets and source packet headers into data blocks, with each source packet being split into multiple data blocks. Some number of the data blocks are then combined into an isochronous packet and the isochronous header and the common

5 isochronous packet (CIP) header are then applied to the isochronous packet by the source device 50. Each of these headers serves the purpose of defining the nature of the data that lies behind it. The CIP header is used to define the nature of the data format, such as for example an MPEG2 stream. The isochronous header is used to define the nature of the isochronous data packet. Once the isochronous and CIP headers are applied to the

10 isochronous data packet, the packet is then transmitted by the source device 50 over the IEEE 1394-1995 serial bus to the media storage device 40 of the present invention.

When received by the media storage device 40, the meta-data header, as described herein is added to the received packet, as illustrated in Figure 4B. The data packet 80 including the meta-data header 82 is then saved on the storage media 48, within the media storage device 40.

15 The format of the meta-data header of the preferred embodiment is illustrated in Figure 5. Preferably, the meta-data header 82 is a two-quadlet (8 byte) data structure, which includes a cycle_mark field and a cycle_count field. The cycle_mark field is a four-bit field, preferably located within the most significant nibble of the least significant byte of the first quadlet of the meta-data header 82. The cycle_mark field includes a specific four-bit pattern and is significant because it marks isochronous cycle boundaries in the recorded data stream.

The cycle_count field is preferably a four-byte (quadlet) field, located within the second quadlet of the meta-data header 82. The cycle_count field includes a value specifying the value of the isochronous cycle number on which the packet was received. The IEEE 1394-1995 standard specifies an 8 kHz clock, with each clock cycle denoted by a counter value from 0 to 7999. This counter value is recorded within the meta-data header 82 as the cycle count value included within the cycle_count field.

An exemplary stream of isochronous packets, received by the IEEE 1394-1995 serial bus interface circuit 42 from the source device 50 on a single isochronous channel, is illustrated in Figure 6. Each of the isochronous packets is received within its respective isochronous cycle. An exemplary stream of isochronous packets, as recorded on the storage media 48, within the media storage device 40 of the present invention is illustrated in Figure 7. Each of the packets D1-D8 has a meta-data header 101-108, respectively, prepended to it before being written to the storage media 48. The embedded stream processor 44 prepends the meta-data header to each isochronous packet as it is received from the IEEE 1394-1995 serial bus interface circuit 42, then passes the complete packet, including the meta-data header, to the storage management circuit 46 for storage on the storage media 48.

As described above, the specific pattern within the cycle_mark field of the meta-data header marks the isochronous cycle boundaries in the recorded stream of data. These

35 isochronous cycle boundaries are not guaranteed to fall into any special locations on the

- 11 -
storage media 48, such as at the beginning of each data block. As illustrated in Figure 7, the
isochronous cycle boundaries, marked by the meta-data headers 101-108 can fall anywhere
within the data blocks on the storage media 48 and can even be split between blocks on the
storage media 48, as appropriate. Further, the data packets D1-D8 can also fall anywhere
within the data blocks on the storage media 48 and can also be split between blocks on the
storage media 48, as appropriate.

Within Figure 7, 512 byte storage blocks are shown. This block size is exemplary
only. It should be apparent to those skilled in the art that other block sizes could be used to
store data on the storage media 48. Alternatively, the storage media 48 could also be a non-
block-storage model, such as a flash RAM module. In this case, storage on such a module is
generally modeled as a large sequence of bytes that can be read and written in any amount,
not constrained to any specific block size.

When reading a stream of data recorded on the storage media 48 for transmission
from the IEEE 1394-1995 serial bus interface circuit 42, the embedded stream processor 44
first finds and reads the storage block within the storage media 48 which contains the first
data packet within the stream. The embedded stream processor 44 then scans the bytes within
this storage block until it locates the specific pattern of the cycle_mark field within a meta-
data header. Preferably, any bytes that are included within the storage block that precede the
initial cycle_mark field are discarded and are not included in the data stream as transmitted
from the interface circuit 42. Preferably, the embedded stream processor also performs
further checks to ensure that this is the first data packet within the stream, by following the
steps used for error recovery, as described below. Alternatively, the discovery of the specific
pattern of the cycle_mark field is the only check used by the embedded stream processor to
determine that the beginning of the stream has been found.

