Title: METHOD AND DEVICE IN REEL CHANGE

Abstract: The invention relates to a method and device in reeling up. The paper web (PR) reeled on a reeling core (2) is affected to form a reel (R) at least by means of the torque (M) of a reeling cylinder (1) and the nip load (N), wherein in connection with the reel (R) change a new reeling core (3) is brought in nip contact (NY) with the reeling cylinder (1) above the reeling cylinder (1), together with a change device (4) especially a so-called goose neck. During the reel (R) change an adhesive or the like is applied between the layers of the paper web in connection with the cutting of the paper web (PR) by means of a cutting device (7). According to the invention the adhesive or the like is applied on the surface (P) of the reel (R) that is being formed by means of a member (6) applying the adhesive.
Published:

- Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
Method and device in reel change

The invention relates to a method in reel change, in which a paper web to be reeled on a reeling core is affected at least by the torque of the reeling cylinder and the nip load to form a reel, wherein in connection with the reel change, a new reeling core is brought in nip contact with the reeling cylinder above the reeling cylinder together with a change device, especially a so-called gooseneck, and wherein an adhesive, or the like, is applied between the paper web layers during the reel change in connection with the cutting of the paper web by means of a cutting device.

As for the state of the art, reference is made to publication FI-B 102826, which discloses a method in reeling up a paper or paper board web, in which the paper web is supported during the reeling by means of a belt travelling via a nip between the reeling cylinder and the reel shaft. In connection with the reel change, an adhesive is sprayed on the paper web passed to the reel at the same time the paper web is cut. In said publication the adhesive is spread on the web passed to the reel within a fixed distance from the cutting line. Such a method is advantageous as such especially in so-called high-speed reeling, in which the web speeds exceed 1600 m/min. In cases where the web travels at high speed, the method according to the publication FI-B 102826 can be applied without actual drawbacks especially for such paper grades, in which the absorption of the adhesive is insignificant.

Advantageously, but not solely, the present invention relates to a method to be applied in connection with a Pope-type reel-up. The Pope-type reel-up is the oldest of the reel-up types currently in use. The function of the Pope-type reel-up is based on one roll that is driven, i.e. a reeling cylinder, and a paper reel pressed against the same and formed around a reeling core. The paper reel that is being formed rotates by means of friction between the reeling cylinder and the paper.

A surface drive reel-up based on the Pope method is advantageous in the production of relatively small reels, when the paper is not sensitive
to the linear load. The paper also has to be sufficiently compressible. As such, the Pope-type reel-up has a very simple structure and it functions in a reliable manner. By means of the Pope method, the reel change is typically conducted with a change device, especially with a so-called gooseneck. In the gooseneck change a small, crosswise cut is made to the paper web before the reeling cylinder by means of a cutting device. The cut functions as an initial tear when the paper web is lifted around a new reeling core by means of a blow nozzle at the end of the gooseneck. In the Pope-type reel-up the web speeds vary between approximately 300 and 1500 m/min. However, a drawback occurring in the act of applying the Pope method is that the surface layers of the reel reeled on the reeling core tend to slacken. There have been no suggestion as to how to keep tight the layers of a full reel reeled on the reeling core. This may cause significant production losses, the scope of which is primarily determined on the basis of the running speed and the smoothness of the paper web.

In addition to the Pope method, reeling methods are also used in which a third control variable is used in addition to the surface drive, i.e. a centre-drive apparatus placed in connection with the reeling core, as well as possibly a device for finishing the surface of the reel. The method according to the invention is also suitable to be used in connection with these more developed methods.