Once the beginning of the first data packet after the specific pattern of the first
cycle_mark field is found, the embedded stream processor 44 then reconstructs the
isochronous stream of recorded data by first reading the cycle_count value from within the
meta-data header and the isochronous data packet length from the isochronous packet header.
The embedded stream processor 44 then processes the data bytes for this packet and transmits
them from the IEEE 1394-1995 serial bus interface circuit 42, according to the appropriate
protocol conventions. The embedded stream processor 44 then continues by reading the next
block of bytes and repeating the process until a stop condition occurs. The data packet length
that is read by the embedded stream processor 44 from the isochronous packet header is used
to assist in finding the next packet boundary, because packets are preferably stored
sequentially on the storage media 48. Alternatively, if noncontiguous storage strategies are
used, then the media storage device 40 is also responsible for maintaining links, according to
any appropriate known manner, from one chunk of recorded data to the next chunk of
recorded data on the storage media 48. Stop conditions include unrecoverable errors,
encountering the end of a data stream or any other playback modification commands that are
issued from higher layer protocols such as the AV/C protocol.
The storage media 48 will potentially suffer from occasional media read failures or other error conditions. If such an error occurs during the playback of a stream of recorded data, it is necessary to re-synchronize the stream in order to continue the playback from a point beyond the error. The most critical error occurs when the block of data containing a cycle_mark field or other meta-data has a read error. Such an error means that the media storage device is unable to reliably find the beginning of the upcoming isochronous cycle or packet boundary, and therefore the beginning of the appropriate data bytes, that need to be transmitted.

When such errors are encountered during the playback of a recorded stream of data, the media storage device 40 of the present invention, first scans the data bytes stored until the specific pattern of the cycle_mark field is located. This indicates to the media storage device 40 that a meta-data header might have been found. This is not entirely reliable, because in the middle of a data stream, it is possible that the actual data itself will contain the specific pattern of the cycle_mark field. However, once the specific pattern of the cycle_mark field is located, the embedded stream processor 44 then performs one or more operations to ensure that the specific pattern of the cycle_mark field found is included within a meta-data header. The choice of how many of the operations are performed is dependent on the processing power of the embedded stream processor 44. Preferably, all of the operations to ensure that the specific pattern of the cycle_mark field found is included within a meta-data header, discussed below, are performed if the embedded stream processor 44 can perform these operations while still appropriately maintaining its other operations. Alternatively, one or more of the operations are performed in order to ensure that the specific pattern of the cycle_mark field found is included within a meta-data header.

A block flow diagram of the error-recovery operations to ensure that the specific pattern of the cycle_mark field found is included within a meta-data header of the preferred embodiment of the present invention is illustrated in Figure 8. The error-recovery process starts at the step 150. At the step 152, the embedded stream processor 44, first finds the specific pattern of the cycle_mark field, as described above. At the step 154, the embedded stream processor 44 then performs a range check on the cycle count value within the cycle_count field of the meta-data header, to determine whether or not the value within the cycle_count field is less than 8000. If it is determined at the step 154 that the cycle count value within the cycle_count field is not within the appropriate range, then the embedded stream processor 44 returns to the step 152 to continue to search for the specific pattern of the cycle_mark field.

If it is determined at the step 154 that the cycle count value within the cycle_count field is within the appropriate range, then the embedded stream processor 44 next determines, at the step 156, if an isochronous packet header follows the suspected meta-data header, by analyzing the fields and expected values within the isochronous packet header. If it is determined at the step 156 that an isochronous header does not follow the suspected meta-data header, then the embedded stream processor 44 returns to the step 152 to continue to
search for the specific pattern of the cycle_mark field. However, if it is determined at the step 156 that an isochronous header does follow the suspected meta-data header, then the embedded stream processor 44 next determines, at the step 158, if the data length value within the data_length field in the packet includes a legitimate value. The data length value within the data_length field is dependent on the format of the data included within the data packet.

If it is determined at the step 158 that the data_length field does not include a legitimate value, then the embedded stream processor 44 returns to the step 152 to continue to search for the specific pattern of the cycle_mark field. However, if it is determined at the step 158 that the data_length field does include a legitimate value, then the embedded stream processor 44 has determined that it is highly likely that a valid packet and isochronous cycle boundary have been found. Accordingly, the embedded stream processor 44 then resynchronizes the data and begins transmitting the data from the IEEE 1394-1995 serial bus interface circuit 42, at the step 160. Following the transmission of the first packet, at the step 160, the embedded stream processor 44 then determines if the specific pattern of the cycle_mark field or isochronous packet header follows, at the step 162.

If it is determined at the step 162 that the specific pattern of the cycle_mark field or an isochronous packet header does not appropriately follow the preceding packet, then the embedded stream processor 44 returns to the step 152 to continue to search for the specific pattern of the cycle_mark field. However, if it is determined at the step 162 that the specific pattern of the cycle_mark field or an isochronous packet header does appropriately follow the preceding packet, then the embedded stream processor 44 continues the transmission of the stream of data, at the step 164, and then returns to the step 152 to find the specific pattern of the next cycle_mark field. It should be apparent to those skilled in the art that alternatively, additional or different error recovery operations could be performed that are device or data specific.

While the recording of only a single isochronous channel has so far been described, the media storage device 40 of the present invention will also record packets on several isochronous channels. During playback, the media storage device 40, has the ability to then playback a stream of data including packets within one or more channels stored among packets from multiple isochronous channels. An exemplary stream of isochronous packets, received by the IEEE 1394-1995 serial bus interface circuit 42 from the source device 50, including packets on multiple channels, is illustrated in Figure 9. Each of the isochronous packets is received within its respective isochronous cycle. In this example, as illustrated in Figure 9, the isochronous packets are received on two separate channels. An exemplary stream of isochronous packets received on multiple channels, as recorded on the storage media 48, within the media storage device 40 of the present invention is illustrated in Figure 10. The packets received within the multiple channels are grouped according to packets received within the same isochronous cycle. Each of the groups of packets has a meta-data header 170, 172, 174, 176 and 178 prepended to it before being written to the storage media.
48. The embedded stream processor 44 prepends the meta-data header to each group of
isochronous packets as it is received from the IEEE 1394-1995 serial bus interface circuit 42,
then passes the complete group of isochronous packets, including the meta-data header, to the
storage management circuit 46 for storage on the storage media 48.

As illustrated in Figure 10, the packets A1 and B1 are received on different
isochronous channels, but within the same isochronous cycle. The embedded stream
processor 44 within the media storage device 40, preferably groups the packets A1 and B1
together as being received within the same isochronous cycle and then prepends the meta-data
header to the group of packets A1 and B1, as the group of packets A1 and B1, including the
meta-data header, are stored on the storage media 48. Similarly, the other received packets
are grouped together with packets received during the same isochronous cycle and a meta-
data header is prepended to each group of packets, as illustrated in Figure 10.

In an alternative embodiment of the present invention, the meta-data header is
prepended to a group of packets received during the same isochronous cycle and a meta-data
header is also prepended to each separate packet. In this alternate embodiment, the meta-data
headers are used to mark the beginning of an isochronous cycle and the beginning of each
packet within the stream of data stored on the storage media 48 within the media storage
device 40.

For playback of a stream of packets on a single isochronous channel, such as the
stream B, stored on the storage media 48 with packets received on other isochronous
channels, the embedded stream processor 44 first finds the specific pattern of the cycle_mark
field for each cycle. After finding the specific pattern of the cycle_mark field, the embedded
stream processor 44 then verifies that this specific pattern does indeed represent the
cycle_mark field within a meta-data header, as described above. After verifying that the
specific pattern is within a cycle_mark field, the embedded stream processor 44 then reads the
isochronous packet length information within the packet A and uses this data to skip to the
beginning of the packet B. This packet B is then transmitted from the IEEE 1394-1995 serial
bus interface circuit 42. Any data bytes for packet A are simply ignored during the read and
transmit process, but are not erased from the storage media 48 within the media storage
device 40. The embedded stream processor 44 determines the difference between the packets
A and B, by examining the isochronous channel number in the headers of each packet.
Accordingly, if packet B is stored on the storage media 48 before the packet A, the embedded
stream processor 44 will be able to detect this condition. If an error condition occurs during
playback of data packets received on one or more isochronous channels, stored with packets
from multiple channels, the embedded stream processor 44 preferably recovers from the error
condition in the same manner described above.