The above-mentioned special properties, especially those of Pope method as well as the problems occurring in the act of applying the same, have led up to the present invention. The method disclosed in the publication FI-B 102826, in which an adhesive is sprayed on a web passed to the reel, contains several drawbacks especially in view of the general technology applied in the Pope-type reel-ups and the paper grades generally used in Pope-type reel-ups. Especially in view of the continuity of the reeling, it is important to prevent the access of adhesive on the surface of the reeling cylinder in all conditions. The access of the adhesive on the surface of the reeling cylinder almost without exception causes a production break, which can even be a long-lasting one.
To eliminate the above-presented problems and especially to improve the state of the art in the technology applied in connection with so-called Pope-type reel-ups, as well as to produce new, advantageous possibilities in relation to reel change in other reeling up methods, the method according to the invention is primarily characterized in that the adhesive, or the like, is applied on the surface of the reel that is being formed. By means of this arrangement it is in all conditions possible to substantially minimize the possibility that the adhesive applied on the paper would be released on the surface of the reeling cylinder, even though e.g. the driving speeds were low and the paper grade porous, as is characteristic to the Pope method in particular. If the adhesive is absorbed in the paper, the absorption is most likely directed towards the centre boss of the paper reel that is being formed, because the adhesive is applied on the surface of the reel that is being formed when it has already passed the reeling cylinder. On the other hand, in the nip point of the reel-up a “protective” paper web is placed on the adhesive applied on the surface of the paper reel that is being formed and the contact point of the adhesive with the reeling cylinder is linear and of a very short duration, due to the nature of the nip, wherein the transfer of the adhesive through the paper web through the “protective” paper web to the reeling cylinder is very unlikely because of the aforementioned act of applying the adhesive on the surface of the reeling cylinder before the nip contact in the travel direction of the paper web.

It is particularly advantageous that the member applying the adhesive is placed in connection with a change device, especially a so-called gooseneck. The adhesive is applied to the paper reel that is being formed in connection with the reel change, immediately before the cutting of the paper web, wherein the change device used in the threading of the paper web to the new reeling core is a so-called gooseneck. The gooseneck is placed in the change station before the cutting of the paper web, wherein the member applying the adhesive can be advantageously placed at the same point of location. The moment of transferring the gooseneck to the change station does not have to be substantially changed.
The appended dependent claims also present other advantageous embodiments of the method according to the invention.

The invention also relates to a device in reeling up. The device will be described in more detail in the preamble of the independent claim relating to the device. The device is primarily characterized in that the member applying the adhesive is arranged to apply the adhesive on the surface of the reel that is being formed.

The other independent claims relating to the device present some advantageous embodiments of the device according to the invention.

The invention will be described in more detail with reference to the appended drawings, in which Figs. 1 and 2 show a schematical side-view of two embodiments according to the invention.

Fig. 1 schematically shows a Pope-type reel-up comprising a reeling core 1 by means of which a paper web PR that is being reeled is affected to form a reel R. The function of the reeling cylinder 1 is, on one hand, based on torque M1 attained by means of the centre drive of the same, and on the other hand on a nip load N, which has a linear effect in the embodiment between the reeling cylinder and the reel R that is being formed. In connection with the change of the reel R, a new reeling core 3 is brought in nip contact NK with the reeling cylinder 1, above the reeling cylinder 1 together with a change device 4, i.e. a so-called gooseneck. In the situation of Fig. 1 the process has nearly proceeded to the reel change state.

During the change sequence of the reel R, an adhesive is applied between the paper layers (adhesive jet 5 in Fig. 1) in connection with the cutting of the paper web PR by means of a cutting device 7. In the embodiment of the invention according to Fig. 1, the adhesive (jet 5) is applied on the surface P of the reel R that is being formed, above the nip contact NK.

As can be seen in Fig. 1, the member 6 applying the adhesive (normally comprising three to four nozzles) is in this embodiment
placed in connection with the gooseneck 4. The adhesive is applied on the surface of the reel R that is being formed immediately before the nip contact NK in the travel direction of the paper web PR (arrow KS). The adhesive is applied by means of a jet, wherein the adhesive jet which produces an adhesive stripe on the surface P of the reel R that is being formed, is in the presented embodiment produced diagonally downwards from above the nip contact NK.