As described herein, the meta-data headers including the cycle_mark field and the
cycle_count field are stored with packets of data received by a media storage device. These
meta-data headers then allow the media storage device to locate appropriate boundaries and
locations within the recorded stream of data during a playback operation in order to
appropriately playback the recorded stream of data and recover from any error conditions that might occur. Preferably, an embedded stream processor is utilized within the media storage device to prepend the meta-data headers to the received stream of data and to control retrieving and error recovery operations during playback. The embedded stream processor also strips the meta-data headers from the recorded data during playback before the data is transmitted from the IEEE 1394-1995 serial bus interface of the media storage device.

The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention. Specifically, it will be apparent to those skilled in the art that while the preferred embodiment of the present invention is used with an IEEE 1394-1995 serial bus structure, the present invention could also be implemented on any other appropriate bus structures.
CLAIMS

We Claim:

1. A method of writing data to a media storage device comprising:
 a. receiving a received packet of data to be written to the media storage device;
 b. adding a header to the received packet of data thereby forming an extended packet of data; and
 c. storing the extended packet of data onto a media within the media storage device.

2. The method as claimed in claim 1 wherein the header includes a cycle mark value which includes a pattern used to locate cycle boundaries, and a cycle count value specifying a cycle number of a cycle in which the received packet of data was received.

3. The method as claimed in claim 1 wherein the received packet of data is an isochronous packet of data received over an isochronous channel.

4. The method as claimed in claim 1 wherein receiving the received packet of data includes receiving packets of data on multiple channels and further wherein adding a header to the received packet of data includes grouping packets received on multiple channels within a same isochronous cycle into a cycle group of packets and adding the header to the cycle group of packets.

5. The method as claimed in claim 1 wherein adding a header to the received packet of data is performed by an embedded stream processor within the media storage device.

6. The method as claimed in claim 1 wherein the received packet of data is received from a bus structure which substantially complies with a version of an IEEE 1394 standard.

7. The method as claimed in claim 1 wherein the media storage device is a hard disk drive.

8. A method of reading data from a media storage device which has previously been stored with header data generated by the media storage device comprising:
 a. locating a first header data, including a cycle mark value having a pattern;
 b. reading a previously stored packet of data following the first header data from a media within the media storage device;
c. stripping the first header data from the previously stored packet of data thereby forming a retrieved packet of data; and
d. transmitting the retrieved packet of data to another device.

9. The method as claimed in claim 8 wherein transmitting includes transmitting the manipulated packet of data onto a bus structure which substantially complies with a version of an IEEE 1394 standard.

10. The method as claimed in claim 8 wherein the pattern is used to locate cycle boundaries, and the first header data further includes a cycle count value specifying a cycle number of a cycle in which the previously stored packet of data was received.

11. The method as claimed in claim 8 wherein the retrieved packet is an isochronous packet of data and is transmitted over an isochronous channel.

12. The method as claimed in claim 8 wherein stripping the first header data from the previously stored packet of data is performed by an embedded stream processor within the media storage device.

13. The method as claimed in claim 8 wherein the media storage device is a hard disk drive.

14. The method as claimed in claim 8 wherein locating the first header data, including a cycle mark value having a pattern includes locating the pattern within the previously stored data, then determining if a cycle count value within the first header data is within an appropriate range, determining if an isochronous header follows the first header data and then determining if a data length value includes a legitimate value.

15. The method as claimed in claim 14 wherein the appropriate range is any number including and between 0 and 7999.

16. A method of recovering from an error condition during playback of a recorded stream of data including packets of data and header data comprising:
 a. locating a next header data, including a cycle mark value having a pattern;
 b. determining if a cycle count value within the next header data is within an appropriate range; and
c. determining if an isochronous header follows the next header data.
17. The method as claimed in claim 16 further comprising determining if a data length value includes a legitimate value.

18. The method as claimed in claim 16 wherein the appropriate range is any number including and between 0 and 7999.

19. A meta data header added to received packets by a media storage device as the packets are recorded on storage media within the media storage device comprising:
 a. a cycle mark value including a pattern used to locate cycle boundaries within the received packets; and
 b. a cycle count value specifying a cycle number of a cycle in which the received packets are received.

20. The meta data header as claimed in claim 19 wherein the cycle count value has a range between and including 0 and 7999.

21. The meta data header as claimed in claim 19 wherein the received packets are isochronous data packets.

22. The meta data header as claimed in claim 19 wherein the meta data header is added to each received packet.

23. The meta data header as claimed in claim 19 wherein the meta data header is added to each group of received packets received during a same isochronous cycle.

24. A media storage device comprising:
 a. means for interfacing configured for receiving a stream of data, thereby forming a received stream of data, and also for transmitting a retrieved stream of data;
 b. means for storing data for storing and retrieving the received stream of data; and
 c. means for processing coupled to the means for interfacing and to the means for storing for adding header data to the received stream of data as the received stream of data is received and providing the header data and the received stream of data to the means for storing for recording thereby forming a recorded stream of data, the header data including a cycle mark value marking cycle boundaries within the recorded stream of data.
25. The media storage device as claimed in claim 24 wherein the means for processing is an embedded stream processor which also locates a first cycle mark value within the recorded stream of data during a playback operation, reads packets within the recorded stream of data after the first cycle mark value, strips the header data from read packets within the recorded stream of data thereby forming retrieved packets of data and transmits the retrieved packets of data through the means for interfacing to a receiving device.

26. The media storage device as claimed in claim 25 wherein the receiving device is coupled to the means for interfacing by a bus structure which substantially complies with a version of an IEEE 1394 standard.

27. The media storage device as claimed in claim 25 wherein the embedded stream processor locates the first cycle mark value by locating a pattern included within the cycle mark value, then determining if a cycle count value within the header data is within an appropriate range, determining if an isochronous header follows the header data and then determining if a data length value includes a legitimate value.

28. The media storage device as claimed in claim 27 wherein the appropriate range is any number including and between 0 and 7999.

29. The media storage device as claimed in claim 24 wherein the header data further includes a cycle count value specifying a cycle number of a cycle in which packets of data within the received stream of data were received.

30. A media storage device comprising:
 a. an interface circuit configured to receive a stream of data, thereby forming a received stream of data, and also to transmit a retrieved stream of data;
 b. storage media configured to store and retrieve the received stream of data; and
 c. an embedded stream processor coupled to the interface circuit and to the storage media to add header data to the received stream of data as it is received and provide the header data and the received stream of data to the storage media for recording to form a recorded stream of data, the header data including a cycle mark value marking cycle boundaries within the recorded stream of data.

31. The media storage device as claimed in claim 30 wherein the embedded stream processor also locates a first cycle mark value within the recorded stream of data during a playback operation, reads packets within the recorded stream of data after the first cycle mark value, strips the header data from read packets within the recorded stream of data
thence formed retrieved packets of data and transmits the retrieved packets of data through
the interface circuit to a receiving device.

32. The media storage device as claimed in claim 31 wherein the receiving device
is coupled to the media storage device by a bus structure which substantially complies with a
version of an IEEE 1394 standard.

33. The media storage device as claimed in claim 31 wherein the embedded
stream processor locates the first cycle mark value by locating a pattern included within the
cycle mark value, then determining if a cycle count value within the header data is within an
appropriate range, determining if an isochronous header follows the header data and then
determining if a data length value includes a legitimate value.

34. The media storage device as claimed in claim 33 wherein the appropriate
range is any number including and between 0 and 7999.

35. The media storage device as claimed in claim 30 wherein the header data
further includes a cycle count value specifying a cycle number of a cycle in which packets of
data within the received stream of data were received.