The act of applying the adhesive is stopped before, but substantially at the same time the operation of the cutting device 7 is started. The cutting device 7 is placed before the reeling cylinder 1 in the travel direction of the paper web PR, within a distance from the member applying the adhesive. In the portioning of the adhesive it is possible to use one or more nozzles placed in connection with the change device 4, which nozzles can be positioned in such a manner that they produce a fan-like formation, wherein it is possible to supply several adhesive jets producing an adhesive stripe on the surface P of the reel R that is being formed, thus increasing the hold or attaining a stronger adherence by means of spraying the adhesive for a shorter period of time.

Most advantageously, the operating power of the pneumatically operated nozzles spraying the adhesive is attained from the gooseneck operating as a change device, in which pressurized air is already used. The adhesive can be conveyed via a pipework from a container located close to the Pope-type reel-up. To increase the pressure of the adhesive so that it is sufficient in view of applying the same, it is possible to place a pump close to the nozzles. The adhesive can be applied via the nozzles by starting the blowing from the gooseneck, wherein the pressurized air in use can be utilized as operating power of the nozzles. Each portioned adhesive stripe covers typically approximately ¼ of the length of the perimeter of the reel R. If a stronger hold is necessary, it is possible to increase the supply time of the adhesive thereby lengthening the adhesive stripe. The fact that the supply of the adhesive is stopped when the cutting device produces a cut, ensures that the adhesive remains underneath the surface layers of the paper web PR and does not enter in contact e.g. with the surface
layers of the paper web PR, thereby not being able to touch the outer surface of the reeling cylinder.

Fig. 2 shows an embodiment of the method according to the invention in a reel-up equipped with a centre-driven KK (torque M2) reeling core 2, said reel-up naturally also comprising the drives used in the reel-up according to Fig. 1. The parts corresponding to the embodiment of Fig. 1, are marked with corresponding reference numerals in Fig. 2. The structure according to Fig. 2 deviates from the structure of Fig. 1 in that respect that the member 6 applying the adhesive is placed inside a box-like pulper shield 8 with a triangular cross-section. In this embodiment, the member 6 applying the adhesive comprises three to four nozzles placed at fixed intervals substantially next to each other inside the pulper shield 8 whose length equals the length of the reeling cylinder. The pulper shield 8 is provided with a perforation 9 at the point of location of the nozzles, i.e. in the surface 8a of the triangular cross-section directed diagonally upward and towards the reeling cylinder 1, in the closed position of the pulper shield 8, via which the adhesive jets 5 are directed upwards, in the presented embodiment diagonally upwards on the surface P of the reel R after the nip contact in the travel direction of the paper web PR. Thus, the adhesive stripes (marked with a bold line in Fig. 2), substantially circle the outer perimeter of the reel R that is being formed.

Fig. 2 also presents a central processing unit 10 which is, for instance, utilized to control the act of applying the method according to the invention. The central processing unit 10 is connected (line 11 in Fig. 2) on one hand to the member 6 applying the adhesive and on the other hand to the cutting device 7 (line 12 in Fig. 2). The applying of the adhesive by means of the member 6 is stopped by means of a control command by the central processing unit 10 before, but advantageously substantially at the same time the operation of the cutting device 7 is started. The cutting device 7 is placed before the reeling cylinder 1 in the travel direction of the paper web PR, as in the embodiment of Fig. 1. The pressurized (pressure source 13) supply storage 14 of the adhesive is placed in transfer connection of the adhesive (line 15 in Fig. 2) with the member 6 applying the adhesive. The supply storage
14 can be a bag (cartridge-like) containing the adhesive, which is placed in the pressure space within the area of influence of the pressure of the pressure source 13, wherein the pressure compresses the bag thus producing a working pressure in the nozzles constituting the member 6 applying the adhesive, the operation of which nozzles is controlled by on/off principle by means of valves in connection with said nozzles. The bag constituting the supply storage 14 thus prevents the drying of the adhesive.

The agent effecting the operation according to the invention can also be called a binding agent, because adhesive properties, by means of which the layers of the paper web PR adhere to each other, are not necessarily required as such of said medium, but said medium has such an effect that it generates such changes in the surface of paper web layers positioned next to each other, that the layers adhere to each other. Thus, the binding agent binding the paper web layers together can be for example water. An advantageous adhesive, thanks to its pulpability, is starch dissolved or dispersed in water. In view of applying the method according to the invention, it is important that the adhesive forms as coherent a flow as possible, so that the drying would be as slight as possible, before the paper web layers are bound together, to attain the best possible adherence. This is especially important in the embodiment according to Fig. 2, in which adhesive stripe(s) or the like are exposed to drying for a considerably longer period of time as in the embodiment of Fig. 1. In this respect, a dripping adhesive jet is typically not advantageous, because a large free surface area is generated in the dripping jet, which accelerates the drying process.
Claims:

1. A method in reel change, in which the paper web (PR) reeled on a reeling core (2) is affected to form a reel (R) at least by means of the torque (M) of a reeling cylinder (1) and the nip load (N), wherein in connection with the reel (R) change a new reeling core (3) is brought in nip contact (NK) with the reeling cylinder (1) above the reeling cylinder (1), together with a change device (4) especially a so-called gooseneck, and wherein during the reel (R) change an adhesive or the like is applied between the layers of the paper web in connection with the cutting of the paper web (PR) by means of a cutting device (7), characterized in that the adhesive (5) or the like is applied on the surface (P) of the reel (R) that is being formed.

2. The method according to claim 1, characterized in that adhesive or the like is placed on the surface of the paper reel (R) that is being formed immediately before the nip contact (NK) in the travel direction of the paper web (PR).

3. The method according to claim 1 or 2, characterized in that the adhesive or the like is applied on the surface of the reel (R) that is being formed immediately after the nip contact (NK) in the travel direction of the paper web (PR).

4. The method according to claim 1 or 2, characterized in that the member (6) applying the adhesive or the like is placed in connection with a change device (4), especially a so-called gooseneck.

5. The method according to claim 1 or 3, characterized in that the member (6) applying the adhesive or the like is placed in connection with a pulper shield (8).

6. The method according to any of the claims 1 to 5, characterized in that the cutting device (7) is placed before the reeling cylinder (1) in the travel direction of the paper web (PR), within a distance from the member (6) applying the adhesive or the like.
7. The method according to claim 1, characterized in that the act of applying the adhesive (5) or the like is stopped before, but substantially at the same time the operation of the cutting device (7) is started.

8. A device in reel change, in which a paper web (PR) reeled on a reeling core (2) is affected to form a reel (R) at least by means of the torque (M) of a reeling cylinder (1) and the nip load (N), wherein in connection with the reel (R) change a new reeling core (3) is brought in nip contact (NK) with the reeling cylinder (1) above the reeling cylinder (1), together with a change device (4) especially a so-called gooseneck, and wherein during the reel (R) change an adhesive or the like is applied between the layers of the paper web in connection with the cutting of the paper web (PR) by means of a cutting device (7), characterized in that the member (6) applying the adhesive or the like is arranged to apply the adhesive on the surface (P) of the reel (R) that is being formed.

9. The device according to claim 8, characterized in that the member (6) applying the adhesive or the like is fixed in connection with a threading device (4), especially a so-called gooseneck.

10. The device according to claim 8, characterized in that the member (6) applying the adhesive or the like is placed in connection with a pulper shield (8).

11. The device according to any of the claims 8 to 10, characterized in that the member (6) applying the adhesive or the like comprises one or more nozzles.

12. The device according to claim 11, characterized in that the member (6) applying the adhesive or the like comprises several nozzles positioned in a fan-like formation in connection with the gooseneck (4) or inside the pulper shield (8).

13. The device according to claim 11, characterized in that the nozzles are operated by means of pressurized air, and their operating
power is arranged to be taken directly from the change device (4), from a so-called gooseneck or from a separate pressure source.