36. A network of devices comprising:
 a. a source device which generates isochronous source packets of data each
 including an isochronous packet header and a data payload;
 b. a receiving device which utilizes isochronous data; and
 c. a media storage device including:
 i. an interface circuit coupled to the source device for receiving
 the isochronous source packets of data, thereby forming a
 received stream of data, and also coupled to the receiving
 device for transmitting a retrieved stream of data;
 ii. storage media for storing and retrieving the received stream of
 data; and
 iii. an embedded stream processor coupled to the interface circuit
 and to the storage media for adding header data to the received
 stream of data as it is received and providing the header data
 and the received stream of data to the storage media for
 recording thereby forming a recorded stream of data, the header
data including a cycle mark value marking cycle boundaries
within the recorded stream of data.
37. The network of devices as claimed in claim 36 wherein the embedded stream processor also locates a first cycle mark value within the recorded stream of data during a playback operation, reads packets within the recorded stream of data after the first cycle mark value, strips the header data from read packets within the recorded stream of data thereby forming retrieved packets of data and transmits the retrieved packets of data through the interface circuit to the receiving device.

38. The network of devices as claimed in claim 37 wherein the embedded stream processor locates the first cycle mark value by locating a pattern included within the cycle mark value, then determining if a cycle count value within the header data is within an appropriate range, determining if an isochronous header follows the header data and then determining if a data length value includes a legitimate value.

39. The network of devices as claimed in claim 38 wherein the appropriate range is any number including and between 0 and 7999.

40. The network of devices as claimed in claim 36 wherein the source device, the receiving device and the media storage device are coupled together by a bus structure which substantially complies with a version of an IEEE 1394 standard.

41. The network of devices as claimed in claim 36 wherein the header data further includes a cycle count value specifying a cycle number of a cycle in which packets of data within the received stream of data were received.

42. The network of devices as claimed in claim 36 wherein the isochronous source packets each further include a CIP header.

43. The network of devices as claimed in claim 36 wherein the receiving device is a display device.
Fig. 1 (PRIOR ART)
Fig. 4A

(PRIOR ART)

Fig. 4B
Fig. 5
Fig. 6

Fig. 7

Isochronous Stream

Isochronous Cycle Boundaries

512 Byte Block Boundary
7/8

Start 150

Find Cycle Mark Pattern 152

Determine
If Cycle Count Value is within Range

Yes 154

Determine
If Isoch Header Follows Suspected MD Header

No

Yes

Determine
If Data Length Field Includes Legitimate Value

No 158

Resynchronize Data and Begin Transmitting 160

Determine
If C-M Pattern of Isoch Header Follows Packet

No 162

Yes

Continue Transmitting 164

Fig. 8
Fig. 9

Fig. 10
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : H04N 5/928; G06P 3/00, 13/00, 13/12
US CL : 710/5, 65, 68, 74; 386/98, 126
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
U.S. : 710/5, 65, 68, 74; 386/98, 126

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 5,640,592 A (RAO) 17 June 1997, column 5, line 64-column 6, line 67; fig. 4.</td>
<td>1-43</td>
</tr>
<tr>
<td>Y,P</td>
<td>US 6,233,637 B1 (SMYERS et al) 15 May 2001, column 2, lines 43-64; column 3, lines 53-53; column 26, lines 20-26; 44, fig. 2.</td>
<td>3,5,11,12,30-33,36-38</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,960,152 A (SAWABE et al) 28 September 1999, column 13, line 24-column 14, line 33; fig. 8, 10.</td>
<td>1-43</td>
</tr>
<tr>
<td>X</td>
<td>JP 02000151681 A (CHOI et al) 30 May 2000, abstract all.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>2-43</td>
</tr>
<tr>
<td>Y</td>
<td>JP 411025596 A (TANAKA) 29 January 1999, abstract all.</td>
<td>1-43</td>
</tr>
<tr>
<td>X</td>
<td>JP 02000078428 A (ITO) 14 March 2000, abstract all.</td>
<td>1</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referred to in an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

\[P+\] later documents published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

\[X\] document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

\[Y\] document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

\[&\] document member of the same patent family

Date of the actual completion of the international search 12 September 2001 (12.09.2001)

Date of mailing of the international search report 01 NOV 2001

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703)305-3230

Authorized officer

Thomas Lee
Telephone No. 703-305-9717

Form PCT/ISA/210 (second sheet) (July 1998)